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Abstract. In this paper, we discuss submersion of semi-invariant submanifolds of trans-
Sasakian manifold and derive some results on their differential geometry. We also discuss
cohomology of semi-invariant submanifold of trans-Sasakian manifold under the submer-
sion.
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1. Introduction

The study of Riemannian submersions was initiated by O’Neill [15]. Semi-Riemannian
submersions were introduced by O’Neill in [16]. It is well known that semi-Riemannian
submersions are of interest in physics, owing to their applications in the Yang-Mills the-
ory, Kaluza-Klein theory, supergravity and superstring theory [9, 11, 19, 20]. In [12], S.
Kobayashi studied submersion of CR-submanifolds and obtained interesting results. In this
paper we study submersion of semi-invariant submanifold of trans-Sasakian manifold.

Let M̄ be an n-dimensional almost contact metric manifold with almost contact metric
structure (φ ,ξ ,η ,g). Then they satisfy

(1.1) φ
2 =−1+η⊗ξ , φ ◦ξ = 0, η ◦φ = 0, η(ξ ) = 1,

(1.2) g(φX ,φY ) = g(X ,Y )−η(X)η(Y )

for any vector fields X ,Y on M̄.
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In 1985, Oubina introduced a new class of almost contact Riemannian manifold known
as trans-Sasakian manifold [17]. An almost contact metric structure (φ ,ξ ,η ,g) on M̄ is
called trans-Sasakian if it satisfies

(1.3) (∇̄X φ)Y = α [g(X ,Y )ξ −η(Y )X ]+β [g(φX ,Y )ξ −η(Y )φX ] ,

where α and β are non-zero constants on M̄, ∇̄ is a Riemannian connection of g and we say
that the trans-Sasakian structure is of type (α,β ). A trans-Sasakian manifold is a general-
ization of both α-Sasakian and β -Kenmotsu manifold.

Let M be an n-dimensional isometrically immersed submanifold of M̄ and tangent to ξ .
Let g be the metric tensor field on M̄ as well as the induced metric on M.

Definition 1.1. An m-dimensional Riemannian submanifold M of a trans-Sasakian manifold
M̄ is called a semi-invariant submanifold if ξ is tangent to M and it is endowed with a pair
of orthogonal differentiable distributions (D,D⊥) which satisfies

(i) T M = D⊕D⊥⊕{ξ}, where ⊕ denotes the orthogonal direct sum,
(ii) the distribution Dx : x −→ D ⊂ TxM is invariant under φ i.e. φDx ⊂ Dx for each

x ∈M,
(iii) the orthogonal complementary distribution D⊥ : x−→D⊥⊂ TxM of the distribution

D on M is totally real i.e., φD⊥ ⊂ T⊥x M where TxM,T⊥x M are the tangent space
and the normal space of M at x respectively.

Let the dimension of D (resp. D⊥) be 2p(resp. q) where 2p+q = m−1. If p = 0 (resp.
q = 0) the submanifold M becomes anti-invariant (resp. invariant) submanifold. A generic
submanifold M satisfies dimD⊥ = dimT⊥x M. A submanifold is called proper if it is neither
invariant nor anti-invariant. It is easy to see that any hypersurface to which the vector field
ξ is tangent is a typical example of semi-invariant submanifold.

Definition 1.2. Let M be a semi-invariant submanifold of a trans-Sasakian manifold M̄
and M′ be an almost contact metric manifold with the almost contact metric structure
(φ ′,ξ ′,η ′,g′). Assume that there is a submersion π : M −→M′ such that

(i) D⊥ = kerπ∗, where π∗ : T M −→ T M′ is the tangent mapping to π ,
(ii) π∗ : Dp⊕{ξ} −→ Tπ(p)M′ is an isometry for each p ∈M which satisfies π∗ ◦φ =

φ ′ ◦π∗; η = η ′ ◦π∗; π∗(ξp) = ξ ′
π(p), where Tπ(p)M′ denotes the tangent space of

M′ at π(p).

Papaghuic studied submersion of semi-invariant submanifolds of a Sasakian manifold
[18]. For trans-Sasakian manifold we prove

Theorem 1.1. Let π : M −→M′ be a submersion of semi-invariant submanifold of a trans-
Sasakian manifold M̄ onto an almost contact metric manifold M′. Then M′ is also a trans-
Sasakian manifold.

