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ABSTRACT. Quadratic quaternion forms, introduced by Seip-Hornix
(1965), are special cases of generalized quadratic forms over algebras
with involutions. We apply the formalism of these generalized qua-
dratic forms to give a characteristic free version of different results
related to hermitian forms over quaternions:

1) An exact sequence of Lewis

2) Involutions of central simple algebras of exponent 2.

3) Triality for 4-dimensional quadratic quaternion forms.
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1. INTRODUCTION

Let F be a field of characteristic not 2 and let D be a quaternion division algebra
over F. It is known that a skew-hermitian form over D determines a symmetric
bilinear form over any separable quadratic subfield of D and that the unitary
group of the skew-hermitian form is the subgroup of the orthogonal group
of the symmetric bilinear form consisting of elements which commute with a
certain semilinear mapping (see for example Dieudonné [f]). Quadratic forms
behave nicer than symmetric bilinear forms in characteristic 2 and Seip-Hornix
developed in [E] a complete, characteristic-free theory of quadratic quaternion
forms, their orthogonal groups and their classical invariants. Her theory was
subsequently (and partly independently) generalized to forms over algebras
(even rings) with involution (see [L1], [0, [}, [§])-

Similitudes of hermitian (or skew-hermitian) forms induce involutions on the
endomorphism algebra of the underlying space. To generalize the case where
only similitudes of a quadratic form are considered, the notion of a quadratic
pair was worked out in [E] Relations between quadratic pairs and generalized
quadratic forms were first discussed by Elomary [
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The aim of this paper is to apply generalized quadratic forms to give a charac-
teristic free presentation of some results on forms and involutions. After briefly
recalling in Section 2 the notion of a generalized quadratic form (which, follow-
ing the standard literature, we call an (e, o)-quadratic form) we give in Section
3 a characteristic-free version of an exact sequence of Lewis (see [f, [§, p. 389]
and the appendix to [E}), which connects Witt groups of quadratic and quater-
nion algebras. The quadratic quaternion forms of Seip-Hornix are the main
ingredient. Section 4 describes a canonical bijective correspondence between
quadratic pairs and (g, o)-quadratic forms and Section 5 discusses the Clifford
algebra. In particular we compare the definitions given in [m and in [ﬂ] In Sec-
tion 6 we develop triality for 4-dimensional quadratic quaternion forms whose
associated forms (over a separable quadratic subfield) are 3-Pfister forms. Any
such quadratic quaternion form 6 is an element in a triple (61, 60s,03) of forms
over 3 quaternions algebras Dy, Dy and D3 such that [D1][D3][D3] =1 in the
Brauer group of F. Triality acts as permutations on such triples.

2. GENERALIZED QUADRATIC FORMS

Let D be a division algebra over a field F' with an involution ¢ : x — T. Let V
be a finite dimensional right vector space over D. An F-bilinear form

k:VxV —>D

is sesquilinear if k(za,yb) = ak(x,y)b for all z, y € V, a, b € D. The additive
group of such maps will be denoted by Sesq, (V, D). For any k € Sesq, (V, D)
we write

K (x,y) = k(y, =).
Let ¢ € I'* be such that e = 1. A sesquilinear form k such that k = ek*
is called e-hermitian and the set of such forms on V will be denoted by
Herm? (V, D). Elements of
Ao (V,D)={g=f—ef" | f €Sesq,(V.D)}.
are e-alternating forms. We obviously have Alt_°(V, D) C Herm: (V, D). We
set
Q5 (V, D) = Sesq, (V, D)/ Alt; (V, D)

and refer to elements of QF(V, D) as (g,0)-quadratic forms. We recall that
(e, 0)-quadratic forms were introduced by Tits [[L]], see also Wall [[L1], Bak [f]] or
Scharlau [E, Chapter 7]. For any algebra A with involution 7, let Sym®(A,7) =
{a € A|la=cer(a)} and At*(A,7) ={a € A|a=c—e7(c), c € A}. To
any class 0 = [k] € Q5 (V, D), represented by k € Sesq, (V, D), we associate a
quadratic map

go:V — D/ Alt*(D,0), qo(z) = [k(z, )]
where [d] denotes the class of d in D/ Alt; (D). The e-hermitian form

bg(l’,y) = k(x7y) +€k*(x7y) = k(x7y) —|—€k(y71'>
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depends only on the class 6 of k in QF (V, D). We say that by is the polarization
of gp.

PROPOSITION 2.1. The pair (qg,bg) satisfies the following formal properties:

a(z+y) = qo()+q0(y) + [bo(z,y)]
(1) qo(xd) = dqo(x)d
bo(z,x) = qp(x) + eqp(x)

for all x, y € V, d € D. Conversely, given any pair (¢,b), q : V —
D/Alt*(D,o), b € Herm: (V, D) satisfying (), there exist a unique § €
QS (V, D) such that ¢ = qg, b = by.

Proof. The formal properties are straightforward to verify. For the converse
see [[L1], Theorem 1]. O

EXAMPLE 2.2. Let D = F, 0 = Idr and € = 1. Then sesquilinear forms are
F-bilinear forms, Alt°(D,o) = 0 and a (o, ¢)-quadratic form is a (classical)
quadratic form. We denote the set of bilinear forms on V' by Bil(V, F). Ac-
cordingly we speak of e-symmetric bilinear forms instead of e-hermitian forms.

