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Abstract. By a theorem of Elman and Lam, fields over which qua-
dratic forms are classified by the classical invariants dimension, signed
discriminant, Clifford invariant and signatures are exactly those fields
F for which the third power I3F of the fundamental ideal IF in the
Witt ring WF is torsion free. We study the possible values of the u-
invariant (resp. the Hasse number ũ) of such fields, i.e. the supremum
of the dimensions of anisotropic torsion (resp. anisotropic totally in-
definite) forms, and we relate these invariants to the symbol length
λ, i.e. the smallest integer n such that the class of each product of
quaternion algebras in the Brauer group of the field can be repre-
sented by the class of a product of ≤ n quaternion algebras. The
nonreal case has been treated before by B. Kahn. Here, we treat the
real case which turns out to be considerably more involved.
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1. Introduction

Let F be a field of characteristic 6= 2. An important topic in the algebraic
theory of quadratic forms over F is the determination of the supremum of
the dimensions of certain types of anisotropic quadratic forms over F . For a
general survey on this problem, see [H4]. In the present article, we focus on the
u-invariant and the Hasse number ũ of F , where u(F ) (resp. ũ(F )) is defined
as the supremum of the dimensions of anisotropic forms which are torsion in
the Witt ring of F (resp. totally indefinite, i.e. indefinite with respect to each
ordering on F ). By Pfister’s local-global principle, torsion forms are exactly
those forms which have signature 0 with respect to each ordering, they are in
particular totally indefinite (or t.i. for short). Hence, u(F ) ≤ ũ(F ). In the
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absence of orderings, i.e. for nonreal fields, every form is a torsion form and the
two definitions coincide with what was originally called the u-invariant, namely
the supremum of the dimensions of anisotropic forms over F .

We will relate these two invariants to another one, the so-called symbol
length λ, which is defined to be the smallest n (if such an n exists) such that
any tensor product of quaternion algebras over F is Brauer-equivalent to a
tensor product of ≤ n quaternion algebras. λ(F ) ≤ 1 is equivalent to saying
that the classes of quaternion algebras form a subgroup of the Brauer group
Br(F ). In this case, the field is called linked. It should be remarked that by
Merkurjev’s theorem [M1], the classes of products of quaternion algebras are
exactly the elements in Br2(F ), i.e. the elements of exponent ≤ 2 in the Brauer
group Br(F ).

Perhaps the first result relating the u-invariant and the Hasse number to
the symbol length is due to Elman and Lam [EL2], [E] who determined the
values of u and ũ for linked fields. Their result reads as follows.

Theorem 1.1. Let F be a linked field. Then u(F ) = ũ(F ) ∈ {0, 1, 2, 4, 8}. In
particular, I4

t F = 0. Furthermore, for 1 ≤ n ≤ 3, u(F ) = ũ(F ) ≤ 2n−1 iff
In
t F = 0.

In the wake of Merkurjev’s construction of fields with u = 2n for any positive
integer n ([M2]) which is based on his index reduction results and its conse-
quences (see Lemma 2.2(iii)) and on a simple fact concerning Albert forms (see
Lemma 2.2(i)), it has been noted by Kahn that for nonreal fields, a lower bound
for u can easily be given in terms of λ. More precisely, Kahn [Ka, Th. 2] shows
the following.

Theorem 1.2. Let F be a nonreal field. Then

(i) λ(F ) = 0 iff u(F ) ≤ 2.
(ii) If λ(F ) ≥ 1 then u(F ) ≥ 2λ(F ) + 2.
(iii) If λ(F ) ≥ 1 and I3F = 0, then u(F ) = 2λ(F ) + 2.

(In Kahn’s original statement, it was implicitly assumed that λ(F ) ≥ 1, and
only parts (ii) and (iii) were stated.)

The aim of the present paper is to generalize this result to real fields, in
particular to real fields with I3

t F = 0. Since the quaternion algebra (−1,−1)F
will always be a division algebra over any given real field F , we will always have
λ(F ) ≥ 1. By Elman and Lam’s theorem 1.1 we know for real F that λ(F ) = 1
implies u(F ) = ũ(F ) ∈ {0, 2, 4, 8} and that in this case u(F ) = ũ(F ) ∈ {0, 2, 4}
iff I3

t F = 0. Thus, we are mainly interested in the case F real and λ(F ) ≥ 2.
Now fields with I3

t F = 0 are also interesting from a different point of view
as by another theorem of Elman and Lam [EL3] these are exactly the fields over
which quadratic forms can be classified by the classical invariants dimension,
signed discriminant, Clifford invariant, and signatures.

Our first main result is the analogue for real fields of Kahn’s theorem above,
but now in terms of the Hasse number.
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Theorem 1.3. Let F be a real field with λ = λ(F ) ≥ 2. Then the following
holds.

(i) ũ(F ) ≥ 2λ+ 2.
(ii) If I3

t F = 0 and ũ(F ) <∞, then ũ(F ) = 2λ+ 2.

The situation for the u-invariant seems to be more complicated. We could
prove an analogue of Kahn’s theorem only under invoking rather restrictive
additional hypotheses on the space of orderings XF of the field. Recall that the
reduced stability index st(F ) of a real F can be defined as follows : st(F ) = 0 if
F is uniquely ordered; otherwise, st(F ) is the smallest integer s ≥ 0 such that
for each basic clopen set H(a1, · · · , an) ⊂ XF there exist bi ∈ F ∗, 1 ≤ i ≤ s,
such that H(a1, · · · , an) = H(b1, · · · , bs). st(F ) ≤ 1 is equivalent to F being
SAP (cf. [KS, Kap. 3, § 7, Satz 3]).

Theorem 1.4. Let F be a real field with λ = λ(F ) ≥ 2.

(i) If st(F ) ≤ 1 then u(F ) ≥ 2λ.
(ii) If I3

t F = 0 and st(F ) ≤ 2, then u(F ) ≤ 2λ+ 2.

These results will be shown in the next section.
In [M2], Merkurjev constructed to each n ≥ 1 fields with u(F ) = 2n and

I3F = 0. It has been shown by Hornix [Hor, Th. 3.5] and Lam [L2] that for
each n ≥ 3 there exist real fields F , F ′ such that u(F ) = ũ(F ) = 2n and
u(F ′)+ 2 = ũ(F ′) = 2n. Note that in [L2], it was in addition shown that there
exist such fields which are uniquely ordered, but nothing was said about I3

t F ,
whereas in [Hor] it was shown that one can construct such fields with I3

t = 0,
but there were no statements made on the space of orderings of such fields.

For the reader’s convenience, we will give a proof of these results by Hornix
resp. Lam in section 3. Our constructions are slightly different from those
given by Hornix and Lam but, just as theirs, rely heavily on Merkurjev’s index
reduction results as stated in Lemma 2.2. In our constructions, we will also
combine the properties of F having I3

t F = 0 and of F being uniquely ordered
in the case ũ <∞.

In fact, we will put these results into a larger context where we classify all
realizable values for the invariants λ, u and ũ (and their interdependences) for
real fields with I3

t F = 0 which are SAP. Since the values of u and ũ for fields
(real or not) with λ ≤ 1 are covered by Elman and Lam’s theorem 1.1 (note
that these fields are always SAP since for them ũ will be finite, [EP, Theorem
2.5]), and since the case of nonreal fields is treated in Kahn’s Theorem 1.2, we
will only consider the case of real SAP fields with I3

t F = 0 and λ(F ) ≥ 2.

Theorem 1.5. Let M = {(n, 2n, 2n + 2), (n, 2n + 2, 2n + 2); n ≥ 2} ∪
{(n, 2n,∞), (n, 2n+ 2,∞);n ≥ 2} ∪ {(∞,∞,∞)}.
(i) Let F be a real SAP field such that λ(F ) ≥ 2 and I3

t F = 0. Then
(λ(F ), u(F ), ũ(F )) ∈M.