In particular, we obtain results on Sasakian manifold, Kenmotsu manifold, cosymplectic
manifold, α-Sasakian manifold and β -Kenmotsu manifold through submersion of semi-
invariant submanifolds. We also derive expressions relating curvatures of M̄ and M′ via
submersions.



Submersion of Semi-Invariant Submanifolds of Trans-Sasakian Manifold 65

2. Preliminaries and some results

Let M be an n-dimensional isometrically immersed submanifold of trans-Sasakian manifold
M̄ and tangent to ξ and suppose ∇̄ (resp. ∇) be the covariant differentiation with respect to
the Levi-Civita connection on M̄ (resp. M). The Gauss and Weingarten formulae for M are
respectively given by

(2.1) ∇̄XY = ∇XY +h(X ,Y )

and

(2.2) ∇̄X N =−ANX +∇
⊥
X N

for X ,Y ∈ T M, N ∈ T⊥M, where h (resp. A) is the second fundamental form (resp. tensor)
of M in M̄ and ∇⊥ denotes the operator of the normal connection. Moreover we have

(2.3) g(h(X ,Y ),N) = g(ANX ,Y ).

The projection of T M to D and D⊥ are denoted by h and v respectively i.e., for any
X ∈ T M we have

(2.4) X = hX + vX +η(X)ξ .

The normal bundle to M has the decomposition

(2.5) T⊥M = φD⊥⊕n1,

where g(φD⊥,n1) = {0}. For any U ∈ T⊥M, we put

(2.6) U = nU +mU,

where nU ∈ φD⊥, mU ∈ n1. Making use of the above equation, we may write

(2.7) φU = φnU +φmU, U ∈ T⊥M, φnU ∈ D⊥, φmU ∈ n1.

A vector field X on M is said to be basic if X ∈ Dp⊕{ξ} and X is π-related to a vector
field on M′ i.e., there exists a vector field X∗ ∈ T M′ such that π∗(Xp) = X∗π(p) for each
p ∈ M. Note that, by condition (ii) of the above definition 1.2, we have that the structural
vector field ξ is a basic vector field.

Lemma 2.1. [18] Let X ,Y be basic vector fields on M. Then
(i) g(X ,Y ) = g′(X∗,Y∗)◦π ,

(ii) the component h([X ,Y ]) + η([X ,Y ])ξ of [X ,Y ] is a basic vector field and corre-
sponds to [X∗,Y∗], i.e., π∗(h([X ,Y ])+η([X ,Y ])ξ ) = [X∗,Y∗],

(iii) [U,X ] ∈ D⊥ for any U ∈ D⊥,
(iv) h(∇XY )+ η(∇XY )ξ is a basic vector field corresponding to ∇∗X∗Y∗, where ∇∗ de-

notes the Levi-Civita connection on M′.

For basic vector fields on M, we define the operator ∇̃∗ corresponding to ∇∗ by setting
∇̃∗XY = h(∇XY )+ η(∇XY )ξ for X ,Y ∈ (D⊕{ξ}). By (iv) of lemma 2.1, ∇̃∗XY is a basic
vector field and we have

(2.8) π∗(∇̃∗XY ) = ∇
∗
X∗Y∗.

Define the tensor field C by

(2.9) ∇XY = ∇̃
∗
XY +C(X ,Y ), X ,Y ∈ (D⊕{ξ}),
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where C(X ,Y ) is the vertical part of ∇XY. It is known that C is skew-symmetric and satisfies

(2.10) C(X ,Y ) =
1
2

v[X ,Y ], X ,Y ∈ (D⊕{ξ}).

The curvature tensors R,R∗ of the connection ∇,∇∗ on M and M′ respectively are related
by [18]

R(X ,Y,Z,W ) = R∗(X∗,Y∗,Z∗,W∗)−g(C(Y,Z),C(X ,W ))+g(C(X ,Z),C(Y,W ))

+2g(C(X ,Y ),C(Z,W )) X ,Y,Z,W ∈ (D⊕{ξ}),
(2.11)

where π∗X = X∗, π∗Y = Y∗, π∗Z = Z∗ and π∗W = W∗ ∈ χ(M′).
First we prove the following.

