F P-Gorenstein Cotorsion Modules

Ruiping Lei
Department of Mathematics, Nanjing University, Nanjing 210093, China
Department of Basic Courses, Xuzhou Air-force College, Xuzhou 221000, China
E-mail: leiruipingl @126.com

Abstract

Let R be a ring. In this paper, F'P-Gorenstein cotorsion modules are intro-
duced and studied. An R-module N is said to be F'P-Gorenstein cotorsion
if Exth(F,N) = 0 for any finitely presented Gorenstein flat R-module F.
We prove that the class of F'P-Gorenstein cotorsion modules is covering and
preenveloping over coherent rings. FP-Gorenstein cotorsion dimension of
modules and rings are also studied. Some properties of F'P-Gorenstein cotor-
sion modules are given.
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1. Introduction and preliminaries

Throughout this paper, R will denote an associative ring with identity and all modules
will be unitary. Unless otherwise stated, R-modules always denote left R-modules. For
an R-module M, the character module Homgz(M, Q/Z) is denoted by M*; fd(M), id(M),
pd(M) and F P-id(M) stand for the flat, injective, projective and F P-injective dimensions
of M respectively. As usual, we use )t to denote the class of left R-modules, wD(R) the
weakly global dimension of R and D(R) the left global dimension of R. For unexplained
concepts, notions and facts, we refer the reader to [3, 7, 8,9, 17, 19, 20, 21].

We first recall some notions and facts which we need in the later sections.

(1) Let M be an R-module and X a class of R-modules. A homomorphism ¢ : M — X
with X € X is called an X—preenvelope [7, 16, 17, 20] of M if for any homomorphism
f: M — X with X’ € X, there is a homomorphism g : X — X’ such that g¢ = f.
Moreover, if the only such g are automorphisms of X when X = X’ and f = ¢, the

X-preenvelope ¢ is called an X-envelope of M. X is a (pre)enveloping class provided
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that each module has an X-(pre)envelope. Dually, X-precovers, X-covers, and covering
classes of modules can be defined.

(2) Let X, Y be two classes of R-modules. X* = {N € x| Extp(X,N) = 0 for all
X € Xyand *Y = {M € x| Exty(M,Y) = 0 for all Y € Y}. A module M is said to have a
sepcial X-precover [7] if there is an exact sequence 0 > K - X - M — Owith X € X
and K € X*. Dually, M is said to be have a special Y-preenvelope if there is an exact
sequence0 > M > Y > L—-0withYeYandLe ‘Y.

(3) Let X, Y be two classes of R-modules. The pair (X, Y) is called a cotorsion pair
(or cotorsion theory) [7, 8, 9] if X* =Y and X =+Y. Let S be a class of R-modules.
(+(8*), 8*) is called the cotorsion pair cogenerated by S. A cotorsion pair (X, M) is called
complete if each module has a special Y-preenvelope and hereditary if Exthy(X,Y) = 0
foralli > 1,X € Xand Y € Y. (X,Y) is called perfect provided that X is a covering
class and Y is an enveloping class. We know that a cotorsion pair (X, Y) is a complete
cotorsion pair if it is cogenerated by a set [7, Theorem 7.4.1].

(4) An R-module M is called Gorenstein flat [7, 9, 20] if there exists an exact sequence

. —> F, - Fy - F* - F' — ... of flat R-modules such that M = ker(F* — F')
and that remains exact whenever E ® — is applied for any injective right R-module E.
The class of Gorenstein flat modules is denoted by G¥ . An R-module N is called Goren-
stein cotorsion [9] if Ext}g(M, N) = 0 for any Gorenstein flat R-module M. The class of
Gorenstein cotorsion modules is denoted by GC. Over right coherent rings, (GF, GC) is a
hereditary and perfect cotorsion pair [9, Theorem 3.1.9]. So we can define the Gorenstein
cotorsion dimension Ged(M) of an R-module M as the least nonnegative integer n such
that there is an exact sequence 0 - M — C° - C! — ... —» C" — 0 with C' € GC for
0<i<n.

In Section 2, we introduce the concept of F'P-Gorenstein cotorsion modules. We show
that the class of F'P-Gorenstein cotorsion modules is closed under extensions, pure sub-
modules, pure quotients, direct products and direct limits (and so direct sums) over co-
herent rings. Some basic properties of F'P-Gorenstein cotorsion modules are given.

In Section 3, we prove that over coherent rings, every R-module M has a surjective
F P-Gorenstein cotorsion cover and an injective F'P-Gorenstein cotorsion preenvelope.

In Section 4, we introduce and investigate the F'P-Goresntein cotorsion dimension of
modules and rings. We characterize some rings through F P-Gorenstein cotorsion dimen-

sions.

