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Abstract. Oriented matroids are a combinatorial model for con�gurations

in real vector spaces. A central role in the theory is played by the realizability

problem: Given an oriented matroid, �nd an associated vector con�guration.

In this paper we present two closely related oriented matroids 


+

14

and 


�

14

of rank 3 with 14 elements that have interesting properties with respect to

realizability. 


+

14

and 


�

14

di�er in exactly one basis orientation.

The realizable oriented matroid 


+

14

has at least two interesting proper-

ties: First it has a combinatorial symmetry that has no metric realization,

and second it has a disconnected realization space. In other words, there

are di�erent realizations of 


+

14

that cannot be continuously deformed into

each other while staying in the same isotopy class. The oriented matroid




�

14

is non-realizable but it has no bi-quadratic �nal polynomial. In other

words, the only known e�ective algorithmic method fails to prove the non-

realizability of 


�

14

.

1991 Mathematics Subject Classi�cation: Primary 52B40; Secondary 14P10,

51A25, 52B30.

1 Introduction

Oriented matroids are combinatorial models for vector con�gurations in vector spaces

over ordered �elds. They form a basic combinatorial concept for treating many di�er-

ent objects on the borderline of combinatorics and geometry | such as convex poly-

topes, simplicial complexes, hyperplane-arrangements, quasi-crystals, etc. The real-

izability question is of fundamental importance in this theory: When does a discrete

structure have a geometric representation? What does the space of all representations

look like? Questions of this type occur in many di�erent mathematical contexts (e.g.

embedding of polyhedral manifolds, the theory of moduli spaces, Cairns' smoothing

theory, etc.). The basic e�ects that arise here are often due to the properties of the

1
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138 J. Richter-Gebert

underlying oriented matroids, and they can be pro�tably studied in this model. A

systematic study of \small" oriented matroids that have interesting behavior with re-

spect to realizability is a fruitful source for producing examples and counterexamples

in many di�erent mathematical disciplines. Here we present two new such oriented

matroids.

Every vector con�guration has an associated oriented matroid, but the converse is

not true: there are oriented matroids that have no corresponding vector con�guration.

An oriented matroids is realizable if it corresponds to a vector con�guration, and non-

realizable otherwise. In this paper we present two closely related oriented matroids




+

14

and 


�

14

of rank 3 with 14 elements that are interesting because of their properties

with respect to realizability.

The oriented matroid 


+

14

is realizable, but its realization space is not connected.

The realization space of an oriented matroid � is the set of all vector con�gurations

X that have the associated oriented matroid �, modulo linear equivalence. (For a

more formal de�nition of realization spaces see Section 2). For a long time it was an

outstanding open question whether oriented matroids with disconnected realization

space exist. This problem was solved by N.E. Mn�ev in a surprising way [6, 7]. He

proved that for any basic semi-algebraic set V (de�ned over the rationals) there is an

oriented matroid whose realization space is stably equivalent (in the sense of [9]) to V .

Thus realization spaces can be homotopy equivalent to any �nite simplicial complex

(in particular they may have an arbitrary number of connected components). The

examples produced by Mn�ev's method in general involve a large number of points. At

the same time P.Y. Suvorov [12] constructed an example of rank 3 with disconnected

realization space that contains only 14 elements.

The oriented matroid 


+

14

shares these properties with Suvorov's example, but it

has the following additional nice properties:

� 


+

14

is constructible. (After �xing the position of the points x

1

; : : : ; x

4

that form

a projective basis and choosing a point x

5

= (t + 1)x

3

+ (t � 1)x

4

each point

x

i

for i = 6; : : : ; 14 is of the form (x

a

_ x

b

) ^ (x

c

_ x

d

) where \_" is the join

operator and \^" is the meet operator and a; b; c; d are indices that are smaller

than i.)

� up to stable equivalence (see [9]) the realization space of 


+

14

is an open interval

from which one point has been deleted.

� 


+

14

has rational realizations.

� 


+

14

has a combinatorial symmetry of order two that has no metric realization.

