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Abstract.

The zero-divisor graph of a commutative ring with unity (say R) is a graph
whose vertices are the nonzero zero-divisors of this ring, where two distinct
vertices are adjacent when their product is zero. This graph is denoted by
I'(R). In this paper, we study the structure of the zero-divisor graph I'(Z,. (z))
where p is an odd prime number, Z,» is the set of integers modulo p", and
Zyn(z) = {a+bx : a,b € Zy and 2* = 0}. We find the Independence number
of I(Zyn (z)).
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1 Introduction

Throughout this paper, all rings are commutative with identity. For a ring
R, let R(x) = R[X]/(X?), where # = X and X is an indeterminant over R.
Clearly, R(z) = {a+ bx |2* =0, x € R}. For a ring R, let Z(R) be the set of
zero divisors of R and let Z*(R) = Z(R) \ {0}. Zero-divisor graph was first
introduced by Beck [7], where Beck was mainly interested in graph coloring.
In his work, for a ring R, Z(R) was taken to be the vertex set and distinct
vertices x and y are adjacent if zy = 0. In a subsequent work, Anderson and
Livingston [5] modified the definition. In their definition, the vertex set is
taken to be Z*(R) and distinct vertices  and y are adjacent if zy = 0. The
zero-divisor graph of R, I'(Z*(R)), is usually written I'(R). The definition of
zero-divisor graph given by Anderson and Livingston is the one that has been
used in the recent literature. In this paper we will also use their definition.

Much work has been done on zero-divisor graphs, and the reader is advised
to consult [2, 5, 6, 10] for more details. Some researchers generalized the idea
to commutative semigroups, see (8, 9]. Others worked on the noncommuta-
tive case, where they studied a directed graph related to the zero-divisors of
noncommutative rings. For more information see [12, 13, 15]. Recently, some
researchers worked on graphs whose vertex set is the set of all non-zero and
non-unit elements, see [3, 4].

An independent set in a graph I' is a subset I of the vertex set of I' such
that no two vertices of I are adjacent, i.e., the induced subgraph on [ is dis-
crete. The independence number of I', denoted by Indep(I'), is defined as the
maximum of the set of cardinalities of independent sets of vertices of I'.

In this paper, we study the structure of the graph I'(Z,(x)), where p is
an odd prime number, Z,. is the set of integers modulo p". We find the
independence number of I'(Z,» (z)).

2 The structure of I'(Z,-(z))

The goal of this section is to describe the adjacency rules among vertices
of I'(Zyn(x)). Part of this was given in [1], [11] and [14]. The following lemma
characterizes the zero-divisors of R(x). The proof of this lemma is easy and
direct, thus it will be omitted here.

Lemma 1. Let R be a commutative ring. Then a + bx is a zero-divisor in
R(z) if and only if a is a zero-divisor in R.

According to Lemma 1, one can characterize the zero-divisors of Z,»(x) by
finding the zero-divisors of Z,». But the zero divisors of Z,» are the set of all in-
tegers in Z,» that are divisible by p. Hence the set of the zero divisors of Z» (z)



is {a+bx :a,b € Zym and ged(a,p) > 1}. We want to discuss how the vertices
of I'(Zn (z)) are adjacent. To do that we divide the set of vertices of I'(Zyn (z))
into three types. The first type consists of the n — 1 sets: Sy, Sp2, ..., Sn
where S, = {sp : ged(s,p" ") = 1}. The use of Euler’s phi-function gives the
sizes of the Sy’ i =p»t—p D for 1 < i <n-—1
Note that Syo is the set of units in Z,», i.e. the set of elements in Z,. that
are not divisible by p. The second type consists of n sets: Ejo, B, ..., Epa
where E,i = {bx : b € S,}. We have = p" — p"FD for
1 <i<n-—1and |Ep| =p*—p" ' The third type consists of n(n — 1)
sets and these sets are: Sy i, i € {1,2,...,n—1} and j € {0,1,...,n — 1}
where Sy i = {sp' + tp’z : ged(s,p"") = 1 and gcd(t,p"*j) = 1}. Again
the use of Euler’s phi-function gives the sizes of the Sy ,;’s and one will get
|Spipo| = (Pt == D) (prd —pr=UHD) for 1 <4 < n—l and 0 < j<n-—1.

We state how the elements of these types are adjacent. Each element of .S,
is adjacent to all the elements of S, if i 44" > n. Also, each element of S is
adjacent to all the elements of E » if ¢ + i’ > n. Again, each element of S, is
adjacent to all the elements of S ;v if i+4" > n and i+ j" > n. For the E,’s,
each element of £ is adjacent to all the elements of £ » for any " and hence
n—1
UEpi forms a complete subgraph of I'(Z,»(x)). Again, each element of E,; is
=0
adjacent to all the elements of S
are required on j'.

g it i’ > n. Observe that no conditions

Finally, we want to discuss how the elements of the third type are adjacent
to each other. To do that, consider the two sets Sy, and Sk ,m. Observe
that a necessary condition in order that some elements in the set S, ,; are
adjacent to some elements in the set Sy ,m is that i + k& > n. Now con81der
the following subcases where i + k > n.

