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Abstract

Let G be a finite abelian group. The constrained barycentric Daven-
port constant BDs(G) with s ≥ 2, is the smallest positive integer d
such that every sequence with d terms in G contains a k-barycentric
subsequence with 2 ≤ k ≤ s. The generalized barycentric Davenport
constant BDs(G), s ≥ 1, is the least positive integer d such that in every
sequence with d terms there exist s disjoint barycentric subsequences.
For s = 1, this is just the barycentric Davenport constant BD(G).
Relations among BDs(G), BDs(G) and BD(G) are established, these
constants are related to the Davenport constant D(G). Some values or
bounds of BDs(G), BDs(G) and BD(G) are given.
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Resumen

Sea G un grupo abeliano finito La constante restringida baricéntrica
de Davenport BDs(G) con s ≥ 2, es el más pequeño entero positivo
d tal que toda sucesión con d términos en G contiene una subsucesión
k-baricéntrica con 2 ≤ k ≤ s. La constante generalizada baricéntrica
de Davenport BDs(G), s ≥ 1 es el más pequeño entero positivo d tal
que toda sucesión con d términos, contiene s subsucesiones baricéntricas
disjuntas, s = 1 corresponde a la denominada constante de Davenport
baricéntrica BD(G). Se establecen relaciones entre BDs(G), BDs(G)
y BD(G). Estas constantes están relacionadas con la constante D(G)
de Davenport. Damos algunos valores o cotas de BDs(G), BDs(G) y
BD(G).
Palabras y frases clave: sucesiones baricéntricas; constante restrin-
gida baricéntrica de Davenport; constante generalizada baricéntrica de
Davenport; constante de Davenport baricéntrica:constante de Daven-
port; suma-cero.

1 Introduction

Let G be an abelian group of order n. The study of barycentric sequences
starts in [6] and [8]. A sequence in G is barycentric if it contains one element
which in the “average”of its terms. Formally, it is defined as follows:

Definition 1 ([8]). Let A be a finite set with |A| ≥ 2 and G an abelian
group. A sequence f : A → G is barycentric if there exists a ∈ A such that∑
A

f = |A|f(a). The element f(a) is called its barycenter.

The word sequence is used to associate set A with set {1, 2, . . . , |A|}. That
is to say f = a1, a2, · · · , a|A|, where ai are elements in G not necessarily
distinct. When |A| = k we shall speak of a k-barycentric sequence. Moreover
when f is injective, the word barycentric set is used instead of barycentric
sequence.

Notice that a sequence a1, a2, · · · , ak is k-barycentric with barycenter aj if
and only if a1 +a2 + · · ·+(1−k)aj + · · ·+ak = 0. So that a k-barycentric se-
quence is a weighted sequence with zero-sum. The investigations on sequences
with zero-sum started in 1961 with a result of Erdős, Ginzburg and Ziv who
proved that every sequence of length 2n − 1 in G, contain an n-subsequence
with zero-sum [11]. In 1966 [5] Davenport posed the problem to determine
the smallest positive integer d, i.e. the Davenport constant D(G), such that
every sequence of length d contains a subsequence with zero-sum. The result
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of Erdős, Ginzburg and Ziv and the introduction of the Davenport constant,
gave origin to the zero-sum theory. This area has been given much attention
lastly, mostly because questions here occur naturally in other classic areas
such as combinatorics, number theory and geometry. The state of the art on
results, problems and conjectures on zero-sum theory and on barycentric the-
ory is covered in the surveys [3], [14] and [22]. More information on zero-sum
theory can be found in [1, 2, 4, 13, 15, 16, 17, 18, 19, 21] and on barycentric
theory in [6, 8, 12, 20].

In [7] the generalized Davenport constant Ds(G) and the constrained
Davenport constant Ds(G) are defined as BDs(G) and BDs(G), where the
“barycentric subsequence” and “k-barycentric subsequence” terms, are re-
placed by “subsequence with zero-sum” and “k-subsequence with zero-sum”
respectively. Also in [7], these constants provided new bounds for the Daven-
port constant for groups of rank three of type: Zn⊕Znm⊕Znmq for n = 2, 3.

Definition 2 ([8]). The barycentric Davenport constant BD(G) is the least
positive integer m such that every m-sequence in G contain barycentric sub-
sequences.

