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Abstract. In this paper, we discuss submersion of semi-invariant submanifolds of trans-
Sasakian manifold and derive some results on their differential geometry. We also discuss
cohomology of semi-invariant submanifold of trans-Sasakian manifold under the submer-
sion.
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1. Introduction

The study of Riemannian submersions was initiated by O’Neill [15]. Semi-Riemannian
submersions were introduced by O’Neill in [16]. It is well known that semi-Riemannian
submersions are of interest in physics, owing to their applications in the Yang-Mills the-
ory, Kaluza-Klein theory, supergravity and superstring theory [9, 11, 19,20]. In [12], S.
Kobayashi studied submersion of CR-submanifolds and obtained interesting results. In this
paper we study submersion of semi-invariant submanifold of trans-Sasakian manifold.

Let M be an n-dimensional almost contact metric manifold with almost contact metric
structure (¢,&,1M,g). Then they satisfy

(1.1) $?=—1+n®E ¢o&=0, Nnop=0, n(&) =1,

for any vector fields X,Y on M.
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In 1985, Oubina introduced a new class of almost contact Riemannian manifold known
as trans-Sasakian manifold [17]. An almost contact metric structure (¢,&,1,g) on M is
called trans-Sasakian if it satisfies

(1.3) (Vx9)Y = a[g(X,Y)E —n(Y)X]+ B [g(¢X,Y)E —n(Y)oX],

where o and 8 are non-zero constants on M, V is a Riemannian connection of g and we say
that the trans-Sasakian structure is of type (o, ). A trans-Sasakian manifold is a general-
ization of both a-Sasakian and 3-Kenmotsu manifold.

Let M be an n-dimensional isometrically immersed submanifold of M and tangent to &.
Let g be the metric tensor field on M as well as the induced metric on M.

Definition 1.1. An m-dimensional Riemannian submanifold M of a trans-Sasakian manifold
M is called a semi-invariant submanifold if £ is tangent to M and it is endowed with a pair
of orthogonal differentiable distributions (D,D") which satisfies

(i) TM = D@ D+ @ {&}, where @ denotes the orthogonal direct sum,
(i) the distribution Dy : x — D C TyM is invariant under ¢ i.e. ¢ D, C Dy for each
XEM,
(iii) the orthogonal complementary distribution D : x — D C T,M of the distribution
D on M is totally real i.e., D+ C T;*M where T,M,T;"M are the tangent space
and the normal space of M at x respectively.

Let the dimension of D (resp. D) be 2p(resp. g) where 2p+q=m — 1. If p =0 (resp.
q = 0) the submanifold M becomes anti-invariant (resp. invariant) submanifold. A generic
submanifold M satisfies dim D+ = dim 7;"M. A submanifold is called proper if it is neither
invariant nor anti-invariant. It is easy to see that any hypersurface to which the vector field
£ is tangent is a typical example of semi-invariant submanifold.

Definition 1.2. Let M be a semi-invariant submanifold of a trans-Sasakian manifold M
and M’ be an almost contact metric manifold with the almost contact metric structure
(¢',E',1',¢'). Assume that there is a submersion T : M — M’ such that

(i) D+ =kerm,, where m, : TM — TM' is the tangent mapping to T,

(i) 7. : Dy ©{E} — Ty(pyM' is an isometry for each p € M which satisfies T, o ¢ =
¢ om; n=n"on; m.(§) = 67/1(17)’ where Ty, \M' denotes the tangent space of
M at w(p).

Papaghuic studied submersion of semi-invariant submanifolds of a Sasakian manifold
[18]. For trans-Sasakian manifold we prove

Theorem 1.1. Let 7w : M — M’ be a submersion of semi-invariant submanifold of a trans-
Sasakian manifold M onto an almost contact metric manifold M'. Then M’ is also a trans-
Sasakian manifold.

