Bull. Malays. Math. Sci. Soc. Vol. x, 201x, no. xx, xxx - xxx

Relative Projective Dimensions

¹ LULING DUAN AND ² WEIQING LI

¹ Department of Mathematics and Computer Science, Guangxi College of Education, Nanning 530023, Guangxi, P.R. China
² Hunan Biancheng High School, Huayuan 416400, Hunan, P.R. China
¹ duanluling2006@163.com, ² sdwg001@163.com
¹ Corresponding author

Abstract

In (n, d)-ring and *n*-coherent ring theory, *n*-presented modules plays an important role. In this paper, we firstly give some new characterizations of *n*-presented modules and *n*-coherent rings. Then, we introduce the concept of (n, 0)-projective dimension, which measures how far away a finitely generated module is from being *n*-presented and how far away a ring is from being Noetherian, for modules and rings. This dimension has nice properties when the ring in question is *n*-coherent. Some known results are extended or obtained as corollaries.

2010 Subject Classification:16D10, 16E40

Key words and phrases: Noetherian rings; n-coherent rings; (n, 0)-projective module (dimension); (n, 0)-injective module; n-presented module

1 Introduction

Throughout this paper all rings are associative with identity and modules are unitary. rD(R) stands for the right global dimension of a ring R. pd(M), id(M) and fd(M) denote the projective, injective and flat dimension of an R-module M, respectively.

Let $n \ge 0$ be an integer. Following [2; 3; 11], we call a right *R*-module *P n*-presented if there exists an exact sequence of right *R*-modules

$$F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to P \to 0$$

where each F_i is finitely generated free (equivalently projective), $i = 0, 1, \dots, n$. An *R*-module is 0-presented (resp. 1-presented) if and only if it is finitely generated (resp. finitely presented). Every *m*-presented *R*-module is *n*-presented for $m \ge n$. A ring *R* is called *right n-coherent* [3] in case every

n-presented right *R*-module is (n + 1)-presented. It is easy to see that *R* is right 0-coherent (resp. 1-coherent) if and only if *R* is right Noetherian (resp. coherent), and every *n*-coherent ring is *m*-coherent for $m \ge n$.

Let n and d be non-negative integers and M a right R-module. M is called (n, d)-injective [12] if $Ext_R^{d+1}(N, M) = 0$ for any n-presented right R-module N. M is said to be (n, d)-projective [8] if $Ext_R^{d+1}(M, N) = 0$ for any (n, d)-injective R-module N. It is easy to see that both (n, d)-injective modules and (n, d)-projective modules are closed under direct summands and finite direct sums. (1, 0)-injective (resp. (1, 0)-projective) modules are also called FP-injective (resp. FP-projective) modules. It is clear that every (n, d)-injective (resp. (m, d)-projective) for $m \ge n$.

In (n, d)-ring and *n*-coherent ring theory (see [2; 3; 8; 12]), *n*-presented modules plays an important role. For modules and rings, Mao and Ding [7] defined a dimension, called an *FP*-projective dimension; Ng [15] introduced the concept of finitely presented dimension. In this paper, we introduce a kind of *n*-presented dimension of modules and rings.

Let $n \geq 1$ be a fixed integer. In Section 2, we introduce the concept of (n, 0)-projective dimension npd(M) for a right R-module M, and the concept of right (n, 0)-projective dimension for a ring R, which measures how far away a finitely generated right R-module M is from being n-presented, and how far away a ring is from being right Noetherian, respectively. It is shown that a finitely generated right R-module M is n-presented if and only if it is (n, 0)-projective if and only if npD(M) = 0 (Theorem 2.3); R is an n-coherent ring if and only if every (n, 0)-injective right R-module is (n, 0)-projective if and only if every (n, 1)-projective right R-module is (n, 0)-projective (Theorem 2.6); R is a right Noetherian ring if and only if rnpD(R) = 0 if and only if every right R-module is (n, 0)-projective if and only if every right R-module is (n, 0)-projective if and only if every right R-module is (n, 0)-projective if and only if every right R-module is (n, 0)-projective if and only if every right R-module is (n, 0)-projective if and only if rnpD(R) = 0 if and only if every right R-module is (n, 0)-projective if and only if for a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules, if both B and C are finitely generated, then A is also finitely generated (Corollary 2.7).

Let $n \geq 1$ be a fixed integer and R a right *n*-coherent ring. In Section 3, we prove that $rnpD(R) = \sup\{npd(M): M \text{ is a cyclic right } R\text{-module}\}$ $= \sup\{id(M): M \text{ is an } (n, 0)\text{-injective right } R\text{-module}\}$ (Theorem 3.4). As corollaries we obtain that R is right Noetherian if and only if $rnpD(R) < \infty$ and every injective right R-module is (n, 0)-projective if and only if every (n, 0)-injective right R-module has an (n, 0)-projective cover with the uniquemapping property if and only if every (n, 0)-injective right R-module hasan injective envelope with the unique mapping property (Corollary 3.6). If $rnpD(R) \leq m$, then we have that R is a right m-coherent ring (Proposition 3.9). Let S and T be rings. If $S \oplus T$ is an right n-coherent ring, then we get that $rnpD(S \oplus T) = \sup\{rnpD(S), rnpD(T)\}$ (Theorem 3.14). Let R be a commutative n-coherent ring and P any prime ideal of R, then $npD(R_P) \leq npD(R)$, where $R_{\rm P}$ is the localization of R at P (Theorem 3.18).

2 Definition and General Results

Let R be a ring and $m \ge 0$ an integer. Mao and Ding [7] defined the FPprojective dimension fpd(M) of a right R-module M as $\inf\{m: Ext_R^{m+1}(M, N) = 0 \text{ for any } FP$ -injective right R-module $N\}$, if no such m exists, set $fpd(M) = \infty$; and the right FP-projective dimension rfpD(R) of R as $\sup\{fpd(M): M \text{ is a finitely generated right } R$ -module}. We generalize it as follows.

Definition 2.1 Let $m \ge 0$, $n \ge 1$ be integers, and R a ring. For a right R-module M, set $npd(M) = inf\{m: Ext_R^{m+1}(M, N) = 0 \text{ for any } (n, 0)\text{-injective right } R\text{-module } N\}$, called the (n, 0)-projective dimension of M. If no such $m \text{ exists, set } npd(M) = \infty$.

Put $rnpD(R) = \sup\{npd(M): M \text{ is a finitely generated right } R\text{-module}\}$, and call rnpD(R) the right (n, 0)-projective dimension of R. The left (n, 0)projective dimension lnpD(R) of R may be defined similarly. If R is a commutative ring, we drop the unneeded letters r and l.

We list the following lemma proved in [8; Lemma 3.3] for convenient using.

Lemma 2.2 ([8; Lemma 3.3]) Let R be a ring, $n \ge 0$ an integer and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of right R-modules. If C is (n+1,0)-projective and B is (n,0)-projective, then A is (n,0)-projective.

