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Introduction

MultirelativeK-groupsK

n

(R; a

1

; : : : ; a

m

) of anm-tuple (a

1

; : : : ; a

m

) of ideals of a ring

R are recently used to derive properties of the absolute K-groups, e.g. by Levine [4]

and by Bloch and Lichtenbaum [1]. Here it is shown how K-theory as de�ned in [3]

can easily be extended to the multirelative case and that some of its properties can

be taken as axioms for the K-theory of rings. Special types of m-tuples of ideals|

the `normal' m-tuples|play a crucial role. In fact we will only de�ne multirelative

K-groups for such m-tuples. The notion of normal m-tuple of ideals is introduced in

Section 2. It already appeared in 1981 in a paper by Dayton and Weibel [2] on the

K-theory of a�ne glued schemes under the name of `condition (CRT)' (= Chinese

Remainder Theorem).

In Section 4 we review briey higher K-theory as de�ned in [3]. In Section 6

multirelative K-groups are de�ned, and in Section 7 it is shown that from some of

their properties one can reconstruct the K-theory of rings.

1 Notations

In this paper `ring' stands for a non-unital ring. Non-unital rings form a category

which is denoted by R.

Since the functors GL, E and K

1

are product preserving functors from unital

rings to groups, they can be extended to functors de�ned on R in the usual way: if

T is one of these functors, then put

T (R) := Ker(T (R

+

)! T (Z));
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278 Frans Keune

where R

+

= R�Z with multiplication given by

(r; k)(s; l) = (rs + ks+ lr; kl)

is a ring with (0; 1) as unity element.

Here `ideal' will always stand for `twosided ideal'.

By A we will denote the category of Abelian groups, by G the category of all

groups, and by S the category of sets. The category of simplicial objects in a category

C is denoted by sC.

2 m-cubes and normal m-tuples

In this section the notion of normality of an m-tuple of ideals is considered. Only

the group structure is involved in its de�nition, and since we can use later a similar

notion for groups instead of rings we give a more general de�nition. By m we will

denote the set f1; : : : ;mg.

Definition 1. An m-tuple (B

1

; : : : ; B

m

) of normal subgroups of a group A|also

denoted as (A;B

1

; : : : ; B

m

)|is called normal if for all subsets I and J of m

\

i2I

B

i

�

Y

j2J

B

j

=

\

i2I

�

B

i

�

Y

j2J

B

j

�

:

The condition is trivially ful�lled when I \ J 6= ;. In the case of Abelian groups

it reads in the additive notation as

\

i2I

B

i

+

X

j2J

B

j

=

\

i2I

�

B

i

+

X

j2J

B

j

�

:

Note that in the special case of an m-tuple of ideals in a commutative ring the

condition is a local one since it involves only intersections and sums of ideals.

The subsets of m are ordered by inclusion. This ordered set determines in the

usual way a category C

m

. For every pair (I; J) of subsets with I � J there is the

unique morphism �

I

J

from I to J in C

m

.

Definition 2. Let D be a category. An m-cube in D is a functor

D : C

m

! D; I 7! D

I

; �

I

J

7! r

I

J

:

The morphisms in C

m

are generated by the �

I

J

, where #J = #I +1. An m-cube

in a category D is a commutative diagram in D having the shape of an m-dimensional

cube. The edges of the cube correspond to the images of these generating morphisms.

Definition 3. Let D : C

m

! D be an m-cube in D. It is said to be a split m-cube if

for every pair of subsets (I; J) ofm satisfying I � J there is a morphism s

J

I

: D

J

! D

I

in D such that

(S1) s

J

I

s

K

J

= s

K

I

for all I � J � K,

(S2) r

I

J

s

J

I

= 1

D

J

for all I � J ,
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Multirelative K-Theory 279

(S3) r

I\J

J

s

I

I\J

= s

I[J

J

r

I

I[J

for all I and J .

(Of course such a split m-cube can also be seen as a functor de�ned on a category

which is obtained from C

m

by adjoining extra morphisms �

J

I

: J ! I .)

In condition (S3) one only needs the case where #(I nJ) = #(J n I) = 1. It then

reads

(S3') r

I

I[fkg

s

I[fjg

I

= s

I[fj;kg

I[fkg

r

I[fjg

I[fj;kg

for all j; k =2 I with j 6= k.

