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FIXED POINT RESULTS FOR COMPLETE DISLOCATED

Gd-METRIC SPACE VIA C-CLASS FUNCTIONS

ABDULLAH SHOAIB, ARSLAN HOJAT ANSARI, QASIM MAHMOOD AND AQEEL

SHAHZAD

Abstract. In this paper, we discuss unique fixed point results for mappings

satisfying contractive condition via C-class functions for a complete dislocated

Gd-metric space. Example is also given which shows the novelty of our work.
Our results improve/generalize several well known recent and classical results.

1. Introduction and Basic Concepts

In the field of analysis the notion of metric spaces plays an important role in
pure and applied science such as biology, physics and computer science. The notion
of a G-metric space was introduced by Mustafa et al. [29].

A point x ∈ X is said to be a fixed point of mapping T : X → X, if x = Tx. Many
results appeared related to fixed point for mappings satisfying certain contractive
conditions in complete G-metric spaces and dislocated metric spaces(see [1]-[43]).
Recently, dislocated quasi G-metric space was introduced by Shoaib et al. [37, 39],
which is a generalization of both G-metric spaces and dislocated metric spaces. A
class of new C-class functions was recently introduced by Ansari et al. [6].

In this paper, we have obtained fixed point results for contractive self mappings
in a complete dislocated Gd-metric space via C-class functions which extend and
improve the recent fixed point results proved by Karapınar et al. [23]. An example
is also given to support our results.
Definition 1.1 Let X be a nonempty set, and let Gd : X ×X ×X → [0,∞), be a
function satisfying the following properties:

(G1) If Gd(a, b, c) = 0, then a = b = c;
(G2) Gd(a, a, b) ≤ Gd(a, b, c), for all a, b, c ∈ X with b 6= c;
(G3) Gd(a, b, c) = Gd(a, c, b) = Gd(b, a, c) = Gd(b, c, a) = Gd(c, a, b) = Gd(c, b, a)

for all a, b, c ∈ X;
(G4) Gd(a, b, c) ≤ Gd(a, d, d) + Gd(d, b, c), for all a, b, c, d ∈ X, (rectangle in-

equality).
Then the function Gd is called a dislocated Gd-metric on X and the pair (X,Gd)

is called dislocated Gd-metric space.
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Example 1.2 Let X = [0,∞) be a nonempty set and Gd : X ×X ×X → [0,∞)
be a function defined by

Gd(a, b, c) = max{a, b, c}, for all a, b, c ∈ X.

Then clearly Gd : X ×X ×X → [0,∞) is dislocated Gd-metric space.
Definition 1.3 Let (X,Gd) be a dislocated Gd-metric space, and let {xn} be a
sequence of points in X, a point x in X is said to be the limit of the sequence {xn}
if limm,n→∞Gd(x, xn, xm) = 0, and one says that sequence {xn} is Gd-convergent
to x. Thus, if xn → x in a dislocated Gd-metric space (X,Gd), then for any ε > 0,
there exist n,m ∈ N such that Gd(x, xn, xm) < ε, for all n,m ≥ N.
Definition 1.4 Let (X,Gd) be a dislocated Gd-metric space. A sequence {xn} is
called Gd-Cauchy sequence if, for ε > 0 there exists a positive integer n? ∈ N such
that Gd(xn, xm,xl) < ε for all n, l,m ≥ n?; or Gd(xn, xm, xl)→ 0 as n,m, l→∞.
Definition 1.5 A dislocated Gd-metric space (X,Gd) is said to be Gd-complete if
every Gd-Cauchy sequence in (X,Gd) is Gd-convergent in X.
Proposition 1.6 Let (X,Gd) be a dislocated Gd-metric space, then the following
are equivalent:

(i) {xn} is Gd convergent to x.
(ii) Gd(xn, xn, x)→ 0 as n→∞.
(iii) Gd(xn, x, x)→ 0 as n→∞.
(iv) Gd(xn, xm, x)→ 0 as m n→∞.

Lemma 1.7 Let (X,Gd) be a dislocated Gd-metric space and {xn} be a sequence
in X such that {Gd(xn, xn, xn+1)} is decreasing and

lim
n→∞

Gd(xn, xn, xn+1) = 0.

If {x2n} is not a Gd-Cauchy sequence, then there exist an ε > 0 and {mk} and
{nk} of positive integers such that the following sequences {Gd(xmk

, xnk
, xnk

)},
{Gd(xmk

, xnk+1, xnk+1)}, {Gd(xmk−1, xnk
, xnk

)}, {Gd(xmk−1, xnk+1, xnk+1)} and
{Gd(xmk

, xnk+1, xnk+1)} tend to ε > 0, when k →∞.
Definition 1.8 [6] A mapping F : [0,∞)2 → R is called a C-class function if it is
continuous and satisfies the following axioms:

(i) F (s, t) ≤ s for all s, t ∈ [0,∞);
(ii) F (s, t) = s implies that either s = 0 or t = 0.
Mention that some C-class function F verifies F (0, 0) = 0. We denote by C the

set of C-class functions.
Example 1.9 [6] Following examples show that the class C is nonempty:

(i) F (s, t) = s− t.
(ii) F (s, t) = ms,for some m ∈ (0, 1).
(iii) F (s, t) = s

1+t .