1) If i +m >n and k + j > n, then it is clear that each element of Sy
is adjacent to all the elements of S,k ,m

2) Suppose that ¢ + m > n and k + j < n and take y; € S, and
Yo € Sy ym, SAY Y1 = alp +b1pjx and yz = ayp® + byp™x where gcd(al, ) =
ged(by, p"~ ]) = ged(ag, p" ) = gcd(by,p"™) = 1. We have y; -y, = arasp ™t +
arbep™ ™z + asbipF i = asbip™ Iz # 0 ( mod p™). Hence no element of S
is adjacent to any element of Sy m. Similarly, if ¢ +m < n and k4 j > n,
then no element of S, ,; is adjacent to any element of Sy jm

3) Suppose that i + m < n and k + j < n with i + m # k + j. We assume



that i +m < k+ j. Take y; € Spip and yo € Spr pm, say y1 = a1p’ + bip’x
and y, = azp” + byp™x where ged(ay,p"™") = ged(by, p*7) = ged(ag, p**) =
ged(by, p"™™) = 1. We have 41 - 4o = a1aap'™" + arbop™™x + axbypftiz =
Pt (arby + agbipP ™) ((mod p?).  If pt(arhy + apbypFtiTiT™m) = 0
( mod p"), then p"~(+™) divides (aiby + asbp*7~""™) and hence p divides
ai1bs. So we get p divides ay or p divides by. But this is impossible because
ged(ar, p*=t) = ged(by,p"™™) = 1. Thus y; - y2 # 0 ( mod p™). Hence no
element of Sy ,; is adjacent to any element of Syr ym. Similarly, if i +m < n
and k+ 7 < n with i +m > k + j, then no element of S, ,; is adjacent to any
element of Sy ym.

4) Suppose that i + m < n and k+ j < n with ¢ + m = k + j. In this
case, we show that some elements of S, ,; are adjacent to some elements of
Sy pm. To explain that, take y; € Syi i and yo € Spr ym, say y1 = arp’ + bip’x
and ys = azp” + byp™x where ged(ay,p"") = ged(by, p*7) = ged(ag, p"*) =
ged(by,p™™) = 1. We have 41 - yo = a1a9p"™" + a1bop™™x + aghip*x =
P (arby + asby)z ( mod p"). If aiby + azby = 0 ( mod p"~™), then i
is adjacent to y, and otherwise y; and y, are not adjacent. For instance, if
ap = ay =1, by = p" ™ 41, and by = p» "™ — 1, then a1by + ashy = 0
( mod p"~*~™) and hence y; and y, are adjacent. On the other hand, if
a; = as = by = by = 1, then a1by + asby = 1 ( mod p"~*~™) and hence y; and
Yo are not adjacent.

Now, we look more closely in the last subcase. For S, and Sy ym,
suppose that ¢« +k > n and i +m = k +j < n. We decompose S ,;
into p"~(*+7) — pn=(k+9)=1 mytually disjoint subsets. These subsets are X; =
{rpt + pi(sp" %7 + 1)z, where 1 < r < p" ¢ with ged(r,p" %) =1, 0 < s <
pP — 1} and 1 < t < p"~*+) with ged(t, p"~**+)) = 1. Observe that the
set {r:1<r <p""and ged(r,p"*) = 1} with multiplication is the group
(U(p"),-) and the set {t : 1 <t < p" ) and ged(t, p"~*#+9)) = 1} with
multiplication is the group (U(p"~**4)),.). The bar on 7t means that we are
taking rt modulo p"~(**7) Observe that when ¢ runs over all the elements of
U(p"~**9)) and r € U(p™") then 7t runs over all the elements of U (p"~(*+7)),
Hence S, i = U X; and the size of each X; is p*(p"~% — p" =7 1). Let

teU (pn—(k+1))
X be the set {X; : t € U(p"~**+))}. Then we have | X | = pn=(*+3) — pn=(k+i)=1,

Similarly, Sy ym = U Y; where Y, = {r'p* + p™(s'p" """ + 1/t )x

teU (pn—(i+tm))
e U™ ") and 0 < s’ < p' — 1} and |V = p'(p" " — p"*71). Let Y be the
set {Y; :t € U(p"~ ™)}, Then we have |Y| = pn~0+m) — pn-G+m)—1,

Since 1 + m = k + j, we get |X| = |Y|. We want to see when the el-
ements of X, are adjacent to the elements of Y, where t,t € U(p~ ().

4



Suppose that y € X; and v € Yy, say y = rp + p?(sp" "R 4 ri)r and
y = r'pF (s U Lz, We get y -y = rr'p™F 4 (rs'p™ + r'spt +
rrt'ptm 4tz Since i+ k > nand i+m = k+j, we get y-y' = (rr't/ +
r'r)p iz = ((F4up™ FH) et (7 +u'p"~ RN pF e = (rr't +r'rt)pF
( mod p") = rr'(t + #)p* iz ( mod p"), where u and u' are nonnegative in-
tegers. Since r € U(p™™") and v € U(p" "), we get y -y’ = 0 ( mod p") if
and only if p»~*+7) divides t + t'. Hence, y and 3/ are adjacent if and only if
p"~ ) divides t + t'. So, each element of X, is adjacent to all the elements
of Yy if and only if p"~*+7) divides t 4+ t'. Thus each element of X, is adjacent
to all the elements of Y-+ _,, where ¢ € U(p"~*+9).

Let us see how the elements of Sp.,» are adjacent to each other when

u> |[(n+1)/2] and u+v < n—1. As above, Spu v = U Wy with
teU (pn—(utv))

W, = {rp* —i—p”(sp”_“_” + rt)x, where r € U(p"™), 0 < s < p* — 1} and
Wi = p'(p"* — p" v~ 1). As explained above, each element of W, is adjacent
to all the elements of Wy if and only if p» ~(uto) divides t + t'. Thus each ele-
ment of 1; is adjacent to all the elements of W,n—(u+v)_, and no element of W;
is adjacent to any element of Spu v — Wn—(utw)_, where t € U(p"~(“*?)). Hence
the induced subgraph on each pair W;, W+ _,, where ¢ € U(p"~ ),
is isomorphic to the complete bipartite graph K (pn—u_pn—u—1)pu (pn—u_pn—u—1ypu
= Kp_1ypr—1,(p—1)pn-1- S0, the induced subgraph on Sy, is isomorphic to
(pr~ () — pr=(wtv)=1) /2 disjoint copies of K, 1ypn-1 (p—1)pn-1. We summarize
this in the following lemma.