This can easily be seen as follows. Put K = I \ J , I nK = fi

1

; : : : ; i

p

g and J nK =

fj

1

; : : : ; j

q

g. Then the result follows from the diagram

D

K

����! D

K[fi

1

g

����! � � � ����! D

I

x

?

?

x

?

?

x

?

?

D

K[fj

1

g

����! D

K[fi

1

;j

1

g

����! � � � ����! D

I[fj

1

g

x

?

?

x

?

?

x

?

?

.

.

.

.

.

.

.

.

.

x

?

?

x

?

?

x

?

?

D

J

����! D

J[fi

1

g

����! � � � ����! D

I[J

where the horizontal maps are r-maps and the vertical maps are s-maps.

Definition 4. An m-tuple T = (A;B

1

; : : : ; B

m

) of normal subgroups determines an

m-cube in G:

I 7! T

I

= A

�

Y

i2I

B

i

:

When I � J , then

Q

i2I

B

i

� J and 1

A

induces a grouphomomorphism r

I

J

: T

I

! T

J

.

This m-cube is said to be induced by the m-tuple T . Similarly for anm-tuple of ideals

in a ring.

Proposition 2.1. Let D : C

m

! D be an m-cube in G, which is split as an m-cube

in S. Then D is induced by a normal m-tuple of normal subgroups of D

;

.

Proof. For i 2 m put

B

i

= Ker

�

r

;

fig

: D

;

! D

fig

�

:

We will �rst show that the cube is induced by the m-tuple (D

;

; B

1

; : : : ; B

m

). Since

the cube splits in S, the homomorphisms D

;

! D

I

are surjective. To show that for

each I � m

Ker(D

;

! D

I

) =

Y

i2I

B

i

:

This can be done by induction on #(I). For #(I) = 0 it is trivial. Let #(I) > 0.

Choose k 2 I . By induction hypothesis

Ker

�

D

;

! D

Infkg

�

=

Y

i2Infkg

B

i

:
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280 Frans Keune

Since the cube splits in S we have a commutative diagram with exact rows and

columns:

1 1 1

?

?

y

?

?

y

?

?

y

1 ����! B

k

\

Q

i2Infkg

B

i

����! B

k

����! Ker

�

r

Infkg

I

�

����! 1

?

?

y

?

?

y

?

?

y

1 ����!

Q

i2Infkg

B

i

����! D

;

����! D

Infkg

����! 1

?

?

y

?

?

y

?

?

y

1 ����! Ker

�

r

fkg

I

�

����! D

fkg

����! D

I

����! 1

?

?

y

?

?

y

?

?

y

1 1 1

Hence

Ker(r

;

I

)=B

k

�

=

Y

i2Infkg

B

i

��

B

k

\

Y

i2Infkg

B

i

�

�

=

Y

i2I

(B

i

=B

k

);

and therefore,

Ker(r

;

I

) =

Y

i2I

B

i

:

For the normality of the m-tuple let I; J � m and consider the commutative square

D

;

(r

;

fig

)

����!

�

i2I

D

;

=B

i

?

?

y

r

;

J

?

?

y

(r

fig

J[fig

)

D

;

�

Q

j2J

B

j

(r

J

J[fig

)

�����!

�

i2I

D

;

�

Q

j2J[fig

B

j

:

Since the m-cube is split in S the vertical homomorphisms have compatible sections

in S. So r

;

J

induces a surjective homomorphism on the kernels of the horizontal ho-

momorphisms. This holds for all I; J � m. Therefore, the m-tuple (D

;

; B

1

; : : : ; B

m

)

is normal.

For the Abelian case we also prove the converse.

Proposition 2.2. Let T = (A;B

1

; : : : ; B

m

) be a normal m-tuple of subgroups of an

Abelian group A. Then the induced m-cube is split in the category S.

Proof. By taking kernels of the surjective homomorphisms in the induced m-cube it

can be extended to a diagram of 3

m

Abelian groups. We will give a detailed description

of this diagram and show how a splitting of the cube can be obtained from it.

