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Abstract

We describe the steps that led to introduce tauberian operators in
Banach space theory in order to apply abstract methods to solve a prob-
lem in summability theory.
Key words and phrases: tauberian operator, tauberian matrix, weakly
compact operator, reflexive Banach space.

Resumen

Describimos los pasos que llevaron a introducir los operadores taube-
rianos en la teoŕıa de espacios de Banach, con el fin de aplicar métodos
abstractos al estudio de un problema de sumabilidad.
Palabras y frases clave: operador tauberiano, matriz tauberiana,
operador débilmente compacto, espacio de Banach reflexivo.

1 Introduction

In 1976, Kalton and Wilansky [19] coined the term tauberian to designate
those (bounded linear) operators T : X −→ Y acting between Banach spaces
that satisfy

T ∗∗(X∗∗ \X) ⊂ Y ∗∗ \ Y . (1)

Since then, tauberian operators have found many successful applications in
Banach space theory. For instance, they have been used in the celebrated
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factorization of Davis, Figiel, Johnson and PeÃlczyński [9], in the equivalence
between the Radon-Nikodym property and the Krein-Milman property [25],
and in the study of norm-attainment of linear functionals on subspaces [23]
and measures of non-weakly compactness [3]. Of course, tauberian operators
have been extensively studied ([16], [18], [14]), and also, have been generalized,
localized, dualized, etc. giving rise to the appearance of new related classes
of operators (co-tauberian operators [27], [2], [12], semi-tauberian operators
[5], supertauberian operators [26], [13], strongly tauberian operators [24], and
other classes that are quoted in [1]).

While a significative part of the properties and applications of tauberian
operators in Banach space theory is summarized in [11], and a detailed ex-
position of these results will appear in [15], this paper is mainly concerned
with the origin and circumstances under which tauberian operators appeared
in Banach space theory. In particular, we intend to find answers for the fol-
lowing pair of questions:

Question 1. Why are they called tauberian?

Question 2. When and why did those operators come into sight?

Section 2 is devoted to Question 1. The remaining sections tell us how
tauberian operators, –a typical notion of Banach space theory–, come from a
classic problem of summability: the identification of all those matrices that
sum no divergent sequence. That problem is explained with more detail in
Section 3, where we include a brief account of the first attempts in solving it.
In particular, we show how Crawford used some techniques of duality, which
led to the application of functional analysis in summability theory (indeed,
one of the goals of [31], according to his author, was to popularize Crawford’s
results). In section 4, we explain how a further abstraction on Crawford’s
result gave birth to the notion of tauberian operator such at is has been
defined in formula (1).

2 Tauberian conditions in summability

In order to answer Question 1, we need to go back in time to 1897, when
Tauber proved that if

(2) lim
x→1−

∞∑
n=0

anxn = λ

and
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(3) lim
n

n−1an = 0

then

(4)
∞∑

n=0

an = λ.

This is a conditioned converse of Abel’s theorem which states that (2) is a
consequence of (4) without the mediation of any hypothesis such as (3). Since
then, it has been customary to classify certain types of theorems into abelian
or tauberian according to the following: an abelian ( or direct) theorem is a
theorem whose converse fails but becomes true if certain additional hypoth-
esis –usually named tauberian condition– is considered, in which case, that
modified converse is called tauberian theorem. Indeed, Hardy [17] described
this classification with the following words:

“A tauberian theorem may be defined as the corrected form of the
false converse of an abelian theorem. An abelian theorem asserts
that, if a sequence or function behaves regularly, then some average
of it behaves regularly.”

It is not simple at all to provide a more precise definition of tauberian theorem
in regard to the large list of fields where tauberian theorems occur. We refer
to the recent monograph [20] for an authorized description of this topic.

Let us fix now an operator T : X −→ Y and consider the following state-
ment:

(5) (xn) contains a weakly convergent subsequence if (Txn) is con-
vergent and the tauberian condition of boundedness of (xn) holds.

