Quadratic Quaternion Forms, Involutions and Triality

Max-Albert Knus and Oliver Villa

Received: May 31, 2001

Communicated by Ulf Rehmann

Abstract

Quadratic quaternion forms, introduced by Seip-Hornix (1965), are special cases of generalized quadratic forms over algebras with involutions. We apply the formalism of these generalized quadratic forms to give a characteristic free version of different results related to hermitian forms over quaternions: 1) An exact sequence of Lewis 2) Involutions of central simple algebras of exponent 2. 3) Triality for 4 -dimensional quadratic quaternion forms.

1991 Mathematics Subject Classification: 11E39, 11E88 Keywords and Phrases: Quadratic quaternion forms, Involutions, Triality

1. Introduction

Let F be a field of characteristic not 2 and let D be a quaternion division algebra over F. It is known that a skew-hermitian form over D determines a symmetric bilinear form over any separable quadratic subfield of D and that the unitary group of the skew-hermitian form is the subgroup of the orthogonal group of the symmetric bilinear form consisting of elements which commute with a certain semilinear mapping (see for example Dieudonné (3]). Quadratic forms behave nicer than symmetric bilinear forms in characteristic 2 and Seip-Hornix developed in [9] a complete, characteristic-free theory of quadratic quaternion forms, their orthogonal groups and their classical invariants. Her theory was subsequently (and partly independently) generalized to forms over algebras (even rings) with involution (see [11], [10], [1], [8]).
Similitudes of hermitian (or skew-hermitian) forms induce involutions on the endomorphism algebra of the underlying space. To generalize the case where only similitudes of a quadratic form are considered, the notion of a quadratic pair was worked out in [6]. Relations between quadratic pairs and generalized quadratic forms were first discussed by Elomary [ौ].

The aim of this paper is to apply generalized quadratic forms to give a characteristic free presentation of some results on forms and involutions. After briefly recalling in Section 2 the notion of a generalized quadratic form (which, following the standard literature, we call an (ε, σ)-quadratic form) we give in Section 3 a characteristic-free version of an exact sequence of Lewis (see [7], [8, p. 389] and the appendix to [2]), which connects Witt groups of quadratic and quaternion algebras. The quadratic quaternion forms of Seip-Hornix are the main ingredient. Section 4 describes a canonical bijective correspondence between quadratic pairs and (ε, σ)-quadratic forms and Section 5 discusses the Clifford algebra. In particular we compare the definitions given in [10 and in [6]. In Section 6 we develop triality for 4-dimensional quadratic quaternion forms whose associated forms (over a separable quadratic subfield) are 3-Pfister forms. Any such quadratic quaternion form θ is an element in a triple $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ of forms over 3 quaternions algebras D_{1}, D_{2} and D_{3} such that $\left[D_{1}\right]\left[D_{2}\right]\left[D_{3}\right]=1$ in the Brauer group of F. Triality acts as permutations on such triples.

2. Generalized Quadratic forms

Let D be a division algebra over a field F with an involution $\sigma: x \mapsto \bar{x}$. Let V be a finite dimensional right vector space over D. An F-bilinear form

$$
k: V \times V \rightarrow D
$$

is sesquilinear if $k(x a, y b)=\bar{a} k(x, y) b$ for all $x, y \in V, a, b \in D$. The additive group of such maps will be denoted by $\operatorname{Sesq}_{\sigma}(V, D)$. For any $k \in \operatorname{Sesq}_{\sigma}(V, D)$ we write

$$
k^{*}(x, y)=\overline{k(y, x)}
$$

Let $\varepsilon \in F^{\times}$be such that $\varepsilon \bar{\varepsilon}=1$. A sesquilinear form k such that $k=\varepsilon k^{*}$ is called ε-hermitian and the set of such forms on V will be denoted by $\operatorname{Herm}_{\sigma}^{\varepsilon}(V, D)$. Elements of

$$
\operatorname{Alt}_{\sigma}^{\varepsilon}(V, D)=\left\{g=f-\varepsilon f^{*} \mid f \in \operatorname{Sesq}_{\sigma}(V, D)\right\}
$$

are ε-alternating forms. We obviously have $\operatorname{Alt}_{\sigma}^{-\varepsilon}(V, D) \subset \operatorname{Herm}_{\sigma}^{\varepsilon}(V, D)$. We set

$$
\mathrm{Q}_{\sigma}^{\varepsilon}(V, D)=\operatorname{Sesq}_{\sigma}(V, D) / \operatorname{Alt}_{\sigma}^{\varepsilon}(V, D)
$$

and refer to elements of $\mathrm{Q}_{\sigma}^{\varepsilon}(V, D)$ as (ε, σ)-quadratic forms. We recall that (ε, σ)-quadratic forms were introduced by Tits 10], see also Wall [11, Bak [1] or Scharlau [8, Chapter 7]. For any algebra A with involution τ, let $\operatorname{Sym}^{\varepsilon}(A, \tau)=$ $\{a \in A \mid a=\varepsilon \tau(a)\}$ and $\operatorname{Alt}^{\varepsilon}(A, \tau)=\{a \in A \mid a=c-\varepsilon \tau(c), c \in A\}$. To any class $\theta=[k] \in \mathrm{Q}_{\sigma}^{\varepsilon}(V, D)$, represented by $k \in \operatorname{Sesq}_{\sigma}(V, D)$, we associate a quadratic map

$$
q_{\theta}: V \rightarrow D / \operatorname{Alt}^{\varepsilon}(D, \sigma), \quad q_{\theta}(x)=[k(x, x)]
$$

where $[d]$ denotes the class of d in $D / \operatorname{Alt}_{\sigma}^{\varepsilon}(D)$. The ε-hermitian form

$$
b_{\theta}(x, y)=k(x, y)+\varepsilon k^{*}(x, y)=k(x, y)+\varepsilon \overline{k(y, x)}
$$

depends only on the class θ of k in $\mathrm{Q}_{\sigma}^{\varepsilon}(V, D)$. We say that b_{θ} is the polarization of q_{θ}.
Proposition 2.1. The pair $\left(q_{\theta}, b_{\theta}\right)$ satisfies the following formal properties:

$$
\begin{align*}
q_{\theta}(x+y) & =q_{\theta}(x)+q_{\theta}(y)+\left[b_{\theta}(x, y)\right] \\
q_{\theta}(x d) & =\bar{d} q_{\theta}(x) d \tag{1}\\
b_{\theta}(x, x) & =q_{\theta}(x)+\varepsilon \overline{q_{\theta}(x)}
\end{align*}
$$

for all $x, y \in V, d \in D$. Conversely, given any pair $(q, b), q: V \rightarrow$ $D / \operatorname{Alt}^{\varepsilon}(D, \sigma), b \in \operatorname{Herm}_{\sigma}^{\varepsilon}(V, D)$ satisfying (11), there exist a unique $\theta \in$ $\mathrm{Q}_{\sigma}^{\varepsilon}(V, D)$ such that $q=q_{\theta}, b=b_{\theta}$.
Proof. The formal properties are straightforward to verify. For the converse see 11, Theorem 1].

Example 2.2. Let $D=F, \sigma=I d_{F}$ and $\varepsilon=1$. Then sesquilinear forms are F-bilinear forms, $\operatorname{Alt}^{\varepsilon}(D, \sigma)=0$ and a (σ, ε)-quadratic form is a (classical) quadratic form. We denote the set of bilinear forms on V by $\operatorname{Bil}(V, F)$. Accordingly we speak of ε-symmetric bilinear forms instead of ε-hermitian forms.

Example 2.3. Let D be a division algebra with involution σ and let D be a finite dimensional (right) vector space over D. We use a basis of V to identify V with D^{n} and $\operatorname{End}_{D}(V)$ with the algebra $M_{n}(D)$ of $(n \times n)$-matrices with entries in D. For any $(n \times m)$-matrix $x=\left(x_{i j}\right)$, let $x^{*}=\bar{x}^{t}$, where t is transpose and $\bar{x}=\left(\bar{x}_{i j}\right)$. In particular the map $a \mapsto a^{*}$ is an involution of $A=M_{n}(D)$. If we write elements of D^{n} as column vectors $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ any sesquilinear form k over D^{n} can be expressed as $k(x, y)=x^{*} a y$, with $a \in M_{n}(D)$, and $k^{*}(x, y)=x^{*} a^{*} y$. We write $\operatorname{Alt}_{n}(D)=\left\{a=b-\varepsilon b^{*}\right\} \subset M_{n}(D)$, so that $\mathrm{Q}_{\sigma}^{\varepsilon}(V, D)=M_{n}(D) / \operatorname{Alt}_{n}(D)$.

Example 2.4. Let D be a quaternion division algebra, i.e. D is a central division algebra of dimension 4 over F. Let K be a maximal subfield of D which is a quadratic Galois extension of F and let $\sigma: x \mapsto \bar{x}$ be the nontrivial automorphism of K. Let $j \in K \backslash F$ be an element of trace 1, so that $K=F(j)$ with $j^{2}=j+\lambda, \lambda \in F$. Let $\ell \in D$ be such that $\ell x \ell^{-1}=\bar{x}$ for $x \in K$, $\ell^{2}=\mu \in F^{\times}$. The elements $\{1, j, \ell, \ell j\}$ form a basis of D and $D=K \oplus \ell K$ is also denoted $[K, \mu)$. The F-linear map $\sigma: D \rightarrow D, \sigma(d)=\operatorname{Trd}_{D}(d)-d=\bar{d}$ is an involution of D (the "conjugation") which extends the automorphism σ of K. The element $\mathrm{N}(d)=d \sigma(d)=\sigma(d) d$ is the reduced norm of d. We have $\operatorname{Alt}_{\sigma}^{-1}(D)=F$ and $(\sigma,-1)$-quadratic forms correspond to the quadratic quaternion forms introduced by Seip-Hornix in (9). Accordingly we call $(\sigma,-1)$ quadratic forms quadratic quaternion forms.

