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Abstract. The aim of this paper is to study the properties of planar harmonic
mappings. The main results are as follows. First, by using the subordina-
tion of analytic functions, a sharp coefficient estimate is obtained and several
applications are given. Then two results about Landau-Bloch’s constant are
proved: one for planar harmonic mappings and the other for L(f), where L

represents the linear complex operator L = z ∂
∂z
− z ∂

∂z
defined on the class of

complex-valued C1 functions in the plane and f is an open harmonic mapping.
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1. Preliminaries and main results

One of the long standing open problems in function theory is that of determining
the precise value of the schlicht Landau-Bloch’s constant for holomorphic mappings
of the unit disk D = {z : |z| < 1}. Analogous problem of estimating the Landau-
Bloch’s constant for harmonic mappings has been one of the recent investigations by
a number of authors [1,3,4,6,8,9,11,13,14,18]. One of the main aims of this paper
is to use subordination as a tool to derive a sharp coefficient estimate for harmonic
mappings and as a consequence, we obtain improved estimates for Landau-Bloch’s
constant both for harmonic and biharmonic mappings.

A sense-preserving (planar) harmonic mapping f of D is a solution of the elliptic
differential equation

fz(z) = ω(z)fz(z)
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where ω, known as the analytic dilatation of f , is an analytic function in D with
ω(D) ⊂ D. One of the useful representations of sense-preserving harmonic mappings
f in D is that f = h + g, where h and g are analytic functions in D. In this case,
ω(z) = g′(z)/h′(z) and the Jacobian

Jf = |fz|2 − |fz|2 = |h′|2 − |g′|2 = |h′|2(1− |ω|2)
is positive.

For harmonic mappings f of D, we use the following standard notations:

Λf (z) = max
0≤θ≤2π

|fz(z) + e−2iθfz(z)| = |fz(z)|+ |fz(z)|

and
λf (z) = min

0≤θ≤2π
|fz(z) + e−2iθfz(z)| =

∣∣ |fz(z)| − |fz(z)|
∣∣.

Then Jf = λfΛf if Jf ≥ 0.
We say that f ∈ HM (D) if f is harmonic in D and |f(z)| ≤ M for z ∈ D. We use

the canonical decomposition f = h + g with the analytic functions h and g having
the power series

h(z) =
∞∑

n=0

anzn and g(z) =
∞∑

n=1

bnzn.

Theorem 1.1. Suppose f ∈ HM (D). Then |a0| ≤ M and for each n ≥ 1,

(1.1) |an|+ |bn| ≤ 4M

π
.

The estimate (1.1) is sharp for any n ≥ 1. For each n ≥ 1, the extremal function is

fn(z) =
2Mα

π
arg

(
1 + βzn

1− βzn

)
, |α| = |β| = 1

or f(z) ≡ M.

We shall prove the theorem in Section 2, and the proof depends on the principle of
subordination. The inequality (1.1) for n = 1 can be obtained as a consequence of the
harmonic version of the Schwarz’s lemma due to Chen, Gauthier and Hengartner [3,
Theorem 1(1)] (see also Heinz [12, Lemma]). In [18, Theorem 4] (see also [9, Lemma
3]) a weaker estimate, namely, |an| + |bn| ≤ 2M for n ≥ 1, was used to obtain
estimates for Bloch constants for planar harmonic mappings. We recall that a four
times continuously differentiable complex-valued mapping F of D is biharmonic if
and only if ∆F satisfies the biharmonic equation ∆(∆F ) = 0, where ∆F = 4Fzz

denotes the Laplacian of F . It is easy to see that if F is biharmonic in D then there
exist harmonic functions G and K of D such that F = |z|2G + K (cf. [1, 2, 4–7])

