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Abstract. It is shown that the order of the torsion subgroup in the 4-

codimensional Chow group CH

4

(X

'

) of a projective quadric X

'

is at most

4 provided that the dimension of the corresponding quadratic form ' is

greater than 8.

Consider a non-degenerate quadratic form ' over a �eld F of characteristic di�er-

ent from 2 and the corresponding projective quadric X

'

. We always assume that

dimX

'

� 1, i.e. dim' � 3. It is an open problem to describe the torsion subgroup

of the Chow group CH

�

(X

'

) (this is the group of algebraic cycles on X

'

modulo

rational equivalence graded by co-dimension of cycles [1, 2]).

Generally speaking computation of the Chow group of an algebraic variety is

an interesting and important problem of algebraic geometry. However the class of

varieties for which this problem is solved is rather small. Chow groups and K-theory

of quadrics were studied �rst by R. Swan. Although the K-theory was completely

computed [13] the question on the Chow group remained open.

A new motivation grew out of the attempts to solve the norm residue homo-

morphism problem. During the work on this problem it became clear that a decisive

progress could be achieved by computation of the so called K-cohomology groups

[10, 12] for quadrics and in particular of their Chow groups.

In [4] Chow groups of small-dimensional quadrics were computed. An interest-

ing phenomenon was found: some Chow groups have torsion and the problem of

computing the whole Chow group reduces to �nding the torsion.

Let us consider some �rst gradation components. The group CH

1

(X

'

) is always

torsion-free. The next group| CH

2

(X

'

) is computed in [4]. In particular, it turns out

that #TorsCH

2

(X

'

) � 2 for any form '; moreover, TorsCH

2

(X

'

) = 0 if dim' > 8

[4, theorem (6.1)]. In co-dimension 3 one has: #TorsCH

3

(X

'

) � 2 for any ' [5,

theorem] and TorsCH

3

(X

'

) = 0 if dim' > 12 [6, theorem 6.1]. As to co-dimension

4, it is known today that TorsCH

4

(X

'

) = 0 if dim' > 24 [6, theorem 8.5]; however,

one has an example of a 7-dimensional form ' (de�ned over an appropriate F ) with

in�nite TorsCH

4

(X

'

) [7, theorem 6.5].
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Here we prove that

#TorsCH

4

(X

'

) � 4

for any ' of dimension greater than 8 (4.1). Notice that TorsCH

4

(X

'

) = 0 if dim' =

6 [14], [4, (2.6)] and CH

4

(X

'

) = 0 if dim' < 6; so, the \exceptional" dimensions

are only 7 and 8. We also reproduce (with small simpli�cations) the proof that

#TorsCH

3

(X

'

) � 2.

This note grew out from a remark of B. Kahn that TorsCH

4

(X

'

) is �nite if

dim' > 8.

1. An exact sequence

We consider (Quillen's) K-cohomology H

p

(X

'

;K

q

) and the Grothendieck group

K

0

0

(X

'

) which we denote simply by K(X

'

) and supply with the so called topological

�ltration

K(X

'

) = K(X

'

)

(0)

� K(X

'

)

(1)

� : : : :

We denote by ~' the form ' over a �eld extension

~

F of F which completely (so much

as possible by the dimension reason) splits '.

Proposition 1.1. One has an exact sequence

Ker

�

H

2

(X

'

;K

3

)! H

2

(X

~'

;K

3

)

�

! CH

4

(X

'

)! K(X

'

)

(4=5)

! 0 :

Proof. The kernel of the canonical epimorphism CH

4

(X

'

) !! K(X

'

)

(4=5)

is con-

trolled by certain di�erentials of the BGQ-spectral sequence E

p;q

2

= H

p

(X

'

;K

�q

)

[10, x7]. Since CH

4

(X

'

) = E

4;�4

2

, the di�erentials in question start from E

0;�1

4

,

E

1;�2

3

and E

2;�3

2

. Since

E

0;�1

2

= H

0

(X

'

;K

1

) = F

�

and

E

1;�2

2

= H

1

(X

'

;K

2

) = F

�

(if dim' > 4) [4, theorem (4.1)]

all the di�erentials starting from E

0;�1

r

and E

1;�2

r

with r � 2 are 0. Hence we have

an exact sequence

H

2

(X

'

;K

3

)

d

! CH

4

(X

'

)! K(X

'

)

(4=5)

! 0 :

Using pull-back with respect to the embedding of X

'

in the enveloping projective

space P, one can de�ne a homomorphism

F

�

= H

2

(P;K

3

)! H

2

(X

'

;K

3

)

which is easily checked to be an isomorphism in the case when ' splits and dim' > 6.