(ii) Let (λ, u, ũ) ∈ M. Then there exists a real SAP field F with I3
t F = 0

and (λ(F ), u(F ), ũ(F )) = (λ, u, ũ). In the case where ũ < ∞ or λ = ∞,
there exist such fields which are uniquely ordered.
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As a consequence, we obtain

Corollary 1.6. Let F be a real field with I3
t F = 0. Then

(u(F ), ũ(F )) ∈ {(2n, 2n); n ≥ 0} ∪ {(2n,∞); n ≥ 0} ∪ {(2n, 2n+ 2); n ≥ 2} .
All pairs of values on the right hand side can be realized as pairs (u(F ), ũ(F ))
for suitable real F .

As far as notation, terminology and basic results from the algebraic theory
of quadratic forms is concerned, we refer to the books by Lam [L1] and Scharlau
[S]. In particular, ϕ ∼= ψ (resp. ϕ ∼ ψ) denotes isometry (resp. equivalence in
the Witt ring) of the forms ϕ and ψ.

∑
F 2 denotes all nonzero sums of squares

in F . The signed discriminant (resp. Clifford invariant) of a form ϕ will be
denoted by d±ϕ (resp. c(ϕ)), and we write ϕan for the anisotropic part of ϕ.
An n-fold Pfister form is a form of type 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉, ai ∈ F ∗, and
we write 〈〈a1, · · · , an〉〉 for short. The set of forms isometric (resp. similar) to
n-fold Pfister forms will be denoted by PnF (resp. GPnF ). I

n
t F is the torsion

part of InF , the n-th power of the fundamental ideal IF of classes of even-
dimensional forms in the Witt ringWF of the field F . The space of orderings of
a real field F will be denoted by XF . General references for the SAP property
and the reduced stability index are the book by Knebusch and Scheiderer [KS],
and the articles [P], [ELP], [EP]. Another property in this context is the so-
called ED property (effective diagonalization). It is known that ED implies
SAP (but not conversely in general), and that fields with finite ũ have the ED
property. Cf. [PW] for more details on ED.

2. Fields with torsion-free I3

Definition 2.1. (i) Let A be a central simple algebra over F (CSA/F ) such
that its Brauer class [A] is in Br2(F ). The symbol length t(A) of A is
defined as

t(A) = min{n | ∃ quaternion algebras Qi/F , 1 ≤ i ≤ n, s.t. [A] = [
⊗n

i=1Qi]} .
(ii) The symbol length λ(F ) of the field F is defined as

λ(F ) = sup{t(A) |A CSA/F , [A] ∈ Br2(F )} .
(iii) Let ϕ be a form over F . Let A be a CSA/F such that c(ϕ) = [A] ∈

Br2(F ), where c(ϕ) denotes the Clifford invariant of ϕ. Then t(ϕ) :=
t(A).

The following lemma compiles some well known results and some special
cases of Merkurjev’s index reduction theorem which we will use in this and the
following section. We refer to [M2], [T] for details (see also [L1, Sect. 3, Ch. V]
for basic results on Clifford invariants and how to compute them).

Lemma 2.2. (i) Let Qi = (ai, bi), 1 ≤ i ≤ n, be quaternion algebras over F
with associated norm forms 〈〈ai, bi〉〉 ∈ P2F . Let A =

⊗n

i=1Qi (over F ).
Then there exist ri ∈ F ∗, 1 ≤ i ≤ n, and a form q ∈ I2F , dim q = 2n+2
such that c(q) = [A] ∈ Br2 F and q ∼ ∑n

i=1 ri〈〈ai, bi〉〉 in WF . (We will

Documenta Mathematica · Quadratic Forms LSU 2001 · 183–200



Indefinite Quadratic Forms, I 187

call such a form q an Albert form associated with A.) Furthermore, if
t(A) = n (in particular if A is a division algebra), then every Albert form
associated with A is anisotropic.

(ii) If q is a form over F with either dim q = 2n+2 and q ∈ I2F , or dim q =
2n+ 1, or dim q = 2n and d±q 6= 1, then there exist quaternion algebras
Qi = (ai, bi), 1 ≤ i ≤ n, such that for A =

⊗n
i=1Qi we have c(q) = [A],

and there exists an Albert form ϕ associated with A such that q ⊂ ϕ.
(iii) If A as in (i) is a division algebra and if ψ is a form over F of one of

the following types:
(a) dimψ ≥ 2n+ 3,
(b) dimψ = 2n+ 2 and d±ψ 6= 1,
(c) dimψ = 2n+ 2, d±ψ = 1 and c(ψ) 6= [A] ∈ Br2 F ,
(d) ψ ∈ I3F ,
then A stays a division algebra over F (ψ).

The next result will be used in the proofs of Theorem 1.4(ii) and of
Lemma 2.4(ii), which in turn will be used in the proof of Theorem 1.3(ii).

Lemma 2.3. Let n ≥ 1 and suppose that In+1
t F = 0. Let ϕ be a form over F

of dimension > 2n. Suppose that either

• ϕ ∈ In
t F , or

• ϕ is t.i. and F is ED.

If there exists ρ ∈ GPnF such that ρ ⊂ ϕ, then ϕ is isotropic.

Proof. Write ϕ ∼= ρ ⊥ ψ. By assumption, dimψ ≥ 1. After scaling, we may
assume that ρ ∈ PnF . Note that sgnP ρ ∈ {0, 2n} for all P ∈ XF . Let
Y = {P ∈ XF | sgnP (ρ) = 2n}.

If ρ is torsion, i.e. if Y is empty, then for any x represented by ψ we have
that ρ ⊗ 〈〈−x〉〉 ∈ Pn+1F ∩ WtF ⊂ In+1

t F = 0. Thus, the Pfister neighbor
ρ ⊥ 〈x〉 is isotropic. Hence, ϕ is isotropic as it contains ρ ⊥ 〈x〉 as subform.

So assume that Y 6= ∅. First, suppose that ϕ ∈ In
t F . Then we have

sgnP ψ = −2n for all P ∈ Y and hence dimψ ≥ 2n. Now 〈1, 1〉 ⊗ϕ ∈ In+1
t F =

0, hence 〈1, 1〉 ⊗ ρ ∼ −〈1, 1〉 ⊗ ψ in WF . By β-decomposition (cf. [EL1,
p. 289]), we can write ψ ∼= γ ⊥ σ with 〈1, 1〉 ⊗ γ ∼ 0 (in particular, γ ∈WtF ),
dimσ = dim ρ = 2n and 〈1, 1〉⊗ ρ ∼= −〈1, 1〉⊗σ. Comparing signatures, we see
that sgnP ρ = − sgnP σ ∈ {0, 2n}. Now let x ∈ F ∗ be any element represented
by σ. The above shows that x <P 0 for all P ∈ Y . For all other P ∈ XF , ρ is
indefinite. This yields that ρ ⊥ 〈x〉 is t.i. and a Pfister neighbor of ρ ⊗ 〈〈−x〉〉
which is therefore torsion. We conclude as before that ϕ is isotropic.

Finally, suppose that ϕ is t.i. and that F is ED. Since ρ is positive definite
at all orderings P ∈ Y , and since ϕ ∼= ρ ⊥ ψ is t.i., ED implies that ψ represents
an x ∈ F ∗ such that x <P 0 for all P ∈ Y . Then ρ ⊥ 〈x〉 is t.i. and a Pfister
neighbor contained in ϕ, and we conclude as before that ϕ is isotropic.

For later purposes, we now state some useful facts on u and ũ of real fields
with I3

t F = 0.
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Lemma 2.4. Let F be a field with I3
t F = 0. Then the following holds.

