BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Submersion of Semi-Invariant Submanifolds of Trans-Sasakian Manifold

1 Mohammad Hasan Shahid, 2 Falleh R. Al-Solamy, 3 Jae-Bok Jun and 4 Mobin Ahmad

¹Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India ²Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box-80015, Jeddah 21589, Saudi Arabia

³Department of Mathematics, College of Natural Science, Kookmin University, Seoul 136-702, Korea ⁴Department of Mathematics, Integral University, Kursi Road, Lucknow, 226026, India ¹hasan_jmi@yahoo.com, ²falleh@hotmail.com, ³jbjun@kookmin.ac.kr, ⁴mobinahmad@rediffmail.com

Abstract. In this paper, we discuss submersion of semi-invariant submanifolds of trans-Sasakian manifold and derive some results on their differential geometry. We also discuss cohomology of semi-invariant submanifold of trans-Sasakian manifold under the submersion.

2010 Mathematics Subject Classification: 53C40

Keywords and phrases: Semi-invariant submanifolds, α -Sasakian manifold, β -Kenmotsu manifold, trans-Sasakian manifold, de Rham cohomology.

1. Introduction

The study of Riemannian submersions was initiated by O'Neill [15]. Semi-Riemannian submersions were introduced by O'Neill in [16]. It is well known that semi-Riemannian submersions are of interest in physics, owing to their applications in the Yang-Mills theory, Kaluza-Klein theory, supergravity and superstring theory [9, 11, 19, 20]. In [12], S. Kobayashi studied submersion of *CR*-submanifolds and obtained interesting results. In this paper we study submersion of semi-invariant submanifold of trans-Sasakian manifold.

Let \overline{M} be an *n*-dimensional almost contact metric manifold with almost contact metric structure (ϕ, ξ, η, g) . Then they satisfy

(1.1) $\phi^2 = -1 + \eta \otimes \xi, \quad \phi \circ \xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1,$

(1.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for any vector fields X, Y on \overline{M} .

Communicated by Young Jin Suh.

Received: November 2, 2010; Revised: February 22, 2011.

In 1985, Oubina introduced a new class of almost contact Riemannian manifold known as trans-Sasakian manifold [17]. An almost contact metric structure (ϕ, ξ, η, g) on \overline{M} is called *trans-Sasakian* if it satisfies

(1.3)
$$(\bar{\nabla}_X \phi)Y = \alpha \left[g(X,Y)\xi - \eta(Y)X\right] + \beta \left[g(\phi X,Y)\xi - \eta(Y)\phi X\right],$$

where α and β are non-zero constants on \overline{M} , $\overline{\nabla}$ is a Riemannian connection of g and we say that the trans-Sasakian structure is of type (α, β) . A trans-Sasakian manifold is a generalization of both α -Sasakian and β -Kenmotsu manifold.

Let *M* be an *n*-dimensional isometrically immersed submanifold of \overline{M} and tangent to ξ . Let *g* be the metric tensor field on \overline{M} as well as the induced metric on *M*.

Definition 1.1. An *m*-dimensional Riemannian submanifold *M* of a trans-Sasakian manifold \overline{M} is called a semi-invariant submanifold if ξ is tangent to *M* and it is endowed with a pair of orthogonal differentiable distributions (D,D^{\perp}) which satisfies

- (i) $TM = D \oplus D^{\perp} \oplus \{\xi\}$, where \oplus denotes the orthogonal direct sum,
- (ii) the distribution $D_x : x \longrightarrow D \subset T_x M$ is invariant under ϕ i.e. $\phi D_x \subset D_x$ for each $x \in M$,
- (iii) the orthogonal complementary distribution $D^{\perp} : x \longrightarrow D^{\perp} \subset T_x M$ of the distribution D on M is totally real i.e., $\phi D^{\perp} \subset T_x^{\perp} M$ where $T_x M, T_x^{\perp} M$ are the tangent space and the normal space of M at x respectively.