In view of the sharp estimate from Theorem 1.1, we can obtain two Landau’s the-
orems for planar biharmonic mappings improving the earlier results of Abdulhadi
and Abu Muhanna [1] and Liu [13]. It is worth recalling that neither the normal-
ization fz(0) = 1 nor the normalization Jf (0) = 1 gives us a Bloch theorem for
general univalent harmonic mappings. There are examples where no Bloch theorem
is possible for harmonic mappings even with both of these normalizations (cf. [3]).
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Theorem 1.2. Let F = |z|2G+K be a biharmonic mapping of D such that F (0) =
G(0) = K(0) = JF (0) − 1 = 0, |G(z)| ≤ M1 and |K(z)| ≤ M2. Then there is a
constant 0 < ρ2 < 1 so that F is univalent in |z| < ρ2. In specific ρ2 satisfies

π

4M2
− 2ρ2M1 − 4M1ρ

2
2

π(1− ρ2)2
−

√
2(M2

2 − 1) (2ρ2 − ρ2
2)

(1− ρ2)2
= 0

and F (Dρ2) contains a disk DR2 , where

R2 =
π

4M2
ρ2 − ρ2

2(4M1ρ2 + π
√

2(M2
2 − 1))

π(1− ρ2)
.

In particular, if we set M1 = M2 = M , we easily obtain the following corollary
which improves the results of Abdulhadi and Abu Muhanna [1, Theorem 1] and
Liu [13, Corollary 2.8].

Corollary 1.1. Let F = |z|2G+K be a biharmonic mapping of D such that F (0) =
G(0) = K(0) = JF (0)− 1 = 0, and G and K are both harmonic in D, and bounded
by M ≥ 1. Then there is a constant 0 < ρ2 < 1 so that F is univalent in |z| < ρ2.
In specific ρ2 satisfies

π

4M
− 2ρ2M − 4Mρ2

2

π(1− ρ2)2
−

√
2(M2 − 1) (2ρ2 − ρ2

2)
(1− ρ2)2

= 0

and F (Dρ2) contains a disk DR2 , where

R2 =
πρ2

4M
− ρ2

2(4Mρ2 + π
√

2(M2 − 1))
π(1− ρ2)

.

Since π/2 > 1, clearly this corollary is an improvement of Liu [13, Corollary 2.8]
(see Table 1).

Table 1. The left half columns refer to Corollary 1.1 and the right half columns
refer to Corollary 2.8 in [13]

M ρ2 R2 M r̃2 σ̃2

1 0.288266781 0.18355165 1 0.224701365 0.147213046
2 0.04203247 0.0117912501 2 0.041014954 0.0115219145
3 0.018310479 0.0034036769 3 0.018119678 0.0033698409
4 0.010238145 0.0014246736 4 0.010178704 0.0014167515
5 0.006535294 0.0007269224 5 0.006511112 0.0007243414
6 0.004532132 0.0004199061 6 0.004520512 0.000418872
7 0.003327 0.0002641443 7 0.003320741 0.0002636667

Applying Theorem 1.1 and the proof of Theorem 1.2, we can easily obtain the fol-
lowing version of Landau’s theorem for biharmonic mappings which clearly improves
the recent result of Liu [13, Theorem 2.10] and so we omit its proof.

Theorem 1.3. Let F = |z|2G+K be a biharmonic mapping of D such that F (0) =
G(0) = K(0) = λF (0)− 1 = 0, |G(z)| ≤ M1 and |K(z)| ≤ M2 in D. Then there is a
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constant 0 < ρ3 < 1 so that F is univalent in |z| < ρ3. In specific ρ3 satisfies

1− 2ρ3M1 − 4M1ρ
2
3

π(1− ρ3)2
−

√
2(M2

2 − 1) (2ρ3 − ρ2
3)

(1− ρ3)2
= 0

and F (Dρ3) contains a disk DR3 , where

R2 = ρ3 −
ρ2
3

(
4M1ρ3 + π

√
2(M2

2 − 1)
)

π(1− ρ3)
.

