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Abstract. The notions of totally indefinite and weakly isotropic
algebras with involution are introduced and a proof is given of the
fact that a field satisfies the Effective Diagonalization Property (ED)
if and only if it satisfies the following weak Hasse principle: every
totally indefinite central simple algebra with involution of the first
kind over the given field is weakly isotropic. This generalizes a known
result from quadratic form theory.
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1. Introduction

Let F be a field of characteristic different from two and let (A, σ) be a central
simple algebra over F with involution of the first kind (i.e. σ|F = 1F ). Recall
that σ is called orthogonal (resp. symplectic) if σ is adjoint to a symmetric
(resp. skew-symmetric) bilinear form, after scalar extension to a splitting field
of A.
The connection between orthogonal involutions and quadratic forms has been
a motivation for extending quadratic form theoretic concepts and theorems to
the realm of algebras with involution (of any kind). For example, the classical
invariants (discriminant, Clifford algebra, signature) of quadratic forms have
been defined for algebras with involution (see [7]) and classification theorems
à la Elman and Lam [5] have been obtained by Lewis and Tignol [14]. Some
more examples include: a Cassels-Pfister theorem [19], an orthogonal sum for
Morita-equivalent algebras with involution [2] and analogues of the Witt ring
[12, 3].
In this paper we will examine the extension to central simple algebras with
an involution of the first kind of the following weak Hasse principle for weak
isotropy:

(WH): Every totally indefinite quadratic form over F is weakly isotropic
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and prove an analogue of the following theorem due to Prestel [15] and Elman
et al. [4]:

Theorem 1.1. F satisfies (WH) ⇐⇒ F satisfies the Strong Approximation
Property.

In particular, we will show that every totally indefinite central simple F -algebra
with involution of the first kind is weakly isotropic if and only if F satisfies the
Effective Diagonalization Property. Our result can also be re-interpreted to
give a partial generalization of a theorem of Lewis [11] on sums of squares
representing zero in a central simple algebra.
We mention that there is a refined (and more difficult) version of Theorem 1.1,
which holds for arbitrary base fields, due to Bröcker [1, 3.9] and Prestel [16, p.
93]. It says that if φ is a totally indefinite quadratic form over a field F , and if
for every valuation with real residue class field, at least one residue class form
of φ is weakly isotropic, then φ is weakly isotropic. This statement can also be
found in [18, 3.7.12]. Its converse is easily seen to be true.
All involutions on central simple algebras considered in this paper are of the first
kind and all forms (quadratic, hermitian, . . . ) are assumed to be nonsingular.
Standard references are [8] and [18] for the theory of quadratic forms, [7] for
central simple algebras with an involution and [16] for real fields.

2. Weakly isotropic and totally indefinite algebras

In this section we will generalize the notions of totally indefinite and weakly
isotropic quadratic forms to the setting of central simple algebras (A, σ) with
an involution of the first kind over a field F of characteristic 6= 2. We denote
the space of orderings of F by XF and an arbitrary ordering of F by P .

Definition 2.1. Let (A, σ) be a central simple F -algebra with involution of
the first kind. A right ideal I in A is called isotropic (with respect to the
involution σ) if for all x and y in I we have that σ(x)y = 0. The algebra with
involution (A, σ) is called isotropic if A contains a nonzero isotropic right ideal,
or equivalently, if there exists an idempotent e 6= 0 in A such that σ(e)e = 0
(see [7, 6.A]). We also say that (A, σ) is anisotropic if for x ∈ A, σ(x)x = 0
implies x = 0.

Recall that a quadratic form q over F is weakly isotropic if there exists an
n ∈ N such that n× q is isotropic.

Definition 2.2. The algebra with involution (A, σ) is called weakly isotropic
if there exist nonzero x1, . . . , xn ∈ A such that σ(x1)x1 + · · · + σ(xn)xn = 0
and strongly anisotropic otherwise.