EXAMPLE 2.3. Let D be a division algebra with involution ¢ and let D be a
finite dimensional (right) vector space over D. We use a basis of V' to identify
V with D™ and Endp (V) with the algebra M, (D) of (n x n)-matrices with
entries in D. For any (nxm)-matrix x = (;;), let 2* = T, where ¢ is transpose
and T = (T;;). In particular the map a — a* is an involution of A = M,, (D). If
we write elements of D™ as column vectors # = (x1,... ,2,)" any sesquilinear
form k over D™ can be expressed as k(x,y) = z*ay, with a € M, (D), and
E*(z,y) = z*a*y. We write Alt, (D) = {a = b —eb*} C M, (D), so that
er(‘/a D) = M, (D)/ Alt, (D).

EXAMPLE 2.4. Let D be a quaternion division algebra, i.e. D is a central
division algebra of dimension 4 over F. Let K be a maximal subfield of D
which is a quadratic Galois extension of F' and let o : x — T be the nontrivial
automorphism of K. Let j € K \ F be an element of trace 1, so that K = F(j)
with j2 = j+ X\, A € F. Let £ € D be such that o~ = 7 for z € K,
(? = € F*. The elements {1,4,¢,¢j} form a basis of D and D = K & (K is
also denoted [K, ). The F-linear map ¢ : D — D, o(d) = Trdp(d) —d = d
is an involution of D (the “conjugation”) which extends the automorphism
o of K. The element N(d) = do(d) = o(d)d is the reduced norm of d. We
have Alt;'(D) = F and (o, —1)-quadratic forms correspond to the quadratic
quaternion forms introduced by Seip-Hornix in [E] Accordingly we call (o, —1)-
quadratic forms quadratic quaternion forms.

The restriction of the involution 7 to the center Z of A is either the identity
(involutions of the first kind) or an automorphism of order 2 (involutions of the
second kind). If the characteristic of F' is different from 2 or if the involution
is of second kind there exists an element j € Z such that j 4+ o(j) = 1. Under
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such conditions the theory of (o,¢)-quadratic forms reduces to the theory of
g-hermitian forms:

PROPOSITION 2.5. If the center of D contains an element j such that j+o(j) =
1, then Herm_°(V,D) = Al (V,D) and a (o,¢)-quadratic form is uniquely
determined by its polar form by.

Proof. If k = —ck* € Herm, °(V, D), then k = 1k = jk + jk = jk — jek* €
AltZ (V, D). The last claim follows from the fact that polarization induces an
isomorphism Sesq, (V, D)/ Herm, *(V, D) — Q5 (V, D). O

For any left (right) D-space V we denote by °V the space V' viewed as right
(left) D-space through the involution o. If %z is the element = viewed as an
element of °V, we have “zd =° (o(d)x). Let V* be the dual “Homp(V, D) as
a right D-module, i.e., (°fd)(z) = °(df)(z), x € V, d € D. Any sesquilinear
form k € Sesq, (V, D) induces a D-module homomorphism BV — V* z—
k(z,—). Conversely any homomorphism ¢ : V' — V* induces a sesquilinear
form k € Sesq,(V, D), k(z,y) = g(z)(y) and the additive groups Sesq,(V, D)
and Homp(V,V*) can be identified through the map h +— k. For any f :
V — V', let f*: V" — V* be the transpose, viewed as a homomorphisms
of right vector spaces. We identify V' with V** through the map v — v**,
v**(f) = f(v). Then, for any f € Homp(V,V*), f* is again in Homp(V,V*)
and k* = k*. A (0, €)-quadratic form gy is called nonsingular if its polar form by
induces an isomorphism bo. A pair (V, gg) with gs nonsingular is called a (o, €)-
quadratic space. For any vector space W, the hyperbolic space V.=W & W*
equipped with the quadratic form g¢g, 6 = [k] with

k((p,a), @' d)) = a@),

is nonsingular. There is an obvious notion of orthogonal sum V' 1L V' and
a quadratic space decomposes whenever its polarization does. Most of the
classical theory of quadratic spaces extends to (o,e)-quadratic spaces. For
example Witt cancellation holds and any (o,e)-quadratic space decomposes
uniquely (up to isomorphism) as the orthogonal sum of its anisotropic part with
a hyperbolic space. Moreover, if we exclude the case 0 = 1 and ¢ = —1, any
(0,€)-quadratic space has an orthogonal basis. A similitude of (o, £)-quadratic
spaces t : (V,q) = (V',¢') is a D-linear isomorphism V' s V' such that
¢ (tx) = p(t)g(x) for some p(t) € F*. The element pu(t) is called the multiplier
of the similitude. Similitudes with multipliers equal to 1 are isometries. As in
the classical case there is a notion of Witt equivalence and corresponding Witt
groups are denoted by W¢(D, o).

3. AN EXACT SEQUENCE OF LEWIS

Let D be a quaternion division algebra. We fix a representation D = [K, ) =
K @ (K, with (2 = u, as in (@) Let V be a vector space over D. Any
sesquilinear form &k : V x V — D can be decomposed as

k(z,y) = P(z,y) + {R(x,y)
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with P: V xV — K and R:V xV — K. The following properties of P and
R are straightforward.

LEMMA 3.1. 1) P € Sesq,(V, K), R € Sesq, (V, K) = Bil(V, K).
2) k* = P* — (R', where P*(z,y) = P(y,z) and R'(z,y) = R(y, z).

The sesquilinearity of k implies the following identities:

R(‘r&y) = —P(x,y), R(x,yﬂ) = P(m,y)
(2) P(ztl,y) = —pR(z,y), P(z,yt) = pR(x,y)
P(xtl,yl) = —pP(z,y), R(zl,yl) = —pR(z,y)

Let VO be V considered as a (right) vector space over K (by restriction of
scalars) and let 7 : V? — VO 2 +— xf. The map T is a K-semilinear automor-
phism of V? such that T2 = u. Conversely, given a vector space U over K,
together with a semilinear automorphism 7" such that T2 = p € F'*, we define
the structure of a right D-module on U, D = [K, i), by putting x¢ = T'(x).