It is clear that an *n*-presented right *R*-module is (n, 0)-projective. In general, the converse is not true. Glaz (see [4; Theorem 2.1.10]) proved that a finitely generated right *R*-module is finitely presented if and only if it is FP-projective. We generalize it as the following

Theorem 2.3 Let $n \ge 0$ be a fixed integer and R a ring. Then the following are equivalent for a finitely generated right R-module P.

- (1) P is *n*-presented.
- (2) P is (n, 0)-projective.
- $(3) \quad npd(P) = 0.$

Proof. $(1) \Rightarrow (2)$ is obvious, and $(2) \Leftrightarrow (3)$ holds by definition.

 $(2) \Rightarrow (1)$. We use induction on n. The case n = 0 is clear, and the case n = 1 has been proven in [4; Theorem 2.1.10]. Assume n > 1, and P is (n, 0)-projective. Then P is (n - 1, 0)-projective. So P is (n - 1, 0)-presented by the induction hypothesis. Therefore there exists an exact sequence of right R-modules

$$F_{n-1} \to F_{n-2} \to \cdots \to F_1 \to F_0 \to P \to 0$$

where each F_i is finitely generated projective (hence (m, 0)-projective, for any non-negative integer m), i = 0, 1, ..., n - 1. Write $K_1 = \ker(F_0 \to P)$, $K_m = \ker(F_{m-1} \to F_{m-2})$, m = 2, 3, ..., n - 1. Then we have the following short exact sequences

$$0 \longrightarrow K_1 \longrightarrow F_0 \longrightarrow P \longrightarrow 0,$$

$$0 \longrightarrow K_2 \longrightarrow F_1 \longrightarrow K_1 \longrightarrow 0,$$

$$\vdots$$

$$0 \longrightarrow K_{n-1} \longrightarrow F_{n-2} \longrightarrow K_{n-2} \longrightarrow 0$$

Note that P is (n, 0)-projective and F_0 is (n - 1, 0)-projective, we obtain K_1 is (n - 1, 0)-projective by Lemma 2.2. It follows that K_2 is (n - 2, 0)-projective again by Lemma 2.2. Continuing this way, we see that K_{n-1} is (1, 0)-projective. Clearly, K_{n-1} is finitely generated. Thus K_{n-1} is finitely presented by [4; Theorem 2.1.10], and hence there exists an exact sequence $F'_n \to F'_{n-1} \to K_{n-1} \to 0$ with F'_n and F'_{n-1} finitely generated projective. So we get an exact sequence

$$F'_n \to F'_{n-1} \to F_{n-2} \to \dots \to F_1 \to F_0 \to P \to 0.$$

It follows that P is n-presented, as required.

The following corollary is well-known.

Corollary 2.4 Let $n \ge 0$ be a fixed integer and R a ring. Then the following statements hold:

(1) Every finitely generated projective right R-module is n-presented.

(2) For a short exact sequence $0 \to A \to B \to C \to 0$ of right *R*-modules, if both *A* and *C* are *n*-presented, then *B* is also *n*-presented.

(3) If $B \cong A \oplus C$, then B is n-presented if and only if both A and C are n-presented.

Proof. (1). Note that every projective right *R*-module is (n, 0)-projective. Thus (1) follows from Theorem 2.3.

(2). Since A and C are *n*-presented, we have both A and C are finitely generated and (n, 0)-projective. Hence B is also finitely generated and (n, 0)-projective. Therefore B is *n*-presented by Theorem 2.3.

(3). If $B \cong A \oplus C$, then it is easy to see that B is finitely generated and (n, 0)-projective if and only if both A and C are finitely generated and (n, 0)-projective. Thus (3) holds by Theorem 2.3, and we complete the proof.

Corollary 2.5 Let R be a ring, $n \ge 0$ an integer and $0 \to K \to P \to M \to 0$ a short exact sequence of right R-modules, where P is finitely generated projective. Then K is n-presented if and only if M is (n + 1, 0)-presented.

Proof. If K is n-presented, then clearly M is (n + 1)-presented. Conversely, if M is (n + 1)-presented (hence (n + 1, 0)-projective), then it is easy to see that K is finitely generated. On the other hand, K is (n, 0)-projective by Lemma 2.2. It follows that K is n-presented from Theorem 2.3.

Theorem 2.6 Let R be a ring, and $n \ge 0$ a fixed integer. Then the following are equivalent:

(1) R is a right n-coherent ring.

(2) Every (n + 1, 0)-injective right R-module is (n, 0)-injective.

(3) Every (n, 0)-projective right R-module is (n + 1, 0)-projective.

(4) For a short exact sequence $0 \to A \to B \to C \to 0$ of right R-

modules with B finitely generated projective, if C is n-presented, then A is also n-presented.

(5) For a short exact sequence $0 \to A \to B \to C \to 0$ of right *R*-modules, if both *B* and *C* are *n*-presented, then *A* is also *n*-presented.

If $n \geq 1$, then the above conditions are also equivalent to:

(6) Every (n, 0)-injective right R-module is (n, 1)-injective

(7) Every (n, 1)-projective right R-module is (n, 0)-projective.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. are obvious.

 $(3) \Rightarrow (1)$. Let M be an n-presented right R-modules. Then M is finitely generated and (n, 0)-projective by Theorem 2.3. Note that M is (n + 1, 0)-projective by (3). Thus M is (n + 1)-presented again by Theorem 2.3.

 $(4) \Rightarrow (1)$. Let M be any n-presented right R-module. Then there exits a short exact sequence $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ of right R-modules with P finitely generated projective and K n-presented by (4). Hence M is (n + 1)-presented by Corollary 2.5, and (1) follows.

 $(1) \Rightarrow (5)$. If C is n-presented, then C is (n + 1)-presented by (1). The rest proof is similar to that of Corollary 2.5.

 $(5) \Rightarrow (4)$. By (5), it suffices to show that *B* is *n*-presented. But this follows from Corollary 2.4.

Now suppose $n \ge 1$.

 $(4) \Rightarrow (6)$. Let M be an (n, 0)-injective right R-module and C any n-presented right R-module. Then we get a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right R-modules with B finitely generated projective. By (4), A is n-presented. Thus,

$$Ext_R^2(C,M) \cong Ext_R^1(A,M) = 0.$$

Therefore, M is (n, 1)-injective.

 $(6) \Rightarrow (7)$ is easy.

 $(7) \Rightarrow (1)$. Let P be an n-presented right R-module. We get a short exact sequence $0 \to K \to F \to P \to 0$ of right R-modules with F finitely generated

projective and K finitely generated. For any (n, 1)-injective right R-module M, we have

$$Ext_R^1(K, M) \cong Ext_R^2(P, M) = 0.$$

So K is (n, 1)-projective and hence (n, 0)-projective by (7). Thus, K is n-presented by Theorem 2.3. Therefore, P is (n + 1)-presented and (1) holds.