The restriction of the involution τ to the center Z of A is either the identity (involutions of the first kind) or an automorphism of order 2 (involutions of the second kind). If the characteristic of F is different from 2 or if the involution is of second kind there exists an element $j \in Z$ such that $j+\sigma(j)=1$. Under
such conditions the theory of (σ, ε)-quadratic forms reduces to the theory of ε-hermitian forms:
Proposition 2.5. If the center of D contains an element j such that $j+\sigma(j)=$ 1, then $\operatorname{Herm}_{\sigma}^{-\varepsilon}(V, D)=\operatorname{Alt}_{\sigma}^{\varepsilon}(V, D)$ and $a(\sigma, \varepsilon)$-quadratic form is uniquely determined by its polar form b_{θ}.
Proof. If $k=-\varepsilon k^{*} \in \operatorname{Herm}_{\sigma}^{-\varepsilon}(V, D)$, then $k=1 k=j k+\bar{j} k=j k-\bar{j} \varepsilon k^{*} \in$ $\operatorname{Alt}_{\sigma}^{\varepsilon}(V, D)$. The last claim follows from the fact that polarization induces an isomorphism $\operatorname{Sesq}_{\sigma}(V, D) / \operatorname{Herm}_{\sigma}^{-\varepsilon}(V, D) \xrightarrow{\sim} \mathrm{Q}_{\sigma}^{\varepsilon}(V, D)$.
For any left (right) D-space V we denote by ${ }^{\sigma} V$ the space V viewed as right (left) D-space through the involution σ. If ${ }^{\sigma} x$ is the element x viewed as an element of ${ }^{\sigma} V$, we have ${ }^{\sigma} x d={ }^{\sigma}(\sigma(d) x)$. Let V^{*} be the dual ${ }^{\sigma} \operatorname{Hom}_{D}(V, D)$ as a right D-module, i.e., $\left({ }^{\sigma} f d\right)(x)={ }^{\sigma}(\bar{d} f)(x), x \in V, d \in D$. Any sesquilinear form $k \in \operatorname{Sesq}_{\sigma}(V, D)$ induces a D-module homomorphism $\widehat{k}: V \rightarrow V^{*}, x \mapsto$ $k(x,-)$. Conversely any homomorphism $g: V \rightarrow V^{*}$ induces a sesquilinear form $k \in \operatorname{Sesq}_{\sigma}(V, D), k(x, y)=g(x)(y)$ and the additive groups $\operatorname{Sesq}_{\sigma}(V, D)$ and $\operatorname{Hom}_{D}\left(V, V^{*}\right)$ can be identified through the map $h \mapsto \widehat{k}$. For any f : $V \rightarrow V^{\prime}$, let $f^{*}: V^{\prime *} \rightarrow V^{*}$ be the transpose, viewed as a homomorphisms of right vector spaces. We identify V with $V^{* *}$ through the map $v \mapsto v^{* *}$, $v^{* *}(f)=\overline{f(v)}$. Then, for any $f \in \operatorname{Hom}_{D}\left(V, V^{*}\right), f^{*}$ is again in $\operatorname{Hom}_{D}\left(V, V^{*}\right)$ and $\widehat{k}^{*}=\widehat{k^{*}}$. A (σ, ε)-quadratic form q_{θ} is called nonsingular if its polar form b_{θ} induces an isomorphism $\widehat{b_{\theta}}$. A pair $\left(V, q_{\theta}\right)$ with q_{θ} nonsingular is called a (σ, ε) quadratic space. For any vector space W, the hyperbolic space $V=W \oplus W^{*}$ equipped with the quadratic form $q_{\theta}, \theta=[k]$ with

$$
k\left((p, q),\left(p^{\prime}, q^{\prime}\right)\right)=q\left(p^{\prime}\right)
$$

is nonsingular. There is an obvious notion of orthogonal sum $V \perp V^{\prime}$ and a quadratic space decomposes whenever its polarization does. Most of the classical theory of quadratic spaces extends to (σ, ε)-quadratic spaces. For example Witt cancellation holds and any (σ, ε)-quadratic space decomposes uniquely (up to isomorphism) as the orthogonal sum of its anisotropic part with a hyperbolic space. Moreover, if we exclude the case $\sigma=1$ and $\varepsilon=-1$, any (σ, ε)-quadratic space has an orthogonal basis. A similitude of (σ, ε)-quadratic spaces $t:(V, q) \xrightarrow{\sim}\left(V^{\prime}, q^{\prime}\right)$ is a D-linear isomorphism $V \xrightarrow{\sim} V^{\prime}$ such that $q^{\prime}(t x)=\mu(t) q(x)$ for some $\mu(t) \in F^{\times}$. The element $\mu(t)$ is called the multiplier of the similitude. Similitudes with multipliers equal to 1 are isometries. As in the classical case there is a notion of Witt equivalence and corresponding Witt groups are denoted by $W^{\varepsilon}(D, \sigma)$.

3. An exact sequence of Lewis

Let D be a quaternion division algebra. We fix a representation $D=[K, \mu)=$ $K \oplus \ell K$, with $\ell^{2}=\mu$, as in (2.4). Let V be a vector space over D. Any sesquilinear form $k: V \times V \rightarrow \bar{D}$ can be decomposed as

$$
k(x, y)=P(x, y)+\ell R(x, y)
$$

with $P: V \times V \rightarrow K$ and $R: V \times V \rightarrow K$. The following properties of P and R are straightforward.

Lemma 3.1. 1) $P \in \operatorname{Sesq}_{\sigma}(V, K), R \in \operatorname{Sesq}_{1}(V, K)=\operatorname{Bil}(V, K)$.
2) $k^{*}=P^{*}-\ell R^{t}$, where $P^{*}(x, y)=\overline{P(y, x)}$ and $R^{t}(x, y)=R(y, x)$.

The sesquilinearity of k implies the following identities:

$$
\left.\begin{array}{llll}
R(x \ell, y) & =-P(x, y), & R(x, y \ell) & =\overline{P(x, y)} \\
P(x \ell, y) & =-\mu R(x, y), & P(x, y \ell) & =\mu \overline{R(x, y)} \tag{2}\\
P(x \ell, y \ell) & =-\mu \overline{P(x, y)}, & & R(x \ell, y \ell)
\end{array}=-\mu \overline{R(x, y)}\right)
$$

Let V^{0} be V considered as a (right) vector space over K (by restriction of scalars) and let $T: V^{0} \rightarrow V^{0}, x \mapsto x \ell$. The map T is a K-semilinear automorphism of V^{0} such that $T^{2}=\mu$. Conversely, given a vector space U over K, together with a semilinear automorphism T such that $T^{2}=\mu \in F^{\times}$, we define the structure of a right D-module on $U, D=[K, \mu)$, by putting $x \ell=T(x)$.
Lemma 3.2. Let V be a vector space over D. 1) Let $f_{1}: V^{0} \times V^{0} \rightarrow K$ be a sesquilinear form over K. The form

$$
f(x, y)=f_{1}(x, y)-\ell \mu^{-1} f_{1}(T x, y)
$$

is sesquilinear over D if and only if $f_{1}(T x, T y)=-\mu \overline{f_{1}(x, y)}$.
2) Let $f_{2}: V^{0} \times V^{0} \rightarrow K$ be a bilinear form over K. The form

$$
f(x, y)=-f_{2}(T x, y)+\ell f_{2}(x, y)
$$

is sesquilinear over D if and only if $f_{2}(T x, T y)=-\mu \overline{f_{2}(x, y)}$.

Proof. The two claims follow from the identities (2).
Let f be a bilinear form on a space U over K and let $\lambda \in K^{\times}$. A semilinear automorphism t of U such that $f(t x, t y)=\lambda \overline{f(x, y)}$ for all $x \in U$ is a semilinear similitude of (U, f), with multiplier λ. In particular $T x=x \ell$ is a semilinear similitude of R on V^{0}, such that $T^{2}=\mu$ and with multiplier $-\mu$. The following nice observation of Seip-Hornix [9, p. 328] will be used later:

Proposition 3.3. Let R be a K-bilinear form over U and let T be a semilinear similitude of U with multiplier $\lambda \in K^{\times}$and such that $T^{2}=\mu$. Then:

1) $\mu \in F$,
2) For any $\xi \in K$ and $x \in U$, let $\rho_{\xi}(x)=x \xi$. There exists $\nu \in K^{\times}$such that $T^{\prime}=\rho_{\nu} \circ T$ satisfies $T^{\prime 2}=\mu^{\prime}$ and $R\left(T^{\prime} x, T^{\prime} y\right)=-\mu^{\prime} \overline{R(x, y)}$.

Proof. The first claim follows from $\mu=\lambda \bar{\lambda}$. For the second we may assume that $\lambda \neq \mu$ (if $\lambda=\mu$ replace T by $T \circ \rho_{k}$ for an appropriate k). For $\nu=\left(1-\mu \lambda^{-1}\right)$ we have $\mu^{\prime}=2 \mu-\lambda-\bar{\lambda}$.