LEMMA 3.2. Let V be a vector space over D. 1) Let f1 : VO x VO — K be a
sesquilinear form over K. The form

f(x,y) = fl(aj,y) - (p,_lfl(Tx,y>

is sesquilinear over D if and only if f1(Tz,Ty) = —pf1(z,y).
2) Let fo: VO x VO — K be a bilinear form over K. The form

f(:v,y) = _f2(Tx7y) +€f2(x7y)

is sesquilinear over D if and only if fo(Tx, Ty) = —pfa(z,y).

Proof. The two claims follow from the identities (f). O

Let f be a bilinear form on a space U over K and let A € K*. A semilinear
automorphism ¢ of U such that f(tz,ty) = Af(z,y) for all x € U is a semilinear
similitude of (U, f), with multiplier X. In particular Tz = ¢ is a semilinear
similitude of R on V°, such that T? = y and with multiplier —u. The following
nice observation of Seip-Hornix @, p. 328] will be used later:

PROPOSITION 3.3. Let R be a K -bilinear form over U and let T be a semilinear
similitude of U with multiplier A € K* and such that T? = p. Then:
1)per,

2) For any § € K and x € U, let pe(x) = x€. There exists v € K* such that
T' = p, o T satisfies T'*> = i/ and R(T'z,T'y) = —p'R(x,y).

Proof. The first claim follows from p = A\. For the second we may assume that

A # u (if A = p replace T by T o py for an appropriate k). For v = (1 — uA~1)
we have p/ =2 — X — \. dJ
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Assume that k& € Sesq,(V, D) defines a (o,¢)-quadratic space [k] on V over
D. Tt follows from (B.I]) that P defines a (o, €)-quadratic space [P] on V° over
K and R a (Id,—¢)-quadratic space [R] on V? over K. Let K = F(j) with
j2=j+ A\ Let r(z,y) = R(x,y) — eR(y, x) be the polar of R.

PROPOSITION 3.4. 1) qipj(x) = Ej[r(z, Tz)]

2) qu (z) = Ej[r(z, Tx)] + Lqpry ()

3) The map T is a semilinear similitude of (q[R], Vo) with multiplier — .
Proof. Tt follows from the relations (f) that

(3) P(z,z)+eP(z,z) = R(x,Tx) —eR(Tx,z) = r(z,Tx)

and obviously this relation determines P(z,x) up to a function with values in
Sym°(K, o). Since Sym ¢ (K,0) = Alt"°(K, o) by (.9), [P] is determined by
@). Since r(z, Tz) = &r(z, Tx) by ({), we have &jr(x, Tx) + e(gjr(z, Tx)) =
r(x,Tx) and 1) follows. The second claim follows from 1) and 3) is again a
consequence of the identities (H) O

COROLLARY 3.5. Any pair ([R],T) with [R] € Q{(U,K) and T a semilinear
similitude with multiplier —p € F* and such that T? = p, determines the
structure of a (o,€)-quadratic space on U over D = [K, ).

PRrOPOSITION 3.6. The assignments h — P and h — R induce homomor-
phisms of groups m : W¢(D,—) — W¢(K,—) and my : W ¢(D,—) —
We (K, Id).

Proof. The assignments are obviously compatible with orthogonal sums and
Witt equivalence. O

We recall that W¢(K, —) can be identified with the corresponding Witt group
of e-hermitian forms (apply (R.3)). However, it is more convenient for the
following computations to view e-hermitian forms over K as (o, ¢)- quadratic
forms. Let i € K* be such that o(i) = —i (take ¢ = 1 if Char F' = 2). The map
k +— ik induces an isomorphism s : W¢(K, —) = W~¢(K, —) (“scaling”). For
any space U over K, let Up = U ®g D. We identify Up with U & U¥ through
the map u ® (x + fy) — (ux,uyl) and get a natural D-module structure on
Up = U ® U¥l. Any K-sesquilinear form k on U extends to a D-sesquilinear
form kp on Up through the formula

kp(z® a,y ®b) = ak(x,y)b
forz,y € U and a, b € D.
LEMMA 3.7. The assignment k — (ik)p induces a homomorphism

B WK, =) = W™(D, )
Proof. Let k = (ik)p. We have (k)* = —k*. O
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THEOREM 3.8 (Lewis). With the notations above, the sequence

We(D, ) —" W(K,~) —— W (D, ) —" We(K, Id)

15 exact.

Proof. This is essentially the proof given in Appendix 2 of [E] with some changes
due to the use of generalized quadratic forms, instead of hermitian forms. We
first check that the sequence is a complex. Let [k] € Q5 (V, D) and let V° = U.
We write elements of Up = U@ U/ as pairs (z, y¢) and decompose kp = P+/R.
By definition we have Sy ([k]) = [8(P)] and

ﬂ(P)((zlayl)v(l”myz)) = i(P(‘ThIZ) +P(x1,y2)£+£P(y1,x2)
+0P(y1,y2)C).

