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Abstract

Let G be a finite group and π(G) be the set of prime divisors of the order of G. For

t ∈ π(G) denote by nt(G) the order of a normalizer of t-Sylow subgroup of G and put

n(G) = {nt(G) : t ∈ π(G)}. In this paper, we give an answer to the following problem,

for the groups of Lie type Bn, Cn and Dn:

Let L be a finite non-abelian simple group and G be a finite group with n(L) = n(G).

Is it true that L ∼= G?

In this paper, we find the first examples of non-abelian finite simple groups which are

not isomorphic and they have the same set of orders of Sylow normalizers and hence, we

show that the question above is not correct always. Let A be the set of prime numbers of

order 2n, 2(n−1) and 2(n−2) mod q. The latter condition is necessary if n ≥ 5. Also, we

show that Dn+1(q) is determined uniquely by its order and {nt(Dn+1(q)) : t ∈ A ∪ {2}}

and if n = 2 or q 6≡ ±1 (mod 8), then Bn(q) and Cn(q) are characterizable by their orders

and orders of t-Sylow normalizers, where t ∈ A ∪ {2}. If n ≥ 3 and q ≡ ±1 (mod 8),

then Bn(q) and Cn(q) are 2-characterizable by their orders and the orders of t-Sylow

normalizers, where t ∈ A ∪ {2}.
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1 Introduction

For a finite group K, let π(K) and nt(K) denote the set of prime divisors of |K| and the

order of the normalizer of a t-Sylow subgroup of K, respectively. Also, let n(K) = {nt(K) :

t ∈ π(K)}. Characterization of finite groups is one of the central themes of research in group

theory. There are various characterizations of finite groups by given properties, such as the

set of orders of maximal abelian subgroup or order components, etc (see [1, 13]). A finite

group G is said to be characterizable by the orders of its Sylow normalizers, if G is uniquely

(up to isomorphism) determined by orders of its Sylow normalizers. A group G is said to

be 2-characterizable by the orders of Sylow normalizers, if there is exactly one group H (up

to isomorphism) such that H is not isomorphic to G and n(H) = n(G). Characterization

by the orders of their Sylow normalizers were first given by Bi [2]. Some finite non-abelian

simple groups are characterizable by orders of Sylow normalizers (see [3, 4, 5, 6, 14, 15, 16]).

Assume that n ≥ 3 is a natural number, q is a power of p (q = pk) and A is a set of prime

numbers of order 2n, 2(n− 1) and 2(n− 2) mod q. The latter condition is necessary if n ≥ 5.

The main theorem of this paper is the following:

Main Theorem. Let Sn,q ∈ {Bn(q), Cn(q), Dn+1(q)} and, suppose that |G| = |Sn,q| and

{nt(Sn,q) : t ∈ A ∪ {2}} = {nt(G) : t ∈ A ∪ {2}}. Then, if Sn,q = Dn+1(q) or n = 2 or

q 6≡ ±1 (mod 8), G ∼= Sn,q. Further, if q ≡ ±1 (mod 8) and n ≥ 3, then either G ∼= Sn,q or

{G, Sn,q} = {Bn(q), Cn(q)}.

Let Mn(q) be the group of all (n×n) matrices with coefficients in GF (q). If m is a natural

number and r is prime, then |m|r denotes the r-part of m, in fact |m|r = rt if rt‖m. Also, St

is the Symmetric group of degree t and (m,n) stands for the greatest common divisor of m

and n. All further unexplained notations are standard and can be found in [8], [12] and [18].

2 On The Orders of Sylow Normalizers Of Some Simple Clas-

sical Groups

In this section, we calculate the orders of Sylow normalizers of Bn(q) and Cn(q). First, let

s ∈ π(Bn(q)) = π(Cn(q)). When we say exps(q) = m, we mean s divides qm−1 and s doesn’t

divide qh − 1 for all 0 < h < m. Since |Bn(q)| = |Cn(q)| = qn2
(q2 − 1)...(q2n − 1)/(2, q − 1),
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we have s ∈ {p} ∪ {r : expr(q) = i or 2i such that 1 ≤ i ≤ n}.

