
BULLETIN Bull. Malaysian Math. Soc. (Second Series) 22 (1999) 57-65 
 of the 
    MALAYSIAN MATHEMATICAL SOCIETY 

 
 
 

A Cusp-Like Free-Surface Flow Caused by a Source/Sink  
in a Channel of Finite Depth 

 
LEO HARI WIRYANTO 

Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, Indonesia 
e-mail:  leo@dns.math.itb.ac.id 

 
 

 Abstract.  A flow caused by a line sink/source is considered in a channel of finite depth. The sink 
is placed at the bottom of the channel, and produces a free surface with a cusp pointing to the sink. 
Numerical solutions of this free-surface flow are computed by an integral equation method.  The 
relationship between the nondimensional parameter Froude number ,F  based on the downstream 

flow, and the distance ay  of the separation point of the cusp to the sink is presented as a plot from 

our computations.  When ,∞→F   we obtain the limiting cusp solution with .363.0=ay  
 
 
1. Introduction 
 
Since the 1980s much progress has been achieved in numerical calculations of free-
surface flow caused by a source/sink.  The fluid surface above the sink may be drawn 
down such that it is cusp-like.  Tuck and Vanden-Broeck [3] computed such a problem 
for fluid of infinite depth.  When the wall below the sink is sloped with angle β  from the 
vertical and the sink is located at the corner, Hocking [1] obtained numerical solutions for 
a sequence of angles ranging from 0 to 2π .  In each case, there was just one cusp 
solution.  Vanden-Broeck and Keller [4] then recomputed these 2-D flows, and found 
horizontal-bottom solutions for all values of a nondimensional Froude number F greater 
than some particular value.  The results treated by Tuck and Vanden-Broeck, and 
Hocking were also confirmed in Vanden-Broeck and Keller [4]. 
 In this paper, we recompute solutions of Vanden-Broeck and Keller for a sink at the 
corner of the horizontal bottom by an integral equation method, and we determine the 
limiting solution as ∞→F .   For finite Froude numbers, we agree with the results in 
[4], i.e., that there is a relationship between F and the nondimensional distance ay  of the 
separation point to the bottom with .1>F   When we increase the Froude number, we 
found that ay  also increases but it does not exceed a certain value obtained by solving 
the problem with neglecting the effect of gravity.   Our computations show that the output 
parameter is in an interval 363.0244.0 << ay . 
 In solving the cusp flow, we first formulate the problem as an integral equation for a 
hodograph variable.   The derivation of this equation follows that of Wiryanto [5] for 
free-surface flow emerging from a tunnel.  Wiryanto assumed that the flow is uniform in 
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the tunnel and far downstream.  The upper bound of the flow domain is a streamline 
which changes the condition from solid to free surface.  This problem is similar to the 
cusp flow here.  The flow in the tunnel can be described as the source, and the upper 
streamline, in Wiryanto [5], corresponds to the streamline along the vertical wall and the 
free surface of the cusp flow. In order to solve the boundary value problem in the 
physical plane, Wiryanto mapped the flow domain into a lower half-plane which is called 
an artificial plane, and formulated the boundary value problem into an integral equation 
presenting the relationship between the hodograph variable and the artificial one.   For 
the cusp flow, the derivation of the integral equation is presented in Section 2.                   
A numerical procedure is then developed for solving the integral equation.  We present 
this procedure in Section 3.  In the case of the flow where the effect of gravity is 
neglected, the integral equation is derived in Section 4.  The solution of this zero-gravity 
case is then compared with the results for finite Froude numbers.  We describe these 
results in Section 5. 
 
 
2. Problem formulation 
 
The steady, irrotational motion of an inviscid, incompressible fluid in the presence of 
gravity is to be examined.  The fluid is of finite depth and has a free surface above a line 
source S placed at the corner of a semi-infinite channel (see Figure 1).  The flow caused 
by this source produces a uniform stream far downstream with depth H and velocity U. 
Therefore, we can define the Froude number as 
 

,
gH
UF =  

 
where g is the acceleration due to gravity.  On the other side, the free surface, just above 
the source, separates smoothly from the vertical wall at point A with level aH .  
 Now we introduce the system of coordinates for the flow domain as shown in     
Figure 1.  We choose the Cartesian coordinate with the origin at the source S.  Therefore, 
the flow domain can be written as a complex plane  .iyxz +=   Another complex plane 
for the flow domain can be defined as ,ψφ if +=  where φ  and ψ are the velocity 
potential and stream function respectively.  The flow domain in the f-plane is an infinite 
strip (see Figure 2(a)).  Without loss of generality we choose the origin corresponding to 
the separation point A. 
 Mathematically, our problem is to determine the complex potential )(zf  which 
satisfies Laplace’s equation )0( 2 =∇ f  within the flow domain, conditions of no flow 
across the solid boundaries and the free surface, and the condition of constant pressure on 
the free surface provided by Bernoulli’s equation 
 

,
2
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2
1 222 gHUgyyx +=++ φφ                                      (1) 
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Figure 1.  Sketch of flow in the physical z-plane. 
 