In what follows we consider p a primer number and Zs
p as a vector space

on the field Zp. We will denote by {e1, e2, · · · , es} the canonical basis of Zs
p,

i.e. ei, is the s-tuple with entry 1 at position i and 0 elsewhere.

Remark 1. The vectorial subspaces of dimension 1 are defined as the lines
of Zs

3. Moreover, a 3-subset in Zs
3 is barycentric if and only if it is a line of

Zs
3 or equivalently its elements sum 0.

We use the following theorems:

Theorem 1 ([9]). In Z2
3 a set of 4 points is line-free if and only if it is a

parallelogram. Moreover the maximum number of line-free points in Z2
3 is 4.

For example, the parallelogram (0, 0), (1, 0), (0, 1), (1, 1) is line-free.

Theorem 2 ([9]). The maximum line-free set E in Z3
3 is 9.

Moreover, a set of 9 points (x, y, z) is line-free if and only if they are
distributed, up to affine isomorphism, as follows: (2, 2, 2), (2, 1, 2), (1, 1, 2),
(1, 2, 2), (0, 2, 1), (2, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 0).

Theorem 3 ([9, 10]). The maximum line-free set E in Z4
3 is 20.

For example the set: (0, 0, 0, 0), (2, 0, 0, 0), (0, 2, 0, 0),(2, 2, 0, 0), (1, 0, 2, 0),
(0, 1, 2, 0), (1, 2, 2, 0), (2, 1, 2, 0), (1, 1, 1, 0), (1, 1, 0, 1), (0, 0, 2, 2), (2, 0, 2, 2),
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(0, 2, 2, 2), (2, 2, 2, 2), (1, 0, 0, 2), (0, 1, 0, 2), (1, 2, 0, 2), (2, 1, 0, 2), (1, 1, 1, 2),
(1, 1, 2, 1), is line-free.

The main goal of this paper is to introduce the constrained and generalized
Davenport constants. Moreover relationships between these constants are
established and some values or bounds are given.

2 Constrained barycentric Davenport constant

Definition 3. Let G be a finite abelian group, the constrained barycentric
Davenport constant BDs(G) with s ≥ 2 is the smallest positive integer d such
that every sequence of length d in G, contains a k-barycentric subsequence with
2 ≤ k ≤ s.

Remark 2. Let G be a finite abelian group then a sequence f contains a
2-barycentric sequence if and only if f has two equal elements.

In the following lemma the existence of BDs(G) is established.

Lemma 1. Let G be a finite abelian group. Then BDs(G) ≤ |G| + 1 for
s ≥ 2.

Proof. It is clear that in every sequence of length |G|+1 there exist two equal
elements. Therefore by Remark 2 we have a 2-barycentric sequence and then
the lemma follows from definition of BDs(G).

The following theorem shows the relationship between BD(G) and BDs(G).

Theorem 4. Let G be a finite abelian group of order n, then BD(G) ≤
BDs(G). Moreover BD(G) ≤ n + 1.

Proof. Trivially by definition of BD(G) and Lemma 1.

Theorem 5. Let G be a finite abelian group of order n then BD2(G) = n+1.

Proof. By Lemma 1, we have BD2(G) ≤ n + 1. Moreover, by Remark 2, the
set constituted by the n different elements of G, does not contain 2-barycentric
sequences. So that n + 1 ≤ BD2(G).

Theorem 6. Let G be a finite abelian group. If BD(G) ≤ s then BDs(G) =
BD(G).

Proof. If BD(G) ≤ s then every sequence of length BD(G) contains a t-
barycentric sequence with t ≤ BD(G) ≤ s. Therefore by BDs(G) definition
we have BDs(G) ≤ BD(G). Moreover, by Theorem 4, we have BD(G) ≤
BDs(G). Hence BDs(G) = BD(G).
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Corollary 1. Let G be a finite abelian group of order n then BDs(G) =
BD(G), for s ≥ n + 1.

Proof. Directly from Theorem 4 and Theorem 6.

We use the following two results.

Theorem 7 ([8, 23]). BD(Zt
2) = t + 2 for t ≥ 1.

Theorem 8 ([8]). For t ≥ 2 we have 2t + 1 ≤ BD(Zt
3) ≤ 2t + 2. Moreover

BD(Zt
3) = 2t + 1, for t = 1, 2, 3, 4, 5.

