Multirelative K-Theory and Axioms for the K-Theory of Rings

Frans Keune

Received: July 17, 1996

Communicated by Ulf Rehmann

Abstract

K\)-groups are defined for a special type of m-tuples of ideals in a ring. It is shown that some of the properties of this multirelative K-theory characterize the K-theory of rings. 1991 Mathematics Subject Classification: Primary 19D99.

Introduction

Multirelative K-groups $K_{n}\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$ of an m-tuple $\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$ of ideals of a ring R are recently used to derive properties of the absolute K-groups, e.g. by Levine [4] and by Bloch and Lichtenbaum [1]. Here it is shown how K-theory as defined in [3] can easily be extended to the multirelative case and that some of its properties can be taken as axioms for the K-theory of rings. Special types of m-tuples of idealsthe 'normal' m-tuples-play a crucial role. In fact we will only define multirelative K-groups for such m-tuples. The notion of normal m-tuple of ideals is introduced in Section 2. It already appeared in 1981 in a paper by Dayton and Weibel [2] on the K-theory of affine glued schemes under the name of 'condition (CRT)' (= Chinese Remainder Theorem).

In Section 4 we review briefly higher K-theory as defined in [3]. In Section 6 multirelative K-groups are defined, and in Section 7 it is shown that from some of their properties one can reconstruct the K-theory of rings.

1 Notations

In this paper 'ring' stands for a non-unital ring. Non-unital rings form a category which is denoted by \mathcal{R}.

Since the functors $G L, E$ and K_{1} are product preserving functors from unital rings to groups, they can be extended to functors defined on \mathcal{R} in the usual way: if T is one of these functors, then put

$$
T(R):=\operatorname{Ker}\left(T\left(R^{+}\right) \rightarrow T(\mathbb{Z})\right)
$$

where $R^{+}=R \times \mathbb{Z}$ with multiplication given by

$$
(r, k)(s, l)=(r s+k s+l r, k l)
$$

is a ring with $(0,1)$ as unity element.
Here 'ideal' will always stand for 'twosided ideal'.
By \mathcal{A} we will denote the category of Abelian groups, by \mathcal{G} the category of all groups, and by \mathcal{S} the category of sets. The category of simplicial objects in a category \mathcal{C} is denoted by $s \mathcal{C}$.

$2 m$-CUBES AND NORMAL m-TUPLES

In this section the notion of normality of an m-tuple of ideals is considered. Only the group structure is involved in its definition, and since we can use later a similar notion for groups instead of rings we give a more general definition. By \underline{m} we will denote the set $\{1, \ldots, m\}$.

Definition 1. An m-tuple $\left(B_{1}, \ldots, B_{m}\right)$ of normal subgroups of a group A-also denoted as $\left(A, B_{1}, \ldots, B_{m}\right)$-is called normal if for all subsets I and J of \underline{m}

$$
\bigcap_{i \in I} B_{i} \cdot \prod_{j \in J} B_{j}=\bigcap_{i \in I}\left(B_{i} \cdot \prod_{j \in J} B_{j}\right)
$$

The condition is trivially fulfilled when $I \cap J \neq \emptyset$. In the case of Abelian groups it reads in the additive notation as

$$
\bigcap_{i \in I} B_{i}+\sum_{j \in J} B_{j}=\bigcap_{i \in I}\left(B_{i}+\sum_{j \in J} B_{j}\right)
$$

Note that in the special case of an m-tuple of ideals in a commutative ring the condition is a local one since it involves only intersections and sums of ideals.

The subsets of \underline{m} are ordered by inclusion. This ordered set determines in the usual way a category \mathcal{C}_{m}. For every pair (I, J) of subsets with $I \subseteq J$ there is the unique morphism ρ_{J}^{I} from I to J in \mathcal{C}_{m}.

Definition 2. Let \mathcal{D} be a category. An m-cube in \mathcal{D} is a functor

$$
D: \mathcal{C}_{m} \rightarrow \mathcal{D}, \quad I \mapsto D_{I}, \quad \rho_{J}^{I} \mapsto r_{J}^{I}
$$

The morphisms in \mathcal{C}_{m} are generated by the ρ_{J}^{I}, where $\# J=\# I+1$. An m-cube in a category \mathcal{D} is a commutative diagram in \mathcal{D} having the shape of an m-dimensional cube. The edges of the cube correspond to the images of these generating morphisms.

