On the "zero-two" law for positive contractions in the Banach-Kantorovich lattice $L^p(\nabla, \mu)$

INOMJON GANIEV, FARRUKH MUKHAMEDOV

Abstract. In the present paper we prove the "zero-two" law for positive contractions in the Banach-Kantorovich lattices $L^p(\nabla, \mu)$, constructed by a measure μ with values in the ring of all measurable functions.

Keywords: Banach-Kantorovich lattice, "zero-two" law, positive contraction *Classification:* 37A30, 47A35, 46B42, 46E30, 46G10

1. Introduction

In [W] some properties of the convergence of Banach-valued martingales were described and their connections with the geometrical properties of Banach spaces were established too. In accordance with the development of the theory of Banach-Kantorovich spaces (see [KVP], [K1], [K2], [G1], [G2]) there arises naturally the necessity to study some ergodic properties of positive contractions and martingales defined on such spaces. In [CG] an analog of the individual ergodic theorem for positive contractions of $L^p(\nabla, \mu)$ - Banach-Kantorovich space has been established. In [Ga3] the convergence of martingales on such spaces was proved.

Let (X, Σ, μ) be a measure space and let $L^p(X, \mu)$ $(1 \le p \le \infty)$ be the usual real L^p -space. A linear operator $T : L^p(X, \mu) \to L^p(X, \mu)$ is called a *positive* contraction if for every $x \in L^p(X, \mu), x \ge 0$, we have $Tx \ge 0$ and $||T||_p \le \mathbf{1}$, where $||T||_p = \sup_{x:||x||_p = \mathbf{1}} ||Tx||_p$.

In [OS] Ornstein and Sucheston proved that for any positive contraction T on an L^1 -space, either $||T^n - T^{n+1}||_1 = 2$ for all n or $\lim_{n\to\infty} ||T^n - T^{n+1}||_1 = 0$. An extension of this result to positive operators on L^∞ -spaces was given by Foguel [F]. In [Z1], [Z2] Zahoropol generalized these results, called "zero-two" laws, and his result can be formulated as follows:

Theorem A. Let T be a positive contraction of $L^p(X,\mu)$, $p > 1, p \neq 2$. If $||T^{m+1} - T^m|||_p < 2$ for some $m \in \mathbb{N} \cup \{0\}$, then

$$\lim_{n \to \infty} \|T^{n+1} - T^n\|_p = 0.$$

In [KT] this result was generalized to Köthe spaces.

In the present paper we are going to prove the "zero-two" law for positive contractions of the Banach-Kantorovich lattices $L^p(\nabla, \mu)$, constructed by means of a measure μ with values in the ring of all measurable functions.

2. Preliminaries

Let $(\Omega, \Sigma, \lambda)$ be a measurable space with finite measure λ , $L_0(\Omega)$ be the algebra of all measurable functions on Ω (here the functions equal a.e. are identified) and let $\nabla(\Omega)$ be the Boolean algebra of all idempotents in $L_0(\Omega)$. By ∇ we denote an arbitrary complete Boolean subalgebra of $\nabla(\Omega)$.

A mapping $\mu : \nabla \to L_0(\Omega)$ is called an $L_0(\Omega)$ -valued measure if the following conditions are satisfied:

1) $\mu(e) \ge 0$ for all $e \in \nabla$;

2) if $e \wedge g = 0, e, g \in \nabla$, then $\mu(e \vee g) = \mu(e) + \mu(g)$;

3) if $e_n \downarrow 0$, $e_n \in \nabla$, $n \in \mathbb{N}$, then $\mu(e_n) \downarrow 0$.

An $L_0(\Omega)$ -valued measure μ is called *strictly positive* if $\mu(e) = 0, e \in \nabla$ implies e = 0.

In the sequel we will consider a strictly positive $L_0(\Omega)$ -valued measure μ with the property $\mu(ge) = g\mu(e)$ for all $e \in \nabla$ and $g \in \nabla(\Omega)$.

By $X(\nabla)$ we denote an extremal completely disconnected compact, corresponding to a Boolean algebra ∇ . The algebra of all continuous functions on $X(\nabla)$, which take the values $\pm \infty$ on nowhere dense sets in $X(\nabla)$, is denoted by $L_0(\nabla)$ ([S]). It is clear that $L_0(\Omega)$ is a subalgebra of $L_0(\nabla)$.

Following [B], [S] the well known scheme of the construction of L^p -spaces, a space $L^p(\nabla, \mu)$ can be defined in the following way:

$$L^{p}(\nabla,\mu) = \left\{ f \in L_{0}(\nabla) : \int |f|^{p} d\mu \text{ exists} \right\}, \quad p \ge 1,$$

where μ is an $L_0(\Omega)$ -valued measure on ∇ .