Lemma 2. For Sy ,; and Syr ym, suppose thati+k >n andi+m = k+j <n.
Consider {X; : t € U(p" ~(4i) )} and {Y; : t € U(p"~ ™)}, where X, and Y;
are defined above. Then every element of X; is adjacent to all the elements
of Yy if and only if p"~*+9) divides t, + t|. Moreover, suppose that 2u > n
and u+v < n —1 hold in Syu . Then the induced subgraph on Syu v is
isomorphic to (p"~+) —pr=(v)=1Y 9 disjoint copies of the complete bipartite
graph K _1ypn—1 (p—1ypn-1-

The previous work gives an algorithm to construct the zero divisor graph
['(Zyn(x)). The following example explains how to construct the zero divisor

graph T'(Zs7(x)).

Example 1. Consider the zero divisor graph I'(Zs7(x)). For 1 <i <6, each
6 6

element y of Ssi is adjacent to all the elements of U U (S5iUE5i US55t ) —
J=T—i t=T—i
{y}. Also, for 0 < i <6, each element of Esi is adjacent to all the elements



6 6 6 6

of U Ssi U UE5j U U US5j75t. Now, we want to determine the adjacency

i=T—i =0 j=T—i t=0
betjween the e]lements ?)f the Ssi5i ’s. To do that take the pair Ssi5i, Ssk 5m where
1 <i,k <6 and0 < j,m < 6. We have three cases to consider. Assuming
1+ k>7,

Case 1)i+m >7T and j+k > 7. In this case, each element of Ssi5i is
adjacent to all the elements of Sk 5m.

Case 2)i+m>T7,j+k<Tori+m<7T,j+k>T7. Inthis case, no
element of Ssi 5 18 adjacent to any element of Ssk gm.

Case 3) i+m and j+k are both less than 7. Here there are two subcases.
(1) i +m is not equal to j+ k. In this subcase, no element of Ssi 5i is adjacent
to any element of Ssi sm. (ii) i +m = j+ k. In this subcase, we use Lemma
2 to determine the adjacency between the elements of Syi s and Ssk zm. For
instance, take Sss 52 and Ssa 5. According to Lemma 2 we divide the set Sss 52
into 57-GF3) _ 5T-B+3)-1 =5 1 = 4 subsets. These subsets are X; = {r5> +
52(sbt+rt)r i r € U(5Y) and 0 < s < 5%—1}, wheret € U(5) and | X;| = 5*(5*—
5%). Also, we divide Sss 53 into 5733 —57=C+3)=1 =5 1 = 4 subsets. These
subsets are Yy = {r'5*+53(s'5 +r'tx : 7' € U(5%) and 0 < s’ < 53—1}, where
t' € U(5) and |Yy| = 53(5% — 52). We use Lemma 2 to get, that each element
of X; is adjacent to all the elements of Ys_;, where t € U(5) = {1,2,3,4}.
For instance, each element of Xy is adjacent to all the elements of Yy and no
element of X1 is adjacent to any element of the sets Y1, Y, or Ys. Now, let us
see how the elements of Ssa 51 are adjacent to each other. According to Lemma
2, we divide the elements of the set Ssi5 into 52 —5 = 20 subsets. These
subsets are W; = {r5* + 5(sb? + rt)z : r € U(5%), 0 < s < 5% — 1} where
t € U(5%). Using Lemma 2, every element of W is adjacent to all the elements
of Wsa_y where t € U(5%). And no element of W, is adjacent to any element
of Ssas1 — Wsay. Hence, the induced subgraph on each pair Wy, Wsa_y is a
complete bipartite graph that is isomorphic to Ksa(ss_s2) 51(53_52).

This way we are able to construct the zero divisor graph U(Zs(z)).

3 The Independence number of I'(Z,~(x))

This section is devoted to compute the independence number of the zero
divisor graph I'(Z,»(x)). In finding the independence number, we will study
the structure of I'(Z,n(x)) thoroughly. Suppose that I is an independent set
with maximum cardinality in I'(Z,»(z)). We present a series of lemmas that
determine the elements of the set I.

In the following lemma, we show that I contains exactly one element of the



n—1
set U E,.
i=0

Lemma 3. Suppose that I is an independent set with maximum cardinality in
n—1

['(Zyn(x)). Then I contains exactly one element of the set U E,i. Moreover,
i=0
I can be chosen so that this element sits in Epyo

Proof. Suppose that I is an independent set with maximum cardinality in
n—1

I'(Zyn (z)). Since U E, is a complete subgraph of I'(Z,» (x)), the set I contains
= n—1 n—1
at most one element of U E,:. Suppose I contains an element w in U E,

=1
and suppose wo E Eyo The element wy is not adjacent to any element in

n—1n—1

V(I( UEZ—US U (J U Spig- Hence Iy = (1U {wo}) — {w}
=1 5=0

is an mdependent set Wlth maximum cardinality. If the set I contains no

n—1
elements of U E,, then I must contain an element of E,. This is because
i=1
I has a maximum cardinality and none of the elements of E, are adjacent
n—1n—1

to any element of U Spi U U U i pi- 00 either I contains an element of
1=1 7=0

E, or we can replace I by a independent set with maximum cardinality that

contains an element of .

