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Abstract

In this paper, we study the Gegenbauer matrix polynomials. An
explicit representation, a three-term matrix recurrence relation and or-
thogonality property for the Gegenbauer matrix polynomials are given.
These polynomials appear as finite series solutions of second-order ma-
trix differential equations.
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1 Introduction

It is well known that special matrix functions appear in the study in sta-
tistics, theoretical physics, groups representation theory and number theory
[1, 2, 8, 15, 21]. Orthogonal matrix polynomials have been considered in the
book on matrix polynomials by Gohberg, Lancaster and Rodman [7] and in
the survey on orthogonal matrix polynomials by Rodman [17] and see more
papers [4, 5, 6, 19, 20] and the references therein. During the last two decades
the classical orthogonal polynomials have been extended to the orthogonal
matrix polynomials see for instance [12, 13] . Hermite and Laguerre matrix
polynomials was introduced and studied in [9, 10] and an accurate approxi-
mation of certain differential systems in terms of Hermite matrix polynomi-
als was computed in [3]. Furthermore, a connection between Laguerre and
Hermite matrix polynomials was established in [12]. Recently, the general-
ized Hermite matrix polynomials have been introduced and studied in [18].
Jódar and Cortés introduced and studied the hypergeometric matrix function
F(A,B;C;z) and the hypergeometric matrix differential equation in [11] and
the the explicit closed form general solution of it has been given in [14].

The primary goal of this paper is to consider a new system of matrix poly-
nomials, namely the Gegenbauer matrix polynomials. The structure of this
paper is the following. In section 2 a definition of Gegenbauer matrix poly-
nomials is given. Some differential recurrence relations, in particular Gegen-
bauer’s matrix differential equation are established in section 3. Moreover,
hypergeometric matrix representations of these polynomials will be given in
section 4. Finally in section 5 we obtain the orthogonality property of Gegen-
bauer matrix polynomials.

Throughout this study, consider the complex space CN×N of all square
complex matrices of common order N. We say that a matrix A in CN×N is
a positive stable if Re(λ)>0 for all λ ∈ σ (A) where σ (A) is the set of all
eigenvalues of A. If A0, A1, · · · , An are elements of CN×N and An 6= 0, then
we call

P (x) = Anxn + An−1x
n−1 + . . . + A1x + A0,

a matrix polynomial of degree n in x.
If P+nI is invertible for every integer n ≥0, then from [11] it follows that

(P )n = P (P + I)(P + 2I)...(P + (n− 1)I); n ≥ 1; (P )0 = I. (1)

From (1), it is easy to find that

(P )n−k = (−1)k(P )n[(I − P − nI)k]−1; 0 ≤ k ≤ n. (2)
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From the relation (3) of [16, pp. 58], one obtains

(−1)k

(n− k)!
I =

(−n)k

n!
I =

(−nI)k

n!
; 0 ≤ k ≤ n. (3)

The hypergeometric matrix function F(A,B;C;z) has been given in the
form [11, p. 210]

F(A,B;C;z) =
∑

n≥0

1
n!

(A)n(B)n[(C)n]−1zn, (4)

for matrices A, B and C in CN×N such that C+nI is invertible for all integer
n ≥0 and for |z| < 1.

For any matrix P in CN×N we will exploit the following relation due to
[11, p. 213]

(1− x)−P =
∑

n≥0

1
n!

(P)nxn, |x| < 1. (5)

It has been seen by Defez and Jódar [3] that, for matrices A(k,n) and
B(k,n) in CN×N where n ≥ 0, k ≥ 0, the following relations are satisfied:

∞∑
n=0

∞∑

k=0

A(k, n) =
∞∑

n=0

[n/2]∑

k=0

A(k, n− 2k), (6)

and
∞∑

n=0

∞∑

k=0

B(k, n) =
∞∑

n=0

n∑

k=0

B(k, n− k). (7)

Similarly, we can write

∞∑
n=0

[n/2]∑

k=0

A(k,n) =
∞∑

n=0

∞∑

k=0

A(k, n + 2k), (8)

∞∑
n=0

n∑

k=0

B(k,n) =
∞∑

n=0

[n/2]∑

k=0

B(k, n− k), (9)

∞∑
n=0

n∑

k=0

B(k,n) =
∞∑

n=0

∞∑

k=0

B(k, n + k), (10)
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If A is a positive stable matrix in CN×N , then the nth Hermite matrix
polynomials was defined by [10, pp.14]

Hn(x,A) = n!
[n/2]∑

k=0

(−1)k

k!(n− 2k)!
(x
√

2A)n−2k; n ≥ 0. (11)

The expansion of xnI in a series of Hermite matrix polynomials has been
given in [3, pp. 14] in the form

xn

n!
I = (

√
2A)−n

[n/2]∑

k=0

n!
k!(n− 2k)!

