BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On the Cozero-Divisor Graphs of Commutative Rings and Their Complements

Mojgan Afkhami and Kazem Khashyarmanesh

Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran mojgan.afkhami@yahoo.com, khashyar@ipm.ir

Abstract. Let *R* be a commutative ring with non-zero identity. The cozero-divisor graph of *R*, denoted by $\Gamma'(R)$, is a graph with vertices in $W^*(R)$, which is the set of all non-zero and non-unit elements of *R*, and two distinct vertices *a* and *b* in $W^*(R)$ are adjacent if and only if $a \notin bR$ and $b \notin aR$. In this paper, we characterize all commutative rings whose cozero-divisor graphs are forest, star, double-star or unicyclic.

2010 Mathematics Subject Classification: 05C69, 05C75, 13A15

Keywords and phrases: Cozero-divisor graph, star graph, double-star graph, forest, complement of a graph, clique, Cayley graph.

1. Introduction

Let *R* be a commutative ring with non-zero identity and let Z(R) be the set of all zerodivisors of *R*. Set $Z^*(R) := Z(R) \setminus \{0\}$. The zero-divisor graph of *R*, denoted by $\Gamma(R)$, is an undirected graph whose vertices are elements of $Z^*(R)$ with two distinct vertices *a* and *b* are adjacent if and only if ab = 0.

The concept of the zero-divisor graph of a commutative ring was introduced by Beck [4], but this work was mostly concerned with coloring of rings. The above definition first appeared in Anderson and Livingston [3], which contained several fundamental results concerning $\Gamma(R)$. The zero-divisor graph of commutative rings has been studied extensively by Anderson, Frazier, Lauve and Livingston (cf. [2] and [3]).

Let W(R) be the set of all non-unit elements of R and $W^*(R) := W(R) \setminus \{0\}$. For an arbitrary commutative ring R, the cozero-divisor graph $\Gamma'(R)$ of R was introduced in [1], which is a dual of the zero-divisor graph $\Gamma(R)$ "in some sense". The vertex-set of $\Gamma'(R)$ is $W^*(R)$ and for two distinct vertices a and b in $W^*(R)$, a is adjacent to b if and only if $a \notin bR$ and $b \notin aR$, where cR is the ideal generated by the element c in R. Some basic results on the structure of this graph and the relations between the graphs $\Gamma(R)$ and $\Gamma'(R)$ were studied in [1].

Communicated by Xueliang Li.

Received: July 14, 2010; Revised: November 13, 2010.

In this paper, we study some more properties of the cozero-divisor graph $\Gamma'(R)$, where R is a commutative ring. In section two, we characterize all commutative rings whose cozerodivisor graphs are double-star, unicyclic, star or forest. On the other hand, for a semigroup H and a subset S of H, the Cayley graph $\operatorname{Cay}(H,S)$ of H relative to S is defined as the graph with vertex-set H and edge-set E(H,S) consisting of those ordered pairs (x,y) such that sx = y for some $s \in S$ (cf [7]). By the ordered pair (x,y), we mean that $x \longrightarrow y$. So $x \longrightarrow y$ if sx = y, for some $s \in S$. Moreover, if we assume that x is adjacent to y in $\operatorname{Cay}(H,S)$ if and only if (x,y) or (y,x) is an element of the edge-set E(H,S), then we have the undirected Cayley graph $\operatorname{Cay}(H,S)$. Therefore, in an undirected Cayley graph $\operatorname{Cay}(H,S)$, x is adjacent to y if and only if $x \longrightarrow y$ or $y \longrightarrow x$. Now, consider the complement of the cozero-divisor graph $\Gamma'(R)$, denoted by $\overline{\Gamma'(R)}$. For any two distinct vertices a and b in $W^*(R)$, a is adjacent to b if and only if $a \in bR$ or $b \in aR$. Thus the graph $\overline{\Gamma'(R)}$ and the undirected graph $\operatorname{Cay}(W^*(R), R \setminus \{1\})$ coincide. In section three, we study the graph $\overline{\Gamma'(R)}$.

Throughout the paper, R is a commutative ring with non-zero identity. We denote the set of maximal ideals and the Jacobson radical of R by max(R) and J(R), respectively. In a graph G, the distance between two distinct vertices a and b, denoted by $d_G(a,b)$, is the length of a shortest path connecting a and b, if such a path exists; otherwise, we set $d_G(a,b) := \infty$. The diameter of a graph G is diam $(G) = \sup \{ d_G(a,b) : a \text{ and } b \text{ are distinct} \}$ vertices of G. The girth of G, denoted by g(G), is the length of a shortest cycle in G, if Gcontains a cycle; otherwise, $g(G) := \infty$. Also, V(G) and E(G) are the sets of vertices and edges of G, respectively and for two distinct vertices a and b in V(G), the notation a-bmeans that a and b are adjacent. A graph G is said to be connected if there exists a path between any two distinct vertices, and it is complete if each pair of distinct vertices is joined by an edge. For a positive integer n, we use K_n to denote the complete graph with n vertices. Also, we say that G is totally disconnected if no two vertices of G are adjacent. For a positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m,n}$. Also, the valency of a vertex a is the number of edges of the graph G incident with a. The complement \overline{G} of G is the graph with the same vertex-set as G, where two distinct vertices are adjacent whenever they are non-adjacent in G.

