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Abstract. Let R be a commutative ring with non-zero identity. The cozero-divisor graph
of R, denoted by Γ′(R), is a graph with vertices in W ∗(R), which is the set of all non-zero
and non-unit elements of R, and two distinct vertices a and b in W ∗(R) are adjacent if and
only if a /∈ bR and b /∈ aR. In this paper, we characterize all commutative rings whose
cozero-divisor graphs are forest, star, double-star or unicyclic.
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1. Introduction

Let R be a commutative ring with non-zero identity and let Z(R) be the set of all zero-
divisors of R. Set Z∗(R) := Z(R) \ {0}. The zero-divisor graph of R, denoted by Γ(R), is
an undirected graph whose vertices are elements of Z∗(R) with two distinct vertices a and b
are adjacent if and only if ab = 0.

The concept of the zero-divisor graph of a commutative ring was introduced by Beck
[4], but this work was mostly concerned with coloring of rings. The above definition first
appeared in Anderson and Livingston [3], which contained several fundamental results con-
cerning Γ(R). The zero-divisor graph of commutative rings has been studied extensively by
Anderson, Frazier, Lauve and Livingston (cf. [2] and [3]).

Let W (R) be the set of all non-unit elements of R and W ∗(R) := W (R) \ {0}. For an
arbitrary commutative ring R, the cozero-divisor graph Γ′(R) of R was introduced in [1],
which is a dual of the zero-divisor graph Γ(R) “in some sense”. The vertex-set of Γ′(R) is
W ∗(R) and for two distinct vertices a and b in W ∗(R), a is adjacent to b if and only if a /∈ bR
and b /∈ aR, where cR is the ideal generated by the element c in R. Some basic results on
the structure of this graph and the relations between the graphs Γ(R) and Γ′(R) were studied
in [1].
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In this paper, we study some more properties of the cozero-divisor graph Γ′(R), where R
is a commutative ring. In section two, we characterize all commutative rings whose cozero-
divisor graphs are double-star, unicyclic, star or forest. On the other hand, for a semigroup
H and a subset S of H, the Cayley graph Cay(H,S) of H relative to S is defined as the graph
with vertex-set H and edge-set E(H,S) consisting of those ordered pairs (x,y) such that
sx = y for some s ∈ S (cf [7]). By the ordered pair (x,y), we mean that x−→ y. So x−→ y
if sx = y, for some s ∈ S. Moreover, if we assume that x is adjacent to y in Cay(H,S) if
and only if (x,y) or (y,x) is an element of the edge-set E(H,S), then we have the undirected
Cayley graph Cay(H,S). Therefore, in an undirected Cayley graph Cay(H,S), x is adjacent
to y if and only if x −→ y or y −→ x. Now, consider the complement of the cozero-divisor
graph Γ′(R), denoted by Γ′(R). For any two distinct vertices a and b in W ∗(R), a is adjacent
to b if and only if a ∈ bR or b ∈ aR. Thus the graph Γ′(R) and the undirected graph Cayley
graph Cay(W ∗(R),R\{1}) coincide. In section three, we study the graph Γ′(R).

Throughout the paper, R is a commutative ring with non-zero identity. We denote the
set of maximal ideals and the Jacobson radical of R by max(R) and J(R), respectively.
In a graph G, the distance between two distinct vertices a and b, denoted by dG(a,b), is
the length of a shortest path connecting a and b, if such a path exists; otherwise, we set
dG(a,b) := ∞. The diameter of a graph G is diam(G) = sup{dG(a,b) : a and b are distinct
vertices of G}. The girth of G, denoted by g(G), is the length of a shortest cycle in G, if G
contains a cycle; otherwise, g(G) := ∞. Also, V (G) and E(G) are the sets of vertices and
edges of G, respectively and for two distinct vertices a and b in V (G), the notation a− b
means that a and b are adjacent. A graph G is said to be connected if there exists a path
between any two distinct vertices, and it is complete if each pair of distinct vertices is joined
by an edge. For a positive integer n, we use Kn to denote the complete graph with n vertices.
Also, we say that G is totally disconnected if no two vertices of G are adjacent. For a
positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets
so that no edge has both ends in any one subset. A complete r-partite graph is one in which
each vertex is joined to every vertex that is not in the same subset. The complete bipartite
graph (2-partite graph) with part sizes m and n is denoted by Km,n. Also, the valency of a
vertex a is the number of edges of the graph G incident with a. The complement G of G is
the graph with the same vertex-set as G, where two distinct vertices are adjacent whenever
they are non-adjacent in G.

