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Let F be a �eld of characteristic di�erent from 2 and ' be a non-degenerate quadratic

form on an F -vector space V , by which V gets the structure of a non-degenerate

quadratic space. Choosing an orthogonal basis of V we can write ' in the form

a

1

x

2

1

+ � � �+ a

d

x

2

d

. In this case we use the notation ' = ha

1

; : : : ; a

d

i.

A quadratic form or space ' is called isotropic if '(v) = 0 for some nonzero vector

v 2 V . We say that ' is anisotropic otherwise. Up to isometry, there is exactly

one non-degenerated isotropic 2-dimensional quadratic space, namely the hyperbolic

plane H equipped with the form h1;�1i. A non-degenerate quadratic space is called

hyperbolic if it is isometric to the orthogonal sum of hyperbolic planes mH = H ?

� � � ? H .

According to Witt's main theorem any non-degenerate quadratic space V can be

decomposed in the orthogonal sum V = V

an

? V

h

, where V

an

is anisotropic and

V

h

�

=

mH is a hyperbolic space. (We will use

�

=

to denote isometry of quadratic forms

or spaces.) Moreover the quadratic space V

an

is uniquely determined up to isometry.

The restriction 'j

V

an

is called the anisotropic part (or anisotropic kernel) of ' and is

denoted by '

an

. The number m =

1

2

dimV

h

is called the Witt index of '.

For any quadratic space V and any �eld extension L=F one can provide V

L

=

V 


F

L with a structure of a quadratic space. The corresponding quadratic form we

shall denote by '

L

. We say that a quadratic form ' over L is de�ned over F if there

is a quadratic form � over F such that '

�

=

�

L

.
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128 O. T. Izhboldin

It is an important problem to study the behavior of the anisotropic part of forms

over F under a �eld extension L=F . It occurs sometimes that any anisotropic form

over F is still anisotropic over L (for example if L=F is of odd degree). In this case

for any quadratic form ' over F the anisotropic part ('

L

)

an

of ' over L coincides

with ('

an

)

L

and hence is de�ned over F .

However, very often ' becomes isotropic over L. In this case we do not know if

the anisotropic part of ' over L is de�ned over F .

A �eld extension L=F is called excellent if for any quadratic form ' over F the

anisotropic part ('

L

)

an

of ' over L is de�ned over F (i.e., there is a form � over F

such that ('

L

)

an

�

=

�

L

).

It is well known that any quadratic extension is excellent. Since any anisotropic

quadratic form  over F is still anisotropic over the �eld of rational functions F (t),

every purely transcendental �eld extension is excellent.

Among all �eld extensions the �elds F (') of rational functions on the quadric

hyper-surface de�ned by the equation ' = 0 are of special interest in the theory of

quadratic forms. One of the important problems is to �nd a condition on ' so that

the �eld extension F (')=F is excellent.

We say that F (')=F is universally excellent if for any extension K=F the extension

K(')=K is excellent.

If ' is isotropic then F (')=F is purely transcendental, and it follows from Springer's

theorem that F (')=F is excellent and moreover is universally excellent. Thus it is

su�cient to consider only the case of anisotropic forms '.

In [Kn] Knebusch has proved that if ' is an anisotropic form such that F (')=F

is excellent then ' is a P�ster neighbor. This means that there is a quadratic form

� = h1;�a

1

i 
 � � � 
 h1;�a

n

i (called n-fold P�ster form) such that ' is similar to a

subform of � and dim(') >

1

2

dim(�). This result gives rise to the natural question

whether the �eld extension F (')=F is excellent for any P�ster neighbor '. This

problem can be easily reduced to the case of an n-fold P�ster forms '.

If n = 1 then F (')=F is obviously excellent since F (')=F is a quadratic extension.

Arason [ELW1, Appendix II] has proved that, for n = 2, F (')=F is always excellent

(see also [R], [LVG]). Thus the answer to our question is yes for n-fold P�ster forms

with n � 2. It was an open problem whether F (')=F is excellent for any �eld F and

any n-fold P�ster form ' over F (with n � 3).

In [ELW2] some special cases of this problem were considered: for an n-fold P�ster

form ' with n � 3, the excellence of the �eld extension F (')=F was proved for all

�elds with ~u(F ) � 4. In [H2] Ho�mann considered another special case of the problem.