]

In the following, we always assume that I is taken as in Lemma 3. In
the following two lemmas we show that [ contains no elements of the set

USUU US,pJ

L5 ]+1 i= 5 J+1 =[5 ]+1

Lemma 4. Suppose that I is an independent set with mazimum cardinality
n F(Z (x)), where n > 3. Then I can not contain any element of the set

U Sy
-

n—1
Proof. Since U Spi is a complete subgraph of I'(Zy» (z)), then I contains
i=|2]+1



n—1
at most one element of U Spi. Suppose that zg € Sy NI, where ig >

i=| g5 |+1
n—1 n—1

n—1 n—1
|n/2|+1. Since all the elements of U Spi U U U Spi pi U U E,: are

1=n—1g t=n—1i9 j=n—1ig t=n—1ig

n—1 n—1 n—1 n—1
adjacent to xg, then I N ( U Spi U U U Spipi U U Epi) = (. Let

1=n—1g 1=n—1ig j=n—1g 1=n—1g
Iy = (IUS,n-iy) — {0} Note that the induced graph on the vertices Syn-i, in
['(Zyn ()) is the null graph. Also, the elements of S,n-i, are not adjacent to any

n—1 n—1 n—1 n—1
element of I —{z(} because IN ( U Spi U U U Spipi U U Epi) =

i=n—1ig i=n—1ig jJ=n—1ig ' ) 1=n—1g
(). Hence I, is an independent set. But |Io| = |I| — 1+ p' — p*~! > |I]. So, I

n—1
contains no elements of U Spi-
i=[2]+1

]

Lemma 5. Suppose that I is an independent set with maximum cardinality in
n—1 n—1

I'(Zpn(z)), wheren > 3. Then I contains no elements of the set U U
=51 =13 +1

S

p?,pd -

Proof. The proof is similar to that of the last lemma and so we skip this proof.
O

125+
In the following lemma, we show that U Spi is a subset of I.

=1

Lemma 6. Suppose that I is an independent set with maximum cardinality in
125

I'(Zyn(x)), where n > 3. Then U Spi 15 a subset of I.
i=1

n—1
L=5=

Proof. The induced graph on the vertices U Spi in I'(Zyn(x)) is the null

= n—1
graph and the adjacency set of these vertices is a subset of the vertices U
i=[5]+1
n—1 n—1 n—1
Spi U U U Spi pi U U E,i. Using Lemmas 3, 4 and 5, I contains
i=2]+1j=[2]+1 i=[2]+1



n—1
no elements of U Spi U U U pipi U U E,i. Hence an inde-
o)1 j=[2]+1 i=2]+1
125%]
pendent set with maximum cardinality contains all the elements of U Spi-
i=1

]
LE%AJ n—1

In the following lemma, we show that U U Spi pi 18 a subset of I and
=1 j=0

n—1 n—1
In LJ LJ E% 7 ==@

=15+ j=i- |27t

Lemma 7. Suppose that I is an independent set with mazimum cardinality

n—1 n—1
in I'(Zy(x)), where n > 3. Then I N U U Spipi | = 0 and
=541 j=i-| 25
1254 n—1
U U Spipi 15 a subset of I.
=1 j=0

Proof. Take S ,; with ¢ < [(n —1)/2]. Using Lemma 4 and Lemma 6, there

n—1

are no elements in USpi N I adjacent to S, For Spk ym with 7 +k > n,

D

=1

i+m, k+j >n,wegetk > |n/2]+1and m > [n/2|+1. Hence, using Lemma
5, none of the elements of Syr ,m are in I, where i +k >n,i+m, k+j > n.
So, in this case the elements of Sy ,; are adjacent to some elements that are
outside I.

Using Lemma 2, every element of S, ,; is adjacent to some of the elements
of Spyn—i yn-2i+; provided that n —2i +j5 < n —1. Incasen —2i +j5 > n,
the induced subgraph on S, , is a set of null vertices whose elements are
adjacent to some elements that are outside I and hence S, ,; is a subset of
I. For the case where n — 2i + j < n — 1, every element of Sy ,; is adjacent
to some of the elements of Spn717pn72i+]’, Spn7i+17pn—2i+j+1, cevy Spn—its pn-2itits
wheren —i+s=n—-1,n—21+j+s<n—1,orn—i1+s <n-—1,
n—2+j+s=n-—1. Hence, if n —2i+j5 < n — 1, then every element

S

of Sy i is adjacent to some elements of A = U Spn—itr pn—2itj+r. Note that if
r=0
(n—1) 4 (n—2i+ j) > n, then the induced subgraph on A is complete. Since

the induced graph on the vertices Sy ,; in I'(Zy»(x)) is the null graph, we get
INA=0and Sy, CI. Also,if j >4, then (n—4)+(n—20+j) >n



because ¢ < |(n—1)/2]. Hence the induced subgraph on A is complete. Since
Syipi is a set of null vertices, we get 1 N A = () and Sy, € I. So, we can
assume that j < i and (n—1i)+ (n—2i+j) <n—1. Our goal is to show that

INA=1(. Assume on the contrary that TN A # (). For 0 <r <i—j—1,

Lemma 2 gives Spi i = U X[ where X] = {a,p" + p’(b,p" 7" + a,t)x
teU(pi—i—r)
a, € U(p™™"), 0 < b, < p" " =1}, and Spn-itr pn—zititr = U » where
HeU(—i-T)

Yy = {ap" 4 pn Bt ) ap € U(pTT), 0 < by <pf -1}

For0<r<i—j—1defineT" ={t':INY, #0}, T = max1mum{|TT| :

