Multirelative K-Theory AND Axioms for the K-Theory of Rings

FRANS KEUNE

Received: July 17, 1996

Communicated by Ulf Rehmann

ABSTRACT. K-groups are defined for a special type of m-tuples of ideals in a ring. It is shown that some of the properties of this multirelative K-theory characterize the K-theory of rings.

1991 Mathematics Subject Classification: Primary 19D99.

INTRODUCTION

Multirelative K-groups $K_n(R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m)$ of an *m*-tuple $(\mathfrak{a}_1, \ldots, \mathfrak{a}_m)$ of ideals of a ring R are recently used to derive properties of the absolute K-groups, e.g. by Levine [4] and by Bloch and Lichtenbaum [1]. Here it is shown how K-theory as defined in [3] can easily be extended to the multirelative case and that some of its properties can be taken as axioms for the K-theory of rings. Special types of *m*-tuples of ideals—the 'normal' *m*-tuples—play a crucial role. In fact we will only define multirelative K-groups for such *m*-tuples. The notion of normal *m*-tuple of ideals is introduced in Section 2. It already appeared in 1981 in a paper by Dayton and Weibel [2] on the K-theory of affine glued schemes under the name of 'condition (CRT)' (= Chinese Remainder Theorem).

In Section 4 we review briefly higher K-theory as defined in [3]. In Section 6 multirelative K-groups are defined, and in Section 7 it is shown that from some of their properties one can reconstruct the K-theory of rings.

1 NOTATIONS

In this paper 'ring' stands for a non-unital ring. Non-unital rings form a category which is denoted by \mathcal{R} .

Since the functors GL, E and K_1 are product preserving functors from unital rings to groups, they can be extended to functors defined on \mathcal{R} in the usual way: if T is one of these functors, then put

$$T(R) := \operatorname{Ker}(T(R^+) \to T(\mathbb{Z})),$$

where $R^+ = R \times \mathbb{Z}$ with multiplication given by

$$(r,k)(s,l) = (rs + ks + lr, kl)$$

is a ring with (0,1) as unity element.

Here 'ideal' will always stand for 'twosided ideal'.

By \mathcal{A} we will denote the category of Abelian groups, by \mathcal{G} the category of all groups, and by \mathcal{S} the category of sets. The category of simplicial objects in a category \mathcal{C} is denoted by $s\mathcal{C}$.

2 *m*-cubes and normal *m*-tuples

In this section the notion of normality of an *m*-tuple of ideals is considered. Only the group structure is involved in its definition, and since we can use later a similar notion for groups instead of rings we give a more general definition. By \underline{m} we will denote the set $\{1, \ldots, m\}$.

DEFINITION 1. An *m*-tuple (B_1, \ldots, B_m) of normal subgroups of a group *A*—also denoted as (A, B_1, \ldots, B_m) —is called *normal* if for all subsets *I* and *J* of <u>m</u>

$$\bigcap_{i \in I} B_i \cdot \prod_{j \in J} B_j = \bigcap_{i \in I} \left(B_i \cdot \prod_{j \in J} B_j \right)$$

The condition is trivially fulfilled when $I \cap J \neq \emptyset$. In the case of Abelian groups it reads in the additive notation as

$$\bigcap_{i \in I} B_i + \sum_{j \in J} B_j = \bigcap_{i \in I} \left(B_i + \sum_{j \in J} B_j \right).$$

Note that in the special case of an *m*-tuple of ideals in a commutative ring the condition is a local one since it involves only intersections and sums of ideals.

The subsets of \underline{m} are ordered by inclusion. This ordered set determines in the usual way a category \mathcal{C}_m . For every pair (I, J) of subsets with $I \subseteq J$ there is the unique morphism ρ_J^I from I to J in \mathcal{C}_m .

DEFINITION 2. Let \mathcal{D} be a category. An *m*-cube in \mathcal{D} is a functor

$$D: \mathcal{C}_m \to \mathcal{D}, \quad I \mapsto D_I, \quad \rho_J^I \mapsto r_J^I.$$

The morphisms in C_m are generated by the ρ_J^I , where #J = #I + 1. An *m*-cube in a category \mathcal{D} is a commutative diagram in \mathcal{D} having the shape of an *m*-dimensional cube. The edges of the cube correspond to the images of these generating morphisms.

DEFINITION 3. Let $D: \mathcal{C}_m \to \mathcal{D}$ be an *m*-cube in \mathcal{D} . It is said to be a *split m*-cube if for every pair of subsets (I, J) of \underline{m} satisfying $I \subseteq J$ there is a morphism $s_I^J: D_J \to D_I$ in \mathcal{D} such that

- (S1) $s_I^J s_J^K = s_I^K$ for all $I \subseteq J \subseteq K$,
- (S2) $r_J^I s_I^J = \mathbf{1}_{D_J}$ for all $I \subseteq J$,

(S3) $r_J^{I\cap J}s_{I\cap J}^I = s_J^{I\cup J}r_{I\cup J}^I$ for all I and J.

(Of course such a split *m*-cube can also be seen as a functor defined on a category which is obtained from \mathcal{C}_m by adjoining extra morphisms $\sigma_I^J \colon J \to I$.)

In condition (S3) one only needs the case where $\#(I \setminus J) = \#(J \setminus I) = 1$. It then reads

(S3')
$$r_{I\cup\{k\}}^{I} s_{I}^{I\cup\{j\}} = s_{I\cup\{k\}}^{I\cup\{j,k\}} r_{I\cup\{j,k\}}^{I\cup\{j\}}$$
 for all $j,k \notin I$ with $j \neq k$.