Definition 3. Let $D: \mathcal{C}_{m} \rightarrow \mathcal{D}$ be an m-cube in \mathcal{D}. It is said to be a split m-cube if for every pair of subsets (I, J) of \underline{m} satisfying $I \subseteq J$ there is a morphism $s_{I}^{J}: D_{J} \rightarrow D_{I}$ in \mathcal{D} such that
(S1) $s_{I}^{J} s_{J}^{K}=s_{I}^{K}$ for all $I \subseteq J \subseteq K$,
(S2) $r_{J}^{I} s_{I}^{J}=1_{D_{J}}$ for all $I \subseteq J$,
(S3) $r_{J}^{I \cap J} s_{I \cap J}^{I}=s_{J}^{I \cup J} r_{I \cup J}^{I}$ for all I and J.
(Of course such a split m-cube can also be seen as a functor defined on a category which is obtained from \mathcal{C}_{m} by adjoining extra morphisms $\sigma_{I}^{J}: J \rightarrow I$.)

In condition (S3) one only needs the case where $\#(I \backslash J)=\#(J \backslash I)=1$. It then reads
(S3') $r_{I \cup\{k\}}^{I} s_{I}^{I \cup\{j\}}=s_{I \cup\{k\}}^{I \cup\{j, k\}} r_{I \cup\{j, k\}}^{I \cup\{j\}}$ for all $j, k \notin I$ with $j \neq k$.
This can easily be seen as follows. Put $K=I \cap J, I \backslash K=\left\{i_{1}, \ldots, i_{p}\right\}$ and $J \backslash K=$ $\left\{j_{1}, \ldots, j_{q}\right\}$. Then the result follows from the diagram

where the horizontal maps are r-maps and the vertical maps are s-maps.
Definition 4. An m-tuple $T=\left(A, B_{1}, \ldots, B_{m}\right)$ of normal subgroups determines an m-cube in \mathcal{G} :

$$
I \mapsto T_{I}=A / \prod_{i \in I} B_{i}
$$

When $I \subseteq J$, then $\prod_{i \in I} B_{i} \subseteq J$ and 1_{A} induces a grouphomomorphism $r_{J}^{I}: T_{I} \rightarrow T_{J}$. This m-cube is said to be induced by the m-tuple T. Similarly for an m-tuple of ideals in a ring.

Proposition 2.1. Let $D: \mathcal{C}_{m} \rightarrow \mathcal{D}$ be an m-cube in \mathcal{G}, which is split as an m-cube in \mathcal{S}. Then D is induced by a normal m-tuple of normal subgroups of D_{\emptyset}.
Proof. For $i \in \underline{m}$ put

$$
B_{i}=\operatorname{Ker}\left(r_{\{i\}}^{\emptyset}: D_{\emptyset} \rightarrow D_{\{i\}}\right)
$$

We will first show that the cube is induced by the m-tuple ($D_{\emptyset}, B_{1}, \ldots, B_{m}$). Since the cube splits in \mathcal{S}, the homomorphisms $D_{\emptyset} \rightarrow D_{I}$ are surjective. To show that for each $I \subseteq \underline{m}$

$$
\operatorname{Ker}\left(D_{\emptyset} \rightarrow D_{I}\right)=\prod_{i \in I} B_{i}
$$

This can be done by induction on $\#(I)$. For $\#(I)=0$ it is trivial. Let $\#(I)>0$. Choose $k \in I$. By induction hypothesis

$$
\operatorname{Ker}\left(D_{\emptyset} \rightarrow D_{I \backslash\{k\}}\right)=\prod_{i \in I \backslash\{k\}} B_{i} .
$$

Since the cube splits in \mathcal{S} we have a commutative diagram with exact rows and columns:

