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Lower semicontinuous functions

with values in a continuous lattice

Frans van Gool

Abstract. It is proved that for every continuous lattice there is a unique semiuniform
structure generating both the order and the Lawson topology. The way below relation
can be characterized with this uniform structure. These results are used to extend many
of the analytical properties of real-valued l.s.c. functions to l.s.c. functions with values in
a continuous lattice. The results of this paper have some applications in potential theory.
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1. Introduction.

Real-valued lower and upper semicontinuous functions play an important role
in various fields of mathematics, in particular in potential theory. If one wants
to generalize potential theory to non-real-valued functions, for instance to describe
solutions of systems of differential equations, then the first step should be to gener-
alize the notion of semicontinuity to such functions. There have been some attempts
to generalize semicontinuity in this direction (see [2], [6], [9] and [12]). However,
analytical results of the type needed in potential theory (like Dini’s theorem, in-
between theorems, Choquet lemma) are usually not obtained. In this text, we focus
on this kind of properties.
An application of the work in this text can be found in [8]. There a non-real

and non-linear axiomatic potential theory is developed with a metrizable, arcwise
connected, linked bicontinuous lattice as a value space. This axiomatic theory
can be used to describe the solutions of systems of differential equations like the
biharmonic equations: ∆u = v, ∆v = 0.
It is evident that, the more restrictions we impose on the value space R, the more

results we can obtain. But also, the more restrictions needed on R, the less inter-
esting the generalization. A very good compromise, at least for our purposes, seems
to be the notion of a continuous lattice (see [7] for an introduction to continuous
lattices).
After the preliminaries in Section 2, we will show in Section 3 that for every con-

tinuous lattice R, there is a unique semiuniform structure (as defined by Nachbin
in [11]) generating both the order and the topology on R. Since in many analytical
results, the uniform (or metric) structure of the real numbers is very important,
this result will be crucial for the rest of this text. Then in Section 4, we will define
lower semicontinuous functions on R and prove some basic results like lattice prop-
erties and some equivalent definitions. In the last section, we will prove analytical
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results like: every lower semicontinuous function on a completely regular space is
the supremum of continuous functions; the in-between theorem on normal spaces;
Dini’s theorem and the Choquet lemma. For some of these results, R has to satisfy
extra conditions.

2. Preliminaries.

For any topological space X and any x ∈ X, TX(x) will be the collection of all
open neighbourhoods of x.
A relation between elements of X and Y is a subset of X × Y. A function of X

to Y, when identified with its graph, is a special example of a relation. We will use
the following extensions of notations commonly used for functions (A is a relation
between X and Y and B is a relation between Y and Z):

• A(x) = {y ∈ Y : (x, y) ∈ A} (the image of x ∈ X);
• A(V ) = ∪x∈V A(x) (the image of V ⊂ X);
• A−1 = {(y, x) ∈ Y×X : (x, y) ∈ A} (the dual or inverse relation);
• B ◦ A = {(x, z) ∈ X × Z : ∃y ∈ Y : (x, y) ∈ A, (y, z) ∈ B} (the composite
relation).

A relation E on a set R (i.e. between elements of R and R) is called an order
relation if it satisfies:

• E−1 ∩E = {(x, x) : x ∈ R} (anti-symmetry);
• {(x, x) : x ∈ R} ⊂ E (reflexivity);
• E ◦E ⊂ E (transitivity).

A set, together with an order relation, is called an ordered set. If E is an order
relation, then we will write x ≤ y if (x, y) ∈ E. The notation ≤ will be extended to
subsets of R in the following way: F ≤ G if for all f ∈ F and g ∈ G we have f ≤ g.
If F = {f}, then we will also say f ≤ G and then f is called a lower bound of G.
If G = {g}, then we will also say F ≤ g and then g is called an upper bound of F .
Evidently the dual relation E−1 is also an order relation and we will write x ≥ y if
(x, y) ∈ E−1.
Let F be a non-empty subset of R and let G be the collection of all upper bounds

of F . If there is an f ∈ G with f ≤ G, then f is called the supremum of F and
is denoted by supF . If F = {a, b}, the supF is also denoted by a ∨ b. In a dual
way the infimum of F (notation inf F or a ∧ b) is defined. An ordered set is called
a lattice if every non-empty finite subset has a supremum and an infimum; it is called
a complete lattice if every non-empty subset has a supremum and an infimum.
Let F be a subset of R. F is called upper (lower) directed if it is non-empty

and if every pair of elements of F has an upper (lower) bound in F . F is called
increasing (decreasing) if it is non-empty and if a ∈ F and b ≥ a (b ≤ a) implies
b ∈ F .
Let f be a map between ordered sets R and T. We say that f is isotone if

a ≥ b implies f(a) ≥ f(b). We say that f preserves directed sups if for all upper
directed F ⊂ R such that supF exists, we have that sup f(F ) exists and f(supF ) =
sup f(F ). We say that f preserves directed infs if for all lower directed F ⊂ R such
that inf F exists, we have that inf f(F ) exists and f(inf F ) = inf f(F ). Note that
if f preserves directed sups or infs, then f is isotone.
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3. Uniform ordered spaces and continuous lattices.

The main aim of this section is to prove a characterization of continuous lattices,
as defined in [7], in terms of uniform ordered spaces, as defined in [11]. This
characterization will prove to be very useful in later sections, where the uniform
structure of continuous lattices will be used to prove many results about lower
semicontinuous functions.

Uniform ordered spaces.

In [11], a uniform ordered space is defined to be a set R together with a filter U
on R2 such that for all A ∈ U we have that both {(x, x) : x ∈ R} ⊂ A and there is
a B ∈ U such that B◦B ⊂ A. On a uniform ordered space R a uniformity is defined
by the filter {A ∩ A−1 : A ∈ U}. Note that if this uniformity is separated, then
E =

⋂

{A : A ∈ U} defines an order relation on R, and hence R is both a uniform
space and an ordered space. The filter U is called the semiuniformity on R.
Now let R be a topological space with an order relation E. If E is closed in

R2, then R is said to have a closed order. In [11, Proposition II-1.6] it is shown
that every uniform ordered set has a closed order. Compact topological spaces with
a closed order have very nice properties. One of the most important properties is
similar to the well-known result that every compact Hausdorff space is generated
by a unique uniform structure.

Proposition 3.1. Let R be a compact topological space with a closed order. Then
the filter of neighbourhoods of E in R2 is the unique semiuniformity generating
both the topology and the order on R.

Proof: By [11, Proposition II-2.13] there is a semiuniformity U generating both
the topology and the order on R.

Take A ∈ U , then evidently A is a neighbourhood of E in R2. Now let V be
open in R2 such that there is no A ∈ U with A ⊂ V . Then {A \ V : A ∈ U} is
a filter base in R2 and since R2 is compact it must have a cluster point (x, y). For

this cluster point we have (x, y) ∈
⋂

{A \ V : A ∈ U} = E \V . So V cannot be
a neighbourhood of E in R2. Hence U must be the filter of neighbourhoods of E in
R2 and consequently U is unique. �

Note that if R is not compact, then the semiuniformity, if it exists, need not be
unique. As an example consider the following two semiuniformities on the Euclidean
plane E:

• U1 is generated by Aǫ = {(x, y) ∈ E × E : (x1 − y1) ≤ ǫ, (x2 − y2) ≤ ǫ}
where ǫ runs through all strictly positive real numbers;

• U2 is generated by Aǫ = {(x, y) ∈ E ×E : (x1 − y1) + ǫ(x2 − y2) ≤ ǫ, ǫ(x1 −
y1) + (x2 − y2) ≤ ǫ} where ǫ runs through all strictly positive real numbers.

