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Abstract. Let R be a commutative ring with non-zero identity. The cozero-divisor graph
of R, denoted by I''(R), is a graph with vertices in W*(R), which is the set of all non-zero
and non-unit elements of R, and two distinct vertices a and b in W*(R) are adjacent if and
only if @ ¢ bR and b ¢ aR. In this paper, we characterize all commutative rings whose
cozero-divisor graphs are forest, star, double-star or unicyclic.
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1. Introduction

Let R be a commutative ring with non-zero identity and let Z(R) be the set of all zero-
divisors of R. Set Z*(R) := Z(R) \ {0}. The zero-divisor graph of R, denoted by I'(R), is
an undirected graph whose vertices are elements of Z*(R) with two distinct vertices a and b
are adjacent if and only if ab = 0.

The concept of the zero-divisor graph of a commutative ring was introduced by Beck
[4], but this work was mostly concerned with coloring of rings. The above definition first
appeared in Anderson and Livingston [3], which contained several fundamental results con-
cerning I'(R). The zero-divisor graph of commutative rings has been studied extensively by
Anderson, Frazier, Lauve and Livingston (cf. [2] and [3]).

Let W(R) be the set of all non-unit elements of R and W*(R) := W(R) \ {0}. For an
arbitrary commutative ring R, the cozero-divisor graph I"(R) of R was introduced in [1],
which is a dual of the zero-divisor graph I'(R) “in some sense”. The vertex-set of I"(R) is
W*(R) and for two distinct vertices a and b in W*(R), a is adjacent to b if and only if a ¢ bR
and b ¢ aR, where cR is the ideal generated by the element ¢ in R. Some basic results on
the structure of this graph and the relations between the graphs I'(R) and I''(R) were studied
in [1].
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In this paper, we study some more properties of the cozero-divisor graph I (R), where R
is a commutative ring. In section two, we characterize all commutative rings whose cozero-
divisor graphs are double-star, unicyclic, star or forest. On the other hand, for a semigroup
H and a subset S of H, the Cayley graph Cay(H,S) of H relative to S is defined as the graph
with vertex-set H and edge-set E(H,S) consisting of those ordered pairs (x,y) such that
sx =y for some s € S (cf [7]). By the ordered pair (x,y), we mean that x — y. Sox — y
if sx =y, for some s € S. Moreover, if we assume that x is adjacent to y in Cay(H,S) if
and only if (x,y) or (y,x) is an element of the edge-set E(H,S), then we have the undirected
Cayley graph Cay(H,S). Therefore, in an undirected Cayley graph Cay(H,S), x is adjacent
to y if and only if x — y or y — x. Now, consider the complement of the cozero-divisor
graph I (R), denoted by I”(R). For any two distinct vertices @ and b in W*(R), a is adjacent
to b if and only if @ € bR or b € aR. Thus the graph I (R) and the undirected graph Cayley
graph Cay(W*(R),R\ {1}) coincide. In section three, we study the graph I'"'(R).

Throughout the paper, R is a commutative ring with non-zero identity. We denote the
set of maximal ideals and the Jacobson radical of R by max(R) and J(R), respectively.
In a graph G, the distance between two distinct vertices a and b, denoted by dg(a,b), is
the length of a shortest path connecting a and b, if such a path exists; otherwise, we set
dg(a,b) := oo. The diameter of a graph G is diam(G) = sup{dg(a,b) : a and b are distinct
vertices of G}. The girth of G, denoted by g(G), is the length of a shortest cycle in G, if G
contains a cycle; otherwise, g(G) := oo. Also, V(G) and E(G) are the sets of vertices and
edges of G, respectively and for two distinct vertices a and b in V(G), the notation a — b
means that a and b are adjacent. A graph G is said to be connected if there exists a path
between any two distinct vertices, and it is complete if each pair of distinct vertices is joined
by an edge. For a positive integer n, we use K, to denote the complete graph with n vertices.
Also, we say that G is totally disconnected if no two vertices of G are adjacent. For a
positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets
so that no edge has both ends in any one subset. A complete r-partite graph is one in which
each vertex is joined to every vertex that is not in the same subset. The complete bipartite
graph (2-partite graph) with part sizes m and n is denoted by K,, ,. Also, the valency of a
vertex a is the number of edges of the graph G incident with a. The complement G of G is
the graph with the same vertex-set as G, where two distinct vertices are adjacent whenever
they are non-adjacent in G.