It is well known that a ring R is right Noetherian if and only if every right R-module is FP-projective if and only if rfpD(R) = 0 (see [7; Proposition 2.6]). Now, we have the following

Corollary 2.7 Let $n \ge 1$ be a fixed integer. Then the following are equivalent for a ring R:

- (1) R is right Noetherian.
- (2) rnpD(R) = 0.
- (3) Every finitely generated right R-module is n-presented.
- (4) Every (n, 0)-injective right R-module is injective.
- (5) Every right R-module is (n, 0)-projective.
- (6) Every finitely generated right R-module is (n, 0)-projective.
- (7) Every cyclic right R-module is (n, 0)-projective.

(8) For a short exact sequence $0 \to A \to B \to C \to 0$ of right *R*-modules, if both *B* and *C* are finitely generated, then *A* is also finitely generated.

- If R is right n-coherent, then the above conditions are also equivalent to:
 - (9) Every (n, 0)-injective right R-module is (n, 0)-projective.

Proof. (1) \Leftrightarrow (3) \Rightarrow (4) and (5) \Rightarrow (6) \Rightarrow (7) are trivial.

 $(4) \Rightarrow (5)$ Let M be any right R-module and N any (n, 0)-injective right R-module. Then $Ext_R^1(M, N) = 0$ since N is injective by (4). Hence M is (n, 0)-projective.

 $(7) \Rightarrow (4)$. Let N be any (n, 0)-injective right R-module, and I any right ideal of R. By (7), R/I is (n, 0)-projective. So $Ext^1_R(R/I, N) = 0$. That is, N is injective.

 $(2) \Leftrightarrow (6)$ holds by definition, $(3) \Leftrightarrow (6)$ holds by Theorem 2.3, $(1) \Leftrightarrow (8)$ holds by Theorem 2.6, and $(4) \Leftrightarrow (9)$ has been proven in [8; Proposition 4.10].

Corollary 2.8 Let $n \ge 1$ be an integer and R a ring. If $rnpD(R) \le 1$, then rnpD(R) = rfpD(R).

Proof. This follows from the fact that rnpD(R) = 0 if and only if rfpD(R) = 0 by Corollary 2.7 and [7; Proposition 2.6].

Remark 2.9 (1) From Theorem 2.3 and Corollary 2.7, we see that npd(M) measures how far away a finitely generated right R-module M is from being

n-presented, and rnpD(R) measures how far away a ring is from being right Noetherian.

(2) It is clear that $fpd(M) \leq npd(M) \leq pd(M)$, and $rfpD(R) \leq rnpD(R) \leq rD(R)$. Since rfpD(R) = rD(R) if and only if R is von Neumann regular [7; Remarks 2.2], we have rfpD(R) = rnpD(R) = rD(R) if and only if R is von Neumann regular. It is also easy to see that rnpD(R) = rD(R) if and only if R is a right (n, 0)-ring (see [12; Definition 2.5]).

(3) It is known that a right Noetherian ring need not be left Noetherian, so $rnpD(R) \neq lnpD(R)$ in general.

(4) The equivalence of (1) through (3) in Theorem 2.6 has been proven in [8; Theorem 4.1]. Here we prove the equivalence in a different way.

(5) If n = 1, then Theorem 2.6 is just some characterizations of coherent rings.

Recall that a ring R is called right self-(n, 0)-injective in case R_R is (n, 0)injective. Stenström proved that if R is right coherent and right self-FPinjective, then every flat right R-module is FP-injective (see [9; Lemma 4.1]).
We generalize it as the following

Proposition 2.10 Let $n \ge 1$ be a fixed integer. If R is a right n-coherent and right self-(n, 0)-injective ring, then every flat right R-module is (n, 0)injective.

Proof. Let M be a flat right R-module. Then, by [16; Theorem 4.85], we get a pure short exact sequence $0 \to K \to F \to M \to 0$ where $F \cong \bigoplus_I R$ for a set I. Since R is right n-coherent and right self-(n, 0)-injective, we have F is (n, 0)-injective by [12; Lemma 2.9]. Hence we obtain the following exact sequence

$$0 \to Hom_R(N, K) \to Hom_R(N, F) \to Hom_R(N, M) \to Ext^1_R(N, K) \to Ext^1_R(N, F) = 0$$

for any *n*-presented (hence finitely presented) right *R*-module *N*. It follows that $Ext_R^1(N, K) = 0$, and so *K* is (n, 0)-injective. Note that *R* is right *n*-coherent, we have *M* is (n, 0)-injective by [8; Theorem 4.1], as desired.

3 (n,0)-Projective Dimensions over n-Coherent Rings

Proposition 3.1 Let $n \ge 1$, $m \ge 0$ be integers. If R is a right n-coherent ring, then the following are equivalent for a right R-module M:

- (1) $npd(M) \le m$.
- (2) $Ext_R^{m+1}(M, N) = 0$ for any (n, 0)-injective right R-module N.

(3) $Ext_R^{m+j}(M,N) = 0$ for any (n,0)-injective right R-module N and $j \ge 1$.

(4) There exists an exact sequence $0 \to P_m \to P_{m-1} \to \cdots \to P_1 \to P_0 \to M \to 0$, where each P_i is (n, 0)-projective.

(5) If $\cdots \to P_{m-1} \to P_{m-2} \to \cdots \to P_1 \to P_0 \to M \to 0$ is a projective resolution of M, then $ker(P_{m-1} \to P_{m-2})$ is (n, 0)-projective.

Proof. (1) \Rightarrow (2). We use induction on m. The case m = 0 is clear. Let $m \geq 1$. If npd(M) = m, then (2) holds by definition. Suppose $npd(M) \leq m - 1$. For any (n, 0)-injective right R-module N, the short exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with E injective induces an exact sequence

$$Ext_R^m(M,L) \to Ext_R^{m+1}(M,N) \to Ext_R^{m+1}(M,E) = 0.$$

Since R is n-coherent, we get L is (n, 0)-injective by [8; Theorem 4.1]. So $Ext_R^m(M, L) = 0$ by the induction hypothesis. It follows that $Ext_R^{m+1}(M, N) = 0$, as desired.