An extension L=F is called d-excellent if for any quadratic form  of dimension � d

the anisotropic part ( 

L

)

an

of  over L is de�ned over F . Ho�mann has proved that

the extension F (')=F is 6-excellent for any P�ster neighbor '.

In this paper we prove that for any n � 3 there is a �eld F and an n-fold P�ster

form ' such that the �eld extension F (')=F is not excellent. Moreover Theorem 1.1

of our paper says that F (')=F is universally excellent if and only if ' is a P�ster

neighbor of an n-fold P�ster form with n � 2, (i.e., either dim' � 3 or ' is a 4-

dimensional form with det(') = 1). In x3 we use the main construction of the paper

to study \splitting pairs" ',  of quadratic forms. More precisely, we construct a

\non standard pair" ',  such that ' is isotropic over the function �eld F ( ) of the

quadric  .
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On the Nonexcellence of Field Extensions F (�)=F 129

Remark. Some results of this paper were developed further by D. Ho�mann in

[H4].

1. Main Theorem

We will use the following notation throughout the paper: by ' ?  , '

�

=

 , and [']

we denote respectively orthogonal sum of forms, isometry of forms, and the class of

' in the Witt ring W (F ) of the �eld F . The maximal ideal of W (F ) generated by

the classes of even dimensional forms is denoted by I(F ). We write ' �  if ' is

similar to  , i.e., k' =  for some k 2 F

�

. The anisotropic part of ' is denoted by

'

an

and i

W

(') denotes the Witt index of '. We denote by hha

1

; : : : ; a

n

ii the n-fold

P�ster form

h1;�a

1

i 
 � � � 
 h1;�a

n

i

and by P

n

(F ) the set of all n-fold P�ster forms. The set of all forms similar to n-fold

P�ster forms we denote by GP

n

(F ). For any �eld extension L=F we put '

L

= '
L,

W (L=F ) = ker(W (F )!W (L)).

Main Theorem 1.1. Let ' be an anisotropic form over F . Then the following

conditions are equivalent.

(i) The �eld extension F (')=F is universally excellent, i.e., for any �eld exten-

sion E=F the extension E(')=E is excellent.

(ii) Either dim(') � 3 or ' 2 GP

2

(F ).

Proof of (ii) ) (i). The case dim(') = 2 is obvious. If dim(') = 3 or ' 2 GP

2

(F )

the excellence of the extension E(')=E was proved by Arason (see the introduction).

Proof of (i) ) (ii). Since E(')=E is excellent for any extension E=F , we see that

F (')=F is excellent. It was shown in [Kn, 7.13] that for F (')=F to be excellent it

is necessary that ' is a P�ster neighbor. Let ' be a P�ster neighbor of the n-fold

P�ster form �. Since F (') and F (�) are F -equivalent, we can replace ' by �, i.e.,

we can suppose that ' = � is an n-fold P�ster form. Thus it is su�cient to prove

the following proposition.

Proposition 1.2. Let � be anisotropic n-fold P�ster form over the �eld F . If n � 3

then there is a �eld extension E=F such that E(�)=E is not excellent.

2. Proof of Proposition 1.2

Lemma 2.1. Let � and � be anisotropic n-fold P�ster forms over the �eld F . Then

there is a �eld extension K=F such that the following conditions hold.

a) �

K

= �

K

,

b) �

K

and �

K

are anisotropic.

Proof. Let ' be a P�ster neighbor of � of dimension 2

n�1

+ 1. It follows from [H3,

Theorem 4] that there exists a �eld extension K=F such that �

K

is anisotropic and

'

K

� �

K

. Hence '

K

is a P�ster neighbor of �

K

. Since '

K

is a P�ster neighbor of

�

K

, we have �

K

= �

K

. �
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130 O. T. Izhboldin

Lemma 2.2. Let � and � be anisotropic n-fold P�ster forms over F . Suppose that

there is a 2 F

�

such that �

F (

p

a)

and �

F (

p

a)

are isotropic. Then there is an extension

E=F and x 2 E

�

such that the following conditions hold.

1) �

E(

p

x)

= �

E(

p

x)

,

2) �

E(

p

x)

and �

E(

p

x)

are anisotropic,

3) E=F is unirational.

Remark: We say that E=F is unirational, if there is a purely transcendental �nitely

generated �eld extension K=F such that F � E � K.