These two semiuniformities both generate the usual topology and order on the plane,
but they are essentially different, seen as semiuniform spaces.

A semimetric on R is a real-valued function m on R2 such that:

• for all x, y ∈ R we have m(x, y) ≥ 0;
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• for all x ∈ R we have m(x, x) = 0;
• for all x, y, z ∈ R we have m(x, z) ≤ m(x, y) +m(y, z).

Obviously the sets {(x, y) ∈ R2 : m(x, y) ≤ ǫ} for ǫ > 0 generate a semiuniformity
on R. If R is a uniform ordered space such that there is a semimetric that gene-
rates the semiuniformity of R, then R is called semimetrizable. Obviously, if R is
semimetrizable, then R is metrizable. If R is a metrizable ordered space, then we can
define a semimetric m on R in the following way: m(x, y) is the distance (in R2) of
the point (x, y) to the set E. In general, it is not true that this semimetric generates
the order and topology we started with. However, if R is compact and has a closed
order, then the sets {(x, y) ∈ R2 : m(x, y) ≤ ǫ} for ǫ > 0 are a neighbourhoodbase of
E in R2. Hence 3.1 implies that every compact uniform ordered space is metrizable
iff it is semimetrizable. This implies that a compact uniform ordered space is
semimetrizable iff U is generated by a countable filter base.

Lemma 3.2. Let R be a compact topological space with a closed order.

1. For all upper directed F ⊂ R we have that supF exists and is the limit of F
considered as a net on R.

2. Suppose ∧ exists as a map from R2 to R. If ∧ is continuous, then ∧ preserves
directed sups.

3. For all open and increasing U ⊂ R and all a ∈ U there is an A ∈ U with
A(a) ⊂ U .

Proof: (1) Note that we can consider F as a net on R. Since R is compact, F
must have a cluster point x. For any f ∈ F , we define Ff = {g ∈ F : g ≥ f}. Since
F is upper directed, x must be a cluster point of the upper directed set Ff . Since
Ff is contained in the closed set {g ∈ R : g ≥ f} we must have x ≥ f . Now since
f was arbitrary, x ≥ F . Now take y ≥ F . Then F is contained in the closed set
{g ∈ R : g ≤ y} and hence x ≤ y. So x = supF . Since x was an arbitrary cluster
point, F is convergent with limit x.

(2) If F, G ⊂ R are upper directed, then (supF )∧ (supG) = (limF )∧ (limG) =
lim(F ∧ G) = sup(F ∧ G).

(3) Now let U be open and increasing and a ∈ U . Then A = R2 \ ({a}× (R\U))
is an open neighbourhood of E. So A ∈ U and A(a) = U . �

Let R be a uniform ordered space with semiuniformity U . In many cases, like
with the usual uniform spaces, it is not convenient to use the total semiuniformity U .
For this reason we define two very useful filter bases of U . For any A ∈ U we define
A• =

⋂

{B ◦ A ◦ B : B ∈ U}. It is very easy to prove that:

• A ⊂ A• ∈ U ;
• E ◦A• ◦ E = A•;
• A• is closed with respect to the product topology on R2;
• A•• = A•;
• U• ≡ {A ∈ U : A• = A} is a filter base of U .
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For any A ∈ U we define A◦ =
⋃

{B : B ∈ U , ∃C ∈ U , C ◦ B ◦ C ⊂ A}. Again it is
very easy to prove that:

• A ⊃ A◦ ∈ U ;
• E ◦A◦ ◦ E = A◦;
• A◦ is open with respect to the product topology on R2;
• A◦◦ = A◦;
• U◦ ≡ {A ∈ U : A◦ = A} is a filter base of U .

In the real numbers, the strict inequality < has many important applications.
In general uniform ordered spaces, the place of < is taken by one of the following
relations:

• a ≪ b if there is a A ∈ U with a ≤ A(b);
• a ≫ b if there is a A ∈ U with a ≥ A−1(b);
• a ≪ b if there is a A ∈ U with A−1(a) ≤ A(b).

Note that, in general, these relations are not reflexive and hence they are no order
relations. Note also that, in general, a ≪ b is not the same as b ≫ a. For instance,
if R is the set of extended real numbers, then a ≪ b is the same as a < b or a = −∞,
and b ≫ a is the same as b > a or b = ∞. In that example, a ≪ b is the same as
a < b. The following results are immediate:

• if a ≪ b then a ≪ b and b ≫ a;
• if there is a c with c ≫ a and c ≪ b then a ≪ b;
• if a ≪ b or b ≫ a then a ≤ b;
• if a ≤ b and b ≪ c and c ≤ d then a ≪ d;
• if a ≥ b and b ≫ c and c ≥ d then a ≫ d;
• if a ≤ b and b ≪ c and c ≤ d then a ≪ d;
• if a ≫ b and c ≫ d then a ∧ c ≫ b ∧ d;
• if a ≪ b and c ≪ d then a ∨ c ≪ b ∨ d.

From analytical point of view, the elements a ∈ R with a ≪ a are not very desirable.
The next result shows that in a lot of situations, they are not very common.

Lemma 3.3. Let R be an arcwise connected uniform ordered space. Then a ≪
a ⇔ a = inf R.

Proof: Suppose a ≪ a, so there is an A ∈ U◦ with a ≤ A(a). Take b ∈ R and
let f ∈ C([0, 1],R) with f(0) = b, f(1) = a. Define V = {x ∈ [0, 1] : f(x) ∈ A(a)}.
Since f(V ) ⊂ A(a) ≥ a we have V = {x ∈ [0, 1] : f(x) ≥ a}. Now, since f is
continuous, V is both open and closed in [0, 1]. Hence V = [0, 1] and so f(0) = b ≥ a.
Since b was arbitrary we get a = inf R. The other implication is evident. �

Continuous lattices.

In [7], and for an arbitrary ordered space R, another strengthening of≤ is defined,
the ‘way below’ relation. They define: a is way below b if for every upper directed
F ⊂ R with supF ≥ b there is an f ∈ F with f ≥ a. Then they define a continuous
lattice to be a complete lattice R such that every a ∈ R is the supremum of all b ∈ R
that are way below a. Furthermore they define some topologies on an ordered set
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R:

• Scott topology: A set U is Scott-open iff it is increasing and for every upper
directed F with supF ∈ U we have F ∩ U 6= ∅;

• lower topology: The sets {x ∈ R : x ≥ a} with a ∈ R are a subbase of closed
sets;

• Lawson topology: The coarsest topology finer than both the Scott and lower
topology.

Note (see [7, Proposition III-1.6(i) and Exercise III-3.20(iv)]) that on a complete
lattice, an increasing set is Lawson-open iff it is Scott-open and a decreasing set is
Lawson-open iff it is open in the lower topology. The following results will show
that there is a strong relation between the notions defined in [7] and the notions
defined in this section.

Proposition 3.4. Let R be a uniform ordered complete lattice, then:

1. if every upper directed set is convergent, then a ≪ b implies a way below b
and every increasing and open set is Scott-open;

2. if for all a ∈ R we have a = sup{b : b ≪ a}, then a way below b implies
a ≪ b and every Scott-open set is open and increasing;

3. if both every upper directed set is convergent and for all a ∈ R we have
a = sup{b : b ≪ a}, then for all open U and all a ∈ U there is an A ∈ U
with inf A(a) ∈ U and hence E(U) is open.