 $(2) \Rightarrow (3)$. Using induction on j, the proof is similar to that of $(1) \Rightarrow (2)$. $(3) \Rightarrow (1)$, and $(2) \Rightarrow (5) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (2)$. Write $K_1 = \ker(P_0 \to M)$, $K_i = \ker(P_{i-1} \to P_{i-2})$, $i = 2, 3, \dots, m-1$. Then we have the following short exact sequences

$$\begin{array}{cccc} 0 \longrightarrow K_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0, \\ 0 \longrightarrow K_2 \longrightarrow P_1 \longrightarrow K_1 \longrightarrow 0, \\ & \vdots \\ 0 \longrightarrow P_m \longrightarrow P_{m-1} \longrightarrow K_{m-1} \longrightarrow 0. \end{array}$$

From the bottom exact sequence, we get the exactness of the sequence

$$0 = Ext_{R}^{1}(P_{m}, N) \to Ext_{R}^{2}(K_{m-1}, N) \to Ext_{R}^{2}(P_{m-1}, N)$$

for any (n, 0)-injective right *R*-module *N*. Since P_{m-1} is (n, 0)-projective, using an argument similar to that of $(1) \Rightarrow (2)$, we get $Ext_R^2(P_{m-1}, N) = 0$. Hence $Ext_R^2(K_{m-1}, N) = 0$. Continuing this way, we obtain $Ext_R^{m+1}(M, N) = 0$. Thus (2) holds.

Proposition 3.2 Let R be a right n-coherent ring $(n \ge 1)$ and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of right R-modules. Then the following are true:

- (1) If two of npd(A), npd(B) and npd(C) are finite, so is the third.
- (2) $npd(A) \leq sup\{npd(B), npd(C) 1\}.$
- (3) $npd(B) \leq sup\{npd(A), npd(C)\}.$
- $(4) \quad npd(C) \le \sup\{npd(B), npd(A) + 1\}.$
- (5) If B is (n, 0)-projective and $0 < npd(A) < \infty$, then npd(C) = npd(A) +

Proof. Easy to verify by Proposition 3.1.

Corollary 3.3 Let R be a right n-coherent ring $(n \ge 1)$, A, B and C right R-modules. If $B \cong A \oplus C$, then $npd(B) = sup\{npd(A), npd(C)\}$.

Proof. Since $B \cong A \oplus C$, we get two short exact sequences $0 \to A \to B \to C \to 0$ and $0 \to C \to B \to A \to 0$. By Proposition 3.2 (3), it is enough to show that $npd(B) \ge \sup\{npd(A), npd(C)\}$. Suppose $npd(B) < \sup\{npd(A), npd(C)\}$, then npd(B) < npd(A) or npd(B) < npd(C). We may assume npd(B) < npd(A). By Proposition 3.2 (2), $npd(C) \le \sup\{npd(B), npd(A) - 1\}$. So $npd(C) \le npd(A) - 1$, that is, npd(C) < npd(A). In addition, also by Proposition 3.2 (2), we have $npd(A) \le \sup\{npd(B), npd(C) - 1\}$. Hence $npd(A) \le npd(C) - 1$, since npd(B) < npd(A), and so npd(A) < npd(C), a contradiction.

Let M be a right R-module. Recall that a a homomorphism $\phi: M \to F$ where F is a right (n, 0)-injective R-module, is called an (n, 0)-injective preenvelope [5] of M if for any homomorphism $f: M \to F'$ with F' is (n, 0)-injective, there is a homomorphism $g: F \to F'$ such that $g\phi = f$. Moreover, if the only such g are automorphism of F when F' = F and $f = \phi$, then the (n, 0)-injective preenvelope ϕ is called an (n, 0)-injective envelope. A monomorphic (n, 0)-injective preenvelope ϕ is said to be special [6; Definition 7.1.6] if coker ϕ is (n, 0)-projective. (n, 0)-projective (pre)covers and special (n, 0)-projective precovers can be defined dually. It is proved that every right R-module has a special (n, 0)-projective precover and a special (n, 0)-injective preenvelope (see [8; Theorem 3.9]).

Theorem 3.4 Let R be a right n-coherent ring $(n \ge 1)$, then the following are identical:

- (1) rnpD(R)
- (2) $sup\{npd(M): M \text{ is a cyclic right } R\text{-module}\}$
- (3) $sup\{npd(M): M \text{ is any right } R\text{-module}\}$
- (4) $sup\{npd(M): M \text{ is an } (n,0)\text{-injective right } R\text{-module}\}$
- (5) $sup\{id(M): M \text{ is an } (n,0)\text{-injective right } R\text{-module}\}$

Proof. (1) \leq (2). We may assume $\sup\{npd(M): M \text{ is a cyclic right } R\text{-module}\} = m < \infty$. Let A be any finitely generated right R-module. We use induction on the number of generators of A. If A has l generators, let A' be a submodule generated by one of these generators. Then both A/A' and A' are finitely generated on less then l generators. Let N be any (n, 0)-injective right R-module. Consider the short exact sequence $0 \to A' \to A \to A/A' \to 0$ which induces an exact sequence

$$Ext_{R}^{m+1}(A/A', N) \to Ext_{R}^{m+1}(A, N) \to Ext_{R}^{m+1}(A', N)$$

where

$$Ext_{R}^{m+1}(A/A', N) = Ext_{R}^{m+1}(A', N) = 0$$

by induction hypothesis. Thus $Ext_R^{m+1}(A, N) = 0$. So $npd(A) \le m$.

 $(2) \leq (3)$ is clear.

(3) \leq (4). We may assume $\sup\{npd(M): M \text{ is an } (n, 0)\text{-injective right } R\text{-module}\}=m<\infty$. Let A be any right R-module, then A has a special (n, 0)-injective preenvelope by [8; Theorem 3.9], that is, there exists a short exact sequence $0 \to A \to E \to L \to 0$ with $E(n, 0)\text{-injective and } L(n, 0)\text{-projective. Therefore, } npd(A) \leq npd(E) \leq m$ by Proposition 3.2.

(4) \leq (5). We may assume $\sup\{id(M): M \text{ is an } (n,0)\text{-injective right } R\text{-}$ module}= $m < \infty$. Let A and B be any (n,0)-injective right R-modules. Then $Ext_R^{m+1}(A, B) = 0$ since $id(B) \leq m$. So $npd(A) \leq m$ by Proposition 3.1.

(5) \leq (1). We may assume $rnpD(R) = m < \infty$. Let M be an (n, 0)injective right R-module. Then $Ext_R^{m+1}(R/I, M) = 0$ for any right ideal I of R since $npd(R/I) \leq m$ by hypothesis. Hence $id(M) \leq m$, this completes the proof.

Corollary 3.5 Let $n \ge 1$ be a fixed integer. Then the following are equivalent for a right n-coherent ring R:

(1) $rnpD(R) \le m$.

(2) $npd(M) \leq m$ for any (n, 0)-injective right R-module M.

(3) $npd(M) \leq m$ for any injective right R-module M, and $rnpD(R) < \infty$.

(4) $id(M) \leq m$ for any (n, 0)-injective right R-module M.

(5) $id(M) \leq m$ for all right R-module M that are both (n, 0)-injective and (n, 0)-projective, and $rnpD(R) < \infty$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4) holds by Theorem 3.4. (2) \Rightarrow (3) and (4) \Rightarrow (5) are clear.