[6] Let Φu denote the class of all functions ϕ : [0,∞)→ [0,∞) which satisfy the
following conditions:

(i) ϕ is continuous ;
(ii) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.
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2. Main Result

Theorem 2.1: Let (X,Gd) be a complete dislocated Gd-metric space, let T :
X −→ X be a mapping satisfying

Gd(Ta, Tb, T c) ≤ F (W (a, b, c), ϕ(W (a, b, c))) (2.1)

for all a, b, c ∈ X, where ϕ ∈ Φu, and F is a C class function.
Here,

W (a, b, c) =
1

2
max{Gd(b, T 2a, T b), Gd(Ta, T 2a, T b), Gd(a, Ta, b), Gd(a, Ta, c),

Gd(c, T 2a, T c), Gd(b, Ta, T b), Gd(Ta, T 2a, T c), Gd(c, Ta, T b),

Gd(a, b, c), Gd(a, Ta, Ta), Gd(b, T b, T b), Gd(c, T c, T c),

Gd(a, T b, T b), Gd(b, T c, T c), Gd(c, Ta, Ta)}. (2.2)

Then, there exists a unique fixed point a ∈ X such that Ta = a.
Proof : Consider a Picard sequence {an} with initial guess a0 ∈ X such that

an+1 = Tan, for all n ∈ N.

Suppose an+1 6= an, for all n ∈ N ∪ {0}. Now, consider the relation

Gd(an, an+1, an+1) = Gd(Tan−1, Tan, Tan)

≤ F (W (an−1, an, an), ϕ(W (an−1, an, an))). (2.3)

From (2.2),

W (an−1, an, an) =
1

2
max{Gd(an−1, an, an), Gd(an, an+1, an+1), Gd(an, an, an+1),

Gd(an−1, an+1, an+1), Gd(an, an, an)}.

By Definition 1.1, we have

Gd(an, an, an) ≤ Gd(an, an+1, an+1).

So,

W (an−1, an, an) ≤ 1

2
max{Gd(an−1, an, an), Gd(an, an+1, an+1),

Gd(an, an, an+1), Gd(an−1, an+1, an+1)}.

In first case, if

W (an−1, an, an) =
1

2
Gd(an, an+1, an+1),

then, by (2.3)

1

2
Gd(an, an+1, an+1) ≤ Gd(an, an+1, an+1)

≤ F (
1

2
Gd(an, an+1, an+1), ϕ(

1

2
Gd(an, an+1, an+1)))

≤ 1

2
Gd(an, an+1, an+1).

Then

F (
1

2
Gd(an, an+1, an+1), ϕ(

1

2
Gd(an, an+1, an+1))) =

1

2
Gd(an, an+1, an+1).
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By the property of F, we get

1

2
Gd(an, an+1, an+1) = 0 or ϕ(

1

2
Gd(an, an+1, an+1)) = 0.

Then,

Gd(an, an+1, an+1) = 0.

It is a contradiction because an+1 6= an. Now, in second case, if

W (an−1, an, an) =
1

2
Gd(an, an, an+1),

then, we have

1

2
Gd(an, an, an+1) ≤ Gd(an, an, an+1) ≤ Gd(an, an+1, an+1)

≤ F (
1

2
Gd(an, an, an+1), ϕ(

1

2
Gd(an, an, an+1)))

≤ 1

2
Gd(an, an, an+1),

which implies

F (
1

2
Gd(an, an, an+1), ϕ(

1

2
Gd(an, an, an+1))) =

1

2
Gd(an, an, an+1).

By the property of F, we get

1

2
Gd(an, an, an+1) = 0 or ϕ(

1

2
Gd(an, an, an+1)) = 0.

Then,
1

2
Gd(an, an, an+1) = 0.

It is a contradiction because an+1 6= an. In third case, if

W (an−1, an, an) =
1

2
Gd(an−1, an, an),

then, we have

Gd(an, an+1, an+1) ≤ F (
1

2
Gd(an−1, an, an), ϕ

1

2
Gd(an−1, an, an)))

≤ 1

2
Gd(an−1, an, an)

≤ Gd(an−1, an, an). (2.4)

In fourth case, if

W (an−1, an, an) = Gd(an−1, an+1, an+1),

then,

Gd(an, an+1, an+1) ≤ F (
1

2
Gd(an−1, an+1, an+1), ϕ(

1

2
Gd(an−1, an+1, an+1)))

≤ 1

2
Gd(an−1, an+1, an+1)

≤ Gd(an−1, an, an) +Gd(an, an+1, an+1)

2
Gd(an, an+1, an+1) ≤ Gd(an−1, an, an). (2.5)
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Hence, by combining (2.4) and (2.5), we have

Gd(an, an+1, an+1) ≤ Gd(an−1, an, an)→ d.