In particular, we obtain results on Sasakian manifold, Kenmotsu manifold, cosymplectic
manifold, o-Sasakian manifold and -Kenmotsu manifold through submersion of semi-
invariant submanifolds. We also derive expressions relating curvatures of M and M’ via
submersions.
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2. Preliminaries and some results

Let M be an n-dimensional isometrically immersed submanifold of trans-Sasakian manifold
M and tangent to & and suppose V (resp. V) be the covariant differentiation with respect to
the Levi-Civita connection on M (resp. M). The Gauss and Weingarten formulae for M are
respectively given by

2.1 VxY = VxY +h(X,Y)
and
(2.2) VxN = —AyX + Vi N

for X,Y € TM, N € T+M, where h (resp. A) is the second fundamental form (resp. tensor)
of M in M and V- denotes the operator of the normal connection. Moreover we have

(2.3) g(h(X,Y),N) =g(ANX,Y).

The projection of TM to D and D are denoted by 4 and v respectively i.e., for any
X € TM we have

2.4) X =hX+vX+n(X)E.
The normal bundle to M has the decomposition

(2.5) TM = ¢D* @®ny,
where g(¢D*,n;) = {0}. For any U € T+M, we put
2.6) U=nU+mU,

where nU € D+, mU € n;. Making use of the above equation, we may write
(2.7) OU = onU +¢mU, UcT*M, ¢nUcD*, ¢mUEcn.

A vector field X on M is said to be basic if X € D, ®{&} and X is z-related to a vector
field on M’ i.e., there exists a vector field X, € TM' such that 7, (X,,) = X*,r(p) for each
p € M. Note that, by condition (ii) of the above definition 1.2, we have that the structural
vector field € is a basic vector field.

Lemma 2.1. [18] Let X,Y be basic vector fields on M. Then

() §(X.¥) = ¢(X..Y.)oT,
(i) the component h([X,Y]) +n([X,Y)& of [X,Y] is a basic vector field and corre-
sponds to [X,Yy], i.e, m (h([X,Y])+n(X,Y])E) = [X.,Yi],
(iii) [U,X] € D* forany U € D*,
(iv) h(VxY)+n(VxY)& is a basic vector field corresponding to Vi Y., where V* de-
notes the Levi-Civita connection on M'.

For basic vector fields on M, we define the operator V* corresponding to V* by setting
Y = h(VxY)+n(VxY)E for X,Y € (D& {£}). By (iv) of lemma 2.1, V}Y is a basic
vector field and we have

(2.8) m(VyY)=Vy Y.
Define the tensor field C by
(2.9) VY =ViY +C(X,Y), X,Y € (D®{&}),
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where C(X,Y) is the vertical part of VxY. It is known that C is skew-symmetric and satisfies
1
The curvature tensors R, R* of the connection V,V* on M and M’ respectively are related
by [18]
+28(C(X,Y),C(Z,W)) X,Y,Z,W € (D&{5}),

where m.X = X,, m.Y =Y., m.Z =Z, and mW =W, € x(M').
First we prove the following.

@2.11)

Proposition 2.1. Let 7 : M — M’ be a submersion of semi-invariant submanifold of a
trans-Sasakian manifold M onto an almost contact metric manifold M'. Then we have

(2.12) (Vx9)Y = alg(X,Y)E —n(Y)X]+ B [g(¢X,Y)E —n(Y)9X],
(2.13) C(X,9Y) = ¢nh(X,Y),
(2.14) ¢C(X,Y) =nh(X,9Y),
(2.15) omh(X,Y) = mh(X,9Y)

forany XY € (DD {E}).

Proof. Forany X,Y € (D®{&}) and by using Gauss formula (2.1), decomposition equation
(2.6) and (2.9) we obtain

VxY = VxY +h(X,Y) = VxY +nh(X,Y) +mh(X,Y)

(2.16) = ViY +C(X,Y) +nh(X,Y)+mh(X,Y).

Hence

(2.17) OVxY = oVyY +0C(X,Y) + ¢nh(X,Y) + omh(X,Y).
Putting Y = ¢Y in (2.16), it follows

(2.18) Vx @Y = VY +C(X,9Y) +nh(X,9Y) +mh(X,Y).

On the other hand, using the definition of trans-Sasakian manifold we find
(2.19) (Vx9)Y =Vx9Y —9Vx¥ = a[g(X,Y)E —n(Y)X]+ B [g(¢X,Y)E —n(Y)9X].
Substituting (2.17) and (2.18) in (2.19) we get
V@Y +C(X,9Y) +nh(X,9Y) +mh(X,9Y) — pVyY — ¢C(X,Y)
—¢nh(X,Y) —omh(X.Y) = a[g(X.Y)E —n(Y)X]+ B [s(9X,Y)E —n(Y)X].