This can easily be seen as follows. Put $K = I \cap J$, $I \setminus K = \{i_1, \ldots, i_p\}$ and $J \setminus K = \{j_1, \ldots, j_q\}$. Then the result follows from the diagram

where the horizontal maps are r-maps and the vertical maps are s-maps.

DEFINITION 4. An *m*-tuple $T = (A, B_1, \ldots, B_m)$ of normal subgroups determines an *m*-cube in \mathcal{G} :

$$I \mapsto T_I = A / \prod_{i \in I} B_i.$$

When $I \subseteq J$, then $\prod_{i \in I} B_i \subseteq J$ and 1_A induces a grouphomomorphism $r_J^I : T_I \to T_J$. This *m*-cube is said to be *induced* by the *m*-tuple *T*. Similarly for an *m*-tuple of ideals in a ring.

PROPOSITION 2.1. Let $D: \mathcal{C}_m \to \mathcal{D}$ be an m-cube in \mathcal{G} , which is split as an m-cube in \mathcal{S} . Then D is induced by a normal m-tuple of normal subgroups of D_{\emptyset} .

Proof. For $i \in \underline{m}$ put

$$B_i = \operatorname{Ker}\left(r_{\{i\}}^{\emptyset} \colon D_{\emptyset} \to D_{\{i\}}\right).$$

We will first show that the cube is induced by the *m*-tuple $(D_{\emptyset}, B_1, \ldots, B_m)$. Since the cube splits in \mathcal{S} , the homomorphisms $D_{\emptyset} \to D_I$ are surjective. To show that for each $I \subseteq \underline{m}$

$$\operatorname{Ker}(D_{\emptyset} \to D_I) = \prod_{i \in I} B_i.$$

This can be done by induction on #(I). For #(I) = 0 it is trivial. Let #(I) > 0. Choose $k \in I$. By induction hypothesis

$$\operatorname{Ker}\left(D_{\emptyset} \to D_{I \setminus \{k\}}\right) = \prod_{i \in I \setminus \{k\}} B_i.$$

Since the cube splits in \mathcal{S} we have a commutative diagram with exact rows and columns:

Hence

$$\operatorname{Ker}(r_{I}^{\emptyset})/B_{k} \cong \prod_{i \in I \setminus \{k\}} B_{i} / \left(B_{k} \cap \prod_{i \in I \setminus \{k\}} B_{i} \right) \cong \prod_{i \in I} (B_{i}/B_{k})$$

and therefore,

$$\operatorname{Ker}(r_I^{\emptyset}) = \prod_{i \in I} B_i.$$

For the normality of the *m*-tuple let $I, J \subseteq \underline{m}$ and consider the commutative square

$$\begin{array}{ccc} D_{\emptyset} & \xrightarrow{(r_{\{i\}}^{\psi})} & \underset{i \in I}{\longrightarrow} & \underset{i \in I}$$

Since the *m*-cube is split in S the vertical homomorphisms have compatible sections in S. So r_J^{\emptyset} induces a surjective homomorphism on the kernels of the horizontal homomorphisms. This holds for all $I, J \subseteq \underline{m}$. Therefore, the *m*-tuple $(D_{\emptyset}, B_1, \ldots, B_m)$ is normal.

For the Abelian case we also prove the converse.

PROPOSITION 2.2. Let $T = (A, B_1, \ldots, B_m)$ be a normal m-tuple of subgroups of an Abelian group A. Then the induced m-cube is split in the category S.

Proof. By taking kernels of the surjective homomorphisms in the induced *m*-cube it can be extended to a diagram of 3^m Abelian groups. We will give a detailed description of this diagram and show how a splitting of the cube can be obtained from it.

For each pair (I, J) of disjoint subsets of \underline{m} define

$$C_J^I = \bigcap_{i \in I} B_i + \sum_{j \in J} B_j / \sum_{j \in J} B_j.$$

Then for each such pair (I, J) and each $k \notin I \cup J$ we have a surjective homomorphism $C_J^I \to C_{J\cup\{k\}}^I$, induced by $r_{J\cup\{k\}}^j \colon A_J \to A_{J\cup\{k\}}$, where we use the notation

$$A_J = A \left/ \sum_{j \in J} B_j.\right.$$

Thus $A_J = C_J^{\emptyset}$. The kernel of the surjective homomorphism $C_J^I \to C_{J\cup\{k\}}^I$ is

$$\left(\bigcap_{i\in I} B_i + \sum_{j\in J} B_j\right) \cap \left(B_k + \sum_{j\in J} B_j\right) / B_k + \sum_{j\in J} B_j.$$

We have the inclusions

$$\bigcap_{i \in I \cup \{k\}} B_i + \sum_{j \in J} B_j \subseteq \left(\bigcap_{i \in I} B_i + \sum_{j \in J} B_j\right) \cap \left(B_k + \sum_{j \in J} B_j\right) \subseteq \bigcap_{i \in I \cup \{k\}} \left(B_i + \sum_{j \in J} B_j\right).$$