Assume that $k \in \operatorname{Sesq}_{\sigma}(V, D)$ defines a (σ, ε)-quadratic space $[k]$ on V over D. It follows from (3.1) that P defines a (σ, ε)-quadratic space $[P]$ on V^{0} over K and R a $(I d,-\varepsilon)$-quadratic space $[R]$ on V^{0} over K. Let $K=F(j)$ with $j^{2}=j+\lambda$. Let $r(x, y)=R(x, y)-\varepsilon R(y, x)$ be the polar of R.

Proposition 3.4. 1) $q_{[P]}(x)=\bar{\varepsilon} j[r(x, T x)]$
2) $q_{[k]}(x)=\bar{\varepsilon} j[r(x, T x)]+\ell q_{[R]}(x)$
3) The map T is a semilinear similitude of $\left(q_{[R]}, V^{0}\right)$ with multiplier $-\mu$.

Proof. It follows from the relations (2) that

$$
\begin{equation*}
\overline{P(x, x)}+\varepsilon P(x, x)=R(x, T x)-\varepsilon R(T x, x)=r(x, T x) \tag{3}
\end{equation*}
$$

and obviously this relation determines $P(x, x)$ up to a function with values in $\operatorname{Sym}^{-\varepsilon}(K, \sigma)$. Since $\operatorname{Sym}^{-\varepsilon}(K, \sigma)=$ Alt $^{+\varepsilon}(K, \sigma)$ by (2.5), $[P]$ is determined by (3). Since $\overline{r(x, T x)}=\bar{\varepsilon} r(x, T x)$ by (2), we have $\overline{\bar{\varepsilon} j r(x, T x)}+\varepsilon(\bar{\varepsilon} j r(x, T x))=$ $r(x, T x)$ and 1) follows. The second claim follows from 1) and 3) is again a consequence of the identities (2).

Corollary 3.5. Any pair $([R], T)$ with $[R] \in \mathrm{Q}_{1}^{\varepsilon}(U, K)$ and T a semilinear similitude with multiplier $-\mu \in F^{\times}$and such that $T^{2}=\mu$, determines the structure of $a(\sigma, \varepsilon)$-quadratic space on U over $D=[K, \mu)$.

Proposition 3.6. The assignments $h \mapsto P$ and $h \mapsto R$ induce homomorphisms of groups $\pi_{1}: W^{\varepsilon}(D,-) \rightarrow W^{\varepsilon}(K,-)$ and $\pi_{2}: W^{-\varepsilon}(D,-) \rightarrow$ $W^{\varepsilon}(K, I d)$.
Proof. The assignments are obviously compatible with orthogonal sums and Witt equivalence.

We recall that $W^{\varepsilon}(K,-)$ can be identified with the corresponding Witt group of ε-hermitian forms (apply (2.5)). However, it is more convenient for the following computations to view ε-hermitian forms over K as (σ, ε) - quadratic forms. Let $i \in K^{\times}$be such that $\sigma(i)=-i($ take $i=1$ if Char $F=2)$. The map $k \mapsto i k$ induces an isomorphism $s: W^{\varepsilon}(K,-) \xrightarrow{\sim} W^{-\varepsilon}(K,-)$ ("scaling"). For any space U over K, let $U_{D}=U \otimes_{K} D$. We identify U_{D} with $U \oplus U \ell$ through the map $u \otimes(x+\ell y) \mapsto(u x, u \bar{y} l)$ and get a natural D-module structure on $U_{D}=U \oplus U \ell$. Any K-sesquilinear form k on U extends to a D-sesquilinear form k_{D} on U_{D} through the formula

$$
k_{D}(x \otimes a, y \otimes b)=\bar{a} k(x, y) b
$$

for $x, y \in U$ and $a, b \in D$.
Lemma 3.7. The assignment $k \mapsto(i k)_{D}$ induces a homomorphism

$$
\beta: W^{\varepsilon}(K,-) \rightarrow W^{-\varepsilon}(D,-)
$$

Proof. Let $\widetilde{k}=(i k)_{D}$. We have $(\widetilde{k})^{*}=-\widetilde{k^{*}}$.

Theorem 3.8 (Lewis). With the notations above, the sequence

$$
W^{\varepsilon}(D,-) \xrightarrow{\pi_{1}} W^{\varepsilon}(K,-) \xrightarrow{\beta} W^{-\varepsilon}(D,-) \xrightarrow{\pi_{2}} W^{\varepsilon}(K, I d)
$$

is exact.
Proof. This is essentially the proof given in Appendix 2 of [2] with some changes due to the use of generalized quadratic forms, instead of hermitian forms. We first check that the sequence is a complex. Let $[k] \in \mathrm{Q}_{\sigma}^{\varepsilon}(V, D)$ and let $V^{0}=U$. We write elements of $U_{D}=U \oplus U \ell$ as pairs $(x, y \ell)$ and decompose $k_{D}=P+\ell R$. By definition we have $\beta \pi_{1}([k])=[\beta(P)]$ and

$$
\begin{aligned}
\beta(P)\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)= & i\left(P\left(x_{1}, x_{2}\right)+P\left(x_{1}, y_{2}\right) \ell+\ell P\left(y_{1}, x_{2}\right)\right. \\
& \left.+\ell P\left(y_{1}, y_{2}\right) \ell\right) .
\end{aligned}
$$

Let $(x \ell, x \ell) \in U \oplus U \ell$. We get $\beta(P)((x \ell, x \ell),(x \ell, x \ell))=0$ hence $W=$ $\{(x \ell, x \ell)\} \subset U \oplus U \ell$ is totally isotropic. It is easy to see that $W \subset W^{\perp}$, so that $[\beta(P)]$ is hyperbolic and $\beta \circ \pi_{1}=0$. Let $[g] \in \mathrm{Q}_{\sigma}^{\varepsilon}(U, K)$. The subspace $W=\{(x, 0) \in U \oplus U \ell\}$ is totally isotropic for $\pi_{2} \beta([g])$ and $W \subset W^{\perp}$. Hence $\pi_{2} \beta([g])=0$. We now prove exactness at $W^{\varepsilon}(K,-)$. Since the claim is known if Char $\neq 2$, we may assume that Char $=2$ and $\varepsilon=1$. Let $[g] \in \mathrm{Q}_{\sigma}^{\varepsilon}(U, K)$ be anisotropic such that $\beta([g])=0 \in W^{-\varepsilon}(D,-)$. In particular $\beta([g]) \in \mathrm{Q}_{\sigma}^{-\varepsilon}\left(U_{D}, D\right)$ is isotropic. Hence the exist elements $x_{1}, x_{2} \in U$ such that $[\tilde{g}]\left(\left(x_{1}, x_{2} \ell\right),\left(x_{1}, x_{2} \ell\right)\right)=0$. This implies (in Char 2) that

$$
\begin{equation*}
g\left(x_{1}, x_{1}\right)+\mu \overline{g\left(x_{2}, x_{2}\right)} \in F, \quad g\left(x_{1}, x_{2}\right) \ell+\ell g\left(x_{2}, x_{1}\right)=0 . \tag{4}
\end{equation*}
$$

Let V_{1} be the K-subspace of V generated by x_{1} and x_{2}. Since $[g]$ is anisotropic, $[g]=\left[g_{1}\right] \perp\left[g_{2}\right]$ with $g_{1}=\left.g\right|_{V_{1}}$. We make V_{1} into a D-space by putting

$$
\left(x_{1} a_{1}+x_{2} a_{2}\right) \ell=\mu x_{2} \bar{a}_{1}+x_{1} \bar{a}_{2}
$$

To see that the action is well-defined, it suffices to show that $\operatorname{dim}_{K} V_{1}=2$. The elements x_{1} and x_{2} cannot be zero since $[g]$ is anisotropic, so assume $x_{2}=x_{1} c, c \in K^{\times}$. Then (4) implies $g\left(x_{1}, x_{1}\right)+\mu c \bar{c} g\left(x_{1}, x_{1}\right) \in F$, which contradicts the fact that g is anisotropic. Let $g_{1}\left(x_{1}, x_{1}\right)+\mu \overline{g_{1}\left(x_{2}, x_{2}\right)}=z \in F$. Let $f \in \operatorname{Sesq}_{\sigma}\left(V_{1}, K\right)$. Replacing g_{1} by $g_{1}+f+f^{*}$ defines the same class in $\mathrm{Q}_{\sigma}^{\varepsilon}\left(V_{1}, K\right)$ (recall that Char $F=2$). Choosing f as

$$
f\left(x_{1}, x_{1}\right)=j z, f\left(x_{2}, x_{2}\right)=0, f\left(x_{1}, x_{2}\right)=f\left(x_{2}, x_{1}\right)=0
$$

we may assume that

$$
\begin{equation*}
g_{1}\left(x_{1}, x_{1}\right)+\mu \overline{g_{1}\left(x_{2}, x_{2}\right)}=0, \quad g_{1}\left(x_{1}, x_{2}\right) \ell+\ell g_{1}\left(x_{2}, x_{1}\right)=0 . \tag{5}
\end{equation*}
$$

By (3.2) we may extend g_{1} to a sesquilinear form

$$
g^{\prime}(x, y)=g_{1}(x, y)+\ell \mu^{-1} g_{1}(x \ell, y)
$$

over D if g_{1} satisfies

$$
g_{1}(x \ell, y \ell)=-\mu \overline{g_{1}(x, y)}
$$

This can easily be checked using (5) (and the definition of $x \ell$). Then g_{1} is in the image of π_{1}. Exactness at $W^{\varepsilon}(K,-)$ now follows by induction on the dimension
of U. We finally check exactness at $W^{-\varepsilon}(D,-)$. Let $[k]$ be anisotropic such that $\pi_{2}([k])=0$ in $W^{-\varepsilon}(K, I d)$. In particular $\pi_{2}([k])$ is isotropic; let $x \neq 0$ be such that $\pi_{2} k(x, x)=0$ and let W be the D-subspace of V generated by x. Since $[k]$ is anisotropic, $\left[k^{\prime}\right]=\left[\left.k\right|_{W}\right]$ is nonsingular and $[k]=\left[k^{\prime}\right] \perp\left[k^{\prime \prime}\right]$. The condition $\pi_{2} k(x, x)=0$ implies $k(x, x) \in K$. Let W_{1} be the K-subspace of W generated by x. Define $g: W_{1} \times W_{1} \rightarrow K$ by $g(x a, x b)=k(x a, x b) i^{-1}$ for a, $b \in K$. Then clearly $[g]$ defines an element of $W^{\varepsilon}(K,-)$ and $\beta(g)=k^{\prime}$. Once again exactness follows by induction on the dimension of V.