(The smallest example with this property, known so far, with 90 points, was

constructed by P. Shor [11].)

It is still an open question whether there exists an oriented matroid with discon-

nected realization space and less than 14 points.

If we switch the orientation of one particular basis in 


+

14

we obtain the non-

realizable oriented matroid 


�

14

. This oriented matroid has a remarkable property.

It is the �rst known example of a non-realizable oriented matroid for which non-

realizability cannot be proved by a bi-quadratic �nal polynomial.

Documenta Mathematica 1 (1996) 137{148



Two Interesting Oriented Matroids 139

Final polynomials [3, 5] are certi�cates for the non-realizability of matroids and

oriented matroids. However, no algorithmic method for computing �nal polynomials

is known to be both generally applicable and e�ective. Indeed, this is not surprising

since the realizability problem is known to be NP-hard [11]. Bi-quadratic �nal poly-

nomials (as introduced in [2] and [8]) are special kinds of �nal polynomials which can

be computed very e�ciently. The method of bi-quadratic �nal polynomials for the

oriented matroid case was originally inspired by J. Bokowski [5], who suggested that

one consider only inequalities of the form [: : :][: : :] < [: : :][: : :] which are consequences

of three-term Gra�mann-Pl�ucker polynomials and the signature of the oriented ma-

troid. These inequalities have to be satis�ed in the realizable case. If this system of

these inequalities is inconsistent one has a bi-quadratic �nal polynomial. Deciding

whether an oriented matroid has a bi-quadratic �nal polynomial can be translated

into an LP-feasibility-problem and therefore solved in polynomial time. This is the

�rst example of a non-realizable oriented matroid which cannot be certi�ed to be

non-realizable by a bi-quadratic �nal polynomial.

2 Realization spaces

Oriented matroids are combinatorial models for vector con�gurations in linear vector

spaces over ordered �elds. For an extensive introduction into oriented matroid theory

we recommend [1] and [10]. Throughout the paper we will restrict ourselves to the

case of vector con�gurations in IR

3

, the case of oriented matroids of rank 3. Let

X = (x

1

; : : : ; x

n

) 2 IR

3n

be a con�guration consisting of n vectors in IR

3

. We set

E = f1; : : : ; ng. To every triple of indices (i; j; k) 2 E

3

we assign a sign

�

X

(i; j; k) = sign det(x

i

; x

j

; x

k

):

The map �

X

:E

3

! f�1; 0;+1g is called the oriented matroid of X . We omit the

general de�nition of an oriented matroid (it can be found in [1] and [10]).

For us it is su�cient to know that an oriented matroid �:E

3

! f�1; 0;+1g

is a sign map that models the combinatorial behavior of signs of determinants. In

particular � always satis�es the alternating determinant rules:

�(i; j; k) = �(k; i; j) = �(j; k; i) = ��(j; i; k) = ��(k; j; i) = ��(i; k; j):

Since � is alternating it is su�cient to specify � on the set

�(E; 3) = f(i; j; k) 2 E

3

j i < j < kg:

An oriented matroid � is realizable if there is a vector con�guration X with �

X

= �.

If there is no such vector con�guration, then � is called non-realizable. Deciding the

question whether an oriented matroid is realizable or not algorithmically is known to

be an NP-hard problem [11].

For a realizable oriented matroid one is often interested not only in a particular re-

alization, but also in the space of all realizations. There are various ways of describing

this space, depending on how much of the actions on IR

3n

that preserve the oriented

matroid of X are factored out. If at least a linear basis is �xed all these descriptions

turn out to be isomorphic up to stable equivalence (compare [9]). We here use the

version where a projective basis is �xed. Reorientation of a point i (i.e. reversing all
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140 J. Richter-Gebert

signs �(a; b; c) with i 2 fa; b; cg) does not change the behavior of � with respect to

realizability: if X = (x

1

; : : : ; x

n

) is a realization of � then we get a realization of the

reversed situation if we replace x

i

by �x

i

. Hence, we may (up to relabeling, reorienta-

tion of points 1, 2, 3 or 4 and the assumption that � has at least four points in general

position) assume that we have �(1; 2; 3) = �(1; 2; 4) = �(1; 3; 4) = �(2; 3; 4) = 1.