2. On the cozero-divisor graphs

Recall that if R is finite, then each element of R is either a unit or a zero-divisor and so
W (R) = Z(R). Also, by [6, Theorem 1], |R| 6 |Z(R)|2 when |Z(R)| > 2. Moreover, we
recall that the union of graphs G1 and G2, which is denoted by G1∪G2, where G1 and G2 are
two vertex-disjoint graphs, is a graph with V (G1∪G2) = V (G1)∪V (G2) and E(G1∪G2) =
E(G1)∪E(G2). Also a graph on n vertices such that n−1 of the vertices have valency one,
all of which are adjacent only to the remaining vertex a, is called a star graph with center a.
In fact, every star graph with n vertices is isomorphic to K1,n−1, the complete bipartite graph
with part sizes 1 and n−1. We consider the empty graph as a star graph. Also, a double-star
graph is a union of two star graphs with centers a1 and a2 such that a1 is adjacent to a2. A
unicyclic graph is a connected graph with a unique cycle, or we can regard a unicycle graph
as a cycle attached with each vertex a (rooted) tree.
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In the following theorem we study the case that Γ′(R) is a forest.

Theorem 2.1. Let R be a non-local finite ring.
(i) If Γ′(R) is a forest (contains no cycles), then R∼= Z2×F, where F is a field.

(ii) If R∼= Z2×F, where F is a field, then Γ′(R) is a star graph.

Proof. (i) Suppose that Γ′(R) is a forest. Since R is finite, there exists a positive integer n
such that R∼= R1×·· ·×Rn, where Ri is a local ring with maximal ideal mi, for i = 1, . . . ,n.
Whenever n > 3, since |max(R)| > 3, it is easy to see that Γ′(R) contains a cycle and so
it is not a forest. Moreover, since R is non-local, n > 2. Hence we have that n = 2 and so
R ∼= R1×R2. Now, suppose that R2 is not a field. Then we have the cycle (0,1)− (1,0)−
(0,1+r)−(1,r)−(0,1), where r ∈W ∗(R2) and so Γ′(R) is not a forest which is impossible.
Hence R2 is a field. Similarly, R1 is a field. If neither R1 nor R2 is Z2, then for any arbitrary
elements r ∈R1\{0,1} and s∈R2\{0,1}, we have the cycle (0,1)−(1,0)−(0,s)−(r,0)−
(0,1), which is again impossible. This implies that R∼= Z2×F, where F is a field.

(ii) If R ∼= Z2×F, where F is a field, then one can easily see that Γ′(R) is a star graph
with center (1,0).

Theorem 2.2. Let R be a finite ring.
(i) If R is non-local, then Γ′(R) is a double-star graph if and only if R∼= Z2×F, where
F is a field.

(ii) If R is local with principal maximal ideal m, then Γ′(R) is a double-star graph if
and only if R is either Z4,Z2[X ]/(x2Z2[X ]) or F, where F is a field.

(iii) If R is local with non-principal maximal ideal m and Γ′(R) is a double-star graph,
then the minimal generating set of m has two elements.

Proof. (i) Since every double-star graph is a forest and also every star graph is double-star,
the result immediately follows from Theorem 2.1.

(ii) By [1, Theorem 2.7], the graph Γ′(R) is totally disconnected and so, in this situation,
Γ′(R) is a double-star graph if and only if |m| 6 2. If |m| = 1, then R is a field. Other-
wise, |m| = 2. Now, since |R| 6 |Z(R)|2, one can conclude that R is isomorphic to Z4 or
Z2[X ]/(x2Z2[X ]).

(iii) Suppose that m is not principal and that the graph Γ′(R) is a double-star graph. Also,
assume to the contrary that {r1,r2,r3} is a subset of a minimal generating set of m. Then
we have the triangle r1− r2− r3− r1, which is the required contradiction.

The following corollary is an immediate consequence of Theorems 2.1 and 2.2.

Corollary 2.1. Let R be a finite ring. If the graph Γ′(R) is a double-star graph, then either
R is local or R∼= Z2×F, where F is a field.

Recall that a connected forest is called a tree. By slight modifications in the proofs of
Theorems 2.1 and 2.2 we have the following consequences.