Let *E* be a linear space over the real field \mathbb{R} . By $\|\cdot\|$ we denote an $L_0(\Omega)$ valued norm on *E*. Then the pair $(E, \|\cdot\|)$ is called a *lattice-normed space* (*LNS*) over $L_0(\Omega)$. An LNS *E* is said to be *d*-decomposable if for every $x \in E$ and the decomposition $\|x\| = f + g$ with *f* and *g* disjoint positive elements in $L_0(\Omega)$ there exist $y, z \in E$ such that x = y + z with $\|y\| = f$, $\|z\| = g$.

Suppose that $(E, \|\cdot\|)$ is an LNS over $L_0(\Omega)$. A net $\{x_\alpha\}$ of elements of E is said to be (bo)-converging to $x \in E$ (in this case we write x = (bo)-lim x_α), if the net $\{\|x_\alpha - x\|\}$ (o)-converges to zero in $L_0(\Omega)$ (written as (o)-lim $\|x_\alpha - x\| = 0$). A net $\{x_\alpha\}_{\alpha \in A}$ is called (bo)-fundamental if $(x_\alpha - x_\beta)_{(\alpha,\beta) \in A \times A}$ (bo)-converges to zero.

An LNS in which every (bo)-fundamental net (bo)-converges is called (bo)complete. A Banach-Kantorovich space (BKS) over $L_0(\Omega)$ is a (bo)-complete *d*-decomposable LNS over $L_0(\Omega)$. It is well known ([K1], [K2]) that every BKS E over $L_0(\Omega)$ admits an $L_0(\Omega)$ -module structure such that $||fx|| = |f| \cdot ||x||$ for every $x \in E$, $f \in L_0(\Omega)$, where |f| is the modulus of a function $f \in L_0(\Omega)$.

It is known ([K1]) that $L^p(\nabla, \mu)$ is a BKS over $L_0(\Omega)$ with respect to the $L_0(\Omega)$ -valued norm $|f|_p = (\int |f|^p d\mu)^{1/p}$. Moreover, $L^p(\nabla, \mu)$ is a module over $L_0(\Omega)$.

Naturally, these $L^p(\nabla, \mu)$ spaces should have many of similar properties like the classical L^p -spaces, constructed by real valued measures. The proofs of such properties can be realized along the following ways.

- 1. Repeating step by step all the steps of the known arguments of the classical L^p -spaces, taking into account the special properties of $L_0(\Omega)$ -valued measures.
- 2. Using Boolean-valued analysis, which gives a possibility to reduce $L_0(\Omega)$ modulus $L^p(\nabla, \mu)$ to the classical L^p -spaces, in the corresponding set theory.
- 3. Representating $L^p(\nabla, \mu)$ as a measurable bundle of the classical L^p -spaces.

The first method is not really effective, since it has to repeat all known steps of the arguments modifying them to $L_0(\Omega)$ -valued measures. The second one is connected with the use of drawing an enough labour-intensive apparatus of Boolean-valued analysis and its realization requires a huge preparatory work, which connects with establishing intercommunications of ordinary and Booleanvalued methods for the studied objects of the set theory.

A more natural way to investigate the properties of $L^p(\nabla, \mu)$ is to follow the third one, since one has a sufficiently well explored theory of measurable decompositions of Banach lattices ([G1]). Hence, it is an effective tool which gives a good opportunity to obtain various properties of BKS ([Ga1], [Ga2]). Therefore we are going to follow this way, and now recall certain definitions and results of the theory.

Let $(\Omega, \Sigma, \lambda)$ be as above and X be a real Banach space $X(\omega)$ assigned to each point $\omega \in \Omega$. A section of X is a function u defined λ -almost everywhere in Ω that takes values $u(\omega) \in X(\omega)$ for all ω in the domain dom(u) of u. Let L be a set of sections. The pair (X, L) is called a measurable Banach bundle over Ω if

- (1) $\alpha_1 u_1 + \alpha_2 u_2 \in L$ for every $\alpha_1, \alpha_2 \in \mathbb{R}$ and $u_1, u_2 \in L$, where $\alpha_1 u_1 + \alpha_2 u_2 :$ $\omega \in \operatorname{dom}(u_1) \cap \operatorname{dom}(u_2) \to \alpha_1 u_1(\omega) + \alpha_2 u_2(\omega);$
- (2) the function $||u|| : \omega \in \operatorname{dom}(u) \to ||u(\omega)||_{X(\omega)}$ is measurable for every $u \in L$;
- (3) the set $\{u(\omega) : u \in L, \omega \in \operatorname{dom}(u)\}$ is dense in $X(\omega)$ for every $\omega \in \Omega$.