 $(5) \Rightarrow (4)$. Let M be any (n, 0)-injective right R-module. By (5) and Theorem 3.4 (4), npd(M) = m for a non-negative integer m. Note that every right R-module has a special (n, 0)-projective precover by [8; Theorem 3.9], we obtain an exact sequence

$$0 \to P_m \to P_{m-1} \to \dots \to P_1 \to P_0 \to M \to 0$$

where each P_t is both (n, 0)-projective and (n, 0)-injective, $t = 0, 1, \ldots, m$. Hence $id(P_t) \leq m$ by (5), $t = 0, 1, \ldots, m$. So $id(M) \leq m$.

 $(3) \Rightarrow (2)$. Let M be any (n, 0)-injective right R-module. By (3) and Theorem 3.4 (5), id(M) = t for a non-negative integer t. Hence we get an injective resolution of M:

$$0 \to M \to E^0 \to E^1 \dots \to E^{t-1} \to E^t \to 0.$$

By (3), $npd(E^i) \leq m, i = 0, 1, ..., t$. Hence we have $npd(M) \leq m$ by Proposition 3.2, as desired.

Recall that an injective envelope $\phi : M \to E(M)$ of M has the unique mapping property [13] if for any homomorphism $f : M \to A$ with A injective, there is a unique homomorphism $g : E(M) \to A$ such that $g\phi = f$. The concept of an (n, 0)-projective cover with the unique mapping property can be defined similarly.

Corollary 3.6 Let $n \ge 1$ be a fixed integer. Then the following are equivalent for a right n-coherent ring R:

(1) R is right Noetherian.

(2) $rnpD(R) < \infty$ and every injective right *R*-module is (n, 0)-projective.

(3) Every (n, 0)-injective right R-module is (n, 0)-projective.

(4) Every (n, 0)-injective right R-module has an (n, 0)-projective cover with the unique mapping property.

(5) Every (n, 0)-injective right R-module has an injective envelope with the unique mapping property.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) holds by Corollary 3.5 and Corollary 2.7.

 $(1) \Rightarrow (4)$ and $(1) \Rightarrow (5)$. Let M be any (n, 0)-injective right R-module. Then M is (n, 0)-projective and injective, since R is right Noetherian by (1). Thus (4) and (5) follows.

 $(4) \Rightarrow (3)$. For any (n, 0)-injective right *R*-module *M*, let $g : P \to M$ be the (n, 0)-projective cover of *M* with the unique mapping property, where *P* is (n, 0)-projective. Write $K = \ker g$. Then *K* is (n, 0)-injective by [6; Corollary 7.2.3] and [8; Theorem 3.9]. Hence there exists an (n, 0)-projective cover $f : P' \to K$ of *K* by (4). So, we obtain the following exact commutative diagram:

 $\begin{array}{cccc} & P \\ & & \stackrel{f}{\swarrow} & \downarrow if & \searrow 0 \\ 0 \longrightarrow & K & \stackrel{i}{\longrightarrow} & P & \stackrel{g}{\longrightarrow} & M & \longrightarrow & 0 \end{array}$

Since g(if) = 0, we have if = 0 by (4). Whence $K = \text{Im} f \subseteq \text{ker}(i) = 0$, that is, M is (n, 0)-projective.

 $(5) \Rightarrow (1)$. Let M be any (n, 0)-injective right R-module. By Corollary 2.7, we need only to show that M is injective. Let $f: M \to E$ be the injective envelope of M with the unique mapping property. Write $L = \operatorname{coker} f$. Since R is n-coherent, L is (n, 0)-injective by [8; Theorem 4.1]. So there exists an injective envelope $g: L \to E'$ of L by (5). Therefore we get the following exact commutative diagram:

Since $(g\pi)f = 0$, we have $g\pi = 0$ by (5). Hence $L = \text{Im}\pi \subseteq \text{ker}(g) = 0$. So M is injective. This completes the proof.

Recall that a short exact sequence $0 \to A \to B \to C \to 0$ is said to be *n*-pure [8] if $Hom(M, B) \to Hom(M, C) \to 0$ is exact for any *n*-presented module *M*. A submodule *N* of *M* is called an *n*-pure submodule if the sequence $0 \to N \to M \to M/N \to 0$ is *n*-pure.

Proposition 3.7 Let $n \ge 1$ be a fixed integer and R a right n-coherent ring. Observe the following statements:

(1) $rnpD(R) \le 1.$

(2) For any n-pure submodule N of an injective right R-module E, the quotient E/N is injective (i.e., $id(N) \leq 1$).

(3) Every submodule of an (n, 0)-projective right R-module is (n, 0)-projective.

(4) Every right ideal of R is (n, 0)-projective.

(5) For any pure submodule N of an injective right R-module E, the quotient E/N is injective.

(6) Every submodule of an FP-projective right R-module is FP-projective.

(7) Every right ideal of R is FP-projective.

Then: (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) and (2) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7).

Proof. (1) \Rightarrow (2). Let N be an *n*-pure submodule of an injective right R-module E. Then it is easy to see that N is (n, 0)-injective. Hence $id(N) \leq 1$ by Theorem 3.4 (5). So the short exact sequence $0 \rightarrow N \rightarrow E \rightarrow E/N \rightarrow 0$ implies that E/N is injective.

 $(2) \Rightarrow (3)$. Let *L* be any (n, 0)-injective right *R*-module. Then it is clear that *L* is an *n*-pure submodule of its injective envelope E(L), and hence $id(L) \leq 1$ by (2). If *N* is a submodule of an (n, 0)-projective right *R*-module *M*, then the exactness of the sequence

$$0 = Ext^1_R(M, L) \to Ext^1_R(N, L) \to Ext^2_R(M/N, L) = 0$$

implies that $Ext_{R}^{1}(N, L) = 0$, and so N is (n, 0)-projective.

 $(4) \Rightarrow (1)$. Let *I* be an ideal of *R*. The exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ implies that $npd(R/I) \leq 1$ by Proposition 3.1. So (1) holds by Theorem 3.4 (2).

 $(2) \Rightarrow (5)$. It is easy to verify that every pure right *R*-module is *n*-pure. So (5) follows.

 $(5) \Rightarrow (6)$ is similar to that of $(2) \Rightarrow (3)$, $(3) \Rightarrow (4)$ and $(6) \Rightarrow (7)$ are trivial.

It is known that if R is a right coherent ring, then fd(M) = pd(M) for any finitely present right R-module M (see [10; Lemma 5]). Mao and Ding (see [7; Proposition 4.1]) proved that if R is also self-FP-injective, then fd(M) = pd(M) for any FP-projective right R-module M. Here we have the following **Proposition 3.8** Let n be a fixed positive integer. If R is a right n-coherent and right self-(n, 0)-injective ring, then fd(M) = pd(M) for any (n, 0)-projective right R-module M.