2. Some properties of F' P-Gorenstein cotorsion modules

We begin with the following definition.



Definition 2.1. An R-module N is called F P-Gorenstein cotorsion if Ext,le(F, N) =0 for
all finitely presented Gorenstein flat R-modules F.

Proposition 2.2. The following hold:

(1) Injective modules, F P-injective modules and Gorenstein cotorsion modules are
F P-Goresntein cotorsion.

(2) Every direct product of F P-Goresntein cotorsion modules is F P-Gorenstein co-
torsion.

(3) Every finite direct sum of FP-Gorenstein cotorsion modules is F P-Goresntein
cotorsion.

(4) Suppose N = Ny @ N,, then N is F P-Gorenstein cotorsion if and only if Ny and

N, are both F P-Gorenstein cotorsion.

Proof. By Definition 2.1. O

Recall that a ring R is called left coherent (resp. right coherent) if every finitely gener-
ated left (resp. right) ideal is finitely presented. A ring R is coherent if it is both left and
right coherent. A ring R is left coherent if and only if every finitely generated submodule
of a finitely presented R-module is also finitely presented.

Proposition 2.3. Suppose R is a coherent ring and N an F P-Gorenstein cotorsion R-
module. Then Ext,(F,N) = 0 for any finitely presented Gorenstein flat R-module F and
foralli>1.

Proof. Let F be a finitely presented Gorenstein flat R-module. By Definition 2.1, we need
only to prove that Exth(F, M) = 0 for i > 2. Since R is coherent, we have a finitely
generated free resolution of F

RPN RN PR RN LY )

Then every kerf; (for i > 0) is also finitely presented and Gorenstein flat by [9, Corollary
2.1.8]. Hence Exty'(F,N) = Extgy(kerf,_;, M) =0 foralli> 1. O

Corollary 2.4. Let R be a coherent ring and 0 —- N — N — N” — 0 a short exact
sequence. If N’ is FP-Goresntein cotorsion, then N is FP-Goresntein cotorsion if and

only if N” is F P-Gorenstein cotorsion.

Proof. Let F be any finitely presented Gorenstein flat R-module, we get the following
exact sequence

0 = Exty(F,N') — Exth(F,N) — Exty(F,N") — Extz(F,N’).

By Proposition 2.3, Extfe(F, N’) = 0. Hence the result follows. m]
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Lemma 2.5. Let R be a coherent ring. Then lim N; is F P-Gorenstein cotorsion, where
((Ny), (fi1) is a direct system of FP-Gorenstein cotorsion R-mdoules. In particular, the

class ¥ GC of F P-Gorenstein cotorsion R-modules is closed under direct sums.

Proof. Let F be a finitely presented Gorenstein flat R-module. By [18, Theorem 3.2], we
get

Exty(F,lim N;) = lim Exty(F,N;) = 0.
Then the result follows. m]

It is not hard to see that the condition “R is commutative” can be dropped in [2, Propo-
sition 1.3]. Then we have the next lemma.

Lemma 2.6. If R is coherent, then a finitely presented R-module is Gorenstein flat if and
only if it is Gorenstein projective.

Remark 2.7.

(1) Let R be a coherent ring. Then each R-module with finite projective dimen-
sion is F'P-Gorenstein cotorsion since finitely presented Gorenstein projective R-
modules coincide with finitely presented Gorenstein flat R-modules by Lemma 2.6.
Hence any R-module with finite injective dimension is also ' P-Gorenstein cotor-
sion by [4, Lemma 2.1].

(2) LetR = Z. Then D(R) = 1, so every Goresntein flat R-module is flat. Since finitely
presented flat R-modules are finitely generated projective, every R-module is F P-
Gorenstein cotorsion by Definition 2.1. Note that the quotient field Q of R is a
flat R-module, but it is not a projective R-module. So there is an R-module L such
that Ext}Q(Q, L) # 0, i.e., L is neither cotorsion nor Gorenstein cotorsion. This
example shows that F'P-Gorenstein cotorsion modules need not to be cotorsion or
Gorenstein cotorsion. Then we get the following implications:

injective modules = Gorenstein cotorsion modules = cotorsion modules,
injective modules = F P-injective modules = F P-Gorenstein cotorsion modules.

Proposition 2.8. Let R be a coherent ring.
(1) If an R-module N has finite F P-injective dimension, then N is FP-Gorenstein
cotorsion.
(2) Ifaright R-module N has finite F P-injective dimension, then N* is F P-Gorenstein
cotorsion.
(3) If an R-module M has finite flat dimension, then M is F P-Gorenstein cotorsion.