By normality these groups are equal, so we have a short exact sequence

$$0 \to C_J^{I \cup \{k\}} \to C_J^I \to C_{J \cup \{k\}}^I \to 0.$$

For each pair (I, J) of disjoint subsets of <u>m</u> satisfying $I \cup J = \underline{m}$ choose a section

$$t^I_J \colon C^I_J \to C^I_{\emptyset} (\subseteq C^{\emptyset}_{\emptyset} = A)$$

of the map $C_{\emptyset}^{I} \to C_{J}^{I}$ induced by $r_{J}^{\emptyset} \colon A \to A_{J}$ and satisfying $t_{J}^{I}(0) = 0$. Next define maps $t_{J}^{I} \colon C_{J}^{I} \to C_{\emptyset}^{I}$ for every disjoint pair (I, J) using induction to the number of elements of the complement of $I \cup J$. So, let (I, J) be a disjoint pair of subsets of \underline{m} with $\#(I \cup J) = n < m$ and assume that sections $t_{L}^{K} \colon C_{L}^{K} \to C_{\emptyset}^{K}$ have already been defined for pairs (K, L) with $K \cup L$ having more than n elements. Choose $k \in \underline{m} \setminus (I \cup J)$. Let $x \in C_{J}^{I}$, then for $y = r_{J}^{\emptyset} t_{J \cup \{k\}}^{I} r_{J \cup \{k\}}^{J}(x)$ we have

$$r_{J\cup\{k\}}^{J}(y) = r_{J\cup\{k\}}^{\emptyset} t_{J\cup\{k\}}^{I} r_{J\cup\{k\}}^{J}(x) = r_{J\cup\{k\}}^{J}(x),$$

so, $x - y \in C_J^{I \cup \{k\}}$. Now define t_J^I by

$$t_J^I(x) = t_J^{I \cup \{k\}}(x - y) + t_{J \cup \{k\}}^I r_{J \cup \{k\}}^J(x)$$

It easily verified that this map is a section of $r: C_{\emptyset}^{I} \to C_{J}^{I}$. Furthermore it is independent of the choice of k: if also $l \notin I \cup J$, then in both cases the image of an $x \in C_J^I$ under t_J^I is determined in the same way by the images of the same elements in the following four groups

$$C_J^{I \cup \{l,k\}}, \; C_{J \cup \{k\}}^{I \cup \{l\}}, \; C_{J \cup \{k\}}^{I \cup \{k\}}, \; \text{and} \; C_{J \cup \{k,l\}}^{I} :$$

Thus we obtain a splitting of the cube, where the sections s_I^J of the homomorphisms r_J^I , where $I \subseteq J$, are the maps $r_I^{\emptyset} t_J^{\emptyset}$. In particular, condition (S3') follows from the above diagram for $I = \emptyset$.

3 Operations on Normal *m*-tuples of ideals

By \mathcal{R}_m we will denote the category of all normal *m*-tuples of ideals. Such an *m*-tuple is denoted as $(R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m)$, where *R* is a ring and $\mathfrak{a}_1, \ldots, \mathfrak{a}_m$ are ideals of *R*. A morphism $\phi: (R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m) \to (S, \mathfrak{b}_1, \ldots, \mathfrak{b}_m)$ is just a ringhomomorphism $\phi: R \to S$ satisfying $\phi(\mathfrak{a}_i) \subseteq \mathfrak{b}_i$ for all $i \in \underline{m}$.

The following notations will simplify notations for long exact sequences of multirelative K-theory. Another advantage will be that they are useful to indicate funtoriality properties.

For each $m \ge 1$ the functor $D: \mathcal{R}_m \to \mathcal{R}_{m-1}$ is the functor that deletes the last ideal:

$$D(R,\mathfrak{a}_1,\ldots,\mathfrak{a}_m)=(R,\mathfrak{a}_1,\ldots,\mathfrak{a}_{m-1})$$

and which has no effect on morphisms.

For each $m \geq 1$ the functor $M: \mathcal{R}_m \to \mathcal{R}_{m-1}$ is the functor that deletes the last ideal and that takes the ring and the other ideals modulo this ideal:

$$M(R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m) = (R/\mathfrak{a}_m, \overline{\mathfrak{a}}_1, \ldots, \overline{\mathfrak{a}}_{m-1}),$$

where $\overline{\mathfrak{a}}_j = \mathfrak{a}_j + \mathfrak{a}_i/\mathfrak{a}_i$, and which maps a morphism to the induced morphism.

A functor morphism $\phi: D \to M$ of the functors $D, M: \mathcal{R}_m \to \mathcal{R}_{m-1}$ is defined as follows: let $A = (R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m)$, then $\phi_A: D(A) \to M(A)$ is the canonical ringhomomorphism $R \to R/\mathfrak{a}_m$.

Every $A \in \mathcal{R}_m$ has an *underlying ideal* I(A), which is defined as the intersection of the *m* ideals in *A*: when $A = (R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m)$, then

$$I(A) = \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_m.$$

Thus defined, I(A) is functorial in A.

Documenta Mathematica 1 (1996) 277-291

4 HIGHER K-THEORY OF RINGS

In [3] the definition of higher K-groups is as follows. Let $R \in \mathcal{R}$. Choose a simplicial ring **R** with an augmentation $\varepsilon \colon \mathbf{R} \to R$ such that

- **R** is aspherical, i.e. $\pi_n(\mathbf{R}) = 0$ for all $n \ge 1$,
- \mathbf{R}_m is free for all $m \ge 0$, say \mathbf{R}_m is free on a set X_m of generators,
- the sets X_m of free generators are stable under degeneracies: $s_j(X_m) \subseteq X_{m+1}$ for all $m \ge 0$,
- the augmentation ε induces an isomorphism $\pi_0(\mathbf{R}) \xrightarrow{\sim} R$.