2. On the cozero-divisor graphs

Recall that if R is finite, then each element of R is either a unit or a zero-divisor and so
W(R) = Z(R). Also, by [6, Theorem 1], |R| < |Z(R)|* when |Z(R)| > 2. Moreover, we
recall that the union of graphs G and G, which is denoted by G1 U G,, where G| and G, are
two vertex-disjoint graphs, is a graph with V(G; UG,) =V (G1)UV(G,) and E(GUG;) =
E(G1)UE(G3). Also a graph on n vertices such that n — 1 of the vertices have valency one,
all of which are adjacent only to the remaining vertex a, is called a star graph with center a.
In fact, every star graph with n vertices is isomorphic to K7 ,—1, the complete bipartite graph
with part sizes 1 and n — 1. We consider the empty graph as a star graph. Also, a double-star
graph is a union of two star graphs with centers a; and a, such that a; is adjacent to ap. A
unicyclic graph is a connected graph with a unique cycle, or we can regard a unicycle graph
as a cycle attached with each vertex a (rooted) tree.
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In the following theorem we study the case that I"(R) is a forest.

Theorem 2.1. Let R be a non-local finite ring.

(i) IfT'(R) is a forest (contains no cycles), then R = Zy x F, where F is a field.
(i) If R =27y x T, where F is a field, then T’ (R) is a star graph.

Proof. (i) Suppose that I”(R) is a forest. Since R is finite, there exists a positive integer n
such that R = Ry X --- X R, where R; is a local ring with maximal ideal m;, fori=1,...,n.
Whenever n > 3, since |max(R)| > 3, it is easy to see that ["(R) contains a cycle and so
it is not a forest. Moreover, since R is non-local, n > 2. Hence we have that » = 2 and so
R = R| X Ry. Now, suppose that R; is not a field. Then we have the cycle (0,1) — (1,0) —
(0,14r)—(1,r)—(0,1), where r € W*(R5) and so I"'(R) is not a forest which is impossible.
Hence R; is a field. Similarly, R; is a field. If neither Ry nor R, is Z,, then for any arbitrary
elements r € R; \ {0, 1} and s € Ry \ {0, 1}, we have the cycle (0,1) — (1,0) — (0,s) — (r,0) —
(0, 1), which is again impossible. This implies that R = Z, x F, where F is a field.

(i) If R = Z, x IF, where F is a field, then one can easily see that ['(R) is a star graph
with center (1,0). i

Theorem 2.2. Let R be a finite ring.
() If R is non-local, then T"(R) is a double-star graph if and only if R = 7, x F, where
F is a field.
(ii) If R is local with principal maximal ideal w, then T (R) is a double-star graph if
and only if R is either Z4,7[X]/ (x*Z2[X]) or F, where F is a field.
(iil) If R is local with non-principal maximal ideal m and I (R) is a double-star graph,
then the minimal generating set of m has two elements.

Proof. (i) Since every double-star graph is a forest and also every star graph is double-star,
the result immediately follows from Theorem 2.1.

(i) By [1, Theorem 2.7], the graph I"'(R) is totally disconnected and so, in this situation,
I'(R) is a double-star graph if and only if |m| < 2. If [m| =1, then R is a field. Other-
wise, |m| = 2. Now, since |R| < |Z(R)|?, one can conclude that R is isomorphic to Z4 or
Z,[X]/ (P Za[X]).

(iii) Suppose that m is not principal and that the graph I (R) is a double-star graph. Also,
assume to the contrary that {rj,r,,r3} is a subset of a minimal generating set of m. Then
we have the triangle r| — r, — r3 — ry, which is the required contradiction. 1

The following corollary is an immediate consequence of Theorems 2.1 and 2.2.

Corollary 2.1. Let R be a finite ring. If the graph T (R) is a double-star graph, then either
Ris local or R = 7y x IF, where I is a field.