We have the following theorem and corollary:

Theorem 9. Let G be a finite abelian group then BDs+1(G) ≤ BDs(G).

Proof. Trivially by definition of BDs(G).

Corollary 2. Let G be a finite abelian group then BDs(G) ≤ BD3(G), for
s ≥ 4.

Proof. Directly from Theorem 9.

In the following two theorems some particular results of BDs(G) are given:

Theorem 10.

1. BD3(Z2
2) = 5.

2. BD3(Z3
2) = 9.

3. BDs(Zt
2) = t + 2 for s ≥ t + 2 and t ≥ 1.

Proof.

1. By Theorem 9, BD3(Z2
2) = BD2+1(Z2

2) ≤ BD2(Z2
2) = 5. The sequence

(0, 0), (0, 1), (1, 0),(1, 1) does not contain k-barycentric subsequences
with k ≤ 3. Therefore BD3(Z2

2) ≥ 5, then BD3(Z2
2) = 5.

2. By Theorem 9 we have BD3(Z3
2) = BD2+1(Z3

2) ≤ BD2(Z3
2) = 9, then

BD3(Z3
2) ≤ 9. The sequence: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0),

(1, 0, 1), (0, 1, 1), (1, 1, 1) does not contain k-barycentric subsequences
with k ≤ 3. Therefore BD3(Z3

2) = 9.

3. By Theorem 7 we have BD(Zt
2) = t + 2 ≤ s with t ≥ 1. By Theorem 6

we have BDs(Zt
2) = BD(Zt

2) = t + 2 for s ≥ t + 2.
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Theorem 11.

1. BD3(Z2
3) = 5.

2. BD3(Z3
3) = 10.

3. BDs(Zt
3) = 2t + 1 for s ≥ 2t + 1 and 1 ≤ t ≤ 5.

Proof.

1. Directly from Theorem 1

2. Directly from Theorem 2.

3. By Theorem 8 we have BD(Zt
3) = 2t + 1 ≤ s with t = 1, 2, 3, 4, 5, and

by Theorem 6 we have BDs(Zt
3) = BD(Zt

3) = 2t + 1 for s ≥ 2t + 1 and
1 ≤ t ≤ 5.

3 Generalized barycentric Davenport constant

Definition 4. Let G be a finite abelian group. The generalized barycentric
Davenport constant BDs(G) with s ≥ 1, is the least positive integer d such that
every sequence of length d in G, contains s disjoint barycentric subsequences.

It is clear that BD1(G) = BD(G).
The following lemma proves the existence of BDs(G).

Lemma 2. Let G be a finite abelian group. Then BDs(G) ≤ sBD(G).

Proof. It is clear that every sequence f of length sBD(G) can be partitioned
in s disjoint subsequences of length BD(G).

Lemma 3. Let G be a finite abelian group. Then BDs(G) ≤ BDs+1(G).

Proof. Trivially by definition of BDs(G).

The following lemma shows the relationship between BDs(G) and BDs(G).

Lemma 4. Let G be a finite abelian group. If BDs(G) ≤ BDi(G) + s then
BDi+1 ≤ BDi(G) + s.

Proof. Let f be a sequence of length BDi(G)+s. Since BDs(G) ≤ BDi(G)+s
then there exists a t-barycentric sequence with t ≤ s. Therefore from the
remaining BDi(G) terms of f , i disjoint barycentric sequence can be formed.
Hence we have the lemma.
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Corollary 3. Let G be a finite abelian group. If BDs(G) ≤ BDi(G)+ s then
BDi+n(G) ≤ BDi(G) + ns.

Proof. Directly from Lemma 4.

We have the following result:

Theorem 12. BDn(Z2) = BDn(Z3) = BDn(Z4) = 2n + 1 for n ≥ 1.

Proof.

- Since BD1(Z2) = 3 and BD2(Z2) = 3 then BD2(Z2) = 3 < 5 =
BD1(Z2) + 2. Therefore by Corollary 3 we have BD1+(n−1)(Z2) ≤
BD1(Z2)+(n−1)2 = 3+2n−2 = 2n+1. Hence we obtain BDn(Z2) ≤
2n + 1.