Proof. (1). Suppose that FP-id(N) = n < co. Let F be a finitely presented Gorenstein flat

R-module. Then there exists an exact sequence
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0> F->P 5Pl ...l 5150

such that P' is finitely generated projective for 0 <i < n— 1 and L is a finitely presented
Gorenstein flat R-module. Thus Ext,lQ(F, N) = Extﬁ”(L, N) = 0 and hence N is FP-
Gorenstein cotorsion.

(2). Let F be a finitely presented Gorenstein flat R-module and E an injective right
R-module. Then Tor’f(E, F)=0and [7, Theorem 3.2.1] shows

Exty(F, E*) = Homgy( Tor{(E, F),Q/Z) = 0,

which implies that E* is F'P-Gorenstein cotorsion for every injective right R-module E.
Next, we assume that F'P-1d(N) = n < co. Then there exists an exact sequence

0O->N->E' -E... 5 E"' S5 L0

such that each E' is injective for 0 < i < n — 1 and L is F P-injective by [18, Lemma 3.1].
This exact sequence induces the following exact sequence

0—>L+%(En_1)+—>"'—>(E1)+—>(EO)+—)N+—>0.

By Corollary 2.4, it is sufficient to prove that L* is F P-Gorenstein cotorsion. Since L is
F P-injective, L is a pure submodule of any right R-module which contains L. Then we

get a pure exact sequence
0O-L->FE—->K->0
with E injective. Note that
0->K"—-E*"—>L"—>0

splits, so L* is F'P-Gorenstein cotorsion since E* is F'P-Gorenstein cotorsion by the proof
above. This completes the proof.

(3). Let F be a finitely presented Gorenstein flat R-module and F’ a flat R-module.
Then F’ = lim P; for some direct system ((P;), (f;;)), where each P; is projective. By [10,

Lemma 3.1.6], we have
Exth(F, F') = Exth(F, lim P;)
= lim Exth(F, P;)
=0.

Hence any flat R-module is F P-Gorenstein cotorsion. Assume that fd(M) = n, then we

have the exact sequence

O->F,»F,_ —>-->F —>Fy->M-0,
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where F; is flat for 0 < i < n. By the proof above, each F; is F'P-Gorenstein cotorsion
and hence M is also F P-Gorenstein cotorsion by Corollary 2.4. O

Recall that a submodule 7' of an R-module N is said to be a pure submodule of N if
0 — A®gT — A®gN is exact for all right R-modules A, or equivalently, if Homgz(A, N) —
Homgz(A, N/T) — 0 is exact for all finitely presented R-modules A. An exact sequence

0-T 4 N 1is said to be pure exact if A(T) is a pure submodule of N.

Proposition 2.9. Let R be a ring and N an F P-Gorenstein cotorsion R-module. If the
exact sequence 0 - N' — N 5N S 0is pure, then N' is F P-Gorenstein cotorsion. In

addition, if R is coherent, then N” is also F P-Gorenstein cotorsion.

Proof. Let F be a finitely presented Gorenstein flat R-module. Then we have an exact
sequence

Homg(F, N) = Homg(F,N”) — Extk(F,N’) - Exth(F,N) (= 0)

— Exty(F,N”) — Exta(F,N’).
Since F is finitely presented and 0 - N’ — N 5N S 0is pure exact, m, is epimorphic.
So Ext}a(F, N’) = 0 and hence N’ is FP-Gorenstein cotorsion. If R is coherent, then

Ext,ze(F, N’) = 0 by Proposition 2.3. So Ext,]e(F, N”) = 0 and then N” is also FP-
Gorenstein cotorsion. O

Corollary 2.10. Suppose R is coherent. Then M is F P-Gorenstein cotorsion if and only

if M** is F P-Gorenstein cotorsion.

Proof. Note that 0 - M — M™* is a pure exact sequence, then M is F'P-Gorenstein
cotorsion whenever M** is by Proposition 2.9.

Conversely, suppose that M is F'P-Gorenstein cotorsion. Let F be a finitely presented
Gorenstein flat R-module and P a finitely generated projective resolution of F'. Then we
have

Exty(F, M**) = H_,( Homg(P, M*™))
= H_(Homz(M" ®; P,Q/2))
Homgz(H,(M" ® P),Q/Z)
Homgz( Homz(H_;( Homg(P, M)), Q/Z), Q/Z)
Homgy( Homgz( Exth(F, M), Q/Z), Q/Z)
=0.

IR

IR

R

The second step is Hom-tensor adjointness. The fourth step follows from the proof of [17,

Theorem 9.51] and [17, Remark, p.257]. Hence M** is F P-Gorenstein cotorsion. |
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3. Existences of F'P-Gorenstein cotorsion covers and preenvelopes

In the rest of this article, GF ;, always denotes the class of finitely presented Gorenstein
flat R-modules.