Lemma 2.1 [9]. Let n > 2 be a natural number. If pn 6= 26, then there is a prime factor r

of pn − 1 such that expr(p) = n. And if p is not a Mersenne prime, then there is a prime

factor r of p2 − 1 such that expr(p) = 2.

For a given number n, we define τ(n) =

 2n, if n is odd

n, if n is even
and τ ′(n) =

 n, if n is odd

n/2, if n is even
.

Lemma 2.2 . If exps(q) = m such that s 6= 2, then

|ns(Bn(q))| = |ns(Cn(q))|

= |Spa0(q)|(τ(m)(qτ ′(m) + (−1)m))a1(a1!)Πt
i=1

(ns(Ssi)τ(m)(qτ ′(m) + (−1)m)(|qτ ′(m) + (−1)m|s)si−1)ai+1(ai+1!)/(2, q − 1),

where t ∈ N∪{0}, stτ(m) ≤ 2n < st+1τ(m) and 2n = a0+a1τ(m)+a2sτ(m)+...+at+1s
tτ(m).

Proof. Frattini’s argument and [19] complete the proof. �

Corollary 2.3 . If exps(q) = 2n, then

|ns(Bn(q))| = |ns(Cn(q))| = 2n(qn + 1)/(2, q − 1),

and if exps(q) = 2(n− 1), then

|ns(Bn(q))| = |ns(Cn(q))| = 2q(n− 1)(q2 − 1)(qn−1 + 1)/(2, q − 1).

Using the orders of Cartan subgroups of Bn(q) and Cn(q), we can prove the following

lemma.

Lemma 2.4 . Let P̄ ∈ Sylp(Cn(q)) and P ′ ∈ Sylp(Bn(q)), then |NCn(q)(P̄ )| = |NBn(q)(P ′)| =

qn2
(q − 1)n/(2, q − 1).

Corollary 2.5 . If p 6= 2, then nt(Bn(q)) = nt(Cn(q)) for every odd prime t.

Again using Frattini’s argument and [19], we can reach to the following results:
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Lemma 2.6 . If expr(q) = 2n, then |NDn+1(q)(R̄)| = 2(qn + 1)(q + 1)n/(qn+1 − 1, 4), where

R̄ ∈ Sylr(Dn+1(q)).

Lemma 2.7 . Let expr1
(q) = 2(n−1) and R̄1 ∈ Sylr1

(Dn+1(q)). If n ≥ 4, then |NDn+1(q)(R̄1)| =

2q2(q4 − 1)(qn−1 + 1)(n− 1)/(4, qn+1 − 1). Also, |ND4(q)(R̄1)| = 8(q2 + 1)2/(4, q4 − 1).

Corollary 2.8 . Let n ≥ 3. If r, r1 ∈ π(Sn,q) such that expr(q) = 2n and expr1
(q) =

2(n− 1), then r1 - nr(Sn,q) and r - nr1(Sn,q).

Proof. We claim that r - nr1(Sn,q). If not, r | nr1(Sn,q). Since expr(q) = 2n, we have

2n | r − 1. Moreover, by Lemma 2.2 and Lemma 2.7, we have r | n − 1. Thus 2n < n,

a contradiction. Similar to the previous procedure, by Corollary 2.3 and Lemma 2.6, r1 -

nr(Sn,q), which completes the proof. �

Lemma 2.9 [17, Corollary after Theorem 3]. Let n ≥ 3 and p 6= 2. Then n2(Bn(q)) =

|Bn(q)|2. If q ≡ ±3 (mod 8), then n2(Cn(q)) = 3t|Cn(q)|2, where the number t can be found

from the 2-adic expansion 2n = 2s1 + ... + 2st, s1 > ... > st. Unless, n2(Cn(q)) = |Cn(q)|2.

Corollary 2.10 . Let n ≥ 3 and q be any prime power. Then n(Bn(q)) = n(Cn(q)), unless

q ≡ ±3 (mod 8).