Recall that a connected forest is called a tree. By slight modifications in the proofs of
Theorems 2.1 and 2.2 we have the following consequences.

Consequences 2.1. Let R be a finite ring.
(a) If R is non-local, then the following conditions are equivalent.
(i) T'(R) is a forest.
(ii) T'(R) is a star graph.
(iii) T'(R) is a double-star graph.
(iv) T'(R) is a tree.
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(v) R=Zy xF, where F is a field.
(b) If R is local with principal maximal ideal, then I"(R) is a forest and the following
conditions are equivalent.
(i) T'(R) is a star graph.
(ii) T'(R) is a double-star graph.
(iii) R is a field or R is isomorphic to Z4 or Z,[X]/(x*Z,[X]).
(iv) T'(R) is a tree.

The following Lemma is needed in the sequel.

Lemma 2.1. Suppose that T (R) is a unicyclic graph. Then |max(R)| < 3. In particular, if
max(R) = {my,my,m3}, then [m; \U;m;| =1, forall i=1,2,3.

Proof. Assume to the contrary that, for i = 1,...,4, m; is a maximal ideal of R. Let a; €
m; \ U# My, where 1 < i< 4. Then the vertices ay,a»,a3,as form a complete subgraph of
I'(R). So I''(R) is not a unicyclic graph, which is a contradiction.

Now, suppose that max(R) = {m;,mp,m3}. Leta; € m;\U;z;mj, fori=1,2,3. Assume
to the contrary that for some 1 < i < 3, there is an element b; € m; \ Uizjm; with a; # b;.
Without loss of generality, we may assume that i = 1. Now, we have the cycles

ay—ay)—az—daij andbl —ay—as —bl.
This means that I (R) is not a unicyclic graph which is the required contradiction. 1
In the next theorem, we characterize the rings whose cozero-divisor graphs are unicyclic.

Theorem 2.3. Let R be a non-local finite ring. Then I (R) is a unicyclic graph if and only
if R is one of the rings 7o x L, To x Za[X]/(¥*Z2[X]) or Z3 x Z3.

Proof. Clearly, if R is one of the rings Z, X Z4 or Z3 X Z3, then the cozero-divisor graph
I'(R) is a unicyclic graph. Conversely, suppose that I"(R) is a unicyclic graph. Since R is
non-local and finite, there exists a positive integer n > 2 such that R= Ry X - - - X R,;, where R;
is a local ring with maximal ideal m;, fori =1,...,n. In view of Lemma 2.1, we may assume
that n < 3. Now, suppose that n = 3. We show that R = Z, X Z; x Z,. To this end, assume to
the contrary that there exists 1 < i < 3 such that R; 2 Z,. Without loss of generality, we may
assume that Ry 2 Z,. Put M| :=m| X Ry X R3, My :=R; Xxmy X R3 and M3 := R| X R, X m3.
Now, since R, 2 Z,, there exists an element ¢ in R, such that a or 1 +a is a unit in R».
So one can assume that a is a unit. Then (0,1,1),(0,a,1) € M; \ (M, U M3), which is
impossible by Lemma 2.1. But we have the cycles (0,1,0) — (0,0, 1) — (1,0,0) — (0, 1,0)
and (1,0,1)—(0,1,1) — (1,1,0) — (1,0, 1) in I (Zy X Z» X Zy), and so the cozero-divisor
graph of the ring Z, X Zy X Z; is not unicyclic. Since R is non-local, we may assume
that » =2 and R = R; X R;. Now, suppose that one of the rings R; or R, has at least
four elements. So without loss of generality we may assume that |R;| > 4. If Ry 2 Z,, there
exists acycle (0,1) —(1,0)— (0,b) — (a,0) — (0,1), wherea € R; \ {0,1} and b € Ry \ {0, 1}
Also, there exists ¢ in Ry \ {0,1,a} such that the vertex (c,0) is adjacent to both vertices
(0,1) and (0,b). This means that I"(R) is not a unicyclic graph. Hence, in this situation,
we may assume that Ry & Z,. Now, if Ry is a field, then I"'(R) is a star graph and so it is
not unicyclic. If R is isomorphic to Zy or Z,[X]/(x*Z,[X]), then we are done. Otherwise,
|R1| > 4 and R; is not a field. Thus we have the cycle (0,1) — (1,0) — (a,1) — (b,0) — (0, 1),
where a € W*(Ry) and b = 1 +a € U(R;). Also, suppose that ¢ € Ry \ {0, 1,a,b}. Then ¢
or 1 +c¢is a unitin R;. Note that 1 +c¢ € Ry \ {0,1,a,b}. So, we may assume that ¢ is a
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unit. Moreover, the vertex (c,0) is adjacent to the vertices (0,1) and (a, 1) in I (R) which
is again impossible. Now, the only remaining case is that the rings R; and R, have less than
four elements and so R is isomorphic to one of the rings Zo X Zo, Zy X 73 or Z3 X Z3. But,
I"(Zy x Zy) and T"(Z; X Z3) are star graphs. Therefore, we have that R = Z3 X Z3. 1