Let the dimension of D (resp. D^{\perp}) be 2p(resp. q) where 2p + q = m - 1. If p = 0 (resp. q = 0) the submanifold M becomes *anti-invariant* (resp. *invariant*) submanifold. A *generic* submanifold M satisfies dim $D^{\perp} = \dim T_x^{\perp} M$. A submanifold is called *proper* if it is neither invariant nor anti-invariant. It is easy to see that any hypersurface to which the vector field ξ is tangent is a typical example of semi-invariant submanifold.

Definition 1.2. Let M be a semi-invariant submanifold of a trans-Sasakian manifold \overline{M} and M' be an almost contact metric manifold with the almost contact metric structure (ϕ', ξ', η', g') . Assume that there is a submersion $\pi : M \longrightarrow M'$ such that

- (i) $D^{\perp} = \ker \pi_*$, where $\pi_* : TM \longrightarrow TM'$ is the tangent mapping to π ,
- (ii) π_{*}: D_p ⊕ {ξ} → T_{π(p)}M' is an isometry for each p ∈ M which satisfies π_{*} ∘ φ = φ' ∘ π_{*}; η = η' ∘ π_{*}; π_{*}(ξ_p) = ξ'_{π(p)}, where T_{π(p)}M' denotes the tangent space of M' at π(p).

Papaghuic studied submersion of semi-invariant submanifolds of a Sasakian manifold [18]. For trans-Sasakian manifold we prove

Theorem 1.1. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of a trans-Sasakian manifold \overline{M} onto an almost contact metric manifold M'. Then M' is also a trans-Sasakian manifold.

In particular, we obtain results on Sasakian manifold, Kenmotsu manifold, cosymplectic manifold, α -Sasakian manifold and β -Kenmotsu manifold through submersion of semiinvariant submanifolds. We also derive expressions relating curvatures of \overline{M} and M' via submersions.

2. Preliminaries and some results

Let *M* be an *n*-dimensional isometrically immersed submanifold of trans-Sasakian manifold \overline{M} and tangent to ξ and suppose $\overline{\nabla}$ (resp. ∇) be the covariant differentiation with respect to the Levi-Civita connection on \overline{M} (resp. *M*). The Gauss and Weingarten formulae for *M* are respectively given by

(2.1)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X,Y)$$

and

(2.2)
$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N$$

for $X, Y \in TM, N \in T^{\perp}M$, where *h* (resp. *A*) is the second fundamental form (resp. tensor) of *M* in \overline{M} and ∇^{\perp} denotes the operator of the normal connection. Moreover we have

(2.3)
$$g(h(X,Y),N) = g(A_NX,Y).$$

The projection of TM to D and D^{\perp} are denoted by h and v respectively i.e., for any $X \in TM$ we have

(2.4)
$$X = hX + vX + \eta(X)\xi.$$

The normal bundle to M has the decomposition

$$(2.5) T^{\perp}M = \phi D^{\perp} \oplus n_1,$$

where $g(\phi D^{\perp}, n_1) = \{0\}$. For any $U \in T^{\perp}M$, we put

$$(2.6) U = nU + mU,$$

where $nU \in \phi D^{\perp}$, $mU \in n_1$. Making use of the above equation, we may write

(2.7)
$$\phi U = \phi nU + \phi mU, \quad U \in T^{\perp}M, \quad \phi nU \in D^{\perp}, \quad \phi mU \in n_1.$$

A vector field *X* on *M* is said to be *basic* if $X \in D_p \oplus \{\xi\}$ and *X* is π -related to a vector field on *M'* i.e., there exists a vector field $X_* \in TM'$ such that $\pi_*(X_p) = X_{*\pi(p)}$ for each $p \in M$. Note that, by condition (ii) of the above definition 1.2, we have that the structural vector field ξ is a basic vector field.