Also, similar discussions show that Theorems 1.1 and 1.2 of [4] can be improved
by applying Theorem 1.1. In addition to these results, in Theorem 3.2, we obtain an
estimate on Bloch’s constant of the linear operator L(f) for open harmonic mappings
f . Here L denotes the complex-operator

(1.2) L = z
∂

∂z
− z

∂

∂z
.

We see that it is linear and satisfies the usual product rule:

L(af + bg) = aL(f) + bL(g) and L(fg) = fL(g) + gL(f),

where a, b are complex constants, f and g are C1 functions. In addition, the operator
L possesses a number of interesting properties, e.g. L preserves both harmonicity
and biharmonicity. Many other basic properties are stated for instance in [15] (see
also [2, 4]).

2. Proofs of Theorems 1.1 and 1.2

In many cases, the subordination family associated with an individual function or
a family plays a significant role. For two analytic functions f, g defined on D, we
say that f is subordinate to g, denoted by f ≺ g, or f(z) ≺ g(z), if there exists a
function ω ∈ B0 such that f(z) = g(ω(z)) in D. Here B0 denotes the class of Schwarz
functions, i.e. analytic maps ψ of D into itself with the normalization ψ(0) = 0.
When g is univalent in D, f ≺ g if and only if f(0) = g(0) and f(D) ⊂ g(D).

Proof of Theorem 1.1. Without loss of generality, we assume f(z) = h(z)+g(z) and
|f(z)| < 1. For θ ∈ [0, 2π), let

vθ(z) = Im (eiθf(z))

and observe that

vθ(z) = Im (eiθh(z) + e−iθg(z)) = Im (eiθh(z)− e−iθg(z)).

Because |vθ(z)| < 1, it follows that

eiθh(z)− e−iθg(z) ≺ K(z) = λ +
2
π

log
(

1 + zξ

1− z

)
,

where ξ = e−iπIm(λ) and λ = eiθh(0)− e−iθg(0). The superordinate function K(z)
maps D onto a convex domain with K(0) = λ and K ′(0) = 2

π (1 + ξ), and therefore,
by a theorem of Rogosinski [17, Theorem 2.3] (see also [10, Theorem 6.4]), it follows
that

|an − e−2iθbn| ≤ 2
π
|1 + ξ| ≤ 4

π
for n = 1, 2, . . .
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and the desired inequality (1.1) is a consequence of the arbitrariness of θ in [0, 2π).
For the proof of sharpness part, consider the functions

fn(z) =
2Mα

π
Im

(
log

1 + βzn

1− βzn

)
, |α| = |β| = 1,

whose values are confined to a diametral segment of the disk DM = {z : |z| < M}.
Also,

fn(z) =
2Mα

iπ

( ∞∑

k=1

1
2k − 1

(βzn)2k−1 −
∞∑

k=1

1
2k − 1

(βzn)2k−1

)
,

which gives

|an|+ |bn| = 4M

π
.

The proof of the theorem is complete.
Proof of Theorem 1.2. Suppose that F = |z|2G + K is biharmonic with F (0) =
G(0) = K(0) = JF (0)− 1 = 0, |G(z)| ≤ M1, |K(z)| ≤ M2, where

G(z) = g1 + g2 :=
∞∑

n=0

anzn +
∞∑

n=0

bnzn

and

K(z) = k1 + k2 :=
∞∑

n=1

cnzn +
∞∑

n=1

dnzn

are harmonic in D. Now, for fixed 0 < ρ < 1, choose z1, z2 with z1 6= z2, |z1| < ρ and
|z2| < ρ. It follows from the standard arguments (eg. see the proof of [1, Theorem
1]) that

|F (z1)− F (z2)| ≥ |z1 − z2|
{

λK(0)− 2ρM1 − ρ2
∞∑

n=1

n(|an|+ |bn|)ρn−1

−
∞∑

n=2

n(|cn|+ |dn|)ρn−1

}
.