(i) If 2 < u(F ) < ∞, then there exists an anisotropic form ϕ ∈ I2
t F such

that dimϕ = u(F ).
(ii) If ũ(F ) < ∞, then ũ(F ) is even. Furthermore, if 2 < ũ(F ) < ∞, then

there exists an anisotropic t.i. form ϕ ∈ I2F such that dimϕ = ũ(F ) and
sgnP (ϕ) ∈ {0, 4} for all P ∈ XF .

Proof. (i) See [EL1, Prop. 1.4].
(ii) See [ELP, Th. H] for a proof that ũ(F ) is even if it is finite. Now suppose

ϕ is anisotropic, t.i. and dimϕ = ũ(F ) ≥ 4. Since ũ(F ) is finite, F has ED
and one easily sees that ϕ contains a 3-dimensional t.i. subform τ ′. Then τ ′

is a Pfister neighbor of some anisotropic torsion τ ∈ P2F . Thus, if ũ(F ) = 4,
this τ is the desired form. So we may assume that ũ(F ) ≥ 6.

Since F is SAP, we may scale ϕ so that sgnP ϕ ≥ 0 for all P ∈ XF . Consider
the clopen set Y = {P ∈ XF | sgnP ϕ ≥ 5}. Since F is SAP, there exists a 3-fold
Pfister form π such that sgnP π = 8 for all P ∈ Y and sgnP π = 0 otherwise.
Consider ϕ1 = x(ϕ ⊥ −π)an, where x ∈ F ∗ is chosen so that sgnP ϕ1 ≥ 0 for
all P ∈ XF . By construction, 0 ≤ sgnP ϕ1 ≤ max{4, | sgnP ϕ − 8|} < dimϕ.
If dimϕ1 > dimϕ, then ϕ1 would be an anisotropic t.i. form of dimension ≥
ũ(F )+2, clearly a contradiction. If dimϕ1 < dimϕ, then ϕ and π would contain
a common 5-dimensional subform which, being a Pfister neighbor, would in turn
contain a subform ρ ∈ GP2F . Since F is ED as ũ(F ) < ∞, Lemma 2.3 then
implies that ϕ is isotropic, a contradiction. It follows that dimϕ1 = dimϕ.
By repeating this construction, we get a sequence of anisotropic t.i. forms
ϕ0 = ϕ,ϕ1, · · · , ϕr such that for i ≥ 1 we have dimϕi = dimϕ, 0 ≤ sgnP ϕi ≤
max{4, | sgnP ϕi−1 − 8|} and 0 ≤ sgnP ϕr ≤ 4 for all P ∈ XF .

Hence, we may assume that ϕ is anisotropic t.i., dimϕ = ũ(F ) and 0 ≤
sgnP ϕ ≤ 4 for all P ∈ XF . Let d = d±ϕ and consider ψ = (ϕ ⊥ 〈1,−d〉)an.
Note that ψ ∈ I2F and therefore sgnP ψ ≡ 0 mod 4. Since 0 ≤ sgnP ϕ ≤ 4 and
sgnP 〈1,−d〉 ∈ {0,±2} for all P ∈ XF , it follows readily that sgnP ψ ∈ {0, 4}.
We also have that dimϕ− 2 ≤ dimψ ≤ dimϕ+ 2.

If dimψ = dimϕ + 2, then ψ ∼= ϕ ⊥ 〈1,−d〉 would be an anisotropic t.i.
form of dimension ũ(F ) + 2, clearly a contradiction.

If dimψ = dimϕ − 2, then ϕ ∼= ψ ⊥ 〈d,−1〉. Since sgnP ψ ≥ 0 for all
P ∈ XF and because of ED, we have that ψ represents some a ∈ ∑

F 2. Then
ψ ⊥ −aψ is a torsion form in I3F and thus hyperbolic. But ψ ⊥ −aψ contains
the subform ψ ⊥ 〈−1〉 which by dimension count must be isotropic. Hence ϕ
is isotropic, a contradiction. Thus dimψ = dimϕ = ũ(F ) and ψ is the desired
form.

Remark 2.5. (i) If u(F ) =∞, then there exist anisotropic torsion forms in I2F
of arbitrarily large dimension. Indeed, let ϕ ∈WtF be anisotropic of dimension
≥ 2n + 2. Let d = d±ϕ and consider ψ = (ϕ ⊥ 〈1,−d〉)an. Then one readily
checks that dimψ ≥ 2n and ψ ∈ I2

t F .
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(ii) If ũ(F ) =∞, then there exist anisotropic t.i. forms in I2F of arbitrarily
large dimension. Indeed, let ϕ be any anisotropic t.i. form of dimension 4n+3
for any n ≥ 1 (such ϕ exists by [ELP, Th. A]). Let d be such that ϕ ⊥ 〈d〉 ∈ I2F .
Let ψ = (ϕ ⊥ 〈d〉)an. Then ψ ∈ I2F and dimψ ∈ {4n+ 2, 4n+ 4}. If dimψ =
4n+ 4 then ψ ∼= ϕ ⊥ 〈d〉 is t.i.. If dimψ = 4n+ 2, then sgnP ψ ≡ 0 mod 4 for
all P ∈ XF as ψ ∈ I2F , and therefore | sgnP ψ| ≤ 4n < 4n+ 2 = dimψ for all
P ∈ XF . Again, ψ is t.i..

Let us now turn to the proof of part (ii) of Theorem 1.4 where we assume
that I3

t F = 0 and st(F ) ≤ 2. In [KS, Kap. 3, § 7, Korollar], one finds different
characterizations of F having reduced stability index ≤ s for an integer s ≥ 1.
The one we are interested in is the following : st(F ) ≤ s is equivalent to
(Is+1F )red = 2(IsF )red, i.e. for each form ϕ ∈ Is+1F there exists a form
ψ ∈ IsF such that sgnP ϕ = sgnP (〈1, 1〉 ⊗ ψ) for all P ∈ XF . If Is+1

t F = 0,
then st(F ) ≤ s is therefore equivalent to Is+1F = 2IsF . By [Kr, Prop. 1], we
thus get

Lemma 2.6. Let s ≥ 1 be an integer and let F be a real field with Is+1
t F = 0.

Then the following are equivalent :

(i) st(F ) ≤ s;
(ii) Is+1F = 2IsF ;
(iii) Is+1F (

√
−1) = 0.

Now Is+1F (
√
−1) = 0 implies Is+1

t F = 0, [Kr, Prop. 1], and in view of this
lemma, we may replace the hypotheses I3

t F = 0 plus st(F ) ≤ 2 by I3F (
√
−1) =

0. We then get the following result which holds for any field (not just for real
fields) and which implies the second part of Theorem 1.4.

Theorem 2.7. Suppose that I3F (
√
−1) = 0. Then

u(F ) ≤ min{4λ(F (
√
−1)) + 2, 2λ(F ) + 2} .

Proof. First, we prove that u(F ) ≤ 2λ(F ) + 2. If the level s(F ) of F is finite,
i.e. F is nonreal, then this follows from Kahn’s theorem 1.2.

So assume that F is a real field with I3F (
√
−1) = 0. We will show that

if ϕ ∈ I2
t F with t(ϕ) = t, then dimϕ > 2t + 2 implies that ϕ is isotropic.

This then implies readily u(F ) ≤ 2λ(F ) + 2. Indeed, this follows from the
fact that there always exists an anisotropic form in I2

t F of dimension u(F ) if
u(F ) is finite (Lemma 2.4(i)), resp. of arbitrarily large dimension if u(F ) is
infinite (Remark 2.5(i)), and the fact that in the case of a real F with I3

t F = 0,
st(F ) ≤ 2 is equivalent to I3F (

√
−1) = 0 by Lemma 2.6.

