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A global uniqueness result for fractional

order implicit differential equations
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Abstract. In this paper we investigate the global existence and uniqueness of
solutions for the initial value problems (IVP for short), for a class of implicit
hyperbolic fractional order differential equations by using a nonlinear alternative
of Leray-Schauder type for contraction maps on Fréchet spaces.
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space, fixed point

Classification: 26A33

1. Introduction

The idea of fractional calculus and fractional order differential equations and
inclusions has been a subject of interest not only among mathematicians, but
also among physicists and engineers. Indeed, we can find numerous applications
in rheology, control, porous media, viscoelasticity, electrochemistry, electromag-
netism, etc. [13], [17], [18]. There has been a significant development in ordinary
and partial fractional differential equations in recent years; see the monographs
of Abbas et al. [5], Kilbas et al. [14], Miller and Ross [16], Samko et al. [19],
and Podlubny [18], the papers of Abbas and Benchohra [2], [3], Abbas et al. [1],
[4], Belarbi et al. [7], Benchohra et al. [8], [9], [10], Kilbas and Marzan [15],
Vityuk [20], Vityuk and Golushkov [21], Vityuk and Mykhailenko [22], and the
references therein. In [23] Vityuk and Mykhailenko used iterative method to ob-
tain solution to problem (1)–(2) on bounded domain. By means of the Banach
contraction principle and the nonlinear alternative of Leray-Schauder type Abbas
et al. [6] present some existence as well as uniqueness results for problem (1)–(2)
on bounded domain.

In this paper we are concerned with the global existence and uniqueness of
solutions to fractional order IVP for the system

(1) D
r

θu(x, y) = f(x, y, u(x, y), D
r

θu(x, y)); if (x, y) ∈ J := [0,∞)× [0,∞),
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(2)

{

u(x, 0) = ϕ(x), u(0, y) = ψ(y); x, y ∈ [0,∞),

ϕ(0) = ψ(0),

where θ = (0, 0), D
r

θ is the mixed regularized derivative of order r = (r1, r2) ∈
(0, 1]× (0, 1], f : J × R

n × R
n → R

n is a given function and ϕ, ψ : [0,∞) → R
n

are absolutely continuous functions. We make use of the nonlinear alternative of
Leray-Schauder type for contraction maps on Fréchet spaces [11]. Many properties
of solutions for differential equations and inclusions, such as stability or oscillation,
require global properties of solutions. This is the main motivation to look for
sufficient conditions that ensure global existence of solutions for IVP (1)–(2).
This paper initiates the study on unbounded domain of IVP (1)–(2).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. Let p ∈ N and J0 = [0, p]× [0, p]. By C(J0) we
denote the Banach space of all continuous functions from J0 into R

n with the
norm

‖w‖∞ = sup
(x,y)∈J0

‖w(x, y)‖,

where ‖ · ‖ denotes a suitable complete norm on R
n.

As usual, by AC(J0) we denote the space of absolutely continuous functions
from J0 into R

n and L1(J0) is the space of Lebesgue-integrable functions w : J0 →
R

n with the norm

‖w‖1 =

∫ p

0

∫ p

0

‖w(x, y)‖ dy dx.

Definition 2.1 ([14], [19]). Let α ∈ (0,∞) and u ∈ L1(J0). The partial Riemann-
Liouville integral of order α of u(x, y) with respect to x is defined by the expression

Iα0,xu(x, y) =
1

Γ(α)

∫ x

0

(x− s)α−1u(s, y) ds,

for almost all x ∈ [0, p] and almost all y ∈ [0, p].

Analogously, we define the integral

Iα0,yu(x, y) =
1

Γ(α)

∫ y

0

(y − s)α−1u(x, s) ds,

for almost all x ∈ [0, p] and almost all y ∈ [0, p].

Definition 2.2 ([14], [19]). Let α ∈ (0, 1] and u ∈ L1(J0). The Riemann-Liouville
fractional derivative of order α of u(x, y) with respect to x is defined by

(Dα
0,xu)(x, y) =

∂

∂x
I1−α
0,x u(x, y),
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for almost all x ∈ [0, p] and almost all y ∈ [0, p].

Analogously, we define the derivative

(Dα
0,yu)(x, y) =

∂

∂y
I1−α
0,y u(x, y),

for almost all x ∈ [0, p] and almost all y ∈ [0, p].