Lemma 2.1. [18] Let X, Y be basic vector fields on M. Then

- (i) $g(X,Y) = g'(X_*,Y_*) \circ \pi$,
- (ii) the component h([X,Y]) + η([X,Y])ξ of [X,Y] is a basic vector field and corresponds to [X_{*},Y_{*}], i.e., π_{*}(h([X,Y]) + η([X,Y])ξ) = [X_{*},Y_{*}],
- (iii) $[U,X] \in D^{\perp}$ for any $U \in D^{\perp}$,
- (iv) $h(\nabla_X Y) + \eta(\nabla_X Y)\xi$ is a basic vector field corresponding to $\nabla_{X_*}^* Y_*$, where ∇^* denotes the Levi-Civita connection on M'.

For basic vector fields on M, we define the operator $\tilde{\nabla}^*$ corresponding to ∇^* by setting $\tilde{\nabla}^*_X Y = h(\nabla_X Y) + \eta(\nabla_X Y)\xi$ for $X, Y \in (D \oplus \{\xi\})$. By (iv) of lemma 2.1, $\tilde{\nabla}^*_X Y$ is a basic vector field and we have

(2.8)
$$\pi_*(\tilde{\nabla}_X^*Y) = \nabla_{X_*}^*Y_*.$$

Define the tensor field *C* by

(2.9)
$$\nabla_X Y = \widetilde{\nabla}_X^* Y + C(X,Y), \quad X,Y \in (D \oplus \{\xi\}),$$

where C(X,Y) is the vertical part of $\nabla_X Y$. It is known that *C* is skew-symmetric and satisfies

(2.10)
$$C(X,Y) = \frac{1}{2}v[X,Y], \quad X,Y \in (D \oplus \{\xi\}).$$

The curvature tensors R, R^* of the connection ∇, ∇^* on M and M' respectively are related by [18]

(2.11)
$$R(X,Y,Z,W) = R^*(X_*,Y_*,Z_*,W_*) - g(C(Y,Z),C(X,W)) + g(C(X,Z),C(Y,W)) + 2g(C(X,Y),C(Z,W)) \quad X,Y,Z,W \in (D \oplus \{\xi\}),$$

where $\pi_* X = X_*, \pi_* Y = Y_*, \pi_* Z = Z_*$ and $\pi_* W = W_* \in \chi(M')$.

First we prove the following.

Proposition 2.1. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of a trans-Sasakian manifold \overline{M} onto an almost contact metric manifold M'. Then we have

(2.12)
$$(\nabla_X^* \phi) Y = \alpha \left[g(X, Y) \xi - \eta(Y) X \right] + \beta \left[g(\phi X, Y) \xi - \eta(Y) \phi X \right],$$

(2.13)
$$C(X,\phi Y) = \phi nh(X,Y),$$

(2.14) $\phi C(X,Y) = nh(X,\phi Y),$

(2.15)
$$\phi mh(X,Y) = mh(X,\phi Y)$$

for any $X, Y \in (D \oplus \{\xi\})$.

Proof. For any $X, Y \in (D \oplus \{\xi\})$ and by using Gauss formula (2.1), decomposition equation (2.6) and (2.9) we obtain

(2.16)
$$\nabla_X Y = \nabla_X Y + h(X,Y) = \nabla_X Y + nh(X,Y) + mh(X,Y)$$
$$= \tilde{\nabla}_X^* Y + C(X,Y) + nh(X,Y) + mh(X,Y).$$

Hence

(2.17)
$$\phi \overline{\nabla}_X Y = \phi \overline{\nabla}_X^* Y + \phi C(X,Y) + \phi nh(X,Y) + \phi mh(X,Y).$$

Putting $Y = \phi Y$ in (2.16), it follows

(2.18)
$$\bar{\nabla}_X \phi Y = \tilde{\nabla}_X^* \phi Y + C(X, \phi Y) + nh(X, \phi Y) + mh(X, \phi Y).$$

On the other hand, using the definition of trans-Sasakian manifold we find

(2.19)
$$(\bar{\nabla}_X \phi)Y = \bar{\nabla}_X \phi Y - \phi \bar{\nabla}_X Y = \alpha \left[g(X,Y)\xi - \eta(Y)X\right] + \beta \left[g(\phi X,Y)\xi - \eta(Y)\phi X\right].$$