Now let ϕ ∈ I2
t F with t(ϕ) = t and dimϕ > 2t + 2. We will prove by

induction on t that ϕ is isotropic. If t = 0 then ϕ ∈ I3
t F = 0 and ϕ is in

fact hyperbolic. If t = 1 then there exists (an anisotropic) τ ∈ P2F such that
c(ϕ) = c(τ). By Merkurjev’s theorem, ϕ ≡ τ mod I3F . Since sgnP τ ∈ {0, 4}
and 0 = sgnP ϕ ≡ sgnP τ mod 8 for all P ∈ XF , we see that τ ∈ WtF , hence
ϕ ≡ τ mod I3

t F and thus ϕ ∼ τ ∈ WF as I3
t F = 0. Hence dimϕ > dimϕan =

dim τ = 4 and ϕ is isotropic.
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Let t ≥ 2. By Lemma 2.2(i), there exists an anisotropic (2t+2)-dimensional
form τ ∈ I2F such that ϕ ≡ τ mod I3F . Let d ∈ F ∗ such that τF (

√
d) is

isotropic. Let τ ′ ∈ I2F (
√
d) such that (τ

F (
√

d))an
∼= τ ′. Then dim τ ′ ≤ 2t.

Hence, t(τ ′) ≤ t−1. (In fact, one can readily show that dim τ ′ = 2t and t(τ ′) =

t−1, but we won’t need this here.) Also, ϕF (
√

d) ≡ τ ′ mod I3F (
√
d). By [EL3,

Th. 3] and [EL4, Cor. 4.6], we have that I3
t F (

√
d) = 0 and I3F (

√
d)(
√
−1) = 0.

By induction hypothesis, we have dim(ϕ
F (
√

d))an ≤ 2(t − 1) + 2 = 2t. Now

dimϕ ≥ 2t + 4, hence there exist a, b ∈ F ∗ such that 〈a, b〉 ⊗ 〈1,−d〉 ⊂ ϕ (cf.
[L1, Ch. VII, Lemma 3.1]). Now 〈a, b〉 ⊗ 〈1,−d〉 ∈ GP2F , and by Lemma 2.3,
ϕ is isotropic.

Let us now show that u(F ) ≤ 4λ(F (
√
−1)) + 2. This is trivially true for

s(F ) = 1 as in this case we have F = F (
√
−1) and already u(F ) ≤ 2λ(F ) + 2.

So suppose that s(F ) ≥ 2. We put L = F (
√
−1) and we may assume that

λ = λ(L) < ∞. Since I3
t F = 0, we have 〈1, 1〉I2

t F = 0. Hence, ann(〈1, 1〉) ∩
I2F = ann(〈1, 1〉) ∩ I2

t F = I2
t F . Consider the Scharlau transfer s∗ : WL →

WF induced by the F -linear map L→ F defined by 1 7→ 0 and
√
−1 7→ 1. Note

that for any form ρ over L there exists a form σ over F such that dimσ ≤ 2 dim ρ
and s∗(ρ) ∼ σ in WF .

By [AEJ, Prop. 1.24], we have s∗(I
2L) = ann(〈1, 1〉) ∩ I2F and thus

s∗(I
2L) = I2

t F . Now let ψ be any form in I2L. By Lemma 2.2(i), there
exists a form η ∈ I2L such that dim η ≤ 2λ + 2 and c(ψ) = c(η) ∈ Br2 L.
After scaling, we may assume that η ∼= 〈1〉 ⊥ η′. In particular, there ex-
ists a form γ ∈ I3L such that η ∼ ψ + γ in WL. Now s∗(γ) ∈ I3

t F = 0.
Hence s∗(ψ) = s∗(η) = s∗(〈1〉) + s∗(η

′) ∼ σ for some form σ over F with
dimσ ≤ 2 dim η′ ≤ 4λ+ 2.

Now let ϕ ∈ I2
t F . Since s∗(I

2L) = I2
t F , the above shows that ϕ ∼ µ in

WF for some form µ over F with dimµ ≤ 4λ + 2. Hence, if ϕ is anisotropic
we necessarily have dimϕ ≤ 4λ+ 2.

Suppose u(F ) = ∞. Then there exists some anisotropic form τ ∈ WtF
with dim τ ≥ 4λ + 6 and dim τ even. Let d = d±τ . Then one easily sees that
τ ⊥ 〈1,−d〉 ∈ I2

t F , and its anisotropic part must therefore be of dimension
≤ 4λ+ 2, a contradiction to τ being anisotropic and dim τ ≥ 4λ+ 6.

Hence u(F ) < ∞. Then Lemma 2.4(i) and the above imply that u(F ) ≤
4λ+ 2.

Remark 2.8. Let F be such that s(F ) ≥ 2 and let L = F (
√
−1). Define

u′(F ) = sup{dimϕ |ϕ anisotropic form/F and 〈1, 1〉 ⊗ ϕ = 0 ∈WF}. It was
shown in [Pf, Ch. 8, Th. 2,12] that u′(F ) ≤ 2u(L) − 2. Now if I3

t F = 0, then
one readily verifies that u(F ) = u′(F ) (see also [Pf, Ch. 8, Prop. 2.6]). Hence,
this would imply that u(F ) ≤ 2u(L) − 2. Note, however, that I3L need not
be zero and that therefore u(L) > 2λ(L) + 2 might very well be possible (cf.
Theorem 1.2), in which case our bound u(F ) ≤ 4λ(L) + 2 would be better.
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Corollary 2.9. (See also [Pf, Ch. 8, Th. 2,12], [EL1, Th. 4.11].) Let F be a
field with s(F ) ≥ 2 and let L = F (

√
−1). Let n ∈ {1, 2, 3}. Then u(L) ≤ 2n

implies u(F ) ≤ 4n−2. Furthermore, if u(L) = 1 then F is real and pythagorean
(i.e. u(F ) = 0).

Proof. If u(L) ≤ 2n, 1 ≤ n ≤ 3, then I3L = 0 and thus I3
t F = 0 (cf. [Kr,

Prop. 1]). Theorem 1.2 yields λ(L) ≤ n−1. Hence u(F ) ≤ 4λ(L)+2 ≤ 4n−2.
The second part is left to the reader.

To prove Theorems 1.3 and 1.4(i), we will need the following lemma.

Lemma 2.10. Let n ≥ 1 and suppose that F is SAP.

(i) Let πi ∈ PnF , 1 ≤ i ≤ r. Then there exists a form ϕ ∈ InF such that
sgnP ϕ ∈ {0, 2n} for all P ∈ XF , and ϕ ≡

∑r

i=1 πi mod In+1F .

(ii) If In+1
t F = 0, and if ϕ ∈ InF such that sgnP ϕ ∈ {0, 2n} for all P ∈ XF ,

then ϕ ∼= ϕt ⊥ ϕ0 with ϕt ∈WtF and dimϕ0 ∈ {0, 2n}.
(iii) If In+1

t F = 0, then the form ϕ in part (i) can be chosen so as to have
dimension ≤ r2n − 2r + 2.

Proof. (i) We use induction on r. If r = 1 then ϕ = π1 will do. So suppose r ≥
2. By induction hypothesis, there exists a form ψ such that ψ ≡ ∑r−1

i=1 πi mod
In+1F and sgnP ψ ∈ {0, 2n} for all P ∈ XF . Let ϕ̂ = ψ ⊥ −πr. Since
sgnP πr ∈ {0, 2n}, we have sgnP ϕ̂ ∈ {0,±2n}. Since F is SAP, there exists
an x ∈ F ∗ such that ϕ = xϕ̂ has sgnP ϕ ∈ {0, 2n} for all P ∈ XF . Clearly,
ϕ ≡ ∑r

i=1 πi mod In+1F .