Proof: (1) If a ≪ b, then there is an A ∈ U◦ with a ≤ A(b). Now let F be upper
directed with supF ≥ b, then A(b) is an open neighbourhood of supF and so there
is an f ∈ F with f ∈ A(b). But then a ≤ f and hence a way below b. The second
statement is evident.

(2) Let a be way below b. Then F = {inf A(b) : A ∈ U} is upper directed with
supremum b and so there is an A ∈ U with a ≤ inf A(b) and hence with a ≪ b. Now
let U be Scott-open and a ∈ U . Then F = {inf A(a) : A ∈ U} is upper directed
with supremum a ∈ U . So there is an A ∈ U with inf A(a) ∈ U . But then, since U
is increasing, A(a) ⊂ U and hence U is open.

(3) Take B ∈ U◦ such that B(a) ∩ B−1(a) ⊂ U . Now since {b : b ≪ a} is upper
directed with supremum a, there is a b ∈ B(a) with b ≪ a. But then there is
an A ∈ U with b ≤ inf A(a) ≤ a and hence with inf A(a) ∈ B(a). But then also
inf A(a) ∈ U . �

Theorem 3.5. Let R be a compact uniform ordered lattice such that a = sup{b :
b ≪ a} for all a ∈ R. Then R is a continuous lattice, a ≪ b iff a way below b and
U ⊂ R is open iff U is Lawson-open.

Proof: Using 3.2 we get that R is a complete lattice and that upper directed sets
are convergent. Now, using 3.4, we get that a ≪ b iff a way below b and hence
that R is a continuous lattice. Furthermore since E(x) is closed we have that the
Lawson-topology is coarser than the given topology. But since the Lawson-topology
is Hausdorff and the given topology is compact, they must coincide. �
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Theorem 3.6. If R is a continuous lattice, then there is a unique semiunifor-
mity U , both generating the Lawson-topology and the order on R. Furthermore, ∧
is continuous and a way below b iff a ≪ b.

Proof: Using [7, Theorem VI-3.4] we get that, in the Lawson-topology, R is a com-
pact topological space with a closed order and ∧ is continuous. So, by 3.1, the filter
of neighbourhoods of E in R2 is the unique semiuniformity U generating both the
Lawson-topology and the order on R.
If a way below b, then U = {x : a way below x} is open and increasing, by [7,

Proposition II-1.10], and b ∈ U . So there is an A ∈ U with A(b) ⊂ U and hence with
a ≤ A(b). So we get that a way below b implies a ≪ b and the other implication
follows from 3.4. �

Examples and an application.

The basic example of a continuous lattice is the set of extended real numbers (or
equivalently the unit interval). Furthermore, it is easy to check that the Cartesian
product of an arbitrary number of continuous lattices again is a continuous lattice.
In 5.11 we will prove that the lower semicontinuous functions on a locally compact
Hausdorff space, with values in a continuous lattice, again is a continuous lattice.
Another nice example comes from potential theory.

Lemma 3.7. Let X be a P-harmonic space as defined in [4]. Then the set of
positive hyperharmonic functions on X is a continuous lattice.

Proof: Evidently the set of positive hyperharmonic functions is a complete lattice.
Now take any positive hyperharmonic function f and any continuous real poten-
tial p, harmonic outside a compact set K, such that f > p on K. Now let F be
an increasing set of positive hyperharmonic functions with supF ≥ f . Since K is
compact, there is a g ∈ F with g ≥ p on K and since p is continuous this implies
g ≥ p on X. Hence p ≪ f . But it is a well known result that f is the supremum of
such potentials and hence we have a continuous lattice. �

More examples can be found in [7]. A nice application of continuous lattices
in potential theory is a general definition of capacity. Let X be a locally compact
Hausdorff space. Similar to [4, Section 5.2], we define a capacity γ on X as a map
from the subsets of X to a continuous lattice R such that:

• If (An)n ⊂ X is an increasing sequence, then supn γ(An) = γ(∪nAn);
• If (Kn)n ⊂ X is a decreasing sequence of compact sets, then infn γ(Kn) =

γ(∩nKn).

A subset A of X is called γ-capacitable if γ(A) = sup{γ(K) : A ⊃ K compact}.
Note that, by 5.11, R may be the set of positive lower semicontinuous, numerical
functions on a locally compact Hausdorff space as in [4, Section 5.2].

Proposition 3.8. Let Y be a locally compact Hausdorff space, φ a continuous map
from Y to X and γ a capacity on X. Define γ′ by γ′(A) = γ(φ(A)). Then γ′ is
a capacity and if A ⊂ Y is γ′-capacitable, then φ(A) is γ-capacitable.

Proof: If (An)n ⊂ Y is an increasing sequence, then (φ(An))n is also an increasing
sequence and φ(∪nAn) = ∪nφ(An). So we have supn γ′(An) = γ′(∪nAn).
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If (Kn)n ⊂ Y is a decreasing sequence of compact sets, then, since φ is continuous,
(φ(Kn))n is a decreasing sequence of compact sets and φ(∩nKn) = ∩nφ(Kn). So
we have infn γ′(Kn) = γ′(∩nKn).

If A ⊂ Y is γ′-capacitable, then γ(φ(A)) = sup{γ(φ(K)) : A ⊃ K compact} ≤
sup{γ(L) : φ(A) ⊃ L compact} ≤ γ(φ(A)) and so φ(A) is γ-capacitable. �

Proposition 3.9. Every Kσδ set A in a locally compact Hausdorff space X is
capacitable with respect to any capacity γ.

Proof: Let a ≪ γ(A). There is a family (Km,n)m,n of compact sets such that for
all fixed m the sequence (Km,n)n is increasing and A = ∩m ∪n Km,n.

For convenience, set n0 = 0 and K0,0 = A. We construct inductively a sequence
(nm)m such that for all i ∈ {0, 1, · · · } we have a ≪ γ(∩0≤m≤iKm,nm

) on L. Assume
the construction is performed for all m < i. Now (Ki,j ∩ (∩0≤m<iKm,nm

))j is an
increasing sequence of subsets of X whose union is ∩0≤m<iKm,nm

. So since L
is compact and all γ-values are lower semicontinuous on L there is a j such that
a ≪ γ(Ki,j ∩ (∩0≤m<iKm,nm

)) on L. Define ni to be that j.

Since ∩m≥1Km,nm
= ∩m≥0Km,nm

is a compact subset of A we now have

sup{γ(K)(x) : A ⊃ K compact} ≥ γ(∩m≥1Km,nm
) = inf

i
γ(∩1≤m≤iKm,nm

) ≥ a.

So since a was arbitrary, we get that A is γ-capacitable. �

As in [4, Section 5.2] we define a subset A of a locally compact space X to be K-
analytic if there exists a locally compact space Y, aKσδ-set A

′ of Y and a continuous
map φ from Y to X such that A = φ(A′). Using 3.8 and 3.9 it is clear that every
K-analytic set is capacitable for any capacity. Furthermore in [4, Corolary 5.2.2] it
is proved that in a locally compact space with a countable base, every Borel set is
K-analytic and hence capacitable for any capacity.