4. Involutions on central simple algebras

Let D be a central division algebra over F, with involution σ and let $b: V \times V \rightarrow$ D be a nonsingular ε-hermitian form on a finite dimensional space over D. Let $A=\operatorname{End}_{D}(V)$. The map $\sigma_{b}: A \rightarrow A$ such that $\sigma_{b}(\lambda)=\sigma(\lambda)$ for all $\lambda \in F$ and

$$
b\left(\sigma_{b}(f)(x), y\right)=b(x, f(y))
$$

for all $x, y \in V$, is an involution of A, called the involution adjoint to b. We have $\sigma_{b}(f)=\widehat{b}^{-1} f^{*} \widehat{b}$, where $\widehat{b}: V \xrightarrow{\sim} V^{*}$ is the adjoint of b. Conversely, any involution of A is adjoint to some nonsingular ε-hermitian form b and b is uniquely multiplicatively determined up to a σ-invariant element of F^{\times}.
Any automorphism ϕ of A compatible with σ_{b}, i.e., $\sigma_{b}(\phi(a))=\phi\left(\sigma_{b}(a)\right)$, is of the form $\phi(a)=u a u^{-1}$ with $u: V \xrightarrow{\sim} V$ a similitude of b. We say that an involution τ of A is a q-involution if τ is adjoint to the polar b_{θ} of a (σ, ε)-quadratic form θ. We write $\tau=\sigma_{\theta}$. Two algebras with q-involutions are isomorphic if the isomorphism is induced by a similitude of the corresponding quadratic forms. Over fields q-involutions differ from involutions only in characteristic 2 and for symplectic involutions. In view of possible generalizations (for example rings in which $2 \neq 0$ is not invertible) we keep to the general setting of (σ, ε)-quadratic forms. Let F_{0} be the subfield of F of σ-invariant elements and let $T_{F / F_{0}}$ be the corresponding trace.

Lemma 4.1. The symmetric bilinear form on A given by $\operatorname{Tr}(x, y)=$ $T_{F / F_{0}}\left(\operatorname{Trd}_{A}(x y)\right)$ is nonsingular and $\operatorname{Sym}(A, \tau)^{\perp}=\operatorname{Alt}(A, \tau)$.
Proof. If τ is of the first kind $F_{0}=F$ and the claim is (2.3) of [6]. Assume that τ is of the second kind. Since the bilinear form $(x, y) \rightarrow \operatorname{Trd}_{A}(x y)$ is nonsingular, Tr is also nonsingular and it is straightforward that $\operatorname{Alt}(A, \tau) \subset \operatorname{Sym}(A, \tau)^{\perp}$. Equality follows from the fact that $\operatorname{dim}_{F_{0}} \operatorname{Alt}(A, \tau)=\operatorname{dim}_{F_{0}} \operatorname{Sym}(A, \tau)=$ $\operatorname{dim}_{F} A$.

Proposition 4.2. Let $(V, \theta), \theta=[k]$ be a (σ, ε)-quadratic space over D and let $h=\widehat{k}+\varepsilon \widehat{k}^{*}: V \xrightarrow{\sim} V^{*}$. The F_{0}-linear form

$$
f_{\theta}: \operatorname{Sym}\left(A, \sigma_{\theta}\right) \rightarrow F_{0}, \quad f_{\theta}(s)=\operatorname{Tr}\left(h^{-1} \widehat{k} s\right), s \in \operatorname{Sym}\left(A, \sigma_{\theta}\right)
$$

depends only on the class θ and satisfies $f_{\theta}\left(x+\sigma_{\theta}(x)\right)=\operatorname{Tr}(x)$.

Proof. The first claim follows from (4.1) and the fact that if $k \in \operatorname{Alt}_{\sigma}^{\varepsilon}(V, D)$ then $h^{-1} \widehat{k} \in \operatorname{Alt}_{\sigma_{\theta}}^{1}(V, D)$. For the last claim we have:

$$
\begin{aligned}
f_{\theta}\left(x+\sigma_{\theta}(x)\right) & =\operatorname{Tr}\left(h^{-1} \widehat{k}\left(x+\sigma_{\theta}(x)\right)\right. \\
& =\operatorname{Tr}\left(h^{-1} \widehat{k} x\right)+\operatorname{Tr}\left(h^{-1} \widehat{k} h^{-1} x^{*} h\right) \\
& =\operatorname{Tr}\left(h^{-1} \widehat{k} x\right)+\operatorname{Tr}\left(\widehat{k} h^{-1} x^{*}\right) \\
& =\operatorname{Tr}\left(h^{-1} \widehat{k} x\right)+\operatorname{Tr}\left(x\left(h^{-1}\right)^{*} \widehat{k}^{*}\right) \\
& =\operatorname{Tr}\left(h^{-1} \widehat{k} x\right)+\operatorname{Tr}\left(h^{-1} \varepsilon \widehat{k}^{*} x\right)=\operatorname{Tr}(x) .
\end{aligned}
$$

Lemma 4.3. Let τ be an involution of $A=\operatorname{End}_{D}(V)$ and let f be $A F_{0}$-linear form on $\operatorname{Sym}(A, \tau)$ such that $f(x+\tau(x))=\operatorname{Tr}(x)$ for all $x \in A$. There exists an element $u \in A$ such that $f(s)=\operatorname{Tr}(u s)$ and $u+\tau(u)=1$. The element u is uniquely determined up to additivity by an element of $\operatorname{Alt}(A, \tau)$. We take $u=1 / 2$ if Char $F \neq 2$.

Proof. The proof of (5.7) of [6] can easily be adapted.

Proposition 4.4. Let τ be an involution of $A=\operatorname{End}_{D}(V)$ and let f be A F_{0}-linear form on $\operatorname{Sym}(A, \tau)$ such that $f(x+\tau(x))=\operatorname{Tr}(x)$ for all $x \in A$.

1) There exists a nonsingular (σ, ε)-quadratic form θ on V such that $\tau=\sigma_{\theta}$ and $f=f_{\theta}$.
2) $\left(\sigma_{\theta}, f_{\theta}\right)=\left(\sigma_{\theta^{\prime}}, f_{\theta^{\prime}}\right)$ if and only if $\theta^{\prime}=\lambda \theta$ for $\lambda \in F_{0}$.
3) If $\tau=\sigma_{\theta}$ and $f=f_{\theta}$ with $f_{\theta}(s)=\operatorname{Tr}(u s)$, the class of u in $A / \operatorname{Alt}\left(A, \sigma_{\theta}\right)$ is uniquely determined by θ.

Proof. Here the proof of (5.8) of [6] can adapted. We prove 1) for completeness. Let $\tau(x)=h^{-1} x^{*} h, h=\varepsilon h^{*}: V \xrightarrow{\sim} V^{*}$. Let $f(s)=\operatorname{Tr}(u s)$ with $u+\tau(u)=1$ and let $k \in \operatorname{Sesq}_{\sigma}(V, D)$ be such that $\widehat{k}=h u: V \rightarrow V^{*}$. We set $\theta=[k]$. It is then straightforward to check that $h=k+\varepsilon k^{*}$.

Proposition 4.5. Let $\phi:\left(\operatorname{End}_{D}(V), \sigma_{\theta}\right) \xrightarrow{\sim}\left(\operatorname{End}_{D}\left(V^{\prime}\right), \sigma_{\theta^{\prime}}\right)$ be an isomorphism of algebras with involution. Let $f_{\theta}(s)=\operatorname{Tr}(u s)$ and $f_{\theta^{\prime}}\left(s^{\prime}\right)=\operatorname{Tr}\left(u^{\prime} s^{\prime}\right)$. The following conditions are equivalent:

1) ϕ is an isomorphism of algebras with q-involutions.
2) $f_{\theta^{\prime}}(\phi(s))=f_{\theta}(s)$ for all $s \in \operatorname{Sym}\left(\operatorname{End}_{D}(V), \sigma_{\theta}\right)$.
3) $[\phi(u)]=\left[u^{\prime}\right] \in \operatorname{End}_{D}\left(V^{\prime}\right) / \operatorname{Alt}\left(\operatorname{End}_{D}\left(V^{\prime}\right), \sigma_{\theta^{\prime}}\right)$.