Now, by inequality (2.3) with n→∞, we have

d ≤ F (d, ϕ(d)),

then,

d = 0 or ϕ(d) = 0.

So, we have

lim
n→∞

Gd(an, an+1, an+1) = 0.

We shall show that {an} is a Gd-Cauchy sequence. Suppose that {a2n} is not a
Gd-Cauchy sequence and from Lemma 1.7, there exists ε > 0 such that

Gd(amk+1, ank+1, ank+1)) ≤ F (W (amk
, ank

, ank
), ϕ(W (amk

, ank
, ank

))). (2.6)

Now, by using (2.6) as k →∞, then

ε ≤ F (ε, ϕ(ε)) ≤ ε.

By the property of F, we get

ε = 0 or ϕ(ε) = 0.

Then, ε = 0, which is a contradiction. This proves that {a2n} is a Gd-Cauchy
sequence and hence {an} is a Gd-Cauchy sequence. So, we have

Gd(an, am, am)→ 0, as n→∞.

Therefore, Picard sequence {an} is Cauchy sequence in X. Hence, an → a as
n→∞. In general it is clear that,

lim
n→∞

Gd(an, a, a) = lim
n→∞

Gd(a, an, an) = 0. (2.7)

To check either a ∈ X is a fixed point of T or not, we consider

Gd(a, Ta, Ta) ≤ Gd(a, an+1, an+1) +Gd(an+1, Ta, Ta)

≤ Gd(a, an+1, an+1) + F (W (an, a, a), ϕ(W (an, a, a))). (2.6)

From (2.2),

W (an, a, a) =
1

2
max{Gd(a, T 2an, Ta), Gd(Tan, T

2an, Ta), Gd(an, Tan, a),

Gd(an, Tan, a), Gd(a, T 2an, Ta), Gd(a, Tan, Ta),

Gd(Tan, T
2an, Ta), Gd(a, Tan, Ta), Gd(an, a, a),

Gd(an, Tan, Tan), Gd(a, Ta, Ta), Gd(a, Ta, Ta),

Gd(an, Ta, Ta), Gd(a, Ta, Ta), Gd(a, Tan, Tan)}

W (an, a, a) =
1

2
max{Gd(a, an+2, Ta), Gd(an+1, an+2, Ta), Gd(an, an+1, a),

Gd(an, an+1, a), Gd(a, an+2, Ta), Gd(a, an+1, Ta),

Gd(an+1, an+2, Ta), Gd(a, an+1, Ta), Gd(an, a, a),

Gd(an, an+1, an+1), Gd(a, Ta, Ta), Gd(a, Ta, Ta),

Gd(an, Ta, Ta), Gd(a, Ta, Ta), Gd(a, an+1, an+1)}
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W (an, a, a) =
1

2
max{Gd(a, an+2, Ta), Gd(an+1, an+2, Ta), Gd(an, an+1, a),

Gd(a, an+1, Ta), Gd(an, a, a), Gd(an, an+1, an+1),

Gd(a, Ta, Ta), Gd(an, Ta, Ta), Gd(a, an+1, an+1)}. (2.7)

After applying limit n→∞, by (2.8), for every selection of W (an, a, a) from (2.9)
and by using the fact that Gd is symmetry, we get

Gd(a, Ta, Ta) ≤ F (Gd(a, Ta, Ta), ϕ(Gd(a, Ta, Ta))).

By the property of F, we get

Gd(a, Ta, Ta) = 0 or ϕ(Gd(a, Ta, Ta)) = 0.

That is

Gd(a, Ta, Ta) = 0.

Hence, Ta = a where a ∈ X is a fixed point for T. For uniqueness of fixed point,
consider a, b ∈ X be two distinct fixed points. So consider the relation,

Gd(a, b, b) = Gd(Ta, Tb, T b)

Gd(a, b, b) ≤ F (W (a, b, b), ϕ(W (a, b, b))). (2.8)

From (2.2),

W (a, b, b) =
1

2
max{Gd(a, b, b), Gd(b, a, b, ), Gd(a, a, b),

Gd(b, a, a), Gd(a, a, a), Gd(b, b, b)}. (2.9)

Also,

Gd(a, a, a) ≤ Gd(a, b, b),

Gd(b, b, b) ≤ Gd(a, b, b),

Gd(a, a, b) ≤ Gd(a, b, b),

and

Gd(b, a, a) ≤ Gd(a, b, b).