4. Semicontinuous functions.

In this section, R is a uniform ordered space with semiuniformity U . For every
filter base F in R we define the following two sets:

• LIMINF (F) = {r ∈ R : ∀A ∈ U ∃V ∈ F , V ⊂ A(r)};
• LIMSUP (F) = {r ∈ R : ∀A ∈ U ∃V ∈ F , V ⊂ A−1(r)}.

These sets will be used to define lower and upper semicontinuous functions with
values in R.

Lemma 4.1. Let F be a filter base in R, then:

1. if x ∈ V for all V ∈ F , then x ≥ LIMINF (F);
2. if x ≤ V for some V ∈ F , then x ∈ LIMINF (F);
3. LIMINF (F) ≤ LIMSUP (F);
4. (F → x)⇔ (x ∈ LIMINF (F) ∩ LIMSUP (F));
5. LIMINF (F) is closed;
6. LIMINF (F) is decreasing.
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Proof: (3) Take a ∈ LIMINF (F), b ∈ LIMSUP (F), A ∈ U and B ∈ U with
B ◦ B ⊂ A. Then there is a V ∈ F such that both V ⊂ B(a) and V ⊂ B−1(b).
This means that (a, b) ∈ B ◦ B ⊂ A. Since A was arbitrary, we have (a, b) ∈ E and
hence a ≤ b.

(5) Take a /∈ LIMINF (F). Then there is an A ∈ U such that ∀V ∈ F ∃y ∈
V, (a, y) /∈ A. Now take B ∈ U such that B ◦ B ⊂ A and take b ∈ B(a). Now for
all V ∈ F there is a y ∈ V such that both (a, y) /∈ B ◦ B and (a, b) ∈ B. So for all
V ∈ F there is a y ∈ V such that (b, y) /∈ B and hence b /∈ LIMINF (F). So the
complement of LIMINF (F) is open and hence LIMINF (F) is closed. �

If R is a complete lattice, then we define:

• lim inf(F) = supLIMINF (F);
• lim sup(F) = inf LIMSUP (F).

The next result shows that if R is the set of extended real numbers, this definition
of lim inf is just the usual one.

Lemma 4.2. Let F be a filter base in a continuous lattice R, then:

1. lim inf(F) = sup{inf V : V ∈ F};
2. LIMINF (F) = {r ∈ R : r ≤ lim inf(F)}.

Proof: (1) Let r ∈ LIMINF (F) and A ∈ U◦. Take B ∈ U such that inf B(r) ∈
A(r) and V ∈ F with V ⊂ B(r). Then inf V ∈ A(r) and hence sup{inf V : V ∈
F} ∈ A(r). Since A and r were arbitrary we get sup{inf V : V ∈ F} ≥ lim inf(F).
On the other hand we have for all V ∈ F that inf V ∈ LIMINF (F) and hence
sup{inf V : V ∈ F} ≤ lim inf(F).

(2) Take a, b ∈ LIMINF (F) and A ∈ U◦. Now {a′ ∨ b′ : a′ ≪ a, b′ ≪ b} is
upper directed with supremum a ∨ b. So there are a′ ≪ a and b′ ≪ b such that
a′ ∨ b′ ∈ A(a ∨ b). But then there is a B ∈ U such that for all a′ ∈ B(a) and all
b′ ∈ B(b) we have a′∨ b′ ∈ A(a∨ b). Now choose V ∈ F such that V ⊂ B(a)∩B(b).
Then we have also V ⊂ A(a ∨ b) and, since A was arbitrary, a ∨ b ∈ LIMINF (F).
So LIMINF (F) is upper directed and hence lim inf(F) is the limit of LIMINF (F).
The fact that LIMINF (F) is closed and decreasing completes the proof. �

Let X be a topological space and let f be a function from X to R. Remember
that TX(x) is the filter base of all open neighbourhoods of a point x ∈ X. We say
that f is lower semicontinuous in x ∈ X if f(x) ∈ LIMINF (f(TX(x))) and that f is
upper semicontinuous in x if f(x) ∈ LIMSUP (f(TX(x))). Furthermore, f is called
lower (upper) semicontinuous on V ⊂ X if it is lower (upper) semicontinuous in
every x ∈ V . The collection of all lower (upper) semicontinuous functions on X is
denoted by LSC (X) (USC (X)). As usual, C(X) is the collection of all continuous
functions on X and NUM (X) is the collection of all functions on X.
Note that if we had defined the LIMINF of a filter base F to be {r ∈ R :

∀U ∈ TR(r) ∃V ∈ F , V ⊂ E(U)}, then our definition of semicontinuity would
have been equivalent to the one in [12]. In general, our definition is not equivalent
to the one given there. If we consider continuous lattices however, then we have
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that for all r ∈ R and all U ∈ TR(r), there is an A ∈ U such that A(r) ⊂ E(U).
If this is the case, then the two definitions are equivalent. A disadvantage of our
definition is that it is not necessary that LSC (X) is a lattice, even if ∧ and ∨ are
continuous. The main advantage of our definition is that we can use the uniform
structure, for instance in Dini-like theorems. In general, the best definition of lower
semicontinuous functions depends on the applications one has in mind. However,
if the values are in a continuous lattice, then it is most likely that every reasonable
definition is equivalent to the one given here.

Lemma 4.3. Let X and Y be topological spaces, then:

1. C(X) = LSC (X) ∩USC (X);
2. if V ⊂ X open, f ∈ LSC (V ), g ∈ LSC (X \ V ) and f ≥ g on ∂V ,

then h =

{

f on V

g on X \ V
∈ LSC (X);

3. if f ∈ LSC (X), g ∈ USC (Y) and A ∈ U•, then {(x, y) ∈ X × Y :
(f(x), g(y)) ∈ A} is closed;

4. if f ∈ LSC (X), g ∈ USC (Y) and A ∈ U◦, then {(x, y) ∈ X × Y :
(g(y), f(x)) ∈ A} is open;

5. if f ∈ LSC (X) and g ∈ USC (Y), then {(x, y) ∈ X × Y : f(x) ≤ g(y)} is
closed;

6. if f ∈ LSC (X) and g ∈ USC (Y), then {(x, y) ∈ X × Y : g(y) ≪ f(x)} is
open;

7. if f ∈ LSC (X) and r ∈ R then {x ∈ X : r ≪ f(x)} is open;
8. if F ⊂ LSC (X) is a lower directed, locally uniformly convergent set and

f = inf F , then f ∈ LSC (X).

Proof: (2) Evidently we have h(x) ∈ LIMINF (h(TX(x))) for all x ∈ X \ ∂V . So
let x ∈ ∂V . Then h(x) = g(x) ≤ f(x). Take A ∈ U◦, then there is a U ∈ TX(x)
with both f(U ∩V ) ⊂ A(f(x)) ⊂ A(h(x)) and g(U \V ) ⊂ A(g(x)) = A(h(x)). This
implies h(U) ⊂ A(h(x)) and hence h(x) ∈ LIMINF (h(TX(x))).

(3) Suppose (f(x), g(y)) /∈ A. Then there is a B ∈ U with (f(x), g(y)) /∈ B◦A◦B.
Take C ∈ U with C ◦C ⊂ B, V ∈ TX(x) with f(V ) ⊂ C(f(x)) and W ∈ TY(y) with
g(W ) ⊂ C−1(g(y)). Now take x′ ∈ V and y′ ∈ W and suppose (f(x′), g(y′)) ∈ A.
Then (f(x′), g(y′)) ∈ C ◦A◦C and hence (f(x), g(y)) ∈ C ◦C ◦A◦C ◦C ⊂ B ◦A◦B
which gives a contradiction. So {(x, y) ∈ X×Y : (f(x), g(y)) /∈ A} is open.