Theorem 3.1. Let R be a coherent ring.

(1) Every R-module M has a surjective F P-Gorenstein cotorsion cover f : C — M.

(2) The pair (*F GC, F GC) is a complete and hereditary cotorsion pair. In particular,
every R-module M has a special *F GC-precover and a special FP-Gorenstein
cotorsion preenvelope.

Proof. (1). Since the class of FP-Gorenstein cotorsion modules is closed under pure
quotient modules by Proposition 2.9 and closed under direct sums by Lemma 2.5, every
R-module M has an F'P-Gorenstein cotorsion cover f : C — M by [12, Theorem 2.5].
Note that each projective R-module is F'P-Gorenstein cotorsion by Remark 2.7, then f is
surjective.

(2). Firstly. It is easy to see that (*FGC, FGC) = (L(gfpr),QTd}p) is a cotorsion
pair.

Secondly. For any finitely presented Gorenstein flat R-module F, Card(F) < N -
Card(R). Let Y be the set of all finitely presented Gorenstein flat R-modules F such that
Card(F) < 8 - Card(R). Then C is in FGC if and only if Exty(F,C) = 0forall F € Y.
This just says that the cotorsion pair (*#GC, F GC) is cogenerated by the set Y and hence
(*FGC, F GC) is a complete cotorsion pair by [10, Theorem 3.2.1]. In particular, every
R-module M has a special ~F GC-precover and a special ¥ GC-preenvelope.

Thirdly. FGC is coresolving by Proposition 2.2 and Corollary 2.4, so (*# GC, ¥ GC)
is a hereditary cotorsion pair by [8, Theorem 2.1.4]. O

Remark 3.2.

(1) Note that ¥ GC contains all injective modules, then every ¥ GC-preenvelope g :
M — C of an R-module M is a monomorphism. Clearly, ¥ GC contains all
projective R-modules, so each ~# GC-precover f : G — N of an R-module N is
an epimorphism.

(2) GF 2 *FGC since GC < FGC. So every R-module M € ¥ GC is Gorenstein
flat. In general, *#GC isn’t closed under direct limits. If *FGC is closed under
direct limits, then *#GC contains all flat R-modules since every flat module is
a direct limit of finitely generated free R-modules. Even over the ring Z, ¥ GC
doesn’t contain all flat modules (see Remark 2.7(2)).

Corollary 3.3. Let R be a coherent ring and f : M — N a monomorphism.
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(1) If coker(f) € *FGC, then gf : M — C is also an F GC-preenvelope of M
whenever g : N — C is an F GC-preenvelope of N.

(2) If g : N — C is a special F GC-preenvelope of N, then coker(f) € *FGC if and
onlyifgf : M — C is a special ¥ GC-preenvelope of M.

Proof. This is similar to the proof of [15, Proposition 2.6]. O

Proposition 3.4. The following conditions are equivalent for a coherent ring R:

(1) Every R-module is F P-Gorenstein cotorsion.
(2) Every R-module M € *F GC is F P-Gorenstein cotorsion.

Proof. (1) = (2) is trivial.
(2) = (1). Let M be an R-module. By Theorem 3.1, we have a short exact sequence:

0—>C—>Fi>M—>0

such that f : F — M is a special ¥ GC-precover. So C is F P-Gorenstein cotorsion and
hence M is F P-Gorenstein cotorsion by Corollary 2.4. O

4. FP-Gorenstein cotorsion dimension of modules and rings

Definition 4.1. Let R be a ring. For an R-module M, the F P-Gorenstein cotorsion dimen-
sion FP-Gcd(M) of M is defined to be the smallest integer n > 0 such that Ext?r1 (F,M) =
0 for any finitely presented Gorenstein flat R-module F. If there is no such n, set FP-
Gcd(M) = oo. The (left) global F P-Gorenstein cotorsion dimension F P-G-cot.D(R) of R
is defined as the supremum of the F' P-Gorenstein cotorsion dimensions of R-modules.

Dually, we can define the *FGC dimension of M, denoted by Gfd*(M). Note that
+FGC contains all projective R-modules, then Gfd(M) < Gfd*(M) < pd(M) for all
R-modules M. The (left) global ~¥ GC dimension of R is defined by G-wD*(R) =
sup{Gfd*(M)|M € g9t}.

Proposition 4.2. Let R be coherent and N an R-module.