A section s is called *step-section* if it has a form

$$s(\omega) = \sum_{i=1}^{n} \chi_{A_i}(\omega) u_i(\omega),$$

for some $u_i \in L$, $A_i \in \Sigma$, $A_i \cap A_j = \emptyset$, $i \neq j$, i, j = 1, ..., n, $n \in \mathbb{N}$, where χ_A is the indicator of a set A. A section u is called *measurable* if for every $A \in \Sigma$ with $\lambda(A) < \infty$ there exists a sequence of step-functions $\{s_n\}$ such that $s_n(\omega) \to u(\omega)$ λ -a.e. on A.

Denote by $M(\Omega, X)$ the set all measurable sections, and by $L_0(\Omega, X)$ the factor space of $M(\Omega, X)$ with respect to the equivalence relation of the equality a.e. Clearly, $L_0(\Omega, X)$ is an $L_0(\Omega)$ -module. The equivalence class of an element $u \in M(\Omega, X)$ is denoted by \hat{u} . The norm of $\hat{u} \in L_0(\Omega, X)$ is defined as a class of equivalence in $L_0(\Omega)$ containing the function $||u(\omega)||_{X(\omega)}$, namely $||\hat{u}|| = (||\widehat{u(\omega)}||_{X(\omega)})$. In [G1] it was proved that $L_0(\Omega, X)$ is a BKS over $L_0(\Omega)$. Furthermore, for every BKS E over $L_0(\Omega)$ there exists a measurable Banach bundle (X, L) over Ω such that E is isomorphic to $L_0(\Omega)$.

 Put

$$\mathcal{L}^{\infty}(\Omega, X) = \{ u \in M(\Omega, X) : \|u(\omega)\|_{X(\omega)} \in \mathcal{L}^{\infty}(\Omega) \},\$$
$$L^{\infty}(\Omega, X) = \{ \hat{u} \in L_0(\Omega, X) : u \in \mathcal{L}^{\infty}(\Omega, X), \ u \in \hat{u} \},\$$

where $\mathcal{L}^{\infty}(\Omega)$ is the set all bounded measurable functions on Ω .

In the spaces $\mathcal{L}^{\infty}(\Omega, X)$ and $L^{\infty}(\Omega, X)$ one can define real-valued norms $||u||_{\mathcal{L}^{\infty}(\Omega, X)} = \sup_{\omega} ||u(\omega)||_{X(\omega)}$ and $||\hat{u}||_{L^{\infty}(\Omega, X)} = |||\hat{u}||_{L^{\infty}(\Omega)}$, respectively.

A BKS $(\mathcal{U}, \|\cdot\|)$ is called a *Banach-Kantorovich lattice* if \mathcal{U} is a vector lattice and the norm $\|\cdot\|$ is monotone, i.e. $|u_1| \leq |u_2|$ implies $\|u_1\| \leq \|u_2\|$. It is known ([K1]) that the cone \mathcal{U}_+ of positive elements is (*bo*)-closed. Note that the space $L^p(\nabla, \mu)$ is a Banach-Kantorovich lattice ([K1]).

Let X be a mapping assisting an L^p -space constructed by a real-valued measure μ_{ω} , i.e. $L^p(\nabla_{\omega}, \mu_{\omega})$ to each point $\omega \in \Omega$ and let

$$L = \left\{ \sum_{i=1}^{n} \alpha_i e_i : \alpha_i \in \mathbb{R}, \ e_i(\omega) \in \nabla_{\omega}, \ i = \overline{1, n}, \ n \in \mathbb{N} \right\}$$

be a set of sections. In [Ga2], [GaC] it has been established that the pair (X, L) is a measurable bundle of Banach lattices and $L_0(\Omega, X)$ is modulo ordered isomorphic to $L^p(\nabla, \mu)$.

Let ρ be a lifting in $L^{\infty}(\Omega)$ (see [G1]). Let as before ∇ be an arbitrary complete Boolean subalgebra of $\nabla(\Omega)$ and μ be an $L_0(\Omega)$ -valued measure on ∇ . The set of all essentially bounded functions w.r.t. μ taken from $L_0(\nabla)$ is denoted by $L^{\infty}(\nabla, \mu)$.