2. On the cozero-divisor graphs

Recall that if *R* is finite, then each element of *R* is either a unit or a zero-divisor and so W(R) = Z(R). Also, by [6, Theorem 1], $|R| \leq |Z(R)|^2$ when $|Z(R)| \geq 2$. Moreover, we recall that the union of graphs G_1 and G_2 , which is denoted by $G_1 \cup G_2$, where G_1 and G_2 are two vertex-disjoint graphs, is a graph with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. Also a graph on *n* vertices such that n-1 of the vertices have valency one, all of which are adjacent only to the remaining vertex *a*, is called a star graph with center *a*. In fact, every star graph with *n* vertices is isomorphic to $K_{1,n-1}$, the complete bipartite graph with part sizes 1 and n-1. We consider the empty graph as a star graph. Also, a double-star graph is a union of two star graphs with centers a_1 and a_2 such that a_1 is adjacent to a_2 . A unicyclic graph is a connected graph with a unique cycle, or we can regard a unicycle graph as a cycle attached with each vertex a (rooted) tree.

In the following theorem we study the case that $\Gamma'(R)$ is a forest.

Theorem 2.1. Let R be a non-local finite ring.

- (i) If $\Gamma'(R)$ is a forest (contains no cycles), then $R \cong \mathbb{Z}_2 \times \mathbb{F}$, where \mathbb{F} is a field.
- (ii) If $R \cong \mathbb{Z}_2 \times \mathbb{F}$, where \mathbb{F} is a field, then $\Gamma'(R)$ is a star graph.

Proof. (i) Suppose that $\Gamma'(R)$ is a forest. Since *R* is finite, there exists a positive integer *n* such that $R \cong R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i , for $i = 1, \ldots, n$. Whenever $n \ge 3$, since $|\max(R)| \ge 3$, it is easy to see that $\Gamma'(R)$ contains a cycle and so it is not a forest. Moreover, since *R* is non-local, $n \ge 2$. Hence we have that n = 2 and so $R \cong R_1 \times R_2$. Now, suppose that R_2 is not a field. Then we have the cycle (0,1) - (1,0) - (0,1+r) - (1,r) - (0,1), where $r \in W^*(R_2)$ and so $\Gamma'(R)$ is not a forest which is impossible. Hence R_2 is a field. Similarly, R_1 is a field. If neither R_1 nor R_2 is \mathbb{Z}_2 , then for any arbitrary elements $r \in R_1 \setminus \{0,1\}$ and $s \in R_2 \setminus \{0,1\}$, we have the cycle (0,1) - (1,0) - (0,1), which is again impossible. This implies that $R \cong \mathbb{Z}_2 \times \mathbb{F}$, where \mathbb{F} is a field.

(ii) If $R \cong \mathbb{Z}_2 \times \mathbb{F}$, where \mathbb{F} is a field, then one can easily see that $\Gamma'(R)$ is a star graph with center (1,0).

Theorem 2.2. Let R be a finite ring.

- (i) If R is non-local, then Γ'(R) is a double-star graph if and only if R ≅ Z₂ × F, where F is a field.
- (ii) If R is local with principal maximal ideal m, then Γ'(R) is a double-star graph if and only if R is either Z₄, Z₂[X]/(x²Z₂[X]) or F, where F is a field.
- (iii) If R is local with non-principal maximal ideal \mathfrak{m} and $\Gamma'(R)$ is a double-star graph, then the minimal generating set of \mathfrak{m} has two elements.

Proof. (i) Since every double-star graph is a forest and also every star graph is double-star, the result immediately follows from Theorem 2.1.

(ii) By [1, Theorem 2.7], the graph $\Gamma'(R)$ is totally disconnected and so, in this situation, $\Gamma'(R)$ is a double-star graph if and only if $|\mathfrak{m}| \leq 2$. If $|\mathfrak{m}| = 1$, then *R* is a field. Otherwise, $|\mathfrak{m}| = 2$. Now, since $|R| \leq |Z(R)|^2$, one can conclude that *R* is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(x^2\mathbb{Z}_2[X])$.