Let (zl,2l) € U @ Ul. We get B3(P)((xl, ), (xl,xl)) = 0 hence W =
{(zt,20)} C U @ U/ is totally isotropic. It is easy to see that W C W+,
so that [B(P)] is hyperbolic and S om; = 0. Let [g] € Q5 (U, K). The sub-
space W = {(x,0) € U @ U/} is totally isotropic for mo3([g]) and W C W+.
Hence m/3([g]) = 0. We now prove exactness at We(K,—). Since the claim
is known if Char # 2, we may assume that Char = 2 and ¢ = 1. Let
l[g] € Q2 (U, K) be anisotropic such that 3([g]) = 0 € W=¢(D,—). In par-
ticular S([g]) € Q,°(Up, D) is isotropic. Hence the exist elements x1, 22 € U
such that [g]((x1, z2¢), (x1,x2€)) = 0. This implies (in Char 2) that

(4) g(z1,21) + pg(x2,22) € F, g(w1,22)0 4 Lg(22,21) = 0.
Let V1 be the K-subspace of V' generated by z1 and x2. Since [g] is anisotropic,
[9] = [g1] L [g2] with g1 = g|v,. We make V] into a D-space by putting
(1‘10,1 + 1‘2&2)6 = ,U,Igal + T1a9

To see that the action is well-defined, it suffices to show that dimg Vi = 2.
The elements x; and x2 cannot be zero since [g] is anisotropic, so assume
Ty = x10, ¢ € K*. Then (E) implies g(x1,x1) + pccg(x1,z1) € F, which
contradicts the fact that g is anisotropic. Let g1(x1,x1) + pg1 (22, xz2) = z € F.
Let f € Sesq,(Vi1,K). Replacing g1 by ¢1 + f + f* defines the same class in
QS (V1, K) (recall that Char F' = 2). Choosing f as

flz1,21) = j2, f(x2,22) =0, f(21,22) = f(22,21) =0,
we may assume that
(5) g1(x1,21) + pg1(w2,22) =0, g1 (21, 22)0 + Lg1(z2,21) = 0.
By (B-J) we may extend g to a sesquilinear form

g (@,y) = g1(z,y) + lu~ " gi(al,y)

over D if ¢y satisfies

g1(xl,yl) = —pgi(z,y)

This can easily be checked using (f]) (and the definition of 2.¢). Then g is in the
image of 7. Exactness at W¢ (K, —) now follows by induction on the dimension
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of U. We finally check exactness at W~¢(D,—). Let [k] be anisotropic such
that mo([k]) = 0 in W—¢(K,Id). In particular mo([k]) is isotropic; let x # 0
be such that mok(z,2) = 0 and let W be the D-subspace of V' generated by z.
Since [k] is anisotropic, [k'] = [k|w] is nonsingular and [k] = [k'] L [k”]. The
condition mek(x,z) = 0 implies k(z,z) € K. Let W; be the K-subspace of W
generated by x. Define g : Wy x Wy — K by g(za,xb) = k(za,zb)i~! for a,
b € K. Then clearly [g] defines an element of W¢(K,—) and 8(g) = k’. Once
again exactness follows by induction on the dimension of V. U

4. INVOLUTIONS ON CENTRAL SIMPLE ALGEBRAS

Let D be a central division algebra over F', with involution ¢ and let b: V' xV —
D be a nonsingular e-hermitian form on a finite dimensional space over D. Let
A =Endp (V). The map o3 : A — A such that op(N\) = o(\) for all A € F and

b(o(f)(2),y) = b(z, f(y))

for all z, y € V, is an involution of A, called the involution adjoint to b. We
have op(f) = g’lf*g, where b : V =5 V* is the adjoint of b. Conversely,
any involution of A is adjoint to some nonsingular e-hermitian form b and b is
uniquely multiplicatively determined up to a o-invariant element of F*.

Any automorphism ¢ of A compatible with oy, i.e., oy (qb(a)): ¢(0b(a)), is of
the form ¢(a) = uau™" with u : V' V a similitude of b. We say that an invo-
lution 7 of A is a g-involution if T is adjoint to the polar by of a (¢, £)-quadratic
form 0. We write 7 = 0. Two algebras with g-involutions are isomorphic if the
isomorphism is induced by a similitude of the corresponding quadratic forms.
Over fields g-involutions differ from involutions only in characteristic 2 and for
symplectic involutions. In view of possible generalizations (for example rings in
which 2 # 0 is not invertible) we keep to the general setting of (o, £)-quadratic
forms. Let F be the subfield of F' of o-invariant elements and let T, g, be the
corresponding trace.

LEMMA 4.1. The symmetric bilinear form on A given by Tr(z,y) =
Tr/r, (Trda(zy)) is nonsingular and Sym(A, 7)* = Alt(A, 7).

Proof. Tf T is of the first kind Fy = F and the claim is (2.3) of [[]. Assume that 7
is of the second kind. Since the bilinear form (z,y) — Trd 4(zy) is nonsingular,
Tr is also nonsingular and it is straightforward that Alt(A4,7) C Sym(A, 7).
Equality follows from the fact that dimpg, Alt(A,7) = dimpg, Sym(A,7) =
dimp A. O

PROPOSITION 4.2. Let (V,0), 0 = [k] be a (0,€)-quadratic space over D and
leth =k+ek*:V = V*. The Fy-linear form

fo: Sym(A, o) = Fo, fo(s) = Tr(h""ks), s € Sym(4, o)
depends only on the class § and satisfies fo(x + og(z)) = Tr(z).
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Proof. The first claim follows from ([L1) and the fact that if k € AltZ(V, D)
then h=1k € Alt},6 (V, D). For the last claim we have:

fo(z+oe(z)) = Tr(h 1k(3:—|—09(x))
(- he) + T P
(h~ E ) (kh )
(h™ 1ﬁx) +Tr(ac k*)
(b~ k) + Tr(

h='kx) + Tr(h~ 15k* ) = Tr(z).

