Barycentric-sum problems: a survey

Problemas sobre sumas baricéntricas: una revisión

Oscar Ordaz (flosav@cantv.net)
Departamento de Matemáticas y Laboratorio LaTecS, Centro ISYS, Facultad de Ciencias, Universidad Central de Venezuela Ap. 47567, Caracas Venezuela.
Domingo Quiroz (dquiroz@usb.ve)
Departamento de Matemáticas Puras y Aplicadas, Universidad Simón
Bolívar. Ap. 89000, Caracas 1080-A, Venezuela

Abstract

Let G be a finite abelian group. A sequence in G is barycentric if it contains one element "average" of its terms. We give a survey of results and open problems concerning sufficient conditions for the existence of barycentric sequences. Moreover values and open problems on the k-barycentric Davenport constant $B D(k, G)$, the barycentric Davenport constant $B D(G)$, the strong k-barycentric Davenport constant $S B D(k, G)$ and barycentric Ramsey numbers $B R(H, G)$ for some graphs H are presented. These constants are related to the Davenport constant $D(G)$. Key words and phrases: barycentric sequence, Davenport constant, k-barycentric Davenport constant, barycentric Davenport constant, strong k-barycentric Davenport constant, barycentric Ramsey number.

Resumen

Sea G un grupo abeliano finito. Una sucesión en G es baricéntrica si contiene un elemento el cual es "promedio"de sus términos. En este artículo, se presenta una revisión de resultados y problemas abiertos sobre condiciones suficientes para la existencia de sucesiones baricéntricas. Además se dan valores y problemas abiertos sobre la constante k-baricéntrica de Davenport $B D(k, G)$, la constante baricéntrica de Davenport $B D(G)$, la constante fuerte k-baricéntrica de Davenport $S B D(k, G)$ y el número Ramsey baricéntrico $B R(H, G)$ para algunos

[^0]grafos H. Estas constantes están relacionadas con la constante de Davenport $D(G)$.
Palabras y frases clave: sucesión baricéntrica, constante de Davenport, constante k-baricéntrica de Davenport, constante baricéntrica de Davenport, constante fuerte k-baricéntrica de Davenport, número Ramsey baricéntrico.

1 Introduction

Let G be a finite abelian group. Then $G=\mathbb{Z}_{n_{1}} \oplus \ldots \oplus \mathbb{Z}_{n_{r}}, 1<n_{1}|\ldots.| n_{r}$, where $n_{r}=\exp (G)$ is the exponent of G and r is the rank of G. Let $M(G)=$ $\sum_{i=1}^{r}\left(n_{i}-1\right)+1$. In this paper, we denote by p a prime number.

Definition 1 ([12]). Let A be a finite set with $|A| \geq 2$ and G an abelian group. A sequence $f: A \rightarrow G$ is barycentric if there exists $a \in A$ such that $\sum_{A} f=|A| f(a)$. The element $f(a)$ is called its barycenter.

The word sequence is used to associate the set A with the set $\{1,2, \ldots,|A|\}$. When $|A|=k$ we shall speak of a k-barycentric sequence. Moreover when f is injective the word barycentric set is used instead of barycentric sequence. The condition $|A| \geq 2$ avoids the trivial realization of equality $\sum_{A} f=|A| f(a)$ when $A=\{a\}$.

The history of barycentric sequences is short, it dates back to 1995 [10]. The works of Hamidoune [20,21] on weighted sequences was the inspiration, in the regular seminar on Combinatoria held at the LaTecS Laboratory, ISYS Center, Universidad Central de Venezuela, to introduce barycentric sequences and barycentric constants.

Let f be a sequence in G. An obvious sufficient condition for the existence of a barycentric subsequence is that $|A|>|G|$ since this implies the existence of two distinct elements a, a^{1} with $f(a)=f\left(a^{1}\right)$. Then $f(a) f\left(a^{1}\right)$ is a 2-barycentric subsequence of f. Moreover, $|A|>(k-1)|G|$ implies the existence of a k-barycentric subsequence of f.

Notice that $a_{1}, a_{2}, \cdots, a_{k}$ is a k-barycentric sequence of barycenter a_{j} if and only if $a_{1}+a_{2}+\cdots+(1-k) a_{j}+\cdots+a_{k}=0$. That is to say, a weighted zero-sum sequence with $w_{i}=1$ for all $i=1, \cdots, k$ excepting $w_{j}=1-k$. Therefore, the barycentric-sum problem can be located among the so called zero-sum problems.

A weighted sequence is constituted by terms of the form $w_{i} a_{i}$, where $a_{i} \in$ G and w_{i} are positive integers. The weighted sequences with zero-sum are studied in [18], [19], [20], [21] and [23].