For each pair (I; J) of disjoint subsets of m de�ne

C

I

J

=

\

i2I

B

i

+

X

j2J

B

j

�

X

j2J

B

j

:
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Multirelative K-Theory 281

Then for each such pair (I; J) and each k =2 I [J we have a surjective homomorphism

C

I

J

! C

I

J[fkg

, induced by r

J

J[fkg

: A

J

! A

J[fkg

, where we use the notation

A

J

= A

�

X

j2J

B

j

:

Thus A

J

= C

;

J

: The kernel of the surjective homomorphism C

I

J

! C

I

J[fkg

is

�

\

i2I

B

i

+

X

j2J

B

j

�

\

�

B

k

+

X

j2J

B

j

� �

B

k

+

X

j2J

B

j

:

We have the inclusions

\

i2I[fkg

B

i

+

X

j2J

B

j

�

�

\

i2I

B

i

+

X

j2J

B

j

�

\

�

B

k

+

X

j2J

B

j

�

�

\

i2I[fkg

�

B

i

+

X

j2J

B

j

�

:

By normality these groups are equal, so we have a short exact sequence

0! C

I[fkg

J

! C

I

J

! C

I

J[fkg

! 0:

For each pair (I; J) of disjoint subsets of m satisfying I [J = m choose a section

t

I

J

: C

I

J

! C

I

;

(� C

;

;

= A)

of the map C

I

;

! C

I

J

induced by r

;

J

: A ! A

J

and satisfying t

I

J

(0) = 0. Next de�ne

maps t

I

J

: C

I

J

! C

I

;

for every disjoint pair (I; J) using induction to the number of

elements of the complement of I [ J . So, let (I; J) be a disjoint pair of subsets of m

with #(I [ J) = n < m and assume that sections t

K

L

: C

K

L

! C

K

;

have already been

de�ned for pairs (K;L) with K [ L having more than n elements.

Choose k 2 m n (I [ J). Let x 2 C

I

J

, then for y = r

;

J

t

I

J[fkg

r

J

J[fkg

(x) we have

r

J

J[fkg

(y) = r

;

J[fkg

t

I

J[fkg

r

J

J[fkg

(x) = r

J

J[fkg

(x);

so, x� y 2 C

I[fkg

J

. Now de�ne t

I

J

by

t

I

J

(x) = t

I[fkg

J

(x� y) + t

I

J[fkg

r

J

J[fkg

(x):

It easily veri�ed that this map is a section of r : C

I

;

! C

I

J

. Furthermore it is indepen-

dent of the choice of k: if also l =2 I [ J , then in both cases the image of an x 2 C

I

J

under t

I

J

is determined in the same way by the images of the same elements in the

following four groups

C

I[fl;kg

J

; C

I[flg

J[fkg

; C

I[fkg

J[flg

; and C

I

J[fk;lg

:
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282 Frans Keune

0 0 0

?

?

y

?

?

y

?

?

y

0 ����! C

I[fl;kg

J

����! C

I[flg

J

����! C

I[flg

J[fkg

����! 0

?

?

y

?

?

y

?

?

y

0 ����! C

I[fkg

J

����! C

I

J

����! C

I

J[fkg

����! 0

?

?

y

?

?

y

?

?

y

0 ����! C

I[fkg

J[flg

����! C

I

J[flg

����! C

I

J[fk;lg

����! 0

?

?

y

?

?

y

?

?

y

0 0 0

Thus we obtain a splitting of the cube, where the sections s

J

I

of the homomor-

phisms r

I

J

, where I � J , are the maps r

;

I

t

;

J

. In particular, condition (S3') follows

from the above diagram for I = ;.

3 Operations on normal m-tuples of ideals

By R

m

we will denote the category of all normal m-tuples of ideals. Such an m-

tuple is denoted as (R; a

1

; : : : ; a

m

), where R is a ring and a

1

; : : : ; a

m

are ideals of

R. A morphism � : (R; a

1

; : : : ; a

m

) ! (S; b

1

; : : : ; b

m

) is just a ringhomomorphism

� : R! S satisfying �(a

i

) � b

i

for all i 2 m.

The following notations will simplify notations for long exact sequences of mul-

tirelative K-theory. Another advantage will be that they are useful to indicate fun-

toriality properties.

For each m � 1 the functor D : R

m

! R

m�1

is the functor that deletes the last

ideal:

D(R; a

1

; : : : ; a

m

) = (R; a

1

; : : : ; a

m�1

)

and which has no e�ect on morphisms.

For each m � 1 the functor M : R

m

! R

m�1

is the functor that deletes the last

ideal and that takes the ring and the other ideals modulo this ideal:

M(R; a

1

; : : : ; a

m

) = (R=a

m

; a

1

; : : : ; a

m�1

);

where a

j

= a

j

+ a

i

=a

i

, and which maps a morphism to the induced morphism.