(iii) Suppose that m is not principal and that the graph $\Gamma'(R)$ is a double-star graph. Also, assume to the contrary that $\{r_1, r_2, r_3\}$ is a subset of a minimal generating set of m. Then we have the triangle $r_1 - r_2 - r_3 - r_1$, which is the required contradiction.

The following corollary is an immediate consequence of Theorems 2.1 and 2.2.

Corollary 2.1. Let R be a finite ring. If the graph $\Gamma'(R)$ is a double-star graph, then either R is local or $R \cong \mathbb{Z}_2 \times \mathbb{F}$, where \mathbb{F} is a field.

Recall that a connected forest is called a tree. By slight modifications in the proofs of Theorems 2.1 and 2.2 we have the following consequences.

Consequences 2.1. Let *R* be a finite ring.

- (a) If *R* is non-local, then the following conditions are equivalent.
 - (i) $\Gamma'(R)$ is a forest.
 - (ii) $\Gamma'(R)$ is a star graph.
 - (iii) $\Gamma'(R)$ is a double-star graph.
 - (iv) $\Gamma'(R)$ is a tree.

(v) $R \cong \mathbb{Z}_2 \times \mathbb{F}$, where \mathbb{F} is a field.

- (b) If *R* is local with principal maximal ideal, then $\Gamma'(R)$ is a forest and the following conditions are equivalent.
 - (i) $\Gamma'(R)$ is a star graph.
 - (ii) $\Gamma'(R)$ is a double-star graph.
 - (iii) *R* is a field or *R* is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(x^2\mathbb{Z}_2[X])$.
 - (iv) $\Gamma'(R)$ is a tree.

The following Lemma is needed in the sequel.

Lemma 2.1. Suppose that $\Gamma'(R)$ is a unicyclic graph. Then $|\max(R)| \leq 3$. In particular, if $\max(R) = \{\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3\}$, then $|\mathfrak{m}_i \setminus \bigcup_{i \neq j} \mathfrak{m}_j| = 1$, for all i = 1, 2, 3.

Proof. Assume to the contrary that, for i = 1, ..., 4, \mathfrak{m}_i is a maximal ideal of R. Let $a_i \in \mathfrak{m}_i \setminus \bigcup_{i \neq j} \mathfrak{m}_j$, where $1 \leq i \leq 4$. Then the vertices a_1, a_2, a_3, a_4 form a complete subgraph of $\Gamma'(R)$. So $\Gamma'(R)$ is not a unicyclic graph, which is a contradiction.

Now, suppose that $\max(R) = \{\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3\}$. Let $a_i \in \mathfrak{m}_i \setminus \bigcup_{i \neq j} \mathfrak{m}_j$, for i = 1, 2, 3. Assume to the contrary that for some $1 \leq i \leq 3$, there is an element $b_i \in \mathfrak{m}_i \setminus \bigcup_{i \neq j} \mathfrak{m}_j$ with $a_i \neq b_i$. Without loss of generality, we may assume that i = 1. Now, we have the cycles

$$a_1 - a_2 - a_3 - a_1$$
 and $b_1 - a_2 - a_3 - b_1$.

This means that $\Gamma'(R)$ is not a unicyclic graph which is the required contradiction.

In the next theorem, we characterize the rings whose cozero-divisor graphs are unicyclic.