Hence, (2.11) gives

W (a, b, b) =
1

2
Gd(a, b, b).

Gd(a, b, b) ≤ F (
1

2
(Gd(a, b, b), ϕ(

1

2
(Gd(a, b, b))),

≤ 1

2
(Gd(a, b, b),

which implies

Gd(a, b, b) = 0. or ϕ(Gd(a, b, b)) = 0.

That is

Gd(a, b, b) = 0.

It is a contradiction to our assumption, that is a 6= b. So our supposition is wrong.
Hence, a ∈ X is a unique fixed point for T .
Example 2.2: Let X = {0, 1, 2, 3, 4}, and Gd : X ×X ×X −→ X, be a mapping
defined by,

Gd(a, b, c) = max{a, b, c} for all a, b, c ∈ X
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then, (X,Gd) is a complete dislocated Gd-metric space. Let, T : X → X be defined
by,

Tx =

{
0 if x ∈ {0, 1, 2}
1 if x ∈ {3, 4} ,

and
F (s, t) = s− t for all s, t ≥ 0.

Take ϕ(t) = t
5 for all t ≥ 0.

Case I: If a = 0, b = 1, and c = 2, then

Gd(Ta, Tb, T c) = max{0, 0, 0}
= 0.

Moreover

W (a, b, c) =
1

2
max{1, 0, 1, 2, 2, 1, 0, 2, 2, 0, 1, 2, 0, 1, 2}

=
2

2
= 1.

Therefore

F (W (a, b, c), ϕ(W (a, b, c))) = F (1, ϕ(1))

= F (1,
1

5
)

= 1− 1

5

=
4

5
.

Thus

Gd(Ta, Tb, T c) = 0 <
4

5
= F (W (a, b, c), ϕ(W (a, b, c))),

that is, (2.1) holds.
Case II: If a = 0, b = 1, and c = 3, then

Gd(Ta, Tb, T c) = max{0, 0, 1}
= 1.

Moreover

W (a, b, c) =
1

2
max{1, 0, 1, 3, 3, 1, 1, 3, 3, 0, 1, 3, 0, 1, 3}

=
3

2
.

Therefore

F (W (a, b, c), ϕ(W (a, b, c))) = F (
3

2
, ϕ(

3

2
))

= F (
3

2
,

3

10
)

=
3

2
− 3

10

=
6

5
.
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Thus

Gd(Ta, Tb, T c) = 1 <
6

5
= F (W (a, b, c), ϕ(W (a, b, c))),

that is, (2.1) holds.
Case III: If a = 1, b = 1, and c = 1, then

Gd(Ta, Tb, T c) = max{0, 0, 0}
= 0.

Moreover

W (a, b, c) =
1

2
max{1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1}

=
1

2
.

Therefore

F (W (a, b, c), ϕ(W (a, b, c))) = F (
1

2
, ϕ(

1

2
))

= F (
1

2
,

1

10
)

=
1

2
− 1

10

=
2

5
.

Thus

Gd(Ta, Tb, T c) = 0 <
2

5
= F (W (a, b, c), ϕ(W (a, b, c))),

that is, (2.1) holds.
It is clear from above cases, the contractive condition of Theorem 2.1 holds and

similarly for other cases. Therefore, 0 ∈ X, is a fixed point for T, such that T0 = 0.
In Theorem 2.1, W (a, b, c) contains 15 elements. Hence many corollaries can

be constructed by taking different subsets of W (a, b, c). Some of them are given
below.
Corollary 2.3: Let (X,Gd) be a complete dislocated Gd-metric space, let T :
X −→ X be a mapping satisfying

Gd(Ta, Tb, T c) ≤ F (
1

2
Gd(b, T 2a, Tb), ϕ(

1

2
Gd(b, T 2a, Tb)))

for all a, b, c ∈ X, where ϕ ∈ Φu, and F is a C class function. Then, there exists a
unique fixed point a ∈ X such that Ta = a.
Corollary 2.4: Let (X,Gd) be a complete dislocated Gd-metric space, let T :
X −→ X be a mapping satisfying

Gd(Ta, Tb, T c) ≤ F (
1

2
Gd(Ta, T 2a, Tb), ϕ(

1

2
Gd(Ta, T 2a, Tb)))

for all a, b, c ∈ X, where ϕ ∈ Φu, and F is a C class function. Then, there exists a
unique fixed point a ∈ X such that Ta = a.
Corollary 2.5: Let (X,Gd) be a complete dislocated Gd-metric space, let T :
X −→ X be a mapping satisfying

Gd(Ta, Tb, T c) ≤ F (
1

2
Gd(a, Ta, b), ϕ(

1

2
Gd(a, Ta, b)))
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for all a, b, c ∈ X, where ϕ ∈ Φu, and F is a C class function. Then, there exists a
unique fixed point a ∈ X such that Ta = a.
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