In [CG] the existence of a mapping $\ell : L^{\infty}(\nabla, \mu) (\subset L^{\infty}(\Omega, X)) \to \mathcal{L}^{\infty}(\Omega, X)$, which satisfies the following conditions, was proved:

- (1) $\ell(\hat{u}) \in \hat{u}$ for all \hat{u} such that dom $(\hat{u}) = \Omega$;
- (2) $\|\ell(\hat{u})\|_{L^p(\nabla_\omega,\mu_\omega)} = \rho(|\hat{u}|_p)(\omega);$

- (3) $\ell(\hat{u} + \hat{v}) = \ell(\hat{u}) + \ell(\hat{v})$ for every $\hat{u}, \hat{v} \in L^{\infty}(\nabla, \mu)$;
- (4) $\ell(h \cdot \hat{u}) = \rho(h)\ell(\hat{u})$ for every $\hat{u} \in L^{\infty}(\nabla, \mu), h \in L^{\infty}(\Omega);$
- (5) $\ell(\hat{u})(\omega) \ge 0$ whenever $\hat{u} \ge 0$;
- (6) the set $\{\ell(\hat{u})(\omega) : \hat{u} \in L^{\infty}(\nabla, \mu)\}$ is dense in $X(\omega)$ for all $\omega \in \Omega$;
- (7) $\ell(\hat{u} \vee \hat{v}) = \ell(\hat{u}) \vee \ell(\hat{v})$ for every $\hat{u}, \hat{v} \in L^{\infty}(\nabla, \mu)$.

The mapping ℓ is called a *vector-valued lifting* on $L^{\infty}(\nabla, \mu)$ associated with the lifting ρ (cp. [G1]).

Let as before $p \geq 1$ and $L^p(\nabla, \mu)$ be a Banach-Kantorovich lattice, and $L^p(\nabla_{\omega}, \mu_{\omega})$ be the corresponding L^p -spaces constructed by real valued measures. Let $T: L^p(\nabla, \mu) \to L^p(\nabla, \mu)$ be a linear mapping. As usually we will say that T is *positive* if $T\hat{f} \geq 0$ whenever $\hat{f} \geq 0$.

We say that T is an $L_0(\Omega)$ -bounded mapping if there exists a function $k \in L_0(\Omega)$ such that $|T\hat{f}|_p \leq k |\hat{f}|_p$ for all $\hat{f} \in L^p(\nabla, \mu)$. For such a mapping we can define an element of $L_0(\Omega)$ as follows

$$||T|| = \sup_{|\hat{f}|_p \le \mathbf{1}} |T\hat{f}|_p,$$

which is called the $L_0(\Omega)$ -valued norm of T. If $||T|| \leq \mathbf{1}$ then T is said to be a *contraction*.

Now we give an example of a nontrivial contraction.

Example. Let $(\Omega, \nabla, \lambda)$ be a measurable space with a finite measure and let ∇_0 be a right Boolean subalgebra of ∇ . By λ_0 we denote the restriction of λ onto ∇_0 . Now let $E(\cdot|\nabla_0)$ be a conditional expectation from $L_1(\Omega, \nabla, \lambda)$ onto $L_1(\Omega, \nabla_0, \lambda_0)$. It is clear that $\mu(\hat{e}) = E(\hat{e}|\nabla_0)$ is a strictly positive $L_1(\Omega, \nabla_0, \lambda_0)$ -valued measure on ∇ . Let ∇_1 be another arbitrary right Boolean subalgebra of ∇ such that $\nabla_1 \supset \nabla_0$. By μ_1 we denote the restriction of μ onto ∇_1 . According to [K1, Theorem 4.2.9] there exists a conditional expectation $T : L_1(\nabla, \mu) \to L_1(\nabla_1, \mu_1)$ which is positive and maps $L^p(\nabla, \mu)$ onto $L^p(\nabla, \mu)$ for all p > 1. Moreover, $|T\hat{f}|_p \leq |\hat{f}|_p$ for every $\hat{f} \in L^p(\nabla, \mu)$ and $T\mathbf{1} = \mathbf{1}$.

In the sequel we will need the following

Theorem 2.1. Let $T : L^p(\nabla, \mu) \to L^p(\nabla, \mu)$ be a positive linear contraction such that $T\mathbf{1} \leq \mathbf{1}$. Then for every $\omega \in \Omega$ there exists a positive contraction $T_\omega : L^p(\nabla_\omega, \mu_\omega) \to L^p(\nabla_\omega, \mu_\omega)$ such that $T_\omega f(\omega) = (T\hat{f})(\omega) \lambda$ -a.e. for every $\hat{f} \in L^p(\nabla, \mu)$.