Consequences 2.1. Let R be a finite ring.
(a) If R is non-local, then the following conditions are equivalent.

(i) Γ′(R) is a forest.
(ii) Γ′(R) is a star graph.

(iii) Γ′(R) is a double-star graph.
(iv) Γ′(R) is a tree.
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(v) R∼= Z2×F, where F is a field.
(b) If R is local with principal maximal ideal, then Γ′(R) is a forest and the following

conditions are equivalent.
(i) Γ′(R) is a star graph.

(ii) Γ′(R) is a double-star graph.
(iii) R is a field or R is isomorphic to Z4 or Z2[X ]/(x2Z2[X ]).
(iv) Γ′(R) is a tree.

The following Lemma is needed in the sequel.

Lemma 2.1. Suppose that Γ′(R) is a unicyclic graph. Then |max(R)|6 3. In particular, if
max(R) = {m1,m2,m3}, then |mi \

⋃
i6= j m j|= 1, for all i = 1,2,3.

Proof. Assume to the contrary that, for i = 1, . . . ,4, mi is a maximal ideal of R. Let ai ∈
mi \

⋃
i6= j m j, where 1 6 i 6 4. Then the vertices a1,a2,a3,a4 form a complete subgraph of

Γ′(R). So Γ′(R) is not a unicyclic graph, which is a contradiction.
Now, suppose that max(R) = {m1,m2,m3}. Let ai ∈mi \

⋃
i6= j m j, for i = 1,2,3. Assume

to the contrary that for some 1 6 i 6 3, there is an element bi ∈ mi \
⋃

i 6= j m j with ai 6= bi.
Without loss of generality, we may assume that i = 1. Now, we have the cycles

a1−a2−a3−a1 and b1−a2−a3−b1.

This means that Γ′(R) is not a unicyclic graph which is the required contradiction.
In the next theorem, we characterize the rings whose cozero-divisor graphs are unicyclic.

Theorem 2.3. Let R be a non-local finite ring. Then Γ′(R) is a unicyclic graph if and only
if R is one of the rings Z2×Z4, Z2×Z2[X ]/(x2Z2[X ]) or Z3×Z3.

Proof. Clearly, if R is one of the rings Z2×Z4 or Z3×Z3, then the cozero-divisor graph
Γ′(R) is a unicyclic graph. Conversely, suppose that Γ′(R) is a unicyclic graph. Since R is
non-local and finite, there exists a positive integer n > 2 such that R∼= R1×·· ·×Rn, where Ri
is a local ring with maximal ideal mi, for i = 1, . . . ,n. In view of Lemma 2.1, we may assume
that n 6 3. Now, suppose that n = 3. We show that R∼=Z2×Z2×Z2. To this end, assume to
the contrary that there exists 1 6 i 6 3 such that Ri �Z2. Without loss of generality, we may
assume that R2�Z2. Put M1 := m1×R2×R3, M2 := R1×m2×R3 and M3 := R1×R2×m3.
Now, since R2 � Z2, there exists an element a in R2 such that a or 1 + a is a unit in R2.
So one can assume that a is a unit. Then (0,1,1),(0,a,1) ∈ M1 \ (M2 ∪M3), which is
impossible by Lemma 2.1. But we have the cycles (0,1,0)− (0,0,1)− (1,0,0)− (0,1,0)
and (1,0,1)− (0,1,1)− (1,1,0)− (1,0,1) in Γ′(Z2×Z2×Z2), and so the cozero-divisor
graph of the ring Z2 ×Z2 ×Z2 is not unicyclic. Since R is non-local, we may assume
that n = 2 and R ∼= R1 × R2. Now, suppose that one of the rings R1 or R2 has at least
four elements. So without loss of generality we may assume that |R1|> 4. If R2 �Z2, there
exists a cycle (0,1)−(1,0)−(0,b)−(a,0)−(0,1), where a∈R1\{0,1} and b∈R2\{0,1}.
Also, there exists c in R1 \ {0,1,a} such that the vertex (c,0) is adjacent to both vertices
(0,1) and (0,b). This means that Γ′(R) is not a unicyclic graph. Hence, in this situation,
we may assume that R2 ∼= Z2. Now, if R1 is a field, then Γ′(R) is a star graph and so it is
not unicyclic. If R is isomorphic to Z4 or Z2[X ]/(x2Z2[X ]), then we are done. Otherwise,
|R1|> 4 and R1 is not a field. Thus we have the cycle (0,1)− (1,0)− (a,1)− (b,0)− (0,1),
where a ∈W ∗(R1) and b = 1 + a ∈U(R1). Also, suppose that c ∈ R1 \{0,1,a,b}. Then c
or 1 + c is a unit in R1. Note that 1 + c ∈ R1 \ {0,1,a,b}. So, we may assume that c is a
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unit. Moreover, the vertex (c,0) is adjacent to the vertices (0,1) and (a,1) in Γ′(R) which
is again impossible. Now, the only remaining case is that the rings R1 and R2 have less than
four elements and so R is isomorphic to one of the rings Z2×Z2, Z2×Z3 or Z3×Z3. But,
Γ′(Z2×Z2) and Γ′(Z2×Z3) are star graphs. Therefore, we have that R∼= Z3×Z3.