Theorem 2.3. Let *R* be a non-local finite ring. Then $\Gamma'(R)$ is a unicyclic graph if and only if *R* is one of the rings $\mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(x^2\mathbb{Z}_2[X])$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Proof. Clearly, if *R* is one of the rings $\mathbb{Z}_2 \times \mathbb{Z}_4$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$, then the cozero-divisor graph $\Gamma'(R)$ is a unicyclic graph. Conversely, suppose that $\Gamma'(R)$ is a unicyclic graph. Since R is non-local and finite, there exists a positive integer $n \ge 2$ such that $R \cong R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i , for $i = 1, \dots, n$. In view of Lemma 2.1, we may assume that $n \leq 3$. Now, suppose that n = 3. We show that $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. To this end, assume to the contrary that there exists $1 \le i \le 3$ such that $R_i \ncong \mathbb{Z}_2$. Without loss of generality, we may assume that $R_2 \ncong \mathbb{Z}_2$. Put $M_1 := \mathfrak{m}_1 \times R_2 \times R_3$, $M_2 := R_1 \times \mathfrak{m}_2 \times R_3$ and $M_3 := R_1 \times R_2 \times \mathfrak{m}_3$. Now, since $R_2 \not\cong \mathbb{Z}_2$, there exists an element a in R_2 such that a or 1 + a is a unit in R_2 . So one can assume that a is a unit. Then $(0,1,1), (0,a,1) \in M_1 \setminus (M_2 \cup M_3)$, which is impossible by Lemma 2.1. But we have the cycles (0,1,0) - (0,0,1) - (1,0,0) - (0,1,0)and (1,0,1) - (0,1,1) - (1,1,0) - (1,0,1) in $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$, and so the cozero-divisor graph of the ring $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is not unicyclic. Since R is non-local, we may assume that n = 2 and $R \cong R_1 \times R_2$. Now, suppose that one of the rings R_1 or R_2 has at least four elements. So without loss of generality we may assume that $|R_1| \ge 4$. If $R_2 \cong \mathbb{Z}_2$, there exists a cycle (0,1) - (1,0) - (0,b) - (a,0) - (0,1), where $a \in R_1 \setminus \{0,1\}$ and $b \in R_2 \setminus \{0,1\}$. Also, there exists c in $R_1 \setminus \{0, 1, a\}$ such that the vertex (c, 0) is adjacent to both vertices (0,1) and (0,b). This means that $\Gamma'(R)$ is not a unicyclic graph. Hence, in this situation, we may assume that $R_2 \cong \mathbb{Z}_2$. Now, if R_1 is a field, then $\Gamma'(R)$ is a star graph and so it is not unicyclic. If R is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(x^2\mathbb{Z}_2[X])$, then we are done. Otherwise, $|R_1| > 4$ and R_1 is not a field. Thus we have the cycle (0,1) - (1,0) - (a,1) - (b,0) - (0,1), where $a \in W^*(R_1)$ and $b = 1 + a \in U(R_1)$. Also, suppose that $c \in R_1 \setminus \{0, 1, a, b\}$. Then c or 1 + c is a unit in R_1 . Note that $1 + c \in R_1 \setminus \{0, 1, a, b\}$. So, we may assume that c is a

938

unit. Moreover, the vertex (c, 0) is adjacent to the vertices (0, 1) and (a, 1) in $\Gamma'(R)$ which is again impossible. Now, the only remaining case is that the rings R_1 and R_2 have less than four elements and so R is isomorphic to one of the rings $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_3$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$. But, $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2)$ and $\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_3)$ are star graphs. Therefore, we have that $R \cong \mathbb{Z}_3 \times \mathbb{Z}_3$.

A refinement of a graph H is a graph G such that the vertex sets of G and H are the same and every edge in H is an edge in G.

Proposition 2.1. The graph $\Gamma'(R)$ is the refinement of a star graph if and only if there exists an element a in $W^*(R)$ such that |aR| = 2 and, for all $b \in W^*(R)$ with $a \neq b$, $a \notin bR$. In particular, if there exists a maximal ideal \mathfrak{m} of R such that $|\mathfrak{m}| = 2$, then $\Gamma'(R)$ is the refinement of a star graph.

Proof. First suppose that $\Gamma'(R)$ is the refinement of a star graph. So there is a vertex a which is adjacent to all the other vertices. This means that |aR| = 2 and $a \notin bR$, for all $b \in W^*(R) \setminus \{a\}$. Conversely, if there exists an element a in $W^*(R)$ such that |aR| = 2 and for all $b \in W^*(R)$ with $a \neq b$, $a \notin bR$, then clearly the vertex a is adjacent to all vertices in $W^*(R) \setminus \{a\}$. This implies that $\Gamma'(R)$ is the refinement of a star graph.

We recall that a cycle graph is a graph which consists of a single cycle, and the number of edges in a cycle is called its length.

Lemma 2.2. If $\Gamma'(R)$ is a union of cycle graphs, then $|\max(R)| \leq 3$. In particular, if $\max(R) = \{\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3\}$, then $|\mathfrak{m}_i \setminus \bigcup_{i \neq i} \mathfrak{m}_i| = 1$, for all i = 1, 2, 3.

Proof. If $|\max(R)| \ge 4$, then $\Gamma'(R)$ contains a subgraph isomorphic to K_4 and so it can't be a union of cycle graphs. Hence we have that $|\max(R)| < 4$. Now, suppose that $\max(R) = \{\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3\}$ and m_i is an arbitrary element in $\mathfrak{m}_i \setminus \bigcup_{j \ne i} \mathfrak{m}_j$, where $1 \le i \le 3$. Also, assume to the contrary that there exists $m'_i \in \mathfrak{m}_i \setminus \bigcup_{j \ne i} \mathfrak{m}_j$ with $m_i \ne m'_i$, for some integer *i* with $1 \le i \le 3$. Without loss of generality, we may assume that i = 1. Thus, we have the cycles $m_1 - m_2 - m_3 - m_1$ and $m'_1 - m_2 - m_3 - m'_1$ which is impossible.