We observe that JK(0) = |c1|2 − |d1|2 = JF (0) = 1 and therefore, we have

λK(0) =
1

ΛK(0)
=

1
|c1|+ |d1| ,

which, by Theorem 1.1, is bigger than or equal to π/(4M2). In view of Theorem 1.1
and [6, Theorem 1.5], we have

|an|+ |bn| ≤ 4M1

π
(n ≥ 1)

and
|cn|+ |dn| ≤

√
2(M2

2 − 1) (n ≥ 2),

respectively. Using these inequalities, as in the proof of [1, Theorem 1], we see that
|F (z1)− F (z2)| > 0 if 0 < ρ < ρ2, where ρ2 is the root of the following equation:

π

4M2
− 2ρM1 − 4M1

π

ρ2

(1− ρ)2
+

√
2(M2

2 − 1)
(

1
(1− ρ)2

− 1
)

= 0
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and the univalency of the biharmonic function F follows.
For |z| = ρ2, it follows that

|F (z)| ≥ |c1z + d1z| − ρ2
2

∞∑
n=1

(|an|+ |bn|)ρn
2 −

∞∑
n=2

(|cn|+ |dn|)ρn
2

≥ π

4M2
ρ2 − 4M1

π

ρ3
2

1− ρ2
−

√
2(M2

2 − 1)
ρ2
2

1− ρ2
= R2.

The proof of the theorem is complete.

3. Bloch’s constant for planar harmonic mappings

In [14], Liu proved the following Lemma.

Lemma 3.1. ( [13, Lemma 2.4] and [14, Lemma 2.1]) Suppose that f is a harmonic
mapping of D with f(0) = λf (0)− 1 = 0. If Λf ≤ Λ for z ∈ D, then

|an|+ |bn| ≤ Λ2 − 1
nΛ

, n = 2, 3, . . . .

Above estimates are sharp for all n = 2, 3, . . . , with the extremal functions

fn(z) = Λ2z −
∫ z

0

(Λ3 − Λ) dz

Λ + zn−1
.

As applications of Lemma 3.1, several estimates on Bloch’s constant were obtained
in [14], which are generalizations of the corresponding results in [3,11], respectively.
For example, the following was proved, which is an improvement of [3, Theorem 1].

Let Har(D,D) denote the class of all harmonic mappings of D satisfying f(0) = 0
and f(D) ⊂ D. Using the principle of subordination of analytic functions, we know
that for any f ∈ Har(D,D),

(3.1) Λf (z) ≤ 4
π(1− |z|2) for z ∈ D,

which is an improved version of Schwarz’s lemma for harmonic mappings [3,12,18].
Moreover, the inequality (3.1) coincides with the result of Colonna [8] who proved
that

sup
z∈D

(1− |z|2)Λf (z) ≤ 4
π

.

By applying (3.1), we can improve [14, Theorem 2.3] as follows.

Theorem 3.1. Let f ∈ HM (D) with f(0) = fz(0) = fz(0) − 1 = 0. Then f is
univalent in the disk Dr0 with r0 = φ(Mr) and f(Dr0) contains a univalent disk of
radius at least

(3.2) R0 := max
0<r<1

ψ(Mr),

where

φ(x) =
rx

(x2 + x− 1)
, ψ(x) = r

[
1 +

(
x2 − 1

x

)
log

(
x2 − 1

x2 + x− 1

)]
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and

Mr =
4M

π(1− r2)
.

Proof. If we set

(3.3) F (z) =
f(rz)

r
,

then F is a harmonic mapping of D, and λF (0) = 1. Therefore by (3.1), we have

ΛF = Λf (zr) ≤ 4M

π(1− r2)
= Mr.

Thus, by [14, Theorem 2.2], we obtain that F is univalent in the disk |z| < r0
r ,

r0 = φ(Mr), and F ({z : |z| < r0
r }) contains a univalent disk |w| < R0

r , R0 = ψ(Mr).
Hence f is univalent in the disk Dr0 and f(Dr0) contains a univalent disk DR0 . The
existence of (3.2) follows from the fact that

lim
r→0+

ψ(Mr) = lim
r→1−

ψ(Mr) = 0.