A refinement of a graph H is a graph G such that the vertex sets of G and H are the same
and every edge in H is an edge in G.

Proposition 2.1. The graph Γ′(R) is the refinement of a star graph if and only if there
exists an element a in W ∗(R) such that |aR|= 2 and, for all b ∈W ∗(R) with a 6= b, a /∈ bR.
In particular, if there exists a maximal ideal m of R such that |m| = 2, then Γ′(R) is the
refinement of a star graph.

Proof. First suppose that Γ′(R) is the refinement of a star graph. So there is a vertex a
which is adjacent to all the other vertices. This means that |aR| = 2 and a /∈ bR, for all
b ∈W ∗(R)\{a}. Conversely, if there exists an element a in W ∗(R) such that |aR| = 2 and
for all b ∈W ∗(R) with a 6= b, a /∈ bR, then clearly the vertex a is adjacent to all vertices in
W ∗(R)\{a}. This implies that Γ′(R) is the refinement of a star graph.

We recall that a cycle graph is a graph which consists of a single cycle, and the number
of edges in a cycle is called its length.

Lemma 2.2. If Γ′(R) is a union of cycle graphs, then |max(R)| 6 3. In particular, if
max(R) = {m1,m2,m3}, then |mi \

⋃
j 6=i m j|= 1, for all i = 1,2,3.

Proof. If |max(R)|> 4, then Γ′(R) contains a subgraph isomorphic to K4 and so it can’t be
a union of cycle graphs. Hence we have that |max(R)| < 4. Now, suppose that max(R) =
{m1,m2,m3} and mi is an arbitrary element in mi \

⋃
j 6=i m j, where 1 6 i 6 3. Also, assume

to the contrary that there exists m′i ∈ mi \
⋃

j 6=i m j with mi 6= m′i, for some integer i with
1 6 i 6 3. Without loss of generality, we may assume that i = 1. Thus, we have the cycles
m1−m2−m3−m1 and m′1−m2−m3−m′1 which is impossible.

Theorem 2.4. Let R be a non-local finite ring. Then Γ′(R) is a union of cycle graphs if and
only if R∼= Z3×Z3.

Proof. If R ∼= Z3×Z3, then Γ′(R) is isomorphic to C4, a cycle graph of length four. Con-
versely, assume that Γ′(R) is the union of cycle graphs. Since R is finite, there exists a
positive integer n such that R ∼= R1×·· ·×Rn, where Ri is a local ring with maximal ideal
mi, for i = 1, . . . ,n. Since R is non-local, in light of Lemma 2.2, n = 2 and so R∼= R1×R2.
Now, suppose that one of the rings R1 or R2 has more than three elements, say R1. Then,
for r,s ∈ R1 \{0,1}, the vertex (0,1) is adjacent to the vertices (1,0), (r,0) and (s,0). This
implies that Γ′(R) is not a union of cycle graphs. Therefore, |R1|, |R2|6 3. This means that
R is isomorphic to one of the following rings:

Z2×Z2, Z2×Z3 or Z3×Z3.

On the other hand, in view of part (a) in Consequences 2.1, the cozero-divisor graph of the
rings Z2×Z2 and Z2×Z3 are star graphs. Hence R is isomorphic to Z3×Z3 as required.