Proof. The implication 1) $\Rightarrow 2$) is clear. We check that 2) $\Rightarrow 3$). Let ϕ be induced by a similitude $t:\left(V, b_{\theta}\right) \xrightarrow{\sim}\left(V^{\prime}, b_{\theta^{\prime}}\right)$. Since $f_{\theta^{\prime}}(\phi s)=f_{\theta}(s)$, we have $\operatorname{Tr}\left(t^{-1} u^{\prime} t s\right)=\operatorname{Tr}\left(u^{\prime} t s t^{-1}\right)=\operatorname{Tr}(u s)$ for all $s \in \operatorname{Sym}\left(\operatorname{End}_{D}(V), \sigma_{\theta}\right)$, hence $[\phi(u)]=\left[u^{\prime}\right]$. The implication 3$) \Rightarrow 1$) follows from the fact that u can be chosen as $h^{-1} \widehat{k}, h=\widehat{k}+\varepsilon \widehat{k}^{*}$.

REMARK 4.6. We call the pair $\left(\sigma_{\theta}, f_{\theta}\right)$ a (σ, ε)-quadratic pair or simply a quadratic pair. It determines θ up to the multiplication by a σ-invariant scalar $\lambda \in F^{\times}$. In fact σ_{θ} determines the polar b_{θ} up to λ and f_{θ} determines u. We have $\theta=\left[\widehat{b}_{\theta} u\right]$.

Example 4.7. Let $q: V \rightarrow F$ be a nonsingular quadratic form. The polar b_{q} induces an isomorphism $\psi: V \otimes_{F} V \xrightarrow{\sim} \operatorname{End}_{F}(V)$ such that $\sigma_{q}(\psi(x \otimes y))=$ $\psi(y \otimes x)$. Thus $\psi(x \otimes x)$ is symmetric and $f_{q}(\psi(x \otimes x))=q(x)$ (see [6, (5.11)]. More generally, if V is a right vector space over D, we denote by ${ }^{*} V$ the space V viewed as a left D-space through the involution σ of D. The adjoint $\widehat{b_{\theta}}$ of a (σ, ε)-quadratic space (V, θ) induces an isomorphism $\psi_{\theta}: V \otimes_{D} \sigma \xrightarrow{\sim} \operatorname{End}_{D}(V)$ and $\psi_{\theta}(x d \otimes x)$ is a symmetric element of $\left(\operatorname{End}_{D}(V), \sigma_{\theta}\right)$ for all $x \in V$ and all ε-symmetric $d \in D$. One has $f_{\theta}(\psi(x d \otimes x))=[d k(x, x)]$, where $\theta=[k]$ (see $\|$ Theorem 7]).

5. Clifford algebras

Let σ be an involution of the first kind on D and let θ be a nonsingular (σ, ε)-quadratic form on V. Let σ_{θ} be the corresponding q-involution on $A=$ $\operatorname{End}_{D}(V)$. We assume in this section that over a splitting $A \otimes_{F} \tilde{F} \xrightarrow{\sim} \operatorname{End}_{\tilde{F}}(M)$ of $A, \theta_{\tilde{F}}=\theta \otimes 1_{\tilde{F}}$ is a $(I d, 1)$-quadratic form \tilde{q} over \tilde{F}, i.e. $\theta_{\tilde{F}}$ is a (classical) quadratic form. In the terminology of [6] this means that σ_{θ} is orthogonal if Char $\neq 2$ and symplectic if Char $=2$. From now on we call such forms over D quadratic forms over D, resp. quadratic spaces over D if the forms are non-singular.
Classical invariants of quadratic spaces (V, θ) are the dimension $\operatorname{dim}_{D} V$ and the discriminant $\operatorname{disc}(\theta)$ and the Clifford invariant associated with the Clifford algebra. We refer to [6, $\S 7]$ for the definition of the discriminant. We recall the definition of the Clifford algebra $\mathrm{Cl}(V, \theta)$, following 10, 4.1]. Given (V, θ) as above, let $\theta=[k], k \in \operatorname{Sesq}_{\sigma}(V, D), b_{\theta}=k+\varepsilon k^{*}$ and $h=\widehat{b_{\theta}} \in \operatorname{Hom}_{D}\left(V, V^{*}\right)$. Let $A=\operatorname{End}_{D}(V), B=\operatorname{Sesq}_{\sigma}(V, D)$ and $B^{\prime}=V \otimes_{D}{ }^{\sigma} V$. We identify A with $V \otimes_{D}{ }^{\sigma} V^{*}$ through the canonical isomorphism $\left(x \otimes{ }^{\sigma} f\right)(v)=x f(v)$ and B with $V^{*} \otimes_{D} \sigma^{*}$ through $\left(f \otimes{ }^{\sigma} g\right)(x, y)=\overline{g(x)} f(y)$. The isomorphism h can be used to define further isomorphisms:

$$
\varphi_{\theta}: B^{\prime}=V \otimes_{D}{ }^{\sigma} V \xrightarrow{\sim} A=\operatorname{End}_{D}(M), \varphi_{\theta}: x \otimes y \mapsto x \otimes h(y)
$$

and the isomorphism ψ_{θ} already considered in (4.7):

$$
\psi_{\theta}: A \xrightarrow{\sim} B, \psi_{\theta}: x \otimes^{\sigma} f \mapsto h(x) \otimes \otimes^{\sigma} f
$$

We use φ_{θ} and ψ_{θ} to define maps $B^{\prime} \times B \rightarrow A,\left(b^{\prime}, b\right) \mapsto b^{\prime} b$ and $A \times B^{\prime} \rightarrow B^{\prime}$, $\left(a, b^{\prime}\right) \mapsto a b^{\prime}:$

$$
\left(x \otimes{ }^{\sigma} y\right)(h(u) \otimes g)=x b(y, u) \otimes{ }^{\sigma} f \text { and }\left(x \otimes,{ }^{\sigma} f\right)\left(u \otimes,{ }^{\sigma} v\right)=x f(u) \otimes{ }^{\sigma} h(v)
$$

Furthermore, let $\tau_{\theta}=\varphi_{\theta}^{-1} \sigma_{\theta} \varphi_{\theta}: B^{\prime} \rightarrow B^{\prime}$ be the transport of the involution σ_{θ} on A. We have $\tau_{\theta}\left(x \otimes{ }^{\sigma} y\right)=\varepsilon y \otimes{ }^{\sigma} x$. Let $S_{1}=\left\{s_{1} \in B^{\prime} \mid \tau_{\theta}\left(s_{1}\right)=s_{1}\right\}$. We
have $S_{1}=\left(\operatorname{Alt}^{\varepsilon}(V, D)\right)^{\perp}$ for the pairing $B^{\prime} \times B \rightarrow F,\left(b^{\prime}, b\right) \mapsto \operatorname{Trd}_{A}\left(b^{\prime} b\right)$. Let Sand be the bilinear map $B^{\prime} \otimes B^{\prime} \times B \rightarrow B^{\prime}$ defined by $\operatorname{Sand}\left(b_{1}^{\prime} \otimes b_{2}^{\prime}, b\right)=b_{2}^{\prime} b b_{1}^{\prime}$. The Clifford algebra $\mathrm{Cl}(V, \theta)$ of the quadratic space (V, θ) is the quotient of the tensor algebra of the F-module B^{\prime} by the ideal I generated by the sets

$$
\begin{aligned}
& I_{1}=\left\{s_{1}-\operatorname{Trd}_{A}\left(s_{1} k\right) 1, s_{1} \in S_{1}\right\} \\
& I_{2}=\left\{c-\operatorname{Sand}(c, k) \mid \operatorname{Sand}\left(c, \operatorname{Alt}^{\varepsilon}(V, D)\right)=0\right\}
\end{aligned}
$$

The Clifford algebra $\mathrm{Cl}(V, \theta)$ has a canonical involution σ_{0} induced by the $\operatorname{map} \tau$. We have $\mathrm{Cl}(V, \theta) \otimes_{F} \widetilde{F}=\operatorname{Cl}\left(V \otimes_{F} \widetilde{F}, \theta \otimes 1_{\widetilde{F}}\right)$ for any field extension \widetilde{F} of F and $\mathrm{Cl}(V, q)$ is the even Clifford algebra $C_{0}(V, q)$ of (V, q) if $D=F$ (10, Théorème 2]). The reduction is through Morita theory for hermitian spaces (see for example [5, Chapter I, §9] for a description of Morita theory). In [6, $\S 8]$ the Clifford algebra $C\left(A, \sigma_{\theta}, f_{\theta}\right)$ of the triple $\left(A, \sigma_{\theta}, f_{\theta}\right)$ is defined as the quotient of the tensor algebra $T(A)$ of the F-space A by the ideal generated by the sets

$$
\begin{aligned}
& J_{1}=\left\{s-\operatorname{Trd}_{A}(u s), s \in \operatorname{Sym}\left(A, \sigma_{\theta}\right)\right\} \\
& J_{2}=\left\{c-\operatorname{Sand}^{\prime}(c, u), c \in A \text { with } \operatorname{Sand}^{\prime}\left(c, \operatorname{Alt}\left(A, \sigma_{\theta}\right)\right)=0\right\}
\end{aligned}
$$

where $u={\widehat{b_{\theta}}}^{-1} k$ and Sand ${ }^{\prime}:(A \otimes A, A) \rightarrow A$ is defined as $\operatorname{Sand}^{\prime}(a \otimes b, x)=a x b$. The two definitions give in fact isomorphic algebras:

Proposition 5.1. The isomorphism $\varphi_{\theta}: V \otimes_{D} \sigma V \xrightarrow{\sim} \operatorname{End}_{D}(V)$ induces an isomorphism $\mathrm{Cl}(V, \theta) \xrightarrow{\sim} C\left(A, \sigma_{\theta}, f_{\theta}\right)$.