Theorem 2.4. Let *R* be a non-local finite ring. Then $\Gamma'(R)$ is a union of cycle graphs if and only if $R \cong \mathbb{Z}_3 \times \mathbb{Z}_3$.

Proof. If $R \cong \mathbb{Z}_3 \times \mathbb{Z}_3$, then $\Gamma'(R)$ is isomorphic to C_4 , a cycle graph of length four. Conversely, assume that $\Gamma'(R)$ is the union of cycle graphs. Since R is finite, there exists a positive integer n such that $R \cong R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i , for $i = 1, \ldots, n$. Since R is non-local, in light of Lemma 2.2, n = 2 and so $R \cong R_1 \times R_2$. Now, suppose that one of the rings R_1 or R_2 has more than three elements, say R_1 . Then, for $r, s \in R_1 \setminus \{0, 1\}$, the vertex (0, 1) is adjacent to the vertices (1, 0), (r, 0) and (s, 0). This implies that $\Gamma'(R)$ is not a union of cycle graphs. Therefore, $|R_1|$, $|R_2| \leq 3$. This means that R is isomorphic to one of the following rings:

$$\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_3 \text{ or } \mathbb{Z}_3 \times \mathbb{Z}_3.$$

On the other hand, in view of part (a) in Consequences 2.1, the cozero-divisor graph of the rings $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_3$ are star graphs. Hence *R* is isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_3$ as required.

Theorem 2.5. Suppose that R is a Noetherian ring. Then $\Gamma'(R)$ is totally disconnected if and only if R is a local ring with principal maximal ideal.

Proof. If *R* is a local ring with principal maximal ideal, then by [1, Theorem 2.7], $\Gamma'(R)$ is totally disconnected. Conversely, assume that $\Gamma'(R)$ is totally disconnected. It is easy to see that *R* is local. Let m be the maximal ideal of *R*. Assume to the contrary that m is not principal and that *aR* is a maximal principal ideal in m. Since m is not principal, there exists an element *b* in m such that $b \notin aR$. This implies that the vertices *a* and *b* are adjacent, which is a contradiction. Therefore m is a principal ideal.

In the rest of this section, we study the subgraph $\Gamma'(R) \setminus J(R)$ of the cozero-divisor graph of $\Gamma'(R)$. Recall that an Eulerian graph is a graph which has a path that visits each edge exactly once which starts and ends on the same vertex. By [5, Theorem 4.1], a connected non-empty graph is Eulerian if and only if the valency of each vertex is even.

Theorem 2.6. Suppose that *R* contains a principal maximal ideal \mathfrak{m} such that $|W(R) \setminus \mathfrak{m}|$ is an odd number. Then $\Gamma'(R) \setminus J(R)$ is not Eulerian.

Proof. Assume that $\mathfrak{m} = aR$ is a principal maximal ideal of R. Hence, for all $b \in \mathfrak{m} \setminus \{a\}$, the vertices a and b are not adjacent. Also, for all $c \in W(R) \setminus \mathfrak{m}$, since $a \notin cR$, the vertices a and c are adjacent. This means that the valency of the vertex a is equal to $|W(R) \setminus \mathfrak{m}|$, which is an odd number. Hence, by [5, Theorem 4.1], $\Gamma'(R) \setminus J(R)$ is not an Eulerian graph.

Example 2.1. The ring \mathbb{Z}_{10} satisfies the condition of Theorem 2.6 and so the graph $\Gamma'(\mathbb{Z}_{10}) \setminus J(\mathbb{Z}_{10})$ is not an Eulerian graph.

Theorem 2.7. Assume that R is a non-local ring. Then the following conditions are equivalent:

- (i) $\Gamma'(R) \setminus J(R)$ is complete bipartite.
- (ii) $\Gamma'(R) \setminus J(R)$ is bipartite.
- (iii) $\Gamma'(R) \setminus J(R)$ contains no triangles.

Proof. The implications (i) \Longrightarrow (ii) and (ii) \Longrightarrow (iii) are clear.

(iii) \implies (ii) Since $\Gamma'(R) \setminus J(R)$ has no triangles and *R* is non-local, it has exactly two maximal ideals, say \mathfrak{m}_1 and \mathfrak{m}_2 . Suppose to the contrary that the graph $\Gamma'(R) \setminus J(R)$ is not bipartite. So it contains a cycle of odd length. Therefore, there are vertices *a* and *b* in \mathfrak{m}_1 (or \mathfrak{m}_2) which are adjacent. This implies that every element in $\mathfrak{m}_2 \setminus J(R)$ (or $\mathfrak{m}_1 \setminus J(R)$) forms a triangle with vertices *a* and *b* which is a contradiction.