A functor morphism � : D ! M of the functors D;M : R

m

! R

m�1

is de�ned

as follows: let A = (R; a

1

; : : : ; a

m

), then �

A

: D(A) ! M(A) is the canonical ringho-

momorphism R! R=a

m

.

Every A 2 R

m

has an underlying ideal I(A), which is de�ned as the intersection

of the m ideals in A: when A = (R; a

1

; : : : ; a

m

), then

I(A) = a

1

\ � � � \ a

m

:

Thus de�ned, I(A) is functorial in A.
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4 Higher K-theory of rings

In [3] the de�nition of higher K-groups is as follows. Let R 2 R. Choose a simplicial

ring R with an augmentation " : R! R such that

� R is aspherical, i.e. �

n

(R) = 0 for all n � 1,

� R

m

is free for all m � 0, say R

m

is free on a set X

m

of generators,

� the sets X

m

of free generators are stable under degeneracies: s

j

(X

m

) � X

m+1

for all m � 0,

� the augmentation " induces an isomorphism �

0

(R)

�

�! R.

Then for n � 3 the group K

n

(R) is de�ned as the (n� 2)nd homotopy group of the

simplicial group GL(R), and the groups K

1

(R) and K

2

(R) are given by the exactness

of

0! K

2

(R)! �

0

(GLR)! GL(R)! K

1

(R)! 0:

The groups K

n

(R) for n � 3 are Abelian because GL(R) is a simplicial group. The

group K

1

(R) is Abelian since it is the cokernel of GL(R

0

)! GL(R), and K

2

(R)

is Abelian because it is the cokernel of GL(R

1

)! GL(Z

0

), where Z

0

= f (x

0

; x

1

) j

�(x

0

) = �(x

1

) g. In [3] it is shown using a comparison theorem that the higher K-

groups are thus well-de�ned and that they are actually functors. For the purpose of

this paper we will con�ne to a functorial resolution Fr(R) of a ring R, which we now

describe. Let F : S ! R the free ring functor and let U : R ! S be the underlying set

functor, then the functor FU : R ! R together with the obvious functor morphisms

� : FU ! (FU)

2

and � : FU ! I is a cotriple. Put

Fr

n

= (FU)

n+1

:

Face and degeneracy morphisms are given by

d

i

= (FU)

i

�(FU)

n�1�i

and s

j

= (FU)

i

�(FU)

n�1�i

:

The augmentation is then given by �.

A property of this functorial resolution is that, when applied to a surjective

ringhomomorphism R ! S, it gives a dimensionwise surjective homomorphism

FrR! FrS of simplicial rings, and since the ringhomomorphisms are dimensionwise

split it also gives a surjective simplicial grouphomomorphism GL(FrR)! GL(FrS).

This is often convenient when considering homotopy �bres, because surjective simpli-

cial grouphomomorphisms are �brations themselves. So instead of taking a homotopy

�bre one just takes a �bre, i.e. the kernel of the simplicial group homomorphism.

5 Cubes in a simplicial group

Let A be a simplicial group with augmentation d

0

: A

0

! A. It is a contravariant

functor A : 


op

+

! G from the category 


+

of �nite ordered sets

[n] = f0; : : : ; ng (n � �1)
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(where [�1] = ;) and monotone (= order preserving) maps to the category of groups.

(Here we use the notation A

�1

= A.) We will show that A determines an m-cube of

groups for every nonnegative integer m. In stead of the ordered set of subsets of m

for the description of an m-cube the ordered set of subsets of [m� 1] will be used for

this purpose.

Let 
(m) be the category of injective monotone maps

� : [k]! [m� 1]:

A morphism from � : [k]! [m� 1] to � : [l]! [m� 1] is a monotone map  : [k]! [l]

such that � = �. It exists if and only if Im(�) � Im(�), and it is unique if it exists.

For each I � [m� 1] there is a unique injective monotone map

�

I

: [k]! [m� 1];

where k = m � 1 � #(I) and Im(�

I

) = [m � 1] n I . If I � J � [m � 1], then

Im(�

I

) � Im(�

J

) , so then there is a unique



J

I

: �

J

! �

I

;

i.e. a monotone 

J

I

: [m� 1�#(J)]! [m� 1�#(I)] such that �

I



J

I

= �

J

.