Hn−2k(x,A); −∞ < x < ∞. (12)

2 Gegenbauer matrix polynomials

Let A be a positive stable matrix in CN×N . We define the Gegenbauer matrix
polynomials by means of the relation:

F = (1− 2xt− t2)−A =
∞∑

n=0

CA
n (x)tn. (13)

By using (5) and (9), we have

(1− 2xt− t2)−A =
∞∑

n=0

[n/2]∑

k=0

(−1)k(A)n−k

k!(n− 2k)!
(2x)n−2ktn. (14)

By equating the coefficients of tn in (13) and (14), we obtain an explicit
representation of the Gegenbauer matrix polynomials in the form:

CA
n (x) =

[n/2]∑

k=0

(−1)k(A)n−k

k!(n− 2k)!
(2x)n−2k. (15)

Clearly, CA
n (x) is a matrix polynomial of degree n in x. Replacing x by -x and

t by -t in (13), the left side does not exchange. Therefore

CA
n (−x) = (−1)nCA

n (x). (16)

For x = 1 we have

(1− t)−2A =
∞∑

n=0

CA
n (1)tn.
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So that by (5) it follows

CA
n (1) =

(2A)n

n!
. (17)

For x = 0 it follows

(1 + t2)−A =
∞∑

n=0

CA
n (0)tn.

Also, by (5) one gets

(1 + t2)−A =
∞∑

n=0

(−1)n(A)n

n!
t2n.

Therefore, we have

CA
2n(0) =

(−1)n(A)n

n!
, CA

2n+1(0) = 0. (18)

The explicit representation (15) gives

CA
n (x) = 2n(A)n

n! xn +
∏

n−2,

where
∏

n−2 is a matrix polynomial of degree (n - 2) in x. Consequently, if
D = d

dx , then it follows that

DnCA
n (x) = 2n(A)n.

3 Differential recurrence relations

By differentiating (13) with respect to x and t yields respectively

∂F

∂x
=

t

1− 2xt− t2
2AF. (19)

and
∂F

∂t
=

(x− t)
1− 2xt− t2

2AF. (20)

So that the matrix function F satisfies the partial matrix differential equation:

(x− t)
∂F

∂x
− t

∂F

∂t
= 0.
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Therefore by (13) we get

∞∑
n=0

xDCA
n (x)tn −

∞∑
n=0

nCA
n (x)tn =

∞∑
n=1

DCA
n−1(x)tn,

where D = d
dx .

Since DCA
0 (x) = 0 and for n ≥ 1, then we obtain the differential recurrence

relation:
xDCA

n (x)− nCA
n (x) = DCA

n−1(x). (21)

From (19) and (20) with the aid of (13) we get respectively the following

1
1− 2xt− t2

2A(1− 2xt− t2)−A =
∞∑

n=1

DCA
n (x)tn−1, (22)

and
x− t

1− 2xt− t2
2A(1− 2xt− t2)−A =

∞∑
n=1

nCA
n (x)tn−1. (23)

Note that 1−t2−2t(x−t) = 1−2xt−t2. Thus by multiplying (22) by (1−t2)
and (23) by 2t and subtracting (23) from (22) we obtain

2(A + nI)CA
n (x) = DCA

n+1(x)−DCA
n−1(x). (24)

From (21) and (24), one gets

xDCA
n (x) = DCA

n+1(x)− (2A + nI)CA
n (x). (25)

Substituting (n − 1) for n in (25) and putting the resulting expression for
DCA

n−1(x) into (21), gives

(x2 − 1)DCA
n (x) = nxCA

n (x)− (2A + (n− 1)I)CA
n−1(x). (26)

Now, by multiplying (21) by (x2−1) and substituting for (x2−1)DCA
n (x)

and (x2−1)DCA
n−1(x) from (26) to obtain the three terms recurrence relation

in the form

nCA
n (x) = (2A + 2(n− 1)I)xCA

n−1(x)− (2A + (n− 2)I)CA
n−2(x). (27)