Definition 2.3 ([14], [19]). Let α ∈ (0, 1] and u ∈ L1(J0). The Caputo fractional
derivative of order α of u(x, y) with respect to x is defined by the expression

cDα
0,xu(x, y) = I1−α

0,x

∂

∂x
u(x, y),

for almost all x ∈ [0, p] and almost all y ∈ [0, p].

Analogously, we define the derivative

cDα
0,yu(x, y) = I1−α

0,y

∂

∂y
u(x, y),

for almost all x ∈ [0, p] and almost all y ∈ [0, p].

Definition 2.4 ([21]). Let r = (r1, r2) ∈ (0,∞) × (0,∞), θ = (0, 0) and u ∈
L1(J0). The left-sided mixed Riemann-Liouville integral of order r of u is defined
by

(Irθu)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t) dt ds.

In particular,

(Iθθu)(x, y) = u(x, y), (Iσθ u)(x, y) =

∫ x

0

∫ y

0

u(s, t) dt ds;

for almost all (x, y) ∈ J0, where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J0). Note also that

when u ∈ C(J0), then (Irθu) ∈ C(J0), moreover

(Irθu)(x, 0) = (Irθu)(0, y) = 0; x, y ∈ [0, p].

Example 2.5. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 , for all (x, y) ∈ J0.

By 1− r we mean (1 − r1, 1− r2) ∈ [0, 1)× [0, 1). Denote by D2
xy := ∂2

∂x∂y
the

mixed second order partial derivative.
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Definition 2.6 ([21]). Let r ∈ (0, 1] × (0, 1] and u ∈ L1(J0). The mixed frac-
tional Riemann-Liouville derivative of order r of u is defined by the expression
Dr

θu(x, y) = (D2
xyI

1−r
θ u)(x, y) and the Caputo fractional-order derivative of order

r of u is defined by the expression cDr
θu(x, y) = (I1−r

θ D2
xyu)(x, y).

The case σ = (1, 1) is included and we have

(Dσ
θ u)(x, y) = (cDσ

θ u)(x, y) = (D2
xyu)(x, y), for almost all (x, y) ∈ J0.

Example 2.7. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θx

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2, for almost all (x, y) ∈ J0.

Definition 2.8 ([23]). For a function u : J0 → R
n, we set

q(x, y) = u(x, y)− u(x, 0)− u(0, y) + u(0, 0).

By the mixed regularized derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1] of a
function u(x, y), we name the function

D
r

θu(x, y) = Dr
θq(x, y).

The function

D
r1
0,xu(x, y) = Dr1

0,x[u(x, y)− u(0, y)],

is called the partial r1–order regularized derivative of the function u(x, y) : J0 →
R

n with respect to the variable x. Analogously, we define the derivative

D
r2
0,yu(x, y) = Dr2

0,y[u(x, y)− u(x, 0)].

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. We assume
that the family of semi-norms {‖ · ‖n} satisfies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ . . . for every x ∈ X.

Let Y ⊂ X , we say that Y is bounded if for every n ∈ N, there exists Mn > 0
such that

‖y‖n ≤Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows: For
every n ∈ N, we consider the equivalence relation ∼n defined by: x ∼n y if and
only if ‖x− y‖n = 0 for x, y ∈ X . We denote by Xn = (X |∼n

, ‖ · ‖n) the quotient
space, the completion of Xn with respect to ‖ · ‖n. To every Y ⊂ X , we associate
a sequence {Y n} of subsets Y n ⊂ Xn as follows: For every x ∈ X , we denote by
[x]n the equivalence class of x of subset Xn and we defined Y n = {[x]n : x ∈ Y }.
We denote by Y n, intn(Y

n) and ∂nY
n, respectively, the closure, the interior and

the boundary of Y n with respect to ‖ · ‖n in Xn. For more information about
this subject see [11].
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Definition 2.9. Let X be a Fréchet space. A function N : X −→ X is said to
be a contraction if for each n ∈ N there exists kn ∈ [0, 1) such that

‖N(u)−N(v)‖n ≤ kn‖u− v‖n for all u, v ∈ X.