The following theorem is the starting point of zero-sum problems.
Theorem 1 ([14]). Let G be a finite abelian group of order n. Then every sequence of length $2 n-1$ has a subsequence of length n with zero-sum.

Caro in 1966 [3] gives a nice structured survey on zero-sum problems, where the following conjecture due to Caro was formulated:

Conjecture 1. Let G be a finite abelian group of order n. Let $w_{1}, w_{2}, \ldots, w_{k}$ be positive integers such that $w_{1}+w_{2}+\ldots+w_{k}=0(\bmod n)$. Let $a_{1}, a_{2}, \ldots, a_{n+k-1}$ in G not necessarily distinct. Then there exist k distinct indices i_{1}, \ldots, i_{k} such that $w_{1} a_{i_{1}}+w_{2} a_{i_{2}}+\ldots+w_{k} a_{i_{k}}=0(\bmod n)$.

In the context of weighted sequence, Grynkiewicz in [19] proves the veracity of this conjecture giving the following theorem:
Theorem 2 ([19]). Let m, n and $k \geq 2$ be positive integers. If f is a sequence of $n+k-1$ elements from a nontrivial abelian group G of order n and exponent m, and if $W=\left\{w_{i}\right\}_{i=1}^{k}$ is a sequence of integers whose sum is zero modulo m, then there exists a rearranged subsequence $\left\{b_{i}\right\}_{i=1}^{k}$ of f such that $\sum_{i=1}^{k} w_{i} b_{i}=0$. Furthermore, if f has an k-set partition $A=A_{1}, \cdots, A_{k}$ such that $\left|w_{i} A_{i}\right|=$ $\left|A_{i}\right|$ for all i, then there exists a nontrivial subgroup H of G and an k-set partition $A^{1}=A_{1}^{1}, \cdots, A_{k}^{1}$ of f with $H \subseteq \sum_{i=1}^{k} w_{i} A_{i}^{1}$ and $\left|w_{i} A_{i}^{1}\right|=\left|A_{i}^{1}\right|$ for all i.

Theorem 2 extends the Erdős-Ginzburg-Ziv, which is the case when $k=n$ and $w_{i}=1$ for all i.

Recently Gao and Geroldinger present a survey on zero-sum problems [16], updating the Caro survey [3].

The following remark establishes a relationship between the zero-sum problem and the barycentric-sum problem.

Remark 1 ([25]). Let A be a set in a finite abelian group G. Let $a \in A$, then A contains a barycentric set with barycenter a if and only if $A-a \backslash\{0\}$ contains a zero-sum set.
Definition 2 ([9]). Let G be a finite abelian group. The Davenport constant $D(G)$ is the least positive integer d such that every sequence of length d in G contains a non-empty subsequence with zero-sum.

It is clear that $M(G) \leq D(G) \leq|G|[17]$. It is well known that $D\left(\mathbb{Z}_{n}\right)=n$. Moreover for noncyclic groups we have:

Theorem 3 ([27]). Let G be a finite noncyclic group of order n then $D(G) \leq$ $\left\lceil\frac{n+1}{2}\right\rceil$, where $\lceil x\rceil$ denotes the smallest integer not less than x.

Moreover for p-groups we have:
Lemma 1 ([26]). Let $G=\mathbb{Z}_{p^{\alpha_{1}}} \oplus \ldots \oplus \mathbb{Z}_{p^{\alpha_{k}}}$ be a p-group. Then we have $D(G)=M(G)$.

We have the following results:
Theorem 4 ([22]). Let G be an abelian group. Let $f: A \rightarrow G$ be a sequence with $k \leq|A| \leq 2 k-1$ and $\left|\left\{\sum_{x \in S} f(x): S \subseteq A:|S|=k\right\}\right| \leq|A|-k$. Then f contains a k-barycentric or a $(k+1)$-barycentric sequence.

Theorem 5 ([20]). Let G be a finite abelian group of order $n \geq 2$ and $f: A \rightarrow$ G a sequence with $|A| \geq n+k-1$. Then there exists a k-barycentric subsequence of f. Moreover, in the case $k \geq|G|$ the condition $|A| \geq k+D(G)-1$ is sufficient for the existence of a k-barycentric subsequence of f.

This result shows the existence of the following constant:
Definition 3 ([11]). Let G be an abelian group of order $n \geq 2$. The k barycentric Davenport constant $B D(k, G)$ is the minimal positive integer t such that every t-sequence in G contains a k-barycentric subsequence.

Hence by Theorem 5 we have $B D(k, G) \leq n+k-1$. Notice that by Theorem 2 this constant is also assured.