O

LEMMA 4.3. Let 7 be an involution of A =Endp(V) and let f be A Fy-linear
form on Sym(A,T) such that f(z + 7(z)) = Tr(z) for all z € A. There exists
an element u € A such that f(s) = Tr(us) and u+ 7(u) = 1. The element u
is uniquely determined up to additivity by an element of Alt(A, 7). We take
u=1/2 if Char F' # 2.

Proof. The proof of (5.7) of [[]] can easily be adapted. O

PROPOSITION 4.4. Let 7 be an involution of A = Endp(V) and let f be A
Fy-linear form on Sym(A,7) such that f(z + 7(x)) = Tr(x) for all z € A.

1) There exists a nonsingular (o,€)-quadratic form 6 on V such that T = og
and f = fy.

2) (o9, fo) = (o¢r, for) if and only if ' = N0 for \ € Fy.

3) If T =09 and f = fo with fp(s) = Tr(us), the class of u in A/ Alt(A, op) is
uniquely determined by 0.

Proof. Here the proof of (5.8) of [f] can adapted. We prove 1) for completeness.
Let 7(x) = h=*a*h, h = eh* : V = V*. Let f(s) = Tr(us) with u+ 7(u) =1
and let k € Sesq, (V, D) be such that k = hu : V — V*. We set § = [k]. It is
then straightforward to check that h = k + ek*. O

PROPOSITION 4.5. Let ¢ :(Endp(V),09) —(Endp(V'),00) be an isomor-
phism of algebras with involution. Let fg(s) = Tr(us) and fo (s') = Tr(u's’).
The following conditions are equivalent:

1) ¢ is an isomorphism of algebras with g-involutions.

2) for(6(s)) = fo(s) for all s € Sym(Endp(V),09).

3) [p(u)] = [u'] € EndD(V’)/Alt(EndD(V’),09:).

Proof. The implication 1) = 2) is clear. We check that 2) = 3). Let ¢ be
induced by a similitude ¢ : (V,bg) — (V' ,bg). Since fo(¢ps) = fo(s), we
have Tr(t~tu'ts) = Tr(u'tst™') = Tr(us) for all s € Sym(Endp(V),09), hence
[¢(u)] = [v/]. The implication 3) = 1) follows from the fact that u can be
chosen as h='k, h = k + ck*. O
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REMARK 4.6. We call the pair (g, fy) a (0, €)-quadratic pair or simply a qua-
dratic pair. It determines 6 up to the multiplication by a o-invariant scalar
A € F*. In fact oy determines the polar by up to A and fy determines u. We

o~

have 6 = [bpu].

EXAMPLE 4.7. Let ¢ : V — F be a nonsingular quadratic form. The polar b,
induces an isomorphism ¢ : V ®p V = Endp(V) such that o, (v(z ® y)) =
Y(y®z). Thus ¢(z @ z) is symmetric and fq(Y(z @) = gq(z) (see M, (5.11)].
More generally, if V' is a right vector space over D, we denote by *V the space
V viewed as a left D-space through the involution ¢ of D. The adjoint 5; of a
(0, €)-quadratic space (V, #) induces an isomorphism ¢ : V®p °V — Endp (V)
and 1g(zd ® ) is a symmetric element of (Endp(V),04) for all z € V and all
e-symmetric d € D. One has fp(¢Y(2d ® z)) = [dk(z,x)], where 8 = [k] (see [
Theorem 7]).

5. CLIFFORD ALGEBRAS

Let o be an involution of the first kind on D and let € be a nonsingular
(0,€)-quadratic form on V. Let oy be the corresponding g-involution on A =
Endp (V). We assume in this section that over a splitting A® p FF —> End (M)
of A, 0 =0 ® 15 is a (Id, 1)-quadratic form ¢ over F, ie. 0 is a (classical)
quadratic form. In the terminology of [f] this means that o4 is orthogonal
if Char # 2 and symplectic if Char = 2. From now on we call such forms
over D quadratic forms over D, resp. quadratic spaces over D if the forms are
non-singular.

Classical invariants of quadratic spaces (V, ) are the dimension dimp V' and
the discriminant disc(f) and the Clifford invariant associated with the Clifford
algebra. We refer to [, §7] for the definition of the discriminant. We recall the
definition of the Clifford algebra C1(V,8), following [[[(, 4.1]. Given (V,6) as
above, let 6 = [k], k € Sesq, (V, D), by = k + ek* and h = by € Homp(V,V*).
Let A =Endp(V), B = Sesq,(V,D) and B’ =V ®p °V. We identify A with
V ®p °V* through the canonical isomorphism (z ® 7f)(v) = 2 f(v) and B with
V*®@p °V* through (f® %)(z,y) = g(z)f(y). The isomorphism h can be used
to define further isomorphisms:

wg:B =Vep V5 A=Endp(M), gp: 22y +— x® h(y)
and the isomorphism v, already considered in ([£.7):
Yo: A B, Pg:x® °f — h(z)® .

We use @y and ¢y to define maps B’ x B — A, (/,b) — V'band A x B’ — B/,
(a,b) — ab':

(z® %Y)(h(u) ® g) = zb(y, u) ® °f and (2®,7 f)(u®,7v) = zf(u) ® h(v)
Furthermore, let 7y = @;10'9909 : B" — B’ be the transport of the involution

og on A. We have 9(x ® %) = ey ® 2. Let S1 = {s1 € B" | 79(s1) = s1}. We
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have S = (Alt*(V, D))J' for the pairing B’ x B — F, (b',b) — Trds(b'b). Let
Sand be the bilinear map B’ ® B’ x B — B’ defined by Sand (b} ® b}, b) = b,bb].
The Clifford algebra C1(V,0) of the quadratic space (V, ) is the quotient of the
tensor algebra of the F-module B’ by the ideal I generated by the sets

I, = {81 — TI"dA(SlkI)l, S1 € Sl}
I, = {c—Sand(c,k) | Sand(c, Alt°(V, D)) = 0}.