Hence

$$
\operatorname{Ker}\left(r_{I}^{\emptyset}\right) / B_{k} \cong \prod_{i \in I \backslash\{k\}} B_{i} /\left(B_{k} \cap \prod_{i \in I \backslash\{k\}} B_{i}\right) \cong \prod_{i \in I}\left(B_{i} / B_{k}\right),
$$

and therefore,

$$
\operatorname{Ker}\left(r_{I}^{\emptyset}\right)=\prod_{i \in I} B_{i}
$$

For the normality of the m-tuple let $I, J \subseteq \underline{m}$ and consider the commutative square

$$
\begin{aligned}
& D_{\emptyset} / \prod_{j \in J} B_{j} \xrightarrow{\left(r_{J \cup\{i\}}^{J}\right)} X_{i \in I} D_{\emptyset} / \prod_{j \in J \cup\{i\}} B_{j} .
\end{aligned}
$$

Since the m-cube is split in \mathcal{S} the vertical homomorphisms have compatible sections in \mathcal{S}. So r_{J}^{\emptyset} induces a surjective homomorphism on the kernels of the horizontal homomorphisms. This holds for all $I, J \subseteq \underline{m}$. Therefore, the m-tuple ($D_{\emptyset}, B_{1}, \ldots, B_{m}$) is normal.

For the Abelian case we also prove the converse.
Proposition 2.2. Let $T=\left(A, B_{1}, \ldots, B_{m}\right)$ be a normal m-tuple of subgroups of an Abelian group A. Then the induced m-cube is split in the category \mathcal{S}.

Proof. By taking kernels of the surjective homomorphisms in the induced m-cube it can be extended to a diagram of 3^{m} Abelian groups. We will give a detailed description of this diagram and show how a splitting of the cube can be obtained from it.

For each pair (I, J) of disjoint subsets of \underline{m} define

$$
C_{J}^{I}=\bigcap_{i \in I} B_{i}+\sum_{j \in J} B_{j} / \sum_{j \in J} B_{j}
$$

Then for each such pair (I, J) and each $k \notin I \cup J$ we have a surjective homomorphism $C_{J}^{I} \rightarrow C_{J \cup\{k\}}^{I}$, induced by $r_{J \cup\{k\}}^{J}: A_{J} \rightarrow A_{J \cup\{k\}}$, where we use the notation

$$
A_{J}=A / \sum_{j \in J} B_{j}
$$

Thus $A_{J}=C_{J}^{\emptyset}$. The kernel of the surjective homomorphism $C_{J}^{I} \rightarrow C_{J \cup\{k\}}^{I}$ is

$$
\left(\bigcap_{i \in I} B_{i}+\sum_{j \in J} B_{j}\right) \cap\left(B_{k}+\sum_{j \in J} B_{j}\right) / B_{k}+\sum_{j \in J} B_{j}
$$

We have the inclusions

$$
\bigcap_{i \in I \cup\{k\}} B_{i}+\sum_{j \in J} B_{j} \subseteq\left(\bigcap_{i \in I} B_{i}+\sum_{j \in J} B_{j}\right) \cap\left(B_{k}+\sum_{j \in J} B_{j}\right) \subseteq \bigcap_{i \in I \cup\{k\}}\left(B_{i}+\sum_{j \in J} B_{j}\right)
$$

By normality these groups are equal, so we have a short exact sequence

$$
0 \rightarrow C_{J}^{I \cup\{k\}} \rightarrow C_{J}^{I} \rightarrow C_{J \cup\{k\}}^{I} \rightarrow 0
$$

For each pair (I, J) of disjoint subsets of \underline{m} satisfying $I \cup J=\underline{m}$ choose a section

$$
t_{J}^{I}: C_{J}^{I} \rightarrow C_{\emptyset}^{I}\left(\subseteq C_{\emptyset}^{\emptyset}=A\right)
$$

of the map $C_{\emptyset}^{I} \rightarrow C_{J}^{I}$ induced by $r_{J}^{\emptyset}: A \rightarrow A_{J}$ and satisfying $t_{J}^{I}(0)=0$. Next define maps $t_{J}^{I}: C_{J}^{I} \rightarrow C_{\emptyset}^{I}$ for every disjoint pair (I, J) using induction to the number of elements of the complement of $I \cup J$. So, let (I, J) be a disjoint pair of subsets of \underline{m} with $\#(I \cup J)=n<m$ and assume that sections $t_{L}^{K}: C_{L}^{K} \rightarrow C_{\emptyset}^{K}$ have already been defined for pairs (K, L) with $K \cup L$ having more than n elements.