The following two theorems are the algebraic background used in [12], in order to establish in Theorem 8, Theorem 9 and Corollary 1 conditions for the existence of barycentric subsequences in a given sequence with prescribed length.

Theorem 6 ([13]). Let H be a subset of \mathbb{Z}_{p}. Let d be a positive integer such that $2 \leq d \leq|H|$.

$$
\text { Set } \bigwedge^{d} H=\left\{\sum_{x \in S} x: S \subset H,|S|=d\right\}
$$

Then $\left|\bigwedge^{d} H\right| \geq \min \{p, d(|H|-d)+1\}$.
Theorem 7 ([8]). Let A and B be subsets in \mathbb{Z}_{p}. Then $|A+B| \geq \min \{p,|A|+$ $|B|-1\}$.

Theorem 8 ([12]). Let s, d be integers ≥ 2 such that $p \geq d+2+\frac{1}{d-1}$. Let A be a set with $s+d$ elements, and $f: A \rightarrow \mathbb{Z}_{p}$ a sequence with $|f(A)| \geq \frac{p-1}{d}+d+1$. Then f contains an s-barycentric subsequence.

The following theorem improves Theorem 8, under the additional condition $s>\left\lceil\frac{p-1}{d}\right\rceil$.

Theorem 9 ([12]). Let s, d be integers ≥ 2 such that $s>\left\lceil\frac{p-1}{d}\right\rceil$. Let A be a set with $|A|=s+d$. Let $f: A \rightarrow \mathbb{Z}_{p}$ be a sequence such that $|f(A)| \geq\left\lceil\frac{p-1}{d}\right\rceil+d$. Then there exists an s-barycentric subsequence of f.

Corollary 1 ([12]). Let $f: A \rightarrow \mathbb{Z}_{p}$ be a sequence with $|A|=p+2$ and $|f(A)| \geq \frac{p+3}{2}$. Then f contains a p-subsequence with zero-sum.

The following problem is still open:
Problem 1 ([12]). Let A be a subset of size k in \mathbb{Z}_{p}. If there are no barycentric sequences of size $\leq t$ in A, what can be said about the minimum number $F(k, d, t)$ of sums of d different terms in A when it is less than p ?

The case $t=2$ is described by Hamidoune and Dias da Silva in Theorem 6: $F(k, d, 2)=d(k-d)+1$.

As an example, we easily see that $F(4,2,3)=5=F(4,2,2)$, and that the function has the symmetry $F(k, d, t)=F(k, k-d, t)$. It seems that $F(5,2,3)=9>F(5,2,2)=7$.

In order to present another barycentric constant, we have the following definition:

Definition 4 ([10],[17],[29]). Let G be a finite abelian group. The Olson constant, denoted $O(G)$, is the least positive integer d such that every subset $A \subseteq G$, with $|A|=d$ contains a non-empty subset with zero-sum.

It is clear that $O(G) \leq D(G)$. Moreover we have the theorem:
Theorem 10 ([17]). Let $G=\mathbb{Z}_{n_{1}} \oplus \ldots \oplus \mathbb{Z}_{n_{r}} \oplus \mathbb{Z}_{n}^{s+1}$ with $r \geq 0, s \geq 0$, $1<n_{1}|\ldots| n_{r} \mid n$ and $n_{r} \neq n$. If G is a $p-$ group and $r+\frac{s}{2} \geq n$, then $O(G)=$ $M(G)=D(G)$.

Theorem 11 ([11, 29]). $O\left(\mathbb{Z}_{2}^{s}\right)=s+1$ for $s \geq 1$ and $O\left(\mathbb{Z}_{3}^{s}\right)=2 s+1$ for $s \geq 3$.

The following constant is introduced and studied in [12].

Definition 5 ([12]). Let G be a finite abelian group. The barycentric Davenport constant $B D(G)$ is the least positive integer m such that every m sequence in G contains a barycentric subsequence of length ≥ 2.

If f is not injective, then there is a 2 -barycentric subsequence. In the injective case, if $|G| \neq 1$, then using pairs of distinct elements it is easy to show that $B D(G) \geq 3$. Hence, we have the following alternate definition of $B D(G)$:
Definition 6 ([12]). Let G be a finite abelian group with $|G| \geq 3 ; B D(G)$ is the least positive integer d such that every subset $A \subset G$, with $|A|=d$ contains a barycentric subset B.