A refinement of a graph H is a graph G such that the vertex sets of G and H are the same
and every edge in H is an edge in G.

Proposition 2.1. The graph T'(R) is the refinement of a star graph if and only if there
exists an element a in W*(R) such that |aR| = 2 and, for all b € W*(R) witha # b, a ¢ bR.
In particular, if there exists a maximal ideal m of R such that |m| = 2, then I'(R) is the
refinement of a star graph.

Proof. First suppose that I (R) is the refinement of a star graph. So there is a vertex a
which is adjacent to all the other vertices. This means that [aR| = 2 and a ¢ bR, for all
b e W*(R)\ {a}. Conversely, if there exists an element a in W*(R) such that |aR| = 2 and
for all b € W*(R) with a # b, a ¢ bR, then clearly the vertex a is adjacent to all vertices in
W*(R) \ {a}. This implies that I"(R) is the refinement of a star graph. i

We recall that a cycle graph is a graph which consists of a single cycle, and the number
of edges in a cycle is called its length.

Lemma 2.2. If I'(R) is a union of cycle graphs, then |max(R)| < 3. In particular, if
max(R) = {my,my, m3}, then [m; \U;,;m;| =1, foralli=1,2,3.

Proof. If [max(R)| > 4, then I''(R) contains a subgraph isomorphic to K4 and so it can’t be
a union of cycle graphs. Hence we have that |max(R)| < 4. Now, suppose that max(R) =
{my,m, m3} and m; is an arbitrary element in m; \ Uj#mj, where 1 <i < 3. Also, assume
to the contrary that there exists m} € m; \ J jzim; with m; # m!, for some integer i with
1 < i < 3. Without loss of generality, we may assume that i = 1. Thus, we have the cycles
my —my —m3 —my and m| —my —m3 —m} which is impossible. 1

Theorem 2.4. Let R be a non-local finite ring. Then I’ (R) is a union of cycle graphs if and
only if R= 73 X Z3.

Proof. If R 2 73 x Z3, then I (R) is isomorphic to Cy, a cycle graph of length four. Con-
versely, assume that I"(R) is the union of cycle graphs. Since R is finite, there exists a
positive integer n such that R = Ry X --- X R, where R; is a local ring with maximal ideal
m;, fori=1,...,n. Since R is non-local, in light of Lemma 2.2, n =2 and so R = R; X R;.
Now, suppose that one of the rings Ry or R, has more than three elements, say R;. Then,
for r,s € Ry \ {0, 1}, the vertex (0, 1) is adjacent to the vertices (1,0), (r,0) and (s,0). This
implies that I"(R) is not a union of cycle graphs. Therefore, |R;|, |Rz2| < 3. This means that
R is isomorphic to one of the following rings:

Zn XZz, Zy ><Z3 OI’Z3 XZg.