Then for $n \geq 3$ the group $K_n(R)$ is defined as the (n-2)nd homotopy group of the simplicial group $GL(\mathbf{R})$, and the groups $K_1(R)$ and $K_2(R)$ are given by the exactness of

$$0 \to K_2(R) \to \pi_0(GL\mathbf{R}) \to GL(R) \to K_1(R) \to 0.$$

The groups $K_n(R)$ for $n \geq 3$ are Abelian because $GL(\mathbf{R})$ is a simplicial group. The group $K_1(R)$ is Abelian since it is the cokernel of $GL(\mathbf{R}_0) \to GL(R)$, and $K_2(R)$ is Abelian because it is the cokernel of $GL(\mathbf{R}_1) \to GL(Z_0)$, where $Z_0 = \{(x_0, x_1) \mid \epsilon(x_0) = \epsilon(x_1)\}$. In [3] it is shown using a comparison theorem that the higher K-groups are thus well-defined and that they are actually functors. For the purpose of this paper we will confine to a functorial resolution $\mathbf{Fr}(R)$ of a ring R, which we now describe. Let $F: S \to \mathcal{R}$ the free ring functor and let $U: \mathcal{R} \to S$ be the underlying set functor, then the functor $FU: \mathcal{R} \to \mathcal{R}$ together with the obvious functor morphisms $\nu: FU \to (FU)^2$ and $\eta: FU \to I$ is a cotriple. Put

$$\mathbf{Fr}_n = (FU)^{n+1}.$$

Face and degeneracy morphisms are given by

$$d_i = (FU)^i \eta (FU)^{n-1-i}$$
 and $s_j = (FU)^i \nu (FU)^{n-1-i}$.

The augmentation is then given by η .

A property of this functorial resolution is that, when applied to a surjective ringhomomorphism $R \rightarrow S$, it gives a dimensionwise surjective homomorphism $\mathbf{Fr}R \rightarrow \mathbf{Fr}S$ of simplicial rings, and since the ringhomomorphisms are dimensionwise split it also gives a surjective simplicial grouphomomorphism $GL(\mathbf{Fr}R) \rightarrow GL(\mathbf{Fr}S)$. This is often convenient when considering homotopy fibres, because surjective simplicial grouphomomorphisms are fibrations themselves. So instead of taking a homotopy fibre one just takes a fibre, i.e. the kernel of the simplicial group homomorphism.

5 CUBES IN A SIMPLICIAL GROUP

Let **A** be a simplicial group with augmentation $d_0: \mathbf{A}_0 \to A$. It is a contravariant functor $\mathbf{A}: \Omega^{\text{op}}_+ \to \mathcal{G}$ from the category Ω_+ of finite ordered sets

$$[n] = \{0, \dots, n\} \qquad (n \ge -1)$$

(where $[-1] = \emptyset$) and monotone (= order preserving) maps to the category of groups. (Here we use the notation $\mathbf{A}_{-1} = A$.) We will show that **A** determines an *m*-cube of groups for every nonnegative integer m. In stead of the ordered set of subsets of \underline{m} for the description of an *m*-cube the ordered set of subsets of [m-1] will be used for this purpose.

Let $\Omega(m)$ be the category of injective monotone maps

$$\alpha \colon [k] \to [m-1].$$

A morphism from $\alpha \colon [k] \to [m-1]$ to $\beta \colon [l] \to [m-1]$ is a monotone map $\gamma \colon [k] \to [l]$ such that $\beta \gamma = \alpha$. It exists if and only if $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(\beta)$, and it is unique if it exists. For each $I \subseteq [m-1]$ there is a unique injective monotone map

$$\alpha_I \colon [k] \to [m-1],$$

where k = m - 1 - #(I) and $\operatorname{Im}(\alpha_I) = [m - 1] \setminus I$. If $I \subseteq J \subseteq [m - 1]$, then $\operatorname{Im}(\alpha_I) \supseteq \operatorname{Im}(\alpha_J)$, so then there is a unique

$$\gamma_I^J \colon \alpha_J \to \alpha_I,$$

i.e. a monotone $\gamma_I^J \colon [m-1-\#(J)] \to [m-1-\#(I)]$ such that $\alpha_I \gamma_I^J = \alpha_J$.

DEFINITION 5. Let \mathbf{A} be an augmented simplicial group and let m be a nonnegative integer. Then the *m*-cube of **A** is the *m*-cube $\mathbf{A}(m): \mathcal{C}_m \to \mathcal{G}$ with

$$\begin{cases} \mathbf{A}(m)_I = \mathbf{A}_{[m-1-\#(I)]} & \text{for all } I \subseteq [m-1], \\ r_J^I = \mathbf{A}(\gamma_I^J) \colon \mathbf{A}(m)_I \to \mathbf{A}(m)_J & \text{for all } I \subseteq J \subseteq [m-1] \end{cases}$$

LEMMA 5.1. Let the augmentation $d_0: \mathbf{A}_0 \to \mathbf{A}_{-1}$ induce a surjective homomorphism $\pi_0(\mathbf{A}) \to \mathbf{A}_{-1}$. Then for all integers i, j, m such that $0 \le j < i \le m$

$$d_i^{(m)}\left(\operatorname{Ker}\left(d_j^{(m)}\right)\right) = \operatorname{Ker}\left(d_j^{(m-1)}\right).$$

Proof. Let $x \in \operatorname{Ker}\left(d_{j}^{(m)}\right)$. Then, since i > j, $d_{j}d_{i}(x) = d_{i-1}d_{j}(x) = 1$. So $d_i(\operatorname{Ker}(d_j)) \subseteq \operatorname{Ker}(d_j)$. Now, let $y \in \operatorname{Ker}\left(d_j^{(m-1)}\right)$. There is an $x \in \mathbf{A}_m$ such that $d_i(x) = 1$ and $d_i(x) = y$. For m > 1 this is the case because a simplicial group is a Kan-complex, while for m = 1 it follows from the condition on the augmentation. \Box

