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Abstract

We give a parametrization with perfect subsets of 2∞ of the abstract
Ramsey theorem (see [13]). Our main tool is an adaptation, to a more
general context of Ramsey spaces, of the techniques developed in [8] by
J. G. Mijares in order to obtain the corresponding result within the con-
text of topological Ramsey spaces. This tool is inspired by Todorcevic’s
abstract version of the combinatorial forcing introduced by Galvin and
Prikry in [6], and also by the parametrized version of this combinatorial
technique, developed in [12] by Pawlikowski. The main result obtained
in this paper (theorem 5 below) turns out to be a generalization of the
parametrized Ellentuck theorem of [8], and it yields as corollary that
the family of perfectly Ramsey sets corresponding to a given Ramsey
space is closed under the Souslin operation. This enabled us to prove a
parametrized version of the infinite dimensional Hales-Jewett theorem
(see [13]).
Key words and phrases: Ramsey theorem, Ramsey space, parametri-
zation.

Resumen

Damos una parametrización con subconjuntos perfectos de 2∞ del
teorema de Ramsey abstracto (vea [13]). Para ello adaptamos, a un
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contexto más general de espacios de Ramsey, las técnicas desarrolla-
das en [8] por J. G. Mijares para obtener el resultado análogo en el
contexto de los espacios de Ramsey topológicos. Nuestras herramientas
están inspiradas en la versión abstracta dada por Todocervic del forcing
combinatorio definido por Galvin y Prikry en [6], y también por la ver-
sión parametrizada de esta técnica combinatoria, desarrollada en [12]
por Pawlikowski. El principal resultado obtenido en el presente trabajo
(teorema 5 más adelante) es de hecho una generalización del teorema
de Ellentuck parametrizado obtenido en [8], y de él se obtiene como
corolario que la familia de los subconjuntos perfectamente Ramsey que
corresponden a un espacio de Ramsey dado es cerrada bajo la operación
de Souslin. Esto nos permitó demostrar una versión parametrizada del
teorema de Hales-Jewett infinito-dimensional.
Palabras y frases clave: Teorema de Ramsey, espacio de Ramsey,
parametrización (vea [13]).

1 Introduction

In [13], S. Todorcevic presents an abstract characterization of those topological
spaces in which an analog of Ellentuck’s theorem [4] can be proven. These are
called topological Ramsey spaces and the main result about them is referred to
in [13] as abstract Ellentuck theorem. In [8] J. G. Mijares gives a parametriza-
tion with perfect subsets of 2∞ of the abstract Ellentuck theorem, obtaining
in this way new proofs of parametrized versions of the Galvin-Prikry theorem
[6] (see [9]) and of Ellentuck’s theorem (see [12]), as well as a parametrized
version of Milliken’s theorem [10].

But topological Ramsey spaces are a particular kind of a more general
type of spaces, in which the Ramsey property can be characterized in terms
of the abstract Baire property. These are called Ramsey spaces. One of
such spaces, known as the Hales-Jewett space, is described below (for a more
complete description of this – non topological– Ramsey space, see [13]). S.
Todorcevic has given a characterization of Ramsey spaces which is summed
up in a result known as the abstract Ramsey theorem. It tunrs out that the
abstract Ellentuck theorem is a consequence of the abstract Ramsey theorem
(see [13]). Definitions of all this concepts will be given below.

In this work we adapt in a natural way the methods used in [8] and in-
spired by [6], [11], and [13], namely, combinatorial forcing and its properties,
to the context of Ramsey spaces in order to obtain a parametrized version
of the abstract Ramsey theorem. In this way, we not only generalize the
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results obtained in [8] but we also obtain, in corollary 1 below, a parametriza-
tion of the infinite dimensional version of the Hales-Jewett theorem [7] (see
[13]), which is the analog to Ellentuck’s theorem corresponding to the Hales-
Jewett space. It should be noted that our results differ from those included in
[13] concerning parametrized theory in two ways: our parametrization of the
abstract Ramsey theorem deals with a parametrized version of the Ramsey
property relative to any Ramsey space, and those included in [13] has to do
with a parametrized version of the Ramsey property relative to a particular
Ramsey space, namely, Ellentuck’s space N[∞], of all the infinite subsets of N.
And, we use perfect sequences of 0’s and 1’s to perform the parametrizations,
instead of the products of finite subsets of N used in [13]. For a detailed pre-
sentation of the parametrization with products of finite subsets of N of the
Ramsey property relative to Ellentuck’s space, see [3].