0<r<i—j—1} ro = maximum{r : [I"[ = Tand 0 < r <i—j— 1},

and Tro = {pi=9=m — ¢ . ¢’ € T™}. Since Y| = (p" — p" " 1)p’, then
i—j—1 i—j—1

I contains at most T Z (p"™" —p" " H)p' elements of U Spn—itr pn—2itj+r
r=0 r=0

and since the induced subgraph on U Spn—itr pn—2i+j+r 18 complete, then

r=i—j

contains at most one element of U Spn—itr yn-2i4j+r. Hence I contains at

7p
r=i—j
i—j—1
most T’ Z T —p " Hp' + 1 elements of A. Take Iy = U X3°.
r=0 teT™o
Note that, the induced subgraph on U X/° is a set of null vertices and the
teT™o

elements of U X/° are either adjacent to some elements that are outside
teT™o

or to some elements of A. Hence I is an independent set. Since I contains at

least one element from each Y,° where ¢ € 77 and this element is adjacent

to all the elements of XT? joro_ps then 10 U X;° = 0. So, |Ih] > |I| —
teT™o

75—

i—j—1 .
e (P =1

T -r zr1p+1+TXr_] pz_pzlpz("
Ty W) TIX = 1= (T = B
T(pn z _pn i— l)pn—z—l—m > |I| . (T(pz _pz—l)pz+1) +T(pn—z _pn—z—l)pn—z—i-ro >
|I|. The last greater than follows because i < |(n —1)/2] < n —id. This

contradicts the fact that I is an independent set with maximum cardinality.

Hence 1N A = (. As above by taking S, ,; = SplnT—lJp, 0<j<n-—1, weget

+1)+

Ln 1

n—1 n—1
i U U Spw | = dUUSWCI 0

=L+ jmim 251

10



We summarize what we have about an independent set I with maximum
L25%]
cardinality in I'(Z» (z)), where n > 3. Using Lemmas 3 to 7 to get U Spi U

i=1
L") n—
U U png{wo}CIand[ﬂ< U Syl U U S, 7,,JUU
i=1 j=0 i=5]+1 L51+1 j=i—| 23]
25+ %5 n—1
{wo})) = (), where wy is an element of Ej. Now, | U Spi U U U i pi U
=1 7=0
nT_lJ > J n—1
{wo} = > (" =p"Y) Z Z PN ) 41 =
i=1 1=

pzn_Lnglj_l(})L%1J — 1)+ 1. We state thls in the following corollary.

Corollary 1. Suppose that I is an independent set with mazimum cardinality
n—1 n—1
in T(Zyn (x)), where n > 3 Then I contains exactly pQ”’LfJ’l(pLiJ - 1) +1

Lnl

elements from the set U Spi U U US pi U U Spi U U U
=l Jj= =5+l L51+1 j=i-| 251
sz‘7pj U U Epi.
i=0

n—1
To determine I completely we have to determine which elements of U
=5 ]+1
i—[ 25t -1

U Spi ps are in I when n is an odd integer and which elements of Spt% U

n—1
U U S i pi U U SPL%JPJ- are in I when n is an even integer. Observe
|5 ]+1 J=0 J=0
i~ "3t -1 L2511 [Pt —i-1
that U U Spipi = U U SpLgHHiH’pj. First, we con-
=241 =0 i=0 §=0
sider the case where n = 4n; 43 with n, is a positive integer. So, for any ¢ with
0<i<|[(n—1)/2] —1=[(4n1 +3—1)/2] — 1 =2n,;, we want to determine

25t —i-1 2ny+1—i—1
which elements of U SpL%HHiH o = U Spanit1t1tits i are in 1.
. i

11



2n1

First, take + = 0, so we want to determine which elements of U Spani+2+4) 5 are

Jj=0
2n1 2n1
in /. Observe that U Spani+2+5 i 18 a complete subgraph of U Spani+2+45 i
Jj=ni1+1 Jj=0

and hence ﬁf can contain at most one element from it. We want to see which el-
1

ements of U Spani+2+5 55 are in I. To do that, we divide Spzni+2+0 yo, Speny+2+1 1,
=0

ceey Sp2n1+2+j7pj, ceey Sp2n1+2+n1 Pl into

XP = {rop®™ ™ + pP(sop®™ ™ + rot)r : g € Up*™ ) and 0 < 59 <

p*™ 2 — 1} where ty € U(p?™ 1),

XL ={rp™ T3 4 pl(s1p®™ +rit)x s 1 € U(P?™) and 0 < 51 < p?™*+2 — 1}

where ¢, € U(p*™),

Xt]] = {r;p*mt?ti —l—p"(sjp%l“_{' +ritj)zr s r; € UpP™ ™) and 0 < s; <
p*™+2 — 1} where t; € U(p*™H177),

Xz’illl — {,r.nlp2n1+2+n1 +pn1 (Sn1p2n1+17’n1 +m)l’ : r’n,l c U(p2n1+17’n1) and

0 < s,, < p*™*2 — 1} where t,, € U(p*T17™) respectively.