For an arbitrary ' we obtain a commutative square

F

�

����! H

2

(X

'

;K

3

)

?

?

y

?

?

y

~

F

�

����! H

2

(X

~'

;K

3

)

which produce a decomposition

H

2

(X

'

;K

3

) = F

�

�Ker

�

H

2

(X

'

;K

3

)! H

2

(X

~'

;K

3

)

�

provided that dim' > 6. Since dj

F

�
= 0, we are done in this case. The case dim' � 6

is trivial and not of use for the consequent.
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2. The left-hand side term

There is a description of the left-hand side term of (1.1).

Proposition 2.1 ([8, prop. 1]). Suppose that dim' � 5 and ' is not a 3-P�ster

neighbor (i.e. not similar to a subform of an anisotropic 3-P�ster form). The kernel

of the restriction

H

2

(X

'

;K

3

) �! H

2

(X

~'

;K

3

)

is naturally isomorphic to the kernel of the Galois cohomology map

H

4

(F;Z=2) �! H

4

�

F (');Z=2

�

:

Remark 2.2. The assumption that ' is not a 3-P�ster neighbor is likely superuous.

Definition 2.3. Denote by P

4

(') the subset of H

4

(F;Z=2) consisting of 0 and all

cup-products (a; b; c; d) with a; b; c; d 2 F

�

such that ' is similar to a subform of the

4-P�ster form hha; b; c; dii (the latter means as usual the product h1;�ai 
 h1;�bi 


h1;�ci 
 h1;�di).

Proposition 2.4 ([3]). If ' is any quadratic form with dim' � 5 then

Ker

�

H

4

(F;Z=2)! H

4

�

F (');Z=2

�

�

= P

4

(') :

Corollary 2.5. If dim' > 8 one can rewrite the sequence (1.1) as follows:

P

4

(')! CH

4

(X

'

)! K(X

'

)

(4=5)

! 0 :

3. The right-hand side term

In order to control the right-hand side term of (2.5), we need some general facts on

the subsequent quotients of the topological �ltration on the Grothendieck group of a

quadric. Most results of this x are from [5].

We are going to use the following notation.

We put for shortness K = K(X

'

).

The quotient K

(p=p+1)

will be denoted by G

p

K.

We put forever d = dimX

'

= dim'� 2.

Sometimes it is more convenient to use the lower indexes for the topological

�ltration by meaning dimension instead of co-dimension, i.e. K

(p)

= K

(d�p)

. All the

graded groups appearing in this x are graded \by co-dimension"; by that reason the

asterisk stays always as a superscript. However, sometimes it is more convenient to

refer to a component of a graded group by giving its \dimension"; in this case we use

the subscript. For instance, G

p

K will stay for the p-dimensional component of the

graded group G

�

K; it is the same as G

d�p

K.

Let h 2 K be the class of a hyperplane section of X

'

. This h does not depend

on the choice of the hyperplane, moreover h = 1� [O

X

'

(�1)].

For any x 2 K we de�ne dimension dimx of x as the in�mum of p such that

x 2 K

(p)

. For instance, dim 0 = �1, dim h = d � 1. Any 0 6= x 2 K determines an

element 0 6= �x 2 G

�

K, namely the residue class in G

dimx

K.

The subring of K generated by h will be denoted by H . It contains [O(n)] for all

integers n. As a group, H is freely generated by 1; h; h

2

; : : : ; h

d

. The �ltration on
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H induced from K is just the \�ltration by powers of h". In particular, the adjoint

graded group G

�

H is torsion-free.