Proof. We only check that φ_{θ} maps I_{1} to J_{1}. By definition of τ and $S_{1}, s=$ $\varphi_{\theta}\left(s_{1}\right)$ is a symmetric element of A. On the other hand we have by definition of the pairing $B^{\prime} \times B \rightarrow A$,

$$
\begin{aligned}
\operatorname{Trd}_{A}\left(s_{1} k\right) & =\operatorname{Trd}_{A}\left(\varphi_{\theta}\left(s_{1}\right) \psi_{\theta}^{-1}(k)\right) \\
& =\operatorname{Trd}_{A}\left(s h^{-1} \widehat{k}\right)=\operatorname{Trd}_{A}(s u)=\operatorname{Trd}_{A}(u s)
\end{aligned}
$$

hence the claim.
In particular we have $C\left(\operatorname{End}_{F}(V), \sigma_{q}, f_{q}\right)=C_{0}(V, q)$ for a quadratic space (V, q) over F. It is convenient to use both definitions of the Clifford algebra of a generalized quadratic space.

Let $D=[K, \mu)=K \oplus \ell K$ be a quaternion algebra with conjugation σ. Let V be a D-module and let V^{0} be V as a right vector space over K (through restriction of scalars). Let $T: V^{0} \rightarrow V^{0}, T x=x \ell$. We have $\operatorname{End}_{D}(V) \subset \operatorname{End}_{K}\left(V^{0}\right)$ and

$$
\operatorname{End}_{D}(V)=\left\{f \in \operatorname{End}_{K}\left(V^{0}\right) \mid f T=T f\right\}
$$

Let $\theta=[k]$ be a $(\sigma,-1)$-quadratic space and let $k(x, y)=P(x, y)+\ell R(x, y)$ as in Section 3. It follows from (3.1) that R defines a quadratic space $[R]$ on V^{0} over K.

Proposition 5.2. We have $\left.\sigma_{[R]}\right|_{\operatorname{End}_{D}(V)}=\sigma_{\theta}$ and $f_{\theta}=f_{[R]} \mid \operatorname{End}_{D}(V)$.

Proof. We have an embedding $D \hookrightarrow M_{2}(K), a+\ell b \mapsto\left(\begin{array}{cc}a & \mu \bar{b} \\ b & \bar{a}\end{array}\right)$ and conjugation given by $x \mapsto x^{*}=c^{-1} x^{t} c, c=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. The choice of a basis of V over D identifies V with D^{n}, V^{0} with $K^{2 n}, \operatorname{End}_{D}(V)$ with $M_{n}(D)$ and $\operatorname{End}_{K}\left(V^{0}\right)$ with $M_{2 n}(K)$, where $n=\operatorname{dim}_{D} V$. We further identify V and V^{*} through the choice of the dual basis. We embed any element $x=x_{1}+\ell x_{2} \in M_{k, l}(D)$, $x_{i} \in M_{k, l}(K)$ in $M_{2 k, 2 l}(K)$ through the map $\iota: x \mapsto \xi=\left(\begin{array}{cc}x_{1} & \mu \overline{x_{2}} \\ x_{2} & \overline{x_{1}}\end{array}\right)$. In particular D^{n} is identified with a subspace of the space of $(2 n \times 2)$-matrices over K. Then $D \subset M_{2}(K)$ operates on the right through (2×2)-matrices and $M_{n}(D) \subset M_{2 n}(K)$ operates on the left through $(2 n \times 2 n)$-matrices. With the notations of Example (2.3) we have $\iota\left(x^{*}\right)=\operatorname{Int}\left(c^{-1}\right)\left(x^{t}\right)$. Any D-sesquilinear form k on D^{n} can be written as $k(x, y)=x^{*} a y$, where $a \in M_{n}(D)$, as in (2.3). Let $a=a_{1}+\ell a_{2}, a_{i} \in M_{n}(K)$ and let

$$
\alpha=\iota(a)=\left(\begin{array}{cc}
a_{1} & \mu \overline{a_{2}} \\
a_{2} & \overline{a_{1}}
\end{array}\right)
$$

Let $\eta=\iota(y), y=y_{1}+\ell y_{2}$. We have

$$
k(x, y)=x^{*} a y=\xi^{*} \alpha \eta=\left(\begin{array}{cc}
x_{1} & \mu \overline{x_{2}} \\
x_{2} & \overline{x_{1}}
\end{array}\right)^{*}\left(\begin{array}{cc}
a_{1} & \mu \overline{a_{2}} \\
a_{2} & \overline{a_{1}}
\end{array}\right)\left(\begin{array}{cc}
y_{1} & \mu \overline{y_{2}} \\
y_{2} & \overline{y_{1}}
\end{array}\right)
$$

On the other side it follows from $h=P+\ell R$ that $R(x, y)=\xi^{t} \rho \eta$ with

$$
\rho=\left(\begin{array}{cc}
a_{2} & \overline{a_{1}} \\
-a_{1} & -\mu \overline{a_{2}}
\end{array}\right)
$$

Assume that $\theta=[k]$, so that σ_{θ} corresponds to the involution $\operatorname{Int}\left(\gamma^{-1}\right) \circ *$, where $\gamma=\alpha-\alpha^{*}$. Similarly $\sigma_{[R]}$ corresponds to the involution $\operatorname{Int}\left(\widetilde{\rho}^{-1}\right) \circ t$ where $\tilde{\rho}=\rho+\rho^{t}$. We obviously have $\rho=c \alpha$ with $c=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, so that $\rho^{t}=\alpha^{t} c^{t}=-\alpha^{t} c=-c a^{*}$ and $\rho+\rho^{t}=c\left(\alpha-\alpha^{*}\right)$ or $c \gamma=\widetilde{\rho}$. Now ${ }^{*}=\operatorname{Int}\left(c^{-1}\right) \circ t$ implies $\left.\sigma_{[R]}\right|_{M_{n}(D)}=\sigma_{\theta}$. We finally check that $f_{\theta}=\left.f_{[R]}\right|_{\operatorname{Sym}\left(M_{n}(D), \sigma_{\theta}\right)}$. We have $f_{\theta}(s)=\operatorname{Trd}_{M_{n}(D)}\left(\gamma^{-1} \alpha s\right)$ and $f_{[R]}(s)=\operatorname{Trd}_{M_{2 n}(K)}\left(\widetilde{\rho}^{-1} \rho s\right)$, hence the claim, since $\rho=c \alpha$ and $\widetilde{\rho}=c \gamma$ implies $\gamma^{-1} \alpha=\widetilde{\rho}^{-1} \rho$.

Corollary 5.3. The embedding $\operatorname{End}_{D}(V) \hookrightarrow \operatorname{End}_{K}\left(V^{0}\right)$ induces

1) an isomorphism $\left(\operatorname{End}_{D}(V), \sigma_{\theta}, f_{\theta}\right) \otimes K \xrightarrow{\sim}\left(\operatorname{End}_{K}\left(V^{0}\right), \sigma_{[R]}, f_{[R]}\right)$,
2) an isomorphism $C\left(\operatorname{End}_{D}(V), \sigma_{\theta}, f_{\theta}\right) \otimes K \xrightarrow{\sim} C_{0}\left(V^{0},[R]\right)$.

In view of (2) the semilinear automorphism $T: V^{0} \xrightarrow{\sim} V^{0}, T x=x \ell$, is a semilinear similitude with multiplier $-\mu$ of the quadratic form $[R]$, such that $T^{2}=\mu$.

Lemma 5.4. The map T induces a semilinear automorphism $C_{0}(T)$ of $C_{0}\left(V^{0}, R\right)$ such that

$$
C_{0}(T)(x y)=(-\mu)^{-1} T(x) T(y) \text { for } x, y \in V^{0}
$$

and $C_{0}(T)^{2}=I d$.
Proof. This follows (for example) as in [6, (13.1)]

Proposition 5.5.

$$
C\left(\operatorname{End}_{D}(V), \sigma_{\theta}, f_{\theta}\right)=\left\{c \in C_{0}\left(V^{0}, R\right) \mid C_{0}(T)(c)=c\right\} .
$$

Proof. The claim follows from the defining relations of $C\left(\operatorname{End}_{D}(V), \sigma_{\theta}, f_{\theta}\right)$ and the fact that

$$
\operatorname{End}_{D}(V)=\left\{f \in \operatorname{End}_{K}\left(V^{0}\right) \mid T^{-1} f T=f\right\}
$$

We call $C\left(\operatorname{End}_{D}(V), \sigma_{\theta}, f_{\theta}\right)$ or equivalently $\mathrm{Cl}(V, \theta)$ the Clifford algebra of the quadratic quaternion space (V, θ).

Let t be a semilinear similitude of a quadratic space (U, q) of even dimension over K. Assume that $\operatorname{disc}(q)$ is trivial, so that $C_{0}(U, q)$ decomposes as product of two K-algebras $C^{+}(U, q)$ and $C^{-}(U, q)$. We say that t is proper if $C_{0}(t)\left(C^{ \pm}(U, q)\right) \subset C^{ \pm}(U, q)$ and we say that t is improper if $C_{0}(t)\left(C^{ \pm}(U, q)\right) \subset$ $C^{\mp}(U, q)$. In general we say that t is proper if t is proper over some field extension of F which trivializes $\operatorname{disc}(q)$. For any semilinear similitude t, let $d(t)=1$ is t if proper and $d(t)=-1$ if t is improper.

LEMMA 5.6. Let t_{i} be a semilinear similitude of $\left(U_{i}, q_{i}\right), i=1,2$. We have $d\left(t_{1} \perp t_{2}\right)=d\left(t_{1}\right) d\left(t_{2}\right)$.