PROOF: The positivity of T implies that $|T\hat{f}| \leq T|\hat{f}| \leq \|\hat{f}\|_{\infty} \mathbb{1}$ for every $\hat{f} \in L^{\infty}(\nabla,\mu)$, i.e. the operator T maps $L^{\infty}(\nabla,\mu)$ to $L^{\infty}(\nabla,\mu)$ and it is continuous in norm $\|\cdot\|_{\infty}$, where $\|f\|_{\infty} = \text{varisup} |f|$. One can see that $|T\hat{f}|_p \in L^{\infty}(\Omega)$ and $|\hat{f}|_p \in L^{\infty}(\Omega)$ for $\hat{f} \in L^{\infty}(\nabla,\mu)$. Now define a linear operator $\varphi(\omega)$ from

 $\{\ell(\hat{f})(\omega):\hat{f}\in L^{\infty}(\nabla,\mu)\}$ to $L^{p}(\nabla_{\omega},\mu_{\omega})$ by

$$\varphi(\omega)(\ell(\hat{f})(\omega)) = \ell(T\hat{f})(\omega),$$

where ℓ is the vector-valued lifting on $L^{\infty}(\nabla, \mu)$ associated with the lifting ρ . From $|T\hat{f}|_p \leq |\hat{f}|_p$ we obtain

$$\begin{aligned} \|\ell(T\hat{f})(\omega)\|_{L^{p}(\nabla_{\omega},\mu_{\omega})} &= \rho(|T\hat{f}|_{p})(\omega) \\ &\leq \rho(|\hat{f}|_{p})(\omega) \\ &= \|\ell(\hat{f})(\omega)\|_{L^{p}(\nabla_{\omega},\mu_{\omega})} \end{aligned}$$

which implies that the operator $\varphi(\omega)$ is correctly defined and bounded. Using the fact that $\{\ell(\hat{f})(\omega) : \hat{f} \in L^{\infty}(\nabla, \mu)\}$ is dense in $L^p(\nabla_{\omega}, \mu_{\omega})$ we can extend $\varphi(\omega)$ to a continuous linear operator on $L^p(\nabla_{\omega}, \mu_{\omega})$. This extension is denoted by T_{ω} .

We are going to show that T_{ω} is positive. Indeed, let $f(\omega) \in L^p(\nabla_{\omega}, \mu_{\omega})$ and $f(\omega) \geq 0$. Then there exists a sequence $\{\hat{f}_n\} \subset L^{\infty}(\nabla, \mu)$ such that $\ell(\hat{f}_n)(\omega) \to f(\omega)$ in norm of $L^p(\nabla_{\omega}, \mu_{\omega})$. Put $\hat{g}_n = \hat{f}_n \vee 0$; then $\hat{g}_n \geq 0$ and according to the properties of the vector-valued lifting ℓ we infer

$$\ell(\hat{g}_n)(\omega) = \ell(\hat{f}_n)(\omega) \lor 0 \to f(\omega) \lor 0 = f(\omega)$$

in norm of $L^p(\nabla_{\omega}, \mu_{\omega})$. Whence

$$0 \le \ell(T\hat{g}_n)(\omega) = \varphi(\omega)(\ell(\hat{g}_n)(\omega)) \to T_\omega(f(\omega)),$$

this means $T_{\omega}f(\omega) \geq 0$. It is clear that $||T_{\omega}||_{\infty} \leq 1$ and $T_{\omega}f(\omega) = (T\hat{f})(\omega)$ a.e. for every $\hat{f} \in L^{\infty}(\nabla, \mu)$, here $|| \cdot ||_{\infty}$ is the norm of an operator from $L^{\infty}(\nabla_{\omega}, \mu_{\omega})$ to $L^{\infty}(\nabla_{\omega}, \mu_{\omega})$.

Now let $\hat{f} \in L^p(\nabla, \mu)$. Since $L^{\infty}(\nabla, \mu)$ is (bo)-dense in $L^p(\nabla, \mu)$, there is a sequence $\{\hat{f}_n\} \subset L^{\infty}(\nabla, \mu)$ such that $|\hat{f}_n - \hat{f}|_p \xrightarrow{(o)} 0$. Then $||f_n(\omega) - f(\omega)||_{L^p(\nabla_{\omega}, \mu_{\omega})} \to 0$ for almost all ω . The equality $T\hat{f} = |\cdot|_p$ -lim_n $T\hat{f}_n$ implies that

$$\|T_{\omega}f_n(\omega) - (T\hat{f})(\omega)\|_{L^p(\nabla_{\omega},\mu_{\omega})} = \|(T\hat{f}_n)(\omega) - (T\hat{f})(\omega)\|_{L^p(\nabla_{\omega},\mu_{\omega})} \to 0 \quad \text{a.e. } \omega,$$

which means that $(T\hat{f})(\omega) = \lim_{n} T_{\omega} f_n(\omega)$ a.e. On the other hand, the continuity of T_{ω} yields that $\lim_{n} T_{\omega} f_n(\omega) = T_{\omega} f(\omega)$ a.e. Hence for every $\hat{f} \in L^p(\nabla, \mu)$ we have $(T\hat{f})(\omega) = T_{\omega} f(\omega)$ a.e. This completes the proof.