In the next section we summarize the definitions and main results related
to Ramsey spaces given by Todorcevic in [13]. In section 3 we introduce the
combinatorial forcing adapted to the context of Ramsey spaces and present our
main result (theorem 5 below). Finally, we conclude that the generalization
of the perfectly Ramsey property (see [2] and [12]) to the context of Ramsey
spaces is preserved by the Souslin operation (see corollary 4 below).

We’ll use the following definitions and results concerning perfect sets and
trees (see [12]). For x = (xn)n ∈ 2∞, x|k = (x0, x1, . . . , xk−1). For u ∈
2<∞, let [u] = {x ∈ 2∞ : (∃k)(u = x|k)} and let |u| denote the length of
u. If Q ⊆ 2∞ is a perfect set, we denote TQ its asociated perfect tree. For
u, v = (v0, . . . , v|v|−1) ∈ 2<∞, we write u v v to mean (∃k ≤ |v|)(u =
(v0, v1, . . . , vk−1)). Given u ∈ 2<∞, let Q(u) = Q ∩ [u(Q)], where u(Q) is
defined as follows: ∅(Q) = ∅. If u(Q) is already defined, find σ ∈ TQ such
that σ is the v-extension of u(Q) where the first ramification occurs. Then,
set (uai)(Q) = σai, i = 1, 0. Where ”a” is concatenation. Thus, for each n,
Q =

⋃
{Q(u) : u ∈ 2n}. For n ∈ N and perfect sets S, Q, we write S ⊆n Q to

mean S(u) ⊆ Q(u) for every u ∈ 2n. Thus ”⊆n” is a partial order and, if we
have chosen Su ⊆ Q(u) for every u ∈ 2n, then S =

⋃
u Su is perfect, S(u) = Su

and S ⊆n Q. The property of fusion of this order is: if Qn+1 ⊆n+1 Qn for
n ∈ N, then Q = ∩nQn is perfect and Q ⊆n Qn for each n.

2 Abstract Ramsey theory

The following definitions and results are due to Todorcevic (see [13]). Our
objects will be structures of the form (R,S,≤,≤0, r, s) where ≤ and ≤0 are
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relations on S×S and R×S respectively; and r, s give finite approximations:

r : R× ω → AR s : S × ω → AS.

We denote rn(A) = r(A,n), sn(X) = s(X,n), for A ∈ R, X ∈ S, n ∈ N. The
following three axioms are assumed for every (P, p) ∈ {(R, r), (S, s)}.

(A.1) p0(P ) = p0(Q), for all P , Q ∈ P.

(A.2) P 6= Q⇒ pn(P ) 6= pn(Q) for some n ∈ N.

(A.3) pn(P ) = pm(Q)⇒ n = m and pk(P ) = pk(Q) if k < n.

In this way we can consider elements of R and S as infinite sequences
(rn(A))n∈N, (sn(X))n∈N. Also, if a ∈ AR and x ∈ AS we can think of a
and x as finite sequences (rk(A))k<n, (sk(X))k<m respectively; with n, m the
unique integers such that rn(A) = a and sm(X) = x. Such n and m are called
the length of a and the length of x, which we denote |a| and |x|, respectively.

We say that b ∈ AR is an end-extension of a ∈ AR and write a v b, if
∀B ∈ R [∃n (b = rn(B)) ⇒ ∃m ≤ n (a = rm(B))]. In an analogous way we
define the relation v on AS.

(A.4) Finitization: There are relations ≤fin and ≤0
fin on AS × AS and

AR×AS, respectively, such that:

(1) {a : a ≤0
fin x} and {y : y ≤fin x} are finite for all x ∈ AS.

(2) X ≤ Y iff ∀n ∃m sn(X) ≤fin sm(Y ).

(3) A ≤0 X iff ∀n ∃m rn(A) ≤0
fin sm(X).

(4) ∀a ∈ AR ∀x, y ∈ AS [a ≤0
fin x ≤fin y ⇒ (a ≤0

fin y)].

(5) ∀a, b ∈ AR ∀x ∈ AS [a v b and b ≤0
fin x⇒ ∃y v x (a ≤0

fin y)].

We deal with the basic sets

[a, Y ] = {A ∈ R : A ≤0 Y and ∃n (rn(A) = a)}

[x, Y ] = {X ∈ S : X ≤ Y and ∃n (sn(X) = x)}
for a ∈ AR, x ∈ AS and Y ∈ S. Notation:

[n, Y ] = [sn(Y ), Y ]

Also, we define the depth of a ∈ AR in Y ∈ S by

depthY (a) =

{
min{k : a ≤0

fin sk(Y )}, if ∃k (a ≤0
fin sk(Y ))

−1, otherwise

The next result is immediate.
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Lemma 1. If a v b then depthY (a) ≤ depthY (b).

