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Abstract. The possible dimensions of a composition algebra are 1, 2, 4,

or 8. We give a tensor categorical argument.
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I. Introduction

Let C be a composition algebra over a �eld of characteristic di�erent from 2, let V

be its pure subspace (consisting of the vectors orthogonal to 1) and let d = dimV .

We show that the following relation holds in the ground�eld:

d(d� 1)(d� 3)(d� 7) = 0:

This is not very surprising since the only possibilities for C are either the ground �eld,

a separable quadratic extension, a quaternion algebra, or an octonion algebra. The

proof of the relation given in this note seems to be di�erent from former approaches

(cf. [1], [2]). It works on a tensor categorical level. In characteristic 0 one recovers

the determination of the possible dimensions of a composition algebra.

Our starting problem was to understand composition algebras from a tensor cat-

egorical point of view. Instead of composition algebras we looked at the equivalent

notion of vector product algebras. These algebras can be obtained be rewriting the

axioms of a composition algebra in terms of the pure vectors. Vector product alge-

bras allow to use diagrammatic tensor calculus in a handy way. Using a graphical

technique we found|just by playing around|a proof of the relation on dimV . These

notes contain alone the algebraic calculations which were extracted from the graph

considerations. After these notes had been written, we noticed an identity in vector

product algebras which perhaps makes the result less mysterious. So there is more to
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say about the topic than explained in this text. We hope to come back to this at an-

other place. Anyway, the text is completely self-contained and contains an argument

on the possible dimensions.

Throughout the paper we assume char 6= 2.

Acknowledgements: I am indebted to B. Eckmann and T. A. Springer for useful

comments. T. A. Springer suggested to use the relation (3.3) which reduced the

amount of the calculations considerably. Moreover I thank the FIM at ETH Z�urich

for its hospitality.

II. Composition Algebras and Vector Products

We �rst recall a de�nition.

(1) Composition algebras.

A composition algebra consists of a vector space C together with

(1.1) a nondegenerate symmetric bilinear form h ; i on C,

(1.2) a linear map C 
 C ! C, x
 y 7! x � y,

(1.3) an element 0 6= e 2 C,

such that (with N(x) = hx; xi)

(1.4) e � x = x � e = x,

(1.5) N(x � y) = N(x)N(y).

For our purpose we have to consider the following algebraic structure.

(2) Vector product algebras.

A vector product algebra consists of a vector space V together with

(2.1) a nondegenerate symmetric bilinear form h ; i on V ,

(2.2) a linear map V 
 V ! V , x
 y 7! x� y,

such that

(2.3) hx� y; zi is alternating in x, y, z,

(2.4) (x� y)� x = hx; xiy � hx; yix:

The vector product � is anti-commutative, since (2.3) implies x � x = 0. Therefore

x� (y� x) = (x� y)�x. Hence the choice of the arrangement of the brackets in the

lefthand side of (2.4) is not essential.

B. Eckmann has considered (continous) vector products in [B. Eckmann, Stetige

L�osungen linearer Gleichungssysteme, Comment. Math. Helv. 15 (1942/43), 318{339],
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see also [B. Eckmann, Continous solutions of linear equations | An old problem, its

history and its solution, Expo. Math. 9 (1991), 351{365]. He used the axioms

hx � y; xi = hx� y; yi = 0; N(x� y) = det

�

�

�

�

hx; xi hx; yi

hy; xi hy; yi

�

�

�

�

:

They are perhaps more close to the intuitive idea of a vector product. Under presence

of (2.1){(2.2) they are easily seen to be equivalent to (2.3){(2.4).

Vector product algebras and composition algebras are equivalent notions.

Namely, given a composition algebra C, let V = hei

?

and put

(i) x� y =

1

2

(x � y � y � x):

Conversely, given a vector product algebra V , put C = hei?V and de�ne the product

on C by

(ii) (ae+ x) � (be+ y) =

�

ab� hx; yi

�

e+ ay + bx+ x� y:

The rewriting formulas (i) and (ii) identify composition algebras and vector product

algebras on a \tensor categorical" level. This means that the composition rule (1.5)

gives after polarization and decomposition with respect to C = hei?V the same tensor

equations as (2.3) and the polarization of (2.4).

This equivalence between composition algebras and vector product algebras seems to

provide a convenient way to comprise some wellknown rules in composition algebras.

For the associator in C one �nds

(x � y) � z � x � (y � z) = 2

�

(x� y)� z � hx; ziy + hy; zix

�

for x, y, z 2 V .

III. A Relation for the Contraction of h ; i

Let V be a �nite-dimensional vector product algebra and let (e

i

)

i

be an orthonormal

basis of V over some algebraic closure. Put

d =

X

i

he

i

; e

i

i:

(3) Proposition. One has the relation

d(d� 1)(d� 3)(d� 7) = 0:

In the following we will tacitly apply (2.3) in the formulation

(2.3a) hx� y; zi = hx; y � zi,

(2.3b) y � x = � x� y.
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The relation (2.4) will be used also in the following forms which are obtained by

polarizing and from (2.3):

(x� y)� z + x� (y � z) = 2hx; ziy � hx; yiz � hz; yix;(2.4a)

hx� y; z � ti+ hy � z; t� xi =

(2.4b)

2hx; zihy; ti � hx; yihz; ti � hy; ziht; xi:

Other relations to be used are

(3:1)

X

i

e

i

� (v � e

i

) =

X

i

he

i

; e

i

iv �

X

i

he

i

; vie

i

= dv � v = (d� 1)v

and

(3:2)

X

i;j

he

i

� e

j

; e

i

� e

j

i =

X

i;j




e

i

; e

j

� (e

i

� e

j

)

�

= (d� 1)

X

i

he

i

; e

i

i = d(d� 1):

To warm up, we �rst consider vector product algebras which correspond to associative

composition algebras.