Proof. It is enough to show that $fd(M) \ge pd(M)$. We may assume that $fd(M) = m < \infty$. Then there exists an exact sequence

$$0 \to F_m \to P_{m-1} \to \dots \to P_1 \to P_0 \to M \to 0$$

with P_0, P_1, \dots, P_{m-1} projective and F_m flat. Consider the short exact sequence $0 \to K \to P \to F_m \to 0$ where P is projective. By [16; Theorem 4.85], the short exact sequence above is pure, and hence *n*-pure. By Proposition 2.10, P is (n, 0)-injective. So K is (n, 0)-injective by [8; Proposition 3.6]. Since Mis (n, 0)-projective, so is F_m . Thus the exactness of the sequence

$$0 \to Hom_R(F_m, K) \to Hom_R(P, K) \to Hom_R(K, K) \to Ext^1_R(F_m, K) = 0$$

implies that the sequence $0 \to K \to P \to F_m \to 0$ is split exact, and so F_m is projective, that is, $pd(M) \leq m$. This completes the proof.

Proposition 3.9 Let $n \ge 1$ be a fixed integer and R a right n-coherent ring. If $rnpD(R) \le m$, then R is a right m-coherent ring.

Proof. The case m = 0 holds by Corollary 2.7. Suppose $m \ge 1$. Let M be an *m*-presented right *R*-module, then M has a free resolution

$$F_m \to F_{m-1} \to \dots \to F_1 \to F_0 \to M \to 0$$

with each F_i finitely generated free. Write $K_m = \ker(F_{m-1} \to F_{m-2})$, then

$$Ext^1_R(K_m, N) \cong Ext^{m+1}_R(M, N) = 0$$

for any FP-injective right R-module N, since $rnpD(R) \leq m$ and every FPinjective right R-module is (n, 0)-injective. Note that K_m is finitely generated. We obtain K_m is finitely presented by Theorem 2.3. This implies that M is (m + 1)-presented, and so R is a right m-coherent ring.

To prove the next main result, we need four lemmas.

Lemma 3.10 Let $f: R \to S$ be a surjective ring homomorphism. If M_S is a right S-module (hence a right R-module) and A_R is a right R-module, then the following statements hold:

(1) $M \otimes_R S_S \cong M_S$.

(2) If A_R is a finitely generated right R-module, then $A \otimes_R S_S$ is a finitely generated right S-module.

(3) M_S is a finitely generated right S-module if and only if M_R is a finitely generated right R-module.

Proof. (1). Easy.

(2). Clearly, S is a cyclic R-module. Suppose x_1, x_2, \dots, x_n are generators of A. Then it is easy to verify that $x_1 \otimes 1_S, x_2 \otimes 1_S, \dots, x_n \otimes 1_S$ are generators of $A \otimes_R S_S$, where 1_S denotes the identity of S. Thus $A \otimes_R S_S$ is a finitely generated right S-module.

(3). If M_S is a finitely generated right S-module, and suppose x_1, x_2, \dots, x_n are generators of M, then $M = x_1S + x_2S + \dots + x_nS$. So $M = x_1R + x_2R + \dots + x_nR$ since $f: R \to S$ is surjective. Hence M_R is a finitely generated right R-module. The converse holds by (1) and (2).

Lemma 3.11 Let $f: R \to S$ be a surjective ring homomorphism, n a nonnegative integer, and M a right S-module. If both S_R and RS are projective, then M_S is an n-presented right S-module if and only if M_R is an n-presented right R-module. (Note that the case n = 1 has been proven in [7; Lemma 3.13].)

Proof. The case n = 0 follows by Lemma 3.10. So next we assume n > 0. " \Rightarrow ". Suppose M is an n-presented right S-module. Then there exists an exact sequence

$$0 \to K \to P_{n-1} \to \dots \to P_1 \to P_0 \to M \to 0$$

of right S-modules with K finitely generated, and P_i finitely generated projective, $i = 0, 1, \dots, n-1$. By Lemma 3.10, each P_i and K are finitely generated right R-modules. Since S_R is projective, we have each P_i is a projective right R-module. So, M is an n-presented right R-module.

" \Leftarrow ". Assume *M* is an *n*-presented right *R*-module. Then there exists an exact sequence

$$0 \to K \to P_{n-1} \to \dots \to P_1 \to P_0 \to M \to 0$$

of right *R*-modules with *K* finitely generated, and P_i finitely generated projective, $i = 0, 1, \dots, n-1$. Since _{*R*}S is projective, the sequence

$$0 \to K \otimes_R S_S \to P_{n-1} \otimes_R S_S \to \dots \to P_1 \otimes_R S_S \to P_0 \otimes_R S_S \to M \otimes_R S_S \to 0$$

is exact. By Lemma 3.10, $M \otimes_R S_S \cong M_S$, and both $K \otimes_R S_S$ and each $P_i \otimes_R S_S$ are finitely generated S-modules. Since each P_i is a projective right R-module, we have each $P_i \otimes_R S_S$ is a projective right S-module. So M is an n-presented right S-module.

Let *n* and *d* be non-negative integers. Recall that a left *R*-module *A* is called (n, d)-flat [12], in case $Tor_{d+1}^{R}(B, A) = 0$ for any *n*-presented right *R*-module *B*.

Lemma 3.12 Let $f: R \to S$ be a surjective ring homomorphism, M_S a right S-module and ${}_{S}A$ a left S-module. If both S_R and ${}_{R}S$ are projective, then the following statements hold for any non-negative integers n and d:

(1) M_S is an (n,d)-injective right S-module if and only if M_R is an (n,d)-injective right R-module.

(2) $_{S}A$ is an (n, d)-flat left S-module if and only if $_{R}A$ is an (n, d)-flat left R-module.

(3) If R is a right n-coherent ring, then S is a right n-coherent ring.

Proof. (1). " \Rightarrow ". Suppose M_S is an (n, d)-injective right S-module. Let N_R be any *n*-presented right R-module. Then, using an argument similar to that in Lemma 3.11, we get that $N \otimes_R S_S$ is an *n*-presented right S-module. By [14; Theorem 11.65], we have

$$Ext_R^{d+1}(N_R, M_R) \cong Ext_S^{d+1}(N \otimes_R S_S, M_S) = 0.$$

Therefore M_R is an (n, d)-injective right *R*-module.

" \Leftarrow ". Assume M_R is an (n, d)-injective right R-module. Let N_S be any n-presented right S-module. Then $N \otimes_R S_S \cong N_S$ by Lemma 3.10 and N_R is an n-presented right R-module by Lemma 3.11. Again by [14; Theorem 11.65], we have

$$Ext_S^{d+1}(N_S, M_S) \cong Ext_S^{d+1}(N \otimes_R S_S, M_S) \cong Ext_R^{d+1}(N_R, M_R) = 0.$$

Therefore M_S is an (n, d)-injective right S-module.