Substituting (2.17) and (2.18) in (2.19) we get

$$\begin{split} \bar{\nabla}_X^* \phi Y + C(X, \phi Y) + nh(X, \phi Y) + mh(X, \phi Y) - \phi \bar{\nabla}_X^* Y - \phi C(X, Y) \\ - \phi nh(X, Y) - \phi mh(X, Y) = \alpha \left[g(X, Y)\xi - \eta(Y)X \right] + \beta \left[g(\phi X, Y)\xi - \eta(Y)\phi X \right]. \end{split}$$

Comparing components of $(D \oplus \{\xi\})$, D^{\perp} , ϕD^{\perp} and n_1 respectively on both sides in the above equation, we get the required results.

Corollary 2.1. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of (a) β -Kenmotsu (b) α -Sasakian (c) Kenmotsu (d) Sasakian (e) cosymplectic manifold \overline{M} respectively onto an almost contact metric manifold M'. Then we have

(i) (a')
$$(\tilde{\nabla}_X^* \phi) Y = \beta [g(\phi X, Y)\xi - \eta(Y)\phi X],$$

(b)
$$(\tilde{\nabla}_X^*\phi)Y = \alpha [g(X,Y)\xi - \eta(Y)X],$$

(c) $(\tilde{\nabla}_X^*\phi)Y = [g(\phi X,Y)\xi - \eta(Y)\phi X],$
(d) $(\tilde{\nabla}_X^*\phi)Y = [g(X,Y)\xi - \eta(Y)X],$
(e) $(\tilde{\nabla}_X^*\phi)Y = 0,$
(ii) $C(X,\phi Y) = \phi nh(X,Y),$
(iii) $\phi C(X,Y) = nh(X,\phi Y)$

(iv)
$$\phi mh(X,Y) = mh(X,\phi Y)$$

for any $X, Y \in (D \oplus \{\xi\})$.

Now we prove

Theorem 2.1. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of a trans-Sasakian manifold \overline{M} onto an almost contact metric manifold M'. Then M' is also a trans-Sasakian manifold.

Proof. Using (2.12) of the Proposition 2.1, we write

$$(\nabla_X^*\phi)Y = \alpha \left[g(X,Y)\xi - \eta(Y)X\right] + \beta \left[g(\phi X,Y)\xi - \eta(Y)\phi X\right].$$

Applying π_* to the above equation and using Lemma 2.1, (2.8) and definition of submersion, we derive

$$(\tilde{\nabla}_{X_*}^*\phi')Y_* = \alpha \left[g'(X_*,Y_*)\xi' - \eta'(Y_*)X_*\right] + \beta \left[g'(\phi'X_*,Y_*)\xi' - \eta'(Y_*)\phi'X_*\right].$$

The above equation shows that M' is a trans-Sasakian manifold.

Corollary 2.2. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of (a) β -Kenmotsu (b) α -Sasakian (c) Kenmotsu (d) Sasakian (e) cosymplectic manifold \overline{M} respectively onto an almost contact metric manifold M'. Then M' is also (a') β -Kenmotsu (b') α -Sasakian (c') Kenmotsu (d') Sasakian (e') cosymplectic manifold.

Proposition 2.2. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of a trans-Sasakian manifold \overline{M} onto an almost contact metric manifold M'. Then

- (i) $nh(\phi X, \phi Y) + nh(\phi X, Y) = 0$,
- (ii) $nh(\phi X, \phi Y) = nh(X, Y)$,
- (iii) $mh(\phi X, \phi Y) = -mh(X, Y),$
- (iv) $C(\phi X, \phi Y) = C(X, Y)$

for any $X, Y \in (D \oplus \{\xi\})$.

Proof.