3 Main Theorem

Lemma 3.1 . Let G be a finite non-abelian simple group and |G|p = pe. If p7e/3 ≤ |G| <

p8e/3, then G is isomorphic to one of the following groups: Ln(q) (for 2 ≤ n ≤ 5 and

(n, q) 6= (5, 11)); Un(q) (for 3 ≤ n ≤ 5, (n, q) 6= (3, 2), (n, q) 6= (4, 3) and (n, q) 6= (5, 4));

Bn(q) (for n = 2 and (n, q) 6= (2, 3)); 2B2(q); 2F ′
4(2).

Proof. [6, Lemma 2] and the orders of all finite simple groups of Lie type in characteristic p

complete the proof. �

Remark 3.2 . Let G be a finite non-abelian simple group and |G|p = pe. If |G| < p7e/3,

then G is isomorphic to a simple group of Lie type in characteristic p. Moreover G is not

isomorphic to any of the groups stated in Lemma 3.1.
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Lemma 3.3 . [3] Let G be a finite group, N C G and R ∈ Sylr(G). If r | |G/N | and r - |N |

(r is prime and r 6= p), and if, in addition, pe ‖ |N | and pt ‖ |CN (R)|, then r | pe−t − 1.

In Lemma 3.4 and Lemma 3.5, let G be a finite group such that nt(G) | nt(Sn,q), for every

t ∈ π(G). Also, assume that r, r1 ∈ π(Sn,q) such that expr(p) = 2nk and expr1
(p) = 2(n−1)k.

For every prime number t and a natural number m, if expt(p) = mk, then it is obvious that

expt(q) = m. Thus we can use the results of Section 2, when expt(p) = mk.

Lemma 3.4 . Let Sn,q ∈ {Bn(q), Cn(q)}, N C G, r, r1 ∈ π(G) and |N |p = pt. If r, r1 /∈

π(N), R ∈ Sylr(G) and R1 ∈ Sylr1
(G), then |CN (R)|p = |CN (R1)|p = pt or |CN (R)|p = pu

and p(2a−1)k.pu|2(n− 1) such that pu ∈ {1, 2}, a ∈ N and t = 2nka + u.

Proof. Let |CN (R)|p = pu and |CN (R1)|p = pv. If t− u = 0, we claim that t− v = 0. If not,

then Lemma 3.3 allows us to assume that

2(n− 1) | t− v, (1)

because expr1
(q) = 2(n − 1). Recall that nr(G) | 2n(qn + 1) and nr1(G) | 2(n − 1)q(q2 −

1)(qn−1 + 1), considering Corollary 2.3. Since u = t, nr(G) | 2n(qn + 1) and |CG(R)| | nr(G),

we have pt | 2n. Hence t ≤ log2n
p ≤ log2n

2 < 2n/2 < n. Thus (1) implies that 2(n − 1) < n,

which is impossible. Similarly, we can see that if t − v = 0, then t − u = 0. In addition,

(t − u, t − v) = (0, 0) or there are a, b ∈ N such that t − u = 2nka and t − v = 2(n − 1)kb.

If (t − u, t − v) 6= (0, 0), then we can consider similar to the previous argument that v > u,

a = b and v = 2ka + u. So, Corollary 2.3 completes the proof. �

Lemma 3.5 . Let Sn,q = Dn+1(q), n ≥ 3, N C G, r, r1 ∈ π(G) and |N |p = pt. If r, r1 /∈

π(N), R ∈ Sylr(G) and R1 ∈ Sylr1
(G), then |CN (R)|p = |CN (R1)|p = pt or |CN (R)|p =

pu ∈ {1, 2} and p(2a−2)k.pu|2(n − 1) with a ∈ N and t = 2nka + u or u = 2, t = 18 and

Sn,q = D5(2).