(2). " \Rightarrow ". If $_{S}A$ is an (n, d)-flat left *S*-module. Let B_{R} be any *n*-presented right *R*-module. Then $B \otimes_{R} S_{S}$ is an *n*-presented right *S*-module. By [14; Corollary 11.63], we have

$$Tor_{d+1}^R(B_{R,R}A) \cong Tor_{d+1}^S(B \otimes_R S_{S,S}A) = 0.$$

Therefore $_{R}A$ is an (n, d)-flat left *R*-module.

"⇐". If _RA is an (n, d)-flat left R-module. Let B_S be any n-presented right R-module. Then $B \otimes_R S_S \cong B_S$ by Lemma 3.10 and B_R is an n-presented right R-module by Lemma 3.11. By [14; Corollary 11.63], we have

$$Tor_{d+1}^{S}(B_{S,S}A) \cong Tor_{d+1}^{S}(B \otimes_{R} S_{S,S}A) \cong Tor_{d+1}^{R}(B_{R,R}A) = 0.$$

Therefore ${}_{S}A$ is an (n, d)-flat left S-module.

(3). Let M_S be an *n*-presented right *R*-module, then M_R is an *n*-presented right *R*-module by Lemma 3.11. Thus M_R is an (n + 1)-presented right *R*-module since *R* is a right *n*-coherent ring. Therefore M_S is an (n+1)-presented right *S*-module again by Lemma 3.11, and so *S* is a right *n*-coherent ring.

We list the following lemma proved in [7; Lemma 3.14] for convenient using.

Lemma 3.13 ([7; Lemma 3.14]). Let R and S be rings. Every right $(R \oplus S)$ -module has a unique decomposition that $M = A \oplus B$, where A = M(R, 0) is a right R-module and B = M(0, S) is a right S-module via xr = x(r, 0) for $x \in A, r \in R$, and ys = y(0, s) for $y \in B, s \in S$.

We are now in a position to prove the following main result.

Theorem 3.14 Let S and T be rings, and $n \ge 1$ a fixed integer. If $S \oplus T$ is a right n-coherent ring, then

$$rnpD(S \oplus T) = sup\{rnpD(S), rnpD(T)\}$$

Proof. For convenience, we write $R = S \oplus T$. Since R is a right n-coherent ring, we have both S and T are right n-coherent rings by Lemma 3.12.

We first show that $rnpD(R) \leq \sup\{rnpD(S), rnpD(T)\}$. We may assume $\sup\{rnpD(S), rnpD(T)\} = m < \infty$. Let M be a right (R)-module and N any (n, 0)-injective right (R)-module. Then $N = A \oplus B$, where A is a right S-module and B is a right T-module by Lemma 3.13. Note that both A and B are (n, 0)-injective right (R)-modules. Hence A is an (n, 0)-injective right S-module and B is an (n, 0)-injective right T-module by Lemma 3.12. By [14; Theorem 11.65], we have

$$Ext_{R}^{m+1}(M,N) \cong Ext_{R}^{m+1}(M,A) \oplus Ext_{R}^{m+1}(M,B)$$
$$\cong Ext_{S}^{m+1}(M \otimes_{R} S_{S},A) \oplus Ext_{T}^{m+1}(M \otimes_{R} T_{T},B)$$
$$= 0,$$

and hence $rnpD(R) \leq \sup\{rnpD(S), rnpD(T)\}$.

Next we prove that $rnpD(R) \ge \sup\{rnpD(S), rnpD(T)\}$. We may assume $rnpD(R) = m < \infty$. Let M be a right S-module and N any (n, 0)-injective right S-module. Then N is an (n, 0)-injective right (R)-module by Lemma 3.12. By Lemma 3.10, $M \otimes_R S_S \cong M_S$. Again by [14; Theorem 11.65], we have

$$Ext_S^{m+1}(M,N) \cong Ext_S^{m+1}(M \otimes_R S_S,N) \cong Ext_R^{m+1}(M,N) = 0.$$

Therefore $rnpD(R) \ge rnpD(S)$. Similarly for $rnpD(R) \ge rnpD(T)$, and hence $rnpD(R) \ge \sup\{rnpD(S), rnpD(T)\}$. This completes the proof.

Remark 3.15 Let R_1, R_2, \dots, R_m be rings and n a positive integer. The theorem above shows that $rnpD(\bigoplus_{i=1}^m R_i) = sup\{rnpD(R_1), rnpD(R_2), \dots, rnpD(R_m)\}$ if $\bigoplus_{i=1}^m R_i$ is an n-coherent ring. In particular, we obtain the known result that $\bigoplus_{i=1}^m R_i$ is right Noetherian if and only if each R_i is right Noetherian. But in general $rnpD(\bigoplus_{i=1}^{\infty} R_i) \neq sup_{i\geq 1}\{rnpD(R_i)\}$. For example, Z_2 is a field of two elements, but $\bigoplus_{i=1}^{\infty} Z_2$ is not Noetherian.

Lemma 3.16 Assume n and d are non-negative integers, R is a commutative ring, and P is any prime ideal of R. Let $R_{\rm P}$ denote the localization of R at P, M is an $R_{\rm P}$ -module (M may be viewed as an R-module), and A is an R-module. Then the following statements hold:

(1) If A is an n-presented R-module, then $A_{\mathbf{P}}$ is an n-presented $R_{\mathbf{P}}$ -module.

(2) If M is an (n, d)-injective $R_{\mathbf{P}}$ -module, then M is an (n, d)-injective R-module.

(3) If M is an (n, d)-flat $R_{\mathbf{P}}$ -module, then M is an (n, d)-flat R-module.

(4) If A is an (n, d)-projective R-module, then $A_{\mathbf{P}}$ is an (n, d)-projective $R_{\mathbf{P}}$ -module.

Proof. (1). Suppose A is an n-presented R-module. Then there exists an exact sequence of R-modules

$$F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to A \to 0$$

where each F_i is finitely generated projective, $i = 0, 1, \dots, n$. It gives rise to the exactness of the sequence

$$(F_n)_{\mathbf{P}} \to (F_{n-1})_{\mathbf{P}} \to \cdots \to (F_1)_{\mathbf{P}} \to (F_0)_{\mathbf{P}} \to A_{\mathbf{P}} \to 0$$

of $R_{\rm P}$ -modules. By [6; Remark 2.2.5], each $(F_i)_{\rm P}$ is a finitely generated projective $R_{\rm P}$ -module, $i = 0, 1, \dots, n$. Hence $A_{\rm P}$ is an *n*-presented $R_{\rm P}$ -module.