Write (22) in the form:

2A(1− 2xt− t2)−(A+I) =
∞∑

n=0

DCA
n+1(x)tn. (28)

Divulgaciones Matemáticas Vol. 12 No. 2(2004), pp. 101–115



Gegenbauer Matrix Polynomials 107

By applying (13) it follows

2A(1− 2xt− t2)−(A+I) =
∞∑

n=0

2ACA+I
n (x)tn. (29)

Identification of the coefficients of tn in (28) and (29) yields

DCA
n+1(x) = 2ACA+I

n (x),

which gives
DCA

n (x) = 2ACA+I
n−1 (x). (30)

Iteration (30) yields, for 0 ≤ r ≤ n,

DrCA
n (x) = 2r(A)rC

A+rI
n−r (x). (31)

The first few Gegenbauer matrix polynomials are listed here,

CA
0 (x) = I,

CA
1 (x) = 2Ax,

CA
2 (x) = 2(A)2x2 −A,

CA
3 (x) =

4
3
(A)3x3 − 2(A)2x,

and

CA
4 (x) =

2
3
(A)4x4 − 2(A)3x2 +

1
2
(A)2.

We conclude this section introducing the Gegenbauer’s matrix differential
equation as follows:

In (25), replace n by (n− 1) and differentiate with respect to x to find

xD2CA
n−1(x) = D2CA

n (x)− (2A + nI)DCA
n−1(x). (32)

Also, by differentiating (21) with respect to x we have

xD2CA
n−1(x)− (n− 1)DCA

n (x) = D2CA
n−1(x). (33)

From (21) and (33) by putting DCA
n−1(x) and D2CA

n−1(x) into (32) and re-
arrangement terms we obtain the Gegenbauer’s matrix differential equation
in the form:

(1− x2)D2CA
n (x)− (2A + I)xDCA

n (x) + n(2A + nI)CA
n (x) = 0. (34)
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4 Hypergeometric matrix representations of CA
n (x)

From (1) it is easy to find that

[(A)2n]−1 = 2−2n[(
1
2
(A + I))n]−1[(

1
2
A)n]−1, (35)

and
(A)n+k = (A)n(A + nI)k (36)

Note that

(1− 2xt− t2)−A = [1− 2t(x− 1)
(1− t)2

]−A(1− t)−2A.

Therefore, by using and (5) and (36) we have

∞∑
n=0

CA
n (x)tn =

∞∑

k=0

(A)k2ktk(x− 1)k

k!(1− t)2k
(1− t)−2A

=
∞∑

k=0

(A)k(1− t)−(2A+2kI) 2
ktk(x− 1)k

k!

=
∞∑

n=0

∞∑

k=0

(A)k(2A + 2kI)n
2k(x− 1)k

k!n!
tn+k

=
∞∑

n=0

∞∑

k=0

(A)k[(A)2k]−1(A)n+2k
2k(x− 1)k

k!n!
tn+k,

which by inserting (35) and applying (7) with the help of (3) yields

∞∑
n=0

CA
n (x)tn =

∞∑
n=0

(2A)n

n!

n∑

k=0

(−nI)k(2A + nI)k

k!
[(A +

1
2
I)2k]−1(

x− 1
2

)ktn.

Thus, the hypergeometric matrix representation follows by equating the coef-
ficients of tn in the form

CA
n (x) =

(2A)n

n!
F (−nI, 2A + nI;A +

1
2
I;

1− x

2
). (37)

On applying (16), one gets

CA
n (x) = (−1)n (2A)n

n!
F (−nI, 2A + nI; A +

1
2
I;

1 + x

2
). (38)
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It is evident that

1
(n− 2k)!

I =
(−nI)2k

n!
; 0 ≤ 2k ≤ n.

By using (2) and taking into account that

(−nI)2k = 2−2k(
−n

2
I)k(

−(n− 1)
2

I)k,

the explicit representation (15) becomes

CA
n (x) =

(2x)n

n!
(A)n

[n/2]∑

k=0

(−n
2 I)k(−(n−1)

2 I)k

k!
[(I −A− nI)k]−1(

1
x

)2k,

which gives another hypergeometric matrix representation in the form:

CA
n (x) =

(2x)n

n!
(A)nF (

−n

2
I,

1− n

2
I; I −A− nI;

1
x2

). (39)

Now, we can write

(1− 2xt− t2)−A = [1− t2(x2 − 1)
(1− xt)2

]−A(1− xt)−2A.