where y is the elevation of the free surface.  The constant value on the right of (1) 
represents the condition of free surface far downstream.  If we nondimensionalize the 
problem with respect to the length H and velocity U, then equation (1) becomes 
 

,1
2
1)(

2
1 2222 +=++ FyF yx φφ                                     (2) 

 
and the flow separates the vertical wall at level ay  as the nondimensional quantity 
corresponding to aH .   In terms of these variables, the flow domain in the f-plane is then 
an infinite strip of height 1.  
 To derive the integral equation, we follow Wiryanto [5].  The transformation 
 

,log1 ζ
π

=f                                                        (3) 

 
where ,ηξζ i+=  maps the flow domain in the f-plane into the lower half ζ–plane (see 
Figure 2).  We derived the transformation (3) by Schwarz and Christoffel’s Theorem (see 
Milne-Thomson [2]).  The hodograph variable  θτΩ i−=  is then introduced such that 
it has a relation to the velocity 
 

.Ωe
dz
df

=                                                          (4) 

 
Therefore, the components τ  and θ  of Ω are interpreted respectively as the logarithm of 
the magnitude and the angle of the velocity on a streamline.  In term of θ, the kinematics 
conditions on the solid boundaries are 

 
0)( =ξθ   for   0<ξ                                               (5) 

 
and 

2
)( πξθ =   for   .10 << ξ                                          (6) 
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Figure 2.  The flow domain in the f-plane (a), and in the ζ-plane (b). 

 

On the other hand, the dynamic condition (2) becomes 
 

22 222 +=+ FyeF τ                                                 (7) 
 

on the free surface  .1>ξ   Equation (7) is the integral equation for θ after we substitute 
the values of  y and τ evaluated from 

 

πξ
θ

ξ
τ sin−

= e
d
dy                                                       (8) 

and 

∫
∞
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PV

ξ
θ

πξ
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Note that the integral in (9) is a Cauchy principal value denoted by PV, and we use s as 
the dummy variable. 
 The relation (8) is obtained from the imaginary part of ,ζddz  where this form is 
expressed as 

πζζ
Ω−

= e
d
dz                                                        (10) 

 
from (3) and (4).   Meanwhile, equation (9) is the result of applying Cauchy’s Theorem to 
Ω  on a part consisting of the real axis,-ζ  a semi-circle at ∞=ζ  in the lower          
half-plane, and a circle of vanishing radius about the point ζ .  Hence, for Im 0)( <ζ  we 
have 

,)(
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1)( ∫

∞
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Ω
πζΩ  
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since 0→Ω  as .∞→ζ   If we let Im ,0)( −→ζ  we obtain 
 

∫
∞

∞− −
−= ds

s
sPV
ξ

θ
π

ξτ )(1)(                                           (11) 

 
and 
 

∫
∞

∞− −
= ds

s
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ξ

τ
π

ξθ )(1)( . 

 
 

Substituting the known values of ,θ equations (5) and (6), into (11) gives the relation (9). 
 
 
3. Numerical procedure 
 
To solve equation (7), we first truncate the integration domain in (9) up to Ts =  with 
sufficiently large T representing uniform flow far downstream, and we approximate the 
integral into a summation over N mesh points.   We can apply a numerical method such 
as the Trapezoidal Rule for this integral approximation. The N mesh points jξ  are 
suggested to be distributed along the interval with the same distance of φ between two 
points to get better accuracy with less number of points.  If we denote ,log πφ TT =  
the mesh points can be defined as 
 

)1()1( −−= Nj
j Te φξ   for  .,,2,1 Nj L=  

 
The value of θ  for each jξ  is the unknowns that we have to determine, except at 1=ξ  
which is defined as 2πθ =  indicating that the flow separates smoothly the vertical 
wall. 
 The next step is to construct a system of nonlinear algebraic equations from (7).  
This can be done by choosing 1−N  collocation points *

jξ  which are defined as the 
midpoints between jξ  and 1−jξ .  The values of θ  corresponding to these collocation 

points are denoted by *
jθ , and are also defined as the midpoints between jθ  and 1−jθ .  

For each ,*
jξ  a nonlinear algebraic equation is obtained from (7), after substituting 

)( *
jξτ  and )( *

jy ξ .  The first value is evaluated from discretizing (9)  
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Meanwhile, )( *
jy ξ  is evaluated by integrating (8) and discretizing the integral, similar to 

(12) using the Trapezoidal Rule. 
 The 1−N  equations from the collocation points are used to determine the N 
unknowns Nθθθ ,,, 32 L  and ay  for a given Froude number F.  Therefore, an extra 
equation is required to obtain a closed system.  This equation is constructed from the 
level of the separation point A by integrating (8), i.e., 
 

∫
−

≈−
T

a dey
1

.sin11 ξ
ξ

θ
π

τ
 

 
This closed system is then solved by Newton’s method. 
 As the method requires an initial guess for ,θ  we first use 2)/1( Njj −= πθ  for 

.,,2 Nj L=   We run the computer program with this initial guess for small values of N. 
Once the iteration converges, we double N by adding one point between jξ  and 1−jξ , 
and linearizing between jθ  and 1−jθ  for the initial value of θ corresponding to the 
addition point.  This can be repeated for another doubling of N.  Therefore, we can 
observe the accuracy of our procedure.  Using ,200=N  the procedure is able to 
compute solutions up to three-figure of accuracy for ay .  This number is then used to 
perform most of our results.  The free-surface profile is the output of our procedure which 
is computed in the post process.  The coordinates of the free surface corresponding to 
each collocation point *

jξ  are evaluated by integrating (8) for the y values, and 
integrating 
 

πξ
θ

ξ
τ cos−

= e
d
dx  

 
for the x values.  This equation is the real part of (10).  We then perform the plot of these 
coordinates as the free surface. 
 