The Clifford algebra C1(V,#) has a canonical involution o induced by the
map 7. We have CI(V,0) @p F = CI(V @5 F,0® 1) for any field extension F
of F and CI(V,q) is the even Clifford algebra Cy(V,q) of (V,q) if D = F ([[i0)
Théoréme 2]). The reduction is through Morita theory for hermitian spaces
(see for example [E, Chapter I, §9] for a description of Morita theory). In [El,
88] the Clifford algebra C(A, oy, fg) of the triple (A, o0y, fo) is defined as the
quotient of the tensor algebra T'(A) of the F-space A by the ideal generated
by the sets

Ji = {s—Trda(us), s € Sym(A,oy)}
Jo = {c—Sand'(c,u), c € A with Sand’(c, Alt(A4,04)) = 0}

~ 1
where u = by k and Sand’ : (A® A, A) — A is defined as Sand’(a®b, x) = axb.
The two definitions give in fact isomorphic algebras:

PROPOSITION 5.1. The isomorphism g : V ®@p °V = Endp (V) induces an
isomorphism CL(V,0) = C(A, 0g, fo).

Proof. We only check that ¢y maps I7 to J;. By definition of 7 and Sy, s =

©p(s1) is a symmetric element of A. On the other hand we have by definition
of the pairing B’ x B — A,

Trda(sik) = Trda(ps(s1)v, ' (k)

Trd 4 (sh_lk) = Trda(su) = Trd 4 (us),

hence the claim. O

In particular we have C(Endr(V), 04, f;) = Co(V,q) for a quadratic space
(V,q) over F. It is convenient to use both definitions of the Clifford algebra of
a generalized quadratic space.

Let D = [K, pn) = K®LK be a quaternion algebra with conjugation o. Let V be
a D-module and let V9 be V as a right vector space over K (through restriction
of scalars). Let T : VO — VO Tz = 2. We have Endp(V) C Endg (V?) and

Endp(V) = {f € Endg(V°) | fT =Tf}.

Let 6 = [k] be a (0, —1)-quadratic space and let k(z,y) = P(z,y) + {R(z,y) as
in Section 3. It follows from (B.1)) that R defines a quadratic space [R] on V°
over K.

PROPOSITION 5.2. We have o(g)|gnap(v) = 09 and fo = fir)|Endpv)-
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Proof. We have an embedding D — My(K), a + ¢b— (Z /Zb) and conjuga-

tion given by z — z* = ¢ 'a'c, ¢ = (_01 é) The choice of a basis of V over
D identifies V with D", V° with K2*, Endp(V) with M, (D) and Endg (V°)
with Ms, (K), where n = dimp V. We further identify V' and V* through the
choice of the dual basis. We embed any element © = z1 + lzy € My (D),
x; € My (K) in Moy (K) through the map ¢ : ¢ +— § = (;1 ?2) In
2 1
particular D™ is identified with a subspace of the space of (2n x 2)-matrices
over K. Then D C M (K) operates on the right through (2 x 2)-matrices and
M, (D) C Ms,(K) operates on the left through (2n x 2n)-matrices. With the
notations of Example (2.J) we have 1(z*) = Int(c™1)(z!). Any D-sesquilinear
form k on D™ can be written as k(z,y) = 2*ay, where a € M, (D), as in (R.3).
Let a = a1 + fag, a; € M, (K) and let

o= ila) = ( W?) |
a9 aq
Let n = u(y), y = y1 + Lya. We have

e (m @\ (e p@2\ (v e
k(m,y)—xay—fan—(m $_1> (112 a_1)<y2 m)

On the other side it follows from h = P + (R that R(z,y) = &'pn with

| a2 a1
P —ay —paz )’

Assume that § = [k] , so that oy corresponds to the involution Int(y~1) o x,
where v = a — . Similarly o) corresponds to the involution Int(p~1) ot

_01 é), so that
pt =alct = —alc = —ca* and p+p' = c(a—a*) or ¢y = p. Now * = Int(c~1)ot
implies ogj|ar, (p)y = 09. We finally check that fo = fig)lsym(m, (D),0q)- We
have fo(s) = Trda, (py(y 'as) and fig)(s) = Trdag, (k)(p~ ' ps), hence the
claim, since p = ca and p = ¢y implies v o = p~p. O

where p = p + pt. We obviously have p = ca with ¢ = (

COROLLARY 5.3. The embedding Endp (V) — Endg (V) induces

1) an isomorphism (EndD(V),O'e,fg) ® K ;(EHdK(VO),U[R],f[R]),

2) an isomorphism C(Endp(V), 09, fo) @ K = Co(V, [R]).

In view of (f]) the semilinear automorphism 7' : V0 = VO Tz = z/, is a

semilinear similitude with multiplier —u of the quadratic form [R], such that
T2 = pu.

LEMMA 5.4. The map T induces a semilinear automorphism Co(T) of
Co(VO, R) such that

Co(T)(xy) = (—p) "' T(@)T(y) for z, y € V°
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and Co(T)? = Id.
Proof. This follows (for example) as in [, (13.1)] O

PROPOSITION 5.5.
C(Endp(V),00, fo) = {c € Co(V®,R) | Co(T)(c) = c}.