Proof. By long and easy calculation, similar to the procedure of the proof of Lemma 3.4,

this lemma can be proved. �

Proof of the Main Theorem . We note that B2(q) ∼= C2(q) and D3(q) ∼= L4(q). Also,

L2(q), C2(q) and Ln(q) have been characterized in [2, 3, 4]. Thus we may and do, assume
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that n ≥ 3. Let 1 = G0 ≤ G1 ≤ ... ≤ Gf = G be a chief series of G. Let r, r1 and r2 be

prime numbers such that expr(q) = 2n, expr1
(q) = 2(n − 1) and expr2

(q) = 2(n − 2). Let

R ∈ Sylr(G) and R1 ∈ Sylr1
(G). We have the following cases:

I) Let Sn,q 6= Dn+1(q) or n ≥ 5. If (n, q) 6= (3, 2), (4, 2), (5, 2), then by Lemma 2.1, π(G)

contains prime numbers r, r1 and r2. Let j0 = Max{1 ≤ i ≤ f : r ∈ π(Gi/Gi−1)} and,

fix H := Gj0−1 and K := Gj0 . By Frattini’s argument, |G/K| = nr(G)/nr(K). According

to Corollary 2.8, r1 - nr(G) and hence, r1 6∈ π(G/K). We can repeat the same argument

to show that r1 ∈ π(K/H) and if n ≥ 4, then r2 6∈ π(G/K) and r2 ∈ π(K/H). Since

|G|p = |Sn,q|p = pe and |G| = |Sn,q|, we have |G| < p7e/3, considering Lemma 3.1. Thus,

there is 1 ≤ j ≤ f such that |Gj/Gj−1|p = pej > p and |Gj/Gj−1| < p7ej/3. We claim that

there exists 1 ≤ h ≤ f such that r or r1 (or r2, where n ≥ 4) is an element of π(Gh/Gh−1),

|Gh/Gh−1|p = peh > p and |Gh/Gh−1| < p5eh/2. If not, then r 6∈ π(Gj/Gj−1) and r1 6∈

π(Gj/Gj−1) (moreover r2 6∈ π(Gj/Gj−1), for n ≥ 4). Also, by Frattini’s argument, |G/K| =

nr(G)/nr(K) and |G/K| = nr1(G)/nr1(K). This implies that |G/K| | (nr(G), nr1(G)) and

hence, |G/K| | (2q2, 2n). If there exist j1, ..., jk > j0 such that |Gji/Gji−1|p = peji > p and

|Gji/Gji−1| < e7eij
/3, then pej1

+...+ejk ≤ 2q2 and
∏k

i=1 |Gji/Gji−1| > p2(ej1
+...+ejk

). Hence,

|G|/(
∏k

i=1 |Gji/Gji−1|) ≤ p7ek/3−2(ej1
+...+ejk

) < p5(ek−(ej1
+...+ejk

))/2, because ej1 + ... + ejk
<

2k+1. Thus we may assume that j < j0 and we continue the proof in the following subcases:

i) If p - n and |CGj/Gj−1
(RGj−1/Gj−1)|p = |CGj/Gj−1

(R1Gj−1/Gj−1)|p = pej , then pej |

nr(G), because

CGj/Gj−1
(XGj−1/Gj−1) ≤ NGj/Gj−1

(XGj−1/Gj−1)

≤ NG/Gj−1
(XGj−1/Gj−1) ∼= NG(X)/NGi−1(X), (2)

for every x ∈ π(G) and X ∈ Sylx(G). Note that nr(G) | 2n(qn + 1)(q + 1), using Corollary

2.3 and Lemma 2.6. So, pej | 2n and hence, pej | 2 which is a contradiction, because ej > 1.

ii) If p - n, |CGj/Gj−1
(RGj−1/Gj−1)|p 6= |CGj/Gj−1

(R1Gj−1/Gj−1)|p and Sn,q 6= Dn+1(q),

then applying Lemma 3.4 to G/Gi−1 and Gi/Gi−1 implies that ej = 2nka + u with a ∈ N,

|CGj/Gj−1
(RGj−1/Gj−1)|p = pu ∈ {1, 2} and q(2a−1)pu|2(n − 1). Since p(2a−1)k.pu|2(n − 1)

and p - n, we can consider that p | n − 1. Let (n, q) 6= (4, 3). Also, (n, q) 6∈ {(3, 2), (5, 2)}.