(1) Consider the following two exact sequences
0>N->G -G - -G"'"5X-0,
0->N->G" -G - 56" X0,
where G°,G',--- ,G" and G°,G",--- ,G"" are FP-Gorenstein cotorsion R-

modules. Then X is FP-Gorenstein cotorsion if and only if X is FP-Gorenstein
cotorsion.



(2) Dually, consider the following two exact sequences

0O-K—>F, > F,,— —Fy—>N-=Q0,
0->K—F, 1 »F,.—> > F,—>N-O0,
where Fo, -+ ,F,_i and Fy,--- ,F,_, are all in *FGC. Then K € *FGC if and
only if K € *FGC.

Proof. (1). Clearly, we can construct the following diagram:

0 N G° G! T G! X 0
0 N EO El En—l L 0
0 N G~0 Gl ce G~n—l X 0

where E' is injective for 0 < i < n — 1. By mapping cone, we get the following two exact
sequences:

0o>oN->NaG' 5 E'8aG' - - 5 E 290G S E'eX > L >0,
0->N—->NeG" —-E'eG' - -5 E?eG"' 5 E"'9X—>L—0.

Then we get two exact sequences by [7, Remark 1.4.14]:

0G>5 EeG' -5 - 5E?0G" "' 5 E"'eaX 5L -0,
0G>5 EsG' > . s E?0G" "' S E"'"eX > L—0.

By Corollary 2.4, X is F'P-Gorenstein cotorsion if and only if L is F'P-Gorenstein cotor-
sion if and only if X is F P-Gorenstein cotorsion.
(2). The proof is dual to that of (1). |

Over coherent rings, it is easily to see Gfd*(M) = Gfd(M) for every finitely presented
R-module M.

Theorem 4.3. Let R be a coherent ring.

(1) FP-Gcd(M) = 0 or oo for an R-module M.
(2) FP-G-cot.D(R) = 0 or oo.
) (FGC,FGC") is a perfect, hereditary cotorsion pair.

Proof. (1). Suppose that FP-Gcd(M) = n < oo for some nonnegative integer n. Let F be
a finitely presented Gorenstein flat R-module. Then there exists an exact sequence
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0o F->P 5pPlspr...5prl 5 F 50

such that each P is finitely generated projective for 0 < i < n— 1 and F’ is a finitely
presented Gorenstein flat. So we get Ext}g(F, M) = Ext’;e“(F M) = 0. Hence M is
F P-Gorenstein cotorsion.

(2) is clear by (1).

(3). We first prove that (F GC, ¥ GC™) is a cotorsion pair. Note that (*(F GC*), F GC*)
is a cotorsion pair, then we must prove FGC = H(FGC*). FGC C H(FGC™) is clear,
so we need to prove F GC 2 H(FGC*). For any R-module M € +(FGC"), there exists
an exact sequence 0 - K —» C - M — 0, where C — M is the FP-Gorenstein
cotorsion cover of M by Theorem 3.1. Then K € FGC™ by [20, Lemma 2.1.1] and so
Extp(M,K) = 0. Hence 0 - K — C — M — 0 splits and then M € FGC. So
FGC 2 H(FGCH).

Note that FGC is resolving by Remark 2.7 and Theorem 4.3, then (FGC, F GC") is a
complete, hereditary cotorsion pair by Theorem 3.1 and [7, Proposition 7.1.7].

Since ¥ GC is closed under direct limits by Proposition 2.9, (F GC, F GC") is a perfect
cotorsion pair by [7, Theorem 7.2.6]. O

Proposition 4.4. Let R be a coherent ring and M an R-module. Then the following are
equivalent for a nonnegative integer n:

(1) Gfd* (M) < n.

2) EXtﬁ“(M, C) = 0 for all F P-Gorenstein cotorsion R-modules C.

3) Extj}e(M, C) = 0 for all F P-Gorenstein cotorsion R-modules C and all i > n + 1.

(4) If the sequence 0 — G" — G"' - ... - G - M — 0 is exact such that

G°,G',--- ,G" " are all in *F GC, then G" is also in *F GC.

(5) If f : M — C is a special ¥ GC-preenvelope, then Gfd*(C) < n.

Consequently, the *F GC dimension of M is determined by the formula:
Gfd*(M) = supli € No|AC € FGC : Exti(M, C) # 0}.