Comparing components of (D@ {£}), D+, D+ and n respectively on both sides in the
above equation, we get the required results. 1

Corollary 2.1. Let 1 : M — M’ be a submersion of semi-invariant submanifold of (a) B-
Kenmotsu (b) a-Sasakian (c) Kenmotsu (d) Sasakian (e) cosymplectic manifold M respec-
tively onto an almost contact metric manifold M'. Then we have

() @) (Vi)Y =Bg(¢X,Y)E —n(Y)oX],
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®) (V39)Y = a[g(X.V)E ~n(V)X]
() (V0)Y =[g(6X.1)E ~ n(¥)oX]
) (Vi9)Y = (X.Y)E~n(¥)X)
©) (Vo) =0,

Now we prove

Theorem 2.1. Let w: M — M’ be a submersion of semi-invariant submanifold of a trans-
Sasakian manifold M onto an almost contact metric manifold M'. Then M’ is also a trans-
Sasakian manifold.

Proof. Using (2.12) of the Proposition 2.1, we write

(V¥9)Y = a[g(X.Y)E —n(¥)X] +B[g(9X.Y)E —n(Y)9X].
Applying 7, to the above equation and using Lemma 2.1, (2.8) and definition of submersion,
we derive

(V9" = o [¢' (X Y ) &' =1 (V) X.] + B [§(9'X.. Ya)E' — ' (Y)9'X.] .
The above equation shows that M’ is a trans-Sasakian manifold. 1
Corollary 2.2. Let 1 : M — M’ be a submersion of semi-invariant submanifold of (a)
B-Kenmotsu (b) a-Sasakian (c) Kenmotsu (d) Sasakian (e) cosymplectic manifold M re-

spectively onto an almost contact metric manifold M'. Then M’ is also ( d ) B-Kenmotsu ( b )
a-Sasakian ( ¢ ) Kenmotsu ( d ) Sasakian ( e ) cosymplectic manifold.

Proposition 2.2. Let 7 : M — M’ be a submersion of semi-invariant submanifold of a
trans-Sasakian manifold M onto an almost contact metric manifold M’. Then

(i) nh(¢X,9Y)+nh(¢X,Y)=0,
(ii) nh(9X,9Y)=nh(X,Y),
(iii) mh(9X,9Y)=—mh(X,Y),
(iv) C(0X,9Y) = C(X.Y)
forany XY € (D& {&}).
Proof.
(i) Interchanging X and Y in (2.14) gives
OC(Y,X) =nh(Y,9X) = nh(¢X,Y).
Then
nh(X,9Y)+nh(¢X,Y) =9C(X,Y)+¢C(Y,X) =¢C(X,Y)—¢C(X,Y) =0.
(ii) Putting X = ¢X in (2.14), we get
nh(9X,9Y) = 9C(9X,Y) = —9C(Y,9X).
Using (2.13) in the above equation, we deduce
nh(9X,9Y) = —¢C(Y,9X) = —@(¢nh(Y,X)) = —¢>nh(Y,X)
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=nh(Y,X)—n(h(X,Y))E =nh(Y,X).
(iii) Putting X = ¢X in (2.15) and using again the same equation, we find
mh($X,9Y) = ¢mh($X,Y) = ¢mh(Y,$X) = ¢*mh(Y,X) = —mh(X,Y).
(iv) Putting X = ¢X in (2.13) and then using (2.14) yields
C(9X,9Y) = onh(pX.Y) = ¢nh(Y,¢X) = 9> C(Y,X)
=—C,X)+n(CY,X))E=C(X,Y). 1

3. Curvature relations

Proposition 3.1. Let 1 : M — M’ be a submersion of semi-invariant submanifold of
a trans-Sasakian manifold M onto an almost contact metric manifold M'. Then the ¢-
bisectional curvature of M and M’ are related by

B(X,Y)=B'(X,.Y.) —2|Inh(X,Y)||* =2 ||nh(X,¢Y)|
—2g(nh(X,X),nh(Y,Y)) +2||mh(X,Y)|,
where XY € (D®{&}).