(ii) Suppose now that In+1
t F = 0. Consider the clopen set Y = {P ∈

XF | sgnP ϕ = 2n} in XF . If Y is empty then ϕ ∈ Wt and there is nothing
to show. So suppose Y 6= ∅. Let σ ∈ PnF be such that sgnP σ = 2n if
P ∈ Y , and sgnP σ = 0 otherwise. Such σ exists as F is SAP. It follows that
〈1, 1〉⊗ϕ ≡ 〈1, 1〉⊗σ mod In+1

t F (both forms are in In+1
t F and have the same

signatures). Now In+1
t F = 0 and thus 〈1, 1〉 ⊗ ϕ ∼ 〈1, 1〉 ⊗ σ. (Note that

〈1, 1〉 ⊗ σ is anisotropic because sgnP 〈1, 1〉 ⊗ σ = dim 〈1, 1〉 ⊗ σ = 2n+1 for
all P ∈ Y 6= ∅.) Comparing dimensions and using β-decomposition (cf. [EL1,
p. 289]), we see that ϕ ∼= ϕt ⊥ ϕ0 with ϕt ∈WtF and dimϕ0 = dimσ = 2n.

(iii) We use a similar induction argument as in (i), but we assume in addition
that the form ψ there is of dimension ≤ (r−1)2n−2(r−1)+2. By (ii), we can
write ψ ∼= ψt ⊥ ψ0 with dimψ0 ∈ {0, 2n}, ψt ∈ WtF , and dimψ0 = 2n only if
there exists some P ∈ XF with sgnP ψ = 2n. Let y ∈ D(ψ0) if dimψ0 = 2n, and
let y ∈ D(ψ) otherwise. One readily checks that sgnP yψ = sgnP ψ ∈ {0, 2n}
and that yψ ∼= 〈1〉 ⊥ ψ′. Let now πr

∼= 〈1〉 ⊥ π′r and let ϕ′ = ψ′ ⊥ −π′r.
Note that dimϕ′ ≤ r2n − 2r + 2. As in the proof of (i), sgnP ϕ

′ ∈ {0,±2n},
and after scaling, we obtain the form ϕ with sgnP ϕ ∈ {0, 2n} for all P ∈ XF ,
dimϕ = dimϕ′ ≤ r2n − 2r + 2, and ϕ ≡ ∑r

i=1 πi mod In+1F .

Proof of Theorem 1.3. (i) If F is not SAP, then ũ(F ) =∞ and there is nothing
to show. So suppose that F is SAP. Let A = Q1⊗ · · · ⊗Qt ∈ Br2F , where the
Qi are quaternion algebras such that t(A) = t ≥ 2, and consider the norm forms
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πi ∈ P2F associated with Qi. By Lemma 2.10(i), there exists an anisotropic

form ϕ ∈ I2F such that ϕ ≡ ∑t
i=1 πi mod I3F and sgnP ϕ ∈ {0, 4}. Note that

c(ϕ) = [A]. If dimϕ ≤ 2t then, by Lemma 2.2(ii), c(ϕ) could be represented
by a product of fewer than t quaternion algebras, a contradiction to t(A) = t.
Hence dimϕ ≥ 2t+ 2. Note that ϕ is t.i. provided t ≥ 2.

If λ(F ) = ∞, then for any t ≥ 1 there exists an A ∈ Br2F with t(A) = t,
and the above shows that ũ(F ) = ∞. If λ(F ) < ∞, then choose A as above
such that t(A) = λ(F ). The above shows that ũ(F ) ≥ 2λ(F ) + 2.

(ii) By Lemma 2.4(ii), we may assume that there exists an anisotropic t.i.
form ϕ ∈ I2F with dimϕ = ũ(F ) and sgnP ϕ ∈ {0, 4} for all P ∈ XF . Let
t(ϕ) = t ≤ λ and let c(ϕ) = Q1 ⊗ · · · ⊗ Qt ∈ Br2F . With πi the norm forms

associated with Qi, we get ϕ ≡ ∑t

i=1 πi mod I3F .
By Lemma 2.10(iii), there exists a form ψ ∈ I2F , dimψ ≤ 2t + 2 such

that sgnP ψ ∈ {0, 4} for all P ∈ XF and such that ϕ ≡ ψ mod I3F . Since
sgnP ϕ ≡ sgnP ψ mod 8, this readily yields ϕ ⊥ −ψ ∈ I3

t F = 0. The anisotropy
of ϕ then shows that ũ(F ) = dimϕ ≤ 2t+ 2 ≤ 2λ(F ) + 2, which together with
(i) yields ũ(F ) = 2λ(F ) + 2.

Proof of Theorem 1.4(i). Let A = Q1 ⊗ · · · ⊗ Qt ∈ Br2F , where the Qi are
quaternion algebras such that t(A) = t ≥ 2. As in part (i) of the proof of
Theorem 1.3, there exists an anisotropic form ϕ ∈ I2F such that c(ϕ) = [A],
sgnP ϕ ∈ {0, 4}, dimϕ ≥ 2t+ 2.

Now let π ∈ P2F be such that sgnP ϕ = sgnP π for all P ∈ XF . (Such
π exists as F is SAP and sgnP ϕ ∈ {0, 4}.) Consider ψ = (ϕ ⊥ −π)an. By
construction, ψ ∈ I2

t F and dimψ ≥ dimϕ− 4 = 2t− 2. Suppose that dimψ =
dimϕ − 4. Then ϕ ∼= ψ ⊥ π and we have ψ, π ∈ I2F , c(ϕ) = c(ψ)c(π). By
dimension count and Lemma 2.2(ii), we have t(ψ) ≤ t − 2, t(π) ≤ 1, and
therefore t(ϕ) = t(A) = t ≤ t(ψ) + t(π) ≤ t − 1, a contradiction. Hence,
dimψ ≥ dimϕ− 2 = 2t.

If λ(F ) = ∞, then for any t ≥ 1 there exists an A ∈ Br2F with t(A) = t,
and the above shows that u(F ) =∞.

If λ(F ) < ∞, then choose A as above such that t(A) = λ(F ). The above
then shows that u(F ) ≥ 2λ(F ).

Since fields with finite ũ are always SAP, the following is an immediate
consequence of Theorems 1.3, 1.4.

Corollary 2.11. Let F be a real field with I3
t F = 0 and ũ(F ) < ∞. Then

ũ(F ) = 2λ(F ) + 2 ∈ {u(F ), u(F ) + 2}.

Example 2.12. The condition in Theorem 1.4(i) that F be SAP seems to be
quite restrictive. However, we will certainly need some sort of additional as-
sumption on F besides I3

t F = 0 to get the lower bound u(F ) ≥ 2λ(F ). To see
what can go wrong when one drops the assumption that F is SAP, consider
the following example. Let F = R((t1)) · · · ((tn)) be the iterated power series
field in n variables over the reals. Then, by Springer’s theorem, u(F ) = 0. In
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particlar, I3
t F = 0. For n ≥ 2, F is not SAP as for example 〈1, t1, t2,−t1t2〉

is not weakly isotropic. However, one can show that λ(F ) = [n/2] + 1. The
value t(A) = [n/2] + 1 can be realized, for example, by the multiquaternion
division algebra A = (−1,−1) ⊗ (t1, t2) ⊗ · · · (tm−1, tm) where m = [n/2] (i.e.
n ∈ {2m, 2m+ 1}).

As for the upper bound for u(F ) for a field with I3
t F = 0, we proved in

Theorem 1.4 that u(F ) ≤ 2λ(F ) + 2 under the assumption that st(F ) ≤ 2.
We believe that this additional assumption is in fact superfluous, but we were
unable to get this upper bound without it.

Conjecture 2.13. Let F be real with I3
t F = 0. Then u(F ) ≤ 2λ(F ) + 2.