Proof. Since � is an n-fold P�ster form and �

F (

p

a)

is isotropic, we can write �

in the form � = hha; b

1

; : : : ; b

n�1

ii. Similarly, we can write � in the form � =

hha; c

1

; : : : ; c

n�1

ii. Let

e

F = F (A;B

1

; : : : ; B

n�1

; C

1

; : : : ; C

n�1

) be the rational func-

tion �eld in 2n� 1 variables over

e

F .

Put e� = hhA;B

1

; : : : ; B

n�1

ii and e� = hhA;C

1

; : : : ; C

n�1

ii. Let  = � ? �� and

e = e� ? �e�. Let E=

e

F be the universal �eld extension such that 

E

= e

E

, i.e.,

E =

e

F

h

, where

e

F =

e

F

0

;

e

F

1

; : : : ;

e

F

h

is a generic splitting tower of the quadratic form

 ? �e.

It is well known that the following universal property of E holds: For any �eld

extension K=

e

F the condition 

K

= e

K

implies that EK=K is purely transcendental.

Now we prove that conditions 1){3) of the lemma hold for x = A.

1) We have [�

E(

p

A)

]� [�

E(

p

A)

] = [

E(

p

A)

] = [e

E(

p

A)

] = [e�

E(

p

A)

]� [e�

E(

p

A)

] = 0.

Hence [�

E(

p

A)

] = [�

E(

p

A)

].

2) Let K=F be as in Lemma 2.1, i.e., �

K

, �

K

are anisotropic and �

K

= �

K

. We

have [

K

] = [�

K

]� [�

K

] = 0

Let

e

K = K(A;B

1

; : : : ; B

n�1

; C

1

; : : : ; C

n�1

) be the rational function �eld in 2n� 1

variables over K. We have [

e

K(

p

A)

] = [�

e

K(

p

A)

] � [�

e

K(

p

A)

] = 0 and [e

e

K(

p

A)

] =

[e�

e

K(

p

A)

]�[e�

e

K(

p

A)

] = 0. Therefore [

e

K(

p

A)

] = [e

e

K(

p

A)

]. Using the universal property

of E=

e

F we see that E

e

K(

p

A)=

e

K(

p

A) is purely transcendental.

It is clear that

e

K(

p

A)=K is purely transcendental. Therefore E

e

K(

p

A)=K is

purely transcendental. Hence �

E

e

K(

p

A)

and �

E

e

K(

p

A)

are anisotropic. Therefore

�

E(

p

A)

and �

E(

p

A)

are anisotropic.

3) Let L =

e

F (

p

A=a;

p

B

1

=b

1

; : : : ;

p

B

n�1

=b

n�1

;

p

C

1

=c

1

; : : : ;

p

C

n�1

=c

n�1

). It is

clear that �

L

= e�

L

and �

L

= e�

L

. Therefore 

L

= e

L

. Using the universal property

of E=

e

F we see that EL=L is purely transcendental. It is clear that L=F is purely

transcendental. Hence EL=F is purely transcendental. Since E � EL we see that

E=F is unirational. �

Lemma 2.3. Let F be a �eld and � be anisotropic n-fold P�ster form over F . Then

there are a unirational extension E=F , an n-fold P�ster form � over E, and x 2 E

�

such that the following conditions hold.

1) �

E(

p

x)

= �

E(

p

x)

,

2) �

E(

p

x)

and �

E(

p

x)

are anisotropic,

3) dim(�

E

? ��

E

)

an

= 2

n+1

� 4.
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Proof. Write � in the form � = hha; b

1

; b

2

; : : : ; b

n�1

ii. Let

e

F = F (T

1

; : : : ; T

n�1

) be the

rational function �eld in n�1 variables over F . Let � = hha; T

1

; : : : ; T

n�1

ii. Obviously

(�

e

F

? ��)

an

= hhaiihhb

1

; : : : ; b

n�1

ii

0

e

F

? �hhaiihhT

1

; : : : ; T

n�1

ii

0

:

Therefore dim(�

e

F

? ��)

an

= 2

n+1

� 4.