Definition 2.1. Let �:E

3

! f�1; 0;+1g be a rank 3 oriented matroid that sat-

is�es �(1; 2; 3) = �(1; 2; 4) = �(1; 3; 4) = �(2; 3; 4) = 1. Let x

1

= (1; 0; 0), x

2

=

(0; 1; 0), x

3

= (1; 0; 1), and x

4

= (0; 1; 1). The realization space of � is the set of all

(x

5

; : : : ; x

n

) 2 IR

3(n�4)

with �

X

= � for X = (x

1

; : : : ; x

n

).

3 


+

14

has disconnected realization space

The con�guration that we will study here is de�ned by the following construction

sequence. The oriented matroid 


+

14

is the underlying oriented matroid for choices of

the parameter t in (�3 +

p

8; 0) [ (0; 3�

p

8).

x

1

= (1; 0; 0);

x

2

= (0; 1; 0);

x

3

= (1; 0; 1);

x

4

= (0; 1; 1);

x

5

= (1� t)x

3

+ (1 + t)x

4

;

x

6

= x

5

x

2

^ x

1

x

4

= (1� t; 2; 2);

x

7

= x

5

x

1

^ x

2

x

3

= (�2;�1� t;�2);

x

8

= x

6

x

3

^ x

5

x

1

= (3� 2 t� t

2

; 2 + 2 t; 4);

x

9

= x

7

x

4

^ x

5

x

2

= (2� 2 t; 3 + 2 t� t

2

; 4);

x

10

= x

3

x

4

^ x

8

x

2

= (�3 + 2 t+ t

2

;�1� 2 t� t

2

;�4);

x

11

= x

3

x

4

^ x

9

x

1

= (�1 + 2 t� t

2

;�3� 2 t+ t

2

;�4);

x

12

= x

7

x

10

^ x

11

x

2

= (1� 2 t

2

+ t

4

;�1 + 4 t+ 10 t

2

+ 4 t

3

� t

4

; 4 + 8 t+ 4 t

2

);

x

13

= x

6

x

11

^ x

10

x

1

= (�1� 4 t+ 10 t

2

� 4 t

3

� t

4

; 1� 2 t

2

+ t

4

; 4� 8 t+ 4 t

2

);

x

14

= x

1

x

3

^ x

2

x

4

= (0; 0; 1)

Here x

�

x

�

denotes the \join" of x

�

and x

�

, and a ^ b denotes the \meet". Both

operations can be computed in terms of the standard cross-product in IR

3

.

After �xing a projective basis consisting of the points x

1

; : : : ; x

4

the whole con-

struction only depends on the choice of the parameter t. The following matrix gives

coordinates for the situation t = 0 (the situation where x

5

is in the middle of x

3

and

x

4

).

X

0

=

0

@

1 0 1 0 1 1 2 3 2 3 1 1 �1 0

0 1 0 1 1 2 1 2 3 1 3 �1 1 0

0 0 1 1 2 2 2 4 4 4 4 4 4 1

1

A

We can visualize the situation if we normalize the last coordinate for x

3

; : : : ; x

14

to 1 by multiplying each vector with a suitable positive scalar. The situation in

the plane f(x; y; 1) j x; y 2 IRg gives an a�ne image of our vector con�guration in

IR

3

. Figure 1 shows the a�ne situation for a value t slightly smaller than zero. The

points x

1

and x

2

are the points at in�nity that lie on the x-axis and y-axis. The little

displacement of x

5

away from the symmetric position forces that the lines (1; 3), (2; 4)

and (12; 13) not to be concurrent (as in the case t = 0).
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! 1

2

"

3

4

5

6

7

8

9

10

11

12

13

14

Figure 1

The whole construction sequence has a combinatorial symmetry that is induced

by the permutation

� =

�

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 1 4 3 5 7 6 9 8 11 10 13 12 14

�

:

Evaluating the determinant det(x

12

; x

13

; x

14

) we get

det(x

12

; x

13

; x

14

) = 32 t

2

� 64 t

4

+ 32 t

6

= 32t

2

(t

2

� 1)

2

;

a polynomial that has a root which is actually a minimum at t = 0.