Proof. By Definition 4.1, Proposition 4.2 and Theorem 3.1. |

Corollary 4.5. Let R be a coherent ring and 0 - A — B — C — 0 an exact sequence of
R-modules. If two of Gtd*(A), Gfd*(B) and Gfd*(C) are finite, so does the third. Moreover,
(1) Gfd*(B) < max{Gfd*(A), Gfd*(C)}.
(2) Gfd*(C) < max{Gfd*(A) + 1, Gfd*(B)}.
(3) Gfd*(A) < max{Gfd*(B), Gfd*(C) — 1}.
In particular, if B is in *F GC and Gfd*(C) > 0, then Gfd*(C) = Gfd*(A) + 1.
Corollary 4.6. Let R be a coherent ring with D(R) < co. Then G-wD*(R) = D(R). In

particular, R is left hereditary if and only if G-wD*(R) < 1.
10



Proposition 4.7. Let R be a coherent ring with G-wD*(R) = n for some nonnegative
integer n and M an R-module. Then
(1) 1[dM) < niftd(M) < co.
(2) ild(M) < nif pd(M) < oo.
(3) id(M) < oo if and only if id(M) < n if and only if FP-id(M) < n if and only if
FP-id(M) < 0.

Proof. (1). Since G-wD*(R) = n < oo, there exists an exact sequence
O-F,»F,_ —>--->Fy—>N-0
for any R-module N such that F; € *¥GC for 0 < i < n. Note that M € FGC if

fd(M) < oo by Proposition 2.8, then we have Ext%“(N, M) = 0 for any R-module N.
Hence id(M) < n.

(2) is a consequence of (1).

(3). id(M) < 00 = id(M) < n and FP-id(M) < oo = id(M) < n are similar to (1).

id(M) < n = FP-id(M) < n = FP-id(M) < oo are trivial. O

Theorem 4.8. Let R be a Noetherian ring. Then the following are equivalent:
(1) R is quasi-Frobenius (i.e., 0-Gorenstein).
(2) Every F P-Gorenstein cotorsion R-module is injective.

(3) Every Gorenstein cotorsion R-module is injective.
(4) Gfd*(M) = 0 for any R-module M.

Proof. (1) = (2). Since R is quasi-Frobenius, R/ is finitely presented Gorenstein flat
for any left ideal I of R. Then for any F P-Gorenstein cotorsion R-module N, we have
Extp(R/I,N) = 0. So N is injective by Bear criterion.

(2) = (3) and (2) & (4) are trivial.

(3) = (1). Since (GF,GC) is a cotorsion pair, every R-module is Gorenstein flat by
(3). Then R is quasi-Frobenius by [7, Theorem 12.3.1]. m|

Remark 4.9. In general, G-wD(R) < G-wD*(R) < D(R). Theorem 4.8 shows that the
the second inequality may be strict. In fact, the first inequality may be also strict. For
example, consider Small’s triangular ring

R = ( Z )
0 Q
Since wD(R) = 1 and D(R) = 2 by [13, Example (5.62b)], we have G-wD(R) = wD(R) =
1 <G-wD*(R)=DR) =2.

Following [5], a ring R is called an n-FC ring if R is left and right coherent with F P-

id(zkR) < n and FP-id(Rg) < n for an integer n > 0. An R-module M is said to be
11



torsionless (or semi-reflxive) [13] if the natural map i : M — M™ is a monomorphism
and an R-module M is called reflexive if i : M — M™ is an isomorphism, where M* =
Homg(M, R).

Theorem 4.10. Let R be a coherent ring. Then the following are equivalent:
(1) Ris an FC ring (i.e., 0-FC ring).
(2) Every FP-Gorenstein cotorsion R-module is F P-injective.

Proof. (1) = (2). Since R is F'C, every R-module is Gorenstein flat by [14, Proposition
5.5]. For any FP-Gorenstein cotorsion R-module N, we have Exty(F,N) = 0 for any
finitely presented R-module F. Hence N is F P-injective.

(2) = (1). Let M be a finitely presented R-module. Since every F P-Gorenstein cotor-
sion R-module is F P-injective by (2), every finitely presented R-module M is Gorenstein
flat and hence Gorenstein projective. Then M can be embedded in a free R-module and is
torsionless by [13, Remarks 4.65]. By [18, Lemma 4.6], we have an exact sequence

0->M->M*—> EXt}Q(L,R) -0

for some finitely presented R-module L. Note that L is finitely presented Gorenstein
projective and hence Extx(L,R) = 0 since R is F P-Gorenstein cotorsion by Remark 2.7.
Then M is reflexive and R is an F'C ring by [18, Theorem 4.9]. O

Example 4.11. By Theorems 4.3, 4.8 and 4.10, we get

(1) If R is quasi-Frobenius (i.e., 0-Gorenstein), then the cotorsion pair (F GC, F GC")
is exactly (Proj,g M), where Proj is the class of projective R-modules. In fact,
by Theorem 4.8, F P-Gorenstein cotorsion R-modules coincide with injective R-
modules. Note that R is quasi-Frobenius, so projective modules coincide with
injective modules. Then the result holds. Similarly, we have

(2) If R is an FC ring, then the cotorsion pair (F GC, F GC™) is exactly (F lat, Cot),
where F lat (Cot) is the class of flat (cotorsion) R-modules.