- Since BD1(Z3) = 3 and BD2(Z3) = 4 then BD2(Z3) = 4 < 5 =
BD1(Z3) + 2. Therefore by Corollary 3 we have BD1+(n−1)(Z3) ≤
BD1(Z3)+(n−1)2 = 3+2n−2 = 2n+1. Hence we obtain BDn(Z3) ≤
2n + 1.

- Since BD1(Z4) = 3(see [8]) and BD2(Z4) = 5 then BD2(Z4) = 5 =
BD1(Z4) + 2. Therefore by Corollary 3 we have BD1+(n−1)(Z4) ≤
BD1(Z4)+(n−1)2 = 3+2n−2 = 2n+1. Hence we obtain BDn(Z4) ≤
2n + 1.

- The sequence f of length 2n constituted by 1 and 2n−1 zeros, considered
as a sequence of Z2 or Z3 or Z4, contains at most n − 1 2-barycentric
sequences. Therefore 2n+1 ≤ BDn(Z2), 2n+1 ≤ BDn(Z3) and 2n+1 ≤
BDn(Z4).

Consequently the theorem is proved.

Theorem 13. BDn(Z2
2) = 2n + 2 for n ≥ 1.

Proof. By Theorem 7, we have BD1(Z2
2) = 4 and by Theorem 5, we have

BD2(Z2
2) = 5 . Therefore BD2(Z2

2) = 5 < 6 = BD1(Z2
2) + 2. Hence, by

Corollary 3, we have: BD1+(n−1)(Z2
2) ≤ BD1(Z2

2)+2(n−1) , i.e., BDn(Z2
2) ≤

2n + 2. On the other hand, the sequence f = e1, e2, e1 + e2, 0, 0, · · · , 0 with
2n−2 zeros, has length 2n+1. The first 4 elements constitute a 4-barycentric
sequence with 0 as barycenter. Moreover from the remaining 2n − 3 zeros,
we can form n− 2 disjoint 2-barycentric subsequences. Therefore f contains
at most n − 1 disjoint barycentric subsequences. Hence BDn(Z2

2) ≥ 2n + 2.
Consequently, BDn(Z2

2) = 2n + 2.
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Theorem 14. BDn(Z3
2) = 2n + 4, for n ≥ 2.

Proof. Let f be a sequence of length 8 in Z3
2. If f is injective then f =

{0, e1, e2, e3, e1+e2, e1+e3, e2+e3, e1+e2+e3}. Therefore we have the following
two disjoint barycentric sequence: 0, e1, e2, e3, e1 +e2 and e1 +e3, e2 +e3, e1 +
e2 + e3.

If sequence f is not injective, then we have a 2-barycentric sequence and
from the other 6 remaining element of f, we obtain the second disjoint barycen-
tric sequence. Therefore BD2(Z3

2) ≤ 8. Let f be the sequence of length 2n+3
in Z3

2 constituted by 8 different elements and one of them repeated 2n − 4
times. Since BD2(Z3

2) ≤ 8 then from the 8 different elements we obtain two
disjoint barycentric sequences and from the remaining 2n − 5 elements, we
obtain n− 3 disjoint 2-barycentric sequences. Therefore in f we can identify
at most n− 1 disjoints barycentric sequences, i.e. BDn(Z3

2) ≥ 2n + 4.
In particular BD2(Z3

2) ≥ 8, so that BD2(Z3
2) = 8. By Theorem 5,

BD2(Z3
2) = 9. Hence BD2(Z3

2) = 9 < 8 + 2 = BD2(Z3
2) + 2. So that

BD2(Z3
2) ≤ BD2(Z3

2) + 2. Applying Corollary 3, we have BDn(Z3
2) =

BD2+(n−2)(Z3
2) ≤ BD2(Z3

2) + 2(n− 2) = 8 + 2n− 4 = 2n + 4. Consequently,
BDn(Z3

2) = 2n + 4.

Theorem 15. BDn(Z2
3) = 2n + 3, for n ≥ 2.