Therefore, by using (5) and (6) we find that

∞∑

k=0

CA
n (x)tn =

∞∑

k=0

(A)k(x2 − 1)kt2k

k!(1− xt)2k
(1− xt)−2A

=
∞∑

n=0

∞∑

k=0

(A)k(2A + 2kI)n
(x2 − 1)kxn−2k

k!n!
tn+2k

=
∞∑

n=0

(A)n

[n/2]∑

k=0

[(A +
1
2
I)k]−1 (x2 − 1)kxn−2k

22kk!(n− 2k)!
tn.

By identification of the coefficients of tn, another form for the Gegenbauer
matrix polynomials follows

CA
n (x) = (A)n

[n/2]∑

k=0

[(A +
1
2
I)k]−1 (x2 − 1)kxn−2k

22kk!(n− 2k)!
. (40)
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Moreover, by exploiting (40) and using (8) in the sum

∞∑
n=0

[(A)n]−1CA
n (x)tn =

∞∑
n=0

xntn

n!

∞∑

k=0

1
k!

[(A +
1
2
I)k]−1(

1
4
t2(x2 − 1))k.

By identification of the coefficients of tn, we obtain a generating relation for
the Gegenbauer matrix polynomials in the form:

exp(xt)0F1(−; A +
1
2
I;

1
4
t2(x2 − 1)) =

∞∑
n=0

[(A)n]−1CA
n (x)tn. (41)

5 Orthogonality of Gegenbauer matrix polynomials

Here, we will obtain the most interesting property of the Gegenbauer matrix
polynomials, namely the orthogonality of this system of polynomials. Let A
be a positive stable matrix in CN×N such that

A + kI is invertible for every integer k ≥ 0. (42)

By multiplying (34) by (1− x2)A− 1
2 I we get

D[(1− x2)A+ 1
2 IDCA

n (x)] + n(1− x2)A− 1
2 I(2A + nI)CA

n (x) = 0. (43)

Similarly, when CA
m(x) satisfies (34) it follows

D[(1− x2)A+ 1
2 IDCA

m(x)] + m(1− x2)A− 1
2 I(2A + mI)CA

m(x) = 0. (44)

By multiplying the equation (43) by CA
m(x) and the equation (44) by CA

n (x)
and subtracting gives

D[(1− x2)A+ 1
2 IDCA

n (x)]CA
m(x)−D[(1− x2)A+ 1

2 IDCA
m(x)]CA

n (x) +

n(1− x2)A− 1
2 I(2A + nI)CA

n (x)CA
m(x)−

m(1− x2)A− 1
2 I(2A + mI)CA

m(x)CA
n (x) = 0. (45)

Since the multiplication of the matrix in (A)n is commutative for every integer
n ≥ 0, then CA

n (x)CA
m(x) = CA

m(x)CA
n (x). We can write

D[(1− x2)A+ 1
2 I{CA

m(x)DCA
n (x)−DCA

m(x)CA
n (x)}]

= (1− x2)A+ 1
2 IDCA

m(x)DCA
n (x) + D[(1− x2)A+ 1

2 IDCA
n (x)]CA

m(x)−
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(1− x2)A+ 1
2 IDCA

m(x)DCA
n (x) + D[(1− x2)A+ 1

2 IDCA
m(x)]CA

n (x).

Thus, the equation (45) becomes

(n−m){A + (n + m)I}(1− x2)A− 1
2 ICA

n (x)CA
m(x) =

D[(1− x2)A+ 1
2 I{CA

m(x)DCA
n (x)−DCA

m(x)CA
n (x)}].

Actually, m and n are non-negative integer and A is a positive stable matrix,
hence A + (m + n)I 6= 0. Therefore, it follows

∫ 1

−1

(1− x2)A− 1
2 ICA

n (x)CA
m(x)dx = 0; m 6= n. (46)

That is, for A is a positive stable matrix in CN×N , the Gegenbauer matrix
polynomials form an orthogonal set over the interval (-1,1) with respect to
the weight function (1− x2)A− 1

2 I .
One immediate consequence of (46) is

∫ 1

−1

(1− x2)A− 1
2 ICA

m(x)dx = 0; m 6= 0.