Theorem 2.5. Suppose that R is a Noetherian ring. Then Γ′(R) is totally disconnected if
and only if R is a local ring with principal maximal ideal.
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Proof. If R is a local ring with principal maximal ideal, then by [1, Theorem 2.7], Γ′(R)
is totally disconnected. Conversely, assume that Γ′(R) is totally disconnected. It is easy to
see that R is local. Let m be the maximal ideal of R. Assume to the contrary that m is not
principal and that aR is a maximal principal ideal in m. Since m is not principal, there exists
an element b in m such that b /∈ aR. This implies that the vertices a and b are adjacent,
which is a contradiction. Therefore m is a principal ideal.

In the rest of this section, we study the subgraph Γ′(R)\J(R) of the cozero-divisor graph
of Γ′(R). Recall that an Eulerian graph is a graph which has a path that visits each edge
exactly once which starts and ends on the same vertex. By [5, Theorem 4.1], a connected
non-empty graph is Eulerian if and only if the valency of each vertex is even.

Theorem 2.6. Suppose that R contains a principal maximal ideal m such that |W (R)\m| is
an odd number. Then Γ′(R)\ J(R) is not Eulerian.

Proof. Assume that m = aR is a principal maximal ideal of R. Hence, for all b ∈ m \ {a},
the vertices a and b are not adjacent. Also, for all c ∈W (R)\m, since a /∈ cR, the vertices a
and c are adjacent. This means that the valency of the vertex a is equal to |W (R)\m|, which
is an odd number. Hence, by [5, Theorem 4.1], Γ′(R)\J(R) is not an Eulerian graph.

Example 2.1. The ringZ10 satisfies the condition of Theorem 2.6 and so the graph Γ′(Z10)\
J(Z10) is not an Eulerian graph.

Theorem 2.7. Assume that R is a non-local ring. Then the following conditions are equiv-
alent:

(i) Γ′(R)\ J(R) is complete bipartite.
(ii) Γ′(R)\ J(R) is bipartite.

(iii) Γ′(R)\ J(R) contains no triangles.

Proof. The implications (i)=⇒(ii) and (ii)=⇒(iii) are clear.
(iii)=⇒ (ii) Since Γ′(R) \ J(R) has no triangles and R is non-local, it has exactly two

maximal ideals, say m1 and m2. Suppose to the contrary that the graph Γ′(R)\ J(R) is not
bipartite. So it contains a cycle of odd length. Therefore, there are vertices a and b in m1 (or
m2) which are adjacent. This implies that every element in m2 \ J(R) (or m1 \ J(R)) forms a
triangle with vertices a and b which is a contradiction.

(ii)=⇒(i) If Γ′(R)\ J(R) is bipartite, then in view of [1, Proposition 2.13], we have that
max(R) = {m1,m2}. Also, it is easy to see that V1 = m1 \m2 and V2 = m2 \m1 are the parts
of the bipartite graph Γ′(R) \ J(R). Moreover, every vertex in V1 is adjacent to all vertices
in V2 and also every vertex in V2 is adjacent to all vertices in V1. Hence Γ′(R) \ J(R) is a
complete bipartite graph.

Recall that a graph is Hamiltonian if it contains a cycle which visits each vertex exactly
once and also returns to the starting vertex.

Theorem 2.8. Let R be a finite ring with two maximal ideals m1 and m2 such that |m1| =
|m2|. Then Γ′(R)\ J(R) is Hamiltonian.

Proof. For i = 1,2, put mi \ J(R) := {ai1, . . . ,ait}, where t := |m1 \ J(R)|. Then it is easy to
see that a11−a21−·· ·−a1t −a2t −a11 is a Hamiltonian cycle in Γ′(R)\ J(R).

We close this section with the following observation that compares the chromatic and
clique numbers of the graph Γ′(R)\J(R). To this end, we recall some basic definitions. The
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chromatic number of a graph G, denoted by χ(G), is the minimal number of colors which
can be assigned to the vertices of G in such a way that every two adjacent vertices have
different colors. Also, a clique of a graph is a complete subgraph and the number of vertices
in a largest clique of G, denoted by ω(G), is called the clique number of G. Obviously
χ(G) > ω(G).

Theorem 2.9. Assume that R is non-local. Then χ(Γ′(R)\J(R)) = 2 if and only if ω(Γ′(R)\
J(R)) = 2.