Proof. We know
B(X,Y) =R(X,0X,0Y.,Y).
PutY = ¢X,Z=¢Y, W =Y in Gauss equation
R(X,Y,Z,W)=R(X,Y,Z,W) —g(h(X,W),h(Y,Z)) + g(h(X,Z),h(Y,W)),
we get
R(X,0X,0Y.Y) =R(X,0X,9Y,Y) — g(h(X.Y),h(¢X,9Y)) + g(h(X,9Y),h(X.Y)).
Substituting & = nh+ mh, in the above equation, we arrive at
R(X,0X,0Y,Y) =R(X,0X,0Y,Y) —g(nh(X,Y) +mh(X,Y),nh(0X,0Y) +mh(¢X,9Y))
+g(nh(X,0Y)+mh(X,0Y),nh(¢X,Y)+mh(¢X,Y))
=R(X,0X,0Y,Y) —g(nh(X,Y),nh(9X,9Y)) — g(nh(X,Y),mh(¢X, Y ))
—&(mh(X,Y),nh(9X,9Y)) —g(mh(X,Y),mh(¢X,¢Y))
+8(nh(X,9Y),nh(¢X,Y))+g(nh(X,9Y),mh(¢X,Y))
+8(mh(X,9Y),nh(¢X,Y)) +g(mh(X,9Y),mh(¢X,Y))
=R(X,0X,0Y,Y) —g(nh(X,Y),nh(9X,9Y)) — g(mh(X,Y),mh(¢X,$Y))
+g(nh(X,9Y),nh(¢X,Y))+ g(mh(X,9Y),mh(¢X,Y))
=R(X,0X,9Y.Y)—g(nh(X,Y),nh(X,Y))+g(mh(X,Y),mh(X,Y))
—8(nh(X,9Y),nh(X,9Y)) +g(@mh(X,Y), pmh(X,Y))
3.1 = R(X,9X,9Y,Y) = |[nh(X,Y)[* +2[lmh(X,Y)|* = [nh(X, 9Y )||*.
Now by putting Y = ¢X, Z=¢Y, W =Y in (2.11) it follows
R(X.0X,0Y.Y) = R*(X.,0'X..,§'¥..Y.) - g(C(0X,0¥),C(X.Y))
+8(C(X,9Y),C($X,Y)) +2g(C(X, $X),C(9Y.Y))
= R*(X.,0'X,.9'Y..Y,) — g(C($X,9Y),C(X,Y))
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Applying ¢ to equation C(X,Y) =nh(X,¢Y), we get p>C(X,Y) = ¢pnh(X,¢Y). This gives
—C(X,Y)+n(C(X,Y))S = ¢nh(X,9Y)

or
C(X,Y)=—¢nh(X,0Y).
Using the above relation in (3.2), we conclude
43 R(X,0X,0Y,Y) = R*(X,,0'X,,0'Y,.Y,) — |[nh(X,Y)|?

— |lnh(X, Y )||* —2g(nh(X,X),nh(Y,Y)).
Put this value of R(X, ¢X,¢Y,Y) in (3.1) we obtain
R(X,$X,9Y,Y) = R* (X, 'X., 'Y, Y,) — [nh(X,Y)|* — [|Inh(X,¢Y )|
—2g(nh(X,X),nh(Y,Y)) = |[nh(X,Y)||* +2[lmh(X,Y)||* = ||nh(X, 9Y )|,
which implies that
B(X,Y) = B'(X.,Y.) = 2|[nh(X,Y)||* = 2 ||nh(X, Y)|?
—2g(nh(X,X),nh(Y,Y)) +2|lmh(X,Y)|*. 1
Corollary 3.1. Let T : M — M’ be a submersion of semi-invariant submanifold of a trans-

Sasakian manifold M onto an almost contact metric manifold. Then the ¢-sectional curva-
ture of M and M’ are related by

