J. Angoa, Á. Tamariz-Mascarúa Spaces of continuous functions, Σ -products and Box Topology

Comment.Math.Univ.Carolinae 47,1 (2006) 69-94.

Abstract: For a Tychonoff space X, we will denote by X_0 the set of its isolated points and X_1 will be equal to $X \setminus X_0$. The symbol C(X) denotes the space of real-valued continuous functions defined on X. $\Box \mathbb{R}^{\kappa}$ is the Cartesian product \mathbb{R}^{κ} with its box topology, and $C_{\Box}(X)$ is C(X) with the topology inherited from $\Box \mathbb{R}^X$. By $\widehat{C}(X_1)$ we denote the set $\{f \in C(X_1) : f \text{ can be continuously extended to all of } \}$ X. A space X is almost- ω -resolvable if it can be partitioned by a countable family of subsets in such a way that every non-empty open subset of X has a non-empty intersection with the elements of an infinite subcollection of the given partition. We analyze $C_{\Box}(X)$ when X_0 is F_{σ} and prove: (1) for every topological space X, if X_0 is F_{σ} in X, and $\emptyset \neq X_1 \subset cl_X X_0$, then $C_{\Box}(X) \cong \Box \mathbb{R}^{X_0}$; (2) for every space X such that X_0 is F_{σ} , $cl_X X_0 \cap X_1 \neq \emptyset$, and $X_1 \setminus cl_X X_0$ is almost- ω -resolvable, then $C_{\Box}(X)$ is homeomorphic to a free topological sum of $\leq |\widehat{C}(X_1)|$ copies of $\Box \mathbb{R}^{X_0}$, and, in this case, $C_{\Box}(X) \cong \Box \mathbb{R}^{X_0}$ if and only if $|\widehat{C}(X_1)| \leq 2^{|X_0|}$. We conclude that for a space X such that X_0 is F_{σ} , $C_{\Box}(X)$ is never normal if $|X_0| > \aleph_0$ [La], and, assuming CH, $C_{\Box}(X)$ is paracompact if $|X_0| = \aleph_0$ [Ru2]. We also analyze $C_{\Box}(X)$ when $|X_1| = 1$ and when X is countably compact, and we scrutinize under what conditions $\Box \mathbb{R}^{\kappa}$ is homeomorphic to some of its " Σ -products"; in particular, we prove that $\Box \mathbb{R}^{\omega}$ is homeomorphic to each of its subspaces $\{f \in \Box \mathbb{R}^{\omega} : \{n \in \omega : f(n) = 0\} \in p\}$ for every $p \in \omega^*$, and it is homeomorphic to $\{f \in \Box \mathbb{R}^{\omega} : \forall \epsilon > 0 \{n \in \omega : |f(n)| < \epsilon\} \in \mathbb{R}^{\omega} \}$ \mathcal{F}_0 where \mathcal{F}_0 is the Fréchet filter on ω .

Keywords: spaces of real-valued continuous functions, box topology, Σ -product, almost- ω -resolvable space

AMS Subject Classification: 54C35, 54B10, 54D15