By Remark 1 and Definition 6 we have that $B D(G) \leq O(G)+1$.
We have the following results, conjecture and open problem:
Theorem $12([12]) . B D\left(\mathbb{Z}_{p}\right) \leq\lceil\sqrt{4 p+1}\rceil-2$ for $p \geq 5$.
Theorem 13 ([12]). $B D\left(\mathbb{Z}_{2}^{s}\right)=s+2$ for $s \geq 1$.
Theorem 14 ([12, 25]). For $s \geq 2$ we have $2 s+1 \leq B D\left(\mathbb{Z}_{3}^{s}\right) \leq 2 s+2$. Moreover $B D\left(\mathbb{Z}_{3}^{s}\right)=2 s+1$, for $1 \leq s \leq 5$.

At present there is no known value of s for which the upper bound $2 s+2$, in Theorem 14, is attained. Then the following conjecture is formulated:
Conjecture 2. $B D\left(\mathbb{Z}_{3}^{s}\right)=2 s+1$ for $s \geq 2$.
Problem 2. The groups G and their values or upper bounds known up now of $O(G)$ and $B D(G)$ are those given in [12]. Since $B D(G) \leq O(G)+1$, in the measure that $O(G)$ is determined for specific G then we have an upper bound for $B D(G)$. To enlarge the groups and their values or upper bounds for both constants is an open problem.

In [28] the strong barycentric Davenport constant $S B D(k, G)$ is introduced as the minimum positive integer t such that any t-set in G contains a k barycentric set, provided such an integer exists. Moreover in [28], the existence of $S B D(k, G)$ are established and some values or bounds are given. In general there is no known algebraic background to calculate $S B D(k, G)$. The action of the group $G_{n}=\left\{f_{a, b}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}, f_{a, b}(x)=a x+b, a, b \in \mathbb{Z}_{n},(a, n)=1\right\}$ on the set $X_{n}^{k}=\left\{\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}: x_{i} \in \mathbb{Z}_{n}\right\}$ partitions it in equivalence classes or orbits. If $\left\{x_{1}, \cdots, x_{k}\right\}$ is k-barycentric then all elements of its orbit $\theta\left(\left\{x_{1}, \cdots, x_{k}\right\}\right)$ are k-barycentric sets. This fact allowed in [28] give the existence and then to calculate $S B D\left(k, \mathbb{Z}_{n}\right)$ for some n and k in particular for $3 \leq n \leq 12$ and $3 \leq k \leq n$. For example the following results are establish:

Divulgaciones Matemáticas Vol. 15 No. 2(2007), pp. 193-206

Theorem $15([28]) . S B D\left(3, \mathbb{Z}_{n}\right)=5$ for $n=6,8,9,10,13$ and $S B D\left(3, \mathbb{Z}_{4}\right)=3$.

We discuss now another barycentric constant:
Definition 7 ([11]). Let G be an abelian group of order $n \geq 2$ and let H be a graph with $e(H)=k$ edges. The barycentric Ramsey number of the pair (H, G), denoted by $B R(H, G)$, is the minimum positive integer r such that any coloring $c: E\left(K_{r}\right) \rightarrow G$ of the edges of K_{r} by elements of G yields a copy of H, say H_{0}, with an edge e_{0} such that the following equality holds:

$$
\begin{equation*}
\sum_{e \in E\left(H_{0}\right)} c(e)=k c\left(e_{0}\right) \tag{1}
\end{equation*}
$$

In this case H is called a barycentric graph.
The barycentric Ramsey number theory introduced in [11] can be traced back in the Ramsey number $R(H, n)$ and in the Ramsey-zero-sum number $R(H, G)$.

The Ramsey number $R(H, n)$ is the smallest integer t such that for any coloring of the edges of K_{t} with n colors there exists a monochromatic copy of H.

Let G be a finite abelian group of order n. Let H be a graph where its edges satisfy $e(H)=0(\bmod n)$, the Ramsey zero-sum number $R(H, G)$ is defined as the minimal positive integer s such that any coloring $c: E\left(K_{s}\right) \rightarrow G$ of the edges of the complete graph K_{s} by elements of G yields a copy of H, say H_{0} with

$$
\begin{equation*}
\sum_{e \in E\left(H_{0}\right)} c(e)=0 \tag{2}
\end{equation*}
$$

where 0 is the zero element of G. The necessity of the condition $e(H)=$ $(\bmod n)$ for the existence of $R(H, G)$ is clear, it comes from the monochromatic coloration of the edges of H.

The Ramsey zero-sum number was introduced by Bialostocki and Dierker in [1] when $e(H)=n$ and the concept is extended to $e(H)=0(\bmod n)$ by Caro in [4]. Notice that when $e(H)=0(\bmod n)$ then $R(H, G) \leq R(H, n)$ and $R(H, 2) \leq R(H, G)$ when $e(H)=n$.