The main result in [19] establishes that statement (1) is satisfied by T if and
only if (5) is so. This fact evidences the tauberian character of those operators
satisfying (1), which answers Question 1.

In some sense, the corresponding abelian version of the tauberian opera-
tors are the weakly compact operators, which are defined as those operators
T : X −→ Y for which T ∗∗(X∗∗) ⊂ Y , which turns out to be equivalent to
say that for every bounded sequence (xn) in X, (Txn) contains a weakly
convergent subsequence.
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3 Tauberian matrices

About Question 2, we will see that the concept of tauberian operator deeps
its roots into summability theory, a branch of mathematics whose original
purpose is assigning limits to sequences that are not convergent in the usual
sense. One of the typical techniques in summability theory is the matrix
method: consider an infinite matrix A = (aij)∞i=1

∞
j=1. A sequence of real

numbers x = (xi)i is said to be A-summable (or A-limitable) if the sequence
Ax := (

∑∞
j=1 aijxj)i is well defined and convergent. In that case, limi Ax

is denoted limA xi and assigned to the sequence x. Thus, denoting by c the
space of all convergent sequences of scalar numbers, answers to the following
questions are needed:

How is the set ωA formed by all the sequences x for which Ax does exist?
How is the set cA formed by all the A-summable sequences?
Does cA contain c?
If c ⊂ cA, does A preserve limits?

When c ⊂ cA, A is called conservative. Moreover if limi xi = limA xi for
all (xi) ∈ c then A is called normal. A genuine example of the interest in
normal matrices that sum bounded divergent sequences is provided by Féjer’s
theorem, which uses the Cesàro matrix to recover any function f ∈ Lp(0, 2π)
from its Fourier series.

General study of matrix methods was only affordable after the discovery in
1911 of the classical Toeplitz-Silverman conditions which assert that a matrix
A = (aij)∞i=1

∞
j=1 is conservative if and only if

(i) ‖A‖ := supi

∑
j |aij | < ∞;

(ii) there exists s := limi si, where si :=
∑

j aij;

(iii) there exists aj := limi aij for each j.

Indeed, Toeplitz-Silverman conditions allow us to identify every conserva-
tive matrix A with the operator SA : c −→ c and also with TA : `∞ −→ `∞,
being both operators defined by the expression Ax when x belongs respec-
tively to the domains c or `∞, so ‖SA‖ = ‖TA‖ = ‖A‖.

Searching for criteria to decide whether or not a conservative matrix sums
a bounded divergent sequence became an engaging activity during the fifties:
[22], [28], [32], etc. The next decade brought new characterizations with an
undoubtedly algebraic taste. Thus, Copping [7] obtained the following result:
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(6) Let A be a conservative matrix such that TA is injective. Then
A sums no bounded divergent sequence if and only if there is a
conservative matrix B which is a left inverse of A.

In 1964, Wilansky [30] improved Copping’s result replacing the injectivity
of TA by the weaker condition of injectivity of SA. For the same matrices that
same year, Berg [4] obtained the following characterization:

(7) Let A be a conservative matrix such that SA is injective. Then
A sums no bounded divergent sequence if and only if A is not a
left-topological divisor of zero, that is, there exists ε > 0 such that
for every norm one element x ∈ c, ‖Ax‖ ≥ ε.

Obviously, if SA is injective then A is a left-topological divisor of zero if and
only if the range of SA is not closed. A definitive improvement dropped the
hypothesis of injectivity of SA in (7):

(8) A conservative matrix A sums no bounded divergent sequence
if and only if the operator SA : c −→ c has closed range and finite-
dimensional null-space.

A conservative matrix that sums no bounded divergent sequence is called
tauberian [31].

Statement (8) was obtained with different proofs by Crawford in 1966 [8],
Whitley in 1967 [29], and Garling and Wilansky in 1972 [10]. Each of the
above mentioned papers meant a new stage in the increasing presence of
functional analysis in summability theory, which paved the way for taube-
rian operators appearance. Crawford’s main contribution to the proof of (8)
is the introduction of duality techniques by means of the following result:

(9) Given a conservative matrix A, we have that TA
−1(c) ⊂ c if

and only if S∗∗A
−1(c) ⊂ c.