(4) Suppose (g(y), f(x)) ∈ A. Then there is a B ∈ U and a C ∈ U with
C ◦ B ◦ C ⊂ A and (g(y), f(x)) ∈ B. Now take D ∈ U with D ◦ D ⊂ C, V ∈ TX(x)
with f(V ) ⊂ D(f(x)) and W ∈ TY(y) with g(W ) ⊂ D−1(g(y)). Then for all x′ ∈ V
and all y′ ∈ W we have (g(y′), f(x′)) ∈ D ◦ D ⊂ A.

(6) Let g(y)≪ f(x). Then there is an A ∈ U with A(f(x)) ≥ A−1(g(y)). Now
take B ∈ U with B ◦B ⊂ A, V ∈ TX(x) with f(V ) ⊂ B(f(x)) and W ∈ TY(y) with
g(W ) ⊂ B−1(g(y)). Then for all x′ ∈ V and all y′ ∈ W we have B(f(x′)) ⊂ A(f(x))
and B−1(g(y′)) ⊂ A−1(g(y)) and hence B(f(x′)) ≥ B−1(g(y′)).

(7) Let r ≪ f(x). Then there is an A ∈ U with r ≤ A(f(x)). Now take B ∈ U
with B ◦ B ⊂ A and V ∈ TX(x) with f(V ) ⊂ B(f(x)). Then for any x′ ∈ V we
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have B(f(x′)) ⊂ A(f(x)) and hence r ≤ B(f(x′)).

(8) Take A ∈ U and x ∈ X. Now take B ∈ U◦ such that B◦B ⊂ A. Then there is
a g ∈ F and a U ∈ TX(x) with (g(y), f(y)) ∈ B for all y ∈ U . Furthermore there is
a V ∈ TU (x) with g(V ) ⊂ B(g(x)). Since f ≤ g we get f(V ) ⊂ B2(f(x)) ⊂ A(f(x))
and since A and x were arbitrary this implies f ∈ LSC (X). �

Theorem 4.4. Let R be a continuous lattice and X a topological space, then:

1. if F ⊂ LSC (X), then supF ∈ LSC (X);
2. if f, g ∈ LSC (X), then f ∧ g ∈ LSC (X);
3. f ∈ LSC (X) iff {(x, r) ∈ X× R : f(x) ≤ r} is closed;
4. f ∈ LSC (X) iff ∀r ∈ R : {x ∈ X : r ≪ f(x)} is open.

Proof: (1) First take f, g ∈ LSC (X), A ∈ U◦ and x ∈ X. Since {a ∨ b : a ≪
f(x), b ≪ g(x)} is upper directed with supremum f(x) ∨ g(x), there are a ≪ f(x)
and b ≪ g(x) such that a∨ b ∈ A(f(x)∨g(x)). But then there is a B ∈ U such that
for all a ∈ B(f(x)) and all b ∈ B(g(x)) we have a∨ b ∈ A(f(x)∨ g(x)). Now choose
V ∈ TX(x) such that f(V ) ⊂ B(f(x)) and g(V ) ⊂ B(g(x)). Then for all y ∈ V we
have that f(y) ∨ g(y) ∈ A(f(x) ∨ g(x)). So f ∨ g ∈ LSC (X).
Now take F ⊂ LSC (X) and set f = supF and G = {f1∨· · ·∨fn : fi ∈ F}. Then

supG = f , G ⊂ LSC (X) and G is upper directed (and hence pointwise convergent
to f). Now take x ∈ X, A ∈ U and B ∈ U◦ such that B ◦B ⊂ A. Then we can find
an h ∈ G with (f(x), h(x)) ∈ B and a V ∈ TX(x) with h(V ) ⊂ B(h(x)). But then
h(V ) ⊂ (B◦B)(f(x)) and hence, since f ≥ h, also f(V ) ⊂ (B◦B)(f(x)) ⊂ A(f(x)).
So f(x) ∈ LIMINF (f(TX(x))) and hence f ∈ LSC (X).

(2) Take A ∈ U◦ and x ∈ X. Since ∧ is continuous we have that there is
a V ∈ TR(f(x)) and a W ∈ TR(g(x)) such that V ∧W ⊂ A(f(x)∧ g(x)). But then,
using 3.2 and 3.4, there is a B ∈ U such that B(f(x)) ∧ B(g(x)) ⊂ E(V ) ∧ E(W ).
Now since f and g are lower semicontinuous, there is a U ∈ TX(x) with both
f(U) ⊂ B(f(x)) and g(U) ⊂ B(g(x)). Combining these inclusions, we get that for
all y ∈ U we have f(y) ∧ g(y) ∈ A(f(x) ∧ g(x)). Hence f ∧ g ∈ LSC (X).

(3) See [12, Proposition 1.3].

(4) Take x ∈ X and A ∈ U◦. Now take r ∈ R with r ≪ f(x) and (f(x), r) ∈
A. Now V = {y ∈ X : r ≪ f(y)} ∈ TX(x) and f(V ) ⊂ A(f(x)). So f(x) ∈
LIMINF (f(TX(x))) for all x ∈ X and hence f ∈ LSC (X). �

Proposition 4.5. Let R be a continuous lattice, X a topological space, V ⊂ X and
f ∈ NUM (V ). Define f̂ = sup{h ∈ LSC (X) : f ≥ h on V }. Then f̂ ∈ LSC (X)

and for all x ∈ V we have lim inf(f(TV (x))) = lim inf(f̂(TX(x))).

Proof: The fact that f ∈ LSC (X) follows directly from 4.4. Now take x ∈ V .

Since f ≥ f̂ we have LIMINF (f̂(TX(x))) ⊂ LIMINF (f(TV (x))). Now take a ∈
LIMINF (f(TV (x))), A ∈ U◦ and B ∈ U such that inf B(a) ∈ A(a). Then there
is a U ∈ TX(x) with f(U ∩ V ) ⊂ B(a) and hence with inf f(U ∩ V ) ∈ A(a).
Define h : X → R by h = inf f(U ∩ V ) on U and h = inf f(V ) on X \ U . Then

h ∈ LSC (X) and h ≤ f and so f̂ ≥ h. But then f̂(U) ⊂ A(a) and so we have

a ∈ LIMINF (f̂(TX(x))). �
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Lemma 4.6. Let R be a continuous lattice, X a topological space, f ∈ LSC (X),
A ∈ U◦ and define g(x) = supA−1(f(x)) for all x ∈ X. Then g ∈ LSC (X).