(i) Interchanging *X* and *Y* in (2.14) gives

$$\phi C(Y,X) = nh(Y,\phi X) = nh(\phi X,Y).$$

Then

$$nh(X,\phi Y) + nh(\phi X,Y) = \phi C(X,Y) + \phi C(Y,X) = \phi C(X,Y) - \phi C(X,Y) = 0.$$

(ii) Putting $X = \phi X$ in (2.14), we get

$$nh(\phi X, \phi Y) = \phi C(\phi X, Y) = -\phi C(Y, \phi X).$$

Using (2.13) in the above equation, we deduce

 $nh(\phi X, \phi Y) = -\phi C(Y, \phi X) = -\phi (\phi nh(Y, X)) = -\phi^2 nh(Y, X)$

$$= nh(Y,X) - \eta(h(X,Y))\xi = nh(Y,X).$$

(iii) Putting $X = \phi X$ in (2.15) and using again the same equation, we find

$$mh(\phi X, \phi Y) = \phi mh(\phi X, Y) = \phi mh(Y, \phi X) = \phi^2 mh(Y, X) = -mh(X, Y).$$

(iv) Putting $X = \phi X$ in (2.13) and then using (2.14) yields

$$C(\phi X, \phi Y) = \phi nh(\phi X, Y) = \phi nh(Y, \phi X) = \phi^2 C(Y, X)$$
$$= -C(Y, X) + \eta (C(Y, X))\xi = C(X, Y).$$

3. Curvature relations

Proposition 3.1. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of a trans-Sasakian manifold \overline{M} onto an almost contact metric manifold M'. Then the ϕ -bisectional curvature of \overline{M} and M' are related by

$$\bar{B}(X,Y) = B'(X_*,Y_*) - 2 \|nh(X,Y)\|^2 - 2 \|nh(X,\phi Y)\|^2 - 2g(nh(X,X),nh(Y,Y)) + 2 \|mh(X,Y)\|^2,$$

where $X, Y \in (D \oplus \{\xi\})$.

Proof. We know

$$\bar{B}(X,Y) = \bar{R}(X,\phi X,\phi Y,Y).$$

Put $Y = \phi X$, $Z = \phi Y$, W = Y in Gauss equation

$$\bar{R}(X,Y,Z,W) = R(X,Y,Z,W) - g(h(X,W),h(Y,Z)) + g(h(X,Z),h(Y,W)),$$

we get

$$\bar{R}(X,\phi X,\phi Y,Y) = R(X,\phi X,\phi Y,Y) - g(h(X,Y),h(\phi X,\phi Y)) + g(h(X,\phi Y),h(\phi X,Y)).$$

Substituting h = nh + mh, in the above equation, we arrive at

$$\begin{split} \bar{R}(X,\phi X,\phi Y,Y) &= R(X,\phi X,\phi Y,Y) - g(nh(X,Y) + mh(X,Y),nh(\phi X,\phi Y) + mh(\phi X,\phi Y)) \\ &+ g(nh(X,\phi Y) + mh(X,\phi Y),nh(\phi X,Y) + mh(\phi X,Y)) \\ &= R(X,\phi X,\phi Y,Y) - g(nh(X,Y),nh(\phi X,\phi Y)) - g(nh(X,Y),mh(\phi X,\phi Y)) \\ &- g(mh(X,Y),nh(\phi X,\phi Y)) - g(mh(X,Y),mh(\phi X,\phi Y)) \\ &+ g(nh(X,\phi Y),nh(\phi X,Y)) + g(nh(X,\phi Y),mh(\phi X,Y)) \\ &+ g(mh(X,\phi Y),nh(\phi X,Y)) + g(mh(X,\phi Y),mh(\phi X,Y)) \\ &= R(X,\phi X,\phi Y,Y) - g(nh(X,Y),nh(\phi X,\phi Y)) - g(mh(X,Y),mh(\phi X,\phi Y)) \\ &+ g(nh(X,\phi Y),nh(\phi X,Y)) + g(mh(X,\phi Y),mh(\phi X,Y)) \\ &= R(X,\phi X,\phi Y,Y) - g(nh(X,Y),nh(X,Y)) + g(mh(X,Y),mh(X,Y)) \\ &- g(nh(X,\phi Y),nh(X,\phi Y)) + g(\phi mh(X,Y),\phi mh(X,Y)) \\ &(3.1) &= R(X,\phi X,\phi Y,Y) - \|nh(X,Y)\|^2 + 2 \|mh(X,Y)\|^2 - \|nh(X,\phi Y)\|^2. \end{split}$$
Now by putting $Y = \phi X, Z = \phi Y, W = Y$ in (2.11) it follows