The proof is complete.

Let r =
√

2
2 in (3.3). Then f is univalent in the disk Dr0 with r0 = φ(8M/π) and

f(Dr0) contains a univalent disk DR0 with R0 := ψ(8M/π), where

φ(x) =
x√

2(x2 + x− 1)
and ψ(x) =

1√
2

[
1 +

(
x2 − 1

x

)
log

(
x2 − 1

x2 + x− 1

)]
.

Liu [14, Theorem 2.3] obtained the above result with r0 and R0 by using r2 =
φ(4.55M) and σ2 = ψ(4.55M), respectively (see Table 2). We remark that r0 in
Theorem 3.1 is positive only when M > π(

√
5−1)
16 ≈ 0.242701. It is worth pointing

out that r0 in [14, Theorem 2.3] is positive for M >
√

5−1
9.1 ≈ 0.135832. By the

normalization fz(0) = fz(0) − 1 = 0, we easily observe that the corresponding
bound M in each of [14, Theorem 2.3], [3, Theorem 3] and Theorem 3.1 satisfies
the condition M ≥ π

4 . Thus, as demonstrated for example in Table 2, Theorem
3.1 improves result of Liu [14, Theorem 2.3] and hence, the result of Chen et al. [3,
Theorem 3].

Table 2. The left half columns refer to Theorem 3.1 and the right half columns
refer to Theorem 2.3 in [14]

M r0 = φ(8M/π) R0 = ψ(8M/π) M r2 = φ(4.55M) σ2 = ψ(4.55M)
1 0.22421 0.12629 1 0.13266 0.07092
2 0.11992 0.06367 2 0.07078 0.03663
3 0.08311 0.04328 3 0.04851 0.02483

It is well-known that f is an open map (i.e. it maps every open subset of D to
an open set in C) which is locally one-to-one in D except possibly at isolated points
where it behaves locally like analytic functions near zeros of derivatives. To consider
an open harmonic mapping f , we call f univalent or locally univalent in D if it is
one-to-one or locally one-to-one in D, respectively.
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Liu [14, Theorem 2.6] proved that for open harmonic mappings f of D normalized
by fz(0) = 1 and fz(0) = 0, f(D) contains a univalent disk of radius at least
R ≈ 0.027735 which is an improvement of earlier known results [3, Theorem 7]
and [11, Theorem 2.5]. Next we aim to obtain a similar result but for L(f) defined
by (1.2).

In our next result, we determine an estimate for the Bloch constant of L(f)
when f runs on the class of open harmonic mappings. It is worth pointing out that
(see [2, Corollary 1(3)]) the operator L(f) for biharmonic functions behaves much
like zf ′ for analytic functions, for example in the sense that for f univalent and
biharmonic, f is starlike in D if and only if Re (L(f)(z)/f(z)) ≥ 0 in D.

Theorem 3.2. Let f be an open harmonic mapping of D normalized by fz(0) = 1
and fz(0) = 0. Then L(f)(D) contains a univalent disk of radius at least

(3.4) R = max
0<r<1

ϕ(r)

where

ϕ(r) =
r√
2

1−
√

1− 1
1+Mr− 1

Mr

1 +
√

1− 1
1+Mr− 1

Mr

, Mr =
2(1 + r)
1− r

.

Moreover, L(f)(D) contains a univalent disk of radius at least R ≈ 0.0143328.

Proof. It is known that for any r ∈ (0, 1), f is Kr-quasiregular on Dr (cf. [16]),
where Kr = 1+r

1−r . This implies that

Λf

λf
=
|fz|+ |fz|
|fz| − |fz| ≤

1 + r

1− r
= Kr.

Let G(z) = r−1f(rz) for z ∈ D. Then there exists a point z0 ∈ D such that for
z ∈ D,

(1− |z|2)λG(z) ≤ (1− |z0|2)λG(z0) = M,

where M ≥ 1.
Let φ be a Möbius transformation of D onto itself with φ(0) = z0. Define F by

F (ξ) = G(φ(ξ))/M for ξ ∈ D.