Theorem 2.10 ([11]). Let X be a Fréchet space and Y ⊂ X a closed subset

in X . Let N : Y −→ X be a contraction such that N(Y ) is bounded. Then one

of the following statements holds:

(a) the operator N has a unique fixed point;

(b) there exists λ ∈ [0, 1), n ∈ N and u ∈ ∂nY
n such that ‖u− λN(u)‖n = 0.

For each p ∈ N we define in C(J) the semi-norms by:

‖u‖p = sup
(x,y)∈J0

‖u(x, y)‖.

Then C(J) is a Fréchet space with the family of semi-norms {‖u‖p}p∈N.

3. Existence of solutions

Let us start by defining what we mean by a solution of the problem (1)–(2).

Definition 3.1. A function u ∈ C(J) such thatD
r1
0,xu(x, y), D

r2
0,yu(x, y),D

r

θu(x, y)

are continuous for (x, y) ∈ J and I1−r
θ u(x, y) ∈ AC(J) is said to be a solution of

(1)–(2) if u satisfies the equation (1) and the conditions (2) on J .

For the existence of solutions for the problem (1)–(2) we need the following
lemma.

Lemma 3.2 ([23]). Let a function f(x, y, u, z) : J0×R
n×R

n → R
n be continuous.

Then problem (1)–(2) is equivalent to the problem of the solution of the equation

(3) g(x, y) = f(x, y, µ(x, y) + Irθ g(x, y), g(x, y)),

and if g ∈ C(J0) is the solution of (6), then u(x, y) = µ(x, y) + Irθ g(x, y), where

µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

In the sequel we use the following version of Gronwall’s Lemma for two inde-
pendent variables and singular kernel.

Lemma 3.3 ([12]). Let υ : J → [0,∞) be a real function and ω(·, ·) be a non-

negative, locally integrable function on J . If there are constants c > 0 and

0 < r1, r2 < 1 such that,

υ(x, y) ≤ ω(x, y) + c

∫ x

0

∫ y

0

υ(s, t)

(x− s)r1(y − t)r2
dt ds,

then there exists a constant δ = δ(r1, r2) such that,

υ(x, y) ≤ ω(x, y) + δc

∫ x

0

∫ y

0

ω(s, t)

(x− s)r1(y − t)r2
dt ds,
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for every (x, y) ∈ J .

We are now in the position to give conditions for the existence and uniqueness
of a solution of problem (1)–(2).

Theorem 3.4. Assume

(H1) the function f : J × R
n × R

n → R
n is continuous;

(H2) for each p ∈ N, there exists constants kp > 0 and 0 < lp < 1 such that

for each (x, y) ∈ J0

‖f(x, y, u, z)− f(x, y, v, w)‖ ≤ kp‖u− v‖ + lp‖z − w‖,

for each u, v, w, z ∈ R
n.

If

(4)
kpp

r1+r2

(1− lp)Γ(1 + r1)Γ(1 + r2)
< 1,

then there exists a unique solution for IVP (1)–(2) on [0,∞)× [0,∞).

Proof: Transform the problem (1)–(2) into a fixed point problem. Consider the
operator N : C(J) → C(J) defined by,

(5) N(u)(x, y) = µ(x, y) + Irθ g(x, y),

where g ∈ C(J) such that g(x, y) = f(x, y, u(x, y), g(x, y)). The operator N is
well defined, that is, for each u ∈ C(J) there exists a unique g ∈ C(J) such that

(6) g(x, y) = f(x, y, u(x, y), g(x, y)) for each (x, y) ∈ J.

Indeed, assume that for each u ∈ C(J) there exist g1, g2 ∈ C(J) satisfying (6).
Then using (H2) we get for each (x, y) ∈ J

(1− lp)‖g1(x, y)− g2(x, y)‖ ≤ 0,

which implies that

g1(x, y) = g2(x, y) for each (x, y) ∈ J.

Let u be a possible solution of the problem u = λN(u) for some 0 < λ < 1.
This implies that for each (x, y) ∈ J0, we have

(7) u(x, y) = λµ(x, y) +
λ

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x − s)r1−1(y − t)r2−1g(s, t) dt ds.

By (H2) we get

‖g(x, y)‖ ≤ f∗ + kp‖u(x, y)‖+ lp‖g(x, y)‖,
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where

f∗ = sup
(x,y)∈J0

‖f(x, y, 0, 0)‖.