Proposition 4.12. Let R be a coherent ring. Then the following are equivalent:
(1) Risn-FC.
(2) FP-id(M) < n for any F P-Goresntein cotorsion (left and right) R-module M.

Proof. (1) = (2). Let N be a finitely presented R-module. Since R is n-FC, we get
Gfd(N) < n by [5, Theorem 7]. Then Extjf;“l(N, M) = 0 for any F'P-Gorenstein cotorsion
R-module M. So FP-id(M) < n by [18, Theorem 3.1].

(2) = (1). Suppose n > 1. Let N be a finitely presented R-module and M an FP-
Gorenstein cotorsion R-module. We get a finitely generated projective resolution of N:

0O->K—->P,1>P, > --—>Py—>N->O.
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Since FP-id(M) < n, 0 = Ext}@”(N, M) = Ext}g(K, M). Then K is finitely presented
Gorenstein flat and hence R is n-FC by [5, Theorem 7] again.
Suppose n = 0. By Theorem 4.10, we easily get that R is an FC ring. i

Corollary 4.13. Let R be an n-FC ring. Then the following are equivalent:

(1) *FGC is closed under direct limits.
(2) FGC = GC.

Proof. (1) = (2). Since R is an n-FC ring, every Gorenstein flat R-module M is isomor-
phic to lim P; for some inductive system ((P;), (f;;)) by [5, Theorem 5], where each P; is
a ﬁnitely_)presented Gorenstein flat R-module. By (1), every Gorenstein flat R-module is
in t*FGC, so (2) follows.

(2) = (1). Since *FGC,FGC) and (GF,GC) are both cotorsion pairs, we get
tFGC = GF by (2). Hence *FGC is closed under direct limits by [9, Corollary
2.1.9]. O

Theorem 4.14. Let R be a coherent ring.

(1) If every F P-Gorenstein cotorsion R-module is Gorenstein cotorsion, then R is left
perfect.

(2) If Ris an n-FC ring and N is a pure-injective R-module, then N is F P-Gorenstein
cotorsion if and only if N is Gorenstein cotorsion.

(3) If R is left perfect, then Gfd*(F) = 0 or oo for any Gorenstein flat R-module F.
Furthermore, if G-wD*(R) < oo, then an R-module M is Gorenstein cotorsion if

and only if it is F P-Gorenstein cotorsion.

Proof. (1). For any flat R-module F, we have a short exact sequence
0->K—->P—->F—>0.

Note that K is flat and so it is F' P-Gorenstein cotorsion by Proposition 2.8. Then we have
Extp(F, K) = 0 and so the sequence splits. Thus F is projective and then R is left perfect.

(2). The sufficiency is trivial.

Necessity. Suppose n > 1. Let M be a Gorenstein flat R-module. Note that R is n-FC,
M = lim C; for some inductive system ((C;), (fji)), where each C; is a finitely presented
Gorens_t)ein projective R-module by [5, Theorem 5]. Note that N is pure-injective, then
[10, Lemma 3.3.4] implies

IR

Extp(M,N) = Exty(lim C;, N)

IR

lim Ext(C;, N)
= 0.
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So N is Gorenstein cotorsion.

Suppose n = 0. Note that an R-module N is F'P-Gorenstein cotorsion if and only if it
is F'P-injective by Theorem 4.10, the rest proof is similar to the case n > 1.

(3). Let F be a Gorenstein flat R-module. Suppose Gfd*(Fy) = n < oo and let f :
G — F, be a special *FGC-precover. Then K = ker(f) is F P-Gorenstein cotorsion and
Gorenstein flat. There exists an exact sequence

O—-F,->P_—>P,r,—>--—>P -K—>0

with each P; projective and F, € *FGC. It is easy to see that F, is FP-Gorenstein
cotorsion. Note that there is an exact sequence

0O->L—>P—>F,—0

with P projective and L € ¥ GC. The sequence splits and then F, is projective. It is
not hard to prove that every Gorenstein flat R-module is Gorenstein projective when R
is coherent and left perfect. Hence we get that K is projective and so the short exact
sequence 0 - K — G — F, — 0 splits. Hence F| is a direct summand of G and so
Fy € *¥GC. Then Gfd*(F,) = 0 or co.

Now, the last statement is obvious. O

Remark 4.15. The condition G-wD*(R) < co in Theorem 4.14 (3) can be replaced by
Gfd*(F) < oo for all Gorenstein flat R-modules F.