Proof. The claim follows from the defining relations of C(Endp(V), 09, fo) and
the fact that

Endp(V) = {f € Endg(V°) | T fT = f}.
O

We call C(EndD(V), oo, fg) or equivalently Cl(V, 0) the Clifford algebra of the
quadratic quaternion space (V,6).

Let ¢ be a semilinear similitude of a quadratic space (U,q) of even dimen-
sion over K. Assume that disc(q) is trivial, so that Co(U, q) decomposes as
product of two K-algebras C* (U, q) and C~(U,q). We say that ¢ is proper if
Co(t)(C*(U,q)) € C*(U, q) and we say that ¢ is improper if Co(t)(C*(U, q)) C
C* (U, q). In general we say that ¢ is proper if ¢ is proper over some field exten-
sion of F which trivializes disc(q). For any semilinear similitude ¢, let d(t) =1
is t if proper and d(t) = —1 if ¢ is improper.

LEMMA 5.6. Let t; be a semilinear similitude of (U;,q;), i = 1,2. We have
d(t; L ta) = d(t1)d(ta).

Proof. We assume that disc(g;), ¢ = 1,2, is trivial. Let e; be an idempotent
generating the center Z; of Cy(q;). We have t;(e;) = e; if t; is proper and
ti(e;) = 1—e; if t; is improper. The idempotent e = e;+ea—2e1e2 € Co(q1 L o)
generates the center of Co(q; L g2) (see for example [f, (2.3), Chap. TV] ) and
the claim follows by case checking. O

LEMMA 5.7. Let V, 0, VO, R and T be as above. Let dimg V° =2m. Then T
is proper if m is even and is improper if m is odd.

Proof. The quadratic space (V, 0) is the orthogonal sum of 1-dimensional spaces
and we get a corresponding orthogonal decomposition of (VO7 [R]) into sub-
spaces (U;,q;) of dimension 2. In view of (@) it suffices to check the case
@2 al_) . We choose =1,
—a1  —ua2

a1 = j (j as in (R4)), put i = 1 — 2j, so that i = —i and choose as = 0. Let
T = me; +x2e0 € VO so [R](z1,22) = iz129 and C([R)]) is generated by e, ez
with the relations e? = 0, €2 = 0, ejea + ege; = i. The element ¢ = i~ lejes is
an idempotent generating the center. Since T'(z1e1 + x2es) = Taey + Trea, we
have Cy(T')(e1e2) = —eqeq and Co(T)(e) =1 —e. Thus T is not proper. O

m=1. Letaza:al—FZagEDandp:(
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Of special interest for the next section are quadratic quaternion forms [k] such
that the induced quadratic forms 7o ([k]) are Pfister forms. For convenience
we call such forms Pfister quadratic quaternion forms. Hyperbolic spaces of
dimension 2" are Pfister forms, hence spaces of the form 5([b]), b a hermitian
form over K, are Pfister, in view of the exactness of the sequence of Lewis [f].
It is in fact easy to give explicit examples of Pfister forms using the following
constructions:

EXAMPLE 5.8 (Char F' # 2). Let ¢ =< Aq,..., A, > be a diagonal quadratic
formon F"i.e., q(x) = Y \iz?. Let [k] on D™ be given by the diagonal form £q.
Then the corresponding quadratic form [R] on K?" is given by the diagonal
form < 1,—p > ®q. In particular we get the 3-Pfister form << a,b,pu >>
choosing for g the norm form of a quaternion algebra (a,b) .

EXAMPLE 5.9 (Char F =2). Let b =< Aq,...,\, > be a bilinear diagonal
form on F", ie., b(z,y) = > Ax;y;. Let k = (j + )b on D™. Then the
corresponding quadratic form [R] over K = R(j), j%2 = j + ), is given by
the form [R] = b ® [1, ] where [£,n] = £2? + x122 + n222. In particular, for
b =< 1,a,¢,ac >, we get the 3-Pfister form << a, ¢, A]] with the notations of

[EL p. xxi.

6. TRIALITY FOR SEMILINEAR SIMILITUDES

Let € be a Cayley algebra over F' with conjugation = :  — T and norm
n: x — xx. The new multiplication x x y = T satisfies

(6) Tx (y*a) = (zHy)xz=n(z)y

for z, y € €. Further, the polar form b, is associative with respect to %, in the
sense that

bo(x %y, 2) =bn(x,y*2).

PROPOSITION 6.1. For xz, y € €, let r.(y) = y*xx and £, (y) = x xy. The map
¢ — Endp (€& ) given by
(0 G
t ry, 0

induces isomorphisms a: (C(€,n),7) = (Endp(€ ® €),0414) and
(7) Qg (C(](¢7 1’1), ’7'()) = (EndF(Q), Un) X (EndF(Q), O'n),
of algebras with involution.

Proof. We have 1, ({y(y)) = lz(ro(y)) = n(z) -y by (F). Thus the existence
of the map « follows from the universal property of the Clifford algebra. The
fact that « is compatible with involutions is equivalent to

ba(zx (zxy),u) = bn(2,y* (urx))
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for all x, y, z, w in €. This formula follows from the associativity of b,. Since
C(€,n) is central simple, the map « is an isomorphism by a dimension count.
O

Assume from now on that € is defined over a field K which is quadratic Galois
over F. Any proper semilinear similitude ¢ of n induces a semilinear automor-
phism C(t) of the even Clifford algebra (Co(€,n),7y), which does not permute
the two components of the center of Co(€,n). Thus ag o Cy(t) o ay ' is a pair
of semilinear automorphisms of (Endg (€),0,). It follows as in (@) that, for
any quadratic space (V, ¢), semilinear automorphisms of (End g (V'), 04, f,) are
of the form Int(f), where f is a semilinear similitude of g. The following result
is due to Wonenburger [l in characteristic different from 2:

PROPOSITION 6.2. For any proper semilinear similitude t1 of n with multiplier
1, there exist proper semilinear similitudes ts, to such that

agoCo(t1) oay' = (Int(tz),Int(ts))

and
psts(zxy) = ti(x)*t2(y),
(8) prtti(zxy) = ta(x) xts(y),
py tta(wxy) = ta(z)xti(y).