$$R(X, \phi X, \phi Y, Y) = R^*(X_*, \phi' X_*, \phi' Y_*, Y_*) - g(C(\phi X, \phi Y), C(X, Y)) + g(C(X, \phi Y), C(\phi X, Y)) + 2g(C(X, \phi X), C(\phi Y, Y)) = R^*(X_*, \phi' X_*, \phi' Y_*, Y_*) - g(C(\phi X, \phi Y), C(X, Y))$$

68

Submersion of Semi-Invariant Submanifolds of Trans-Sasakian Manifold

(3.2)
$$-g(C(X,\phi Y),C(Y,\phi X)) - 2g(C(X,\phi X),C(Y,\phi Y)).$$

Applying ϕ to equation $\phi C(X, Y) = nh(X, \phi Y)$, we get $\phi^2 C(X, Y) = \phi nh(X, \phi Y)$. This gives

$$-C(X,Y) + \eta(C(X,Y))\xi = \phi nh(X,\phi Y)$$

or

 $C(X,Y) = -\phi nh(X,\phi Y).$

Using the above relation in (3.2), we conclude

(3.3)
$$R(X,\phi X,\phi Y,Y) = R^*(X_*,\phi' X_*,\phi' Y_*,Y_*) - \|nh(X,Y)\|^2 - \|nh(X,\phi Y)\|^2 - 2g(nh(X,X),nh(Y,Y)).$$

Put this value of $R(X, \phi X, \phi Y, Y)$ in (3.1) we obtain

$$\bar{R}(X,\phi X,\phi Y,Y) = R^*(X_*,\phi'X_*,\phi'Y_*,Y_*) - \|nh(X,Y)\|^2 - \|nh(X,\phi Y)\|^2 - 2g(nh(X,X),nh(Y,Y)) - \|nh(X,Y)\|^2 + 2\|mh(X,Y)\|^2 - \|nh(X,\phi Y)\|^2,$$

which implies that

$$\bar{B}(X,Y) = B'(X_*,Y_*) - 2 \|nh(X,Y)\|^2 - 2 \|nh(X,\phi Y)\|^2 - 2g(nh(X,X),nh(Y,Y)) + 2 \|mh(X,Y)\|^2.$$

Corollary 3.1. Let $\pi : M \longrightarrow M'$ be a submersion of semi-invariant submanifold of a trans-Sasakian manifold \overline{M} onto an almost contact metric manifold. Then the ϕ -sectional curvature of \overline{M} and M' are related by

$$\bar{H}(X) = H'(X_*) - 4 \|nh(X,X)\|^2 + 2 \|mh(X,X)\|^2,$$

where $X \in (D \oplus \{\xi\})$.

Proof. Putting X = Y in the above expression of $\overline{B}(X, Y)$ allow us to obtain

$$\begin{split} \bar{B}(X,X) &= \bar{H}(X) = H'(X_*) - 2 \|nh(X,X)\|^2 - 2 \|nh(X,\phi X)\|^2 \\ &- 2g(nh(X,X),nh(X,X)) + 2 \|mh(X,X)\|^2 \\ &= H'(X_*) - 4 \|nh(X,X)\|^2 - 2 \|nh(X,\phi X)\|^2 + 2 \|mh(X,X)\|^2 \,. \end{split}$$