3. Main results

In this section we will prove an analog of Theorem A formulated in the introduction. Before formulating it we are going to provide certain useful assertions.

Proposition 3.1. Let $T^{(i)} : L^p(\nabla, \mu) \to L^p(\nabla, \mu), i = 1, 2$ be positive linear contractions such that $T^{(i)} \mathbf{1} \leq \mathbf{1}$. Then

$$||T^{(1)} - T^{(2)}||(\omega) = ||T^{(1)}_{\omega} - T^{(2)}_{\omega}||_{p,\omega}, \text{ a.e.}$$

Here as above, $\|\cdot\|_{p,\omega}$ is the norm of an operator from $L^p(\nabla_{\omega}, \mu_{\omega})$ to $L^p(\nabla_{\omega}, \mu_{\omega})$.

PROOF: According to Theorem 2.1 we have $T_{\omega}^{(i)}f(\omega) = (T^{(i)}\hat{f})(\omega), i = 1, 2$ a.e. for every $\hat{f} \in L^p(\hat{\nabla}, \hat{\mu})$. Using this fact we get

$$|(T^{(1)} - T^{(2)})\hat{f}|_{p}(\omega) = ||(T^{(1)} - T^{(2)})\hat{f}(\omega)||_{L^{p}(\nabla_{\omega},\mu_{\omega})}$$

$$= ||(T^{(1)}_{\omega} - T^{(2)}_{\omega})f(\omega)||_{L^{p}(\nabla_{\omega},\mu_{\omega})}$$

$$\leq ||T^{(1)}_{\omega} - T^{(2)}_{\omega}||_{p,\omega}||f(\omega)||_{L^{p}(\nabla_{\omega},\mu_{\omega})}$$

which implies

(1)
$$||T^{(1)} - T^{(2)}||(\omega) \le ||T^{(1)}_{\omega} - T^{(2)}_{\omega}||_{p,\omega}, \text{ a.e.}$$

By similar arguments we obtain

$$\begin{aligned} \|(T_{\omega}^{(1)} - T_{\omega}^{(2)})f(\omega)\|_{L^{p}(\nabla_{\omega},\mu_{\omega})} &= |(T^{(1)} - T^{(2)})\hat{f}|_{p}(\omega) \\ &\leq \left(\|T^{(1)} - T^{(2)}\|\|\hat{f}\|_{p}\right)(\omega) \\ &= \|T^{(1)} - T^{(2)}\|(\omega)\|\hat{f}|_{p}(\omega) \\ &= \|T^{(1)} - T^{(2)}\|(\omega)\|f_{\omega}\|_{L^{p}(\nabla_{\omega},\mu_{\omega})}, \end{aligned}$$

which yields

$$||T^{(1)} - T^{(2)}||(\omega) \ge ||T^{(1)}_{\omega} - T^{(2)}_{\omega}||_{p,\omega}$$
. a.e.

The last inequality with (1) implies the required equality. This completes the proof. $\hfill \Box$

Proposition 3.2. Let $T^{(i)} : L^p(\nabla, \mu) \to L^p(\nabla, \mu), i = 1, 2$ be positive linear contractions such that $T^{(i)} \mathbf{1} \leq \mathbf{1}$. Then

$$\left\| |T_{\omega}^{(1)} - T_{\omega}^{(2)}| \right\|_{p,\omega} \le \left\| |T^{(1)} - T^{(2)}| \right\|(\omega), \text{ a.e.},$$

where $|\cdot|$ is the modulus of an operator.

PROOF: Using the formula

$$|Ax| \le |A||x|,$$

where $A: E \to E$ is a linear operator and E is a vector lattice (see [V, p. 231]), we have $(1) \qquad (2) \qquad ((1) \qquad (3))$

$$|(T_{\omega}^{(1)} - T_{\omega}^{(2)})g(\omega)| \le \left(|T^{(1)} - T^{(2)}||\hat{g}|\right)(\omega)$$
 a.e.

for every $\hat{g} \in L^p(\nabla, \mu)$.