The quadratic forms �

e

F (

p

a)

and �

e

F (

p

a)

are hyperbolic, i.e., all the conditions of

Lemma 2.2 hold for

e

F , �, � . Hence there is a unirational extension E=

e

F such that

1) �

E(

p

x)

= �

E(

p

x)

,

2) �

E(

p

x)

and �

E(

p

x)

are anisotropic,

Since E=

e

F is unirational, we have dim(�

E

? ��

E

)

an

= dim(�

e

F

? ��)

an

= 2

n+1

� 4.

Finally E=F is unirational since E=

e

F is unirational and

e

F=F is purely transcenden-

tal. �

Lemma 2.4. Let E be a �eld, n � 3, x 2 E

�

. Let �; � 2 P

n

(E) be such that

1) �

E(

p

x)

= �

E(

p

x)

.

2) �

E(

p

x)

and �

E(

p

x)

are anisotropic.

3) dim(� ? ��)

an

= 2

n+1

� 4.

Let  = �

0

? hxi where �

0

is such that � = �

0

? h1i.

Then

a)  is anisotropic.

b)  

E(�)

is isotropic.

c) There is no quadratic form  over E such that ( 

E(�)

)

an

= 

E(�)

.

d) For any subform � (  the form �

F (�)

is anisotropic, i.e.,  is a minimal

F (�)-form.

Proof. a) Obviously  

E(

p

x)

= �

E(

p

x)

. By assumption we see that �

E(

p

x)

is anisotro-

pic. Hence  

E(

p

x)

is anisotropic. Therefore  is anisotropic too.

b) Suppose that  

E(�)

is anisotropic. Since  

E(

p

x)

= �

E(

p

x)

= �

E(

p

x)

we have

[ 

E(�)(

p

x)

] = [�

E(�)(

p

x)

] = 0. Since  

E(�)

is anisotropic and  

E(�)(

p

x)

is hyperbolic,

we conclude that  

E(�)

= hhxii� where � is a quadratic form overE(�). Since dim(�) =

2

n�1

is even, we have � 2 I(E(�)). Therefore  

E(�)

= hhxii� 2 I

2

(E(�)). Hence

 2 I

2

(E). Therefore [hhxii] = [� ] � [ ] 2 I

2

(E), a contradiction.

c) Suppose that ( 

E(�)

)

an

= 

E(�)

where  is a quadratic form over E. It is clear

that dim() � 2

n

� 2. We have ( ? �)

an

2W (E(�)=E). Since � is a P�ster form

we conclude that ( ? �)

an

= ��, with � a quadratic form over E.

Since 2 = 2

n

� (2

n

� 2) � dim( ? �)

an

= 2

n

+ (2

n

� 2) = 2

n+1

� 2 and

dim(�) = 2

n

divides dim(��) we conclude that dim(�) = 1. Writing � in the form

� = hki we have ( ? �)

an

= k�. Hence [k�] = [ ]� []. Therefore

[� ? �k�] = [� ]� [k�] = ([ ] + [hhxii]) � ([ ]� []) = [hhxii ? ]:

Hence � and k� contain a common subform of dimension

1

2

(dim(�) + dim(k�)� dim(hhxii ? )) �

1

2

(2

n

+ 2

n

� 2

n

) = 2

n�1

� 2

3�1

= 4 > 3:
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132 O. T. Izhboldin

Therefore there is a 3-dimensional form � such that � � � , � � k�. Let a; b 2 E be

such that � � h1;�a;�bi. Let " = hha; bii. Obviously �

E(")

and �

E(")

are isotropic.

Since � , �, and " are anisotropic P�ster forms, we conclude that " � � and " � �.

Therefore dim(� ? ��)

an

� dim(�) +dim(�)� 2 dim(") = 2

n

+2

n

� 2 � 4 = 2

n+1

� 8,

a contradiction.

d) We can suppose that � is a (2

n

� 1)-dimensional subform of  . let k 2 E

�

be

such that � ? h�ki =  . Set

e

� = � ? h�xki. We have

[� ]� [

e

�] = [� ]� ([�]� [hxki]) = ([ ] + [hhxii]) � ([ ] + [hki]� [hxki]) = [hhx; kii]:

Let � = hhx; kii. We have [�

E(�)

] = [

e

�

E(�)

]. Comparing dimensions we see that

�

E(�)

=

e

�

E(�)

. Therefore �

E(�;�)

=

e

�

E(�;�)

.

Our goal is to prove that �

E(�)

is anisotropic. Let us suppose that �

E(�)

is isotropic.

