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Oscar Ordaz (flosav@cantv.net)
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Abstract

Let G be a finite abelian group. A sequence in G is barycentric
if it contains one element “average” of its terms. We give a survey
of results and open problems concerning sufficient conditions for the
existence of barycentric sequences. Moreover values and open prob-
lems on the k-barycentric Davenport constant BD(k, G), the barycen-
tric Davenport constant BD(G), the strong k-barycentric Davenport
constant SBD(k, G) and barycentric Ramsey numbers BR(H, G) for
some graphs H are presented. These constants are related to the Dav-
enport constant D(G).
Key words and phrases: barycentric sequence, Davenport constant,
k-barycentric Davenport constant, barycentric Davenport constant,
strong k-barycentric Davenport constant, barycentric Ramsey number.

Resumen

Sea G un grupo abeliano finito. Una sucesión en G es baricéntri-
ca si contiene un elemento el cual es “promedio”de sus términos. En
este art́ıculo, se presenta una revisión de resultados y problemas abier-
tos sobre condiciones suficientes para la existencia de sucesiones bari-
céntricas. Además se dan valores y problemas abiertos sobre la cons-
tante k-baricéntrica de Davenport BD(k, G), la constante baricéntrica
de Davenport BD(G), la constante fuerte k-baricéntrica de Davenport
SBD(k, G) y el número Ramsey baricéntrico BR(H, G) para algunos
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grafos H. Estas constantes están relacionadas con la constante de Da-
venport D(G).
Palabras y frases clave: sucesión baricéntrica, constante de Daven-
port, constante k-baricéntrica de Davenport, constante baricéntrica de
Davenport, constante fuerte k-baricéntrica de Davenport, número Ram-
sey baricéntrico.

1 Introduction

Let G be a finite abelian group. Then G = Zn1 ⊕ . . . ⊕ Znr , 1 < n1|....|nr,
where nr = exp(G) is the exponent of G and r is the rank of G. Let M(G) =
r∑

i=1

(ni − 1) + 1. In this paper, we denote by p a prime number.

Definition 1 ([12]). Let A be a finite set with |A| ≥ 2 and G an abelian
group. A sequence f : A → G is barycentric if there exists a ∈ A such that∑
A

f = |A|f(a). The element f(a) is called its barycenter.

The word sequence is used to associate the set A with the set
{1, 2, . . . , |A|}. When |A| = k we shall speak of a k-barycentric sequence.
Moreover when f is injective the word barycentric set is used instead of
barycentric sequence. The condition |A| ≥ 2 avoids the trivial realization
of equality

∑
A

f = |A|f(a) when A = {a}.
The history of barycentric sequences is short, it dates back to 1995 [10].

The works of Hamidoune [20, 21] on weighted sequences was the inspiration,
in the regular seminar on Combinatoria held at the LaTecS Laboratory, ISYS
Center, Universidad Central de Venezuela, to introduce barycentric sequences
and barycentric constants.

Let f be a sequence in G. An obvious sufficient condition for the exis-
tence of a barycentric subsequence is that |A| > |G| since this implies the
existence of two distinct elements a, a1 with f(a) = f(a1). Then f(a)f(a1)
is a 2−barycentric subsequence of f . Moreover, |A| > (k − 1)|G| implies the
existence of a k-barycentric subsequence of f.

Notice that a1, a2, · · · , ak is a k-barycentric sequence of barycenter aj if
and only if a1 + a2 + · · ·+ (1− k)aj + · · ·+ ak = 0. That is to say, a weighted
zero-sum sequence with wi = 1 for all i = 1, · · · , k excepting wj = 1 − k.
Therefore, the barycentric-sum problem can be located among the so called
zero-sum problems.
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A weighted sequence is constituted by terms of the form wiai, where ai ∈
G and wi are positive integers. The weighted sequences with zero-sum are
studied in [18],[19], [20], [21] and [23].

The following theorem is the starting point of zero-sum problems.

Theorem 1 ([14]). Let G be a finite abelian group of order n. Then every
sequence of length 2n− 1 has a subsequence of length n with zero-sum.