H(X) = H'(X,) =4 lnh(X,X)|* +2 |l mh(X, X)|,
where X € (D& {E}).
Proof. Putting X =Y in the above expression of B(X,Y) allow us to obtain
B(X,X) = H(X) = H'(X.) = 2|[nh(X X)|* — 2||nh(X, ¢X)||*
—2g(nh(X,X),nh(X,X)) +2|mh(X X)|*
= H'(X.) = 4[lnh(X,X)[* =2 |[nh(X,0X)||* +2 mh(X..X)]>.
Putting ¥ = X in (2.14) of Proposition 2.1
nh(X,9X) = ¢C(X,X)=0.
Thus we get
A(X) = H'(X.) — 4|nh(X . X)|* +2 |mh(X,X)|. I

4. Cohomology of submersion of semi-invariant submanifolds of trans-Sasakian ma-
nifolds

In this section, we discuss how the submersion 7 : M — M’ of a semi-invariant subman-
ifold M with minimal horizontal distribution (D @ {&}) effects the topology of M. Let M
be a semi-invariant submanifold of a trans-Sasakian manifold M with almost contact metric
structure (¢,€,1,g). Assume that dim(D& {£}) =2p+1 and dimM = m. We choose a lo-
cal orthonormal frame {e,e,...,e,, Pe, Qer, ....,Qe,, €251 = é,ezp+2,...7em} on M such
that {e1,e2,...,e,, Per, Pe,....,0e,, €251 = &} is a local orthonormal frame of (D@ {&})
and {e2p+2,€2p+3,--,em} is that of DL, Let {@!, @?,...., 0" 0?P*2 ... @™} be the
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dual frame of 1-forms to the above local orthonormal frame. Define a 2p 4 1-form Q on M
by

4.1 Q=0'A0*A.... A&7,
which is globally defined on M.

Definition 4.1. Ler S be a g-dimensional distribution on a Riemannian manifold M. If
Zi’:l V.ei €S, then the distribution S is said to be minimal, where V is the Riemannian
connection on M and {ey, ey, ...,e4 }is a local orthonormal frame of S.

Theorem 4.1. Let M be a trans-Sasakian manifold and M be a closed semi-invarinat sub-
manifold of M with minimal (D ® {&}). Let M’ be a almost contact metric manifold and
T : M — M’ a submersion. Then the 2p + 1-form Q is closed which defines a canonical de
Rham cohomology class [Q] € H*»*1(M,R), where 2p+1 = dim(D & {E}). Moreover the
cohomology group H*»*1 (M, R) is non-trivial if D* is minimal.

Proof. From definition (4.1) of Q, we have

2p+1

From the above equation it follows that dQ = 0 if and only if [8]
(42) d.Q.(Z,W,El,....,EQP)ZO and dQ.(Z,El, ...... ,EQP_H) =0

for ZW € Dt and Ey,...... Eypr1 € (D& {E}). Choosing the vectors Ej,...... Eypi1 €
(D& {&}) as a local orthonormal frame {ey,es,..., e,,Pe1,Per,.....,Pep,e2p11 = &} of
(D@ {&}) to which {®', @?,....,@**} works as dual frame of I1-forms, we get by a
straightforward computation that the first equation in (4.2) holds if and only if D is in-
tegrable; and the second equation in (4.2) holds if and only if (D& {£}) is minimal. How-
ever, from the definition of submersion it follows that D is integrable. The hypothesis of
theorem gives that (D & {£}) is minimal. Hence the form Q is closed, and it defines a de
Rham cohomology class [Q] € H***!(M,R).
Now suppose that D is minimal and we proceed to show that in this case

H* Y (M ,R) #0.

To accomplish this we show that the form € is harmonic which would then make the coho-
mology class [Q] non-trivial. Define a (m —2p — 1)-form Q* on M by setting

Qt =PI A LA™,

where {®?"2,...., ™} is the dual frame to the local orthonormal frame {€2p+1,-....,em } of
D+ Then with the similar argument for Q. it follows that dQ* = 0 if (D@ {&}) is integrable
and D is minimal. It should be noted that minimality of (D& {£}) implies its integrability.
Since both conditions are met, we have Q- = 0. This proves that the 2p + 1-form Q is co-
closed, that is §Q = 0. Since dQ = §Q = 0 and M is closed submanifold, we get that Q is
harmonic 2p + 1-form; and this completes the proof. 1
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