On the other hand, in view of part (a) in Consequences 2.1, the cozero-divisor graph of the
rings Z; X Z and Z, x Z are star graphs. Hence R is isomorphic to Z3 x Z3 as required. 1

Theorem 2.5. Suppose that R is a Noetherian ring. Then I'(R) is totally disconnected if
and only if R is a local ring with principal maximal ideal.
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Proof. If R is a local ring with principal maximal ideal, then by [1, Theorem 2.7], I (R)
is totally disconnected. Conversely, assume that I"(R) is totally disconnected. It is easy to
see that R is local. Let m be the maximal ideal of R. Assume to the contrary that m is not
principal and that aR is a maximal principal ideal in m. Since m is not principal, there exists
an element b in m such that b ¢ aR. This implies that the vertices a and b are adjacent,
which is a contradiction. Therefore m is a principal ideal. 1

In the rest of this section, we study the subgraph I"'(R) \ J(R) of the cozero-divisor graph
of I”(R). Recall that an Eulerian graph is a graph which has a path that visits each edge
exactly once which starts and ends on the same vertex. By [5, Theorem 4.1], a connected
non-empty graph is Eulerian if and only if the valency of each vertex is even.

Theorem 2.6. Suppose that R contains a principal maximal ideal m such that |W (R)\m| is
an odd number. Then T'(R) \ J(R) is not Eulerian.

Proof. Assume that m = aR is a principal maximal ideal of R. Hence, for all b € m\ {a},
the vertices a and b are not adjacent. Also, for all c € W(R) \ m, since a ¢ cR, the vertices a
and c are adjacent. This means that the valency of the vertex a is equal to |[W(R)\m|, which
is an odd number. Hence, by [5, Theorem 4.1], I (R)\J(R) is not an Eulerian graph. 1

Example 2.1. The ring Z satisfies the condition of Theorem 2.6 and so the graph I (Z¢) \
J(Zy0) is not an Eulerian graph.

Theorem 2.7. Assume that R is a non-local ring. Then the following conditions are equiv-
alent:
(D) T'(R)\J(R) is complete bipartite.
(ii) T'(R)\ J(R) is bipartite.
(iii) T'(R) \J(R) contains no triangles.

Proof. The implications (i)=-(ii) and (ii))=>(iii) are clear.

(iii)= (ii) Since I"'(R)\ J(R) has no triangles and R is non-local, it has exactly two
maximal ideals, say m; and m;. Suppose to the contrary that the graph I"'(R) \ J(R) is not
bipartite. So it contains a cycle of odd length. Therefore, there are vertices a and b in m; (or
my) which are adjacent. This implies that every element in m, \ J(R) (or m; \ J(R)) forms a
triangle with vertices a and b which is a contradiction.

(i)=-(1) If I"(R) \ J(R) is bipartite, then in view of [1, Proposition 2.13], we have that
max(R) = {m;,my}. Also, it is easy to see that V; = m; \ m; and V, = m, \ m; are the parts
of the bipartite graph I"(R) \ J(R). Moreover, every vertex in V; is adjacent to all vertices
in V, and also every vertex in V; is adjacent to all vertices in V;. Hence I"(R) \ J(R) is a
complete bipartite graph.

Recall that a graph is Hamiltonian if it contains a cycle which visits each vertex exactly
once and also returns to the starting vertex.

Theorem 2.8. Let R be a finite ring with two maximal ideals my and my such that |m| =
|ma|. Then T'(R)\J(R) is Hamiltonian.

Proof. Fori=1,2, putm;\J(R) :={aj,...,a;}, where t := |m; \ J(R)|. Then it is easy to
see that ajy —ap) — -+ — a1, — apy — ayy is a Hamiltonian cycle in TV (R) \ J(R). |

We close this section with the following observation that compares the chromatic and
clique numbers of the graph I (R) \ J(R). To this end, we recall some basic definitions. The
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chromatic number of a graph G, denoted by x(G), is the minimal number of colors which
can be assigned to the vertices of G in such a way that every two adjacent vertices have
different colors. Also, a clique of a graph is a complete subgraph and the number of vertices
in a largest clique of G, denoted by @(G), is called the clique number of G. Obviously
x(G) > o(G).

Theorem 2.9. Assume that R is non-local. Then % (I'"(R)\J(R)) =2 if and only if (I (R) \
J(R)) =2.