Proof: Let x ∈ X, y ∈ A−1(f(x)). Then there are B, C ∈ U with B ◦ C ⊂ A
and y ∈ B−1(f(x)). Now there is a V ∈ TX(x) with (f(x), f(V )) ⊂ C. Hence
(y, f(V )) ⊂ B ◦ C ⊂ A and so y ≤ g(V ). This implies y ∈ LIMINF (g(TX(x))) and
hence g(x) = supA−1(f(x)) ∈ LIMINF (g(TX(x))). �

5. Semicontinuous functions in special spaces.

In this section we generalize some well known results on real-valued semicon-
tinuous functions. These results are used quite often in analysis, in particular in
potential theory and in the theory of Radon measures, and they may be used as
a starting point for non-real-valued potential theory (e.g. see [8]). For simplicity, we
will assume that R is a continuous lattice, although several results are also true in
a more general case. Note that our definitions of ‘complete regular spaces’, ‘normal
spaces’, ‘compact spaces’, etc. do not contain the Hausdorff property.
Since NUM (X) is just a Cartesian product of copies of R, ≪ is defined on

this set according to the product semiuniformity. However, since we are looking
at NUM (X) as a space of functions, not as a product space, this is not a useful
definition for our purposes. We will use the following two generalizations of ≪ to
NUM (X):

• f ≪ g pointwise: ∀x ∈ X : f(x)≪ g(x);
• f ≪ g uniform: ∃A ∈ U ∀x ∈ X : f(x) ≤ A(g(x)).

For ≫ and≪ similar generalizations will be used.

Completely regular spaces.

The following two results generalize [3, Proposition 1.5]. The fact that lower
semicontinuous functions can be approximated from below by continuous functions
is used extensively in the theory of Radon measures and in potential theory.

Theorem 5.1. The following statements are equivalent:

1. {r ∈ R : r ≪ supR} is arcwise connected;
2. for all completely regular X we have LSC (X) = {f ∈ NUM (X) : f =
sup{g ∈ C(X) : g ≤ f}};

3. for all completely regular X we have LSC (X) = {f ∈ NUM (X) : f =
sup{g ∈ C(X) : g ≪ f uniform}}.

Proof: (1 ⇒ 3) Take f ∈ LSC (X) and x ∈ X and a ≪ f(x). Then there is
a U ∈ TX(x) such that a ≪ f uniform on U . Now take V ∈ TX(x) with V ⊂ U .
Since X is completely regular and there is a path from inf R to a, we can choose
h ∈ C(X) so that h(x) = a, h(X \ V ) = inf R and h ≤ a. Then h ≪ f uniform and
the statement follows since a and x were arbitrary.

(3⇒ 2) Evident.

(2 ⇒ 1) Take X = [0, 1] and r ≪ supR. Now define an h ∈ LSC (X) by
h(0) = inf R and h(x) = supR if x 6= 0. Then there must be a g ∈ C(X) such that
g ≤ h and g(1) ≥ r. So g ∧ r is a continuous path from r to inf R. �
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Lemma 5.2. Suppose LSC (X) = {f ∈ NUM (X) : f = sup{g ∈ C(X) : g ≤ f}}.
Then either #R = 1 or X is completely regular.

Proof: Take a, b ∈ R with a < b. Then for arbitrary x ∈ X and V ∈ TX(x) we
can define an f ∈ LSC (X) by f = b on V and f = a on X \ V . So there is an
h ∈ C(X) with h ≤ f and h(x) 6≤ a. Since R is completely regular, we can find
a continuous function g : R→ [0, 1] with g(h(x)) = 1 and g = 0 on {r : r ≤ a}. For
the continuous function g ◦ h we then have g ◦ h(x) = 1 and g ◦ h = 0 on X \ V . So
X is completely regular. �

Normal spaces.

Lemma 5.3. Suppose:

• T is a complete lattice;
• ∧ preserves directed sups;
• ∨ preserves directed infs;
• F ⊂ T is a sublattice;
• (fn) ⊂ F and f = sup(fn);
• (gn) ⊂ F and g = inf(gn);
• f ≥ g.

Then there are (fn) ⊂ F and (gn) ⊂ F such that f ≥ sup(fn) = inf(gn) ≥ g.

Proof: We may suppose that (fn) is an increasing sequence and that (gn) is
a decreasing sequence. Define fn ∈ F and gn ∈ F by g1 = g1, fn = gn ∧ fn for
n ≥ 1 and gn = fn−1 ∨ gn for n ≥ 2. Define f ′ = sup(fn) ≤ sup(fn) = f and
g′ = inf(gn) ≥ inf(gn) = g. Evidently gn ≥ fn. Since gn ≥ fn−1 and fn ≥ fn−1 ≥
fn−1 we get fn ≥ fn−1. Dually also gn ≤ gn−1. Since gn−1 ≥ gn ≥ fn ≥ fn−1

we have g′ ≥ f ′. So f ′ ≤ f ∧ g′ and g′ ≥ g ∨ f ′.
Since gn = fn−1 ∨ gn ≤ f ′ ∨ gn we have g′ = inf(gn) ≤ inf(f ′ ∨ gn) = f ′ ∨

(inf(gn)) = f ′ ∨ g and dually f ′ ≥ f ∧ g′. So we have both g′ = g ∨ f ′ and
f ′ = f ∧ g′.
Now since f ≥ g, we get that g ≤ f ∧ g′ = f ′ and hence that g ≤ g′ = g ∨ f ′ =

f ′ ≤ f . �

The following three results generalize [13, Theorem 2] and [10, Theorem 1]. To-
gether with 5.1, the next result is very important in the theory of non-linear in-
tegration (see [8, Section 1]). As in [7], we define a linked bicontinuous lattice to
be a uniform ordered space that is a continuous lattice in both the normal and the
dual order.

Theorem 5.4. Suppose X is normal and R is a metrizable, arcwise connected,
linked bicontinuous lattice. Then for every f ∈ LSC (X), g ∈ USC (X) with f ≥ g,
there is a k ∈ C(X) such that f ≥ k ≥ g.

Proof: Take A ∈ U . Then for all a ∈ R there is a ba ∈ R with ba ≪ a and
ba ∈ A(a). Hence for all a ∈ R, there is a Ba ∈ U• with ba ≪ Ba(a).

Take a ∈ R and define F = {x : f(x) 6≥ ba}, G = {x : g(x) ∈ Ba(a)} and
U = {x : ba ≪ f(x)}. Notice that F ∩ U = ∅ and G ⊂ U . So F and G are disjoint
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closed sets and we can find an ha ∈ C(X) such that ha = inf R on F , ha = ba on G
and ha ≤ ba on X. Notice that ha ≤ f .
Since R is compact and R =

⋃

a∈RBa(a) ∩ A−1(a), there is a finite set I ⊂ R

such that R =
⋃

a∈I Ba(a) ∩ A−1(a). Now for all x ∈ X, there is an a ∈ I with

g(x) ∈ Ba(a) ∩ A−1(a) and hence with ha(x) = ba ∈ A(a) ⊂ A2(g(x)). So if we
define h = sup{ha : a ∈ I} then h ∈ C(X), h ≤ f and h(x) ∈ A2(g(x)) for all x ∈ X.
Now let (An) be a countable base of U , using the construction above, and its

dual, we can find sequences (fn) and (gn) of continuous functions such that for all
n we have fn ≤ f , (g, fn) ∈ A2n, gn ≥ g and (f, gn) ∈ A2n. So for f ′ = sup fn and
g′ = inf gn we have f ≥ f ′ ≥ g′ ≥ g. Using 5.3, we can now find a k ∈ C(X) with
f ′ ≥ k ≥ g′. �

Lemma 5.5. Suppose for every normal X and all f ∈ LSC (X), g ∈ USC (X) with
f ≥ g, there is a k ∈ C(X) such that f ≥ k ≥ g. Then R is arcwise connected.