 
4. Infinite Froude number 
 
Very large Froude number corresponds to low effective importance of gravity relative to 
others forces such as inertia.  When gravity is absent, the free-surface boundary condition 
is that of unit velocity magnitude, or .0=τ   This can be obtained from (7).  Therefore, 
our integral equation for flow formulated in Section 2 is reduced to determining θ  
satisfying 
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 Basically, equation (13) can be solved numerically, similar to the procedure 
described in Section 3.  The integral is truncated up to Ts =  and approximated by 
summation over N discrete points in the truncated integration domain.  For each 
collocation point *

jξ  between those two discrete points, it is substituted to the 
approximate equation of (13) giving 
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Here we denote ),( ll ξθθ =  and the integral is approximated by the Trapezoidal Rule. 
The system of 1−N  equations is therefore obtained for determining Nθθ ,,2 L .  In our 
calculation, we include determining the level ay  of the separation point A satisfying 
 

∫≈−
T
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1
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ξ
θ

π
 

 
When we apply Newton’s method to solve the system of equations, iterations converge to 
values of lθ  decreasing monotonically from 2/π  to 0, and 363.0=ay .  We perform 
the plots of θ  versus ξ  and the free surface in the next section, together with results for 
finite Froude numbers. 
 
 
5. Numerical results 
 
The numerical procedure described in Section 3 was used to compute solutions for 
various values of F.  But the parameters N and T were first observed related to the 
accuracy of our procedure.  We found that our numerical results reached three-figure 
accuracy using 200=N  and .103 6⋅=T  This was also tested to the procedure for 
infinite Froude number.  The resulting values of  ay  for 100,50=N  and 200 were 
0.3585, 0.3621 and 0.3630.   These values converged to  3633.0=ay  as ∞→N .   This 
process can be repeated for other values of T, but we found that the results are different in 
the fourth decimal place. 
 When the iteration of Newton’s method converges, we obtain values of ),( ll ξθθ =  
for Nl ,,2 L= , and .ay   The plot of θ  versus ξ  is shown in Figure 3 with the 
horizontal axis in .log πξφ =   We show three curves for different Froude numbers, 
namely ∞=F , 2.0 and 1.0 (from bottom to top).  Our procedure is able to compute 
solutions less than ,1=F  but the values of θ  corresponding to large ξ  start oscillating 
with increasing amplitude on decreasing F.  Cusp solutions with a train of waves are a 
possibility for the free-surface configuration.  Vanden-Broeck and Keller [4] also 
obtained cusp solutions without waves for .1>F  
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In Figure 4 we show a plot of two free surfaces corresponding to F = * and 1.0.
The resulting values of yo for both Froude numbers are 0.363 and 0.245 respectively.

For other values of the Froude number, the free-surface solution is characterrzed by the
value of !o. The plot of y4 versus F is shown in Figure 5, where )o is less than the

value corresponding to F = *.

Figure 4. Plot of two free surfaces corresponding to F = I (lower) and F - - (upper)
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Figure 5. Plot of y, versus F

Conclusions

We have performed numerical calculations for flow
of finite depth. Free-surface solutions with a cusp
downstream with Froude number greater than one.
the separation point on the vertical wall tends to the
as we increase the Froude number.

caused by a source/sink in a channel
are obtained for uniform stream fbr
From our calculations. we found that
level computed by zero-gravity case

Acknowledgement. This research was partly supported by Center for Reseach on

Application and Advancement of Mathematics-Institut Teknologi Bandung, and this is
grateful ly acknowledged.

References

l . presence

(  I  968) ,

276-280.
E.O. Tuck and J.-M. Vanden-Broeck, A cusp-like free-surface flow due to a submerged source

or sink, J. Austral. Math. Soc. Ser. B 25 (1984),443-450.

J.-M. Vanden-Broeck and J.B. Keller, Free surface flow due to a sink, J. Fluid Mech.

175  (1987 ) ,109 -117 .
L.H. Wiryanto, A 2-D flow emerging from a tunnel, Proceedings of ISASTI'98 (1998),

391-394.

G.C. Hocking, Cusp-like free-surface flows due to a submerged source or sink in the

of a flat or sloping bottom, J. Austral. Math. Soc. Ser. B 26 (1985),470-486.

L.M. Milne-Thomson. Theoreticctl Hydrodynamics, 5'h Ed', Dover, New York2.

4.

5 .

Keywords: source/sink, integral equation, Froude number'