Now we state the last two axioms:

(A.5) Amalgamation: ∀a ∈ AR, ∀Y ∈ S, if depthY (a) = d, then:

(1) d ≥ 0⇒ ∀X ∈ [d, Y ] ([a,X] 6= ∅).
(2) Given X ∈ S,

(X ≤ Y and [a,X] 6= ∅)⇒ ∃Y ′ ∈ [d, Y ] ([a, Y ′] ⊆ [a,X])

(A.6) Pigeon hole principle: Suppose a ∈ AR has length l and O ⊆
ARl+1 = rl+1(R). Then for every Y ∈ S with [a, Y ] 6= ∅, there exists
X ∈ [depthY (a), Y ] such that rl+1([a,X]) ⊆ O or rl+1([a,X]) ⊆ O c.

Definition 1. We say that X ⊆ R is S-Ramsey if for every [a, Y ] there
exists X ∈ [depthY (a), Y ] such that [a,X] ⊆ X or [a,X] ⊆ X c. If for every
[a, Y ] 6= ∅ there exists X ∈ [depthY (a), Y ] such that [a,X] ⊆ X c, we say that
X is S-Ramsey null.

Definition 2. We say that X ⊆ R is S-Baire if for every [a, Y ] 6= ∅ there
exists a nonempty [b,X] ⊆ [a, Y ] such that [b,X] ⊆ X or [b,X] ⊆ X c. If for
every [a, Y ] 6= ∅ there exists a nonempty [b,X] ⊆ [a, Y ] such that [b,X] ⊆ X c,
we say that X is S-meager.

It is clear that every S-Ramsey set is S-Baire and every S-Ramsey null set is
S-meager.

Consider AS with the discrete topology and ASN with the completely
metrizable product topology. We say that S is closed if it corrresponds to a
closed subset of ASN via the identification X → (sn(X))n∈N.

Definition 3. We say that (R,S,≤,≤0, r, s) is a Ramsey space if every S-
Baire subset of R is S-Ramsey and every S-meager subset of R is S-Ramsey
null.

Theorem 1 (Abstract Ramsey theorem). Suppose (R,S,≤,≤0, r, s) satisfies
(A.1). . . (A.6) and S is closed. Then (R,S,≤,≤0, r, s) is a Ramsey space.

Example: The Hales-Jewett space
Fix a countable alphabet L = ∪n∈NLn with Ln ⊆ Ln+1 and Ln finite for all n;
fix v /∈ L a variable and denote WL and WLv the semigroups of words over L
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and of variable words over L, respectively. Given X = (xn)n∈N ⊆WL ∪WLv,
we say that X is rapidly increasing if

|xn| >
n−1∑
i=0

|xi|

for all n ∈ N. Put

W
[∞]
L = {X = (xn)n∈N ⊆WL : X is rapidly increasing }

W
[∞]
Lv = {X = (xn)n∈N ⊆WLv : X is rapidly increasing }

By restricting to finite sequences with

rn : W
[∞]
L →W

[n]
L sn : W

[∞]
Lv →W

[n]
Lv

being the natural restriction maps, we have rapidly increasing finite sequences
of words or variable words. The combinatorial subspaces are defined for every

X ∈W [∞]
Lv by

[X]L = {xn[λ0]a · · ·a xnk
[λk] ∈WL : no < · · · < nk, λi ∈ Lni}

[X]Lv = {xn[λ0]a · · ·a xnk
[λk] ∈WLv : no < · · · < nk, λi ∈ Lni

∪ {v}}

where ”a” denotes concatenation of words and x[λ] is the result of substituting
every occurance of v in the variable word x with the letter λ.
For w ∈ [X]L ∪ [X]Lv we call support of w in X the unique set suppX(w) =
{n0 < n1 < · · · < nk} such that w = xn[λ0]a · · ·a xnk

[λk] as in the definition
of the combinatorial subspaces [X]L and [X]Lv. We say that Y = (yn)n∈N ∈
W

[∞]
Lv is a block subsequence of X = (xn)n∈N ∈W [∞]

Lv if ∀n yn ∈ [X]Lv and

max(suppX(yn)) < min(suppX(ym))

whenever n < m, and write Y ≤ X. We define the relation≤0 on W
[∞]
L ×W [∞]