Proof. Clearly, o(I"(R) \ J(R)) < x(I'(R) \ J(R)). Now, if x(I"(R)\J(R)) = 2, then,
since R is non-local, we have that (I (R) \ J(R)) = 2. Conversely, assume that o(I"(R) \
J(R)) =2. Thus |max(R)| = 2. If x(I"(R)\J(R)) > 2, then I"(R) \ J(R) is not bipartite and
so by Theorem 2.7, it contains some triangles. This means that @(I"(R) \ J(R)) = 3 which
is impossible. Thus, x(I"(R) \J(R)) = 2. |

3. Complement of the cozero-divisor graph

As we mentioned in the introduction, the complement of the cozero-divisor graph I (R), is
the Cayley graph Cay(W*(R),R\ {1}). In our first result we provide a connection between
two graphs I'(R) and I (R).

Proposition 3.1. Let R be a finite ring such that T'(R) is not a refinement of a complete

r-partite graph, where r is a positive integer. Then I (R) is connected.

Proof. Assume to the contrary that I (R) is not connected and let Cy, ... ., C, be its connected
components. Hence, for 1 < i, j < r with i # j and for every two vertices a € C; and b € Cj,
we have that ab = 0. This means that I'(R) has a complete r-partite graph as a subgraph.
In other words, I'(R) is a refinement of a complete r-partite graph, which is the required
contradiction. 1

The following corollary is an immediate consequence of Proposition 3.1.

Corollary 3.1. IfI"(R) is disconnected, then T'(R) is a refinement of a complete r-partite
graph, where r is the number of connected components of T (R).

Proposition 3.2. TV(R) is complete if and only if the set of all principal ideals of R is totally
ordered by inclusion.

Proof. The graph I''(R) is complete if and only if for every distinct vertices a and b, a is
adjacent to b. This means that aR C bR or bR C aR. So it is equivalent to the set of all
principal ideals of R is totally ordered by inclusion. 1

The following corollary is an immediate consequence of Proposition 3.2 in conjunction
with [1, Theorem 2.7].

Corollary 3.2. Let R be a Noetherian local ring such that its maximal ideal is principal.
Then T (R) is complete.

Proposition 3.3. Let R be a Noetherian ring. If I'(R) has an infinite clique, then R has a
principal ideal with infinite order which contains all vertices of the clique.

Proof. Let K be an infinite clique in I (R) and a; be a vertex of K. Assume to the contrary
that there is no principal ideal in R that contains all vertices of K. Since the principal ideal



942 M. Afkhami and K. Khashyarmanesh

a1 R doesn’t contain all vertices of K, there exists a vertex a, in K such that ay ¢ a;R. As
ay and a; are adjacent and ay ¢ a;R, we have a; € apR. Therefore, a1 R ; apR. Again since
the principal ideal a;R doesn’t contain all vertices of K, there exists a vertex a3 in K such
that a3 ¢ axR. Also, ap and a3 are adjacent. This implies that a; € a3R and so axR ; aszR.
By continuing this method, we find an increasing sequence of principal ideals of R which
doesn’t stop and this is a contradiction. 1

Assume that R; and R, are two commutative rings with non-zero identities. Note that
I""(R; X Ry) is not connected, in general. For example, I'(Z; x Z,) is disconnected. In the
following theorem we study the girth of IV (R; X R).

Theorem 3.1. g(I"(R; X Ry)) = 3,6 or oo,
Proof. Set R := Ry X Ry. If [U(Ry)| > 3, then (1,0) — (,0) — (v,0) — (1,0) is a cycle

in I’ (R), where u and v are non-identity distinct elements in U(R;). So, g(I"(R)) = 3.
Similarly if |U(R,)| > 3, then g(I""(R)) = 3. Hence, |U(R;)|,|U(R2)| < 2. Now assume that
|R1| > 4 or |Ry| > 4. Without loss of generality, suppose that |R;| > 4. If [U(R;)| = 2, then
(1,0) — (4,0) — (z,0) — (1,0) is a cycle in I (R), where u is a non-identity element in U (R;)
and z € W*(R;y). So g(I"(R)) = 3. If [U(R;)| = 1 and there is some adjacency in I (R;),
then one can consider the cycle (1,0) — (a,0) — (b,0) — (1,0), where a and b are adjacent in