Corollary 4.16. Let R be a coherent ring. Then the following hold:

(1) every F P-Gorenstein cotrosion R-module is Gorenstein cotorsion if and only if R
is left perfect and Gfd*(F) < oo for all Gorenstein flat R-modules F.
(2) Gfd(M) < Gfd* (M) < pd(M) for any R-module M. Furthermore, if R is left
perfect, then
(a) Gfd(M) = Gfd*(M) if Gfd* (M) < oo.
(b) Gfd(M) = Gfd*(M) = pd(M) if pd(M) < oo.

Proof. (1). The sufficiency follows from Theorem 4.14 and Remark 4.15.

Necessity. Since (GF, GC) and (*F GC, F GC) are both cotorsion pairs, we easily get
GF =*FGC by hypothesis and hence Gfd*(F) = 0 < oo for any Gorenstein flat R-
module F.

(2). Gfd(M) < Gfd*(M) < pd(M) are obvious. (a) holds by Theorem 4.14.

For (b), we claim that if an R-module is Gorenstein flat, then it is Gorenstein projective.
Let F be a Gorenstein flat R-module. Note that R is left perfect, then we get an exact
sequence of projective R-modules

> P 5Py—> P 5P —...
14



with F = ker(P° — P') such that E ®; — is exact for any injective right R-module E. For
any projective R-module Q, Q™ is right injective, then

Exty(F, 0**) = Homgz( Torf(Q*, F),Q/Z) = 0
forall i > 1 by [7, Theorem 3.2.1] and [11, Theorem 3.6]. Since
0->0->0">0"/0—-0

is a pure short exact sequence, Q**/Q is flat by [13, Corollary 4.86] and hence projective.
This sequence splits and so Q is a direct summand of Q**. We get Ext,(F, Q) = 0 for all
i > 1 and then F is Gorenstein projective by [11, Proposition 2.3]. Thus (b) follows. O

Proposition 4.17. If R is an n-FC ring with n > 0, then the following are equivalent:

(1) wD(R) < oo.

(2) Every finitely presented Gorenstein flat R-module is projective.

(3) Every R-module is F P-Gorenstein cotorsion.

(4) Every quotient of an F P-Gorenstein cotorsion R-module is F P-Gorenstein cotor-
sion.

(5) Every submodule of an F P-Gorenstein cotorsion R-module is F P-Gorenstein co-

torsion.
(6) The left/right symmetric of (1) ~ (5).

Proof. (1) = (2). Since fd(M) = 0 or oo for any Gorenstein flat R-module M, M is flat by
hypothesis. Hence every finitely presented Gorenstein flat R-module is projective.

(2) = (3) is trivial.

(3) © (4) & (5) hold by Theorems 3.1 and 4.3.

(3) = (1). Since *FGC C GF, we easily get every finitely presented Gorenstein flat
R-module is projective by hypothesis. For a Gorenstein flat R-module F, F = limG;
for some direct system ((G;), (fj;)) by [5, Theorem 5], where each G; is finitely presgnted
Gorenstein flat. Note that each G; is projective and hence F' = lim G; is flat, then wD(R) <
o0 by [5, Theorem 13]. ”

(1) & (6). The proofs are similar to those of (1) ~ (5). |

Proposition 4.18. Let R be a commutative coherent ring and M an R-module. Then the

following are equivalent:
(1) MeFGC.
(2) Homg(P, M) € ¥ GC for any projective R-module P.
(3) G ®r M € FGC for any flat R-module G.
15



Proof. (1) = (2). Let P be a projective R-module and F' a finitely presented Gorenstein
flat R-module. Then there exists another projective R-module Q such that P & Q = R®
for some set X. So we have

Exty(F, Homg(P & Q, M)) = Exty(F, Homg(R™), M)
Exty(F, ( Homg(R, M))¥)
( Exty(F, M))*

= 0.

IR

IR

Hence Homg(P, M) € ¥ GC by Proposition 2.2.

(1) = (3). Let G be a flat R-module. Then G = lim F; for some direct system
((F3), (fji), where each F; is a free R-module. For any ﬁni?ely presented Gorenstein flat
R-module F, we have

Exty(F,G ®¢ M) = Ext)(F,lim F; ® M)

IR

Exty(F, lim(F; ®; M))

IR

lim Exty(F, F; ® M)
= lim Exty(F, M)
=0.

The second isomorphism holds since — ®g — commutes with lim, the third follows by [10,

Lemma 3.1.6] and the fourth holds since F GC is closed under direct sums. Hence G®z M
is FP-Goresntein cotorsion.
(2) = (1) holds by letting P = R and (3) = (1) holds by letting G = R. m|
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