PROPOSITION 5.1. Let **A** be a simplicial group with an augmentation $d_0: \mathbf{A} \to A$ that induces an isomorphism $\pi_0(\mathbf{A}) \to A$. Then for all $m \geq 1$ the m-cube $\mathbf{A}(m)$ is induced by the m-tuple

$$(\mathbf{A}_{m-1}, \operatorname{Ker}(d_0), \ldots, \operatorname{Ker}(d_{m-1})).$$

Proof. All face maps are surjective, so it remains to show that for all $J \subseteq [m-1]$

$$\operatorname{Ker}(r_J^{\emptyset}) = \prod_{j \in J} \operatorname{Ker}\left(d_j^{(m-1)}\right).$$

DOCUMENTA MATHEMATICA 1 (1996) 277-291

For $J = \emptyset$ this is trivially true. Let J be nonempty and proceed by induction. Let $x \in \operatorname{Ker}(r_J^{\emptyset})$. Let $k \in J$ be maximal. Then $r_{\{k\}}^{\emptyset}(x) = d_k(x) \in \operatorname{Ker}\left(r_J^{\{k\}}\right)$. By induction this group is equal to $\prod_{j \in J'} \operatorname{Ker}\left(d_j^{(m-2)}\right)$, where $J' = J \setminus \{k\}$. (Here we used the maximality of k in J and the same result for the (m-1)-cube $\mathbf{A}(m-1)$.) By the lemma we have

$$d_k\left(\prod_{j\in J'}\operatorname{Ker}\left(d_j^{(m-1)}\right)\right) = \prod_{j\in J'}\operatorname{Ker}\left(d_j^{(m-2)}\right).$$

Choose $y \in \prod_{j \in J'} \operatorname{Ker}(d_j^{(m-1)})$ such that $d_k(y) = d_k(x)$. Then $xy^{-1} \in \operatorname{Ker}(d_k)$. It follows that

$$\operatorname{Ker}(r_J^{\emptyset}) \subseteq \prod_{j \in J} \operatorname{Ker}\left(d_j^{(m-1)}\right)$$

For the other inclusion note that $d_j = r_{\{j\}}^{\emptyset}$ and

$$r_J^{\{j\}}r_{\{j\}}^{\emptyset}=r_J^{\emptyset}$$

PROPOSITION 5.2. Let \mathbf{A} be as in Proposition 5.1 and assume moreover that \mathbf{A} is aspherical. Then the m-tuple

$$(\mathbf{A}_{m-1}, \operatorname{Ker}(d_0), \ldots, \operatorname{Ker}(d_{m-1}))$$

is normal.

Proof. The edges of the *m*-cube are face maps of the simplicial group (A). Normality means that these maps preserve intersections of (the images of) the normal subgroups $\operatorname{Ker}(d_0), \ldots, \operatorname{Ker}(d_{m-1})$. By induction it suffices to show this for the face maps $d_i^{(m-1)}$. Let $J \subseteq [m-1]$. Then to show that

$$d_i\left(\bigcap_{j\in J}\operatorname{Ker}(d_j)\right) = \bigcap_{j\in J} d_i(\operatorname{Ker}(d_j)).$$

for $i \notin J$. The inclusion of the left hand side in the right hand side is trivial. So let $x \in \bigcap_{j \in J} d_i(\operatorname{Ker}(d_j))$. Then for $j \in J$ there is an $y_j \in \operatorname{Ker}(d_j)$ such that $x = d_i(y_j)$. For j < i it follows that $d_j(x) = d_j d_i(y_j) = d_{i-1} d_j(x_j) = 1$. Similarly for j > i we have $d_{j-1}(x) = 1$. So, since a simplicial group is a Kan-complex and for J = [m-1] since **A** is aspherical, there is a $y \in \mathbf{A}_{m-1}$ such that $d_j(y) = 1$ for all $j \in J$ and $d_i(y) = x$. This shows that $x \in d_i(\bigcap_{j \in J} \operatorname{Ker}(d_j))$.

6 MULTIRELATIVE K-THEORY

A normal *m*-tuple of ideals $A = (R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m)$ induces an *m*-cube in \mathcal{R}

$$A\colon I\mapsto R \ \bigg/ \sum_{i\in I} \mathfrak{a}_i,$$

which by Proposition 2.2 is split in S. Application of **Fr** to this *m*-cube gives an *m*-cube of simplicial rings which is dimensionwise split in \mathcal{R} . Put

$$\mathbf{Fr}(R, \mathfrak{a}_i) := \mathrm{Ker}(\mathbf{Fr}(R) \to \mathbf{Fr}(R/\mathfrak{a}_i)).$$

This is a simplicial ideal. The m-cube is then induced by the m-tuple

$$(\mathbf{Fr}(R), \mathbf{Fr}(R, \mathfrak{a}_1), \ldots, \mathbf{Fr}(R, \mathfrak{a}_m)),$$

of simplicial ideals, an object of the category $s\mathcal{R}_m$ of normal *m*-tuples of simplicial ideals. We also define the simplicial ideal

$$\mathbf{Fr}(R,\mathfrak{a}_1,\ldots,\mathfrak{a}_m):=igcap_{i=1}^m\mathbf{Fr}(R,\mathfrak{a}_i).$$