If $|\hat{g}| \leq |\hat{f}|$, where $\hat{f} \in L^p(\nabla, \mu)$, then $|g(\omega)| \leq |f(\omega)|$. This implies

$$|(T_{\omega}^{(1)} - T_{\omega}^{(2)})g(\omega)| \le \left(|T^{(1)} - T^{(2)}||\hat{f}|\right)(\omega)$$
 a.e.

Now by means of the formula

$$|A|x = \sup_{|y| \le x} |Ay|,$$

where A is as above and $x \ge 0$ (see [V, p. 231]), we infer that

$$|T_{\omega}^{(1)} - T_{\omega}^{(2)}||f(\omega)| = \sup_{|g(\omega)| \le |f(\omega)|} |(T_{\omega}^{(1)} - T_{\omega}^{(2)})g(\omega)| \le \left(|T^{(1)} - T^{(2)}||\hat{f}|\right)(\omega).$$

Then the monotonicity of the norm $\|\cdot\|_{L^p(\nabla_\omega,\mu_\omega)}$ implies

$$\begin{split} \left\| \left(|T_{\omega}^{(1)} - T_{\omega}^{(2)}||f| \right) (\omega) \right\|_{L^{p}(\nabla_{\omega}, \mu_{\omega})} &\leq \left\| \left(|T^{(1)} - T^{(2)}||\hat{f}| \right) (\omega) \right\|_{L^{p}(\nabla_{\omega}, \mu_{\omega})} \\ &= \left| |T^{(1)} - T^{(2)}||\hat{f}| \Big|_{p} (\omega) \\ &\leq \left(\left\| |T^{(1)} - T^{(2)}| \right\| |\hat{f}|_{p} \right) (\omega) \\ &= \left\| |T^{(1)} - T^{(2)}| \right\| (\omega) |\hat{f}|_{p} (\omega) \\ &= \left\| |T^{(1)} - T^{(2)}| \right\| (\omega) \|f(\omega)\|_{L^{p}(\nabla_{\omega}, \mu_{\omega})} \end{split}$$

Thus

$$\begin{split} \left\| |T_{\omega}^{(1)} - T_{\omega}^{(2)}| \right\|_{p,\omega} &= \sup_{\|f(\omega)\|_{L^{p}(\nabla_{\omega},\mu_{\omega})} \leq 1} \left\| |T_{\omega}^{(1)} - T_{\omega}^{(2)}| |f(\omega)| \right\|_{L^{p}(\nabla_{\omega},\mu_{\omega})} \\ &\leq \left\| |T^{(1)} - T^{(2)}| \right\| (\omega) \quad \text{a.e.} \end{split}$$

The next theorem is an analog of theorem in [Z2] for positive contractions of $L^1(\nabla, \mu)$.

Theorem 3.3. Let $T : L^1(\nabla, \mu) \to L^1(\nabla, \mu)$ be a positive linear contraction such that $T\mathbf{1} \leq \mathbf{1}$. If $||T^{m+1} - T^m|| < 2\mathbf{1}$ for some $m \in \mathbb{N} \cup \{0\}$, then

$$(o) - \lim_{n \to \infty} \|T^{n+1} - T^n\| = 0.$$

PROOF: According to Theorem 2.1 there exist positive contractions T_{ω} : $L^1(\nabla_{\omega}, \mu_{\omega}) \rightarrow L^1(\nabla_{\omega}, \mu_{\omega})$ such that $(T\hat{f})(\omega) = T_{\omega}(f(\omega))$ a.e. From Proposition 3.1 we get $||T_{\omega}^{m+1} - T_{\omega}^{m}||_{p,\omega} = ||T^{m+1} - T^m||(\omega)$ a.e. The assumption of the theorem implies $||T_{\omega}^{m+1} - T_{\omega}^{m}||_{p,\omega} < 2$ a.e. Hence the contractions T_{ω} satisfy the assumption of Theorem 1.1. ([OS]) a.e., therefore

$$\lim_{n \to \infty} \|T_{\omega}^{n+1} - T_{\omega}^n\|_{p,\omega} = 0 \quad \text{a.e.}$$

As $||T_{\omega}^{n+1} - T_{\omega}^{n}||_{p,\omega} = ||T^{n+1} - T^{n}||(\omega)$ a.e. we obtain that

$$\lim_{n \to \infty} \|T^{n+1} - T^n\|(\omega) = 0 \text{ a.e.},$$

therefore

$$(o) - \lim_{n \to \infty} \|T^{n+1} - T^n\| = 0$$

The theorem is proved.

Now we can formulate the following theorem, which is an analog of Theorem A for the Banach-Kantorovich lattice $L^p(\nabla, \mu)$.