Lv

in the natural way. Then, if (R,S,≤,≤0, r, s) = (W
[∞]
L ,W

[∞]
Lv ,≤,≤0, r, s) is

as before, where r, s are the restrictions

rn(X) = (x0, x1, . . . , xn−1) sn(Y ) = (y0, y1, . . . , yn−1)

then (A.1). . . (A.6) hold; particularly, (A.6) is the following well known result:

Theorem 2. For every finite coloring of WL∪WLv and every Y ∈W [∞]
Lv there

exists X ≤ Y in W
[∞]
Lv such that [X]L and [X]Lv are monochromatic.
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And as a particular case of theorem 1, we have (see [7])

Theorem 3 (Hales–Jewett). The field of W
[∞]
Lv -Ramsey subsets of W

[∞]
L is

closed under the Souslin operation and it coincides with the field of W
[∞]
Lv -Baire

subsets of W
[∞]
L . Moreover, the ideals of W

[∞]
Lv -Ramsey null subsets of W

[∞]
L

and W
[∞]
Lv -meager subsets of W

[∞]
L are σ-ideals and they also coincide.

3 The parametrization

Let P be the family of perfect subsets of 2∞ and let us use the following
notation:

M ∈ P � Q⇔ (M ∈ P) ∧ (M ⊆ Q).

From now on we assume that (R,S,≤,≤0, r, s) satisfies (A.1). . . (A.6) and S is
closed; that is, it is an Ramsey space. The following are the abstract versions
of the perfectly-Ramsey and the P × Exp(R)-Baire properties, as defined in
[8].

Definition 4. Λ ⊆ 2∞ × R is perfectly S-Ramsey if for every Q ∈ P and
[a, Y ] 6= ∅, there exist M ∈ P � Q and X ∈ [depthY (a), Y ] with [a,X] 6= ∅
such that M × [a,X] ⊆ Λ or M × [a,X] ⊆ Λc. If for every Q ∈ P and
[a, Y ] 6= ∅, there exist M ∈ P � Q and X ∈ [depthY (a), Y ] with [a,X] 6= ∅
such that M × [a,X] ⊆ Λc, then we say that Λ is perfectly S-Ramsey null.

Definition 5. Λ ⊆ 2∞ × R is perfectly S-Baire if for every Q ∈ P and
[a, Y ] 6= ∅, there exist M ∈ P � Q and [b,X] ⊆ [a, Y ] such that M × [b,X] ⊆ Λ
or M × [b,X] ⊆ Λc. If for every Q ∈ P and [a, Y ] 6= ∅, there exist M ∈ P � Q
and [b,X] ⊆ [a, Y ] such that M × [b,X] ⊆ Λc, then we say that Λ is perfectly
S-meager.

Now, the natural extension of combinatorial forcing will be given. From
now on fix F ⊆ 2<∞ ×AR and Λ ⊆ 2∞ ×R. For every X ∈ S let

AR[X] = {b ∈ AR : [b,X] 6= ∅}.

Combinatorial forcing 1 Given Q ∈ P, Y ∈ S and (u, a) ∈ 2<∞ ×AR[Y ];
we say that (Q,Y ) accepts (u, a) if for every x ∈ Q(u) and for every B ∈ [a, Y ]
there exist integers k and m such that (x|k, rm(B)) ∈ F .

Combinatorial forcing 2 Given Q ∈ P, Y ∈ S and (u, a) ∈ 2<∞ ×AR[Y ];
we say that (Q,Y ) accepts (u, a) if Q(u)× [a, Y ] ⊆ Λ.
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For both combinatorial forcings we say that (Q,Y ) rejects (u, a) if for every
M ∈ P � Q(u) and for every X ≤ Y compatible with a; (M,X) does not
accept (u, a). Also, we say that (Q,Y ) decides (u, a) if it accepts or rejects it.

The following lemmas hold for both combinatorial forcings.

Lemma 2. a) If (Q,Y ) accepts (rejects) (u, a) then (M,X) also accepts
(rejects) (u, a) for every M ∈ P � Q(u) and for every X ≤ Y compatible
with a.

b) If (Q,Y ) accepts (rejects) (u, a) then (Q,X) also accepts (rejects) (u, a)
for every X ≤ Y compatible with a.

c) For all (u, a) and (Q,Y ) with [a, Y ] 6= ∅, there exist M ∈ P � Q and
X ≤ Y compatible with a, such that (M,X) decides (u, a).

d) If (Q,Y ) accepts (u, a) then, for every b ∈ r|a|+1([a, Y ]), (Q,Y ) accepts
(u, b).

e) If (Q,Y ) rejects (u, a) then there exists X ∈ [depthY (a), Y ] such that
(Q,Y ) does not accept (u, b) for every b ∈ r|a|+1([a,X]).

f) (Q,Y ) accepts (rejects) (u, a) iff (Q,Y ) accepts (rejects) (v, a) for every
v ∈ 2<∞ such that u v v.