Definition 5. Let A be an augmented simplicial group and let m be a nonnegative

integer. Then the m-cube of A is the m-cube A(m) : C

m

! G with

(

A(m)

I

= A

[m�1�#(I)]

for all I � [m� 1];

r

I

J

= A(

J

I

) : A(m)

I

! A(m)

J

for all I � J � [m� 1].

Lemma 5.1. Let the augmentation d

0

: A

0

! A

�1

induce a surjective homomorphism

�

0

(A)! A

�1

. Then for all integers i; j;m such that 0 � j < i � m

d

(m)

i

�

Ker

�

d

(m)

j

��

= Ker

�

d

(m�1)

j

�

:

Proof. Let x 2 Ker

�

d

(m)

j

�

. Then, since i > j, d

j

d

i

(x) = d

i�1

d

j

(x) = 1: So

d

i

(Ker(d

j

)) � Ker(d

j

). Now, let y 2 Ker

�

d

(m�1)

j

�

. There is an x 2 A

m

such that

d

j

(x) = 1 and d

i

(x) = y. For m > 1 this is the case because a simplicial group is a

Kan-complex, while for m = 1 it follows from the condition on the augmentation.

Proposition 5.1. Let A be a simplicial group with an augmentation d

0

: A ! A

that induces an isomorphism �

0

(A) ! A. Then for all m � 1 the m-cube A(m) is

induced by the m-tuple

(A

m�1

;Ker(d

0

); : : : ;Ker(d

m�1

)):

Proof. All face maps are surjective, so it remains to show that for all J � [m� 1]

Ker(r

;

J

) =

Y

j2J

Ker

�

d

(m�1)

j

�

:
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For J = ; this is trivially true. Let J be nonempty and proceed by induction. Let

x 2 Ker(r

;

J

). Let k 2 J be maximal. Then r

;

fkg

(x) = d

k

(x) 2 Ker

�

r

fkg

J

�

. By

induction this group is equal to

Q

j2J

0

Ker

�

d

(m�2)

j

�

, where J

0

= J n fkg. (Here we

used the maximality of k in J and the same result for the (m � 1)-cube A(m � 1).)

By the lemma we have

d

k

�

Y

j2J

0

Ker

�

d

(m�1)

j

�

�

=

Y

j2J

0

Ker

�

d

(m�2)

j

�

:

Choose y 2

Q

j2J

0

Ker(d

(m�1)

j

such that d

k

(y) = d

k

(x). Then xy

�1

2 Ker(d

k

). It

follows that

Ker(r

;

J

) �

Y

j2J

Ker

�

d

(m�1)

j

�

:

For the other inclusion note that d

j

= r

;

fjg

and

r

fjg

J

r

;

fjg

= r

;

J

:

Proposition 5.2. Let A be as in Proposition 5.1 and assume moreover that A is

aspherical. Then the m-tuple

(A

m�1

;Ker(d

0

); : : : ;Ker(d

m�1

))

is normal.

Proof. The edges of the m-cube are face maps of the simplicial group (A). Normality

means that these maps preserve intersections of (the images of) the normal subgroups

Ker(d

0

); : : : ;Ker(d

m�1

). By induction it su�ces to show this for the face maps d

(m�1)

i

.

Let J � [m� 1]. Then to show that

d

i

�

\

j2J

Ker(d

j

)

�

=

\

j2J

d

i

(Ker(d

j

)):

for i =2 J . The inclusion of the left hand side in the right hand side is trivial. So let

x 2

T

j2J

d

i

(Ker(d

j

)). Then for j 2 J there is an y

j

2 Ker(d

j

) such that x = d

i

(y

j

).

For j < i it follows that d

j

(x) = d

j

d

i

(y

j

) = d

i�1

d

j

(x

j

) = 1. Similarly for j > i we

have d

j�1

(x) = 1. So, since a simplicial group is a Kan-complex and for J = [m� 1]

since A is aspherical, there is a y 2 A

m�1

such that d

j

(y) = 1 for all j 2 J and

d

i

(y) = x. This shows that x 2 d

i

�

T

j2J

Ker(d

j

)

�

.