Caro in 1966 [3] gives a nice structured survey on zero-sum problems,
where the following conjecture due to Caro was formulated:

Conjecture 1. Let G be a finite abelian group of order n. Let w1, w2, . . . , wk

be positive integers such that w1 + w2 + . . . + wk = 0 (mod n). Let
a1, a2, . . . , an+k−1 in G not necessarily distinct. Then there exist k distinct
indices i1, . . . , ik such that w1ai1 + w2ai2 + . . . + wkaik

= 0 (mod n).

In the context of weighted sequence, Grynkiewicz in [19] proves the verac-
ity of this conjecture giving the following theorem:

Theorem 2 ([19]). Let m,n and k ≥ 2 be positive integers. If f is a sequence
of n+k−1 elements from a nontrivial abelian group G of order n and exponent
m, and if W = {wi}k

i=1 is a sequence of integers whose sum is zero modulo m,

then there exists a rearranged subsequence {bi}k
i=1 of f such that

k∑
i=1

wibi = 0.

Furthermore, if f has an k-set partition A = A1, · · · , Ak such that |wiAi| =
|Ai| for all i, then there exists a nontrivial subgroup H of G and an k-set

partition A1 = A1
1, · · · , A1

k of f with H ⊆
k∑

i=1

wiA
1
i and |wiA

1
i | = |A1

i | for all

i.

Theorem 2 extends the Erdős-Ginzburg-Ziv, which is the case when k = n
and wi = 1 for all i.

Recently Gao and Geroldinger present a survey on zero-sum problems [16],
updating the Caro survey [3].

The following remark establishes a relationship between the zero-sum prob-
lem and the barycentric-sum problem.

Remark 1 ([25]). Let A be a set in a finite abelian group G. Let a ∈ A,
then A contains a barycentric set with barycenter a if and only if A− a \ {0}
contains a zero-sum set.

Definition 2 ([9]). Let G be a finite abelian group. The Davenport constant
D(G) is the least positive integer d such that every sequence of length d in G
contains a non-empty subsequence with zero-sum.
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It is clear that M(G) ≤ D(G) ≤ |G| [17]. It is well known that D(Zn) = n.
Moreover for noncyclic groups we have:

Theorem 3 ([27]). Let G be a finite noncyclic group of order n then D(G) ≤
dn+1

2 e, where dxe denotes the smallest integer not less than x.

Moreover for p-groups we have:

Lemma 1 ([26]). Let G = Zpα1 ⊕ . . . ⊕ Zpαk be a p−group. Then we have
D(G) = M(G).

We have the following results:

Theorem 4 ([22]). Let G be an abelian group. Let f : A → G be a sequence
with k ≤ |A| ≤ 2k − 1 and |{∑

x∈S

f(x) : S ⊆ A : |S| = k}| ≤ |A| − k. Then f

contains a k-barycentric or a (k + 1)-barycentric sequence.

Theorem 5 ([20]). Let G be a finite abelian group of order n ≥ 2 and f : A →
G a sequence with |A| ≥ n+k−1. Then there exists a k-barycentric subsequence
of f . Moreover, in the case k ≥ |G| the condition |A| ≥ k + D(G) − 1 is
sufficient for the existence of a k-barycentric subsequence of f .

This result shows the existence of the following constant:

Definition 3 ([11]). Let G be an abelian group of order n ≥ 2. The k-
barycentric Davenport constant BD(k, G) is the minimal positive integer t
such that every t-sequence in G contains a k-barycentric subsequence.

Hence by Theorem 5 we have BD(k, G) ≤ n + k − 1. Notice that by
Theorem 2 this constant is also assured.

The following two theorems are the algebraic background used in [12], in
order to establish in Theorem 8, Theorem 9 and Corollary 1 conditions for
the existence of barycentric subsequences in a given sequence with prescribed
length.

Theorem 6 ([13]). Let H be a subset of Zp. Let d be a positive integer such
that 2 ≤ d ≤ |H|.

Set
∧d

H = {∑
x∈S

x : S ⊂ H, |S| = d}.

Then |∧d
H| ≥ min{p, d(|H| − d) + 1}.

Theorem 7 ([8]). Let A and B be subsets in Zp. Then |A+B| ≥ min{p, |A|+
|B| − 1}.
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Theorem 8 ([12]). Let s, d be integers ≥ 2 such that p ≥ d+2+ 1
d−1 . Let A be

a set with s+d elements, and f : A → Zp a sequence with |f(A)| ≥ p−1
d +d+1.