Remark 2.3. In [21] an n-fold orthogonal sum ¢n(A, σ) is defined and it is
shown there that ¢n(A, σ) ∼= (Mn(F ), t)⊗F (A, σ), where t denotes the trans-
pose involution. This is on the one hand in accordance with Dejaiffe’s [2]
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construction of an orthogonal sum of two Morita-equivalent algebras with invo-
lution and on the other hand what one would expect since n×q = 〈1, . . . , 1

︸ ︷︷ ︸

n×

〉⊗q

and ¢n(A, σ) reduces to n×q in the split case when σ is adjoint to a quadratic
form q. In analogy with the quadratic form case, one could define (A, σ) to
be weakly isotropic by requiring that ¢n(A, σ) is isotropic for some positive
integer n and it is easy to see that this condition is equivalent with the one
given in Definition 2.2.

Let (D,ϑ) be a central division algebra over F with involution of the first kind
and (V, h) an ε-hermitian form over (D,ϑ), ε = ±1. Recall [7, 4.A] that the
adjoint involution σh of h on EndD(V ) is implicitly defined by

h
(
x, f(y)

)
= h

(
σh(f)(x), y

)
for x, y ∈ V and f ∈ EndD(V )

and that σh is also of the first kind.
Just as for quadratic forms, we say that the ε-hermitian form h is weakly
isotropic if there exists a positive integer n such that n× h is isotropic.

Lemma 2.4. Let (D,ϑ), (V, h) and σh be as above. Then (EndD(V ), σh) is
weakly isotropic if and only if h is weakly isotropic. More precisely, there exist
f1, . . . , fn ∈ EndD(V ) such that σh(f1)f1 + · · · + σh(fn)fn = 0 if and only if
there exist x1, . . . , xn ∈ V such that h(x1, x1) + · · ·+ h(xn, xn) = 0.

Proof. The lemma is folklore, and we only give the argument since we couldn’t
find a suitable reference. It suffices to show that (EndD(V ), σh) is isotropic if
and only if h is isotropic.
If σh is isotropic, there is 0 6= f ∈ EndD(V ) with σh(f)f = 0. Choose v ∈ V
with f(v) 6= 0. Then

0 = h
(
σh(f)(f(v)), v

)
= h

(
f(v), f(v)

)

shows that h is isotropic. Conversely, if h(v, v) = 0 for some v ∈ V , then
σh(f)f = 0 for any f ∈ EndD(V ) with f(V ) ⊂ vD.

Corollary 2.5. Let (EndF (V ), σq) be a split algebra with involution, adjoint
to a quadratic form q on V . Then there exist f1, . . . , fn ∈ EndF (V ) such that
σq(f1)f1 + · · · + σq(fn)fn = 0 if and only if there exist x1, . . . , xn ∈ V such
that q(x1) + · · ·+ q(xn) = 0.

Now suppose that F is a real field and that P is an ordering of F . In [13]
Lewis and Tignol defined the signature of an algebra (A, σ) with involution of
the first kind as

sigP σ =
√

sigP Tσ,

where Tσ is the involution trace form, defined by Tσ(x) := TrdA(σ(x)x),∀x ∈
A. If (A, σ) is split with orthogonal involution, (A, σ) ∼= (EndF (V ), σq), then
Lewis and Tignol showed that sigP σq = | sigP q|.
Recall that a quadratic form q over F is called totally indefinite if it is indefinite
for each ordering P of F , i.e. | sigP q| < dim q for each P .
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Definition 2.6. The algebra with involution (A, σ) is called indefinite for the
ordering P of F if sigP σ < degA and totally indefinite if it is indefinite for
each ordering P of F .

3. The weak Hasse principle

We now have all the ingredients ready to generalize (WH) to:

(WHA): Every totally indefinite algebra with involution of the first

kind over F is weakly isotropic.

In [20, Ch. 5] Unger showed that (WHA) holds for fields with a unique order-
ing, algebraic number fields and R(t). These fields are some of the standard
examples of SAP fields, as described below.

Definition 3.1. The field F satisfies the Strong Approximation Property (or
is SAP, for short) if the following equivalent conditions hold:

(i) Every clopen subset of XF has the form {P ∈ XF | a >P 0} for some
a ∈ F×.