Putting Y = X in (2.14) of Proposition 2.1

$$nh(X,\phi X) = \phi C(X,X) = 0.$$

Thus we get

$$\bar{H}(X) = H'(X_*) - 4 \|nh(X,X)\|^2 + 2 \|mh(X,X)\|^2.$$

4. Cohomology of submersion of semi-invariant submanifolds of trans-Sasakian manifolds

In this section, we discuss how the submersion $\pi: M \longrightarrow M'$ of a semi-invariant submanifold M with minimal horizontal distribution $(D \oplus \{\xi\})$ effects the topology of M. Let M be a semi-invariant submanifold of a trans-Sasakian manifold \overline{M} with almost contact metric structure (ϕ, ξ, η, g) . Assume that $\dim(D \oplus \{\xi\}) = 2p + 1$ and $\dim M = m$. We choose a local orthonormal frame $\{e_1, e_2, ..., e_p, \phi e_1, \phi e_2, ..., \phi e_p, e_{2p+1} = \xi, e_{2p+2}, ..., e_m\}$ on M such that $\{e_1, e_2, ..., e_p, \phi e_1, \phi e_2, ..., \phi e_p, e_{2p+1} = \xi\}$ is a local orthonormal frame of $(D \oplus \{\xi\})$ and $\{e_{2p+2}, e_{2p+3}, ..., e_m\}$ is that of D^{\perp} . Let $\{\omega^1, \omega^2, ..., \omega^{2p+1}, \omega^{2p+2}, ..., \omega^m\}$ be the dual frame of 1-forms to the above local orthonormal frame. Define a 2p + 1-form Ω on M by

(4.1)
$$\Omega = \omega^1 \wedge \omega^2 \wedge \dots \wedge \omega^{2p+1},$$

which is globally defined on *M*.

Definition 4.1. Let *S* be a *q*-dimensional distribution on a Riemannian manifold *M*. If $\sum_{i=1}^{q} \nabla_{e_i} e_i \in S$, then the distribution *S* is said to be minimal, where ∇ is the Riemannian connection on *M* and $\{e_1, e_2, ..., e_q\}$ is a local orthonormal frame of *S*.

Theorem 4.1. Let \overline{M} be a trans-Sasakian manifold and M be a closed semi-invariant submanifold of \overline{M} with minimal $(D \oplus \{\xi\})$. Let M' be a almost contact metric manifold and $\pi: M \longrightarrow M'$ a submersion. Then the 2p + 1-form Ω is closed which defines a canonical de Rham cohomology class $[\Omega] \in H^{2p+1}(M, R)$, where $2p + 1 = \dim(D \oplus \{\xi\})$. Moreover the cohomology group $H^{2p+1}(M, R)$ is non-trivial if D^{\perp} is minimal.

Proof. From definition (4.1) of Ω , we have

$$d\Omega = \sum_{i=1}^{2p+1} (-1)^{i-1} \omega^1 \wedge ... \wedge d\omega^i \wedge \wedge \omega^{2p+1}.$$

From the above equation it follows that $d\Omega = 0$ if and only if [8]

(4.2)
$$d\Omega(Z, W, E_1, \dots, E_{2p}) = 0$$
 and $d\Omega(Z, E_1, \dots, E_{2p+1}) = 0$

for $Z, W \in D^{\perp}$ and $E_1, \ldots, E_{2p+1} \in (D \oplus \{\xi\})$. Choosing the vectors $E_1, \ldots, E_{2p+1} \in (D \oplus \{\xi\})$ as a local orthonormal frame $\{e_1, e_2, \ldots, e_p, \phi e_1, \phi e_2, \ldots, \phi e_p, e_{2p+1} = \xi\}$ of $(D \oplus \{\xi\})$ to which $\{\omega^1, \omega^2, \ldots, \omega^{2p+1}\}$ works as dual frame of 1-forms, we get by a straightforward computation that the first equation in (4.2) holds if and only if D^{\perp} is integrable; and the second equation in (4.2) holds if and only if $(D \oplus \{\xi\})$ is minimal. However, from the definition of submersion it follows that D^{\perp} is integrable. The hypothesis of theorem gives that $(D \oplus \{\xi\})$ is minimal. Hence the form Ω is closed, and it defines a de Rham cohomology class $[\Omega] \in H^{2p+1}(M, R)$.