Proof. Clearly, ω(Γ′(R) \ J(R)) 6 χ(Γ′(R) \ J(R)). Now, if χ(Γ′(R) \ J(R)) = 2, then,
since R is non-local, we have that ω(Γ′(R)\ J(R)) = 2. Conversely, assume that ω(Γ′(R)\
J(R)) = 2. Thus |max(R)|= 2. If χ(Γ′(R)\J(R)) > 2, then Γ′(R)\J(R) is not bipartite and
so by Theorem 2.7, it contains some triangles. This means that ω(Γ′(R)\ J(R)) > 3 which
is impossible. Thus, χ(Γ′(R)\ J(R)) = 2.

3. Complement of the cozero-divisor graph

As we mentioned in the introduction, the complement of the cozero-divisor graph Γ′(R), is
the Cayley graph Cay(W ∗(R),R\{1}). In our first result we provide a connection between
two graphs Γ(R) and Γ′(R).

Proposition 3.1. Let R be a finite ring such that Γ(R) is not a refinement of a complete
r-partite graph, where r is a positive integer. Then Γ′(R) is connected.

Proof. Assume to the contrary that Γ′(R) is not connected and let C1, . . . ,Cr be its connected
components. Hence, for 1 6 i, j 6 r with i 6= j and for every two vertices a ∈Ci and b ∈C j,
we have that ab = 0. This means that Γ(R) has a complete r-partite graph as a subgraph.
In other words, Γ(R) is a refinement of a complete r-partite graph, which is the required
contradiction.

The following corollary is an immediate consequence of Proposition 3.1.

Corollary 3.1. If Γ′(R) is disconnected, then Γ(R) is a refinement of a complete r-partite
graph, where r is the number of connected components of Γ′(R).

Proposition 3.2. Γ′(R) is complete if and only if the set of all principal ideals of R is totally
ordered by inclusion.

Proof. The graph Γ′(R) is complete if and only if for every distinct vertices a and b, a is
adjacent to b. This means that aR ⊆ bR or bR ⊆ aR. So it is equivalent to the set of all
principal ideals of R is totally ordered by inclusion.

The following corollary is an immediate consequence of Proposition 3.2 in conjunction
with [1, Theorem 2.7].

Corollary 3.2. Let R be a Noetherian local ring such that its maximal ideal is principal.
Then Γ′(R) is complete.

Proposition 3.3. Let R be a Noetherian ring. If Γ′(R) has an infinite clique, then R has a
principal ideal with infinite order which contains all vertices of the clique.

Proof. Let K be an infinite clique in Γ′(R) and a1 be a vertex of K. Assume to the contrary
that there is no principal ideal in R that contains all vertices of K. Since the principal ideal
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a1R doesn’t contain all vertices of K, there exists a vertex a2 in K such that a2 /∈ a1R. As
a1 and a2 are adjacent and a2 /∈ a1R, we have a1 ∈ a2R. Therefore, a1R$ a2R. Again since
the principal ideal a2R doesn’t contain all vertices of K, there exists a vertex a3 in K such
that a3 /∈ a2R. Also, a2 and a3 are adjacent. This implies that a2 ∈ a3R and so a2R $ a3R.
By continuing this method, we find an increasing sequence of principal ideals of R which
doesn’t stop and this is a contradiction.

Assume that R1 and R2 are two commutative rings with non-zero identities. Note that
Γ′(R1×R2) is not connected, in general. For example, Γ′(Z2×Z2) is disconnected. In the
following theorem we study the girth of Γ′(R1×R2).

Theorem 3.1. g(Γ′(R1×R2)) = 3,6 or ∞.

Proof. Set R := R1 × R2. If |U(R1)| > 3, then (1,0)− (u,0)− (v,0)− (1,0) is a cycle
in Γ′(R), where u and v are non-identity distinct elements in U(R1). So, g(Γ′(R)) = 3.
Similarly if |U(R2)|> 3, then g(Γ′(R)) = 3. Hence, |U(R1)|, |U(R2)|6 2. Now assume that
|R1|> 4 or |R2|> 4. Without loss of generality, suppose that |R1|> 4. If |U(R1)|= 2, then
(1,0)−(u,0)−(z,0)−(1,0) is a cycle in Γ′(R), where u is a non-identity element in U(R1)
and z ∈W ∗(R1). So g(Γ′(R)) = 3. If |U(R1)| = 1 and there is some adjacency in Γ′(R1),
then one can consider the cycle (1,0)− (a,0)− (b,0)− (1,0), where a and b are adjacent in
Γ′(R1) and so g(Γ′(R)) = 3. Otherwise, there is no adjacency in Γ′(R1). Now, if R2 � Z2,
then (a,0)−(a,1)−(a,b)−(a,0), where a∈W ∗(R1) and b∈ R2 \{0,1}, is a cycle in Γ′(R)
and so g(Γ′(R)) = 3. If R2 ∼= Z2, then (0,1)− (a,1)− (a,0)− (1,0)− (b,0)− (b,1)− (0,1)
is a cycle of length six, where a,b ∈W ∗(R1) and in this case, one can easily check that all
cycles have length six. Therefore in this situation, we have g(Γ′(R)) = 6. Now, it is enough
to consider the case |R1|, |R2| 6 3. Then, in this situation, Γ′(R1×R2) has no cycles and
hence g(Γ′(R)) = ∞.