It is clear that $B R(H, G) \leq R(H,|G|)$, then $B R(H, G)$ always exists. Besides this introduction that provides the history and tools on barycentric sequences, this paper contains two main sections dedicated to discuss the k-barycentric Davenport constant and the barycentric Ramsey number respectively.

$2 k$-barycentric Davenport constant

Let G be an abelian group of order n. In general there is no known algebraic method to calculate $B D(k, G)$. In [11] $B D\left(k, \mathbb{Z}_{p}\right)$ is calculated for some prime p. In [28] some $B D\left(k, \mathbb{Z}_{n}\right)$ for $3 \leq n \leq 12$ and $3 \leq k \leq n$ is derived from $S B D\left(k, \mathbb{Z}_{n}\right)$. For example $B D\left(3, \mathbb{Z}_{4}\right)=5$ and $B D\left(3, \mathbb{Z}_{6}\right)=6$ are obtained from $S B D\left(3, \mathbb{Z}_{4}\right)=3$ and $S B D\left(3, \mathbb{Z}_{6}\right)=5$ respectively.

In [11], the following inequality are used to calculate $B D(k, G)$:

$$
\begin{equation*}
B D(k, G) \leq n+k-1 \tag{3}
\end{equation*}
$$

For example from (3) we have:
Proposition 1 ([11]). $B D(2, G)=n+1$.
Proposition $2([11]) . B D\left(k, \mathbb{Z}_{2}\right)=2\left\lfloor\frac{k}{2}\right\rfloor+1$.
Proposition $3([12]) . B D\left(k, \mathbb{Z}_{3}\right)= \begin{cases}k+1 & \text { if } k \neq 0(\bmod 3), \\ k+2 & \text { if } k=0(\bmod 3)\end{cases}$
The following theorem is derived from the Dias da Silva-Hamidoune theorem.

Theorem 16 ([11]). $B D\left(3, \mathbb{Z}_{p}\right) \leq 2\left\lceil\frac{p}{3}\right\rceil+1$ for $p \geq 5$.
In particular we have:
Corollary $2([11]) . B D\left(3, \mathbb{Z}_{5}\right)=5, B D\left(3, \mathbb{Z}_{7}\right)=7, B D\left(3, \mathbb{Z}_{11}\right)=$ $B D\left(3, \mathbb{Z}_{13}\right)=9$.

For certain values of p, the inequality (3) can be improved:
Theorem 17 ([11]). $B D\left(k, \mathbb{Z}_{p}\right) \leq p+k-2$ for $4 \leq k \leq p-1$.
Problem 3. Derive from Theorem 17 exact values of $B D\left(k, \mathbb{Z}_{p}\right)$ for $4 \leq k \leq$ $p-1$. Moreover, find for which $4 \leq k \leq p-1$ it is verified $B D\left(k, \mathbb{Z}_{p}\right)=p+k-2$.

Related to Problem 3, we have the following corollary and theorem:
Corollary 3 ([11]). $B D\left(p-1, \mathbb{Z}_{p}\right)=2 p-3$ for $p \geq 5$.
However, we have:
Theorem 18 ([11]). $B D\left(4, \mathbb{Z}_{7}\right)=8$.

The following theorem is used to derive a result (Theorem 20) similar to Theorem 17 for $k>p$.

Theorem 19 ([11]). Let G be a group of order n, and $k>n$.

- If $B D(k-n, G) \geq n-1$, then $B D(k, G) \leq n+B D(k-n, G)$.
- If $B D(k-n, G) \leq n-1$, then $B D(k, G) \leq 2 n-1$.

Theorem 20 ([11]). Let $p \geq 5, k>p$ and the remainder of the division of k by p is in $\{4, \ldots, p-1\}$, then $B D\left(k, \mathbb{Z}_{p}\right) \leq p+k-2$. Moreover when the remainder is $p-1$ we have $B D\left(k, \mathbb{Z}_{p}\right)=p+k-2$.

Finally we have the following two theorems and problem.
Theorem $21([11]) . B D\left(3, \mathbb{Z}_{2}^{s}\right)=2^{s}+1$.
Theorem 22 ([11]).

s	1	2	3	4
$B D\left(4, \mathbb{Z}_{3}^{s}\right)=B D\left(3, \mathbb{Z}_{3}^{s}\right)$	5	9	19	41

Problem 4. In papers [11] and [28] the orbit technique was used to calculate $S B D\left(k, \mathbb{Z}_{n}\right)$ and $B D\left(k, \mathbb{Z}_{n}\right)$ for some n and k. Using this technique, we propose to extend the list of known exact values or bounds of $S B D\left(k, \mathbb{Z}_{n}\right)$ and $B D\left(k, \mathbb{Z}_{n}\right)$ presented in both papers.