-1 -0.5 0.5 1

1

2

3

4

Figure 2
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142 J. Richter-Gebert

The fact that this polynomial is symmetric in t is already a consequence of the

symmetry of the underlying construction of the con�guration and of the symmetric

choice of our basis x

1

; : : : ; x

4

. A graph of this polynomial is given in Figure 2.

We now de�ne for all (i; j; k) 2 �(f1; : : : ; 14g; 3) and � 2 f�1; 0;+1g




�

14

(i; j; k) :=

�

� if (i; j; k) = (12; 13; 14);

�

X

0

(i; j; k) otherwise.

The oriented matroids 


�

14

have a combinatorial symmetry which is induced by �.

For all (i; j; k) 2 �(f1; : : : ; 14g; 3) and � 2 f�1; 0;+1g we have




�

14

(�(i); �(j); �(k)) = �


�

14

(i; j; k):

A realization X of 


�

14

is symmetric if there is a linear involution R: IR

3

! IR

3

with

R(x

i

) = x

�(i)

for i 2 f1; : : : ; 14g.

Theorem 3.1. The oriented matroids 


�

14

have the following properties:

(i) There is a polynomial function f from ((0; 1)nf

1

2

g)� (0;1)

10

to the realization

space of 


+

14

that is an isomorphism of semi-algebraic sets.

(ii) 


+

14

has no symmetric realization.

(iii) 


+

14

has rational realizations.

(iv) 


�

14

is not realizable.

Proof. The construction sequence at the beginning of this section shows that after

the choice of the parameter t all points are determined up to multiplication by a

positive number. The signs that are identical in 


+

14

, 


0

14

, and 


�

14

are exactly taken

for values of t in the open interval (�3+

p

8; 3�

p

8). (The basis that collapse at the

end points of this open interval are (x

1

; x

3

; x

12

) and (x

2

; x

4

; x

13

).) We get realizations

of 


+

14

exactly for all choices of t in I = (�3 +

p

8; 0) [ (0; 3�

p

8). For t = 0 we get

a realization of 


0

14

. The factor (0;1)

10

in (i) is due to the fact that multiplication

of any of the points x

5

; : : : ; x

14

by a positive scalar does not change the underlying

oriented matroid. This proves (i).

Assume that there was a symmetric realization X of 


+

14

. After a suitable pro-

jective transformation we may assume that x

1

; : : : ; x

4

are located at (1; 0; 0), (0; 1; 0),

(1; 0; 1), (0; 1; 1), respectively, and that the reection R is given by R(x; y; z) =

(y; x; z). Since x

5

is a �x-point of R it must be of the form (x; x; z) 6= (0; 0; 0).

Up to a positive multiple the only possible choice for x

5

is induced by t = 0 in our

construction sequence. For t = 0 the determinant det(x

12

; x

13

; x

14

) evaluates to zero.

Hence, there is no symmetric realization. This proves (ii).

If we choose t as a rational number in (�3+

p

8; 0)[ (0; 3�

p

8) we get a rational

realization, as stated in (iii). Fact (iv) is a direct consequence of the fact that for

t 2 (�3 +

p

8; 3 �

p

8) the determinant det(x

12

; x

13

; x

14

) is always positive or zero.
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Two Interesting Oriented Matroids 143

4 Final polynomials

Bi-quadratic �nal polynomials [2, 8] are special �nal polynomials that can be found

by linear programming. They provide an e�ective tool to prove non-realizability for a

large class of oriented matroids. Here we restrict ourselves to the case of realizability

over IR and to the case of oriented matroids in rank 3 on a ground set E = f1; : : : ; ng.