Then f contains an s-barycentric subsequence.

The following theorem improves Theorem 8, under the additional condition
s >

⌈
p−1

d

⌉
.

Theorem 9 ([12]). Let s, d be integers ≥ 2 such that s >
⌈

p−1
d

⌉
. Let A be a set

with |A| = s + d. Let f : A → Zp be a sequence such that |f(A)| ≥ ⌈
p−1

d

⌉
+ d.

Then there exists an s-barycentric subsequence of f .

Corollary 1 ([12]). Let f : A → Zp be a sequence with |A| = p + 2 and
|f(A)| ≥ p+3

2 . Then f contains a p-subsequence with zero-sum.

The following problem is still open:

Problem 1 ([12]). Let A be a subset of size k in Zp. If there are no barycentric
sequences of size ≤ t in A, what can be said about the minimum number
F (k, d, t) of sums of d different terms in A when it is less than p?

The case t = 2 is described by Hamidoune and Dias da Silva in Theorem
6: F (k, d, 2) = d(k − d) + 1.

As an example, we easily see that F (4, 2, 3) = 5 = F (4, 2, 2), and that
the function has the symmetry F (k, d, t) = F (k, k − d, t). It seems that
F (5, 2, 3) = 9 > F (5, 2, 2) = 7.

In order to present another barycentric constant, we have the following
definition:

Definition 4 ([10],[17],[29]). Let G be a finite abelian group. The Olson
constant, denoted O(G), is the least positive integer d such that every subset
A ⊆ G, with |A| = d contains a non-empty subset with zero-sum.

It is clear that O(G) ≤ D(G). Moreover we have the theorem:

Theorem 10 ([17]). Let G = Zn1 ⊕ . . . ⊕ Znr ⊕ Zs+1
n with r ≥ 0, s ≥ 0,

1 < n1|....|nr|n and nr 6= n. If G is a p−group and r + s
2 ≥ n, then O(G) =

M(G) = D(G).

Theorem 11 ([11, 29]). O(Zs
2) = s + 1 for s ≥ 1 and O(Zs

3) = 2s + 1 for
s ≥ 3.

The following constant is introduced and studied in [12].
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Definition 5 ([12]). Let G be a finite abelian group. The barycentric Dav-
enport constant BD(G) is the least positive integer m such that every m-
sequence in G contains a barycentric subsequence of length ≥ 2.

If f is not injective, then there is a 2-barycentric subsequence. In the
injective case, if |G| 6= 1, then using pairs of distinct elements it is easy to
show that BD(G) ≥ 3. Hence, we have the following alternate definition of
BD(G):

Definition 6 ([12]). Let G be a finite abelian group with |G| ≥ 3; BD(G)
is the least positive integer d such that every subset A ⊂ G, with |A| = d
contains a barycentric subset B.

By Remark 1 and Definition 6 we have that BD(G) ≤ O(G) + 1.

We have the following results, conjecture and open problem:

Theorem 12 ([12]). BD(Zp) ≤
⌈√

4p + 1
⌉− 2 for p ≥ 5.

Theorem 13 ([12]). BD(Zs
2) = s + 2 for s ≥ 1.

Theorem 14 ([12, 25]). For s ≥ 2 we have 2s + 1 ≤ BD(Zs
3) ≤ 2s + 2.

Moreover BD(Zs
3) = 2s + 1, for 1 ≤ s ≤ 5.

At present there is no known value of s for which the upper bound 2s +2,
in Theorem 14, is attained. Then the following conjecture is formulated:

Conjecture 2. BD(Zs
3) = 2s + 1 for s ≥ 2.

Problem 2. The groups G and their values or upper bounds known up now
of O(G) and BD(G) are those given in [12]. Since BD(G) ≤ O(G) + 1, in
the measure that O(G) is determined for specific G then we have an upper
bound for BD(G). To enlarge the groups and their values or upper bounds for
both constants is an open problem.