Proof: Take X = [0, 1] and a ∈ R. Now define an f ∈ LSC (X) by f(0) = inf R
and f(x) = a if x 6= 0 and define a g ∈ USC (X) by g(1) = a and g(x) = inf R if
x 6= 1. Then there is a k ∈ C(X) with f ≥ k ≥ g, hence inf R and a are connected
by a continuous path. �

Lemma 5.6. Suppose for every f ∈ LSC (X), g ∈ USC (X) with f ≥ g, there is
a k ∈ C(X) such that f ≥ k ≥ g. Then either #R = 1 or X is normal.

Proof: Take a, b ∈ R with a < b. Then for arbitrary F, G ⊂ X closed and disjunct
we can define an f ∈ LSC (X) by f = a on F and f = b on X\F and a g ∈ USC (X)
by g = b on G and g = a on X \G. So there is a k ∈ C(X) with f ≥ k ≥ g. Since R
is normal, we can find a continuous function g : R→ [0, 1] with g = 0 on {r : r ≥ b}
and g = 1 on {r : r ≤ a}. For the continuous function g ◦ h we then have g ◦ h = 1
on F and g ◦ h = 0 on G. So X is normal. �

Compact spaces.

The next result is a generalization of Dini’s theorem. From this result it imme-
diately follows that an upper directed set of continuous functions on a compact set,
pointwise convergent to a continuous function, is uniformly convergent.

Proposition 5.7. Let X be compact and F ⊂ LSC (X) upper directed. Then:

1. if g ∈ USC (X) and A ∈ U◦ such that for all x ∈ X : (g(x), supF (x)) ∈ A,
then there is an f ∈ F such that for all x ∈ X : (g(x), f(x)) ∈ A;

2. if g ∈ USC (X) with g ≪ supF pointwise, then there is an f ∈ F with
g ≪ f pointwise;

3. if r ∈ R with r ≪ supF pointwise, then there is an f ∈ F with r ≪ f
pointwise.

Proof: (1) Define Kf = {x ∈ X : (g(x), f(x)) /∈ A}.

(2) Define Kf = {x ∈ X : g(x) 6≪ f(x)}.

(3) Define Kf = {x ∈ X : r 6≪ f(x)}.
ThenKf is closed for all f ∈ F , {Kf : f ∈ F} is lower directed and

⋂

f∈F Kf = ∅.

Since X is compact there must be an f ∈ F with Kf = ∅. This f will do. �
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The next result is a generalization of the theorem that on a compact space,
every lower finite and lower semicontinuous function f is lower bounded. It is well
known that, if R is not totally ordered, in general there is no x ∈ X such that
f(x) = inf f(X).

Proposition 5.8. Suppose X is compact, a ∈ R and f ∈ LSC (X). Then the
following statements are equivalent:

1. a ≪ f pointwise;
2. a ≪ f uniform;
3. There is a b ≫ a with b ≪ f uniform.

Furthermore, they imply inf f(X)≫ a.

Proof: (1 ⇒ 2) Take x ∈ X and Ax ∈ U with A2x(f(x)) ≥ A−2
x (a). Then there is

a Vx ∈ TX(x) such that f(Vx) ⊂ Ax(f(x)). Since X is compact, only a finite set of
the Vx already covers X. Now choose A ∈ U with A ⊂ Ax for that finite set of x.
Then A(f(x)) ≥ A−1(a) for all x ∈ X.

(2⇒ 3) TakeA ∈ U with A(f(x)) ≥ A−1(a) for all x ∈ X and set b = supA−1(a).
The other implications are evident. �

Lemma 5.9. Suppose X is compact, g ∈ LSC (X) and F is a filter base of closed
sets. Then lim inf(g(F)) = sup{inf g(K) : K ∈ F} = inf g(∩F).

Proof: Note first that ∩F 6= ∅. For all K ∈ F we have ∩F ⊂ K and hence
inf(g(∩F)) ≥ inf(g(K)), so we also have inf g(∩F) ≥ sup{inf g(K) : K ∈ F}.
Now take A ∈ U◦ and for all x ∈ ∩F an open Vx ∈ TX(x) such that g(Vx) ⊂

A(g(x)) ⊂ A(inf g(∩F)) and define V = ∪xVx. Then V is an open neighbourhood
of ∩F and hence there is a K ∈ F such that K ⊂ V . For that K we have
g(K) ⊂ g(V ) ⊂ A(inf g(∩F)) and hence inf g(∩F) ∈ LIMINF (g(F)). But then
inf g(∩F) ≤ lim inf(f(F)) = sup{inf g(K) : K ∈ F}. �

Locally compact spaces.

The next result is a generalization of the lemma of [4, Proposition 1.1.2]. It is used
there to show that it is equivalent to define the axiom of convergence of a harmonic
space with increasing sequences or with upper directed sets. It is surprising that
this is true when neither X nor R is metrizable.

Theorem 5.10. Suppose X is locally compact and Hausdorff. Then for any lower
directed F ⊂ LSC (X) we have that inf F is lower semicontinuous if the infimum of
any decreasing sequence in F is lower semicontinuous.

Proof: Define f = inf F . Choose x ∈ X and A ∈ U◦. Now we shall construct
by induction a decreasing sequence (fn) in F and a decreasing sequence (Kn) of
compact neighbourhoods of x such that:

inf fn(Kn) ∈ A−1(lim inf(f(TX(x)))) and inf fn−1(Kn) ∈ A(f(x)).

Start with an arbitrary compact neighbourhoodK0 of x. Then we have inf f(K0) ≤
lim inf(f(TX(x))) and hence there is an f0 ∈ F with inf f0(K0) ∈
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A−1(lim inf(f(TX(x)))). Now suppose the sequences have been constructed up to
n − 1. Choose B ∈ U such that inf B(fn−1(x)) ∈ A(fn−1(x)) ⊂ A(f(x)). Since
fn−1 is lower semicontinuous, there is a closed neighbourhood Kn ⊂ Kn−1 of x
such that fn−1(Kn) ⊂ B(fn−1(x)) and hence with inf fn−1(Kn) ∈ A(f(x)). Again
inf f(Kn) ≤ lim inf(f(TX(x))) and hence there is an fn ∈ F with fn ≤ fn−1 such
that inf fn(Kn) ∈ A−1(lim inf(f(TX(x)))).
Now let g be the infimum of (fn) and put K = ∩nKn. Then, applying 5.9 on

F = (Kn)n, we get inf(g(K)) = sup{inf g(Kn) : n}. Now we have for all n that
inf g(Kn) ∈ A−1(lim inf(f(TX(x)))) and hence that inf g(K) ∈
A−2(lim inf(f(TX(x)))). Furthermore, for all n we have inf fn(K) ∈ A(f(x)) and
hence that inf g(K) ∈ A2(f(x)). Combining these two results we get
(f(x), lim inf(f(TX(x)))) ∈ A4. Since A and x were arbitrary we get f ∈ LSC (X).

�

Proposition 5.11. If X is locally compact and Hausdorff, then LSC (X) (with the
usual order) is a continuous lattice.