Therefore, p | n − 1 shows that n ≥ 6 or n = 5 and k ≥ 2. On the other hand, Lemma
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3.3 allows us to assume that r2 | pej−c − 1, where pc | |CGi/Gi−1
(RGi−1/Gi−1)|. Repeating

the argument used for (2), we obtain that c = ej or pc | |nr2(G)|p = |2q4|p (using the

results appearing in [19]). In addition, we conclude that 2(n − 2)k | 4ka − c + u, because

expr2
(p) = 2(n− 2)k and ej = 2nka + u. Hence

2(n− 2)k ≤ 4ka− c + u or 4ka− c + u = 0. (3)

But p2ka+u | 2pk(n − 1). Hence, if p is even, then n − 1 is even and if p is odd, then

p2ka+u | pk(n− 1). Thus

2ka + u ≤ log2(n−1)q
p < (n− 1)/2 + k + 1.

So, we can consider that 2ka + u ≤ (n − 1)/2 + k, because p2ka+u | 2pk(n − 1). We claim

that 4ka − c + u = 0. If not, then (3) implies that 2(n − 2)k ≤ 4ka − c + u and hence,

n ≤ 3 + 2/(2k − 1). Thus n ≤ 4 or n = 5 and k = 1, which is a contradiction. This shows

that 4ka − c + u = 0. But pc | 2q4 and hence a = 1. Since n ≥ 5, ej = 2nk + u and

Gj/Gj−1 is a direct product of some simple groups of Lie type (by Lemma 3.1), we observe

that |Gj/Gj−1| > p2ej and it is easy to see that there exists 1 ≤ i ≤ j0 such that i 6= j,

|Gi/Gi−1|p = pei > p and |Gi/Gi−1| < p5ei/2. Again, repeating the argument used for (2),

we can see that that

f∏
k=1

|CGk/Gk−1
(R2Gk−1/Gk−1)|p |

f∏
k=1

|NGk
(R2)|/|NGk−1

(R2)| = nr2(G), (4)

where R2 ∈ Sylr2
(G) and hence using Corollary 2.3,

∏f
k=1 |CGk/Gk−1

(R2Gk−1/Gk−1)|p |

|2q4|p. So, |CGi/Gi−1
(R2Gi−1/Gi−1)|p ∈ {1, 2}, because it had been considered that

|CGj/Gj−1
(R2Gj−1/Gj−1)|p = p4ka+u.

The same argument as the case Gj/Gj−1 guarantees that

|CGi/Gi−1
(RGi−1/Gi−1)|p = |CGi/Gi−1

(R1Gi−1/Gi−1)|p

which is impossible, considering (i). If (n, q) = (4, 3), then 7, 13, 41‖ |G|. Moreover, π(n7(G)) =

{2, 3, 7}, π(n13(G)) = {2, 3, 13} and π(n41(G)) = {2, 41}. Hence, we can see that Gj/Gj−1 is

a k3-simple group and hence, Gj/Gj−1 is isomorphic to one of the following groups (see [11]):

A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3), U4(2),
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which contradicts Remark 3.2.

iii) If p - n, |CGj/Gj−1
(RGj−1/Gj−1)|p 6= |CGj/Gj−1

(R1Gj−1/Gj−1)|p and Sn,q = Dn+1(q),

then by Lemma 3.5, ej = 2nka + u (a ∈ N), |CGj/Gj−1
(RGj−1/Gj−1)|p = pu ∈ {1, 2} and

q(2a−2)pu|2(n−1). But n ≥ 5. Thus applying the results of [19] and the argument of previous

case, we can see that r2 | pej−c − 1, where pc | |nr2(G)|p and |nr2(G)|p | 2q6(n − 2). Since

ej = 2nka + u and expr2
(p) = 2(n− 2)k, we have 2(n− 2)k | 4ka + u− c. So,

2(n− 2)k ≤ 4ka− c + u or 4ka− c + u = 0. (5)