Then

e

�

E(�;�)

is isotropic too. Therefore �

E(�;�)

is isotropic. Hence the P�ster form

�

E(�)

becomes isotropic over the function �eld of the P�ster form �

E(�)

. Therefore

either �

E(�)

or �

E(�)

= �

E(�)

is hyperbolic.

Suppose �rst that �

E(�)

is hyperbolic. Since �

E(

p

x)

= hhx; kii

E(

p

x)

is isotropic we

conclude that �

E(

p

x)

is isotropic. This contradicts the assumption in this lemma.

Let now �

E(�)

= �

E(�)

. Then (� ? ��)

an

2 W (E(�)=E). Hence (� ? ��)

an

= ��

with � a quadratic form over E ([S, Ch.4,5.6]). Since dim(� ? ��)

an

= 2

n

� 4 and

dim(�) = 4 we conclude that dim(�) = (2

n

� 4)=4 = 2

n�2

� 1. Since n � 3 we

see that dim(�) is odd and hence [�] � [h1i] (mod I(E)). Since � 2 I

2

(E) we have

[��] � [�] (mod I

3

(E)). Since �; � 2 P

n

(E) and n � 3, we see that [(� ? ��)

an

] � 0

(mod I

3

(E)). We have

[�] � [��] = [(� ? ��)

an

] � 0 (mod I

3

(E)):

Since dim(�) = 4 < 8 we conclude that � is hyperbolic. Therefore (� ? ��)

an

= ��

is hyperbolic. However dim(� ? ��)

an

= 2

n

� 4 > 0, a contradiction. �

Corollary 2.5. Let � be an anisotropic n-fold P�ster form over the �eld F . If

n � 3 then there is a unirational extension E=F such that E(�)=E is not excellent. �

This corollary completes the proof of Proposition 1.2 and Theorem 1.1.

Corollary 2.6. Let n � 3. Then there are a �eld E, an n-fold P�ster form � over

E, and a 2

n

-dimensional form  over E such that  is an E(�)-minimal form. �

Corollary 2.7. Let n � 3. Then there are a �eld E and 2

n

-dimensional forms  

and � over E such that  is an E(�)-minimal form and  is not similar to �. �

3. Nonstandard Splitting

An important problem in the theory of quadratic forms is to determine when an

anisotropic quadratic form ' over F becomes isotropic over the function �eld F ( )

of another form  . There are some well-known situations when this occurs and we

list some of them in the following two de�nitions.
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Definition 3.1. Let ' and  be anisotropic quadratic forms. We say that the or-

dered pair ',  is elementary splitting (or elementary) if one of the following conditions

holds.

1) There is a k 2 F

�

such that k � ';

2) There is a k 2 F

�

, such that k' �  and dim(') > dim( )� i

1

( );

3) There is a � 2W (F ( )=F ) such that dim(�) < 2 dim(') and k' � � for some

k 2 F

�

.

Definition 3.2. Let ' and  be anisotropic quadratic forms. We say that the

ordered pair ',  is standard if there is a collection

'

0

= '; '

1

; : : : ; '

n�1

; '

n

=  

such that the pair '

i�1

, '

i

is elementary for each i = 1; 2; : : : ; n.

It is clear that if the pair (',  ) is elementary splitting or standard, then '

F ( )

is

isotropic.

Examples 3.3. Let ' and  be anisotropic quadratic forms such that '

F ( )

is

isotropic. Suppose that at least one of the following conditions holds

a) ' is a P�ster neighbor;

b) dim( ) � 3, or  2 GP

2

(F );

c) dim(') � 5;

Then the pair ',  is elementary.

Proof. a) Let ' be a P�ster neighbor of �. Then condition 3) of De�nition 3.1 is

ful�lled.

b) By the excellence property of the �eld extension F ( )=F there exists an aniso-

tropic form � over F such that ('

F ( )

)

an

= �

F ( )

. Setting � = ' ? �� one can see

that condition 3) of De�nition 3.1 holds.

c) Let dim(') � 5. We can suppose that ' is not a P�ster neighbor and  =2

GP

2

(F ) (see a), b) ). Then '

F ( )

is isotropic if and only if ' contains a subform

similar to  (see [H1, Th. 1, Main Theorem]). Therefore condition 1) of De�nition 3.1

holds. �

Example 3.4. Let F = R(T ), ' = hT; T; T; 1; 1; 1; 1; 1i,  = hT; T; 1; 1; 1; 1; 1; 1i.