Note that, in general, the operators TA and S∗∗A are not equal. Indeed,
TA is represented by the matrix A, but since the canonical embedding of c
into its bidual space, `∞, maps every sequence (xi) to (limi xi, x1, x2, . . .), the
operator S∗∗A is represented by the matrix

P =




s a1 a2 . . .
s1 − s a11 − a1 a12 − a2 . . .
s2 − s a21 − a1 a22 − a2 . . .
. . . . . . . . . . . .


 .
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The difficulty caused by the fact that A 6= P was solved by Crawford by
substitution of c for an isomorphic space, c0, and taking advantage of the fact
that for every operator L : c0 −→ c0, both L and L∗∗ are representable by
the same matrix. Thus he considered the surjective isomorphism U : c0 −→ c
that maps e1 to the constant sequence (1, 1, . . .) and ei to ei−1 for i > 1, and
takes the operator R := U−1SAU which is matrix representable by P . Next,
by means of classical techniques of matrix summability, Crawford obtains the
following:

(10) TA
−1(c) ⊂ c if and only if (R∗∗)−1(c0) ⊂ c0;

and since R is an isomorphism, statement (10) yields trivially (9).

4 Tauberian operators

Garling and Wilansky’s innovation with respect to Crawford’s proof is that
they study an operator T : X −→ Y satisfying T ∗∗−1(Y ) ⊂ X prior to con-
sideration of the case X = Y = c. So they deduce the following results:

(11) Let T : X −→ Y be an operator. Consider the conditions

(i) T ∗∗−1(Y ) ⊂ X,

(ii) N(T ∗∗) ⊂ X,

(iii) N(T ) is reflexive.

Then (i)⇒(ii)⇒(iii) and neither implication can be reversed;

(12) If R(T ) is closed, then (i), (ii) and (iii) are equivalent.

So Garling and Wilansky obtain (8) with the next argument: if A is a conser-
vative matrix that sums no bounded divergent sequence then Crawford’s result
(9) yields S∗∗A

−1(c) ⊂ c, and by condition (i) in (11), it follows that N(S∗∗A )
is reflexive, and therefore finite-dimensional, because c contains no infinite-
dimensional reflexive subspace. They offer no new proof of the fact that R(SA)
is closed. Conversely, if R(SA) is closed and N(SA) is finite-dimensional then
N(SA) is trivially reflexive, so (12) shows that S∗∗A

−1(c) ⊂ c, hence (9) yields
that A sums no bounded divergent sequence.

As far as we know, Crawford’s statement (9) contains the first application
of tauberian operators, but condition (i) in (11) is the first appearance of
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tauberian operators with the same level of generality given in (1). Garling
and Wilansky stimulated interest in tauberian operators posing the following
questions:

Question 3. For which pairs of non-reflexive Banach spaces X and Y can the
assumption “closed range” be dropped in (12)?

Question 4. For which non-reflexive Banach spaces X and Y does condition
(i) in (11) imply R(T ) closed?

Kalton and Wilansky [19] found the following two results that include suf-
ficient and necessary conditions for the equivalence between the three state-
ments of (11).

Theorem 1. For every T ∈ L(X, Y ), the following statements are equivalent:

(a) T is tauberian;

(b) N(T ∗∗) = N(T ) and T (BX) is closed;

(c) N(T ∗∗) = N(T ) and T (BX) is contained in R(T ).

The notation BX represents the unit closed ball of X centered at the
origin.

Theorem 2. For every T ∈ L(X, Y ) the following statements are equivalent:

(a) N(T ∗∗) = N(T );

(b) if (xn) is a bounded sequence in X and (Txn) is weakly null then (xn)
contains a weakly convergent subsequence;

(c) if (xn) is a bounded sequence in X and (Txn) is null then (xn) contains
a weakly convergent subsequence.