Proposition 2.1. Let π : M −→ M′ be a submersion of semi-invariant submanifold of a
trans-Sasakian manifold M̄ onto an almost contact metric manifold M′. Then we have

(2.12) (∇̃∗X φ)Y = α [g(X ,Y )ξ −η(Y )X ]+β [g(φX ,Y )ξ −η(Y )φX ] ,

C(X ,φY ) = φnh(X ,Y ),(2.13)

φC(X ,Y ) = nh(X ,φY ),(2.14)

φmh(X ,Y ) = mh(X ,φY )(2.15)

for any X ,Y ∈ (D⊕{ξ}).

Proof. For any X ,Y ∈ (D⊕{ξ}) and by using Gauss formula (2.1), decomposition equation
(2.6) and (2.9) we obtain

∇̄XY = ∇XY +h(X ,Y ) = ∇XY +nh(X ,Y )+mh(X ,Y )

= ∇̃
∗
XY +C(X ,Y )+nh(X ,Y )+mh(X ,Y ).(2.16)

Hence

(2.17) φ ∇̄XY = φ ∇̃
∗
XY +φC(X ,Y )+φnh(X ,Y )+φmh(X ,Y ).

Putting Y = φY in (2.16), it follows

(2.18) ∇̄X φY = ∇̃
∗
X φY +C(X ,φY )+nh(X ,φY )+mh(X ,φY ).

On the other hand, using the definition of trans-Sasakian manifold we find

(2.19) (∇̄X φ)Y = ∇̄X φY −φ ∇̄XY = α [g(X ,Y )ξ −η(Y )X ]+β [g(φX ,Y )ξ −η(Y )φX ] .

Substituting (2.17) and (2.18) in (2.19) we get

∇̃
∗
X φY +C(X ,φY )+nh(X ,φY )+mh(X ,φY )−φ ∇̃

∗
XY −φC(X ,Y )

−φnh(X ,Y )−φmh(X ,Y ) = α [g(X ,Y )ξ −η(Y )X ]+β [g(φX ,Y )ξ −η(Y )φX ] .

Comparing components of (D⊕{ξ}), D⊥, φD⊥ and n1 respectively on both sides in the
above equation, we get the required results.

Corollary 2.1. Let π : M −→M′ be a submersion of semi-invariant submanifold of (a) β -
Kenmotsu (b) α-Sasakian (c) Kenmotsu (d) Sasakian (e) cosymplectic manifold M̄ respec-
tively onto an almost contact metric manifold M′. Then we have

(i) (a
′
) (∇̃∗X φ)Y = β [g(φX ,Y )ξ −η(Y )φX ],
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(b
′
) (∇̃∗X φ)Y = α [g(X ,Y )ξ −η(Y )X ],

(c
′
) (∇̃∗X φ)Y = [g(φX ,Y )ξ −η(Y )φX ],

(d
′
) (∇̃∗X φ)Y = [g(X ,Y )ξ −η(Y )X ],

(e
′
) (∇̃∗X φ)Y = 0,

(ii) C(X ,φY ) = φnh(X ,Y ),
(iii) φC(X ,Y ) = nh(X ,φY ),
(iv) φmh(X ,Y ) = mh(X ,φY )

for any X ,Y ∈ (D⊕{ξ}).

Now we prove

Theorem 2.1. Let π : M −→M′ be a submersion of semi-invariant submanifold of a trans-
Sasakian manifold M̄ onto an almost contact metric manifold M′. Then M′ is also a trans-
Sasakian manifold.

Proof. Using (2.12) of the Proposition 2.1, we write

(∇̃∗X φ)Y = α [g(X ,Y )ξ −η(Y )X ]+β [g(φX ,Y )ξ −η(Y )φX ] .

Applying π∗ to the above equation and using Lemma 2.1, (2.8) and definition of submersion,
we derive

(∇̃∗X∗φ
′)Y∗ = α

[
g′(X∗,Y∗)ξ ′−η

′(Y∗)X∗
]
+β

[
g′(φ ′X∗,Y∗)ξ ′−η

′(Y∗)φ ′X∗
]
.