(ii) \Longrightarrow (i) If $\Gamma'(R) \setminus J(R)$ is bipartite, then in view of [1, Proposition 2.13], we have that $\max(R) = \{\mathfrak{m}_1, \mathfrak{m}_2\}$. Also, it is easy to see that $V_1 = \mathfrak{m}_1 \setminus \mathfrak{m}_2$ and $V_2 = \mathfrak{m}_2 \setminus \mathfrak{m}_1$ are the parts of the bipartite graph $\Gamma'(R) \setminus J(R)$. Moreover, every vertex in V_1 is adjacent to all vertices in V_2 and also every vertex in V_2 is adjacent to all vertices in V_1 . Hence $\Gamma'(R) \setminus J(R)$ is a complete bipartite graph.

Recall that a graph is Hamiltonian if it contains a cycle which visits each vertex exactly once and also returns to the starting vertex.

Theorem 2.8. Let *R* be a finite ring with two maximal ideals \mathfrak{m}_1 and \mathfrak{m}_2 such that $|\mathfrak{m}_1| = |\mathfrak{m}_2|$. Then $\Gamma'(R) \setminus J(R)$ is Hamiltonian.

Proof. For i = 1, 2, put $\mathfrak{m}_i \setminus J(R) := \{a_{i1}, \dots, a_{it}\}$, where $t := |\mathfrak{m}_1 \setminus J(R)|$. Then it is easy to see that $a_{11} - a_{21} - \dots - a_{1t} - a_{2t} - a_{11}$ is a Hamiltonian cycle in $\Gamma'(R) \setminus J(R)$.

We close this section with the following observation that compares the chromatic and clique numbers of the graph $\Gamma'(R) \setminus J(R)$. To this end, we recall some basic definitions. The

chromatic number of a graph *G*, denoted by $\chi(G)$, is the minimal number of colors which can be assigned to the vertices of *G* in such a way that every two adjacent vertices have different colors. Also, a clique of a graph is a complete subgraph and the number of vertices in a largest clique of *G*, denoted by $\omega(G)$, is called the clique number of *G*. Obviously $\chi(G) \ge \omega(G)$.

Theorem 2.9. Assume that *R* is non-local. Then $\chi(\Gamma'(R) \setminus J(R)) = 2$ if and only if $\omega(\Gamma'(R) \setminus J(R)) = 2$.

Proof. Clearly, $\omega(\Gamma'(R) \setminus J(R)) \leq \chi(\Gamma'(R) \setminus J(R))$. Now, if $\chi(\Gamma'(R) \setminus J(R)) = 2$, then, since *R* is non-local, we have that $\omega(\Gamma'(R) \setminus J(R)) = 2$. Conversely, assume that $\omega(\Gamma'(R) \setminus J(R)) = 2$. Thus $|\max(R)| = 2$. If $\chi(\Gamma'(R) \setminus J(R)) > 2$, then $\Gamma'(R) \setminus J(R)$ is not bipartite and so by Theorem 2.7, it contains some triangles. This means that $\omega(\Gamma'(R) \setminus J(R)) \geq 3$ which is impossible. Thus, $\chi(\Gamma'(R) \setminus J(R)) = 2$.

3. Complement of the cozero-divisor graph

As we mentioned in the introduction, the complement of the cozero-divisor graph $\Gamma'(R)$, is the Cayley graph $\operatorname{Cay}(W^*(R), R \setminus \{1\})$. In our first result we provide a connection between two graphs $\Gamma(R)$ and $\overline{\Gamma'(R)}$.

Proposition 3.1. Let R be a finite ring such that $\overline{\Gamma(R)}$ is not a refinement of a complete r-partite graph, where r is a positive integer. Then $\overline{\Gamma'(R)}$ is connected.

Proof. Assume to the contrary that $\overline{\Gamma'(R)}$ is not connected and let C_1, \ldots, C_r be its connected components. Hence, for $1 \leq i, j \leq r$ with $i \neq j$ and for every two vertices $a \in C_i$ and $b \in C_j$, we have that ab = 0. This means that $\Gamma(R)$ has a complete *r*-partite graph as a subgraph. In other words, $\Gamma(R)$ is a refinement of a complete *r*-partite graph, which is the required contradiction.

The following corollary is an immediate consequence of Proposition 3.1.

Corollary 3.1. If $\overline{\Gamma'(R)}$ is disconnected, then $\Gamma(R)$ is a refinement of a complete *r*-partite graph, where *r* is the number of connected components of $\overline{\Gamma'(R)}$.

Proposition 3.2. $\overline{\Gamma'(R)}$ is complete if and only if the set of all principal ideals of *R* is totally ordered by inclusion.