Our starting point is the structure of three-term Gra�mann-Pl�ucker polynomials. For

this the brackets [i; j; k] with i; j; k 2 E are considered as formal variables. We identify

brackets according to the alternating determinant rules:

[i; j; k] = [k; i; j] = [j; k; i] = �[j; i; k] = �[k; j; i] = �[i; k; j]:

The polynomial ring in all brackets IR[f[�] j � 2 E

3

g] modulo these identi�cations

is abbreviated B

3;n

. (This is a polynomial ring in

�

n

3

�

generators.) For an oriented

matroid � and a bracket monomial [�

1

] � [�

2

] � : : : � [�

k

] we write

�([�

1

] � [�

2

] � : : : � [�

k

]) := �(�

1

) � �(�

2

) � : : : � �(�

k

):

For a vector con�guration X = (x

1

; : : : ; x

n

) 2 IR

3n

and (i; j; k) 2 E

3

we write

[i; j; k]

X

= det(x

i

; x

j

; x

k

):

Definition 4.1. Let � be a rank 3 oriented matroid on a �nite set E of cardinality

n > 3, let � 2 E; � = (a; b; c; d) 2 E

4

with jf�; a; b; c; dgj = 5 and let

A := (�; a; b); B := (�; c; d);

C := (�; a; c); D := (�; b; d);

E := (�; a; d); F := (�; b; c):

(1) The pair (�; �) is called �-normalized if

�([A][B]) � 0; �([C][D]) � 0; �([E][F ]) � 0:

(2) A �-normalized pair (�; �) is called �-non-degenerate if �([C][D]) > 0.

(3) For a �-non-degenerate pair (�; �) we call

[A][B] < [C][D] a bi-quadratic inequality if �([E][F ]) > 0;

[A][B] = [C][D] a bi-quadratic equation if �([E][F ]) = 0;

[E][F ] < [C][D] a bi-quadratic inequality if �([A][B]) > 0;

[E][F ] = [C][D] a bi-quadratic equation if �([A][B]) = 0:

In fact (as a consequence of the oriented matroid axioms) for any � 2 E and � 2 E

4

there is always a suitable permutation � 2 S

4

of the elements in � such that (�; �(�))

is �-normalized. Furthermore, if [A][B] = [C][D] is a bi-quadratic equation, [C][D] =

[A][B] is a bi-quadratic equation as well.

The set of all bi-quadratic inequalities of � will be denoted by B

�

and the set of all

its bi-quadratic equations will be denoted by A

�

. Each element in B

�

[ A

�

is called

a bi-quadratic expression. The bi-quadratic expressions can be considered as natural

consequences of Gra�mann-Pl�ucker relations in the realizable case, as we will see now.
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Lemma 4.2. For a vector con�guration X 2 (IR

d

)

n

and its corresponding oriented

matroid �

X

we have

(i) [A]

X

[B]

X

< [C]

X

[D]

X

for all [A][B] < [C][D] 2 B

�

X

.

(ii) [A]

X

[B]

X

= [C]

X

[D]

X

for all [A][B] = [C][D] 2 A

�

X

Proof.

(i): Assume that [A][B] < [C][D] is a bi-quadratic inequality and let (�; �) be the

corresponding �-non-degenerate pair. Let A; : : : ; F be de�ned as in De�nition 4.1.

We have �([E][F ]) = 1. The polynomial [A][B] � [C][D] + [E][F ] is a Gra�mann-

Pl�ucker-polynomial. Hence its evaluation is identical to zero for every con�guration

X 2 (IR

d

)

n

:

[A]

X

[B]

X

� [C]

X

[D]

X

+ [E]

X

[F ]

X

= 0:

Since �([E][F ]) = 1, in any realization X of � we have [A]

X

[B]

X

� [C]

X

[D]

X

< 0.

This proves the �rst part of the lemma.

(ii): Let [A][B] = [C][D] be a bi-quadratic equation and let (�; �); E; F be de�ned as

above. Then we have �([E][F ]) = 0. Therefore in any realization X of � we have

[A]

X

[B]

X

� [C]

X

[D]

X

= 0.

The following de�nition of bi-quadratic �nal polynomials is more general than the

one given in [2], where only the uniform case (no zero determinants) was considered.