The bar on 7;t; means that we are taking r;t; mod p*"*™'~7. Observe that
when ¢; runs over all the elements of U(p**!'7) and r; € U(p****'77), then
r;t; runs over all the elements of U(p*+177). So, for any j with 0 < j < ny,
we have Sponit24j i = U th i.e. Spenit2ts, has been divided into

U )
|U(p*™+177)| subsets and these subsets are X,f] where t; € U(p*™177). We
want to see how the elements of these subsets are adjacent. Suppose that
Yy € thj and vy, € ng’_/, where 0 < j,j7/ < ng, t; € U(p*™*177), and
sj € U(p?™*1=7"). As we have explained for Lemma 2, we get y; and y,
are adjacent if and only if p*+1=9=7" divides t; + s5. So, each element
of X/ is adjacent to all the elements of Xg:_/ if and only if p? 177" di-
vides t; + s;. Note that the exponent 2n; + 1 — j — j' is positive and this
is because j and j' are less than or equal to n;. By taking j = j', we
get each element of XZJ is adjacent to every element of ng if and only if
t; +s; = 0 ( mod p* 172 ). Note that both ¢; and s; are elements of
U(p*™*'77). Hence, if I € U(p*™*'7%), then each element of le is adja-

cent to every element of X(Jpznﬁl_zj_l)+cp2n1+1_2j where 0 < ¢ < p? — 1. So, if
pl—1
[ € U(p*™+1727) then every element of U X}, pem 12 18 adjacent to every el-

b=0

12



pi-1 pi-1

J J
ement of U X(pgnﬁl,gj7l)+cp2n1+1,2j. Whereas, no element of U XleranlH,Qj
c=0 b=0

Pl —1
is adjacent to any element of Spani+2+; U X(p2n1+1_2j_l)+cp2n1+1_2j. So, if
c=0

pi—1
[ € U(p?™*1727), then the induced subgraph on each pair U le+bp2nl+1_2j,
b=0

pi—1
U Xgp%l F1-2) )y i H1-2) is isomorphic to the complete bipartite graph
c=0

K(p2n1+17j_p2n17j)p2n1+2pj,(p2n1+1fj_p2n17j)p2n1+2pj = Kp4n1+2(p_1)’p4n1+2(p_1). SO, the
induced subgraph on Sjen;+245 , is isomorphic to the disjoint union of
\U(p*™+1720)| /2 = (p*™*+1=2 — p?™=27) /2 copies of the complete bipartite
graph Kpani+2,_1) yam+2(,—1). Recall that I is an independent set with max-
imum cardinality of I'(Z,»(x)). So, for 0 < j < ny, I can contain at most
pr R (p—1)(p*m =% —p*m=27) /2 elements of Sjany+2+5 5. Thus, I can contain

ny 1 .
at most Zp4n1+2(p_ 1)(p2n1+1—2j _p2n1—2j)/2 — p6n1+2 (p_ 1)2/2 Z (1/p2>J
j=0 J=0

ni
= ptt(p —1)(p*™*2 —1)/(2(p+ 1)) elements of U Spani+2+45 i
=0

We summarize this in the following lemma.

Lemma 8. If 0 < j < ny, then the induced subgraph on Speni+2+; , 15 is0-
morphic to the disjoint union of (p* 172 — p?m=27)/2 copies of the com-
plete bipartite graph Kpjani+2(,_1) pam+2p_1)- For ng +1 < 5 < 2ny, the in-

duced subgraph on Spenit+2+i i s complete.  Moreover, I contains at most
ni

PR (p — 1)(p 2 — 1)/(2(p + 1)) elements of | JSniees .
j=0

If0§j§n1,thendeﬁner:{th: te{l,2,...,(p—1)/2} modp },
ni

Yi={X]: te{lp+1)/2,(p+3)/2,...,p— 1} modp}, Xo = | JX’, and

J=0
ni

Yy = UYj . We have the following lemma about X, and Yj.
§=0

ny

Lemma 9. X, and Yy form a partition of USp2n1+2+j’pj. Moreover, the induced
=0

subgraph on each one of Xo and Yy is a set of null vertices and | Xo| = |Yo| =

13



USmaszns l/2 = 9420 = )2 = 1)/(2(p +1)).
=0

Proof. The proof follows immediately from the definition of Xy, Yy and the
X’s.
O

We want to show that I contains exactly p?™+2(p—1)(p* 2 —1)/(2(p+1))

2n1 ny

elements of USp2n1+2+j7pj. Suppose that C' = USp2n1+2+j7pj and B is a subset
j=0 =0

n—1 n—1 n—1 n—1

of I'(Zy(x)) with BN (| U Sew v U S ulUE» =10
i=[2]+1 j=im| 5L =241 i=1

BN C =), and any element of B is adjacent to some element of C. Our goal

is to show that I does not contain any elements of B. It is straight forward to
1%54] n—1 125]

check that B does not contain any elements of U U Spk pm U U Spi U Epo
i=1

i=1 j=0
2n1 2n1 2ni1—1
and U Sp2n1+2+j,pj is a subset of C. Hence B is a subset of U U

Spanitavivi i — C. So, it is straightforward to check that the induced sub-
graph on B is complete and any element of B is adjacent to all the elements
of Sp2n1+2+n1. We state this in the following lemma.

Lemma 10. For the set B that is defined above, the induced subgraph on B
is complete and any element of B is adjacent to all the elements of Spzni+24n; .

In the following lemma, we show that I does not contain any element of B.

Lemma 11. Suppose that I is an independent set with mazimum cardinality
in T(Zy (), where n = 4ny + 3 and ny is a positive integer. Then I N B = ().

Proof. Since B is complete, I can contain at most one element of B. Suppose
that y € I N B. Since any element of B is adjacent to all the elements of
Spanit24ns yny, then I contains no elements of Speny+24n; pni. So, using Lemma
8, I can contain at most [p* 2 (p—1)(p* T2 —1)/(2(p+1))]—|Sp2m+24n1 pm |+1

ni ni
elements from the set USp2n1+2+j7pj UB. Define Iy = (I — USp2n1+2+j’pj UB)U

5=0 §=0
Xo, where Xy is defined in Lemma 9. Using Lemma 9 and Lemma 10, we get

14



the induced subgraph on Ij is a set of null vertices. So, I is an independent
set with |Iy| > |I]. This contradicts the fact that I is an independent set with
maximum cardinality. Hence I does not contain any element of B.