Proof. (a) and (b) follow from the inclusion: M(u) × [a,X] ⊆ Q(u) × [a, Y ],
if X ≤ Y and M ⊆ Q(u).

(c) Suppose that we have (Q,Y ) such that for every M ∈ P � Q and every
X ≤ Y compatible with a, (M,X) does not decide (u, a). Then (M,X) does
not accept (u, a), if M ∈ P � Q(u); i.e. (Q,Y ) rejects (u, a).

(d) Follows from: a v b and [a, Y ] ⊆ [b, Y ], if b ∈ r|a|+1([a, Y ]).

(e) Suppose (Q,Y ) rejects (u, a) and define φ : AR|a|+1 → 2 by φ(b) = 1 if
(Q,Y ) accepts (u, b). By (A.6) there exist X ∈ [depthY (a), Y ] such that φ is
constant in r|a|+1([a,X]). If φ(r|a|+1([a,X])) = 1 then (Q,X) accepts (u, a),
which contradicts (Q,Y ) rejects (u, a) (by part (b)). The completes the proof
of (e).

(f) (⇐)Obvious.

(⇒) Follows from the inclusion: Q(v) ⊆ Q(u), if u v v.

We say that a sequence ([nk, Yk])k∈N is a fusion sequence if:

1. (nk)k∈N is nondecreasing and converges to ∞.
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2. Xk+1 ∈ [nk, Xk] for all k.

Note that since S is closed, for every fusion sequence ([nk, Yk])k ∈ N there
exist a unique Y ∈ S such that snk

(Y ) = snk
(Xk) and Y ∈ [nk, Xk] for all k.

Y is called the fusion of the sequence and is denoted limkXk.

Lemma 3. Given P ∈ P, Y ∈ S and N ≥ 0; there exist Q ∈ P � P and
X ≤ Y such that (Q,X) decides every (u, a) ∈ 2<∞ × AR[X] with N ≤
depthX(a) ≤ |u|.

Proof. We build sequences (Qk)k and (Yk)k such that:

1. Q0 = P , Y0 = Y .

2. nk = N + k.

3. (Qk+1, Yk+1) decides every (u, b) ∈ 2nk ×AR[Yk] with depthYk
(b) = nk.

Suppose we have defined (Qk, Yk). List

{b0, . . . , br} = {b ∈ AR[Yk] : depthYk
(b) = nk}

and {u0, . . . , u2nk−1} = 2nk . By lemma 1(c) there exist Q0,0
k ∈ P � Qk(u0)

and Y 0,0
k ∈ [nk, Yk] compatible with b0 such that (Q0,0

k , Y 0,0
k ) decides (u0, b0).

In this way we can obtain (Qi,j
k , Y i,j

k ) for every (i, j) ∈ {0, . . . , 2nk − 1} ×
{0, . . . , r}, which decides (ui, bj) and such that Qi,j+1

k ∈ P � Qi,j
k (ui), Y

i,j+1
k ≤

Y i,j
k is compatible with bj+1, Qi+1,0

k ∈ P � Qk(ui+1) and Y i+1,0
k ≤ Y i,r

k .
Define

Qk+1 =

2nk−1⋃
i=0

Qi,r
k , Yk+1 = Y 2nk−1,r

k

Then, given (u, b) ∈ 2nk × AR[Yk+1] with depthYk+1
(b) = nk = depthYk

(b),
there exist (i, j) ∈ {0, . . . , 2nk − 1} × {0, . . . , r} such that u = ui and b = bj .

So (Qi,j
k , Y i,j

k ) decides (u, b) and, since

Qk+1(ui) = Qi,r
k ⊆ Q

i,j
k (ui) ⊆ Qi,j

k and Yk+1 ≤ Yk

we have (Qk+1, Yk+1) decides (u, b) (by lemma 1(a)) We claim that Q = ∩kQk

and X = limkYk are as required: given (u, a) ∈ 2<∞ × AR[X] with N ≤
depthX(a) ≤ |u|, we have depthX(a) = nk = depthYk

(a) for some k. Then,
if |u| = nk, (Qk+1, Yk+1) from the construction of X decides (u, a) and hence
(Q,X) decides (u, a). If |u| > nk (Q,X) decides (u, a) by lemma 1(f).
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Lemma 4. Given P ∈ P, Y ∈ S, (u, a) ∈ 2<∞ × AR[Y ] with depthY (a) ≤
|u| and (Q,X) as in lemma 2 with N = depthY (a); if (Q,X) rejects (u, a)
then there exist Z ≤ X such that (Q,Z) rejects (v, b) if u v v, a v b and
depthZ(b) ≤ |v|.

