Uniqueness of Initial Value Problems

Unicidad del Problema de Valor Inicial
Betty Travis
The University of Texas at San Antonio
Division of Mathematics and Statistics
6900 North Loop 1604 West
San Antonio, Texas 78249-0664

Abstract

The uniqueness of an initial value problem is established for second order linear differential equations. Key words and phrases: differential equations, initial value problems.

\section*{Resumen}

La unicidad de un problema de valor inicial es establecida para ecuaciones diferenciales lineales de segundo orden. Palabras y frases clave: ecuaciones diferenciales, problemas de valor inicial.

1 Introduction

The existence and uniqueness of solutions for second order linear differential equations are almost always stated without proof in elementary differential equations textbooks following calculus (see [1, p. 136]). The purpose of this paper is to give an elementary proof of the uniqueness part, wich does not even require an understanding of the Fundamental Theorem of Calculus. It can be understood by high school students with a basic understanding of a one semester course in calculus.

It might also be pointed out that in proving the uniqueness theorem below, we do not require, as is customary, that the coefficients be continuous. We only require that they be bounded on a closed interval, wich would, of course, follow if they are continuous.

2 Uniqueness of Initial Value Problems

Theorem: Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)+h_{1}(x) y^{\prime}(x)+h_{0}(x) y(x)=g(x) \tag{1}
\end{equation*}
$$

Let $h_{0}(x), h_{1}(x)$ and $g(x)$ be defined on an open interval J. Assume that for any finite closed subinterval $\left[x_{1}, x_{2}\right]$ of J there exists a constant M such that

$$
\begin{equation*}
\left|h_{0}(x)\right| \leq M, \text { and }\left|h_{1}(x)\right| \leq M \text { for all } x \in\left[x_{1}, x_{2}\right] \tag{2}
\end{equation*}
$$

If $x_{0} \in J$, and $u(x)$ and $v(x)$ are two solutions of (1) such that $u\left(x_{0}\right)=v\left(x_{0}\right)$, and $u^{\prime}\left(x_{0}\right)=v^{\prime}\left(x_{0}\right)$, then $u(x) \equiv v(x)$ for all $x \in J$.

By a solution of (1) we mean a function defined on J, which has two continuous derivatives, and satisfies the differential equation.
Proof: Let $w(x)=u(x)-v(x)$. Then by substituting into (1), we obtain

$$
\begin{equation*}
w^{\prime \prime}(x)+h_{1}(x) w^{\prime}(x)+h_{0}(x) w(x)=0 \tag{3}
\end{equation*}
$$

Since $u\left(x_{0}\right)=v\left(x_{0}\right)$, and $u^{\prime}\left(x_{0}\right)=v^{\prime}\left(x_{0}\right)$, we have

$$
\begin{equation*}
w\left(x_{0}\right)=w^{\prime}\left(x_{0}\right)=0 \tag{4}
\end{equation*}
$$

Now, choose $x_{1}, x_{2} \in J$ such that $x_{1}<x_{0}<x_{2}$. Let M be as in (2), and let