Then, we see that

(1− |ξ|2)λF (ξ) =
(1− |φ(ξ)|2)λG(φ(ξ))

M
,

which gives λF (0) = 1 and for ξ ∈ D,

(1− |ξ|2)λF (ξ) ≤ 1.

Let P (w) =
√

2F (w/
√

2) for w ∈ D. Then P is also Kr-quasiregular. Moreover,
λP (0) = λF (0) = 1 and for w ∈ D,

ΛP (w) ≤ KrλP (w) = KrλF (w/
√

2) < 2Kr = Mr.

Finally, we let

T (ζ) = P (ζ)− P (0) =
∞∑

n=1

anζn +
∞∑

n=1

bnζ
n

for ζ ∈ D.
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Using Lemma 3.1, we have

|an|+ |bn| ≤ M2
r − 1

nMr
, n = 2, 3, . . . .

Now, to prove the univalence of L(T ), we adopt the standard procedure. For ζ1 6= ζ2

in Dρ (0 < ρ < 1), by Lemma 3.1, we have

|L(T )(ζ1)− L(T )(ζ2)| =
∣∣∣∣∣
∫

[ζ1,ζ2]

L(T )ζ dζ + L(T )ζ dζ

∣∣∣∣∣

≥
∣∣∣∣∣
∫

[ζ1,ζ2]

Tζ(0) dζ − Tζ(0) dζ

∣∣∣∣∣

−
∣∣∣∣∣
∫

[ζ1,ζ2]

ζTζζ(ζ) dζ − ζTζζ(ζ) dζ

∣∣∣∣∣

−
∣∣∣∣∣
∫

[ζ1,ζ2]

(Tζ(ζ)− Tζ(0)) dζ − (Tζ(ζ)− Tζ(0)) dζ

∣∣∣∣∣

≥ |ζ1 − ζ2|
{

1− M2
r − 1
Mr

∞∑
n=2

ρn−1

− M2
r − 1
Mr

∞∑
n=2

(n− 1)ρn−1

}

≥ |ζ1 − ζ2|
[
1− M2

r − 1
Mr

ρ

1− ρ
− M2

r − 1
Mr

ρ

(1− ρ)2

]
.

Elementary calculations show that

ρ1(r) = 1−
√

1− 1
1 + Mr − 1

Mr

is the unique root of the equation

1− M2
r − 1
Mr

ρ

1− ρ
− M2

r − 1
Mr

ρ

(1− ρ)2
= 0

and hence, L(T ) is univalent in Dρ1(r).
Since for any ζ with |ζ| = ρ1(r),

|L(T )(ζ)| = |ζTζ − ζTζ |
≥ |ζTζ(0)− ζTζ(0)| − |ζ(Tζ − Tζ(0))− ζ(Tζ − Tζ(0))|

≥ ρ1(r)

(
1−

∞∑
n=2

n(|an|+ |bn|)ρ1(r)n−1

)

≥ ρ1(r)
(

1− M2
r − 1
Mr

ρ1(r)
1− ρ1(r)

)
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=
1−

√
1− 1

1+Mr− 1
Mr

1 +
√

1− 1
1+Mr− 1

Mr

,

we see that the existence of R in (3.4) follows from L(T )(0) = 0 and

lim
r→0+

r√
2

1−
√

1− 1
1+Mr− 1

Mr

1 +
√

1− 1
1+Mr− 1

Mr

= lim
r→1−

r√
2

1−
√

1− 1
1+Mr− 1

Mr

1 +
√

1− 1
1+Mr− 1

Mr

= 0.

We see that R = max0<r<1 ϕ(r) = ϕ(r0) ≈ 0.0143328, where r0 ≈ 0.41796 (see
Figure 1).

Figure 1. Graph of ϕ(r) on (0, 1)
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