Theorem 3.4. Let $T : L^p(\nabla, \mu) \to L^p(\nabla, \mu), p > 1, p \neq 2$ be a positive linear contraction such that $T\mathbf{1} \leq \mathbf{1}$. If $|||T^{m+1} - T^m||| < 2\mathbf{1}$ for some $m \in \mathbb{N} \cup \{0\}$, then

$$(o) - \lim_{n \to \infty} \|T^{n+1} - T^n\| = 0.$$

The proof goes along the same lines as the proof of Theorem 3.3, but here instead of Proposition 3.1, Proposition 3.2 should be used.

References

- Benderskiy O.Ya., L^p(m)-spaces for measures with values in a topological semifield, Doklady Akad. Nauk UzSSR, 1976, n.9, 3-4 (Russian).
- [CG] Chilin V.I., Ganiev I.G., An individual ergodic theorem for contractions in the Banach-Kantorovich lattice $L^p(\nabla, \mu)$, Russian Math. (Iz. VUZ) **44** (2000), no. 7, 77–79.
- [Ga1] Ganiev I.G., Measurable bundles of Banach lattices, Uzbek. Mat. Zh. 5 (1998), 14–21 (Russian).
- [Ga2] Ganiev I.G., Measurable bundles of metrizable topological spaces, Doklady Akad. Nauk Rep. Uzb. 4 (1999), 8–11 (Russian).

I. Ganiev, F. Mukhamedov

- [Ga3] Ganiev I.G., Martingales in the Banach-Kantorovich's lattices $L_p(\hat{\nabla}, \hat{\mu})$, Proc. Int. Conf. Math. and its Appl. in New Millenium, Univ. Putra, Malaysia, 2001, pp, 52–59.
- [GaC] Ganiev I.G., Chilin V.I., Measurable bundles of noncommutative L^p-spaces associated with a center-valued trace, Siberian Adv. Math. 12 (2002), no. 4, 19–33.
- [G1] Gutman A.E., Banach bundles in the theory of lattice-normed spaces, III, Siberian Adv. Math. 3 (1993), no. 4, 8–40.
- [G2] Gutman A.E., Banach fiberings in the theory of lattice-normed spaces. Order-compatible linear operators, Trudy Inst. Mat. 29 (1995), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995, pp. 63–211 (Russian).
- [F] Foguel S.R., On the "zero-two" law, Israel J. Math. 10 (1971), 275–280.
- [KVP] Kantorovich L.V., Vulih B.Z., Pinsker A.G., Functional Analysis in Partially Ordered Spaces, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian).
- [KT] Katznelson Y., Tzafriri L., On power bounded operators, J. Funct. Anal. 68 (1986), 313–328.
- [K1] Kusraev A.G., Vector Duality and its Applications, Novosibirsk, Nauka, 1985 (Russian).
- [K2] Kusraev A.G., Dominanted Opperators, Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000.
- [OS] Ornstein D., Sucheston L., An operator theorem on L₁ convergence to zero with applications to Markov kernels, Ann. Math. Statis. 41 (1970), 1631–1639.
- [S] Sarymsakov T.A., Topological Semifields and its Applications, Tashkent, Fan, 1989 (Russian).
- [V] Vulih B.Z., Introduction to Theory of Partially Ordered Spaces, Moscow, 1961 (Russian); English translation: Wolters-Noordhoff, Groningen, 1967.
- [W] Woyczynski W.A., Geometry and martingales in Banach spaces, Lecture Notes in Math., vol. 472, Springer, Berlin, 1975, pp. 235–283.
- [Z1] Zaharopol R., The modulus of a regular linear operators and the "zero-two" law in L^p -spaces (1 , J. Funct. Anal.**68**(1986), 300–312.
- [Z2] Zaharopol R., On the "zero-two" law for positive contractions, Proc. Edinburgh Math. Soc. 32 (1989), 363–370.

Inomjon Ganiev:

TASHKENT RAILWAY ENGINEERING INSTITUTE, ODILHODJAEV STR. 1, 700167 TASHKENT, UZBEKISTAN

E-mail: ganiev1@rambler.ru

Farrukh Mukhamedov:

Department of Mechanics and Mathematics, National University of Uzbekistan, Vuzgorodok, 700174 Tashkent, Uzbekistan

current address:

DEPARTAMENTO DE FISICA, UNIVERSIDADE DE AVEIRO, CAMPUS UNIVERSITÁRIO DE SANTI-AGO, 3810-193 AVEIRO, PORTUGAL

E-mail: far75m@yandex.ru, farruh@fis.ua.pt

(Received December 2, 2004, revised April 3, 2006)