Definition 3.1. Let us de�ne an integer s = s(') in the following way. If ' 62 I

2

(F )

(where I(F ) stays for the ideal of the even-dimensional forms in the Witt ring of

F ) then the even Cli�ord algebra C

0

(') is simple, so it is isomorphic to the algebra

M

n

(D) of (n�n)-matrices over a skew-�eldD; in this case we take s such that n = 2

s

.

If ' 2 I

2

(F ), we take s such that C

0

(') 'M

2

s

(D)�M

2

s

(D).

There is a trivial observation

Lemma 3.2. If ' 62 I

2

(F ) then K

�

C

0

(')

�

is freely generated by the class of a (unique

up to an isomorphism) simple C

0

(')-module P ; moreover,

[C

0

(')] = 2

s(')

� [P ] 2 K

�

C

0

(')

�

:

If ' 2 I

2

(F ) then K

�

C

0

(')

�

is freely generated by the classes of two non-isomorphic

simple C

0

(')-modules P and P

0

; moreover,

[C

0

(')] = 2

s(')

�

�

[P ] + [P

0

]

�

2 K

�

C

0

(')

�

:

Lemma 3.3 ([4, lemma (3.6)]). Let U be the Swan's sheaf on X

'

[13, p. 126]. Then

in K

[U(d)] = h

d

+ 2h

d�1

+ � � �+ 2

d�1

h+ 2

d

:

Since the sheaf U has a (right) action of C

0

(') the class [U ] 2 K is divisible by

2

s

(3.2), so the following de�nition is correct (take also in account that the group K

is torsion-free by [13, theorem 1] and (3.2)).

Definition 3.4. For any 0 � i < s we de�ne an element l

i

2 K as

l

i

=

1

2

i+1

�

h

d

+ 2h

d�1

+ � � �+ 2

i

h

d�i

�

;

for a certain convenience reason we also put l

�1

= 0.

What these elements are explains the following

Lemma 3.5. The element l

i

is equal to the class of an i-dimensional linear subspace

on X

'

if such a subspace lies on X

'

(i.e. if the form ' contains an (i+1)-dimensional

totally isotropic subspace, i.e. if the Witt index of ' is at least i+ 1).

Proof. Let L

i

� X

'

be an i-dimensional linear subspace of X

'

and in : X

'

,! P

the embedding of X

'

into the projective space as a hypersurface. First assume that

dim' is odd. Then using [13, theorem 1] it is easy to see that the push-forward in

�

:

K(X

'

) ! K(P) is injective, so it would be enough to check that in

�

([L

i

]) = in

�

(l

i

).

The left-hand side is just [L

i

] 2 K(P) while the right-hand side can be rewritten with

using the projection formula as

1

2

i+1

�

l

d

+ 2l

d�1

+ � � �+ 2

i

l

d�i

�

� [X

'

]

where l

i

denotes the class of an i-co-dimensional linear subspace of P. Computing

[X

'

] = 1� [O

P

(�2)] = 2l

1

� l

2
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and multiplying we get l

d�i+1

what is the same as the required [L

i

] because dimP =

d+ 1.

Now assume that dim' is even. Take any non-singular hyperplane section Y of

X

'

containing L

i

(it is really possible to �nd such a Y because i 6= d=2 (3.4)). Since

Y is an odd-dimensional quadric we know from the previous paragraph that

[L

i

] =

1

2

i+1

(h

d�1

+ 2h

d�2

+ � � �+ 2

i

h

d�1�i

) 2 K(Y ) :

Applying the push-forward with respect to the embedding Y ,! X

'

and using once

again the projection formula for the right-hand side we get

[L

i

] =

1

2

i+1

(h

d�1

+ 2h

d�2

+ � � �+ 2

i

h

d�1�i

) � [Y ] 2 K(X

'

) :

Since [Y ] = h we are done.

Lemma 3.6. For any 0 � i < s one has:

� 2l

i

= h

d�i

+ l

i�1

;

� hl

i

= l

i�1

;

� dim l

i

> dim l

i�1

;

� if ' is anisotropic then dim l

i

> i.