If R is a commutative ring with a non-trivial idempotent, then R = R1×R2, for some
commutative rings R1 and R2. Now, the following consequences follow from the proof of
Theorem 3.1.

Consequences 3.1.
(i) Let R∼= R1×R2, where neither R1 nor R2 is Z2. Then

g(Γ′(R1×R2)) = 3 or ∞.

(ii) Let R∼= R1×R2. Then g(Γ′(R1×R2)) = ∞ if and only if R is isomorphic to one of
the following rings:

Z2×Z2,Z2×Z3 or Z3×Z3.

(iii) Assume that R ∼= R1×R2. If |U(R1)| > 1 and R1 � Z3, then g(Γ′(R1×R2)) = 3.
Similarly, if |U(R2)|> 1 and R2 � Z3, then g(Γ′(R1×R2)) = 3.

(iv) Let R be a ring such that it has a non-trivial idempotent element. Then g(Γ′(R)) =
3,6 or ∞.

We need the following lemma in the sequel.

Lemma 3.1. Suppose that R1 and R2 are non-trivial commutative rings with identities. Then
Γ′(R1×R2) contains a subgraph isomorphic to Kt , where t is the number of unit elements
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of Ri, for some i = 1,2. Moreover, if |W (R1)|> 1 (or |W (R2)|> 1), then Kt+1 is isomorphic
to a subgraph of Γ′(R1×R2).

Proof. Suppose that U(R1) = {u1, . . . ,ut}. Then the vertices (u1,0), . . . ,(ut ,0) form a com-
plete subgraph of Γ′(R1×R2) which is isomorphic to Kt . Now, if there exists an element w
in W ∗(R1), then the vertices (u1,0), . . . ,(ut ,0),(w,0) form the complete graph Kt+1.

In the next proposition, which immediately follows from Lemma 3.1, we study the clique
number of the graph Γ′(R1×R2).

Proposition 3.4.
(i) If |W (R1)|= 1 = |W (R2)|, then

ω(Γ′(R1×R2) > max{|U(R1)|, |U(R2)|}.
(ii) If |W (R1)|> 1 and |W (R2)|> 1, then

ω(Γ′(R1×R2) > max{|U(R1)|, |U(R2)|}+1.

(iii) If |W (R1)|> 1 and |W (R2)|= 1, then

ω(Γ′(R1×R2) > max{|U(R1)|+1, |U(R2)|}.
A similar result holds in the case that |W (R1)|= 1 and |W (R2)|> 1.

We end this section by investigating the planarity of Γ′(R1×R2). Recall that a graph is
said to be planar if it can be drawn in the plane, so that its edges intersect only at their ends.
Also a subdivision of a graph is a graph obtained from it by replacing edges with pairwise
internally-disjoint paths. A remarkable simple characterization of the planar graphs was
given by Kuratowski in 1930. Kuratowski’s Theorem says that a graph is planar if and only
if it contains no subdivision of K5 or K3,3 (cf. [5, p. 153]).

Proposition 3.5. Γ′(R1×R2) is not planar if one of the following conditions holds:
(i) |U(R1)|> 5,

(ii) |U(R1)|> 4 and |W (R1)|> 1.

Proof. Assume that (i) or (ii) holds. Then by Lemma 3.1, K5 is in the structure of Γ′(R1×R2)
and so by Kuratowski’s Theorem, Γ′(R1×R2) is not planar.

Corollary 3.3. Assume that |U(R1)|= 4 and Γ′(R1×R2) is planar. Then R1 ∼= Z5.
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