In support of this conjecture, we can prove that it holds for small values of
λ(F ).

Proposition 2.14. Let F be real with I3
t F = 0. If λ = λ(F ) ≤ 4 then u(F ) ≤

2λ+ 2.

Proof. We will show that if ϕ is an anisotropic form in I2
t F with 1 ≤ t(ϕ) =

t ≤ 4, then dimϕ ≤ 2t + 2 and thus dimϕ = 2t + 2 by Lemma 2.2(ii), which
by Lemma 2.4(i) immediately yields the desired result. (Note that t(ϕ) = 0
implies that ϕ ∈ I3

t F = 0, i.e. ϕ is hyperbolic.)
So let ϕ ∈ I2

t F and suppose that 1 ≤ t(ϕ) = t ≤ 4 and dimϕ ≥ 2t + 4.
By Lemma 2.2(i), there exists a form ψ ∈ I2F with dimψ = 2t + 2 such that
ϕ ≡ ψ mod I3F . Now 〈1, 1〉 ⊗ ϕ ∈ I3

t F = 0 and 〈1, 1〉 ⊗ (ϕ ⊥ −ψ) ∈ I4F ,
hence 〈1, 1〉 ⊗ ψ ∈ I4F . We have dim 〈1, 1〉 ⊗ ψ = 4t+ 4 ≤ 20. By the Arason-
Pfister Hauptsatz and [H1, Main Theorem], there exists ρ ∈ GP4F such that
〈1, 1〉 ⊗ ψ ∼ ρ in WF . After scaling, we may assume that ρ ∈ P4F . Since ρ is
divisible by 〈1, 1〉, there exists σ ∈ P3F such that ρ ∼= 〈1, 1〉 ⊗ σ. Comparing
signatures, we see that sgnP ψ = sgnP σ for all P ∈ XF . Thus, ϕ ⊥ −ψ ⊥ σ ∈
I3
t F = 0. Thus, in WF we get ϕ ⊥ σ ∼ ψ. Now dim(ϕ ⊥ σ) ≥ 2t + 12 and
dimψ = 2t + 2, hence iW (ϕ ⊥ σ) ≥ 5. Therefore, ϕ contains a 5-dimensional
Pfister neighbor of σ. Since 5-dimensional Pfister neighbors always contain a
subform in GP2F , we have that there exists τ ∈ GP2F such that τ ⊂ ϕ. Thus,
ϕ is isotropic by Lemma 2.3.

3. Construction of fields with prescribed invariants

We will now focus on the realizability of given triples (λ, u, ũ) for nonlinked
SAP-fields with I3

t = 0. Let us restate the corresponding theorem from the
introduction, whose proof will take up most of the remainder of this section.

Theorem 3.1. Let M = {(n, 2n, 2n + 2), (n, 2n + 2, 2n + 2); n ≥ 2} ∪
{(n, 2n,∞), (n, 2n+ 2,∞);n ≥ 2} ∪ {(∞,∞,∞)}.
(i) Let F be a real SAP field such that λ(F ) ≥ 2 and I3

t F = 0. Then
(λ(F ), u(F ), ũ(F )) ∈M.
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(ii) Let (λ, u, ũ) ∈ M. Then there exists a real SAP field F with I3
t F = 0

and (λ(F ), u(F ), ũ(F )) = (λ, u, ũ). In the case where ũ < ∞ or λ = ∞,
there exist such fields which are uniquely ordered.

Proof. (i) This follows immediately from Theorems 1.3, 1.4.

(ii) We fix once and for all a real field F0. Our constructions will be divided
into three cases : Finite λ and finite ũ, finite λ and infinite ũ, and infinite λ.

The case 2 ≤ λ <∞ and ũ <∞
Put n = λ+1. We have to construct fields F , F ′ with (λ(F ), u(F ), ũ(F )) =

(n− 1, 2n, 2n) and (λ(F ′), u(F ′), ũ(F ′)) = (n− 1, 2n− 2, 2n).
Let F1 = F0(x1, x2, · · · , y1, y2, · · · ) be the rational function field in an infi-

nite number of variables xi, yj over F0. Consider the multiquaternion algebras
An = (1 + x2

1, y1)⊗ · · · ⊗ (1 + x2
n−1, yn−1) and Bn = An−1 ⊗ (−1,−1), n ≥ 2,

which are division algebras (cf. [H2, Lemma 2(iv)]). Let ψn be a 2n-dimensional

Albert form of An such that ψn ∼
∑n−1

i=1 ci〈〈1 + x2
i−1, yi−1〉〉 in WF1 for suit-

able ci ∈ F ∗1 , and let ψ′n be a 2n-dimensional Albert form of Bn such that
ψ′n ∼ 〈〈−1,−1〉〉 + cψn−1 for suitable c ∈ F ∗1 . Since sgnP 〈〈1 + x2

i−1, yi−1〉〉 = 0
and sgnP 〈〈−1,−1〉〉 = 4 for each P ∈ XF1

, we have sgnP ψn = 0 and
sgnP ψ

′
n = 4 for all P ∈ XF1

. Now fix any ordering P1 ∈ XF1
.

Suppose that L is a field such that (An)L (resp. (Bn)L) is a division algebra
and such that P1 extends to an ordering P ∈ XL. Consider the following classes
of forms over L :

C1(L) = {α |α form/L, dimα = 2n+ 1, α indefinite at P}
C2(L) = {α |α form/L, α ∈ I3L, sgnP α = 0}
C3(L) = {α |α form/L, dimα = 2n, sgnP α = 0}

We construct an infinite tower of fields F1 ⊂ F2 ⊂ · · · and F1 = F ′1 ⊂ F ′2 ⊂
· · · as follows. Suppose we have constructed Fi (resp. F ′i ), i ≥ 1 such that
(An)Fi

(resp. (Bn)F ′

i
) are division algebras and such that P1 extends to an

ordering Pi ∈ XFi
(resp. X ′Fi

).
Let Fi+1 (resp. F ′i+1) be the compositum of all function fields Fi(α) (resp.

F ′i (α)) where α ∈ C1(Fi) ∪ C2(Fi) (resp. C1(F ′i ) ∪ C2(F ′i ) ∪ C3(F ′i )).
Since an ordering P of a field L extends to an ordering of the function field

L(α) of a form α over L if and only if α is indefinite at P , we see that there
exists an ordering on Fi+1 (resp. F ′i+1) extending the ordering Pi since we only
take function fields of forms in the Ci, and all these forms are indefinite at Pi

(cf. [ELW, Th. 3.5 and Rem. 3.6]). We will fix such an ordering and call it
Pi+1. Note that no other ordering on Fi (resp. F ′i ) will extend to Fi+1 (resp.
F ′i+1). Indeed, let Q be any ordering on Fi+1 (resp. F ′i+1) and let b ∈ F ∗i (resp.
F ′∗i ) be such that b <Pi

0 and b >Q 0. Then 2n×〈1〉 ⊥ 〈b〉 is in C1 and definite
at Q, which shows that Q will not extend.