(ii) For all a, b ∈ F× the quadratic form 〈1, a, b,−ab〉 is weakly isotropic.
(iii) Every quadratic form q such that a power of q is weakly isotropic, is itself

weakly isotropic.
(iv) For any two disjoint closed subsets X,Y of XF , there exists an a ∈ F×

such that a >P 0,∀P ∈ X and a <P 0,∀P ∈ Y .
(v) For every (Krull) valuation v : F× ³ Γ with value group Γ and real

residue class field F v, either (a) or (b) holds:
(a) Γ = 2Γ;
(b) |Γ/2Γ| = 2 and F v has a unique ordering.

Condition (iv) is the original definition of SAP fields, due to Knebusch et al.
[6, Thm. 12]. The equivalence (i) ⇐⇒ (iv) is given in [6, Thm. 12, Cor.
13]. Prestel [15, (2.2), (3.1)] showed (ii) ⇐⇒ (iii) ⇐⇒ (v) ⇐⇒ F is a
Pasch field, while the equivalence F is SAP ⇐⇒ F is Pasch can be found in
[4, Thm. C]. The notion of a Pasch field was first introduced by Prestel; for a
definition we refer the reader to [15]. Additional references for SAP fields are
the monographs by Lam [9] and Prestel [16].

Example 3.2. Here are some examples of SAP fields:

(1) Fields with only one ordering.
(2) Algebraic number fields.
(3) Fields of transcendence degree ≤ 1 over a real-closed field, e.g. R(t).
(4) F ((t)) if F has at most one ordering.

The following fields are not SAP:

(5) The rational function field Q(x).
(6) The rational function field F (x, y), where F is any real field.

Based on the results in [20, Ch. 5] it was tempting to think that (WHA)
would hold for all SAP fields. The Strong Approximation Property is definitely
required, for if F is not SAP, we can construct a counterexample as follows:
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There exist a, b ∈ F× such that q := 〈1, a, b,−ab〉 is strongly anisotropic. Hence
the algebra (A, σ) = (EndF (F

4), σq) is strongly anisotropic by Corollary 2.5.
However, the form Tσ = q ⊗ q is equal to

q ⊗ q = q ⊥ aq ⊥ bq ⊥ −abq
= 〈1, a, b,−ab, a, 1, ab,−b, b, ab, 1,−a,−ab,−b,−a, 1〉
= 6× 〈1,−1〉 ⊥ 〈1, 1, 1, 1〉,

so Tσ is in fact isotropic and hence totally indefinite. Therefore the orthogonal
involution σ is totally indefinite.
For quadratic forms, this argument was of course already known in the 1970’s,
as testified by Theorem 1.1. We merely presented it from the point of view of
algebras with involution.
A counterexample in the symplectic case can be constructed by tensoring the
previous algebra with the quaternion division algebra (−1,−1)F equipped with
the canonical (symplectic) involution, which is strongly anisotropic.
As it turns out, a property stronger than SAP is needed, the Effective Diago-
nalization Property, first defined by Ware [22], which we will describe now.

Definition 3.3. A quadratic form 〈a1, . . . , an〉 is effectively diagonalizable if
it is isometric to a form 〈b1, . . . , bn〉 satisfying bi ∈ P =⇒ bi+1 ∈ P for all
1 ≤ i < n and all P ∈ XF . The field F satisfies the Effective Diagonalization
Property (or is ED, for short) if every quadratic form over F is effectively
diagonalizable.

The class of ED fields is a proper subclass of the class of SAP fields.

Example 3.4. The field Q((t)) is SAP, but not ED.

Prestel and Ware [17] proved the following characterization theorem:

Theorem 3.5. F is ED if and only if for every (Krull) valuation v : F× ³ Γ
with value group Γ and real residue class field F v, we have |Γ/2Γ| ≤ 2 and F v

is euclidean in case |Γ/2Γ| = 2.

(Recall that a field is euclidean if it is uniquely ordered and every positive
element is a square.) They also showed:

Theorem 3.6. If F is ED then every 2-extension of F is also ED. (In partic-
ular, the pythagorean closure of F is ED.)

(Recall that an extension K of F is called a 2-extension of F if K is contained
in the quadratic closure of F .)

Remark 3.7. The ED property also played an important role in the classifica-
tion theorems of Lewis and Tignol [14].