Then the pair ',  is standard but not elementary.

Proof. Let � = hT; T; 1; 1; 1; 1; 1i. Since � � ', the pair (', �) is elementary. Since

� �  and dim(�) = 7 > 8 � 2 = dim( ) � i

1

( ), we see that the pair (�,  ) is

elementary. Since the pairs (', �) and (�,  ) are elementary, we see that the pair

(',  ) is standard. It follows from Lemma 3.7 below that the pair (',  ) is not

elementary. �

In this section we construct a pair of anisotropic forms ' and  with '

F ( )

isotropic

which is not standard.

Lemma 3.5. Let F be a �eld, n � 3, x 2 F

�

. Let �; � 2 P

n

(F ) be such that

1) � 6= � ,

2) �

F (

p

x)

= �

F (

p

x)

,

3) �

F (

p

x)

and �

F (

p

x)

are anisotropic.
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Let ' = �

0

? hxi and  = �

0

? hxi. Then

a)  and ' are anisotropic,

b) '

F ( )

and  

F (')

are isotropic,

c) ' 6�  .

Proof. a) Obviously  

F (

p

x)

= �

F (

p

x)

and  

F (

p

x)

= �

F (

p

x)

. It follows from condition

3) that ' and  are anisotropic.

b) Let us suppose that '

F ( )

is anisotropic. Since '

F (

p

x)

= �

F (

p

x)

and  

F (

p

x)

=

�

F (

p

x)

= �

F (

p

x)

we see that '

F ( ;

p

x)

= �

F (�;

p

x)

. Since � 2 P

n

(F ) we conclude that

'

F ( ;

p

x)

is hyperbolic. Therefore '

F ( )

= hhxii� where � is a quadratic form over

F ( ). Since dim(�) = 2

n�1

is even, we have � 2 I(F ( )). Therefore  

F ( )

= hhxii� 2

I

2

(F ( )). Hence  2 I

2

(F ). Therefore [hhxii] = [� ]� [ ] 2 I

2

(F ), a contradiction.

c) Suppose that k' =  . Then [k�]� [khhxii] = [k'] = [ ] = [� ]� [hhxii]. Therefore

[hhx; kii] = [� ]�[k�] 2 I

n

(F ) � I

3

(F ). Since dim(hhx; kii) = 4 < 8, we have [� ]�[k�] =

[hhx; yii] = 0. Hence � � �. Since �; � 2 P

n

(F ) we see that � = �, a contradiction. �

Lemma 3.6. Let � 2 P

3

(F ) and x 2 F

�

(x =2 F

�2

) be such that �

F (

p

x)

is anisotropic.

Let ' = �

0

? hxi. Suppose that  is an anisotropic quadratic form such that  

F (')

and '

F ( )

are isotropic. Then dim( ) = 8.

By C(') (resp. C

0

(')) we will denote the Cli�ord algebra (resp. even Cli�ord

algebra) of the quadratic form '. If they are central simple we denote their classes in

the Brauer group of the underlying �eld by [C(')] (resp. [C

0

(')]).

Proof. Since dim(') = 8 and '

F ( )

is isotropic, it follows from Ho�mann's theorem

[H3, x1, Theorem 1] that dim( ) � 8.

Suppose that dim( ) � 6. Since dim(') = 8 and  

F (')

is isotropic, it follows

from Ho�mann's theorems [H1], [H2] that ' 2 GP

3

(F ). Therefore x = det(') = 1, a

contradiction.

Consider now the case dim( ) = 7. Since �

F ( ;

p

x)

= '

F ( ;

p

x)

is isotropic we see

that  

F (

p

x)

is a P�ster neighbor of �

F (

p

x)

. Therefore [C

0

( )

F (

p

x)

] = 0. Hence

there is y 2 F

�

such that [C

0

( )] = [

�

x;y

F

�

]. Let � = hhx; yii.