Theorems 1 and 2 became essential in any further study of tauberian
operators, and were proved using only functional analysis techniques. The
paper [19], where these theorems appeared, popularized the term tauberian
for the operators defined in (1).

Full answers to Questions 3 and 4 are still unknown. However, the follow-
ing sufficient condition was shown in [19]:

(13) If X contains no reflexive infinite-dimensional subspace and
T : X −→ Y is tauberian then T is upper semi-Fredholm.
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Let us recall that an operator T : X −→ Y is said to be upper semi-
Fredholm if it has closed range and finite dimensional kernel. The reader will
realize that (13), combined with Crawford’s result (9), yields an immediate
proof of (8). This observation was made by Wilansky in [31, section 17.6].
But the most important fact concerning [19] is that it roused research focused
on tauberian operators. In fact, Kalton and Wilansky suggested that state-
ment (13) could be extended to more Banach spaces X other than those with
no reflexive infinite-dimensional subspaces. In particular, as c0 is isomorphic
to a space of continuous functions, they posed the following question:

Question 5. Given a pair of spaces of continuous functions, C(K) and C(L),
is a tauberian map T : C(K) −→ C(L) an isomorphism in some sense?

Question 5 was partially solved by Lotz, Peck and Porta [21], who proved
that a compact space K is scattered if and only if every injective tauberian
operator T : C(K) −→ Y is an isomorphism.

It is not difficult to prove that an operator T is tauberian if T ∗∗ is so.
Kalton and Wilansky asked [19]:

Question 6. When is it true that an operator T : X −→ Y is tauberian if and
only if T ∗∗ is so?

Question 6 was suggested by the fact that its answer is positive when T
has closed range. Nevertheless, it was shown in [2] that the answer is negative,
in general.

It is quite simple to prove that an operator T : X −→ Y is tauberian if
and only if the induced operator T co : X∗∗/X −→ Y ∗∗/Y , given by

T co(x∗∗ + X) := T ∗∗(x∗∗) + Y,

is injective. Kalton and Wilansky asked:

Question 7. Given an operator T ∈ L(X, Y ), when is T co an isomorphism?

The operators T for which T co is an isomorphism have been studied by
Rosenthal, who called them strongly tauberian [24]. He proved that if an
operator T is strongly tauberian then T ∗∗ is also strongly tauberian.

5 Final remarks

Such as we have accounted, the first work entirely devoted to tauberian op-
erators is [19], which came to light in 1976. But there are two papers more
concerning tauberian operators, [9] and [33], respectively published in 1974
and 1976. The authors of [19] and [33], prior submission, were acquainted with
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the contents of the three mentioned papers, but a closer look to them reveals
that actually [9], [19] and [33] are mathematically independent and pursue
different ends. Indeed, in [33], Yang extends Fredholm’s theory to tauberian
operators with closed range. His results lead to a homological description of
reflexivity in Banach spaces. In [9], Davis, Figiel, Johnson and PeÃlczyński ob-
tained their famous factorization for operators. Finally, [19] can be regarded
as the continuation of the work of Garling and Wilansky [10], putting an end-
point to a longstanding problem in summability theory: the characterization
of the tauberian matrices. These arguments have led us to consider [10] and
[19] as the seminal papers in the study of tauberian operators.

Let us notice that the role played by the tauberian operators in the solu-
tion of the aforementioned problem has been recognized by the summability
theorists [20, p. 262]. As accounts of summability theory, we recommend [6],
[20] or [31]. The first two ones are exhaustive monographs, while the third
one is concise and contains most of the results of Crawford’s Ph.D. thesis.

The opposite character of tauberian operators and weakly compact oper-
ators is also observable in other pairs of classes of operators. For instance,
upper semi-Fredholm operators and compact operators. In [1], these pairs of
classes of operators has been studied from a homological point of view.

Of course, more questions, results and applications concerning tauberian
operators appear in the papers we have cited. The reader interested in the
subject can find an exhaustive reference list in [1].
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