Application of GL gives an *m*-cube of simplicial groups, which is dimensionwise split in \mathcal{G} . This *m*-cube is induced by the *m*-tuple

$$(GL\mathbf{Fr}(R), GL\mathbf{Fr}(R, \mathfrak{a}_1), \dots, GL\mathbf{Fr}(R, \mathfrak{a}_m))$$

of simplicial normal subgroups. For $n \geq 3$ we define multirelative K_n by

$$K_n(R,\mathfrak{a}_1,\ldots\mathfrak{a}_m):=\pi_{n-2}(GL\mathbf{Fr}(R,\mathfrak{a}_1,\ldots,\mathfrak{a}_m)).$$

Multirelative K_2 and K_1 are then given by the exactness of

$$0 \to K_2(R, \mathfrak{a}_1, \dots \mathfrak{a}_m) \to \pi_0(GL\mathbf{Fr}(R, \mathfrak{a}_1, \dots, \mathfrak{a}_m)) \to GL(\mathfrak{a}_1 \cap \dots \cap \mathfrak{a}_m) \to K_1(R, \mathfrak{a}_1, \dots \mathfrak{a}_m) \to 0.$$

These multirelative K_1 and K_2 are Abelian groups for the same reason as in the absolute case.

Now let $A \in \mathcal{R}_m$ with $m \geq 1$. Then $\phi_* : GL\mathbf{Fr}(DA) \to GL\mathbf{Fr}(MA)$ is a fibration with fibre $GL\mathbf{Fr}(A)$. The long exact sequence of homotopy groups is a long exact sequence of multirelative K-groups which can easily be extended to include multirelative K_2 and K_1 .

PROPOSITION 6.1. Let $A \in \mathcal{R}_m$ with $m \geq 1$. Then we have a functorial exact sequence

$$\dots \to K_n(A) \to K_n(DA) \to K_n(MA) \to K_{n-1}(A) \to \dots \to K_1(MA).$$

The connecting map $K_n(MA) \to K_{n-1}(A)$ will be denoted by δ and the map $K_n(A) \to K_n(DA)$ by ι . To put it in an even more functorial way, we have an exact sequence of functors and functor morphisms

$$\cdots \to K_n \xrightarrow{\iota} K_n D \xrightarrow{K_n(\phi)} K_n M \xrightarrow{\delta} K_{n-1} \to \cdots \to K_1 M.$$

In the remaining part of this section multirelative K_0 is defined and the long exact sequence for multirelative K-theory is extended with multirelative K_0 -groups.

DEFINITION 6. For a normal m-tuple A of ideals we define

$$K_0(A) = K_0(IA).$$

Thus defined, K_0 is a functor from \mathcal{R}_m to \mathcal{A} .

For m = 1 we take the long exact sequence to be the long exact sequence of an ideal in a ring. Now assume that $m \ge 1$ and that we have an extended long exact sequence

$$\cdots \to K_1 D \to K_1 M \to K_0 \to K_0 D \to K_0 M$$

of functors $\mathcal{R}_m \to \mathcal{A}$. We will show that there is also such a sequence of functors $\mathcal{R}_{m+1} \to \mathcal{A}$.

Let $A = (R, \mathfrak{a}_1, \ldots, \mathfrak{a}_{m+1}) \in \mathcal{R}_{m+1}$. Put $\mathfrak{b} = IA = \bigcap_{i=1}^{m+1} \mathfrak{a}_i$. We have exact sequences for the following *m*-tuples of ideals

$$B = DA = (R, \mathfrak{a}_1, \dots, \mathfrak{a}_m),$$

$$\overline{B} = (R/\mathfrak{b}, \mathfrak{a}_1/\mathfrak{b}, \dots, \mathfrak{a}_m/\mathfrak{b})$$

 and

$$(R, \mathfrak{a}_1, \ldots, \mathfrak{a}_{m-1}, \mathfrak{b}).$$

These m-tuples are normal and their K-groups fit into a commutative diagram

Let the dashed arrow be the composition $K_1(\overline{B}) \to K_1(D\overline{B}) \to K_0(\mathfrak{b})$. By an easy diagram chase we see that the sequence with the dashed arrow is exact as well. The identity on R is a morphism

$$(R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m, \mathfrak{b}) \to A$$

Documenta Mathematica 1 (1996) 277-291

in \mathcal{R}_{m+1} . So we have a commutative diagram with exact rows:

It now suffices to show that the morphism α in this diagram is an isomorphism. The (m+1)-tuple $(R/\mathfrak{b}, \mathfrak{a}_1/\mathfrak{b}, \ldots, \mathfrak{a}_{m+1}/\mathfrak{b})$ induces an exact sequence

$$K_1(R/\mathfrak{b},\mathfrak{a}_1/\mathfrak{b},\ldots,\mathfrak{a}_{m+1}/\mathfrak{b}) \to K_1(\overline{B}) \to K_1(MA).$$

The group $K_1(R/\mathfrak{b}, \mathfrak{a}_1/\mathfrak{b}, \ldots, \mathfrak{a}_{m+1}/\mathfrak{b})$ is a quotient of $GL((\mathfrak{a}_1/\mathfrak{b}) \cap \cdots \cap (\mathfrak{a}_{m+1}/\mathfrak{b})) = \{1\}$, so α is injective. On the other hand, since the (m + 1)-tuple A of ideals is normal, the identity on R induces an isomorphism $I(\overline{B}) \to I(MA)$ and hence also an isomorphism

$$GL(I(\overline{B})) \xrightarrow{\sim} GL(I(MA))$$

Since the multirelative K_1 is a quotient of the general linear group of the underlying ideal, the map α is surjective. This proves:

THEOREM 1. Let $A \in \mathcal{R}_m$ for $m \geq 1$. Then we have a functorial exact sequence

$$\dots \to K_n(A) \to K_n(DA) \to K_n(MA) \to K_{n-1}(A) \to \dots \to K_0(MA).$$

7 Axioms for multirelative K-theory

It will be shown in this section that an axiomatic approach to multirelative K-theory is possible. We take some of the properties of multirelative K-groups as axioms and show that they determine all of multirelative K-theory.