6 Multirelative K-theory

A normal m-tuple of ideals A = (R; a

1

; : : : ; a

m

) induces an m-cube in R

A : I 7! R

�

X

i2I

a

i

;

Documenta Mathematica 1 (1996) 277{291



286 Frans Keune

which by Proposition 2.2 is split in S. Application of Fr to this m-cube gives an

m-cube of simplicial rings which is dimensionwise split in R. Put

Fr(R; a

i

) := Ker(Fr(R)! Fr(R=a

i

)):

This is a simplicial ideal. The m-cube is then induced by the m-tuple

(Fr(R);Fr(R; a

1

); : : : ;Fr(R; a

m

));

of simplicial ideals, an object of the category sR

m

of normal m-tuples of simplicial

ideals. We also de�ne the simplicial ideal

Fr(R; a

1

; : : : ; a

m

) :=

m

\

i=1

Fr(R; a

i

):

Application of GL gives an m-cube of simplicial groups, which is dimensionwise split

in G. This m-cube is induced by the m-tuple

(GLFr(R); GLFr(R; a

1

); : : : ; GLFr(R; a

m

))

of simplicial normal subgroups. For n � 3 we de�ne multirelative K

n

by

K

n

(R; a

1

; : : : a

m

) := �

n�2

(GLFr(R; a

1

; : : : ; a

m

)):

Multirelative K

2

and K

1

are then given by the exactness of

0! K

2

(R; a

1

; : : : a

m

)! �

0

(GLFr(R; a

1

; : : : ; a

m

))!

GL(a

1

\ � � � \ a

m

)! K

1

(R; a

1

; : : : a

m

)! 0:

These multirelative K

1

and K

2

are Abelian groups for the same reason as in the

absolute case.

Now let A 2 R

m

with m � 1. Then �

�

: GLFr(DA) ! GLFr(MA) is a �-

bration with �bre GLFr(A). The long exact sequence of homotopy groups is a long

exact sequence of multirelative K-groups which can easily be extended to include

multirelative K

2

and K

1

.

Proposition 6.1. Let A 2 R

m

with m � 1. Then we have a functorial exact se-

quence

� � � ! K

n

(A)! K

n

(DA)! K

n

(MA)! K

n�1

(A)! � � � ! K

1

(MA):

The connecting map K

n

(MA) ! K

n�1

(A) will be denoted by � and the map

K

n

(A) ! K

n

(DA) by �. To put it in an even more functorial way, we have an exact

sequence of functors and functor morphisms

� � � ! K

n

�

�! K

n

D

K

n

(�)

����! K

n

M

�

�! K

n�1

! � � � ! K

1

M:

In the remaining part of this section multirelative K

0

is de�ned and the long

exact sequence for multirelative K-theory is extended with multirelative K

0

-groups.
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Definition 6. For a normal m-tuple A of ideals we de�ne

K

0

(A) = K

0

(IA):

Thus de�ned, K

0

is a functor from R

m

to A.

For m = 1 we take the long exact sequence to be the long exact sequence of an

ideal in a ring. Now assume that m � 1 and that we have an extended long exact

sequence

� � � ! K

1

D ! K

1

M ! K

0

! K

0

D ! K

0

M

of functors R

m

! A. We will show that there is also such a sequence of functors

R

m+1

! A.

Let A = (R; a

1

; : : : ; a

m+1

) 2 R

m+1

. Put b = IA =

T

m+1

i=1

a

i

. We have exact

sequences for the following m-tuples of ideals

B = DA = (R; a

1

; : : : ; a

m

);

B = (R=b; a

1

=b; : : : ; a

m

=b)

and

(R; a

1

; : : : ; a

m�1

; b):

These m-tuples are normal and their K-groups �t into a commutative diagram

K

1

(DB)

  

A

A

A

A

A

A

A

A

}

}

}

}

}

}

}

}

}

}

}   

B

B

B

B

B

B

B

B

B

B

B

K

1

(MB)

��

?

?

?

?

?

?

?

K

1

(B)

??

�

�

�

�

�

�

�

��

>

>

>

>

>

>

>

K

1

(DB)

>>

|

|

|

|

|

|

|

|

  

B

B

B

B

B

B

B

B

K

0

(B)

��

?

?

?

?

?

?

?

K

2

(MB)

??

�

�

�

�

�

�

�

?

?

?

?

?

?

?

?

?

? ??

�

�

�

�

�

�

�

�

�

�

K

1

(B)

>>

}

}

}

}

}

}

}

}

A

A

A

A

A

A >>

|

|

|

|

|

|

K

0

(b)

??

�

�

�

�

�

�

�

?

?

?

?

?

?

?

?

?

? ??