3 Barycentric Ramsey numbers

Let G be an abelian group of order n and let H be a graph with $e(H)$ edges. In this section we summarize the values or bounds of $B R\left(H, \mathbb{Z}_{n}\right)$ for stars, paths, circuits and matching. In particular for $2 \leq n \leq 5$ and $2 \leq e(H) \leq 4$. We use the following notations: the stars are the complete bipartite graphs $K_{1, k}$, P_{k} are paths with k vertices and $k-1$ edges, C_{k} are circuits with k vertices and $m K_{2}$ an m matching, i.e. m disjoint edges. At present there is no known algebraic background to calculate the upper bound values of $B R\left(H, \mathbb{Z}_{n}\right)$ for $e(H) \neq 0(\bmod n)$, so that it is only possible to compute them manually by cases or by computer. For lower bounds it is sufficient to find an ad hoc decomposition of a complete graph in edges disjoint subgraphs, colored in order to avoid some particular barycentric graph. Moreover, in some cases the following remark gives a lower bound:

Table 1: Barycentric graphs coloring

$e(H)$	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{4}	\mathbb{Z}_{5}
2	monochromatic	monochromatic	monochromatic	monochromatic
3	any coloring	a, b, c	a, b, c	a, b, c
		monochromatic	$a, a, a+2$	monochromatic
			monochromatic	
4	a, a, b, b	a, a, b, c	$a, a, a+2, a+2$	a, a, b, c
	monochromatic	a, a, a, b	$a, a, a+1, a+3$	monochromatic
		monochromatic	monochromatic	

Remark 2. If a graph H is not barycentric with any 2-coloring, then $R(H, 2) \leq B R(H, G)$.

The following remark is useful to establish an upper bound of $B R\left(H, \mathbb{Z}_{n}\right)$:
Remark 3 ([15]). Let H be a graph with $2 \leq e(H) \leq 4$ edges colored by elements of $\mathbb{Z}_{n}(2 \leq n \leq 5)$. Table 1 shows the possible coloring for H to be barycentric. For example, in case $e(H)=3$ and the edges colored by elements from \mathbb{Z}_{4}, H is barycentric when the edges are colored with three different colors a, b, c or the edges are colored by $a, a, a+2$ for any color a or the edges are colored monochromatically.

The following remark and theorem, allow to establish $B R\left(H, \mathbb{Z}_{2}\right)$:
Remark 4 ([11]). Let H be a graph and $e(H)$ the number of its edges. Then:

$$
B R\left(H, \mathbb{Z}_{2}\right)= \begin{cases}|V(H)| & \text { if } e(H) \text { is odd } \\ R\left(H, \mathbb{Z}_{2}\right) & \text { if } e(H) \text { is even }\end{cases}
$$

Theorem 23 ([6]). Let H be a graph on h vertices and an even number of edges. Then:

$$
R\left(H, \mathbb{Z}_{2}\right)= \begin{cases}h+2 & \text { if } H=K_{h}, h=0,1((\bmod 4)) \\ h+1 & \text { if } H=K_{p} \cup K_{q},\binom{p}{2}+\binom{q}{2}=0((\bmod 2)) \\ h+1 & \text { if all the degrees in } H \text { are odd } \\ h & \text { otherwise }\end{cases}
$$

3.1 Barycentric Ramsey numbers for stars

The barycentric Ramsey numbers for stars is obtained in the following way: the upper bound is derived from the inequality $B R\left(K_{1, k}, G\right) \leq B D(k, G)+1$:
for any vertex in $K_{B D(k, G)+1}$ there is a barycentric star centered on this vertex.

We have the following theorem:
Theorem $24([2,4])$. Let $K_{1, m}$ be the star on m edges with $m=0(\bmod n)$. Then
$B R\left(K_{1, m}, \mathbb{Z}_{n}\right)=R\left(K_{1, m}, \mathbb{Z}_{n}\right)= \begin{cases}m+n-1 & \text { if } m=n=0(\bmod 2) \\ m+n & \text { otherwise }\end{cases}$
The following theorem and its corollaries allow to obtain a particular coloring of a complete graph avoiding the existence of a barycentric $K_{1, k}$. That is to say, we derive lower bounds of $B R\left(K_{1, k}, \mathbb{Z}_{n}\right)$ by decomposing a complete graph into edge-disjoint subgraphs.