Our generalization of Theorem 1.1 reads:

Theorem 3.8. F is ED ⇐⇒ F satisfies (WHA).

The proof will follow from the results below (Theorems 3.11 and 3.12).
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Lemma 3.9. Let (A, σ) be a central simple algebra with involution of the first

kind over F . Let d ∈ F be a sum of squares, and let K = F (
√
d). Suppose that

(A⊗F K,σK) is weakly isotropic. Then (A, σ) is weakly isotropic.

Proof. We may assume that (A⊗F K,σK) is isotropic. Hence there exist x, y ∈
A, not both zero such that

(
σ(x) + σ(y)

√
d
)(
x+ y

√
d
)
= 0.

Separating, this implies σ(x)x + dσ(y)y = 0. Suppose d = d2
1 + · · · + d2

r with
di ∈ F , then

σ(x)x+ σ(d1y)(d1y) + · · ·+ σ(dry)(dry) = 0,

i.e. (A, σ) is weakly isotropic.

Lemma 3.10. Let F be a pythagorean SAP field and A a central simple algebra
of exponent 2 over F . Then A is Brauer-equivalent to a quaternion division
algebra (−1, f)F for some f ∈ F×.

Proof. By a well-known theorem of Merkurjev, A is Brauer-equivalent to a
tensor product of finitely many quaternion division algebras over F . Without
loss of generality, we may assume that A is Brauer-equivalent to (a, b)F ⊗F
(a′, b′)F for certain a, a′, b, b′ ∈ F×, and that (a, b)F and (a′, b′)F do not split.
Since (a, b)F is a division algebra, its norm form 〈1,−a,−b, ab〉 is anisotropic.
Hence 〈a, b,−ab〉 is anisotropic. Since F is SAP, the quadratic form 〈1, a, b,−ab〉
is weakly isotropic, and thus isotropic, since F is pythagorean. Hence
〈1, a, b,−ab〉 ' 〈1,−1, c, d〉 for certain c, d ∈ F×. Comparing determinants,
we get 〈1, a, b,−ab〉 ' 〈1,−1, c, c〉, which implies 〈a, b,−ab〉 ' 〈−1, c, c〉, and
thus (a, b)F ∼= (−1, c)F .
Similarly, (a′, b′)F ∼= (−1, c′)F for some c ∈ F×, and so A is Brauer-equivalent
to (−1, cc′)F .

Theorem 3.11. Assume that F is ED, then F satisfies (WHA).

Proof. Let (A, σ) be totally indefinite. We will show that (A, σ) is weakly
isotropic.
If A is split, the theorem is true by Theorem 1.1 (when σ is orthogonal) or
trivial (when σ is symplectic).
If the degree of A is odd, then A is split and σ is orthogonal. So we are done
in this case. Hence we may assume that A is not split and degA = n = 2m is
even.
Since F is ED, its pythagorean closure is ED. By Lemma 3.9 we may replace
F by its pythagorean closure. (The pythagorean closure Fpyth is in general an
infinite extension of F but, for any given algebra A, we only need to pass to a
finite extension of F , sitting inside Fpyth. Then we apply Lemma 3.9 finitely
many times.) So we assume from now on that F is a pythagorean ED field.
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By Lemma 3.10, A is Brauer-equivalent to a quaternion division algebra D :=
(−1, f)F for some f ∈ F×. So now we have

(A, σ) ∼= (EndD(D
m), σh) ∼= (Mm(D), σh),

where σh is the adjoint involution of a form h : Dm × Dm −→ D, which is
hermitian or skew-hermitian with respect to quaternion conjugation on D,
according to whether σ is symplectic or orthogonal.
Suppose first that σ is symplectic, so that h is hermitian. By [18, 7.6.3] there
exists a basis {e1, . . . , em} of Dm over D which is orthogonal with respect to
h. Let λi = h(ei, ei) for i = 1, . . . ,m. Lewis and Tignol [13, Cor. 2] showed
that λi ∈ F for all i = 1, . . . ,m and that