I""(R;) and so g(I"(R)) = 3. Otherwise, there is no adjacency in I (R;). Now, if R, 2 Z,,
then (a,0) — (a, 1) — (a,b) — (a,0), where a € W*(R;) and b € Ry \ {0, 1}, is acycle in T'(R)
and so g(I"(R)) = 3. If R, & Z, then (0,1) — (a,1) — (a,0) — (1,0) — (b,0) — (b,1) — (0, 1)
is a cycle of length six, where a,b € W*(R) and in this case, one can easily check that all
cycles have length six. Therefore in this situation, we have g(I"(R)) = 6. Now, it is enough
to consider the case |R;|,|Ra2| < 3. Then, in this situation, I'"(R; X R,) has no cycles and
hence g(I"(R)) = co. 1

If R is a commutative ring with a non-trivial idempotent, then R = R; X R;, for some
commutative rings R and R,. Now, the following consequences follow from the proof of
Theorem 3.1.

Consequences 3.1.
(i) Let R= R; X Ry, where neither R| nor R; is Z,. Then

g(I"(Ry x Ry)) =3 or oo.

(ii)) Let R= Ry x Ry. Then g(I"(R; X Ry)) = oo if and only if R is isomorphic to one of
the following rings:

Z2 X 22722 X Z3 or Z3 X Z3.
(iii) Assume that R > Ry X Ry. If |[U(R;)| > 1 and R; 2 Z3, then g(I"(R; X Ry)) = 3.
Similarly, if |U(Rz)| > 1 and Ry % Z3, then g(I"(R; X Ry)) = 3.

(iv) Let R be a ring such that it has a non-trivial idempotent element. Then g(I"(R)) =
3,6 or oo,

We need the following lemma in the sequel.

Lemma 3.1. Suppose that Ry and Ry are non-trivial commutative rings with identities. Then
I""(Ry X Ry) contains a subgraph isomorphic to K,;, where t is the number of unit elements
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of R;, for some i = 1,2. Moreover, if [W(Ry)| > 1 (or |[W(Ry)| > 1), then K, is isomorphic
to a subgraph of T'(R; X Ry).

Proof. Suppose that U(R;) = {uy,...,u }. Then the vertices (u1,0),..., (#,0) form a com-
plete subgraph of I (R x R;) which is isomorphic to K;. Now, if there exists an element w
in W*(Ry), then the vertices (u;,0),..., (u,0), (w,0) form the complete graph K; ;. i

In the next proposition, which immediately follows from Lemma 3.1, we study the clique
number of the graph I (R X Ry).

Proposition 3.4.
M) FIW(R)| =1=[W(Ry)

o(I"(Ry X Ry) = max{|U(R1)|,|U(R2)]}-
@) If|W(R1)| > 1 and [W(Rp)| > 1, then
o(I"(R; X Ry) = max{|U(Ry)|,|U(R2)|}+1.
(iii) If|W(Ry)| > 1and |W(R2)| =1, then
o(T"(Ry X Ry) = max{|U(R;)|+ 1,|U(R2)|}.
A similar result holds in the case that |W(Ry)| =1 and |W(R2)| > 1.

, then

We end this section by investigating the planarity of I"(R; X R;). Recall that a graph is
said to be planar if it can be drawn in the plane, so that its edges intersect only at their ends.
Also a subdivision of a graph is a graph obtained from it by replacing edges with pairwise
internally-disjoint paths. A remarkable simple characterization of the planar graphs was
given by Kuratowski in 1930. Kuratowski’s Theorem says that a graph is planar if and only
if it contains no subdivision of K5 or K3 3 (cf. [5, p. 153]).

Proposition 3.5. I"(R; X Ry) is not planar if one of the following conditions holds:
@ [UR)| =5,
(i) |U(Ry)| =4 and W (Ry)| > 1.

Proof. Assume that (i) or (ii) holds. Then by Lemma 3.1, K is in the structure of I (R} X R;)
and so by Kuratowski’s Theorem, I (R} X R;) is not planar. 1

Corollary 3.3. Assume that |U(R)| =4 and I"(R| X Ry) is planar. Then R| = Zs.
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