Theorem 25 ([24]). Let K_{n} be a complete graph of n vertices. Then: K_{n}, with n odd, is the edge-disjoint union of $\frac{n-1}{2}$ hamiltonian cycles. K_{n}, with n even, is the edge-disjoint union of $\frac{n-2}{2}$ hamiltonian cycles and one perfect matching. Hence K_{n} can be decomposed in $n-1$ perfect matching.

Corollary 4. Let K_{n} be a complete graph of n vertices, with n odd. Then K_{n} can be decomposed into two complete graphs $K_{\frac{n+1}{2}}$ sharing a vertex and a bipartite complete graph $K_{\frac{n-1}{2}, \frac{n-1}{2}}$.

Corollary 5. Let K_{n} be a complete graph of n vertices, with n even. Then K_{n} can be decomposed into two vertex-disjoint complete graphs $K_{\frac{n}{2}}$, the remaining $K_{\frac{n}{2}, \frac{n}{2}}$ into one perfect matching and one $\left(\frac{n}{2}-1\right)$-regular graph.

Therefore with the above considerations, the following results for stars were proved in [11]:

Theorem 26. $B R\left(K_{1,3}, \mathbb{Z}_{13}\right)=10$.
Theorem 27. $B R\left(K_{1, p-1}, \mathbb{Z}_{p}\right)=2 p-2$.
Theorem 28. $B R\left(K_{1,4}, \mathbb{Z}_{7}\right)=9$.
Theorem 29. $B R\left(K_{1,9}, \mathbb{Z}_{5}\right)=13$.
Theorem 30. $B R\left(K_{1, t p+1}, \mathbb{Z}_{p}\right)=(t+1) p$ for $p \geq 3$ and t positive integer.
Theorem 31. $B R\left(K_{1,5 t+2}, \mathbb{Z}_{5}\right)=5(t+1)$.

3.2 Barycentric Ramsey numbers for matching

For an m-matching, the following two theorems are established:
Theorem 32 ([15]). Let G be an abelian group of order $n \geq 2$. Then $B R\left(2 K_{2}, G\right)=n+3$.

Theorem $33([5,2]) . B R\left(m K_{2}, \mathbb{Z}_{n}\right)=R\left(m K_{2}, \mathbb{Z}_{n}\right)=2 m+n-1$ for $m=0$ $(\bmod n)$.

In [15] the following values for $B R\left(m K_{2}, \mathbb{Z}_{n}\right)$ with $m=2$ and $n=3,4,5$, $m=3$ and $n=4,5, m=4$ and $n=3,5$ are given.

Theorem $34([15])$. $B R\left(2 K_{2}, \mathbb{Z}_{3}\right)=6, B R\left(2 K_{2}, \mathbb{Z}_{4}\right)=7, B R\left(2 K_{2}, \mathbb{Z}_{5}\right)=$ $B R\left(3 K_{2}, \mathbb{Z}_{4}\right)=B R\left(3 K_{2}, \mathbb{Z}_{5}\right)=8, B R\left(4 K_{2}, \mathbb{Z}_{3}\right)=8$ and $B R\left(4 K_{2}, \mathbb{Z}_{5}\right)=11$.

3.3 Barycentric Ramsey numbers for paths and circuits

The following lemma was used in [15] to establish for $3 \leq n \leq 5$, the values of $B R\left(P_{m}, \mathbb{Z}_{n}\right)$ for $m=3,4,5$ and $B R\left(C_{m}, \mathbb{Z}_{n}\right)$ for $m=3,4$.

Lemma 2 ([1]). If the edges of K_{n} where $n \geq 5$, are colored by at least three different colors, then there exists a path on three differently colored edges.

Theorem 35 ([3]). $B R\left(P_{4}, \mathbb{Z}_{3}\right)=B R\left(P_{5}, \mathbb{Z}_{4}\right)=5$.
We have then the following theorems:
Theorem 36 ([15]).

- $B R\left(P_{3}, \mathbb{Z}_{3}\right)=B R\left(P_{3}, \mathbb{Z}_{4}\right)=5$ and $B R\left(P_{3}, \mathbb{Z}_{5}\right)=7$.
- $B R\left(P_{4}, \mathbb{Z}_{4}\right)=B R\left(P_{4}, \mathbb{Z}_{5}\right)=5$.
- $B R\left(P_{5}, \mathbb{Z}_{3}\right)=B R\left(P_{5}, \mathbb{Z}_{5}\right)=5$.