Proof: From 4.4 we have that LSC (X) is a complete lattice. Take f ∈ LSC (X),
x ∈ X and r ≪ f(x). Then there is a compact neighbourhood K of x such that
r ≪ f pointwise on K. Define g = r on the interior of K and g = inf R elsewhere.
Then evidently g ≤ f and g ∈ LSC (X). Now let F ⊂ LSC (X) be upper directed
with supF ≥ f . Then r ≪ supF pointwise on K and hence there is an h ∈ F with
r ≪ h pointwise on K. But then g ≤ h on X and hence g is way below f in the
lattice LSC (X). Since evidently f is the supremum of such g we get that LSC (X)
is a continuous lattice. �

Now let A ⊂ USC be a presheaf on a locally compact Hausdorff space X. The
fine topology is defined to be the coarsest topology on X, finer than the original
topology, making all f ∈ A continuous.

Proposition 5.12. Every point x ∈ X has a fine neighbourhood base of compact
sets.

Proof: Let W be a fine neighbourhood of x. By Theorem 4.4, it is sufficient
to consider sets of the form W = {y ∈ U : r ≪ f(y)}, where U is an open
neighbourhood of x, f ∈ A(U) and r ∈ R. Now there is an A ∈ U with r ≤ A(f(x))
and a B ∈ U• with B ◦ B ⊂ A. Let V be a relatively compact neighbourhood
of x with V ⊂ U and define K = {y ∈ V : f(y) ∈ B(f(x))}. Then K is closed
and hence compact. Furthermore, if y ∈ K, then B(f(y)) ⊂ A(f(x)) and hence
r ≪ f(y). So K ⊂ W . Now take s ∈ R with s ≪ f(x) and s ∈ B(f(x)).
Then x ∈ {y ∈ V : r ≪ f(y)} ⊂ K and hence, using Theorem 4.4, K is a fine
neighbourhood of x. �

Theorem 5.13. X equipped with the fine topology is a Baire space.

Proof: Let (Gn) be a sequence fine open, fine dense subsets of X and G fine open
in X. We construct inductively a sequence (Kn) of non-empty compact sets such
that Kn ⊂ G∩Gn and Kn+1 is contained in the fine interior of Kn for all n. Since
∅ 6= ∩Kn ⊂ G ∩ (∩Gn) we have that ∩Gn is fine dense. �
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Spaces with a countable base.

The next result is a generalization of [1, Lemma I-1.7].

Proposition 5.14. Let X be a topological space with a countable base and let R
be metrizable. Then for every family F ⊂ LSC (X), there is a countable family
F0 ⊂ F with supF0 = supF .

Proof: From [7, Corollary III-4.10] it follows there is a countable subset Q of R
such that for all a ∈ R we have a = sup{b ∈ Q : b ≪ a}. Let G = {f1∨· · ·∨fn : fi ∈
F}. Now for every s ∈ Q there is a countable family Gs ⊂ G such that

⋃

f∈Gs

{x :

s(x) ≪ f(x)} =
⋃

f∈G{x : s(x) ≪ f(x)}. Let Fs be the countable family Fs ⊂ F

such that Gs = {f1 ∨ · · · ∨ fn : fi ∈ Fs}. Let F0 =
⋃

s∈Q Fs. Then F0 is countable.

Now take x ∈ X and a ≪ supF (x). Then there is an s ∈ Q with a ≤ s ≪ supF (x).
But then there is an f ∈ G such that s ≪ f(x) and hence there is also an f ∈ Gs

with s ≪ f(x). So now we have a ≤ s ≪ supGs(x) = supFs(x) ≤ supF0(x). �

The next result is a generalization [1, Lemma I-1.8].

Proposition 5.15. Let X be a topological space with a countable base and let R
be metrizable, linked bicontinuous lattice. Then for every family F ⊂ NUM (X),

there is a countable family F0 ⊂ F with înf F0 = înf F .

Proof: Let V ⊂ X be open. By the dual of 5.14 on a one-point-space, there
is a countable family FV ⊂ F such that inf{inf f(V ) : f ∈ F} = inf{inf f(V ) :
f ∈ FV }. Let F0 be the union of FV for all V in the countable base of X. Take

x ∈ X and a ≪ înf F0(x). Then there is a V in the countable base such that
a ≤ inf F0(V ) = inf{inf f(V ) : f ∈ FV } = inf{inf f(V ) : f ∈ F} = inf F (V ). Hence

a ≤ înf F (x). �

Isotone maps.

Theorem 5.16. Suppose X is a topological space and T a uniform ordered space.
Now let f be a map from X to R and g an isotone map from R to T. If f is lower
semicontinuous in x ∈ X and g is lower semicontinuous in f(x), then g ◦ f is lower
semicontinuous in x.

Proof: Let V be the semiuniformity on T and take A ∈ V◦ and x ∈ X. Since g is
isotone and lower semicontinuous in f(x), there is an increasing neighbourhood U
of f(x) with g(U) ⊂ A(g(f(x))). Since R is a continuous lattice, there is a B ∈ U
with B(f(x)) ⊂ U and hence with g(B(f(x))) ⊂ A(g(f(x))). Now since f is lower
semicontinuous in x, there is an f(V ) ∈ TX(x) with f(V ) ⊂ B(f(x)) and hence
with g(f(V )) ⊂ A(g(f(x))). �

For a map f between two ordered sets, the property that f preserves directed
sups is defined purely in terms of order. No topology has to be present. Still,
the property resembles something like “one-sided continuity”. Therefore, it is not
surprising that there is a strong connection with the “one-sided continuity” that is
the main subject of this text.
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Lemma 5.17. Suppose:

• R1 is a uniform ordered space with semiuniformity U1 such that for all
f ∈ R1 we have f = sup{g ∈ R1 : g ≪ f} and such that every upper
directed subset of R1 with supremum is convergent (as a net);

• R2 is a uniform ordered space with semiuniformity U2 such that every upper
directed subset of R2 with supremum is convergent (as a net);

• f is an isotone map from R1 to R2.

Then the following statements are equivalent:

1. f preserves directed sups;
2. f is lower semicontinuous.

Proof: (1 ⇒ 2) Take r ∈ R1. Then {s ∈ R1 : g ≪ r} is upper directed with
supremum r and hence f({s ∈ R1 : g ≪ r}) is upper directed with supremum f(r).
Hence for all A ∈ U2

◦ there is an s ≪ r such that f(s) ∈ A(f(r)). On the other
hand, s ≪ r means that there is a B ∈ U1 such that s ≤ B(r). Now we have that
f(B(r)) ⊂ A(f(r)).

(2 ⇒ 1) Let F ⊂ R1 be upper directed with supF ∈ R1 and take A ∈ U2
◦

and an upper bound b of f(F ). Now there is a B ∈ U1 such that f(B(supF )) ⊂
A(f(supF )) and there is an a ∈ F with a ∈ B(supF ). So f(a) ∈ A(f(supF )) and
hence b ∈ A(f(supF )). Since A was arbitrary we get b ≥ f(supF ) and since b was
arbitrary this implies sup f(F ) exists and sup f(F ) = f(supF ). �

Proposition 5.18. Let R and T be two continuous lattices and f an isotone map
from R to T. Then f preserves directed sups iff f is lower semicontinuous.

Proof: Use 5.17. �

Proposition 5.19. Suppose R is arcwise connected, X and Y are compact and f is
an isotone map from C(X) to C(Y). Then the following statements are equivalent:

1. f preserves directed sups;
2. f is lower semicontinuous with respect to the topology of uniform conver-
gence on C(X) and the topology of pointwise convergence on C(Y);

3. f is lower semicontinuous with respect to the topology of uniform conver-
gence on C(X) and the topology of uniform convergence on C(Y).

Proof: Use 5.17, 5.1 and Dini’s theorem. �
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