�

�

�

�

�

�

�

�

�

�

K

0

(DA):

Let the dashed arrow be the composition K

1

(B) ! K

1

(DB) ! K

0

(b). By an easy

diagram chase we see that the sequence with the dashed arrow is exact as well. The

identity on R is a morphism

(R; a

1

; : : : ; a

m

; b)! A

Documenta Mathematica 1 (1996) 277{291



288 Frans Keune

in R

m+1

. So we have a commutative diagram with exact rows:

K

1

(R; a

1

; : : : ; a

m

; b) ����! K

1

(B) ����! K

1

(B) ����! K

0

(b)

?

?

y

?

?

y

1

?

?

y

�

K

1

(A) ����! K

1

(DA) ����! K

1

(MA):

It now su�ces to show that the morphism � in this diagram is an isomorphism. The

(m+ 1)-tuple (R=b; a

1

=b; : : : ; a

m+1

=b) induces an exact sequence

K

1

(R=b; a

1

=b; : : : ; a

m+1

=b)! K

1

(B)! K

1

(MA):

The group K

1

(R=b; a

1

=b; : : : ; a

m+1

=b) is a quotient of GL((a

1

=b)\ � � � \ (a

m+1

=b)) =

f1g, so � is injective. On the other hand, since the (m + 1)-tuple A of ideals is

normal, the identity on R induces an isomorphism I(B)! I(MA) and hence also an

isomorphism

GL(I(B))

�

�! GL(I(MA)):

Since the multirelative K

1

is a quotient of the general linear group of the underlying

ideal, the map � is surjective. This proves:

Theorem 1. Let A 2 R

m

for m � 1. Then we have a functorial exact sequence

� � � ! K

n

(A)! K

n

(DA)! K

n

(MA)! K

n�1

(A)! � � � ! K

0

(MA):

7 Axioms for multirelative K-theory

It will be shown in this section that an axiomatic approach to multirelative K-theory

is possible. We take some of the properties of multirelative K-groups as axioms and

show that they determine all of multirelative K-theory.

Axioms

Multirelative K-theory consists of functors

K

n

: R

m

! A for m and n integers � 0,

morphisms

� : K

n+1

M ! K

n

(for m and n integers � 0)

of functors R

m+1

! A and morphisms

� : K

n

! K

n

D (for m and n integers � 0)

of functors R

m+1

! A, such that

(MK1) the following sequence is an exact sequence of functors R

m+1

! A for all

non-negative integers m and n

K

n+1

D

K

n+1

�

����! K

n+1

M

�

�! K

n

�

�! K

n

D

K

n

�

���! K

n

M:
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(MK2) K

n

(R) = 0 for all n � 0 and all free associative non-unital rings R,

(MK3) K

0

(A) = K

0

(IA) for all A 2 R

m

for all m.

Loosely speaking, the multirelative K-groups are only de�ned for normal m-

tuples of ideals and they �t into exact sequences the way one can expect, the (absolute)

K-groups of free non-unital rings are trivial and the multirelative K

0

is just the

Grothendieck group of the intersection of the ideals.

Let (R; a

1

; : : : ; a

m

) be a normal m-tuple of ideals. It induces an m-cube

I 7! R

I

= R

�

X

i2I

a

i

;

which is split in S. Application of Fr gives an m-cube

I 7! Fr(R

I

)

of aspherical simplicial rings, which is dimensionwise split in R.

Proposition 7.1. Let m and n be positive integers. Then the (m+ n)-tuple

�

Fr(R)

n�1

;Fr(R; a

1

)

n�1

; : : : ;Fr(R; a

m

)

n�1

;Ker

�

d

(n�1)

0

�

; : : : ;Ker

�

d

(n�1)

n�1

��

is normal.

Proof. First we show that the induced (m+ n)-cube is

(I

1

; I

2

) 7! Fr(R

I

1

)

n�1�#(I

2

)

;

where the cube is indexed by pairs of subsets of m and [n � 1]. This set of pairs is

ordered by componentwise inclusion:

(I

1

; I

2

) � (J

1

; J

2

) () I

1

� J

1

and I

2

� J

2

:

The homomorphism

Fr(R)

n�1

! Fr(R

I

1

)

n�1�#(I

2

)

is the composition

Fr(R)

n�1

! Fr(R

I

1

)

n�1

! Fr(R

I

1

)

n�1�#(I

2

)

;

the �rst map being induced by ; � I

1

and the second by [n� 1] n I

2

� [n� 1]. Both

homomorphisms are surjective. The �rst one has kernel

T

i2I

1

Fr(R; a

i

)

(n�1)

and the

second one

T

i=2I

2

Ker(d

i

), where the d

i

are face maps of Fr(R

I

1

). Since Fr(R) and

Fr(R

I

1

) are both aspherical, elements of the second kernel can be lifted to elements

of

T

i=2I

2

Ker(d

i

), where the d

i

are face maps of Fr(R).