Then

‖g(x, y)‖ ≤
f∗ + kp‖u(x, y)‖

1− lp
.

Thus, (7) implies that

‖u(x, y)‖ ≤ ‖µ(x, y)‖

+
1

(1− lp)Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x − s)r1−1(y − t)r2−1
(

f∗ + kp‖u(s, t)‖
)

dt ds

≤ ‖µ‖p +
f∗pr1+r2

(1− lp)Γ(1 + r1)Γ(1 + r2)

+
kp

(1− lp)Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x − s)r1−1(y − t)r2−1‖u(s, t)‖ dt ds.

Set

w = ‖µ‖p +
f∗pr1+r2

(1 − lp)Γ(1 + r1)Γ(1 + r2)
.

Lemma 3.3 implies that there exists a constant δ = δ(r1, r2) such that

‖u(x, y)‖ ≤ w
(

1 +
δkp

(1− lp)Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1 dt ds
)

≤ w
(

1 +
δkpp

r1+r2

(1− lp)Γ(1 + r1)Γ(1 + r2)

)

:=Mp.

Then for every p ∈ N we have ‖u‖p ≤Mp. Set

U = {u ∈ C(J) : ‖u‖p ≤Mp + 1 for all p ∈ N}.

We shall show that N : U −→ C(J0) is a contraction map. Indeed, consider
v, w ∈ C(J0). Then, for (x, y) ∈ J0, we have

(8)

‖N(v)(x, y)−N(w)(x, y)‖

≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖g(s, t)− h(s, t)‖ dt ds,

where g, h ∈ C(J0) such that

g(x, y) = f(x, y, v(x, y), g(x, y))

and

h(x, y) = f(x, y, w(x, y), h(x, y)).
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By (H2), we get

‖g(x, y)− h(x, y)‖ ≤ kp‖v(x, y)− w(x, y)‖ + lp‖g(x, y)− h(x, y)‖.

Then

‖g(x, y)− h(x, y)‖ ≤
kp

1− lp
‖v − w‖p.

Thus, (8) implies that

‖N(v)−N(w)‖p

≤
kp

(1− lp)Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖v − w‖p dt ds

≤
kpp

r1+r2

(1− lp)Γ(1 + r1)Γ(1 + r2)
‖v − w‖p.

Hence

‖N(v)−N(w)‖p ≤
kpp

r1+r2

(1− lp)Γ(1 + r1)Γ(1 + r2)
‖v − w‖p.

By (4), N : U −→ C(J0) is a contraction. By the choice of U , there is no u ∈ ∂nU
n

such that u = λN(u), for λ ∈ (0, 1). As a consequence of Theorem 2.10, we deduce
that N has a unique fixed point u in U which is a solution to problem (1)–(2). �

4. An example

As an application of our results we consider the following implicit partial hy-
perbolic fractional order differential equation of the form
(9)

D
r

θu(x, y) =
1

7ex+y+2(1 + cp|u(x, y)|+ |D
r

θu(x, y)|)
; if (x, y) ∈ [0,∞)× [0,∞),

(10) u(x, 0) = x, u(0, y) = y2; x, y ∈ [0,∞),

where

cp =
Γ(1 + r1)Γ(1 + r2)

pr1+r2
; p ∈ N

∗ := {1, 2, 3, . . .}.

Define f by

f(x, y, u, v) =
1

7ex+y+2(1 + cp|u|+ |v|)
; (x, y) ∈ [0,∞)× [0,∞) and u, v ∈ R.

Clearly, the function f is continuous. For each p ∈ N
∗ and (x, y) ∈ J0 we have

|f(x, y, u(x, y), v(x, y)) − f(x, y, u(x, y), v(x, y))| ≤
1

7e2
(cp‖u− u‖+ ‖v − v‖),
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for each u, v, u, v ∈ R.
Hence condition (H2) is satisfied with kp =

cp
7e2 and lp = 1

7e2 . We shall show
that condition (4) holds for all p ∈ N

∗. Indeed

kpp
r1+r2

(1− lp)Γ(1 + r1)Γ(1 + r2)
=

cpp
r1+r2

(7e2 − 1)Γ(1 + r1)Γ(1 + r2)
=

1

7e2 − 1
< 1.

Consequently, Theorem 3.4 implies that problem (9)–(10) has a unique solution
defined on [0,∞)× [0,∞).
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