Also, q2apu | 2q2(n− 1) and hence, we observe that 2ka + u ≤ (n− 1)/2 + 2k. If 2(n− 2)k ≤

4ka− c + u, we conclude that 2(n− 2)k ≤ (n− 1) + 4k. Hence n− 1 ≤ 3 + 3/(2k− 1). Thus

n ≤ 7. We claim that a = 1. If not, then q2 | 2(n − 1). So, (n, q, a) = (7, 2, 2), because

(n, q) 6= (5, 2) and 5 ≤ n ≤ 7. Therefore, 2(n− 2)k = 10 | 4ka + u− c = 8 + u− c. It follows

that u ≥ 2 which is a contradiction, because pu | 2. In addition, we conclude that

4ka− c + u = 0 or a = 1 and 2(n− 2)k ≤ 4k + u− c. (6)

On the other hand, the results of [19] imply that |nr1(G)|p | 2q2(n − 1) and |nr2(G)|p |

2q6(n− 2), and hence, repeating the argument used for (4), we observe that

f∏
y=1

|CGy/Gy−1
(R1Gy−1/Gy−1)|p | 2q2(n− 1), where R1 ∈ Sylr1

(G), (7)

f∏
y=1

|CGy/Gy−1
(R2Gy−1/Gy−1)|p | 2q6(n− 2), where R2 ∈ Sylr2

(G). (8)

We have two following subcases:

a) If p | n − 1, then p - n − 2. We claim that 4ka + u − c = 0. If not, then (6)

implies that 2(n − 2)k ≤ 4k + u − c and so, n ≤ 4, which is a contradiction, as required.

Hence, 4ka + u − c = 0. Under our assumption, p - n − 2 and by (8), p4ka+u = pc =

|CGj/Gj−1
(RGj−1/Gj−1)|p | 2q6(n− 2). These imply that a = 1. Set

Π = {1 ≤ i ≤ j0 : |Gi/Gi−1|p = pei > p, |Gi/Gi−1| < p5ei/2}. (9)

With the same reasoning in the previous sub-case and using (8), we can see that Π = {j}.

On the other hand,

|G|/|Gj/Gj−1| < p5[(n(n+1)−2n)k−u]/2
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and |G|p/|Gj/Gj−1|p = |G|p/p4nk+2u = p[(n(n+1)−4n)k−2u]. These imply that there exists

x ∈ {1, .., j0}, where x 6= j, |Gx/Gx−1|p = pex > p and |Gx/Gx−1| < p5ex/2. Therefore,

similar to the argument given for I(i), we observe that x ∈ Π−{j}, which is a contradiction.

b) Let p - n− 1. If p - n− 2, then Sub-case (a) completes the proof. If p | n− 2, then by

the same argument as used for Sub-case (a), we can see that there exists x ∈ Π = {1 ≤ i ≤

j0 : |Gi/Gi−1|p = pei > p, |Gi/Gi−1| < p5ei/2}. According to (7),

|CGj/Gj−1
(R1Gj−1/Gj−1)|p.|CGx/Gx−1

(R1Gx−1/Gx−1)|p | 2q2.

But Lemma 3.4 and previous argument imply that |CGj/Gj−1
(R1Gj−1/Gj−1)|p = p2ak+u

and hence, |CGx/Gx−1
(R1Gx−1/Gx−1)|p ≤ p. Thus Lemma 3.4 allows us to assume that

|CGx/Gx−1
(R1Gx−1/Gx−1)|p = |CGx/Gx−1

(RGx−1/Gx−1)|p, which is a contradiction using

Sub-case (i).

iv) If p | n and Sn,q 6= Dn+1(q), then by Lemma 3.4,

|CGj/Gj−1
(RGj−1/Gj−1)|p = |CGj/Gj−1

(R1Gj−1/Gj−1)|p = pej or (10)

pu = 1, p(2a−1)k = 2. (11)

If p, k, u satisfy (11), then (p, k, u) = (2, 1, 0). Hence |CGj/Gj−1
(R1Gj−1/Gj−1)|p = 4. On the

other hand, with the same reasoning as in Sub-case (ii),
∏f

y=1 |CGy/Gy−1
(R1Gy−1/Gy−1)|p | 4.