O

Lemma 12. Suppose that I is an independent set with maximum cardinality

in I'(Zyn (x)), where n = 4ny + 3 and ny is a positive integer. Then I contains
ni

exactly Z|Sp2n1+2+j7pj|/2 = p4"1+2(p _ 1)(p2n1+2 _ 1)/(2(]? + 1)) elements Of
j=0

U5p2n1 +2+45 pj -
J=0

Proof. The result is an immediate consequence of Lemma 8, Lemma 9, and
Lemma 11.
O]
2n1
Note that, I might contain the elements of X, from USp2n1+2+j7pj, where
j=0

Xp is defined in Lemma 9. For ¢ = 0, we determined how many elements [/
2n1

contains from USp2n1+2+i+j7pj. This was done in Lemma 12. Similar to the
§=0
ni—1
case where i = 0, one can show that I contains exactly Z |Spanit24145 4| /2
j=0
ny1—1
elements from U Spamit241ts i and one element from Spznit2414n; yny . Ob-
j=0
serve that the induced subgraph on Sp2n1+2+1+n17pn1 is complete and hence [
contains exactly one element of it. Continuing this way for ¢ = 2,3,...,2n

I
2n1 Lné ZJ

and we get that [ contains exactly Z Z |Speni24i4s pi| /2 + ny elements
=0 j=0
2ny1 2ni1—1
from U U Spanitavits i This will determine the independence number of
=0 j=0
I'(Zyn(z)), where n = 4ny + 3 and n, is a positive integer. We state this in the
following theorem.

Theorem 1. Suppose that n = 4ny+3 where ny is a positive integer. Then the
independence number of T'(Zyn(z)) is equal to (1 — p)p*™+3/(2(1 + p))[((ny +
D)/p+m) = (1=p™ p/(L=p)]+p™ (" = 1) + 0y + L.

15



Proof. 1f I is an independent set with maximum cardinality in I'(Z,» (z)), then

2n1 zJ

2n1 2n1—1

I contains E E \S 2nq +2+iti pJ] + n; elements from U U Spanyt2titi pi.

=0 j=0 i=0 =0
We have
2n1 2n1 zJ 9y L2n1 zJ
Z Z |S 2n14+2+i+j p]| = Z Z p6m+2<pfzfj+1_pfzfy)<pfj+1_p7]>
i=0 j=0 i=0 ;=0
2n1 i
2n J
1 1
_ 6TL1+2 -+ L
Y %G
2n l 2n1 ZJ+1
= Py Zl (p2) 1)
—o P == 1)
2n1
(1—p)p™*t ny+1 ny 1,
- [< 2n1+2) _'_ ( 2n1+1) - Z<_> }
L +p p p =0 p
_ a —p)p4”1+3[(n1 LESR (1=p™p
L+p D ' 1—p

Using Corollary 1, I contains p5"™(p>+! —1) 41 elements from T'(Zn (z)) —

2n1 2n1—1
U U Sp2n1+2+i+j’pj. Now, the result follows immediately.
i=0 j=0

We give the following example to explain Theorem 1.

Example 2. Consider the zero divisor graph U(Zsi(z)). Partition the sets
Ss150 and Sss 51 into XY = {rob* + (505> + rot)x : 1o € U(5) and 0 < s¢ <
51 —1} wheret € U(5%) and X} = {ri5°+5 (515> +rit) )z : vy € U(5%) and 0 <
sp < 51— 1} where t' € U(5%). Let X° = {X? : t € {1,2} mod 5} and

= {X} : t' € {1,2} mod 5}. Also, we partition the sets Sss 50 and Sss 51 into
Y = {rob° + (505% + rot)x : g € U(5?) and 0 < s < 5° — 1} where t € U(5?)
and Y} = {r56 +5(s:5  +r itz : ry € U(5Y) and 0 < 51 < 55— 1} where t' €
U(5Y). Take YO ={YL:t € {1,2} mod 5} and Y' ={Y;} : ¢’ € {1,2} mod 5}.
Lastly, we partition Sse 5o into Z = {re5° + (sob' +7rot)z : 19 € U(5') and 0 <
sp < 5% — 1} where t € U(5') and take Z° = {ZD : t € {1,2} mod 5}. If

3 3

- U U i UJS UXOUXTUY U Z0 U (5% +5(5+ 1)a} U {wo}, where
=1 i=1
50 + 5(5 + 1)z is an element of Y and wy € Ey, then I is an independent
set with mazimum cardinality in U'(Zs7(x)). Hence the independence number
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of T(Zs:(x)) is equal to |I| = 5°(5% — 1) +55(5 — 1)*(5* +5+2)/2 + 2.

Similarly, one can find the independence number of I'(Z,»(z)) where n =
4ny + 1 and n, is a positive integer. We state the following.

Theorem 2. Suppose that n = 4n,+1 where ny is a positive integer. Then the

-1 [
independence number of I'(Zyn(x)) is equal to Z Z | Spant14its pil /2 4
=0 j=0
) J Ln_lj n—1
mt U S0 (U U S U} = 9™ (p= 1)/ C(p+ 1) (5" ~ 1)/ (p—

=1 35=0
1) — (m +n1/p)] +ny +p" (PP — 1) + 1.