Axioms

Multirelative K-theory consists of functors

 $K_n \colon \mathcal{R}_m \to \mathcal{A} \quad \text{for } m \text{ and } n \text{ integers } \geq 0,$

morphisms

 $\delta \colon K_{n+1}M \to K_n \qquad \text{(for } m \text{ and } n \text{ integers } \geq 0\text{)}$

of functors $\mathcal{R}_{m+1} \to \mathcal{A}$ and morphisms

 $\iota: K_n \to K_n D$ (for *m* and *n* integers ≥ 0)

of functors $\mathcal{R}_{m+1} \to \mathcal{A}$, such that

(MK1) the following sequence is an exact sequence of functors $\mathcal{R}_{m+1} \to \mathcal{A}$ for all non-negative integers m and n

$$K_{n+1}D \xrightarrow{K_{n+1}\phi} K_{n+1}M \xrightarrow{\delta} K_n \xrightarrow{\iota} K_nD \xrightarrow{K_n\phi} K_nM.$$

(MK2) $K_n(R) = 0$ for all $n \ge 0$ and all free associative non-unital rings R,

(MK3) $K_0(A) = K_0(IA)$ for all $A \in \mathcal{R}_m$ for all m.

Loosely speaking, the multirelative K-groups are only defined for normal mtuples of ideals and they fit into exact sequences the way one can expect, the (absolute) K-groups of free non-unital rings are trivial and the multirelative K_0 is just the Grothendieck group of the intersection of the ideals.

Let $(R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m)$ be a normal *m*-tuple of ideals. It induces an *m*-cube

$$I \mapsto R_I = R \middle/ \sum_{i \in I} \mathfrak{a}_i,$$

which is split in \mathcal{S} . Application of **Fr** gives an *m*-cube

$$I \mapsto \mathbf{Fr}(R_I)$$

of aspherical simplicial rings, which is dimensionwise split in \mathcal{R} .

PROPOSITION 7.1. Let m and n be positive integers. Then the (m + n)-tuple

$$\left(\mathbf{Fr}(R)_{n-1},\mathbf{Fr}(R,\mathfrak{a}_1)_{n-1},\ldots,\mathbf{Fr}(R,\mathfrak{a}_m)_{n-1},\mathrm{Ker}\left(d_0^{(n-1)}\right),\ldots,\mathrm{Ker}\left(d_{n-1}^{(n-1)}\right)\right)$$

is normal.

Proof. First we show that the induced (m + n)-cube is

$$(I_1, I_2) \mapsto \mathbf{Fr}(R_{I_1})_{n-1-\#(I_2)},$$

where the cube is indexed by pairs of subsets of \underline{m} and [n-1]. This set of pairs is ordered by componentwise inclusion:

$$(I_1, I_2) \leq (J_1, J_2) \iff I_1 \subseteq J_1 \text{ and } I_2 \subseteq J_2.$$

The homomorphism

$$\mathbf{Fr}(R)_{n-1} \to \mathbf{Fr}(R_{I_1})_{n-1-\#(I_2)}$$

is the composition

$$\mathbf{Fr}(R)_{n-1} \rightarrow \mathbf{Fr}(R_{I_1})_{n-1} \rightarrow \mathbf{Fr}(R_{I_1})_{n-1-\#(I_2)}$$

the first map being induced by $\emptyset \subseteq I_1$ and the second by $[n-1] \setminus I_2 \subseteq [n-1]$. Both homomorphisms are surjective. The first one has kernel $\bigcap_{i \in I_1} \mathbf{Fr}(R, \mathfrak{a}_i)_{(n-1)}$ and the second one $\bigcap_{i \notin I_2} \operatorname{Ker}(d_i)$, where the d_i are face maps of $\mathbf{Fr}(R_{I_1})$. Since $\mathbf{Fr}(R)$ and $\mathbf{Fr}(R_{I_1})$ are both aspherical, elements of the second kernel can be lifted to elements of $\bigcap_{i \notin I_2} \operatorname{Ker}(d_i)$, where the d_i are face maps of $\mathbf{Fr}(R)$.

For the (m+n)-tuple to be normal it suffices that the intersections of the images of the m+n ideals are preserved under the maps on the edges of the induced (m+n)cube. These are the homomorphisms

$$\mathbf{Fr}(R_J)_l \to \mathbf{Fr}(R_{J\cup\{k\}})_l,$$

where $J \subseteq \underline{m}, k \in \underline{m} \setminus J$ and $l \in [n-1]$, and also the face maps

$$d_i \colon \mathbf{Fr}(R_J)_p \to \mathbf{Fr}(R_J)_{p-1},$$

where $p \in [n-1]$ and $0 \le i \le p$. Without loss of generality we may assume that $J = \underline{m}, l = n-1$ and p = n-1.