Proof. The graph $\overline{\Gamma'(R)}$ is complete if and only if for every distinct vertices *a* and *b*, *a* is adjacent to *b*. This means that $aR \subseteq bR$ or $bR \subseteq aR$. So it is equivalent to the set of all principal ideals of *R* is totally ordered by inclusion.

The following corollary is an immediate consequence of Proposition 3.2 in conjunction with [1, Theorem 2.7].

Corollary 3.2. Let *R* be a Noetherian local ring such that its maximal ideal is principal. Then $\overline{\Gamma'(R)}$ is complete.

Proposition 3.3. Let R be a Noetherian ring. If $\overline{\Gamma'(R)}$ has an infinite clique, then R has a principal ideal with infinite order which contains all vertices of the clique.

Proof. Let *K* be an infinite clique in $\Gamma'(R)$ and a_1 be a vertex of *K*. Assume to the contrary that there is no principal ideal in *R* that contains all vertices of *K*. Since the principal ideal

 a_1R doesn't contain all vertices of K, there exists a vertex a_2 in K such that $a_2 \notin a_1R$. As a_1 and a_2 are adjacent and $a_2 \notin a_1R$, we have $a_1 \in a_2R$. Therefore, $a_1R \subsetneq a_2R$. Again since the principal ideal a_2R doesn't contain all vertices of K, there exists a vertex a_3 in K such that $a_3 \notin a_2R$. Also, a_2 and a_3 are adjacent. This implies that $a_2 \in a_3R$ and so $a_2R \subsetneq a_3R$. By continuing this method, we find an increasing sequence of principal ideals of R which doesn't stop and this is a contradiction.

Assume that R_1 and R_2 are two commutative rings with non-zero identities. Note that $\overline{\Gamma'(R_1 \times R_2)}$ is not connected, in general. For example, $\overline{\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_2)}$ is disconnected. In the following theorem we study the girth of $\overline{\Gamma'(R_1 \times R_2)}$.

Theorem 3.1. $g(\overline{\Gamma'(R_1 \times R_2)}) = 3,6 \text{ or } \infty$.

Proof. Set $R := R_1 \times R_2$. If $|U(R_1)| \ge 3$, then (1,0) - (u,0) - (v,0) - (1,0) is a cycle in $\overline{\Gamma'(R)}$, where *u* and *v* are non-identity distinct elements in $U(R_1)$. So, $g(\overline{\Gamma'(R)}) = 3$. Similarly if $|U(R_2)| \ge 3$, then $g(\overline{\Gamma'(R)}) = 3$. Hence, $|U(R_1)|, |U(R_2)| \le 2$. Now assume that $|R_1| \ge 4$ or $|R_2| \ge 4$. Without loss of generality, suppose that $|R_1| \ge 4$. If $|U(R_1)| = 2$, then (1,0) - (u,0) - (z,0) - (1,0) is a cycle in $\overline{\Gamma'(R)}$, where *u* is a non-identity element in $U(R_1)$ and $z \in W^*(R_1)$. So $g(\overline{\Gamma'(R)}) = 3$. If $|U(R_1)| = 1$ and there is some adjacency in $\overline{\Gamma'(R_1)}$, then one can consider the cycle (1,0) - (a,0) - (b,0) - (1,0), where *a* and *b* are adjacent in $\overline{\Gamma'(R_1)}$ and so $g(\overline{\Gamma'(R)}) = 3$. Otherwise, there is no adjacency in $\overline{\Gamma'(R_1)}$. Now, if $R_2 \cong \mathbb{Z}_2$, then (a,0) - (a,1) - (a,b) - (a,0), where $a \in W^*(R_1)$ and $b \in R_2 \setminus \{0,1\}$, is a cycle in $\overline{\Gamma'(R)}$ and so $g(\overline{\Gamma'(R)}) = 3$. If $R_2 \cong \mathbb{Z}_2$, then (0,1) - (a,1) - (a,0) - (1,0) - (b,0) - (b,1) - (0,1)is a cycle of length six, where $a, b \in W^*(R_1)$ and in this case, one can easily check that all cycles have length six. Therefore in this situation, we have $g(\overline{\Gamma'(R)}) = 6$. Now, it is enough to consider the case $|R_1|, |R_2| \le 3$. Then, in this situation, $\overline{\Gamma'(R_1 \times R_2)}$ has no cycles and hence $g(\overline{\Gamma'(R)}) = \infty$.

If *R* is a commutative ring with a non-trivial idempotent, then $R = R_1 \times R_2$, for some commutative rings R_1 and R_2 . Now, the following consequences follow from the proof of Theorem 3.1.

Consequences 3.1.