(2). Assume M is an (n, d)-injective $R_{\rm P}$ -module. Let N be any n-presented R-module, then $N_{\rm P}$ is an n-presented $R_{\rm P}$ -module by (1). Note that $R_{\rm P}$ is a flat R-module and $R_{\rm P} \otimes_R N \cong N_{\rm P}$. By [14; Theorem 11.65], we have

$$Ext_R^{d+1}(N,M) \cong Ext_{R_P}^{d+1}(R_P \otimes_R N,M) \cong Ext_{R_P}^{d+1}(N_P,M) = 0.$$

Therefore M is an (n, d)-injective R-module.

(3). Similar to that of (2).

(4). Suppose A is an (n, d)-projective R-module. Let B be any (n, d)injective $R_{\mathbf{p}}$ -module, then B is an (n, d)-injective R-module by (2). Note that $A_{\mathbf{p}} \cong R_{\mathbf{p}} \otimes_R A$. By [14; Theorem 11.65], we have

$$Ext^{1}_{R_{\mathbf{P}}}(A_{\mathbf{P}}, B) \cong Ext^{1}_{R_{\mathbf{P}}}(R_{\mathbf{P}} \otimes_{R} A, B) \cong Ext^{1}_{R}(A, B) = 0.$$

Therefore $A_{\mathbf{P}}$ is an (n, d)-projective $R_{\mathbf{P}}$ -module.

Corollary 3.17 Let R be a commutative ring and P any prime ideal of R. If M is an $R_{\rm P}$ -module, then the following statements hold:

- (1) M is an injective $R_{\mathbf{P}}$ -module if and only if M is an injective R-module.
- (2) M is a flat $R_{\rm P}$ -module if and only if M is a flat R-module.

Proof. (1). If M is an injective $R_{\rm P}$ -module, then M is an injective R-module by Lemma 3.16. If M is an injective R-module, then $M_{\rm P}$ is an injective $R_{\rm P}$ -module by [14; Theorem 3.76]. Note that $M \cong M_{\rm P}$ as $R_{\rm P}$ -modules. Thus (1) follows.

(2). Similar to that of (1).

Theorem 3.18 Let $n \ge 1$ be a fixed integer and R a commutative ncoherent ring. If P is any prime ideal of R, then $npD(R_{\mathbb{P}}) \le npD(R)$.

Proof. We may assume $npD(R) = t < \infty$. Let M be any $R_{\rm P}$ -module. Note that M may be viewed as an R-module. Thus $npd(M_R) \leq t$. If t = 0, then M is an (n, 0)-projective R-module. Since $M \cong M_{\rm P}$ as $R_{\rm P}$ -modules, we have M is an (n, 0)-projective $R_{\rm P}$ -module by Lemma 3.16, and so the theorem follows. Next we assume $t \geq 1$. By Proposition 3.1 (5), There exists an exact sequence

$$0 \to K \to F_{t-1} \to \dots \to F_1 \to F_0 \to M \to 0$$

of *R*-modules, where each F_i is a projective *R*-module, $i = 1, 2, \dots, t - 1$, and *K* is an (n, 0)-projective *R*-module. The above sequence induces an R_{P} -module exact sequence

$$0 \to K_{\mathbf{P}} \to (F_{t-1})_{\mathbf{P}} \to \cdots \to (F_1)_{\mathbf{P}} \to (F_0)_{\mathbf{P}} \to M_{\mathbf{P}} \to 0.$$

By [6; Remark 2.2.5], each $(F_i)_{\mathsf{P}}$ is a projective R_{P} -module, $i = 1, 2, \dots, t-1$. Note that K_{P} is an (n, 0)-projective R_{P} -module by Lemma 3.16. Thus, for any (n, 0)-injective R_{P} -module N, we have

$$Ext_{R_{\mathbf{P}}}^{t+1}(M_{\mathbf{P}},N) \cong Ext_{R_{\mathbf{P}}}^{1}(K_{\mathbf{P}},N) = 0$$

and so $npd(M_{\mathbb{P}})_{R_{\mathbb{P}}} \leq t$ by definition. Since $M \cong M_{\mathbb{P}}$ as $R_{\mathbb{P}}$ -modules, $npd(M) \leq t$. Therefore $npD(R_{\mathbb{P}}) \leq npD(R)$, and we complete the proof.

Remark 3.19 (1) The theorem above shows the well-known result that any localization of a Noetherian ring is again Noetherian. But in general $npD(R) \neq sup\{npD(R_{P}): P \text{ is a prime ideal of } R\}$. For example, take R to be the direct product of countably many copies of \mathbb{Z}_2 , then R is not Noetherian. Thus npD(R) > 0. However, $npD(R_{P}) = 0$ for any prime ideal of R.

(2) Let R be a commutative ring and P any prime ideal of R. Corollary 3.17 shows that if M is an $R_{\rm P}$ -module, then M is a flat (resp. injective) $R_{\rm P}$ module if and only if M is a flat (resp. injective) R-module. But, in general, a projective $R_{\rm P}$ -module need not be a projective R-module. For example, $R_{\rm P}$ is a projective $R_{\rm P}$ -module, but $R_{\rm P}$ need not be a projective R-module. Acknowledgement. This research was supported by the Scientific Research Fund of Education Department of Guangxi Province(No.201203YB224).

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*. 2nd, New York: Spring-Verlag, 1992.
- [2] J. L. Chen and N. Q. Ding, On *n*-coherent rings, Comm. Algebra, 24 (1996), no.10, 3211-3216.
- [3] D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra, 22 (1994), no. 10, 3997-4011.
- [4] S. Glaz, Commutative Coherent Rings, Lect. Notes Math., 1372, Berlin: Spring-Verlag, 1989.
- [5] E. E. Enochs, Injective and flat covers, envelopes and resolvents, *Israel J. Math*, **39** (1981), no. 3, 189-209.
- [6] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, Berlin: Walter de Gruyter, 2000.
- [7] L. X. Mao and N. Q. Ding, FP-projective dimensions, Comm. Algebra, 33(2005), no. 4, 1153-1170.
- [8] L. X. Mao and N. Q. Ding, Relative projective modules and relative injective modules, Comm. Algebra, 34 (2006), no. 7, 2403-2418.
- [9] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc., 2 (1970), no. 2, 323-329.
- [10] M. F. Jones and M. L. Teply, Coherent rings of finite week global dimension, Comm. Algebra, 10 (1982), 493-503.
- [11] W. Xue, On *n*-presented modules and almost excellent extensions, *Comm. Algebra*, **27** (1999), no. 3, 1091-1102.
- [12] D. X. Zhou, On n-coherent rings and (n, d)-rings, Comm. Algebra, 32 (2004), no.6, 2425-2441.
- [13] N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra, 24 (1996), no. 4, 1459-1470.
- [14] J. J. Rotman, An Introduction to Homological Algebra, New York: Academic Press, 1979.

- [15] H. K. Ng, Finitely presented dimension of commutative rings and modules, *Pacific. J. Math*, **113** (1984), no. 2, 417-431.
- [16] T. Y. Lam. Lectures on Modules and Rings, New York: Spring-Verlag, 1998.