Proof. Let’s build a fusion sequence ([nk, Zk])k, with nk = |u| + k. Let
Z0 = X. Then (Q,Z0) rejects (u, a) (and by lemma 1(f) it rejects (v, a)
if u v v). Suppose we have (Q,Zk) which rejects every (v, b) with v ∈ 2nk ex-
tending u, a v b and depthZk

(b) ≤ nk. List {b0, . . . , br} = {b ∈ AR[Zk] : a v
b and depthZk

(b) ≤ nk} and {u0, . . . , us} the set of all v ∈ 2nk+1 extending u.
By lemma 1(f) (Q,Zk) rejects (ui, bj), for every (i, j) ∈ {0, . . . , s}×{0, . . . , r}.
Use lemma 1(e) to find Z0,0

k ∈ [nk, Zk] such that (Q,Z0,0
k ) rejects (u0, b) if

b ∈ r|b0|+1([b0, Z
0,0
k ]). In this way, for every (i, j) ∈ {0, . . . , s} × {0, . . . , r},

we can find Zi,j
k ∈ [nk, Zk] such that Zi,j+1

k ∈ [nk, Z
i,j
k ], Zi+1,0

k ∈ [nk, Z
i,r
k ]

and (Q,Zi,j
k ) rejects (ui, b) if b ∈ r|bj |+1([bj , Z

i,j
k ]). Define Zk+1 = Zs,r

k . Note
that if (v, b) ∈ 2<∞ × AR[Zk+1], a v b, u v v and depthZk+1

(b) = nk + 1
then v = ui for some i ∈ {0, . . . , s} and b = r|b|(A), a = r|a|(A) for some
A ≤0 Zk+1; by (A.4)(5) there exist m ≤ nk such that b′ = r|b|−1(A) ≤0

fin

sm(Zk+1), so depthZk+1
(b′) ≤ nk, i.e. b′ = bj for some j ∈ {0, . . . , r}. Then

b ∈ r|bj |+1([bj , Z
i,j
k ]). Hence, by lemma 1(f), (Q,Zk+1) rejects (v, b). Then

Z = limkZk is as required: given (v, b) with u v v, a v b and depthZ(b) ≤ |v|
then depthZ(b) = depthY (a) + k ≤ nk for some k and b ∈ r|bj |+1([bj , Z

i,j
k ])

for some j ∈ {0, . . . , r} from the construction of Z (again, by (A.4)(5)). So
(Q,Zk) (from the construction of Z) rejects (v, b) and, by lemma 1(a), (Q,Z)
also does it.

The following theorem is an extension of theorem 3 of [8] and its proof is
analogous.

Theorem 4. For every F ⊆ 2<∞×AR, P ∈ P, Y ∈ S and (u, a) ∈ 2<∞×AR
there exist Q ∈ P � P and X ≤ Y such that one of the following holds:

1. For every x ∈ Q and A ∈ [a,X] there exist integers k, m > 0 such that
(x|k, rm(A)) ∈ F .

2. (TQ ×AR[X]) ∩ F = ∅.

Proof. Whitout loss of generality, we can assume (u, a) = (〈〉 , ∅). Consider
combinatorial forcing 1. Let (Q,X) as in lemma 3 (N = 0). If (Q,X) accepts
(〈〉 , ∅), part (1) holds. If (Q,X) rejects (〈〉 , ∅), use lemma 4 to obtain Z ≤ X
such that (Q,X) rejects (u, a) ∈ 2<∞ ×AR[Z] if depthZ(b) ≤ |u|. If (t, b) ∈
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(TQ × AR[Z]) ∩ F , find ut ∈ 2<∞ such that Q(ut) ⊆ Q ∩ [t]. Thus, (Q,Z)
accepts (u, b). In fact: for x ∈ Q(ut) and B ∈ [b, Z] we have (x|k, rm(A)) =
(t, b) ∈ F if k = |t| and m = |b|. By lemma 2(f), (Q,Z) accepts (v, b) if ut v v
and depthZ(b) ≤ |v|. But this is a contradiction with the choice of Z. Hence,
(TQ ×AR[X]) ∩ F = ∅.