Tσ = 〈2〉 ⊗N ⊗ Λ⊗ Λ

where N is the norm form of D and Λ = 〈λ1, . . . , λm〉. By assumption Tσ
is totally indefinite, and hence weakly isotropic. Then N ⊗ Λ ⊗ Λ is weakly
isotropic and so N ⊗ N ⊗ Λ ⊗ Λ is weakly isotropic. Since F is SAP, this
implies (by Definition 3.1(iii)) that N ⊗ Λ is weakly isotropic. Since h(x, x) =
λ1N(x1) + · · · + λmN(xm) for x = (x1, . . . , xm) ∈ Dm, this implies that the
hermitian form h is weakly isotropic over D and hence that (A, σ) is weakly
isotropic.
Suppose next that σ is orthogonal, so that h is skew-hermitian. Put K =
F (
√
f) (note that f is not a square, since D is a division algebra). Over K, the

algebra A splits. Since (A, σ) is totally indefinite, it is clear that (A, σ)⊗F K
is also totally indefinite. Being a 2-extension of the ED field F , the field K
is SAP and, by Theorem 1.1, it follows that (A, σ) ⊗F K is weakly isotropic,
since A ⊗F K is split. This implies that the skew-hermitian form h becomes
weakly isotropic over K (i.e. as a form over DK

∼= M2(K)). ¿From this we will
now deduce that that the form h itself is weakly isotropic, i.e. that the algebra
(A, σ) is weakly isotropic.
Replacing h byN×h forN À 0 if necessary, there are x, y ∈ Dm, not both zero,
such that hK(x + y

√
f, x + y

√
f) = 0. This implies h(x, x) + fh(y, y) = 0. If

h(y, y) = 0, it follows that h is (weakly) isotropic and we are done. Otherwise,
u := h(y, y) ∈ D is a non-zero pure quaternion (since h is skew-hermitian) and
h has a diagonalization

h ' 〈−fu, . . .〉.
Now let d := u2 = −Nrd(u) ∈ F×. Then d < 0 on {P ∈ XF |f <P 0} and
therefore DFP

∼= (d, f)FP
for all orderings P ∈ XF (here FP denotes the real

closure of F with respect to P ). Hence D ∼= (d, f)F by Pfister’s local-global
principle (note that the Witt ring of F is torsion free, since F is pythagorean;
see [18, 2.4.10–11]), and there exists a pure quaternion v ∈ D with

v2 = −Nrd(v) = f and uv + vu = 0.

Thus v = Nrd(v)v−1 = −fv−1, and so

vuv = −fv−1uv = −f(−u) = fu.
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Therefore h(yv, yv) = vuv = fu and h also has a diagonalization

h ' 〈fu, . . .〉.
This implies that h ⊥ h ' 〈−fu, fu, . . .〉, which is isotropic. In other words, h
is weakly isotropic and hence σ is weakly isotropic. We are done.

Theorem 3.12. For any non-ED field F , there is an algebra (A, σ) with invo-
lution of the first kind (and of either type) over F which is strongly anisotropic
but totally indefinite.

Proof. The statement is clear if the field is not SAP (there is an involution
which is totally indefinite and strongly anisotropic, as explained just after Ex-
ample 3.2), so we concentrate on the case of a SAP field which is not ED.
Let F be such a field. Then F has a (Krull) valuation v whose value group
Γ satisfies Γ/2Γ = Z/2Z, and whose residue field F v is real without being
euclidean (this follows from Definition 3.1(v) and Theorem 3.5). Let π ∈ F×

with v(π) /∈ 2Γ, and let a ∈ F× be a v-unit whose residue class in F v is a sum of
squares but not a square. We choose a such that a is a sum of squares in F , and
consider the quaternion (division) algebra A = (a, π) over F . Let 1, i, j, k = ij
be the standard F -basis of A, satisfying i2 = a, j2 = π and k2 = −aπ. Let h
be the (diagonal) skew-hermitian form h = 〈j, k〉 over (A, ) (where denotes
the standard (symplectic) involution on A), and let σ be the adjoint involution
of h on M2(A). We claim that σ is totally indefinite, but not weakly isotropic.

To show this, let L = F (
√
a). We fix the splitting φ : AL

∼−→ M2(L) over L
given by

i 7→
(√

a 0
0 −√a

)

and j 7→
(
0 1
π 0

)

.