Proof. The �rst two properties are obvious from the formula (3.4) de�ning l

i

. Since

the multiplication in K respects the �ltration and h 2 K

(1)

the second property

implies the third one. If ' is anisotropic, the degree of any closed point on X

'

is even

whence l

0

62 K

(0)

, i.e. dim l

0

> 0; thus dim l

i

� i+ dim l

0

> i.

Corollary 3.7. If ' is anisotropic every element

�

l

i

2 G

�

K, 0 � i < s has order 2.

Proof. By an agreement in the beginning of x we denote by

�

l

i

the class of l

i

2 K in

G

dim l

i

K. By (3.6) 2l

i

= h

d�i

+ l

i�1

, dim l

i

> dim l

i�1

and dim l

i

> i = dim h

d�i

.

Thus dim l

i

> dim 2l

i

, i.e. 2

�

l

i

= 0.

Definition 3.8. Let us denote by I

�

� TorsG

�

K the subgroup generated by all

�

l

i

,

0 � i < s. The quotient TorsG

�

K=I

�

will be denoted by II

�

.

Theorem 3.9. Assume that the quadratic form ' is anisotropic. There exits an exact

sequence of graded groups

0! I

�

! TorsG

�

K ! II

�

! 0

where I

�

and II

�

have the following properties:

� #I

p

� 2 for any p;

� #I

�

= 2

s

where s = s(') is de�ned in (3.1);

� if ' 62 I

2

(F ) then II

�

= 0;

moreover, in the case ' 2 I

2

(F ) it holds:

� for every p the group II

p

is cyclic;

� II

p

= 0 for p � d=2;

� if there exists a �eld extension of degree 2

n

which completely splits ' then #II

�

divides 2

n+s�d=2

;

� if II

0

= II

1

= � � � = II

p

= 0 for some p < d=2 then I

0

= I

1

= � � � = I

p

=

I

p+1

= 0.
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Proof. The graded groups I

�

and II

�

are de�ned in (3.8). The group I

�

has exactly s

non-trivial components: these are components of dimensions dim l

i

, i = 0; 1; : : : ; s�

1 (by (3.6) all the numbers dim l

i

are distinct). Every non-trivial component has order

2 because it is generated by an element

�

l

i

(3.7). So, two �rst statements of the theorem

hold by the very de�nition of I

�

.

Suppose that ' 62 I

2

(F ). If we consider on H and K=H the �ltrations induced

from K the exact sequence 0! H ! K ! K=H ! 0 will give an exact sequence of

the adjoint graded groups:

0! G

�

H ! G

�

K ! G

�

(K=H)! 0 :

Since G

�

H is torsion-free we obtain an injection TorsG

�

K ,! G

�

(K=H). Note that

[13, theorem 1], (3.2) and (3.3) imply #K=H = 2

s

. Since TorsG

�

K � I

�

, #I

�

= 2

s

and #G

�

(K=H) = #K=H = 2

s

we obtain that TorsG

�

K = I

�

, i.e. II

�

= 0.

Now suppose that ' 2 I

2

(F ). Denote by N the subgroup of K generated by

H and 2

�s

[U ]. Considering on N and K=N the induced �ltrations we get an exact

sequence of the adjoint graded groups

0! G

�

N ! G

�

K ! G

�

(K=N)! 0 :

So, the torsion subgroups are connected by the exact sequence:

0! TorsG

�

N ! TorsG

�

K ! TorsG

�

(K=N) :

The same arguments as above show that TorsG

�

N = I

�

. Thus the latter exact

sequence produces an embedding II

�

,! G

�

(K=N). Since the quotient K=N is a

cyclic group every component G

p

(K=N) is cyclic too; whence the fourth statement of

the theorem.

Since rkG

d=2

K = 2 [4, (3.1),(2.2),(2.7)] and rkG

d=2

N = 1 we have

rkG

d=2

(K=N) = 1 ;

thereby G

p

(K=N) = 0 for p � d=2 whence the �fth statement of the theorem.