The above equation shows that M′ is a trans-Sasakian manifold.

Corollary 2.2. Let π : M −→ M′ be a submersion of semi-invariant submanifold of (a)
β -Kenmotsu (b) α-Sasakian (c) Kenmotsu (d) Sasakian (e) cosymplectic manifold M̄ re-
spectively onto an almost contact metric manifold M′. Then M′ is also (a

′
) β -Kenmotsu (b

′
)

α-Sasakian (c
′
) Kenmotsu (d

′
) Sasakian (e

′
) cosymplectic manifold.

Proposition 2.2. Let π : M −→ M′ be a submersion of semi-invariant submanifold of a
trans-Sasakian manifold M̄ onto an almost contact metric manifold M′. Then

(i) nh(φX ,φY )+nh(φX ,Y ) = 0,
(ii) nh(φX ,φY ) = nh(X ,Y ),

(iii) mh(φX ,φY ) =−mh(X ,Y ),
(iv) C(φX ,φY ) = C(X ,Y )

for any X ,Y ∈ (D⊕{ξ}).

Proof.
(i) Interchanging X and Y in (2.14) gives

φC(Y,X) = nh(Y,φX) = nh(φX ,Y ).

Then

nh(X ,φY )+nh(φX ,Y ) = φC(X ,Y )+φC(Y,X) = φC(X ,Y )−φC(X ,Y ) = 0.

(ii) Putting X = φX in (2.14), we get

nh(φX ,φY ) = φC(φX ,Y ) =−φC(Y,φX).

Using (2.13) in the above equation, we deduce

nh(φX ,φY ) =−φC(Y,φX) =−φ(φnh(Y,X)) =−φ
2nh(Y,X)
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= nh(Y,X)−η(h(X ,Y ))ξ = nh(Y,X).

(iii) Putting X = φX in (2.15) and using again the same equation, we find

mh(φX ,φY ) = φmh(φX ,Y ) = φmh(Y,φX) = φ
2mh(Y,X) =−mh(X ,Y ).

(iv) Putting X = φX in (2.13) and then using (2.14) yields

C(φX ,φY ) = φnh(φX ,Y ) = φnh(Y,φX) = φ
2C(Y,X)

=−C(Y,X)+η(C(Y,X))ξ = C(X ,Y ).

3. Curvature relations

Proposition 3.1. Let π : M −→ M′ be a submersion of semi-invariant submanifold of
a trans-Sasakian manifold M̄ onto an almost contact metric manifold M′. Then the φ -
bisectional curvature of M̄ and M′ are related by

B̄(X ,Y ) = B′(X∗,Y∗)−2‖nh(X ,Y )‖2−2‖nh(X ,φY )‖2

−2g(nh(X ,X),nh(Y,Y ))+2‖mh(X ,Y )‖2 ,

where X ,Y ∈ (D⊕{ξ}).

Proof. We know
B̄(X ,Y ) = R̄(X ,φX ,φY,Y ).

Put Y = φX , Z = φY, W = Y in Gauss equation

R̄(X ,Y,Z,W ) = R(X ,Y,Z,W )−g(h(X ,W ),h(Y,Z))+g(h(X ,Z),h(Y,W )),

we get

R̄(X ,φX ,φY,Y ) = R(X ,φX ,φY,Y )−g(h(X ,Y ),h(φX ,φY ))+g(h(X ,φY ),h(φX ,Y )).

Substituting h = nh+mh, in the above equation, we arrive at

R̄(X ,φX ,φY,Y ) = R(X ,φX ,φY,Y )−g(nh(X ,Y )+mh(X ,Y ),nh(φX ,φY )+mh(φX ,φY ))

+g(nh(X ,φY )+mh(X ,φY ),nh(φX ,Y )+mh(φX ,Y ))

= R(X ,φX ,φY,Y )−g(nh(X ,Y ),nh(φX ,φY ))−g(nh(X ,Y ),mh(φX ,φY ))

−g(mh(X ,Y ),nh(φX ,φY ))−g(mh(X ,Y ),mh(φX ,φY ))