(4) Proposition. Suppose that the following sharpening of (2.4) holds:

(4:1) (x� y)� z = hx; ziy � hy; zix:

Then

d(d� 1)(d� 3) = 0:

Proof. Consider

A =

X

i;j;k




e

i

� (e

k

� e

i

); e

j

� (e

k

� e

j

)

�

:

By (3.1) we have

A =

X

k

(d� 1)

2

he

k

; e

k

i = d(d� 1)

2

:

On the other hand, using (4.1) and (3.2) one �nds

A =

X

i;j;k


�

e

i

� (e

k

� e

i

)

�

� e

j

; e

k

� e

j

�

=

X

i;j;k




he

i

; e

j

ie

k

� e

i

� he

k

� e

i

; e

j

ie

i

; e

k

� e

j

�

=

X

i;k

he

k

� e

i

; e

k

� e

i

i �

X

i;j;k

he

k

� e

i

; e

j

ihe

i

� e

k

; e

j

i

= 2

X

i;k

he

k

� e

i

; e

k

� e

i

i = 2d(d� 1):

So

0 = A�A = d(d� 1)(d� 3): �
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Let us start with the proof of Proposition 3.

Put

h(u; v) =

X

i

(u� e

i

)� (e

i

� v):

The following formula has been introduced by T. A. Springer.

(3:3) h(u; v) = (d� 4)u� v:

To check it one uses (2.4a) with x = u, y = e

i

and z = e

i

� v and �nds

h(u; v) = �

X

i

u�

�

e

i

� (e

i

� v)

�

+ 2

X

i

hu; e

i

� vie

i

�

X

i

hu; e

i

ie

i

� v �

X

i

he

i

� v; e

i

iu

= (d� 1)u� v + 2

X

i

hv � u; e

i

ie

i

� u� v �

X

i

hv; e

i

� e

i

iu

= (d� 1)u� v � 2u� v � u� v � 0 = (d� 4)u� v:

Formulas (3.3) and (3.2) make it easy to compute the sum

B =

X

i;k




h(e

i

; e

k

); h(e

k

; e

i

)

�

= (d� 4)

2

X

i;k

he

i

� e

k

; e

k

� e

i

i = �d(d� 1)(d� 4)

2

We next compute B in a di�erent way. One has

B =

X

i;j;k;l




(e

i

� e

j

)� (e

j

� e

k

); (e

k

� e

l

)� (e

l

� e

i

)

�

:

Applying (2.4b) shows

B +B

0

= 2C �D �D

0

;

where

B

0

=

X

i;j;k;l




(e

j

� e

k

)� (e

k

� e

l

); (e

l

� e

i

)� (e

i

� e

j

)

�

;

C =

X

i;j;k;l

he

i

� e

j

; e

k

� e

l

ihe

j

� e

k

; e

l

� e

i

i;

D =

X

i;j;k;l

he

i

� e

j

; e

j

� e

k

ihe

k

� e

l

; e

l

� e

i

i;

D

0

=

X

i;j;k;l

he

j

� e

k

; e

k

� e

l

ihe

l

� e

i

; e

i

� e

j

i:
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By reindexing one �nds B = B

0

and D = D

0

. Therefore

B = C �D:

We compute C and D:

C =

X

i;j;k;l




e

i

; e

j

� (e

k

� e

l

)

�


(e

j

� e

k

)� e

l

; e

i

�

=

X

j;k;l




e

j

� (e

k

� e

l

); (e

j

� e

k

)� e

l

�

=

X

j;k;l


�

e

j

� (e

k

� e

l

)

�

� (e

j

� e

k

); e

l

�

= �

X

k;l




h(e

k

� e

l

; e

k

); e

l

�

= �(d� 4)

X

k;l




(e

k

� e

l

)� e

k

; e

l

�

= �(d� 1)(d� 4)

X

l

he

l

; e

l

i = �d(d� 1)(d� 4);

D =

X

i;j;k;l




e

i

; e

j

� (e

j

� e

k

)

�


(e

k

� e

l

)� e

l

; e

i

�

=

X

j;k;l




e

j

� (e

j

� e

k

); (e

k

� e

l

)� e

l

�

=

X

k

(d� 1)(d� 1)he

k

; e

k

i = d(d� 1)

2

:

Hence

B = �d(d� 1)(d� 4)� d(d� 1)

2

= �d(d� 1)(2d� 5):

Finally

0 = B �B = �d(d� 1)(2d� 5) + d(d� 1)(d� 4)

2

= d(d� 1)(d

2

� 10d+ 21) = d(d� 1)(d� 3)(d� 7): �

References

[1] Hurwitz, A.,

�

Uber die Komposition der quadratischen Formen, Math. Ann. 88,

1-25.

[2] Jacobson, N., Basic Algebra I, W. H. Freeman and Co., San Francisco, 1974.

Markus Rost

Fakult�at f�ur Mathematik

Universit�at Regensburg

Universit�atsstra�e 31

Germany

markus.rost@mathematik.uni-regensburg.de

Documenta Mathematica 1 (1996) 209{214