We want to determine the independence number of I'(Z»(z)) when n is
an even integer. If I is an independence set with maximum cardinality in
['(Zy(x)) and n is an even integer, then the use of Lemma 3, Lemma 4,

125+ 1254 n—1
Lemma 5, Lemma 6, and Lemma 7 gives U Spi U U U Spipi U{wo} C 1

zle

and IN U Spi U U Ey —{wy} U U U Spipi | =0, where wg
|5]+1 i=5 |+ j=i—| 2]
is an element of E. To determlne I completely, we have to determine which
n—1 i_\_nTilJ_l n—1
elements of SpL%J U U U Spi pi U U Sptgj,pj arein I. For 1 <k <
=241 =0 j=0
|n/2|—1, the use of Lemma 2 gives that the induced subgraph on SPL% )k is iso-
morphic to (pn~/2=k — pr=ln/2=k=1) /9 disjoint copies of the complete bipar-
tite graph K(,_1)pn-1,(p—1)pn-1. Observe that, for 1 <k < |n/2|—1, no element
n—1 i_L%J_l
of SPL%J7Pk is adjacent to any of the elements of SPL%J U U U Spi pi U
i=|2]+1  j=0
125+ %5 n—1

US 13 OF U Spi U U US »i U{wo}. Hence, for 1 <k < |n/2] —

jF#k i=1 j5=0

I contains (p"~ L"/QJ —k — pn=ln/2l=k=1y(p — 1)p"1 /2 elements of S 131 - S0,

1252
n n n—1
contains » _ (p" LI — prm LBl (p — 1)t /2 = pr T (p-1) (pH T 1) /2
k=1

17



125+
elements of U SPL% e We state this result in the following lemma.
k=1

Lemma 13. Suppose that I is an independent set with mazimum cardinal-
ity in D(Zyn(x)), where n is a positive even integer. Then I contains exactly
Ln;l
p"p — 1)(pt=1721 —1)/2 elements of U S5,
k=1

no1i-l25t-

Now, we determine which elements of U U Spi pi U Spt% | o are
i=|2]+1 j 0
n—1 i-l"5t]-1 e Al
in /. Observe that U U Spi pi U SpLgJ U U S pLBI+i+

=241 j=0
Similar to the case where n is odd, we determine the number of elements of
e B
U U SPL% . that are in I. We state that in the following lemma.
i=0 =0

Lemma 14. Suppose that I is an independent set with maximum cardinality in

I'(Zpn (). If n = 4n,1+2, where ny is a positive integer, then I contains exactly

(p—1D)p™ T2/ 2(p+1)[(=(n1+1)/p—n1)+ (P> =1)p/(p—1)] +n1 elements
L25+] L)

of U U S REITETEN . If n = 4ny, where ny is a positive integer, then I

contains emctly (p—1)p"™*2/(2(p+1)[(=n1/p—n1) + (p*™ = 1)p/(p—1)]+m
[2gt) gt

elements of U U SoLB I+

i=0 =0

We state the independence number of I'(Z,»(x)), where n is a positive even
integer in the following two theorems.

Theorem 3. Suppose that n = 4ny+2 where ny is a positive integer. Then the
independence number of T'(Zyn(x)) is equal to (p—1)p*™+2/(2(p+1))[(—(n1 +
1)/p—mn1) + (p*" 7 = Dp/(p — D]+ ny + p™ 3 (p*™ — 1) + 1+ pmH(p?m —
Dp—-1)/2+1.

Proof. Suppose that [ is an independent set with maximum cardinality in
['(Zyn(z)). Using Lemma 13 and Lemma 14, I contains (p—1)p*™+2/(2(p+1))

[(=(n1 +1)/p =) + (@™ = Dp/(p — )] + ny + p* 1 (p*™ = 1)(p — 1)/2
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L25H) L2t 125+
elements from U U S LB it U U S NETpeS Using Corollary 1, 1

=0 7=0 k=1
25 L5t
contains exactly p1+3(p?™ — 1) + 1 elements from I'(Z U U
n—1
SpL%Hiﬂ-’pj U U SPL%J7pk U Spl_%]. Observe that I contains exactly one element
k=1

n—1
of U SPL% [ SPL% ;. Hence the result follows immediately.

k=13)
O

Theorem 4. Suppose that n = 4ny where ny is a positive integer. Then the
independence number of T(Zyn(x)) is equal to (p—1)p*™ 72 /(2 (p+ )[(=ny/p—
n1)+(p* =1)p/ (p—D)]+n1+p™ (p*" = 1) +1+p*m 7 (p* T =1) (p—1)/2+1.

Proof. The proof is similar to that one of last theorem.

]

Our theorems do not cover the cases where n = 1,2,3. We cover these
cases in the following theorem.

Theorem 5. The independence number of I'(Zyn(x)) where n = 1,2,3 is
L (0*=p)p—1)/2+1, (0° = p)p* + (> = p*)(p — 1)/2 + 1 respectively.

Proof. The independence number of I'(Z,: (x)) is equal to 1 and this is because
the graph I'(Z,: (x)) is complete. The set I = {ap+(bp+c)x:a € {1,2,...,p—
1},b€{0,1,...,p—1}and ce {1,...,(p—1)/2}} U{wo}, where wy € Epo,
is an independent set with maximum cardinality in I'(Z,2(x)) and hence the

independence number of I'(Z,2(x)) is equal to |I| = (p* —p)(p—1)/2+ 1. The
2

set I = USpgpj USpU{ap*+(bp+ec)r :a € {1,2,...,p—1},b€ {0,1,...,p°—
=0

1} and ce {1,...,(p—1)/2}} U {wo}, where wy € E, is an independent set

with maximum cardinality in I'(Z,s(z)). Hence the independence number of

[(Zys(x)) is equal to |I| = (p? —P (B — ) 1)/2+ 1. O
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