Suppose that there exists a �eld extension of degree 2

n

completely splitting ',

let ~' be the form ' over this extension. Let

~

P be a simple C

0

( ~')-module. Put ~u =

[U


~

P ] 2 K(X

~'

). The multiple 2

d=2�s

~u of ~u lies in K(X

'

) and generates the quotient

K(X

'

)=N(X

'

). Considering the element ~u itself in the quotient K(X

~'

)=N(X

~'

) one

has: ~u 2

�

K(X

~'

)=N(X

~'

)

�

(d=2)

. Taking the transfer we get:

2

n

~u 2

�

K(X

'

)=N(X

'

)

�

(d=2)

:

Consequently, #TorsG

�

�

K(X

'

)=N(X

'

)

�

divides 2

n+s�d=2

and we have proved the

sixth statement.

Let us prove the seventh one. Denote by l

d=2

2 K(X

~'

) the class of a (d=2)-

dimensional linear subspace L

d=2

lying on X

~'

. Applying the projection formula to

the embedding L

d=2

,! X

~'

and using (3.5) one gets: hl

d=2

= l

d=2�1

. It follows from

[13, theorem 1] that 2

d=2�s

K(X

~'

) � K(X

'

). In particular, l := 2

d=2�s

l

d=2

2 K(X

'

).

Lemma 3.10. One has in K(X

'

): dim l � m, dim2

n

l = m (here 2

n

is as above the

degree of a �eld extension completely splitting ') and dim l

s�1

< dim l.
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Proof. Two �rst properties are evident. The last one holds since

hl = h(2

d=2�s

l

d=2

) = 2

d=2�s

l

d=2�1

� l

s�1

mod H

(d=2�1)

:

Let I

p

be the non-trivial component of I

�

of maximal dimension and suppose

that p � d=2. To prove the last statement of the theorem it su�ces to �nd a number

q > p with TorsG

q

K(X

'

) 6= 0. Put q = dim l. Since p = dim l

s�1

we have by the

lemma: q > p. The group G

q

K(X

'

) contains a non-zero element

�

l, moreover 2

n

�

l = 0

by the lemma. Thus TorsG

q

K(X

'

) 6= 0 and we are done.

Corollary 3.11. If for some p

TorsG

0

K = TorsG

1

K = � � � = TorsG

p

K = 0

then the group TorsG

p+1

K is cyclic.

Proof. According to the theorem a group TorsG

p+1

K might be non-cyclic only in the

case when ' 2 I

2

(F ) and p < d=2. In this case we can apply the last statement of

the theorem.

4. Torsion in CH

4

Theorem 4.1. If dim' > 8 then #TorsCH

4

(X

'

) � 4.

Proof. If ' is isotropic, say ' ' H? then CH

4

(X

'

) ' CH

3

(X

 

) [11, proposition 1],

[4, (2.2)]; by [5, theorem] (see also (5.1)) #TorsCH

3

(X

 

) � 2 always.

Below in the proof we assume that ' is anisotropic.

Suppose that ' is not a 4-P�ster neighbor. Then by (2.5) we have an isomorphism

CH

4

(X

'

) ' G

4

K(X

'

). If ' 62 I

2

(F ) or dim' � 10 then #TorsG

4

K(X

'

) = #I

4

� 2

by (3.9). So, only the case ' 2 I

2

(F ) and dim' � 12 is left.

If dim' > 12 all the groups CH

p

(X

'

) with p � 3 are torsion-free. Hence

the groups G

p

K(X

'

) with p � 3 are torsion-free too and thereby G

4

K(X

'

) is

cyclic (3.11). If dim' > 14 let us take a quadratic extension L=F such that '

L

is isotropic. Then CH

4

(X

'

L

) ' CH

3

X

 

for a quadratic form  with dim > 12

whence TorsCH

4

(X

'

L

) ' TorsCH

3

(X

 

) = 0. Applying the transfer we get

2TorsCH

4

(X

'

) = 0, i.e. #TorsCH

4

(X

'

) � 2 in this case.