The following theorem, which extends theorem 2 of [8], is our main result.

Theorem 5. For Λ ⊆ 2∞ ×R we have:

1. Λ is perfectly S-Ramsey iff it is perfectly S-Baire.

2. Λ is perfectly S-Ramsey null iff it is perfectly S-meager.

Proof. (1) We only have to prove the implication from right to left. Suppose
that Λ ⊆ 2∞×R is perfectly S-Baire and fix Q× [a, Y ]. Again, whitout a loss
of generality, we can assume a = ∅. Using combinatorial forcing and lemma
3, we have the following:

Claim 1. Given Λ̂ ⊆ 2∞ ×R, P ∈ P and Y ∈ S, there exists Q ∈ P � P and
X ≤ Y such that for each (u, b) ∈ 2<∞ ×AR[X] with depthX(b) ≤ |u| one of
the following holds:

i) Q(u)× [b,X] ⊆ Λ̂

ii) R× [b, Z] 6⊆ Λ̂ for every R ⊆ Q(u) and every Z ≤ X compatible with b.

By applying the claim to Λ, P and Y , we find Q1 ∈ P � P and X1 ≤ Y
such that for each (u, b) ∈ 2<∞ × AR[X1] with depthX1

(b) ≤ |u| one of the
following holds:

• Q1(u)× [b,X1] ⊆ Λ or

• R× [b, Z] 6⊆ Λ for every R ⊆ Q1(u) and every Z ≤ X1 compatible with
b.

For each t ∈ TQ1
, choose ut1 ∈ 2<∞ with ut1(Q1) v t. If we define the

family
F1 = {(t, b) ∈ TQ1 ×AR[X1] : Q1(ut1)× [b,X1] ⊆ Λ}

then we find S1 ⊆ Q1and Z1 ≤ X1 as in theorem 4. If (1) of theorem 4
holds, we are done. If part (2) holds, apply the claim to Λc, S1 and Z1 to
find Q2 ∈ P � P and X2 ≤ Y such that for each (u, b) ∈ 2<∞ ×AR[X2] with
depthX2

(b) ≤ |u| one of the following holds:
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• Q2(u)× [b,X2] ⊆ Λc or

• R× [b, Z] 6⊆ Λc for every R ⊆ Q2(u) and every Z ≤ X2 compatible with
b.

Again, for each t ∈ TQ2 , choose ut2 ∈ 2<∞ with ut2(Q2) v t; define the
family

F2 = {(t, b) ∈ TQ2
×AR[X2] : Q2(ut2)× [b,X1] ⊆ Λ}

and find S2 ⊆ Q2 and Z2 ≤ X2 as in theorem 4. If (1) holds, we are done and
part (2) is not possible since Λ is perfectly S-Baire (see [8]). This proves (1).
To see part (2), notice that, as before, we only have to prove the implication
from right to left, which follows from part (1) and the fact that Λ is perfectly
S-meager. This completes the proof of theorem 5.

Corollary 1 (Parametrized infinite dimensional Hales-Jewett theorem). For

Λ ⊆ 2∞ ×W [∞]
L we have:

1. Λ is perfectly Ramsey iff it has the P×W [∞]
Lv -Baire property.

2. Λ is perfectly Ramsey null iff it is P×W [∞]
Lv -meager .

Making R = S in (R,S,≤,≤0, r, s), we obtain the following:

Corollary 2 (Mijares). If (R,≤, (pn)n∈N) satisfies (A.1). . . (A.6) and R is
closed then:

1. Λ ⊆ R is perfectly Ramsey iff has the P× Exp(R)-Baire property.

2. Λ ⊆ R is perfectly Ramsey null iff is P× Exp(R)-meager.

Corollary 3 (Pawlikowski). For ∆ ⊆ 2∞ × N[∞] we have:

1. Λ is perfectly Ramsey iff it has the P× Exp(N[∞])-Baire property.

2. Λ is perfectly Ramsey null iff it is P× Exp(N[∞])-meager .

Now we will show that the family of perfectly S-Ramsey and perfectly S-
Ramsey null subsets of 2∞×R are closed under the Souslin operation. Recall
that the result of applying the Souslin operation to a given (Λa)a∈AR is⋃

A∈R

⋂
n∈N

Λrn(A)
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Proposition 1. The perfeclty S-Ramsey null subsets of 2∞ × R form a σ-
ideal.