In [28] the strong barycentric Davenport constant SBD(k, G) is introduced
as the minimum positive integer t such that any t-set in G contains a k-
barycentric set, provided such an integer exists. Moreover in [28], the existence
of SBD(k, G) are established and some values or bounds are given. In general
there is no known algebraic background to calculate SBD(k, G). The action
of the group Gn = {fa,b : Zn → Zn, fa,b(x) = ax + b, a, b ∈ Zn, (a, n) = 1}
on the set Xk

n = {{x1, x2, . . . , xk} : xi ∈ Zn} partitions it in equivalence
classes or orbits. If {x1, · · · , xk} is k-barycentric then all elements of its
orbit θ({x1, · · · , xk}) are k-barycentric sets. This fact allowed in [28] give the
existence and then to calculate SBD(k,Zn) for some n and k in particular for
3 ≤ n ≤ 12 and 3 ≤ k ≤ n. For example the following results are establish:
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Theorem 15 ([28]). SBD(3,Zn) = 5 for n = 6, 8, 9, 10, 13 and
SBD(3,Z4) = 3.

We discuss now another barycentric constant:

Definition 7 ([11]). Let G be an abelian group of order n ≥ 2 and let H be
a graph with e(H) = k edges. The barycentric Ramsey number of the pair
(H,G), denoted by BR(H, G), is the minimum positive integer r such that
any coloring c : E(Kr) → G of the edges of Kr by elements of G yields a copy
of H, say H0, with an edge e0 such that the following equality holds:

∑

e∈E(H0)

c(e) = kc(e0) (1)

In this case H is called a barycentric graph.

The barycentric Ramsey number theory introduced in [11] can be traced
back in the Ramsey number R(H,n) and in the Ramsey-zero-sum number
R(H,G).

The Ramsey number R(H, n) is the smallest integer t such that for any
coloring of the edges of Kt with n colors there exists a monochromatic copy
of H.

Let G be a finite abelian group of order n. Let H be a graph where its edges
satisfy e(H) = 0 (mod n), the Ramsey zero-sum number R(H,G) is defined
as the minimal positive integer s such that any coloring c : E(Ks) → G of the
edges of the complete graph Ks by elements of G yields a copy of H, say H0

with ∑

e∈E(H0)

c(e) = 0, (2)

where 0 is the zero element of G. The necessity of the condition e(H) =
(mod n) for the existence of R(H, G) is clear, it comes from the monochro-
matic coloration of the edges of H.

The Ramsey zero-sum number was introduced by Bialostocki and Dierker
in [1] when e(H) = n and the concept is extended to e(H) = 0 (mod n) by
Caro in [4]. Notice that when e(H) = 0 (mod n) then R(H, G) ≤ R(H, n)
and R(H, 2) ≤ R(H, G) when e(H) = n.

It is clear that BR(H,G) ≤ R(H, |G|), then BR(H, G) always exists.
Besides this introduction that provides the history and tools on barycentric
sequences, this paper contains two main sections dedicated to discuss the
k-barycentric Davenport constant and the barycentric Ramsey number re-
spectively.
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2 k-barycentric Davenport constant

Let G be an abelian group of order n. In general there is no known algebraic
method to calculate BD(k, G). In [11] BD(k,Zp) is calculated for some
prime p. In [28] some BD(k,Zn) for 3 ≤ n ≤ 12 and 3 ≤ k ≤ n is derived
from SBD(k,Zn). For example BD(3,Z4) = 5 and BD(3,Z6) = 6 are
obtained from SBD(3,Z4) = 3 and SBD(3,Z6) = 5 respectively.

In [11], the following inequality are used to calculate BD(k, G):

BD(k, G) ≤ n + k − 1. (3)

For example from (3) we have:

Proposition 1 ([11]). BD(2, G) = n + 1.

Proposition 2 ([11]). BD(k,Z2) = 2
⌊

k
2

⌋
+ 1.

Proposition 3 ([12]). BD(k,Z3) =

{
k + 1 if k 6= 0(mod3),
k + 2 if k = 0(mod3)

The following theorem is derived from the Dias da Silva-Hamidoune the-
orem.

Theorem 16 ([11]). BD(3,Zp) ≤ 2dp
3e+ 1 for p ≥ 5.

In particular we have:

Corollary 2 ([11]). BD(3,Z5) = 5, BD(3,Z7) = 7, BD(3,Z11) =
BD(3,Z13) = 9.

For certain values of p, the inequality (3) can be improved:

Theorem 17 ([11]). BD(k,Zp) ≤ p + k − 2 for 4 ≤ k ≤ p− 1.