Let t1 be an improper similitude with multiplier p1. There exist improper simil-
itudes tq, t3 such that

ps'ts(xxy) = ti(y) *ta(2),
pitti(exy) = ta(y) *ts(a),
pytta(xxy) = ts(y) *ti(x).

The pair (to,t3) is determined by t; up to a factor (\, A7), A € K*, and we

have pqpops = 1.
Furthermore, any of the formulas in (E) implies the two others.

Proof. The proof given in [f], (35.4)] for similitudes can also be used for semi-
linear similitudes. O

REMARK 6.3. The class of two of the t;, i = 1, 2, 3, modulo K* is uniquely
determined by the class of the third ¢;.

COROLLARY 6.4. Let Ty be a proper semilinear similitude of (€,n) such that
T? = py, p1 € K* and with multiplier —py. There exist elements a; € K>,
i =1, 2, 3, and proper semilinear similitudes T; of (€,n), with T? = w;, p; €
K> and with multiplier —p;, i = 2, 3, such that a;G;p; = pir1ftir2 and

asTs(zxy) = Ti(z)*Ta(y)
aiTi(zxy) = To(x)xT3(y)
asTa(rxy) = Ta(x)*Ti(y
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The class of any T; modulo K* determines the two other classes and the p;’s
are determined up to norms from K*. Furthermore any of the three formulas
determines the two others.

Proof. Counting indices modulo 3, we have relations
Ti(x) * Tiv1(y) = bitaTiv2, bi€ K~

in view of (@) If we replace all T; by Tjop,,, v; € K, we get new constants
a;. The claim then follows from (@) O

7. TRIALITY FOR QUADRATIC QUATERNION FORMS

Let D, = K@l K = [K, p11) be a quaternion algebra over F and let (V7, gp, ) be
a quaternion quadratic space of dimension 4 over D;. Let 61 = [h1], h1(z,y) =
Py(z,y) + LRy (x,y), so that [R1] = ma(61) corresponds to a 8-dimensional
(classical) quadratic form on V over K. The map Ty : V? — V0, Ti(x) =
aly, is a semilinear similitude of (V;?,[R1]) with multiplier —; and such that
T? = p7. We recall that by (@) it is equivalent to have a quadratic quaternion
space (V1,qp,) or a pair (VIO, [Tl]). We assume from now on that the quadratic
form qg,j is a 3-Pfister form, i.e.,the norm form n of a Cayley algebra &€ over
K. In view of (@) T; induces two semilinear similitudes T5, resp. T3, with
multipliers ps, resp. p3, which in turn define a quaternion quadratic space
(Va, 03) of dimension 4 over Dy = [K, u2), resp. a quaternion quadratic space
(V3,03) of dimension 4 over D3 = [K, u3). Let Br(F') be the Brauer group of
F.

PROPOSITION 7.1. 1) [D1][D2][Ds3] =1 € Br(F),
2) The restriction of a : Co(€,n)) = Endg(€) x Endg(€) to C(Vi, D;, 6;)
induces isomorphisms

Q; (C(‘/Z)D’Lael)77-) l) (EndDH,l (‘/’£+1)a0’9i+1) X (EndDH,g (‘/’£+2)a0’9i+2)

Proof. The first claim follows from the fact that pipue = ps Nrdp,(as3) and the
second is a consequence of (F.5), (B-f) and the definition of a. O

EXAMPLE 7.2. Let &y be a Cayley algebra over F' and let € = &y ®@pK. For
any ¢ € €y such that ¢ = py € F*, Ty : € — € given by Ty (k ® x) = k ® zc is
a semilinear similitude with multiplier —u; such that 72 = u;. The Moufang
identity (cx)(yc) = c¢(zxy)c in € implies that

(xc) * (cy) =¢(x *x y)e.
Thus T3(k @ y) = k® cy and T3(k ® 2) = ik ® ¢z¢ (where i € K* is such

that i = —i) satisfy @) The corresponding triple of quaternion algebras is
([K, 1), [K, 1), [K, iip?)), the third algebra being split.

ExampLE 7.3. Let D;, ¢« = 1,,2, 3, be quaternion algebras over F' such that
[D1][Ds2][Ds] = 1 € Br(F). We may assume that the D; contain a common
separable quadratic field K and that D; = [K, p;), u; € F* such that uypsus €
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F** In [E, (43.12)] similitudes S; with multiplier u;, i = 1, 2, 3, of the split
Cayley algebra €, over F' are given, such that 1) u3'Ss(z xy) = S1(z) * Sa(y)
and 2) Sf = p;. Let € = K ® €. Let u € K* be such that ©w = —u. The
semilinear similitudes T (k ® x) = uk ® S;(x), i = 1, 2, 3, satisfy

asTs(x xy) = T1(z) *x To(y)

with a3 = u,ug1 (we use the same notation * in € and in €). Thus there exist
a triple of quadratic quaternion forms (6, 6s,03) corresponding to the three
given quaternion algebras. We hope to describe the corresponding quadratic
quaternion forms in a subsequent paper.
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