Now, by multiplying (27) by (1−x2)A− 1
2 ICA

n (x)dx and integrating between
-1 and 1 and taking into account (46) we get

∫ 1

−1

(1− x2)A− 1
2 I [CA

n (x)]2dx = (47)

2
n

(A + (n− 1)I)
∫ 1

−1

x(1− x2)A− 1
2 ICA

n (x)CA
n−1(x)dx.

Again, by replacing n by n−1 in (27) and multiply by (1−x2)A− 1
2 ICA

n−1(x)dx
and integrating between -1 and 1 and taking into account (46) to obtain

2(A + nI)
∫ 1

−1

x(1− x2)A− 1
2 ICA

n−1(x)CA
n (x)dx = (48)

(2A + (n− 1)I)
∫ 1

−1

(1− x2)A− 1
2 I [CA

n−1(x)]2dx.

Thus, from (47) and (48) we get
∫ 1

−1

(1− x2)A− 1
2 I [CA

n (x)]2dx =
1
n

(A + nI)−1(A + (n− 1)I) (49)

Divulgaciones Matemáticas Vol. 12 No. 2(2004), pp. 101–115



112 K. A. M. Sayyed , M. S. Metwally, R. S. Batahan

(2A + (n− 1)I)
∫ 1

−1

(1− x2)A− 1
2 I [CA

n−1(x)]2dx.

By substituting for n the values n− 1, n− 2, · · · , 1 in (49) it follows
∫ 1

−1

(1− x2)A− 1
2 I [CA

n (x)]2dx =

1
n!

(A + nI)−1A(2A)n

∫ 1

−1

(1− x2)A− 1
2 I [CA

0 (x)]2dx.

Note that, for A is a positive stable matrix in CN×N satisfies (42) it follows
∫ 1

−1

(1− x2)A− 1
2 Idx =

√
π Γ(A +

1
2
I)Γ−1(A + I).

Therefore, we obtain
∫ 1

−1

(1− x2)A− 1
2 I [CA

n (x)]2dx =
1
n!

(A + nI)−1A(2A)n

√
π

Γ(A +
1
2
I)Γ−1(A + I),

which can be be written with 46 in the form
∫ 1

−1

(1− x2)A− 1
2 ICA

n (x)CA
m(x)dx =

1
n!

(A + nI)−1A(2A)n

√
π (50)

Γ(A +
1
2
I)Γ−1(A + I)δmn,

where δmn is Kronecker’s delta symbol.

Finally, we will expand the Gegenbauer matrix polynomials in series of
Hermite matrix polynomials. By employing (15), (8) and (12) and taking
into account that each matrix commutes with itself, one gets

∞∑
n=0

2−n(
√

2A)nCA
n (x)tn =

∞∑
n=0

∞∑

k=0

[n/2]∑
s=0

(−1)k(A)n+k

s!k!(n− 2s)!
Hn−2s(x,A)tn+2k,

which on applying (8) becomes

∞∑
n=0

2−n(
√

2A)nCA
n (x)tn =

∞∑
n=0

∞∑

k=0

∞∑
s=0

(−1)k(A)n+k+2s

s!k!n!
Hn(x,A)tn+2k+2s.

Divulgaciones Matemáticas Vol. 12 No. 2(2004), pp. 101–115



Gegenbauer Matrix Polynomials 113

By using (7) one gets

∞∑
n=0

2−n(
√

2A)nCA
n (x)tn =

∞∑
n=0

∞∑

k=0

k∑
s=0

(−1)k−s(A)n+k+s

s!(k − s)!n!
Hn(x,A)tn+2k.

Since (A)n+k+s = (A + (n + k)I)s(A)n+k, then by using (3) it follows

∞∑
n=0

2−n(
√

2A)nCA
n (x)tn =

∞∑
n=0

∞∑

k=0

(−1)k

k!n!

2F0(−kI, A + (n + k)I;−; 1)(A)n+kHn(x, A)tn+2k.

By (6) and then equating the coefficients of tn we obtain an expansion of the
Gegenbauer matrix polynomials as series of Hermite matrix polynomials in
the form:

CA
n (x) = 2n(

√
2A)−n

[n/2]∑

k=0

(−1)k

k!(n− 2k)! 2F0(−kI,A + (n− k)I;−; 1)

(A)n−kHn−2k(x,A). (51)
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