Next, we show that An (resp. Bn) stays a division algebra over Fi+1 (resp.
F ′i+1). If α ∈ C1(L)∪C2(L) and An (resp. Bn) is division over L, then it follows
immediately from Lemma 2.2(iii), parts (a) and (d) that An (resp. Bn) stays
division over L(α). In particular, this shows that (An)Fi+1

will be division.
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To show that Bn stays a division algebra over F ′i+1, it remains to show that
if P1 extends to an ordering P on L and Bn is division over L, then Bn stays
a division algebra over L(α) for α ∈ C3(L). If d±α 6= 1, this follows from
Lemma 2.2(iii), part (b). If d±α = 1, then α ∈ I2L, and by Lemma 2.2(iii),
part (c) it suffices to show that c(α) 6= [(Bn)L] in Br2 L. Suppose c(α) =
[(Bn)L]. Since c((ψ′n)L) = [(Bn)L], we have by Merkurjev’s theorem that
α ≡ (ψ′n)L mod I3L and hence 0 = sgnP α ≡ sgnP (ψ

′
n)L ≡ 4 mod 8, clearly a

contradiction.
With the Fi and their orderings Pi constructed for all i, we now put F =⋃∞

i=1 Fi (resp. F ′ =
⋃∞

i=1 F
′
i ) and P =

⋃∞
i=1 Pi. P will then be the unique

ordering on F (resp. F ′) (see also the proof of [H3, Th. 2]). It is also obvious
from our construction that I3

t F = 0 and that indefinite forms of dimension
2n+1 will be isotropic. The latter implies by [ELP, Th. A] that ũ(F ), ũ(F ′) ≤
2n. Also, An (resp. Bn) will stay a division algebra over F (resp. F ′). In
the case of F , this means that the form (ψn)F will be a 2n-dimensional torsion
form which is anisotropic by Lemma 2.2(i). Hence u(F ) ≥ 2n and thus u(F ) =
ũ(F ) = 2n. In the case of F ′, we have by a similar reasoning that (ψ′n)F ′ is a
2n-dimensional indefinite anisotropic form (recall that dim(ψ′n)F ′ = 2n ≥ 6 >
4 = sgnP (ψ

′
n)F ′). Hence ũ(F ′) = 2n. However, by construction, torsion forms

of dimension 2n will be isotropic and thus u(F ′) ≤ 2n− 2. On the other hand,
Bn = An−1⊗ (−1,−1) will stay a division algebra over F ′ and thus also An−1.
Hence, just as before, we will now have the anisotropic (2n − 2)-dimensional
torsion form (ψn−1)F ′ , which shows that u(F ′) = 2n− 2.

The fact that λ(F ) = λ(F ′) = n− 1 follows from Corollary 2.11.

The case 2 ≤ λ <∞ and ũ =∞
With F0 as above, we let now F1 = F0(x1, x2, · · · , y1, y2, · · · )((t)), but we

keep the definitions of An, Bn, ψn, ψ
′
n from above. Let L be any extension

of F1 such that all orderings of F1 extend to L and such that An (resp. Bn)
is division over L. This time, we consider the following classes of quadratic
forms, where n = λ+ 1 ≥ 3.

C1(L) = {α |α form/L, dimα ≥ 2n+ 2,
α ∼= α0 ⊥ αt, αt ∈WtL, dimα0 ∈ {0, 4}}

C2(L) = {α |α = 〈1, 1〉 ⊗ 〈1, x, y,−xy〉, x, y ∈ L∗}
C3(L) = {α |α form/L, α ∈ I3

t L}
C4(L) = {α |α form/L, dimα = 2n, α ∈WtL}

Again, we construct infinite towers of fields F1 ⊂ F2 ⊂ · · · and F1 = F ′1 ⊂
F ′2 ⊂ · · · . Suppose we have constructed Fi resp. F ′i , i ≥ 1. Then we let Fi+1

(resp. F ′i+1) be the compositum of all function fields Fi(α) (resp. F
′
i (α)) where

α ∈ C1(Fi) ∪ C2(Fi) ∪ C3(Fi) (resp. C1(F ′i ) ∪ C2(F ′i ) ∪ C3(F ′i ) ∪ C4(F ′i )).
We then put F =

⋃∞
i=1 Fi (resp. F ′ =

⋃∞
i=1 F

′
i ). Note that since we only

take function fields of t.i. forms, all orderings of F1 extend to F , resp. F ′. In
particular, F , F ′ will be real.
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Now a field F is SAP if and only if all forms of type 〈1, a, b,−ab〉 are
weakly isotropic, i.e. there exists an n such that the n-fold orthogonal sum
n × 〈1, a, b,−ab〉 is isotropic (cf. [P, Satz 3.1], [ELP, Th. C]). Thus, taking
function fields of forms of type 〈1, 1〉 ⊗ 〈1, x, y,−xy〉 assures that F (resp.
F ′) is SAP. Taking function fields of forms in I3

t yields that I3
t F = 0 (resp.

I3
t F

′ = 0).
We now show that (Bn)K is a division algebra for K = F , F ′. This then im-

plies that λ(K) ≥ n− 1. Let L be an extension of F1 such that all orderings of
F1 extend to L and suppose we have that (Bn)L is division. Then Bn stays di-
vision over L(α) for α ∈ Cj(L), j = 1, 3, 4, by a reasoning similar to above after
invoking Lemma 2.2(iii). Also, Bn stays division over K = L(〈〈−1,−x,−y〉〉)
for all x, y ∈ L∗ by part (d) of Lemma 2.2(iii). Now α = 〈1, 1〉 ⊗ 〈1, x, y,−xy〉
contains the Pfister neighbor 〈1, 1〉 ⊗ 〈1, x, y〉 of 〈〈−1,−x,−y〉〉, therefore α be-
comes isotropic over K, hence K(α)/K is purely transcendental and Bn stays
division over K(α) = L(〈〈−1,−x,−y〉〉)(α) and therefore over L(α).

This shows that (Bn)K is a division algebra for K = F , F ′. Hence, λ(K) ≥
n− 1. By a similar reasoning, (An)F is a division algebra.

Suppose that λ(K) ≥ n. Then there exists C ∈ Br2(K) such that t(C) = n.
Now K is SAP and I3

t K = 0. Hence, by Lemma 2.2(i) and Lemma 2.10(iii),
there exists an anisotropic Albert form α of dimension 2n+ 2 associated with
C such that α ∼= α0 ⊥ αt with αt ∈ WtF and dimα0 ∈ {0, 4}. But such an α
is by construction isotropic (consider the forms in C1 above !), a contradiction.
Hence λ(K) = n− 1. By Theorem 1.4, we get u(K) ∈ {2n− 2, 2n}.

Now over F ′, we have by construction that all torsion forms of dimension 2n
are isotropic (consider the forms in C4 above !). Thus, u(F ′) = 2n−2 = 2λ(F ′).

We already remarked that (An)F is a division algebra. Hence, its associated
Albert form (ψn)F is anisotropic and torsion. Therefore, u(F ) ≥ 2n and we
necessarily have u(F ) = 2n.

It remains to show that ũ(F ) = ũ(F ′) =∞. Let m be a positive integer and
let µm = m×〈1〉 ⊥ t〈1,−(1 + x2

1)〉 over F1. Sincem×〈1〉 and 〈1,−(1 + x2
1)〉 are

anisotropic over F0(x1, x2, · · · , y1, y2, · · · ), it follows from Springer’s theorem
[L1, Ch. VI, Prop. 1.9] that µm is anisotropic. Furthermore, µm is t.i. as
〈1,−(1 + x2

1)〉 is a binary torsion form. Thus, if we can show that µm stays
anisotropic over F (resp. F ′) for all m, then ũ(F ), ũ(F ′) ≥ 2m + 2 for all m
and thus ũ(F ) = ũ(F ′) =∞.

We now construct a tower of fields L1 ⊂ L2 ⊂ · · · such that Li will be the
power series field in the variable t over some L′i, Li = L′i((t)), such that Fi ⊂ Li

(resp. F ′i ⊂ Li), and (µm)Li
anisotropic for all m ≥ 0 and all i ≥ 1. This

then shows that (µm)Fi
(resp. (µm)F ′

i
) is anisotropic for all m ≥ 0, i ≥ 1, and

therefore (µm)F (resp. (µm)F ′) will be anisotropic for all m ≥ 0.
Suppose we have constructed Li = L′i((t)). Note that necessarily Li is real

as (µm)Li
is anisotropic for all m ≥ 0. Let Pi ∈ XL′

i
be any ordering and M ′

i

be the compositum over L′i of the function fields of all forms (defined over L′i)
in

C′(L′i) = {α |α indefinite at Pi, dimα ≥ 3} .
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Let Mi =M ′
i((t)).