Proof. We assume that $\operatorname{disc}\left(q_{i}\right), i=1,2$, is trivial. Let e_{i} be an idempotent generating the center Z_{i} of $C_{0}\left(q_{i}\right)$. We have $t_{i}\left(e_{i}\right)=e_{i}$ if t_{i} is proper and $t_{i}\left(e_{i}\right)=1-e_{i}$ if t_{i} is improper. The idempotent $e=e_{1}+e_{2}-2 e_{1} e_{2} \in C_{0}\left(q_{1} \perp q_{2}\right)$ generates the center of $C_{0}\left(q_{1} \perp q_{2}\right)$ (see for example [5, (2.3), Chap. IV]) and the claim follows by case checking.

Lemma 5.7. Let V, θ, V^{0}, R and T be as above. Let $\operatorname{dim}_{K} V^{0}=2 m$. Then T is proper if m is even and is improper if m is odd.

Proof. The quadratic space (V, θ) is the orthogonal sum of 1-dimensional spaces and we get a corresponding orthogonal decomposition of $\left(V^{0},[R]\right)$ into subspaces $\left(U_{i}, q_{i}\right)$ of dimension 2. In view of (5.6) it suffices to check the case $m=1$. Let $\alpha=a=a_{1}+\ell a_{2} \in D$ and $\rho=\left(\begin{array}{cc}a_{2} & \overline{a_{1}} \\ -a_{1} & -\mu \overline{a_{2}}\end{array}\right)$. We choose $\mu=1$, $a_{1}=j(j$ as in (2.4) $)$, put $i=1-2 j$, so that $\bar{i}=-i$ and choose $a_{2}=0$. Let $x=x_{1} e_{1}+x_{2} e_{2} \in V^{0}$, so $[R]\left(x_{1}, x_{2}\right)=i x_{1} x_{2}$ and $C([R])$ is generated by e_{1}, e_{2} with the relations $e_{1}^{2}=0, e_{2}^{2}=0, e_{1} e_{2}+e_{2} e_{1}=i$. The element $e=i^{-1} e_{1} e_{2}$ is an idempotent generating the center. Since $T\left(x_{1} e_{1}+x_{2} e_{2}\right)=\bar{x}_{2} e_{1}+\bar{x}_{1} e_{2}$, we have $C_{0}(T)\left(e_{1} e_{2}\right)=-e_{2} e_{1}$ and $C_{0}(T)(e)=1-e$. Thus T is not proper.

Of special interest for the next section are quadratic quaternion forms $[k]$ such that the induced quadratic forms $\pi_{2}([k])$ are Pfister forms. For convenience we call such forms Pfister quadratic quaternion forms. Hyperbolic spaces of dimension 2^{n} are Pfister forms, hence spaces of the form $\beta([b]), b$ a hermitian form over K, are Pfister, in view of the exactness of the sequence of Lewis [7]. It is in fact easy to give explicit examples of Pfister forms using the following constructions:

Example 5.8 (Char $F \neq 2$). Let $q=<\lambda_{1}, \ldots, \lambda_{n}>$ be a diagonal quadratic form on F^{n}, i.e., $q(x)=\sum \lambda_{i} x_{i}^{2}$. Let $[k]$ on D^{n} be given by the diagonal form ℓq. Then the corresponding quadratic form $[R]$ on $K^{2 n}$ is given by the diagonal form $<1,-\mu>\otimes q$. In particular we get the 3-Pfister form $\ll a, b, \mu \gg$ choosing for q the norm form of a quaternion algebra $(a, b)_{F}$.

Example 5.9 (Char $F=2$). Let $b=<\lambda_{1}, \ldots, \lambda_{n}>$ be a bilinear diagonal form on F^{n}, i.e., $b(x, y)=\sum \lambda_{i} x_{i} y_{i}$. Let $k=(j+\ell) b$ on D^{n}. Then the corresponding quadratic form $[R]$ over $K=R(j), j^{2}=j+\lambda$, is given by the form $[R]=b \otimes[1, \lambda]$ where $[\xi, \eta]=\xi x_{1}^{2}+x_{1} x_{2}+\eta x_{2}{ }^{2}$. In particular, for $b=<1, a, c, a c>$, we get the 3-Pfister form $\ll a, c, \lambda]]$ with the notations of [6], p. xxi.

6. Triality for semilinear similitudes

Let \mathfrak{C} be a Cayley algebra over F with conjugation $\pi: x \mapsto \bar{x}$ and norm $\mathfrak{n}: x \mapsto x \bar{x}$. The new multiplication $x \star y=\bar{x} \bar{y}$ satisfies

$$
\begin{equation*}
x \star(y \star x)=(x \star y) \star x=\mathfrak{n}(x) y \tag{6}
\end{equation*}
$$

for $x, y \in \mathfrak{C}$. Further, the polar form $b_{\mathfrak{n}}$ is associative with respect to \star, in the sense that

$$
b_{\mathfrak{n}}(x \star y, z)=b_{\mathfrak{n}}(x, y \star z) .
$$

Proposition 6.1. For $x, y \in \mathfrak{C}$, let $r_{x}(y)=y \star x$ and $\ell_{x}(y)=x \star y$. The map $\mathfrak{C} \rightarrow \operatorname{End}_{F}(\mathfrak{C} \oplus \mathfrak{C})$ given by

$$
x \mapsto\left(\begin{array}{cc}
0 & \ell_{x} \\
r_{x} & 0
\end{array}\right)
$$

induces isomorphisms $\alpha:(C(\mathfrak{C}, \mathfrak{n}), \tau) \xrightarrow{\sim}\left(\operatorname{End}_{F}(\mathfrak{C} \oplus \mathfrak{C}), \sigma_{\mathfrak{n} \perp \mathfrak{n}}\right)$ and

$$
\begin{equation*}
\alpha_{0}:\left(C_{0}(\mathfrak{C}, \mathfrak{n}), \tau_{0}\right) \xrightarrow{\sim}\left(\operatorname{End}_{F}(\mathfrak{C}), \sigma_{\mathfrak{n}}\right) \times\left(\operatorname{End}_{F}(\mathfrak{C}), \sigma_{\mathfrak{n}}\right), \tag{7}
\end{equation*}
$$

of algebras with involution.
Proof. We have $r_{x}\left(\ell_{x}(y)\right)=\ell_{x}\left(r_{x}(y)\right)=\mathfrak{n}(x) \cdot y$ by (6). Thus the existence of the map α follows from the universal property of the Clifford algebra. The fact that α is compatible with involutions is equivalent to

$$
b_{\mathfrak{n}}(x \star(z \star y), u)=b_{\mathfrak{n}}(z, y \star(u \star x))
$$

for all x, y, z, u in \mathfrak{C}. This formula follows from the associativity of $b_{\mathfrak{n}}$. Since $C(\mathfrak{C}, \mathfrak{n})$ is central simple, the map α is an isomorphism by a dimension count.

Assume from now on that \mathfrak{C} is defined over a field K which is quadratic Galois over F. Any proper semilinear similitude t of \mathfrak{n} induces a semilinear automorphism $C(t)$ of the even Clifford algebra $\left(C_{0}(\mathfrak{C}, \mathfrak{n}), \tau_{0}\right)$, which does not permute the two components of the center of $C_{0}(\mathfrak{C}, \mathfrak{n})$. Thus $\alpha_{0} \circ C_{0}(t) \circ \alpha_{0}^{-1}$ is a pair of semilinear automorphisms of $\left(\operatorname{End}_{K}(\mathfrak{C}), \sigma_{\mathfrak{n}}\right)$. It follows as in (4.5) that, for any quadratic space (V, q), semilinear automorphisms of $\left(\operatorname{End}_{K}(V), \sigma_{q}, f_{q}\right)$ are of the form $\operatorname{Int}(f)$, where f is a semilinear similitude of q. The following result is due to Wonenburger 12] in characteristic different from 2 :

Proposition 6.2. For any proper semilinear similitude t_{1} of \mathfrak{n} with multiplier μ_{1}, there exist proper semilinear similitudes t_{2}, t_{2} such that

$$
\alpha_{0} \circ C_{0}\left(t_{1}\right) \circ \alpha_{0}^{-1}=\left(\operatorname{Int}\left(t_{2}\right), \operatorname{Int}\left(t_{3}\right)\right)
$$

and

$$
\begin{align*}
& \mu_{3}^{-1} t_{3}(x \star y)=t_{1}(x) \star t_{2}(y) \\
& \mu_{1}^{-1} t_{1}(x \star y)=t_{2}(x) \star t_{3}(y), \tag{8}\\
& \mu_{2}^{-1} t_{2}(x \star y)=t_{3}(x) \star t_{1}(y)
\end{align*}
$$

Let t_{1} be an improper similitude with multiplier μ_{1}. There exist improper similitudes t_{2}, t_{3} such that

$$
\begin{aligned}
& \mu_{3}^{-1} t_{3}(x \star y)=t_{1}(y) \star t_{2}(x) \\
& \mu_{1}^{-1} t_{1}(x \star y)=t_{2}(y) \star t_{3}(x) \\
& \mu_{2}^{-1} t_{2}(x \star y)=t_{3}(y) \star t_{1}(x)
\end{aligned}
$$

The pair $\left(t_{2}, t_{3}\right)$ is determined by t_{1} up to a factor $\left(\lambda, \lambda^{-1}\right), \lambda \in K^{\times}$, and we have $\mu_{1} \mu_{2} \mu_{3}=1$.
Furthermore, any of the formulas in (8) implies the two others.
Proof. The proof given in [6, (35.4)] for similitudes can also be used for semilinear similitudes.