For the (m+n)-tuple to be normal it su�ces that the intersections of the images

of the m+n ideals are preserved under the maps on the edges of the induced (m+n)-

cube. These are the homomorphisms

Fr(R

J

)

l

! Fr(R

J[fkg

)

l

;
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where J � m, k 2 m n J and l 2 [n� 1], and also the face maps

d

i

: Fr(R

J

)

p

! Fr(R

J

)

p�1

;

where p 2 [n � 1] and 0 � i � p. Without loss of generality we may assume that

J = m, l = n� 1 and p = n� 1.

Because the m-cube J 7! Fr(R

J

) is dimensionwise split we have short exact

sequences

0!

\

i2I[fkg

Fr(R; a

i

)!

\

i2I

Fr(R; a

i

)!

\

i2I

Fr(R=a

k

; a

i

)! 0

of aspherical simplicial rings. It follows that for all J � [n� 1] we have

\

i2I

Fr(R; a

i

)

n�1

\

\

j2J

Ker(d

j

) =

\

j2J

Ker(d

0

j

);

where the d

0

j

are the face maps of

T

i2I

Fr(R; a

i

). Under Fr(R) ! Fr(R=a

k

) this

maps onto

\

j2J

Ker(d

00

j

) =

\

i2I

Fr(R=a

k

; a

i

)

n�1

\

\

j2J

Ker(d

000

j

);

where the d

00

j

are the face maps of

T

i2I

Fr(R=a

k

; a

i

) and d

000

j

those of

T

i2I

Fr(R=a

k

).

Because the simplicial rings

T

i2I

Fr(R; a

i

) are aspherical also the face maps

d

i

: Fr(R)

n�1

! Fr(R)

n�2

preserve intersections

\

i2I

Fr(R; a

i

)

n�1

\

\

j2J

Ker(d

j

):

Theorem 2. Let A = (R; a

1

; : : : ; a

m

) 2 R. Then for all n � 0 it follows from the

axioms (MK1) and (MK2) that K

n

(A) is naturally isomorphic to K

0

of the following

object of R

m+n

:

(Fr(R)

n�1

;Fr(R; a

1

)

n�1

; : : : ;Fr(R; a

m

)

n�1

;Ker(d

0

); : : : ;Ker(d

n�1

)):

From axiom (MK3) it then follows that K

n

(A) is determined. So (MK1), (MK2) and

(MK3) can be taken as axioms for the (multirelative) K-theory of rings.

Proof. The proof follows from the following three lemmas.

Lemma 7.1. Let m � �1 and q; n � 0. Then

K

q

(Fr(R)

n

;Fr(R; a

1

)

n

; : : : ;Fr(R; a

m

)

n

) = 0:

Proof. Since for m � 0 the (m� 1)-tuples D(A) and M(A) are of the same type, the

proof reduces by (MK1) to the case m = �1. For m = �1 the lemma follows from

(MK2).
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Put

A[n; p] = (Fr(R)

n

;Fr(R; a

1

)

n

; : : : ;Fr(R; a

m

)

n

;Ker(d

0

); : : : ;Ker(d

p

));

where �1 � p � n. It is an object of R

m+p+1

.

Lemma 7.2. For all p < n and all q > 0 we have

K

q

(A[n; p]) = 0:

Proof. For p � 0 we have

D(A[n; p]) = A[n; p� 1] and M(A[n; p]) = A[n� 1; p� 1]:

By (MK1) the problem reduces to the case p = �1, which is covered by the previous

lemma.

Lemma 7.3. For all q; n � 0 we have

K

q

(A[n; n])

�

=

K

q+1

(A[n� 1; n� 1]):

Proof. This follows from (MK1) and the previous lemma.

From this lemma the theorem follows:

K

n

(A) = K

n

(A[�1;�1])

�

=

K

n�1

(A[0; 0])

�

=

� � �

�

=

K

0

(A[n� 1; n� 1]):
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