+g(nh(X ,φY ),nh(φX ,Y ))+g(nh(X ,φY ),mh(φX ,Y ))

+g(mh(X ,φY ),nh(φX ,Y ))+g(mh(X ,φY ),mh(φX ,Y ))

= R(X ,φX ,φY,Y )−g(nh(X ,Y ),nh(φX ,φY ))−g(mh(X ,Y ),mh(φX ,φY ))

+g(nh(X ,φY ),nh(φX ,Y ))+g(mh(X ,φY ),mh(φX ,Y ))

= R(X ,φX ,φY,Y )−g(nh(X ,Y ),nh(X ,Y ))+g(mh(X ,Y ),mh(X ,Y ))

−g(nh(X ,φY ),nh(X ,φY ))+g(φmh(X ,Y ),φmh(X ,Y ))

= R(X ,φX ,φY,Y )−‖nh(X ,Y )‖2 +2‖mh(X ,Y )‖2−‖nh(X ,φY )‖2 .(3.1)

Now by putting Y = φX , Z = φY, W = Y in (2.11) it follows

R(X ,φX ,φY,Y ) = R∗(X∗,φ ′X∗,φ ′Y∗,Y∗)−g(C(φX ,φY ),C(X ,Y ))

+g(C(X ,φY ),C(φX ,Y ))+2g(C(X ,φX),C(φY,Y ))

= R∗(X∗,φ ′X∗,φ ′Y∗,Y∗)−g(C(φX ,φY ),C(X ,Y ))
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−g(C(X ,φY ),C(Y,φX))−2g(C(X ,φX),C(Y,φY )).(3.2)

Applying φ to equation φC(X ,Y ) = nh(X ,φY ), we get φ 2C(X ,Y ) = φnh(X ,φY ). This gives

−C(X ,Y )+η(C(X ,Y ))ξ = φnh(X ,φY )

or
C(X ,Y ) =−φnh(X ,φY ).

Using the above relation in (3.2), we conclude

R(X ,φX ,φY,Y ) = R∗(X∗,φ ′X∗,φ ′Y∗,Y∗)−‖nh(X ,Y )‖2

−‖nh(X ,φY )‖2−2g(nh(X ,X),nh(Y,Y )).
(3.3)

Put this value of R(X ,φX ,φY,Y ) in (3.1) we obtain

R̄(X ,φX ,φY,Y ) = R∗(X∗,φ ′X∗,φ ′Y∗,Y∗)−‖nh(X ,Y )‖2−‖nh(X ,φY )‖2

−2g(nh(X ,X),nh(Y,Y ))−‖nh(X ,Y )‖2 +2‖mh(X ,Y )‖2−‖nh(X ,φY )‖2 ,

which implies that

B̄(X ,Y ) = B′(X∗,Y∗)−2‖nh(X ,Y )‖2−2‖nh(X ,φY )‖2

−2g(nh(X ,X),nh(Y,Y ))+2‖mh(X ,Y )‖2 .

Corollary 3.1. Let π : M −→M′ be a submersion of semi-invariant submanifold of a trans-
Sasakian manifold M̄ onto an almost contact metric manifold. Then the φ -sectional curva-
ture of M̄ and M′ are related by

H̄(X) = H ′(X∗)−4‖nh(X ,X)‖2 +2‖mh(X ,X)‖2 ,

where X ∈ (D⊕{ξ}).

Proof. Putting X = Y in the above expression of B̄(X ,Y ) allow us to obtain

B̄(X ,X) = H̄(X) = H ′(X∗)−2‖nh(X ,X)‖2−2‖nh(X ,φX)‖2

−2g(nh(X ,X),nh(X ,X))+2‖mh(X ,X)‖2

= H ′(X∗)−4‖nh(X ,X)‖2−2‖nh(X ,φX)‖2 +2‖mh(X ,X)‖2 .

Putting Y = X in (2.14) of Proposition 2.1

nh(X ,φX) = φC(X ,X) = 0.

Thus we get
H̄(X) = H ′(X∗)−4‖nh(X ,X)‖2 +2‖mh(X ,X)‖2 .