We claim that  

F (�)

is an anisotropic P�ster neighbor. To prove this we consider

the quadratic form

e

 =  ? hdet( )i. Since dim(

e

 ) = 8 and [C(

e

 

F (�)

)] = [

�

x;y

F (�)

�

] = 0

we have

e

 

F (�)

2 GP

3

(F (�)). If  

F (�)

is isotropic then

e

 

F (�)

is isotropic too and hence

hyperbolic. Therefore, (

e

 )

an

= ��. Since dim(

e

 ) = 6 or 8 we must have dim� = 2

which implies

e

 

an

=

e

 2 GP

3

(F ). Therefore [C(�)] = [C

0

( )] = [C(

e

 )] = 0. Hence,

� is hyperbolic and  stays anisotropic over F (�), a contradiction.

Since  

F (')

is isotropic,  

F (�)

becomes isotropic over the functional �eld of the

form '

F (�)

. Since  

F (�)

is an anisotropic P�ster neighbor and dim('

F (�)

) = 8 we

see that '

F (�)

2 GP

3

(F (�)) � I

2

(F (�)). Since W (F )=I

2

(F )!W (F (�))=I

2

(F (�)) is

injective we have ' 2 I

2

(F ). Hence x = det(') = 1, a contradiction. �

Lemma 3.7. Let ' and  be anisotropic 8-dimensional quadratic form such that

 =2 GP

3

(F ) and the pair ',  is elementary. Then ' �  .

Proof. Since the pair ',  is elementary, one of conditions 1){3) of De�nition 3.1

holds. Since dim(') = dim( ), both the conditions 1), 2) imply that ' �  . Now
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we suppose that condition 3) holds, i.e., there is � 2 W (F ( )=F ) such that dim(�) <

2 dim(') = 16 and k' � �. Since dim( ) > 4, the homomorphism W (F )=I

3

(F ) !

W (F ( ))=I

3

(F ( )) is injective. Hence � 2 I

3

(F ). Let � 2 P

2

(F ) be such that

 contains a P�ster neighbor of �. Then � 2 W (F ( )=F ) � W (F (�)=F ) and

thus �

an

�

=

�� for some �. If dim � is odd then � � �� = � � 0 (mod I

3

(F )), a

contradiction. Thus dim� is even and 8j dim(�

an

). Therefore dim(�

an

) = 8. Hence

�

an

2 GP

3

(F ). Since �

F ( )

is hyperbolic,  is a P�ster neighbor in �

an

. Since

dim( ) = dim(�

an

) = 8 we have  � �

an

2 GP

3

(F ), a contradiction. �

Lemma 3.8. Let n = 3, and let ',  be as in Lemma 3.5. Then the pair ',  is not

standard.

Proof. Assume that the pair ',  is standard. Then there is a collection

'

0

= '; '

1

; : : : ; '

n�1

; '

n

=  

such that the pair '

i�1

, '

i

is elementary for each i = 1; 2; : : : ; n. Obviously, the

quadratic forms '

F ('

i

)

and ('

i

)

F ( )

are isotropic. Since  

F (')

is isotropic (see

Lemma 3.5) and ('

i

)

F ( )

is isotropic, we see that ('

i

)

F (')

is isotropic too. Thus

'

F ('

i

)

and ('

i

)

F (')

are isotropic. It follows from Lemma 3.6 that dim('

i

) = 8.

Consider �rst the case  

i

2 GP

3

(F ). Since ('

i

)

F (')

and is isotropic, ' is a P�ster

neighbor of  

i

. Since dim(') = dim( 

i

) = 8 we have ' �  

i

. Hence ' 2 GP

3

(F ), a

contradiction.

Thus we have proved that dim('

i

) = 8 and  

i

=2 GP

3

(F ) for each i = 1; 2; : : : ; n.

It follows from Lemma 3.7 that '

i�1

� '

i

. We have

' = '

0

� '

1

� � � � � '

n

=  :

On the other hand, it follows from Lemma 3.5 that ' 6�  . The contradiction obtained

proves the lemma. �

Theorem 3.9. For any �eld F there is a unirational �eld extension E=F and a

pair of 8-dimensional anisotropic quadratic forms ' and  over E such that '

E( )

is

isotropic, but the pair ',  is not standard.

Proof. Let n = 3. Let E, � and � be such as in Lemma 2.3. Set ' = �

0

? hxi,

 = �

0

? hxi. It is clear that all the conditions of Lemma 3.5 hold. Now the desired

result follows immediately from Lemma 3.5 and Lemma 3.8. �
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