If dim' = 14 we take a biquadratic extension L=F such that the Witt in-

dex of '

L

is at least 2. Then CH

4

(X

'

L

) ' CH

2

X

 

for a quadratic form  with

dim = 10 whence TorsCH

4

(X

'

L

) ' TorsCH

2

(X

 

) = 0 and by the transfer argu-

ment 4TorsCH

4

(X

'

) = 0, i.e. #TorsCH

4

(X

'

) � 4.

For a 12-dimensional quadratic form ' lying in I

2

(F ) let us compute the order

of the second kind torsion II

�

� G

�

K(X

'

). Let L=F be a �eld extension of degree

2

d=2�s

(d = 10 now) splitting the Cli�ord invariant of the form '. Since '

L

is a

12-dimensional from from I

3

(L) it (completely) splits in a quadratic extension E=L

[9, Satz 14]. Putting n = log

2

[E : F ] = d=2� s+ 1 in the formula from (3.9) we get

#II

�

� 2. Since TorsG

p

K(X

'

) = 0 for p � 2 we have: TorsG

3

K(X

'

) = II

3

(3.9).

Now we can argue as follows: if II

3

6= 0 then II

3

= II

�

, in particular II

4

= 0, so

TorsG

4

K(X

'

) = I

4

has the order at most 2; otherwise, if II

3

= 0 the group I

4

is

zero (3.9) and so TorsG

4

K(X

'

) = II

4

has the order at most 2 again.
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We have completed the case when ' is not a 4-P�ster neighbor. Now assume

the opposite. Since a P�ster neighbor uniquely determines the P�ster superform the

left-hand side term of (2.5) has now the order 2. By this cause we have to show

that the right-hand side term, i.e. the group TorsG

4

K(X

'

) is of order at most 2.

Looking at the previous part of the current proof we see that it is always the case

except when ' 2 I

2

(F ) and dim' = 14. But since a 14-dimensional quadratic form

of trivial discriminant is evidently not able to be an (anisotropic!) P�ster neighbor

this exception does not occurs.

Remark 4.2. The proof of the theorem contains in fact a more precise information

on what TorsCH

4

(X

'

) for a particular ' can be. One can also handle the case of

dim' = 7; 8 if ' is not similar to a subform of an anisotropic 4-P�ster form | see

(2.2).

5. Torsion in CH

3

Theorem 5.1 ([6]). For any ', one has #TorsCH

3

(X

'

) � 2.

Proof. If ' is isotropic, say ' = H? , then CH

3

(X

'

) ' CH

2

(X

 

). Since

#TorsCH

2

� 2 for any quadric [4, theorem (6.1)] we are done in this case. From

now on we suppose that ' is anisotropic.

Arguments like (1.1) show that CH

3

(X

'

) ' G

3

K(X

'

) [4, corollary (4.5)]. If

' 62 I

2

(F ) or dim' � 8 then

#TorsG

3

K(X

'

) � 2

by (3.9). From now on we consider only the case ' 2 I

2

(F ) and dim' � 10.

Since dim' � 10, the groups G

p

K(X

'

) for p � 2 are torsion-free (for p =

2 it holds according to the computation of CH

2

(X

'

) [4, theorem (6.1)]). Hence

TorsG

3

K(X

'

) = II

3

(3.9) which is a cyclic group. The last we need to show is

2TorsCH

3

(X

'

) = 0. For this it would su�ce to �nd a quadratic extension L=F such

that the group CH

3

(X

'

L

) = 0 is torsion-free (then one can use the transfer argument).

Take simply an arbitrary quadratic extension L=F which partially splits (i.e.

makes isotropic) the form ', say '

L

= H? . We have: CH

3

(X

'

L

) ' CH

2

(X

 

). If

TorsCH

2

(X

 

) = 0 we are done.

If not then according to the computation of CH

2

the form  is similar to a 3-

P�ster form. In this case we can compute the order of the second kind torsion II

�

�

G

�

K(X

'

) by using the formula from (3.9). We have: d = 8, s(') = 3 (if s(') = 4

then ' should be isotropic as a 10-dimensional form from I

3

) and since one can split

' by a �eld extension of degree 4 we can put n = 2. Thus #II

�

� 2

2+3�8=2

= 2. In

particular, #TorsG

3

K(X

'

) = #II

3

� 2.
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