Problem 3. Derive from Theorem 17 exact values of BD(k,Zp) for 4 ≤ k ≤
p−1. Moreover, find for which 4 ≤ k ≤ p−1 it is verified BD(k,Zp) = p+k−2.

Related to Problem 3, we have the following corollary and theorem:

Corollary 3 ([11]). BD(p− 1,Zp) = 2p− 3 for p ≥ 5.

However, we have:

Theorem 18 ([11]). BD(4,Z7) = 8.
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The following theorem is used to derive a result (Theorem 20) similar to
Theorem 17 for k > p.

Theorem 19 ([11]). Let G be a group of order n, and k > n.

- If BD(k − n,G) ≥ n− 1, then BD(k, G) ≤ n + BD(k − n,G).

- If BD(k − n,G) ≤ n− 1, then BD(k, G) ≤ 2n− 1.

Theorem 20 ([11]). Let p ≥ 5, k > p and the remainder of the division of
k by p is in {4, . . . , p − 1}, then BD(k,Zp) ≤ p + k − 2. Moreover when the
remainder is p− 1 we have BD(k,Zp) = p + k − 2.

Finally we have the following two theorems and problem.

Theorem 21 ([11]). BD(3,Zs
2) = 2s + 1.

Theorem 22 ([11]).

s 1 2 3 4
BD(4,Zs

3) = BD(3,Zs
3) 5 9 19 41

Problem 4. In papers [11] and [28] the orbit technique was used to calculate
SBD(k,Zn) and BD(k,Zn) for some n and k. Using this technique, we
propose to extend the list of known exact values or bounds of SBD(k,Zn) and
BD(k,Zn) presented in both papers.

3 Barycentric Ramsey numbers

Let G be an abelian group of order n and let H be a graph with e(H) edges. In
this section we summarize the values or bounds of BR(H,Zn) for stars, paths,
circuits and matching. In particular for 2 ≤ n ≤ 5 and 2 ≤ e(H) ≤ 4. We
use the following notations: the stars are the complete bipartite graphs K1,k,
Pk are paths with k vertices and k − 1 edges, Ck are circuits with k vertices
and mK2 an m matching, i.e. m disjoint edges. At present there is no known
algebraic background to calculate the upper bound values of BR(H,Zn) for
e(H) 6= 0 (mod n), so that it is only possible to compute them manually by
cases or by computer. For lower bounds it is sufficient to find an ad hoc
decomposition of a complete graph in edges disjoint subgraphs, colored in
order to avoid some particular barycentric graph. Moreover, in some cases
the following remark gives a lower bound:
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Table 1: Barycentric graphs coloring
e(H) Z2 Z3 Z4 Z5

2 monochromatic monochromatic monochromatic monochromatic
3 any coloring a, b, c a, b, c a, b, c

monochromatic a, a, a + 2 monochromatic
monochromatic

4 a, a, b, b a, a, b, c a, a, a + 2, a + 2 a, a, b, c
monochromatic a, a, a, b a, a, a + 1, a + 3 monochromatic

monochromatic monochromatic

Remark 2. If a graph H is not barycentric with any 2-coloring, then
R(H, 2) ≤ BR(H,G).

The following remark is useful to establish an upper bound of BR(H,Zn):

Remark 3 ([15]). Let H be a graph with 2 ≤ e(H) ≤ 4 edges colored by
elements of Zn (2 ≤ n ≤ 5). Table 1 shows the possible coloring for H to be
barycentric. For example, in case e(H) = 3 and the edges colored by elements
from Z4, H is barycentric when the edges are colored with three different colors
a, b, c or the edges are colored by a, a, a + 2 for any color a or the edges are
colored monochromatically.

The following remark and theorem, allow to establish BR(H,Z2):

Remark 4 ([11]). Let H be a graph and e(H) the number of its edges. Then:

BR(H,Z2) =

{
|V (H)| if e(H) is odd,

R(H,Z2) if e(H) is even

Theorem 23 ([6]). Let H be a graph on h vertices and an even number of
edges. Then:

R(H,Z2) =





h + 2 if H = Kh, h = 0, 1( (mod 4)),
h + 1 if H = Kp ∪Kq,

(
p
2

)
+

(
q
2

)
= 0( (mod 2)),

h + 1 if all the degrees in H are odd,

h otherwise

3.1 Barycentric Ramsey numbers for stars

The barycentric Ramsey numbers for stars is obtained in the following way:
the upper bound is derived from the inequality BR(K1,k, G) ≤ BD(k,G)+1:
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for any vertex in KBD(k,G)+1 there is a barycentric star centered on this
vertex.