Proof. This proof is also analogous to its corresponding version in [8] (lemma
4). So we just expose the main ideas. Given an increasing sequence of perfectly
S-Ramsey null subsets of 2∞ ×R and P × [∅, Y ], we proceed as in lemma 3
to build fusion sequences (Qn)n and [n+ 1, Xn] such that

Qn × [b,Xn] ∩ Λn = ∅

for every n ∈ N and b ∈ AR[Xn] with depthXn
(b) ≤ n. Thus, if Q = ∩nQn

and X = limnXn, we have Q× [∅, X] ∩
⋃

n Λn = ∅.

Recall that given a set X, two subsets A,B of X are compatible with respect
to a family F of subsets X if there exists C ∈ F such that C ⊆ A ∩ B. And
F is M-like if for G ⊆ F with |G| < |F|, every member of F which is not
compatible with any member of G is compatible with X \

⋃
G. A σ-algebra

A of subsets of X together with a σ-ideal A0 ⊆ A is a Marczewski pair if
for every A ⊆ X there exists Φ(A) ∈ A such that A ⊆ Φ(A) and for every
B ⊆ Φ(A) \A, B ∈ A → B ∈ A0. The following is a well known fact:

Theorem 6 (Marczewski). Every σ-algebra of sets which together with a σ-
ideal is a Marczeswki pair, is closed under the Souslin operation.

Let E(S) = {[n, Y ] : n ∈ N, Y ∈ S}.

Proposition 2. If |S| = 2ℵ0 , then the family E(S) is M -like.

Proof. Consider B ⊆ E(S) with |B| < |E(S)| = 2ℵ0 and suppose that [n, Y ]
is not compatible with any member of B, i. e. for every [m,Y ′] ∈ B,
[m,Y ′]∩ [n, Y ] does not contain any member of E(S). We claim that [n, Y ] is
compatible with Rr

⋃
B. In fact:

Since |B| < 2ℵ0 ,
⋃
B is S-Baire (it is S-Ramsey). So, there exist [b,X] ⊆ [n, Y ]

such that:

1. [b,X] ⊆
⋃
B or

2. [b,X] ⊆ Rr
⋃
B

(1) is not possible because [n, Y ] is not compatible with any member of B.
And (2) implies that [n, Y ] is compatible with Rr

⋃
B.
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As consequences of the previous proposition and theorem 6, the following
facts hold.

Corollary 4. If |S| = 2ℵ0 , then the family of perfectly S-Ramsey subsets of
2∞ ×R is closed under the Souslin operation.

Corollary 5. The field of perfectly W
[∞]
Lv -Ramsey subsets of 2∞ ×W [∞]

L is
closed under the Souslin operation.

Now we would like to point out an interesting consequence of these facts.

Given u ∈ 2<∞, remember that the set

[u] = {x ∈ 2∞ : (∃k)(u = x|k)}

is a basic open neighborhood of the metric topology of 2∞.

Also notice that given (R,S,≤,≤0, r, s), we can consider R as a metric space.
Actually, if we regard AR as a discrete space, then by identifying each A ∈
R with the sequence (rn(A))n we can consider R as a metric subspace of
ARN, with the product topology. The basic open neighborhoods of the metric
topology of R are of the form:

[a] = {A ∈ R : (∃n)(a = rn(A))}, for a ∈ AR.

It is easy to prove the following:

Lemma 5. ∀u ∈ 2<∞, ∀a ∈ AR the set [u]× [a] is perfectly S-Baire.

Thus, corollary 4 yields:

Corollary 6. Consider 2∞ ×R with the product topology, regarding 2∞ and
R as metric spaces (as described above). If |S| = 2ℵ0 , then every analytic
subset of 2∞ ×R is perfectly S-Ramsey. In particular, every Borel subset of
2∞ ×R is perfectly S-Ramsey.

Corollary 7. Consider 2∞ ×W [∞]
L with the product topology, regarding 2∞

and W
[∞]
L as metric spaces (as described above). Then, every analytic subset

of 2∞ ×W [∞]
L is perfectly W

[∞]
Lv -Ramsey. In particular, every Borel subset of

2∞ ×W [∞]
L is perfectly W

[∞]
Lv -Ramsey.
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Finally, making R = S in (R,S,≤,≤0, r, s), we obtain these known results:

Corollary 8 (Mijares). If (R,≤, r) satisfies (A.1). . . (A.6), R is closed, and
|R| = 2ℵ0 then the family of perfectly Ramsey subsets of 2∞ × R is closed
under the Souslin operation.

Corollary 9 (Pawlikowski). The field of perfectly Ramsey subsets of 2∞ ×
N[∞] is closed under the Souslin operation.
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