(i) Let $R \cong R_1 \times R_2$, where neither R_1 nor R_2 is \mathbb{Z}_2 . Then

$$g(\overline{\Gamma'(R_1 \times R_2)}) = 3 \text{ or } \infty.$$

(ii) Let $R \cong R_1 \times R_2$. Then $g(\overline{\Gamma'(R_1 \times R_2)}) = \infty$ if and only if *R* is isomorphic to one of the following rings:

$$\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_3 \text{ or } \mathbb{Z}_3 \times \mathbb{Z}_3$$

- (iii) Assume that $R \cong R_1 \times R_2$. If $|U(R_1)| > 1$ and $R_1 \not\cong \mathbb{Z}_3$, then $g(\overline{\Gamma'(R_1 \times R_2)}) = 3$. Similarly, if $|U(R_2)| > 1$ and $R_2 \not\cong \mathbb{Z}_3$, then $g(\overline{\Gamma'(R_1 \times R_2)}) = 3$.
- (iv) Let *R* be a ring such that it has a non-trivial idempotent element. Then $g(\Gamma'(R)) = 3,6$ or ∞ .

We need the following lemma in the sequel.

Lemma 3.1. Suppose that R_1 and R_2 are non-trivial commutative rings with identities. Then $\overline{\Gamma'(R_1 \times R_2)}$ contains a subgraph isomorphic to K_t , where t is the number of unit elements

of R_i , for some i = 1, 2. Moreover, if $|W(R_1)| > 1$ (or $|W(R_2)| > 1$), then K_{t+1} is isomorphic to a subgraph of $\overline{\Gamma'(R_1 \times R_2)}$.

Proof. Suppose that $U(R_1) = \{u_1, \dots, u_t\}$. Then the vertices $(u_1, 0), \dots, (u_t, 0)$ form a complete subgraph of $\overline{\Gamma'(R_1 \times R_2)}$ which is isomorphic to K_t . Now, if there exists an element w in $W^*(R_1)$, then the vertices $(u_1, 0), \dots, (u_t, 0)$, (w, 0) form the complete graph K_{t+1} .

In the next proposition, which immediately follows from Lemma 3.1, we study the clique number of the graph $\overline{\Gamma'(R_1 \times R_2)}$.

Proposition 3.4.

(i) If
$$|W(R_1)| = 1 = |W(R_2)|$$
, then
 $\omega(\overline{\Gamma'(R_1 \times R_2)} \ge \max\{|U(R_1)|, |U(R_2)|\}.$
(ii) If $|W(R_1)| > 1$ and $|W(R_2)| > 1$, then
 $\omega(\overline{\Gamma'(R_1 \times R_2)} \ge \max\{|U(R_1)|, |U(R_2)|\} + 1.$
(iii) If $|W(R_1)| > 1$ and $|W(R_2)| = 1$, then
 $\omega(\overline{\Gamma'(R_1 \times R_2)} \ge \max\{|U(R_1)| + 1, |U(R_2)|\}.$

A similar result holds in the case that $|W(R_1)| = 1$ and $|W(R_2)| > 1$.

We end this section by investigating the planarity of $\overline{\Gamma'(R_1 \times R_2)}$. Recall that a graph is said to be planar if it can be drawn in the plane, so that its edges intersect only at their ends. Also a subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [5, p. 153]).

Proposition 3.5. $\overline{\Gamma'(R_1 \times R_2)}$ is not planar if one of the following conditions holds:

(i)
$$|U(R_1)| \ge 5$$
,

(ii)
$$|U(R_1)| \ge 4$$
 and $|W(R_1)| > 1$.

Proof. Assume that (i) or (ii) holds. Then by Lemma 3.1, K_5 is in the structure of $\overline{\Gamma'(R_1 \times R_2)}$ and so by Kuratowski's Theorem, $\overline{\Gamma'(R_1 \times R_2)}$ is not planar.

Corollary 3.3. Assume that $|U(R_1)| = 4$ and $\overline{\Gamma'(R_1 \times R_2)}$ is planar. Then $R_1 \cong \mathbb{Z}_5$.

Acknowledgement. The authors are deeply grateful to the referees for careful reading of the manuscript and helpful suggestions.

References

- M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, *Southeast Asian Bull. Math.* (to appear).
- [2] D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring. II, in *Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999)*, 61–72, Lecture Notes in Pure and Appl. Math., 220 Dekker, New York.
- [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447.
- [4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226.
- [5] J. A. Bondy and U. S. R. Murty, *Graph theory with applications*, American Elsevier Publishing Co. Inc., New York, 1976.

M. Afkhami and K. Khashyarmanesh

- [6] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Ann. 157 (1964), 215–218.
- [7] A. V. Kelarev and C. E. Praeger, On transitive Cayley graphs of groups and semigroups, *European J. Combin.* 24 (2003), no. 1, 59–72.
- 944