Thus Lemma 3.4 implies that Π = {1 ≤ i ≤ j0 : |Gi/Gi−1|p = pei > p, |Gi/Gi−1| <

p5ei/2} = {j}. Since q = 2, p | n and (n, q) 6= (4, 2), we have n ≥ 6. Also, ej = 2n and

|Sn,q| ≤ qn2
(q2−1)...(q2n−1) < qn2

qn(n+1). Thus n(n+1)−2n < 4(n2−2n)/3, because n ≥ 6.

It follows that |G|/|Gj/Gj−1| < (|G|p/|Gj/Gj−1|p)7/3 and hence, there exists x ∈ Π − {j},

which is a contradiction. Therefore ej satisfies (10). We conclude that pej | (nr(G), nr1(G))

and thus pej | 2pk. We can consider similar to the previous procedure that for every i ∈ Π,

ei satisfies (10) and n(n + 1)k < 4[n2k − k − 1]/3. Since |CG(R1)|p ≤ 2pk, by continuation

of this procedure, we can find x ∈ Π such that |CGx/Gx−1
(R1Gx−1/Gx−1)|p = 1, which is a

contradiction.

v) If p | n and Sn,q = Dn+1(q), then by Lemma 3.5,

|CGj/Gj−1
(RGj−1/Gj−1)|p = |CGj/Gj−1

(R1Gj−1/Gj−1)|p = pej or (12)

pu | 2, a = 1. (13)
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Since |CGj/Gj−1
(R1Gj−1/Gj−1)|p = q2pu,

∏f
k=1 |CGk/Gk−1

(R1Gk−1/Gk−1)|p | |CG(R1)| and

|CG(R1)|p | 2q2pu, similar to the previous procedure, we can get a contradiction.

Therefore, we conclude that there is 1 ≤ h ≤ f such that r or r1 (or r2, for n ≥ 5)

is an element of π(Gh/Gh−1), |Gh/Gh−1|p = peh > p and |Gh/Gh−1| < p5eh/2. Hence

Gh/Gh−1 is a direct product of isomorphic simple groups of Lie type in characteristic p. But

ri ∈ π(Gh/Gh−1), for some i ∈ {0, 1, 2} such that r0 = r (if n ≥ 5, then i can be equal to

2). Hence Gh/Gh−1 is a simple group of Lie type in characteristic p. We claim that h = j0.

If not, then we conclude by checking the orders of all finite simple groups of Lie type in

characteristic p that r 6∈ π(K/H) or r1 6∈ π(K/H) (or r2 6∈ π(K/H), where n ≥ 5) which is

a contradiction. Thus h = j0. Therefore K/H is a simple group of Lie type in characteristic

p. It follows that for all 1 ≤ i ≤ f (i 6= j0), r, r1 6∈ π(Gi/Gi−1) (moreover, r2 6∈ π(Gi/Gi−1),

where n ≥ 5). Hence, r - |H|. Let |H|p = pt and |G|p = pe. Lemma 3.3 allows us to assume

that r | pt−x − 1, where |CH(R)|p = px and hence, we may consider that 2nk | t − x. This

implies that either |H/K|p < qe−2n or t = x. But

|CH(R)||K/H| | (|NH(R)|nr(K))/|NH(R)|, (14)

using Frattini’s argument. According to [19], |nr(G)|p ≤ |2n|p < pn. Therefore, if t = x,

then |H/K|p > pek−n. In addition, we conclude that |H/K|p < qe−2n or |K/H|p > pek−n.