Definition 4.3. For an oriented matroid � a non-empty collection of bi-quadratic

inequalities

[A

i

][B

i

] < [C

i

][D

i

] 2 B

�

; 1 � i � k

together with a (possibly empty) collection of bi-quadratic equations

[A

i

][B

i

] = [C

i

][D

i

] 2 A

�

; k + 1 � i � l

is called a bi-quadratic �nal polynomial if the following equality holds within the ring

B

3;n

(where brackets are identi�ed according to the alternating determinant rule):

l

Y

i=1

[A

i

][B

i

] =

l

Y

i=1

[C

i

][D

i

]:

Lemma 4.4. [2, Lemma 4.1] If � admits a bi-quadratic �nal polynomial, then � is

not realizable over IR.

Proof. Assume on the contrary that � admits a bi-quadratic �nal polynomial as

de�ned above, and � is realizable, i.e � = �

X

for a suitable vector con�guration X .

By Lemma 4.2 we have

[A

i

]

X

[B

i

]

X

< [C

i

]

X

[D

i

]

X

for all 1 � i � k, and

[A

i

]

X

[B

i

]

X

= [C

i

]

X

[D

i

]

X

for all k + 1 � i � l:
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At least one proper inequality appears. By de�nition the products on the left side

are all positive and the products on the right side are positive as well. If we multiply

all right and all left sides we obtain:

l

Y

i=1

[A

i

]

X

[B

i

]

X

<

l

Y

i=1

[C

i

]

X

[D

i

]

X

:

On the other hand the fact that we have a bi-quadratic �nal polynomial implies

l

Y

i=1

[A

i

]

X

[B

i

]

X

=

l

Y

i=1

[C

i

]

X

[D

i

]

X

:

This contradicts the assumption that � was realizable.

5 


�

14

has no bi-quadratic final polynomial

The main result of this section is:

Theorem 5.1. Let �

0

, �

+

, �

�

be three oriented matroids that di�er in exactly one

basis � 2 �(E; 3) with �

�

(�) = �. If �

0

and �

�

are realizable and �

+

is not, then

�

+

cannot have a bi-quadratic �nal polynomial.

Proof. Assume that a bi-quadratic �nal polynomial for �

+

exists. Let

f[A

i

][B

i

] < [C

i

][D

i

] j 1 � i � kg � B

�

+

together with

f[A

i

][B

i

] = [C

i

][D

i

] j k + 1 � i � lg � A

�

+

be a bi-quadratic �nal polynomial for �

+

consisting of k > 0 bi-quadratic inequalities

and l � k � 0 bi-quadratic equations. Since [�; b; c][�; e; f ] = [�; c; b][�; f; e] holds,

we may assume that every bracket in the bi-quadratic �nal polynomial has positive

signature. In each bi-quadratic expression the bracket [�] can be contained at most

once (since each three-term Gra�mann-Pl�ucker-polynomial contains each bracket at

most once). Since we have a bi-quadratic �nal polynomial the overall number r of

occurrences of [�] on the right sides of the expressions equals the number of overall

occurrences of [�] on the left sides. Thus we may assume that the bi-quadratic ex-

pressions are sorted in a way that each expression of the form [A

i

][B

i

] � [C

i

][D

i

] with

� 2 fA

i

; B

i

g is directly followed by an expression [A

i+1

][B

i+1

] � [C

i+1

][D

i+1

] with

� 2 fC

i+1

; D

i+1

g (indices taken modulo r).