Under φ, h corresponds to a similarity class of quadratic forms q (of rank 4)
over L. We are going to calculate q.
For x ∈ A× with x+x = 0, let σx be the (orthogonal) involution on A given by
σx(z) = x−1zx. Under φ, σx ⊗ 1 corresponds to a similarity class of quadratic

forms qx over L. Writing J :=

(
0 −1
1 0

)

we have qx = J · φ(x). In particular,

taking x = j and x = k, we find

qj = 〈−π, 1〉 and qk = 〈π
√
a,
√
a〉.

Thus

q ' 〈1,
√
a,−π, π

√
a〉.

The form q is totally indefinite. Since the extension L/F is totally real, the
involution trace form Tσ (over F ) is totally indefinite as well and hence σ is
totally indefinite.
On the other hand, the residue forms of q with respect to v are 〈1,

√
a〉 and

〈−1,
√
a〉 (note that denotes taking residue classes here). Neither of them

is totally indefinite. Hence q is strongly anisotropic. Therefore σ cannot be
weakly isotropic.
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The symplectic case can be treated again by tensoring our algebra with the
quaternion division algebra (−1,−1)F , equipped with quaternion conjugation.

Putting everything together now yields a proof of Theorem 3.8.

4. Sums of hermitian squares

In [11], Lewis proved the following theorem, settling a conjecture of Leep
et al. [10].

Theorem 4.1. Let A be a central simple algebra over a field F of characteristic
6= 2. Then 0 is a nontrivial sum of squares, i.e. there exist nonzero x1, . . . , x` ∈
A such that 0 = x2

1+· · ·+x2
` , if and only if the trace form TA is weakly isotropic.

The natural adaptation of this theorem in the setting of algebras with involution
of the first kind is an easy consequence of the work we have done hitherto:

Definition 4.2. Let (A, σ) be a central simple algebra with involution of the
first kind over a field F and x ∈ A. Then σ(x)x is called a hermitian square
in A.

Theorem 4.3. Let (A, σ) be a central simple algebra with involution of the first
kind over an ED-field F . Then 0 is a nontrivial sum of hermitian squares, i.e.
there exist nonzero x1, . . . , x` ∈ A such that 0 = σ(x1)x1 + · · · + σ(x`)x`, if
and only if the involution trace form Tσ is weakly isotropic.

Proof. The necessary condition follows trivially (and does not require ED) by

simply taking the reduced trace of both sides of 0 =
∑`

i=1 σ(xi)xi.
For the sufficient condition, suppose that Tσ is weakly isotropic. Then Tσ, and
hence σ, is totally indefinite. Therefore σ is weakly isotropic (since F is ED), i.e.
there exist nonzero x1, . . . , x` ∈ A such that σ(x1)x1 + · · ·+ σ(x`)x` = 0.

Remark 4.4. For several special classes of algebras with involution of the first
kind, the condition on F can be relaxed and the conclusion of Theorem 4.3 will
still hold. This happens for example

(1) when (A, σ) is an algebra of index 2 with symplectic involution over a
SAP field F ;

(2) when (Q, σ) is a quaternion algebra with involution of the first kind over
a field F of characteristic not 2;

(3) when (A, σ) ∼= (Q1, σ1) ⊗F · · · ⊗F (Q`, σ`) is a multi-quaternion algebra
over a field F of characteristic not 2 and each σi is an arbitrary involution
of the first kind.

For proofs, see [20, Ch. 5].

Finally, we obtain a version of Springer’s theorem for strongly anisotropic in-
volutions:
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Corollary 4.5. Let (A, σ) be a central simple algebra with involution of the
first kind over an ED-field F and let K/F be any finite extension of odd degree.
If (A, σ) is strongly anisotropic, then (A⊗F K,σK) is (strongly) anisotropic.

Proof. Since σ is strongly anisotropic, Tσ is strongly anisotropic by Theo-
rem 4.3. By Springer’s theorem (see e.g. [18, 2.5.3]), (Tσ)K = TσK

is strongly
anisotropic over K. Hence σK is strongly anisotropic by contraposition of the
trivial direction of Theorem 4.3.
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