Also, |K/H| | |Sn,q|, expr(p) ∈ Max{exps(p) : s ∈ π(Sn,q)} and expr1
(p) ∈ Max{exps(p) :

s ∈ π(Sn,q) and exps(p) 6= expr(p)} (moreover for n ≥ 4, expr2
(p) ∈ Max{exps(p) : s ∈

π(Sn,q) and exps(p) 6= expr(p), expr1
(p)}). It follows that by checking the orders of all finite

simple groups of Lie type, if Sn,q = Dn+1(q), then K/H ∼= Dn+1(q) and if Sn,q 6= Dn+1(q),

then K/H ∼= Bn(q) or K/H ∼= Cn(q). So, |G| = |Sn,q| = |K/H|. Therefore G = K and

H = 1. In addition, by Lemma 2.9, we conclude that G ∼= Sn,q if and only if q 6≡ ±1 (mod 8)

or n ≤ 3 or Sn,q = Dn+1(q). Unless, Sn,q
∼= Bn(q) or Sn,q

∼= Cn(q).

II) If (n, q) = (3, 2), then similar to the above argument, there is 1 ≤ j ≤ f such that

|Gj/Gj−1|p = pej > p and |Gj/Gj−1| < p7ej/3. Since |Gj/Gj−1| | |Sn,q| and by Remark (3.2),

we can consider that Gj/Gj−1
∼= Sn,q. Thus G ∼= Sn,q and the proof is complete.

III) If (n, q) = (4, 2), then r = 17. Let j0 = Max{1 ≤ i ≤ f : 17 ∈ π(Gi/Gi−1)},

H:= Gj0−1 and K:= Gj0 . We claim that j0 ∈ Π. If not, then there is i ∈ Π such that j0 6= i.
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We can see that by the orders of Sylow normalizers of G, i < j0 and π(Gi/Gi−1) = {2, 3, 5}.

Hence Gi/Gi−1 is isomorphic to one of the following groups (see [11]):

A5, A6, U4(2)

which is a contradiction to Remark 3.2. Hence j0 ∈ Π and we conclude that by Remark 3.2,

K/H ∼= Sn,q. Therefore, G ∼= Sn,q and the proof is complete. The same argument applies if

(n, q) = (5, 2) and (n, q) = (3, 4).

V) Let q 6= 2, Sn,q = D5(q) and r, r1, r2 ∈ π(Sn,q) such that expr(p) = 8k, expr1
(p) = 6k

and expr2
(p) = 5k. We can consider that by Corollary 2.3,

nr(G) = 8(q + 1)(q4 + 1)/(q5 − 1, 4);

nr1(G) = 6q2(q4 − 1)(q3 + 1)/(q5 − 1, 4);

nr2(G) = 5(q5 − 1)/(q5 − 1, 4),

which easily, we can complete the proof. Also, if q 6= 2 and Sn,q = D4(q), then we assume

that r, r1 ∈ π(Sn,q) such that expr(p) = 6k and expr1
(p) = 4k. We can consider that by

Corollary 2.3, nr(G) = 6(q+1)(q3 +1)/(q4−1, 4) and nr1(G) = 8(q2 +1)2/(q4−1, 4), which

easily, we can complete the proof. �

Corollary 3.6 Let Sn,q ∈ {Bn(q), Cn(q), Dn+1(q)} and suppose that n(Sn,q) = n(G). Then,

if Sn,q = Dn+1(q) or n = 2 or q 6≡ ±1 (mod 8), G ∼= Sn,q. Further, if n ≥ 3 and q ≡ ±1

(mod 8), then either G ∼= Sn,q or {G, Sn,q} = {Bn(q), Cn(q)}.

Using the results about the characterization of finite groups by the orders of Sylow nor-

malizers, we can put forward the following conjecture:

Conjecture: If S is a non-abelian finite simple group, then either S is characterizable

by the orders of Sylow normalizers or S ∈ {Bn(q), Cn(q)}, where n ≥ 3 and q ≡ ±1 (mod 8),

and in the latter case, S is 2-characterizable.
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