$$
z(x)=\left[w^{\prime}(x)\right]^{2}+[w(x)]^{2}
$$

Then, from (4) we have

$$
\begin{equation*}
z\left(x_{0}\right)=0 . \tag{5}
\end{equation*}
$$

Also, for $x \in\left[x_{2}, x_{2}\right]$,

$$
\begin{align*}
z^{\prime}(x) & =2 w^{\prime}(x) w^{\prime \prime}(x)+2 w(x) w^{\prime}(x) \\
& =2 w^{\prime}(x)\left[-h_{1}(x) w^{\prime}(x)-h_{0}(x) w(x)\right]+2 w(x) w^{\prime}(x) \\
& =-2 h_{1}(x)\left[w^{\prime}(x)\right]^{2}-2 h_{0}(x) w^{\prime}(x) w(x)+2 w(x) w^{\prime}(x) \\
& =-2 h_{1}(x)\left[w^{\prime}(x)\right]^{2}+2 w(x) w^{\prime}(x)\left(1-h_{0}(x)\right) \tag{6}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\left|z^{\prime}(x)\right| \leq & \left|-2 h_{1}(x)\right|\left[w^{\prime}(x)\right]^{2}+\left|2 w(x) w^{\prime}(x) \| 1-h_{0}(x)\right| \\
\leq & 2 M\left[w^{\prime}(x)\right]^{2}+2\left|w(x) \| w^{\prime}(x)\right|(1+M) \\
\leq & 2 M\left(\left[w^{\prime}(x)\right]^{2}+[w(x)]^{2}\right)+2\left|w(x) \| w^{\prime}(x)\right|(1+M) \\
\leq & 2 M\left(\left[w^{\prime}(x)\right]^{2}+[w(x)]^{2}\right)+(1+M)\left(\left[w^{\prime}(x)\right]^{2}+[w(x)]^{2}\right) \\
& \left(2\left|w \| w^{\prime}\right| \leq\left(w^{\prime}\right)^{2}+(w)^{2} \text { since }\left(|w|-\left|w^{\prime}\right|\right)^{2} \geq 0\right) \\
= & (1+3 M)\left(\left[w^{\prime}(x)\right]^{2}+[w(x)]^{2}\right)=(1+3 M) z(x)
\end{aligned}
$$

Therefore,

$$
-(1+3 M) z(x) \leq z^{\prime}(x) \leq(1+3 M) z(x)
$$

Now, let $k=1+3 M$. We have shown that

$$
\begin{array}{rrr}
z^{\prime}(x) \leq k z(x), & x \in\left[x_{0}, x_{2}\right] \\
z^{\prime}(x) \geq-k z(x), & x \in\left[x_{1}, x_{0}\right] . \tag{8}
\end{array}
$$

From (7) we get $z^{\prime}(x) e^{-k x}-k e^{-k x} z(x) \leq 0$ for $x_{0} \leq x \leq x_{2}$. This implies that $\frac{d}{d z}\left(z(x) e^{-k x}\right) \leq 0$ for $x_{0} \leq x \leq x_{2}$. Hence $z(x) e^{-k x}$ is non-increasing, wich, along with (5), implies that

$$
z(x) e^{-k x} \leq z\left(x_{0}\right) e^{-k x_{0}}=0
$$

This shows that $z(x) \leq 0$ for $x_{0} \leq x \leq x_{2}$. But, $z(x)=\left[w^{\prime}(x)\right]^{2}+[w(x)]^{2} \geq 0$. Therefore, $z(x) \equiv 0$ for $x_{0} \leq x \leq x_{2}$.

Similarly, from (8) we have $z^{\prime}(x)+k z(x) \geq 0$ for $x_{1} \leq x \leq x_{0}$.
This implies that

$$
\begin{aligned}
0 & \leq z^{\prime}(x) e^{k x}+k e^{k x} z(x) \\
& =\frac{d}{d x}\left(z(x) e^{k x}\right), \quad x_{1} \leq x \leq x_{0}
\end{aligned}
$$

Therefore, for $x_{1} \leq x \leq x_{0}$, we have $z(x) e^{k x} \leq z\left(x_{0}\right) e^{k x_{0}}=0$ wich implies $z(x) \leq 0$ for $x_{1} \leq x \leq x_{0}$. But $z(x)=\left[w^{\prime}(x)\right]^{2}+[w(x)]^{2} \geq 0$. Hence $z(x) \equiv 0$ for $x_{1} \leq x \leq x_{0}$.

We have shown that $z(x) \equiv 0$ for $x_{1} \leq x \leq x_{2}$, wich implies that, $w(x)=$ $u(x)-v(x) \equiv 0$ for $x_{1} \leq x \leq x_{2}$. Since x_{1} and x_{2} are arbitrary numbers in J, it follows that $u(x) \equiv v(x)$ for all x in J.

References

[1] Nagle, R., Saff E., Fundamentals of Differential Equations, AddisonWesley, New York, 1993.