Now let ρ ∈ Cj(Fi) (resp. Cj(F
′
i )), 1 ≤ j ≤ 4. By Springer’s theorem,

ρLi

∼= ρ1 ⊥ tρ2 with ρk, k = 1, 2, defined over L′i. We will show that ρk ∈ C′(L′i)
for at least one k ∈ {1, 2}.

First, note that forms in Cj(Fi) (resp. Cj(F
′
i )), 1 ≤ j ≤ 4, are of dimension

≥ 6 (recall that 2 ≤ λ = n−1). Thus, dim ρk ≥ 3 for at least one k ∈ {1, 2}. If
ρLi

is isotropic, then over L′i we have 〈1,−1〉 ⊂ ρk for at least one k ∈ {1, 2},
and since 〈1,−1〉 ∼= t〈1,−1〉, we may “shift” the hyperbolic plane from one ρk

to the other if necessary to obtain the desired result, namely that ρk ∈ C′(L′i)
for at least one k ∈ {1, 2}.

Let us therefore assume that ρLi
is anisotropic.

Suppose ρ ∈ C1(Fi) (resp. C1(F ′i )). Then dim ρ ≥ 8, and we can write
ρ ∼= η ⊥ τ over Fi, with τ torsion and dim τ ≥ 4. Now τLi

∼= τ1 ⊥ tτ2 with
τk, k = 1, 2, defined over L′i. Since τ is torsion, we have that τ1 and τ2 are
torsion. Now τk ⊂ ρk over L′i by Springer’s theorem as ρLi

is anisotropic, and a
simple dimension count shows that there exists at least one k ∈ {1, 2} such that
dim τk ≥ 2 and dim ρk ≥ 4, which implies that for this k we have ρk ∈ C′(L′i).

Suppose ρ ∼= 〈1, 1〉 ⊗ 〈1, x, y,−xy〉 ∈ C2(Fi) (resp C2(F ′i )). Then either
ρLi

is already defined over L′i, in which case it is a t.i. form of dimension 8
and thus in C′(L′i). Or there exist a, b ∈ L′∗i such that ρLi

∼= 〈1, 1〉 ⊗ 〈1, a〉 ⊥
bt〈1, 1〉⊗〈1,−a〉. then either 〈1, 1〉⊗〈1, a〉 is indefinite at Pi and thus in C′(L′i),
or 〈1, 1〉 ⊗ 〈1,−a〉 is indefinite at Pi and thus in C′(L′i).

Finally, if ρ ∈ Cj(Fi) (resp. ρ ∈ Cj(F
′
i )), j = 3, 4, then ρ is already torsion of

dimension ≥ 6 (for j = 3 this follows from the Arason-Pfister Hauptsatz), but
then ρ1 and ρ2 are torsion over L′i, and since at least one of them is necessarily
of dimension ≥ 4, the result follows.

Thus, each ρ ∈ Cj(Fi) (resp. Cj(Fi)), 1 ≤ j ≤ 4 has the property that
ρLi

∼= ρ1 ⊥ tρ2 with ρk, k = 1, 2, defined over L′i and ρk ∈ C′(L′i) for at
least one k. But then, (ρk)M ′

i
is isotropic by construction, hence also ρMi

. In

particular, Mi(ρ)/Mi is a purely transcendental extension.
Let us now show that (µm)F is anisotropic for allm. Let Ni be the composi-

tum of the function fields of all forms αMi
with α ∈ C1(Fi) ∪ C2(Fi) ∪ C3(Fi).

By the above, Ni/Mi is purely transcendental. Let B be a transcendence
basis so that Ni = Mi(B) = M ′

i((t))(B). We now put L′i+1 = M ′
i(B) and

Li+1 = L′i+1((t)) = M ′
i(B)((t)). There are obvious inclusions Fi+1 ⊂ Ni =

M ′
i((t))(B) ⊂M ′

i(B)((t)) = Li+1. Since M
′
i is obtained from L′i by taking func-

tion fields of forms indefinite at Pi, we see that Pi extends to an ordering on
M ′

i and thus clearly also to orderings on L′i+1.
To show that (µm)F is anisotropic, it thus suffices to show that if µm is

anisotropic over Li, then it stays anisotropic over Li+1. Now m×〈1〉 is clearly
anisotropic over the real field L′i+1. Also, 〈1,−(1 + x2

1)〉, which is anisotropic
over L′i by assumption, stays anisotropic over L′i+1 as L′i+1 is obtained by
taking function fields of forms of of dimension ≥ 3 over L′i followed by a purely
transcendental extension. By Springer’s theorem, (µm)Li+1

= (m × 〈1〉 ⊥
t〈1,−(1 + x2

1)〉)Li+1
is anisotropic.
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The proof for F ′ is the same as above except that we have to take Ni

above to be the compositum of the function fields of all forms αMi
with α ∈

C1(F ′i ) ∪ C2(F ′i ) ∪ C3(F ′i ) ∪ C4(F ′i ).
The case λ = u = ũ =∞
This can be done by the same type of construction as above, but this time

we only consider function fields of forms of the following types :

C1(L) = {α |α = 〈1, 1〉 ⊥ 〈1, x, y,−xy〉, x, y ∈ L∗}
C2(L) = {α |α form/L, α ∈ I3

t L}
The field F we will obtain has, just as before, the property SAP and I3

t F =
0. Furthermore, the algebra An will stay a division algebra over F for all
n ≥ 3. Hence λ(F ) = ∞ and it follows immediately that u(F ) = ũ(F ) = ∞.
(Note that for each n ≥ 2 the form (ψn)F will be an anisotropic 2n-dimensional
torsion form.)

Now we can prove Corollary 1.6 from the introduction, which we restate in
a more detailed version for the reader’s convenience.

Corollary 3.2. Let F be a real field with I3
t F = 0. Then

(u(F ), ũ(F )) ∈ {(2n, 2n);n ≥ 0} ∪ {(2n,∞);n ≥ 0} ∪ {(2n, 2n+ 2);n ≥ 2} .
All pairs of values on the right hand side can be realized as pairs (u(F ), ũ(F ))
for suitable real F with I3

t F = 0. Furthermore, there exist such F which are
SAP with the only exceptions being the pairs (0,∞), (2,∞).

Proof. Let us first show that no other values are possible. By Lemma 2.4,
u and ũ are always even or infinite. If F in non-SAP, then ũ(F ) = ∞. So
suppose that F is SAP. If u(F ) ≤ 2, then ũ(F ) ≤ 2 by [ELP, Theorems E,F],
and it follows readily that u(F ) = ũ(F ) ∈ {0, 2}. Note that this also shows
that (0,∞), (2,∞) cannot be realized by SAP-fields. If F is linked, then by
Theorem 1.1, u(F ) = ũ(F ) ∈ {0, 2, 4, 8}. If, however F is non-linked, then
Theorem 1.5 (3.1) shows that there can be no other pairs (u, ũ) than the ones
in the statement of the corollary.

The pairs (u, ũ) = (0, 0) (resp. (2, 2)) can be realized by R (resp. the
rational function field in one variable over the reals, R(X)). Real global fields
have (u, ũ) = (4, 4). (u, ũ) = (0,∞) is realized by R((X))((Y )), see also Example
2.12. Examples of fields with (u, ũ) = (2,∞) can be found in [EP, Cor. 5.2]. All
other combinations have been realized in Theorem 1.5 (3.1) by SAP-fields.
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