We have the following results:
Theorem 37 ([7]). $B R\left(C_{3}, \mathbb{Z}_{3}\right)=11$.
Theorem 38 ([3]). $B R\left(C_{4}, \mathbb{Z}_{4}\right)=6$.
Theorem 39 ([15]). $51 \leq B R\left(C_{3}, \mathbb{Z}_{5}\right) \leq 126$.
Problem 5. Determine the exact value of $B R\left(C_{3}, \mathbb{Z}_{5}\right)$ or improve the bounds given in Theorem 39.
Problem 6. The computation of $B R\left(H, \mathbb{Z}_{n}\right)$ for $n \geq 6$ and the same graph H treated here, is an open problem.

References

[1] A. Bialostocki and P. Dierker. On zero-sum Ramsey numbers - small graphs. Ars Combinatoria 29A (1990) 193-198.
[2] A. Bialostocki and P. Dierker. On the Erdős, Ginzburg and Ziv theorem and the Ramsey numbers for stars and matchings Discrete Math. 110(1992)1-8.
[3] Y. Caro. Zero-sum problems: a survey. Discrete Math. 152(1996) 93113.
[4] Y.Caro. On zero-sum Ramsey numbers-stars. Discrete Math. 104(1992)1-6.
[5] Y. Caro. On zero-sum delta system and multiple copies of hypergraphs. J. Combin. Theory. 15 (1991) 511-521.
[6] Y. Caro. A complete characterization of the zero-sum (mod 2) Ramsey numbers.J. Combin. Theory. A 68 (1994) 205-211.
[7] F.R.K. Chung and R.L. Graham. Edge-colored complete graph with precisely colored subgraphs. Combinatoria 3 (1983) 315-324.
[8] H. Davenport. On the addition of residue classes. J. London Math. Soc. 10 (1935) 30-32.
[9] H. Davenport. Proceedings of the Midwestern Conference on Group Theory and Number Theory. Ohio State University. April 1966.
[10] C. Delorme, Asdrubal Ortuño, Oscar Ordaz. Some existence conditions for barycentric subsets. Rapport de Recherche $N^{o} 990$. LRI. Paris France. 1995.
[11] C. Delorme, S. González, O. Ordaz and M.T. Varela. Barycentric sequences and barycentric Ramsey numbers stars. Discrete Math. 277 (2004)45-56.
[12] C. Delorme, I. Márquez, O. Ordaz and A. Ortuño. Existence condition for barycentric sequences. Discrete Math. 281(2004)163-172.
[13] J. A. Dias da Silva and Y. O. Hamidoune. Cyclic spaces for Grassmann derivatives and additive theory. Bull. London Math. Soc. 26 (1994) 140146.
[14] P. Erdős, A. Ginzburg and A. Ziv. Theorem in the additive number theory. Bull. Res. Council Israel 10F (1961) 41-43.
[15] S. González, L. González and O. Ordaz. Barycentric Ramsey numbers for small graphs. Preprint.
[16] W. Gao and A. Geroldinger. Zero-sum problems in finite abelian groups: A survey. Preprint.
[17] W. Gao and A. Geroldinger. On long minimal zero sequences in finite abelian groups. Periodica Mathematica Hungarica 38 (1999) 179-211.
[18] W. Gao and Y.X. Yang. Weighted sums in finite cyclic groups. Discrete Math. 283(2004)243-247.
[19] D. J. Grynkiewicz. A weighted Erdős-Ginzburg-Ziv Theorem. To appear in Combinatorica.
[20] Y. O. Hamidoune. On weighted sequences sums. Combinatorics, Probability and Computing 4(1995) 363-367.
[21] Y. O. Hamidoune. On weighted sums in abelian groups. Discrete Math. 162 (1996) 127-132.
[22] Y. O. Hamidoune. Subsequence sums. Combinatorics, Probability and Computing 12 (2003) 413-425.
[23] Y. O. Hamidoune and D. Quiroz. On subsequence weigted products. Combinatorics, Probability and Computing 14 (2005) 485-489.
[24] F. Harary. Graph theory. Addison-Wesley. Reading MA, 1972.
[25] A. Kolliopoulos, O. Ordaz, V. Ponomarenko and D. Quiroz. Barycentric free sets. Preprint.
[26] J. E. Olson. A combinatorial problem on finite abelian groups I. J. Number theory 1 (1969) 195-199.
[27] J. E. Olson, E. T. White. Sums from a sequences of group elements, in: Number Theory and Algebra, Academic Press, New York, 1977, pp. 215-222.
[28] O. Ordaz, M.T. Varela and F. Villarroel. Strong k-barycentric Davenport constant. Preprint.
[29] J. Subocz. Some values of Olsons constant. Divulgaciones Matematicas 8 (2000)121-128.

[^0]: Received 2006/03/28. Revised 2006/05/20. Accepted 2006/05/29.
 MSC (2000): Primary 05B10; Secondary 11B13.