Because the *m*-cube $J \mapsto \mathbf{Fr}(R_J)$ is dimensionwise split we have short exact sequences

$$0 \to \bigcap_{i \in I \cup \{k\}} \mathbf{Fr}(R, \mathfrak{a}_i) \to \bigcap_{i \in I} \mathbf{Fr}(R, \mathfrak{a}_i) \to \bigcap_{i \in I} \mathbf{Fr}(R/\mathfrak{a}_k, \overline{\mathfrak{a}}_i) \to 0$$

of aspherical simplicial rings. It follows that for all $J \subseteq [n-1]$ we have

$$\bigcap_{i\in I} \mathbf{Fr}(R,\mathfrak{a}_i)_{n-1} \cap \bigcap_{j\in J} \operatorname{Ker}(d_j) = \bigcap_{j\in J} \operatorname{Ker}(d'_j),$$

where the d'_j are the face maps of $\bigcap_{i \in I} \mathbf{Fr}(R, \mathfrak{a}_i)$. Under $\mathbf{Fr}(R) \to \mathbf{Fr}(R/\mathfrak{a}_k)$ this maps onto

$$\bigcap_{j\in J}\operatorname{Ker}(d''_j)=\bigcap_{i\in I}\operatorname{Fr}(R/\mathfrak{a}_k,\overline{\mathfrak{a}}_i)_{n-1}\cap\bigcap_{j\in J}\operatorname{Ker}(d''_j),$$

where the d''_j are the face maps of $\bigcap_{i \in I} \mathbf{Fr}(R/\mathfrak{a}_k, \overline{\mathfrak{a}}_i)$ and d'''_j those of $\bigcap_{i \in I} \mathbf{Fr}(R/\mathfrak{a}_k)$.

Because the simplicial rings $\bigcap_{i \in I} \mathbf{Fr}(R, \mathfrak{a}_i)$ are aspherical also the face maps $d_i \colon \mathbf{Fr}(R)_{n-1} \to \mathbf{Fr}(R)_{n-2}$ preserve intersections

$$\bigcap_{i\in I} \mathbf{Fr}(R,\mathfrak{a}_i)_{n-1} \cap \bigcap_{j\in J} \mathrm{Ker}(d_j).$$

THEOREM 2. Let $A = (R, \mathfrak{a}_1, \ldots, \mathfrak{a}_m) \in \mathcal{R}$. Then for all $n \ge 0$ it follows from the axioms (MK1) and (MK2) that $K_n(A)$ is naturally isomorphic to K_0 of the following object of \mathcal{R}_{m+n} :

$$(\mathbf{Fr}(R)_{n-1}, \mathbf{Fr}(R, \mathfrak{a}_1)_{n-1}, \dots, \mathbf{Fr}(R, \mathfrak{a}_m)_{n-1}, \operatorname{Ker}(d_0), \dots, \operatorname{Ker}(d_{n-1})).$$

From axiom (MK3) it then follows that $K_n(A)$ is determined. So (MK1), (MK2) and (MK3) can be taken as axioms for the (multirelative) K-theory of rings.

Proof. The proof follows from the following three lemmas.

LEMMA 7.1. Let $m \ge -1$ and $q, n \ge 0$. Then

$$K_q(\mathbf{Fr}(R)_n, \mathbf{Fr}(R, \mathfrak{a}_1)_n, \dots, \mathbf{Fr}(R, \mathfrak{a}_m)_n) = 0.$$

Proof. Since for $m \ge 0$ the (m-1)-tuples D(A) and M(A) are of the same type, the proof reduces by (MK1) to the case m = -1. For m = -1 the lemma follows from (MK2).

DOCUMENTA MATHEMATICA 1 (1996) 277-291

 Put

$$A[n,p] = (\mathbf{Fr}(R)_n, \mathbf{Fr}(R,\mathfrak{a}_1)_n, \dots, \mathbf{Fr}(R,\mathfrak{a}_m)_n, \operatorname{Ker}(d_0), \dots, \operatorname{Ker}(d_p)),$$

where $-1 \leq p \leq n$. It is an object of \mathcal{R}_{m+p+1} .

LEMMA 7.2. For all p < n and all q > 0 we have

$$K_q(A[n,p]) = 0.$$

Proof. For $p \ge 0$ we have

$$D(A[n,p]) = A[n,p-1]$$
 and $M(A[n,p]) = A[n-1,p-1].$

By (MK1) the problem reduces to the case p = -1, which is covered by the previous lemma.

LEMMA 7.3. For all $q, n \ge 0$ we have

$$K_q(A[n, n]) \cong K_{q+1}(A[n-1, n-1])$$

Proof. This follows from (MK1) and the previous lemma.

From this lemma the theorem follows:

$$K_n(A) = K_n(A[-1, -1]) \cong K_{n-1}(A[0, 0]) \cong \cdots \cong K_0(A[n-1, n-1]).$$

References

- [1] Bloch, S. and S. Lichtenbaum, A Spectral Sequence for Motivic Cohomology, preprint (K-theory Preprint Archives 62, 1995 Mar 3).
- [2] Dayton, B.H. and C.A. Weibel, A spectral sequence for the K-theory of affine glued schemes, in "Algebraic K-theory", Proceedings Evanston 1980, Lecture Notes in Mathematics 854, Springer-Verlag, Berlin, 1981.
- [3] Keune, Frans, Nonabelian derived functors and algebraic K-theory, in "Algebraic K-theory," Vol. I, Proceedings Seattle 1972, Lecture Notes in Mathematics 341, Springer-Verlag, Berlin, 1973.
- [4] Levine, Marc, The Weight Two K-Theory of Fields, K-Theory 9, 443–501 (1995).

Frans Keune Department of Mathematics University of Nijmegen Toernooiveld 1 6525 ED Nijmegen The Netherlands keune@sci.kun.nl

DOCUMENTA MATHEMATICA 1 (1996) 277-291

Documenta Mathematica 1 (1996)