Now suppose that D^{\perp} is minimal and we proceed to show that in this case

$$H^{2p+1}(M,R) \neq 0.$$

To accomplish this we show that the form Ω is harmonic which would then make the cohomology class $[\Omega]$ non-trivial. Define a (m-2p-1)-form Ω^{\perp} on *M* by setting

$$\Omega^{\perp} = \omega^{2p+2} \wedge \wedge \omega^m,$$

where $\{\omega^{2p+2}, ..., \omega^m\}$ is the dual frame to the local orthonormal frame $\{e_{2p+1}, ..., e_m\}$ of D^{\perp} . Then with the similar argument for Ω , it follows that $d\Omega^{\perp} = 0$ if $(D \oplus \{\xi\})$ is integrable and D^{\perp} is minimal. It should be noted that minimality of $(D \oplus \{\xi\})$ implies its integrability. Since both conditions are met, we have $d\Omega^{\perp} = 0$. This proves that the 2p + 1-form Ω is coclosed, that is $\delta\Omega = 0$. Since $d\Omega = \delta\Omega = 0$ and *M* is closed submanifold, we get that Ω is harmonic 2p + 1-form; and this completes the proof.

Acknowledgement. The authors would like to express their thanks to the referee for several valuable suggestions. This work is partially supported by Kookmin University 2011.

References

- [1] A. Bejancu, CR submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135–142.
- [2] A. Bejancu, CR submanifolds of a Kaehler manifold. II, Trans. Amer. Math. Soc. 250 (1979), 333–345.
- [3] A. Bejancu and N. Papaghuic, CR-submanifolds of Kenmotsu manifold, *Rend. Math.* (7) (1984), no. 4, 607–622.
- [4] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976.
- [5] D. E. Blair and J. A. Oubiña, Conformal and related changes of metric on the product of two almost contact metric manifolds, *Publ. Mat.* 34 (1990), no. 1, 199–207.
- [6] B.-Y. Chen, Riemannian submersions, minimal immersions and cohomology class, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 162–167 (2006).
- [7] B. Chen, CR-submanifolds of a Kaehler manifold. I, J. Differential Geom. 16 (1981), no. 2, 305–322.
- [8] B. Chen, Cohomology of CR-submanifolds, Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), no. 2, 167–172.
- [9] M. Falcitelli, S. Ianus, A. M. Pastore and M. Visinescu, Some applications of Riemannian submersions in physics, *Rev. Roum. Phys.* 48 (2003), 627–639.
- [10] M. H. Shahid, CR-submanifolds of a trans-Sasakian manifold, *Indian J. Pure Appl. Math.* 22 (1991), no. 12, 1007–1012.
- [11] S. Ianuş and M. Vişinescu, Space-time compactification and Riemannian submersions, in *The Mathematical Heritage of C. F. Gauss*, 358–371, World Sci. Publ., River Edge, NJ, 1991.
- [12] S. Kobayashi, Submersions of CR submanifolds, Tohoku Math. J. (2) 39 (1987), no. 1, 95–100.
- [13] M. Kobayashi, CR submanifolds of a Sasakian manifold, Tensor (N.S.) 35 (1981), no. 3, 297-307.
- [14] K. Matsumoto, M. H. Shahid and I. Mihai, Semi-invariant submanifolds of certain almost contact manifolds, *Bull. Yamagata Univ. Natur. Sci.* 13 (1994), no. 3, 183–192.
- [15] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
- [16] B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, New York, 1983.
- [17] J. A. Oubiña, New classes of almost contact metric structures, *Publ. Math. Debrecen* 32 (1985), no. 3-4, 187–193.
- [18] N. Papaghiuc, Submersions of semi-invariant submanifolds of a Sasakian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Sect. I a Mat. 35 (1989), no. 3, 281–288.
- [19] M. Vişinescu, Space-time compactification induced by nonlinear sigma models, gauge fields and submersions, *Czechoslovak J. Phys. B* 37 (1987), no. 4, 525–528.
- [20] B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, in Global Analysis–Analysis on Manifolds, 324–349, Teubner-Texte Math., 57 Teubner, Leipzig, 1983
- [21] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Sci. Publishing, Singapore, 1984.