With suitable �

i

2 E and �

i

:= (�

i1

; : : : ; �

i4

) 2 E

4

we have

A

i

:= (�

i

; �

i1

; �

i2

); B

i

:= (�

i

; �

i3

; �

i4

);

C

i

:= (�

i

; �

i1

; �

i3

); D

i

:= (�

i

; �

i

2

; �

i

4

):

With this choice the Gra�mann-Pl�ucker polynomials

f�

i

j�

i

g := [A

i

][B

i

]� [C

i

][D

i

] + [E

i

][F

i

]

Documenta Mathematica 1 (1996) 137{148



146 J. Richter-Gebert

are �-normalized and �-non-degenerate. By De�nition 4.1 we know that �([E

i

][F

i

])

is +1 for 1 � i � k and 0 for k + 1 � i � l. Furthermore �([A

i

][B

i

]) = 1 and

�([C

i

][D

i

]) = 1 for all 1 � i � l. We de�ne monomials

m

i

:=

i�1

Y

j=1

([A

i

][B

i

]) �

l

Y

j=i+1

([C

i

][D

i

])

and consider the polynomial

p :=

l

X

i=1

�

m

i

� f�

i

j�

i

g

�

:

We have

m

i

� [A

i

][B

i

] = m

i+1

� [C

i+1

][D

i+1

]:

Furthermore, since all bi-quadratic expressions together form a bi-quadratic �nal

polynomial, we also have

m

l

� [A

l

][B

l

] =

l

Y

i=1

([A

i

][B

i

]) =

l

Y

i=1

([C

i

][D

i

]) = m

1

� [C

1

][D

1

]:

Thus, canceling pairwise vanishing summands in p yields:

p =

l

X

i=1

�

m

i

� [E

i

][F

i

]

�

:

(In fact p is an ordinary �nal polynomial for �

+

in the sense of Bokowski & Sturmfels

[1, 5].) Since all Gra�mann-Pl�ucker-polynomials that are involved were �-normalized

we get:

�(m

i

� [E

i

][F

i

]) = 1 for i = 1; : : : ; k

and

�(m

i

� [E

i

][F

i

]) = 0 for i = k + 1; : : : ; l:

By our assumption on the order of the bi-quadratic expressions in each of the

monomials m

i

= [�]

r

�m

0

i

the bracket [�] occurs with degree r (the total number of

occurrences of [�] on the right side of bi-quadratic expressions). Thus if we consider

the polynomial

p

0

:=

l

X

i=1

�

m

0

i

� f�

i

j�

i

g

�

=

l

X

i=1

�

m

0

i

� [E

i

][F

i

]

�

:

each summand m

0

i

� [E

i

][F

i

] is either linear in [�] (in case that � 2 fE

i

; F

i

g) or does

not contain [�] at all. Furthermore (since �

+

(�) = 1) we have �(m

0

i

� [E

i

][F

i

]) = 1 for

i = 1; : : : ; k and �(m

0

i

� [E

i

][F

i

]) = 0 for i = k + 1; : : : ; l. Thus we have

p

0

= [�] �

s

X

i=1

p

i

+

l�s

X

i=1

q

i
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with �(p

i

) and �(q

i

) all either zero or positive and at least one of these monomials

positive. Observe that the p

i

and q

i

are independent on [�] thus the corresponding

signs �(p

i

) and �(q

i

) are identical for �

+

, �

0

and �

�

.

We now replace the brackets of p

0

by the values of the actual determinants of a

realization of �

0

(we know that such a realization does exist). The polynomial p

0

is

a linear combination of Gra�mann-Pl�ucker-polynomials, hence this expression must

evaluate to zero. Since �

0

([�]) = 0 and the monomials q

i

evaluate to a non-negative

number we can conclude that �(q

i

) = 0 for all i = 1; : : : ; l� s.

Using this information we now consider the case where we replace the brackets

of p

0

by the values of the actual determinants of a realization of �

�

(we know that

such a realization does also exist). The summands q

i

for all i = 1; : : : ; l � s evaluate

to zero. Each of the summands [�] � p

i

for i = 1; : : : ; s evaluates either to zero or to a

number with sign since �

�

([�]) = �1. At least one non-zero summand occurs. Thus

we have a non-empty collection of negative numbers summing up to zero.

Corollary 5.2. The oriented matroid 


�

14

is not realizable and does not admit a

bi-quadratic �nal polynomial.

Proof. The non-realizability of 


�

14

was proved in Theorem 3.1. Since 


+

14

and 


0

14

are realizable Theorem 5.1 applies and the corollary follows.
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