Remark 6.3. The class of two of the $t_{i}, i=1,2,3$, modulo K^{\times}is uniquely determined by the class of the third t_{i}.

Corollary 6.4. Let T_{1} be a proper semilinear similitude of $(\mathfrak{C}, \mathfrak{n})$ such that $T_{1}^{2}=\mu_{1}, \mu_{1} \in K^{\times}$and with multiplier $-\mu_{1}$. There exist elements $a_{i} \in K^{\times}$, $i=1,2,3$, and proper semilinear similitudes T_{i} of $(\mathfrak{C}, \mathfrak{n})$, with $T_{i}^{2}=\mu_{i}, \mu_{i} \in$ K^{\times}and with multiplier $-\mu_{i}, i=2,3$, such that $a_{i} \overline{a_{i}} \mu_{i}=\mu_{i+1} \mu_{i+2}$ and

$$
\begin{aligned}
& a_{3} T_{3}(x \star y)=T_{1}(x) \star T_{2}(y) \\
& a_{1} T_{1}(x \star y)=T_{2}(x) \star T_{3}(y) \\
& a_{2} T_{2}(x \star y)=T_{3}(x) \star T_{1}(y
\end{aligned}
$$

The class of any T_{i} modulo K^{\times}determines the two other classes and the μ_{i} 's are determined up to norms from K^{\times}. Furthermore any of the three formulas determines the two others.

Proof. Counting indices modulo 3, we have relations

$$
T_{i}(x) \star T_{i+1}(y)=b_{i+2} T_{i+2}, \quad b_{i} \in K^{\times}
$$

in view of (6.2). If we replace all T_{j} by $T_{j} \circ \rho_{\nu_{j}}, \nu_{j} \in K^{\times}$, we get new constants a_{i}. The claim then follows from (3.3).

7. Triality for quadratic quaternion forms

Let $D_{1}=K \oplus \ell_{1} K=\left[K, \mu_{1}\right)$ be a quaternion algebra over F and let $\left(V_{1}, q_{\theta_{1}}\right)$ be a quaternion quadratic space of dimension 4 over D_{1}. Let $\theta_{1}=\left[h_{1}\right], h_{1}(x, y)=$ $P_{1}(x, y)+\ell R_{1}(x, y)$, so that $\left[R_{1}\right]=\pi_{2}\left(\theta_{1}\right)$ corresponds to a 8 -dimensional (classical) quadratic form on V_{1}^{0} over K. The map $T_{1}: V_{1}^{0} \rightarrow V_{1}^{0}, T_{1}(x)=$ $x \ell_{1}$, is a semilinear similitude of $\left(V_{1}^{0},\left[R_{1}\right]\right)$ with multiplier $-\mu_{1}$ and such that $T_{1}^{2}=\mu_{1}$. We recall that by (3.5) it is equivalent to have a quadratic quaternion space $\left(V_{1}, q_{\theta_{1}}\right)$ or a pair $\left(V_{1}^{0},\left[T_{1}\right]\right)$. We assume from now on that the quadratic form $q_{\left[R_{1}\right]}$ is a 3-Pfister form, i.e.,the norm form \mathfrak{n} of a Cayley algebra \mathfrak{C} over K. In view of (6.4) T_{1} induces two semilinear similitudes T_{2}, resp. T_{3}, with multipliers μ_{2}, resp. μ_{3}, which in turn define a quaternion quadratic space $\left(V_{2}, \theta_{2}\right)$ of dimension 4 over $D_{2}=\left[K, \mu_{2}\right)$, resp. a quaternion quadratic space $\left(V_{3}, \theta_{3}\right)$ of dimension 4 over $D_{3}=\left[K, \mu_{3}\right)$. Let $\operatorname{Br}(F)$ be the Brauer group of F.

Proposition 7.1. 1) $\left[D_{1}\right]\left[D_{2}\right]\left[D_{3}\right]=1 \in \operatorname{Br}(F)$,
2) The restriction of $\left.\alpha: C_{0}(\mathfrak{C}, \mathfrak{n})\right) \xrightarrow{\sim} \operatorname{End}_{K}(\mathfrak{C}) \times \operatorname{End}_{K}(\mathfrak{C})$ to $C\left(V_{i}, D_{i}, \theta_{i}\right)$ induces isomorphisms

$$
\alpha_{i}:\left(C\left(V_{i}, D_{i}, \theta_{i}\right), \tau\right) \xrightarrow{\sim}\left(\operatorname{End}_{D_{i+1}}\left(V_{i+1}\right), \sigma_{\theta_{i+1}}\right) \times\left(\operatorname{End}_{D_{i+2}}\left(V_{i+2}\right), \sigma_{\theta_{i+2}}\right)
$$

Proof. The first claim follows from the fact that $\mu_{1} \mu_{2}=\mu_{3} \operatorname{Nrd}_{D_{3}}\left(a_{3}\right)$ and the second is a consequence of (5.5), (3.5) and the definition of α.

Example 7.2. Let \mathfrak{C}_{0} be a Cayley algebra over F and let $\mathfrak{C}=\mathfrak{C}_{0} \otimes_{F} K$. For any $c \in \mathfrak{C}_{0}$ such that $c^{2}=\mu_{1} \in F^{\times}, T_{1}: \mathfrak{C} \rightarrow \mathfrak{C}$ given by $T_{1}(k \otimes x)=\bar{k} \otimes x c$ is a semilinear similitude with multiplier $-\mu_{1}$ such that $T_{1}^{2}=\mu_{1}$. The Moufang identity $(c x)(y c)=c(x y) c$ in \mathfrak{C} implies that

$$
(x c) \star(c y)=\bar{c}(x \star y) \bar{c} .
$$

Thus $T_{2}(k \otimes y)=\bar{k} \otimes c y$ and $T_{3}(k \otimes z)=i \bar{k} \otimes \bar{c} z \bar{c}$ (where $i \in K^{\times}$is such that $\bar{i}=-i$) satisfy (6.4). The corresponding triple of quaternion algebras is $\left(\left[K, \mu_{1}\right),\left[K, \mu_{1}\right),\left[K, i \bar{i} \mu_{1}^{2}\right)\right)$, the third algebra being split.

Example 7.3. Let $D_{i}, i=1,2,3$, be quaternion algebras over F such that $\left[D_{1}\right]\left[D_{2}\right]\left[D_{3}\right]=1 \in \operatorname{Br}(F)$. We may assume that the D_{i} contain a common separable quadratic field K and that $D_{i}=\left[K, \mu_{i}\right), \mu_{i} \in F^{\times}$such that $\mu_{1} \mu_{2} \mu_{3} \in$
$F^{\times 2}$. In [6, (43.12)] similitudes S_{i} with multiplier $\mu_{i}, i=1,2,3$, of the split Cayley algebra \mathfrak{C}_{s} over F are given, such that 1) $\mu_{3}^{-1} S_{3}(x \star y)=S_{1}(x) \star S_{2}(y)$ and 2) $S_{i}^{2}=\mu_{i}$. Let $\mathfrak{C}=K \otimes \mathfrak{C}_{s}$. Let $u \in K^{\times}$be such that $\bar{u}=-u$. The semilinear similitudes $T_{i}(k \otimes x)=u \bar{k} \otimes S_{i}(x), i=1,2,3$, satisfy

$$
a_{3} T_{3}(x \star y)=T_{1}(x) \star T_{2}(y)
$$

with $a_{3}=u \mu_{3}^{-1}$ (we use the same notation \star in \mathfrak{C}_{s} and in \mathfrak{C}). Thus there exist a triple of quadratic quaternion forms $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ corresponding to the three given quaternion algebras. We hope to describe the corresponding quadratic quaternion forms in a subsequent paper.

References

[1] A. Bak. K-Theory of forms, volume 98 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J., 1981.
[2] E. Bayer-Fluckiger and R. Parimala. Galois cohomology of the classical groups over fields of cohomological dimension ≤ 2. Invent. Math., 122(2):195-229, 1995.
[3] J. Dieudonné. Sur les groupes unitaires quaternioniques à deux ou trois variables. Bull. Sci. Math., 77:195-213, 1953.
[4] M. A. Elomary. Orthogonal sum of central simple algebras with quadratic pairs in characteristic 2 and classification theorems. PhD thesis, Université Catholique de Louvain, 2000.
[5] M.-A. Knus. Quadratic and Hermitian forms over rings, volume 294 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni.
[6] M.-A. Knus, A. A Merkurjev, M. Rost and J.-P. Tignol. The Book of Involutions. Number 44 in American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, R.I., 1998.
[7] D. W. Lewis. New improved exact sequences of Witt groups. J. Algebra, 74:206-210, 1982.
[8] W. Scharlau. Quadratic and Hermitian forms, volume 270 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1985.
[9] E. A. M. Seip-Hornix. Clifford algebras of quadratic quaternion forms. I, II. Nederl. Akad. Wetensch. Proc. Ser. A 68 = Indag. Math., 27:326-363, 1965.
[10] J. Tits. Formes quadratiques, groupes orthogonaux et algèbres de Clifford. Invent. Math., 5:19-41, 1968.
[11] C. T. C Wall. On the axiomatic foundations of the theory of Hermitian forms. Proc. Camb. Phil. Soc., 67:243-250, 1970.
[12] M. J. Wonenburger. Triality principle for semisimilarities. J. Algebra, 1:335-341, 1964.

Max-Albert Knus	Oliver Villa
ETH Zentrum	ETH Zentrum
CH-8092-Zürich	CH-8092-Zürich
Switzerland	Switzerland
knus@math.ethz.ch	