We have the following theorem:

Theorem 24 ([2, 4]). Let K1,m be the star on m edges with m = 0 (mod n).
Then

BR(K1,m,Zn) = R(K1,m,Zn) =

{
m + n− 1 if m = n = 0 (mod 2)
m+n otherwise

The following theorem and its corollaries allow to obtain a particular col-
oring of a complete graph avoiding the existence of a barycentric K1,k. That
is to say, we derive lower bounds of BR(K1,k,Zn) by decomposing a complete
graph into edge-disjoint subgraphs.

Theorem 25 ([24]). Let Kn be a complete graph of n vertices. Then:
Kn, with n odd, is the edge-disjoint union of n−1

2 hamiltonian cycles.
Kn, with n even, is the edge-disjoint union of n−2

2 hamiltonian cycles and one
perfect matching. Hence Kn can be decomposed in n− 1 perfect matching.

Corollary 4. Let Kn be a complete graph of n vertices, with n odd. Then
Kn can be decomposed into two complete graphs Kn+1

2
sharing a vertex and a

bipartite complete graph Kn−1
2 , n−1

2
.

Corollary 5. Let Kn be a complete graph of n vertices, with n even. Then Kn

can be decomposed into two vertex-disjoint complete graphs Kn
2
, the remaining

Kn
2 , n

2
into one perfect matching and one (n

2 − 1)-regular graph.

Therefore with the above considerations, the following results for stars
were proved in [11]:

Theorem 26. BR(K1,3,Z13) = 10.

Theorem 27. BR(K1,p−1,Zp) = 2p− 2.

Theorem 28. BR(K1,4,Z7) = 9.

Theorem 29. BR(K1,9,Z5) = 13.

Theorem 30. BR(K1,tp+1,Zp) = (t + 1)p for p ≥ 3 and t positive integer.

Theorem 31. BR(K1,5t+2,Z5) = 5(t + 1).
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3.2 Barycentric Ramsey numbers for matching

For an m-matching, the following two theorems are established:

Theorem 32 ([15]). Let G be an abelian group of order n ≥ 2. Then
BR(2K2, G) = n + 3.

Theorem 33 ([5, 2]). BR(mK2,Zn) = R(mK2,Zn) = 2m+n− 1 for m = 0
(mod n).

In [15] the following values for BR(mK2,Zn) with m = 2 and n = 3, 4, 5,
m = 3 and n = 4, 5, m = 4 and n = 3, 5 are given.

Theorem 34 ([15]). BR(2K2,Z3) = 6, BR(2K2,Z4) = 7, BR(2K2,Z5) =
BR(3K2,Z4) = BR(3K2,Z5) = 8, BR(4K2,Z3) = 8 and BR(4K2,Z5) = 11.

3.3 Barycentric Ramsey numbers for paths and circuits

The following lemma was used in [15] to establish for 3 ≤ n ≤ 5, the values
of BR(Pm,Zn) for m = 3, 4, 5 and BR(Cm,Zn) for m = 3, 4.

Lemma 2 ([1]). If the edges of Kn where n ≥ 5, are colored by at least three
different colors, then there exists a path on three differently colored edges.

Theorem 35 ([3]). BR(P4,Z3) = BR(P5,Z4) = 5.

We have then the following theorems:

Theorem 36 ([15]).

- BR(P3,Z3) = BR(P3,Z4) = 5 and BR(P3,Z5) = 7.

- BR(P4,Z4) = BR(P4,Z5) = 5.

- BR(P5,Z3) = BR(P5,Z5) = 5.

We have the following results:

Theorem 37 ([7]). BR(C3,Z3) = 11.

Theorem 38 ([3]). BR(C4,Z4) = 6.

Theorem 39 ([15]). 51 ≤ BR(C3,Z5) ≤ 126.

Problem 5. Determine the exact value of BR(C3,Z5) or improve the bounds
given in Theorem 39.

Problem 6. The computation of BR(H,Zn) for n ≥ 6 and the same graph
H treated here, is an open problem.
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