Proof. Let f be a finite sequence with 7 elements in Z2
3. If f is not injective

we have a 2-barycentric sequence and since BD(Z2
3) = 5 (Theorem 8) then

from the 5 remaining elements in f we obtain another barycentric sequence.
So that in f we can identify 2 disjoint barycentric sequences. Assume that
f is injective, then by Theorem 1 in each 5 elements there is a 3-barycentric
sequence i.e. a line L in Z2

3. If, in the remaining 4 elements there is a barycen-
tric sequence, hence we obtain two disjoint barycentric sequences. Otherwise,
by Theorem 1, these 4 elements form a parallelogram. By a simple inspection,
there exist two parallel lines, using two different points p, q of the parallelo-
gram, intersecting line L in two differents points and using the other two points
of the parallelogram. Then, we obtain two disjoint 3-barycentric sets. There-
fore BD2(Z2

3) ≤ 7. On the other hand, the sequence 0, e1, e2, 2e1, 2e2, e1 + e2

does not contain two disjoint barycentric sequences. Hence BD2(Z2
3) ≥ 7. So

that:

BD2(Z2
3) = 7 = 2.2 + 3. (1)

Let f be a sequence in Z2
3 of length 9. If f is not injective then we have

a 2-barycentric sequence. From the remaining 7 elements, there exist, by
equation 1, two disjoint barycentric sequences. Hence in f there are three
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disjoint barycentric sequences. If f is injective i.e. f = Z2
3 , we have the

following three disjoint 3-barycentric sets: {0, e1, 2e1}, {e2, e1 + e2, 2e1 + e2},
{2e2, e1 + 2e2, 2e1 + 2e2}. Therefore BD3(Z2

3) ≤ 9.
On the other hand, the sequence 0, e1, e2, 2e1, e1+e2, e1+2e2, 2e1+2e2, 2e1+

e2 does not contain three disjoint barycentric sets. So that BD3(Z2
3) ≥ 9.

Hence BD3(Z2
3) = 9. By Theorem 5 BD2(Z2

3) = 10 < 11 = 9+2 = BD3(Z2
3)+

2. By Corollary 3, we have BDn(Z2
3) = BD3+(n−3)(Z2

3) ≤ BD3(Z2
3) + 2(n −

3) = 9 + 2n− 6 = 2n + 3, i.e. BDn(Z2
3) ≤ 2n− 3.

Moreover, the sequence in Z2
3 of length 2n+2 with 9 different elements and

one of them repeated 2n−6 times, contains at most n−1 disjoint barycentric
sequences. Hence BDn(Z2

3) ≥ 2n + 3. Consequently BDn(Z2
3) = 2n + 3.

Theorem 16. BDn(Z3
3) ≤ 3n + 4, for n ≥ 2 and BD2(Z3

3) = 10.

Proof. Let f be a finite sequence with 10 elements in Z3
3. If f is not in-

jective we have a 2-barycentric sequence and since BD(Z3
3) = 7 then from

the remaining elements in f we obtain an other barycentric sequence. As-
sume that f is injective, then by Theorem 2 in each 10 different elements
there is a 3-barycentric set; the second one is obtained from the remain-
ing 7 elements. So that BD2(Z3

3) ≤ 10. Moreover since in the 9 elements
(2, 2, 2), (2, 1, 2), (1, 1, 2), (1, 2, 2), (0, 2, 1), (2, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 0),
there are not no two disjoint barycentric sets, we have BD2(Z3

3) = 10. On
the other hand, since BD3(Z3

3) = 10 we have: BD3(Z3
3) = 10 < BD2(Z3

3)+3.
Hence by Corollary 3, we have BDn(Z3

3) = BD2+(n−2)(Z3
3) ≤ BD2(Z3

3)+(n−
2)3. Therefore we obtain: BDn(Z3

3) ≤ 10 + 3n− 6 = 3n + 4.

Problem 1. Using Theorem 3, determine the exact value or bound of BDn(Z4
3)

for n ≥ 2.
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[6] C. Delorme, S. González, O. Ordaz and M.T. Varela. Barycen-
tric sequences and barycentric Ramsey numbers stars. Discrete Math.
277(2004)45–56.

[7] C. Delorme, O. Ordaz and D. Quiroz. Some remarks on Davenport con-
stant. Discrete Math. 237(2001)119–128.

[8] C. Delorme, I. Márquez, O. Ordaz and A. Ortuño. Existence condition
for barycentric sequences. Discrete Math. 281(2004)163–172.

[9] C. Delorme, I. Márquez, O. Ordaz and D. Quiroz. Maximum line-free set
geometry in Zd

3. To appear in Divulgaciones Matemáticas.
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