4. Cohomology of submersion of semi-invariant submanifolds of trans-Sasakian ma-
nifolds

In this section, we discuss how the submersion π : M −→M′ of a semi-invariant subman-
ifold M with minimal horizontal distribution (D⊕{ξ}) effects the topology of M. Let M
be a semi-invariant submanifold of a trans-Sasakian manifold M̄ with almost contact metric
structure (φ ,ξ ,η ,g). Assume that dim(D⊕{ξ}) = 2p+1 and dimM = m. We choose a lo-
cal orthonormal frame {e1,e2, ...,ep,φe1,φe2, ....,φep, e2p+1 = ξ ,e2p+2, ...,em} on M such
that {e1,e2, ...,ep,φe1,φe2, ....,φep,e2p+1 = ξ} is a local orthonormal frame of (D⊕{ξ})
and {e2p+2,e2p+3, ...,em} is that of D⊥. Let {ω1,ω2, ....,ω2p+1,ω2p+2, ......,ωm} be the
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dual frame of 1-forms to the above local orthonormal frame. Define a 2p+1-form Ω on M
by

(4.1) Ω = ω
1∧ω

2∧ ....∧ω
2p+1,

which is globally defined on M.

Definition 4.1. Let S be a q-dimensional distribution on a Riemannian manifold M. If
∑

q
i=1 ∇eiei ∈ S, then the distribution S is said to be minimal, where ∇ is the Riemannian

connection on M and {e1,e2, ...,eq}is a local orthonormal frame of S.

Theorem 4.1. Let M̄ be a trans-Sasakian manifold and M be a closed semi-invarinat sub-
manifold of M̄ with minimal (D⊕{ξ}). Let M′ be a almost contact metric manifold and
π : M −→M′ a submersion. Then the 2p+1-form Ω is closed which defines a canonical de
Rham cohomology class [Ω] ∈ H2p+1(M,R), where 2p+1 = dim(D⊕{ξ}). Moreover the
cohomology group H2p+1(M,R) is non-trivial if D⊥ is minimal.

Proof. From definition (4.1) of Ω, we have

dΩ =
2p+1

∑
i=1

(−1)i−1
ω

1∧ ...∧dω
i∧ .....∧ω

2p+1.

From the above equation it follows that dΩ = 0 if and only if [8]

(4.2) dΩ(Z,W,E1, ....,E2p) = 0 and dΩ(Z,E1, ......,E2p+1) = 0

for Z,W ∈ D⊥ and E1, ......,E2p+1 ∈ (D⊕{ξ}). Choosing the vectors E1, ......,E2p+1 ∈
(D⊕ {ξ}) as a local orthonormal frame {e1,e2, ..., ep,φe1,φe2, ....,φep,e2p+1 = ξ} of
(D⊕ {ξ}) to which {ω1,ω2, ....,ω2p+1} works as dual frame of 1-forms, we get by a
straightforward computation that the first equation in (4.2) holds if and only if D⊥ is in-
tegrable; and the second equation in (4.2) holds if and only if (D⊕{ξ}) is minimal. How-
ever, from the definition of submersion it follows that D⊥ is integrable. The hypothesis of
theorem gives that (D⊕{ξ}) is minimal. Hence the form Ω is closed, and it defines a de
Rham cohomology class [Ω] ∈ H2p+1(M,R).

Now suppose that D⊥ is minimal and we proceed to show that in this case

H2p+1(M,R) 6= 0.

To accomplish this we show that the form Ω is harmonic which would then make the coho-
mology class [Ω] non-trivial. Define a (m−2p−1)-form Ω⊥ on M by setting

Ω
⊥ = ω

2p+2∧ ....∧ω
m,

where {ω2p+2, ....,ωm} is the dual frame to the local orthonormal frame {e2p+1, .....,em} of
D⊥. Then with the similar argument for Ω, it follows that dΩ⊥= 0 if (D⊕{ξ}) is integrable
and D⊥ is minimal. It should be noted that minimality of (D⊕{ξ}) implies its integrability.
Since both conditions are met, we have dΩ⊥ = 0. This proves that the 2p+1-form Ω is co-
closed, that is δΩ = 0. Since dΩ = δΩ = 0 and M is closed submanifold, we get that Ω is
harmonic 2p+1-form; and this completes the proof.
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