Choose $k \in \underline{m} \backslash(I \cup J)$. Let $x \in C_{J}^{I}$, then for $y=r_{J}^{\emptyset} t_{J \cup\{k\}}^{I} r_{J \cup\{k\}}^{J}(x)$ we have

$$
r_{J \cup\{k\}}^{J}(y)=r_{J \cup\{k\}}^{\emptyset} t_{J \cup\{k\}}^{I} r_{J \cup\{k\}}^{J}(x)=r_{J \cup\{k\}}^{J}(x),
$$

so, $x-y \in C_{J}^{I \cup\{k\}}$. Now define t_{J}^{I} by

$$
t_{J}^{I}(x)=t_{J}^{I \cup\{k\}}(x-y)+t_{J \cup\{k\}}^{I} r_{J \cup\{k\}}^{J}(x) .
$$

It easily verified that this map is a section of $r: C_{\emptyset}^{I} \rightarrow C_{J}^{I}$. Furthermore it is independent of the choice of k : if also $l \notin I \cup J$, then in both cases the image of an $x \in C_{J}^{I}$ under t_{J}^{I} is determined in the same way by the images of the same elements in the following four groups

$$
C_{J}^{I \cup\{l, k\}}, C_{J \cup\{k\}}^{I \cup\{l\}}, C_{J \cup\{l\}}^{I \cup\{k\}}, \text { and } C_{J \cup\{k, l\}}^{I}:
$$

Thus we obtain a splitting of the cube, where the sections s_{I}^{J} of the homomorphisms r_{J}^{I}, where $I \subseteq J$, are the maps $r_{I}^{\emptyset} t_{J}^{\emptyset}$. In particular, condition (S3') follows from the above diagram for $I=\emptyset$.

3 Operations on normal m-Tuples of ideals

By \mathcal{R}_{m} we will denote the category of all normal m-tuples of ideals. Such an m tuple is denoted as $\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$, where R is a ring and $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}$ are ideals of R. A morphism $\phi:\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right) \rightarrow\left(S, \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{m}\right)$ is just a ringhomomorphism $\phi: R \rightarrow S$ satisfying $\phi\left(\mathfrak{a}_{i}\right) \subseteq \mathfrak{b}_{i}$ for all $i \in \underline{m}$.

The following notations will simplify notations for long exact sequences of multirelative K-theory. Another advantage will be that they are useful to indicate funtoriality properties.

For each $m \geq 1$ the functor $D: \mathcal{R}_{m} \rightarrow \mathcal{R}_{m-1}$ is the functor that deletes the last ideal:

$$
D\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)=\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m-1}\right)
$$

and which has no effect on morphisms.
For each $m \geq 1$ the functor $M: \mathcal{R}_{m} \rightarrow \mathcal{R}_{m-1}$ is the functor that deletes the last ideal and that takes the ring and the other ideals modulo this ideal:

$$
M\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)=\left(R / \mathfrak{a}_{m}, \overline{\mathfrak{a}}_{1}, \ldots, \overline{\mathfrak{a}}_{m-1}\right)
$$

where $\overline{\mathfrak{a}}_{j}=\mathfrak{a}_{j}+\mathfrak{a}_{i} / \mathfrak{a}_{i}$, and which maps a morphism to the induced morphism.
A functor morphism $\phi: D \rightarrow M$ of the functors $D, M: \mathcal{R}_{m} \rightarrow \mathcal{R}_{m-1}$ is defined as follows: let $A=\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$, then $\phi_{A}: D(A) \rightarrow M(A)$ is the canonical ringhomomorphism $R \rightarrow R / \mathfrak{a}_{m}$.

Every $A \in \mathcal{R}_{m}$ has an underlying ideal $I(A)$, which is defined as the intersection of the m ideals in A : when $A=\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$, then

$$
I(A)=\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{m} .
$$

Thus defined, $I(A)$ is functorial in A.

4 Higher K-theory of Rings

In [3] the definition of higher K-groups is as follows. Let $R \in \mathcal{R}$. Choose a simplicial ring \mathbf{R} with an augmentation $\varepsilon: \mathbf{R} \rightarrow R$ such that

- \mathbf{R} is aspherical, i.e. $\pi_{n}(\mathbf{R})=0$ for all $n \geq 1$,
- \mathbf{R}_{m} is free for all $m \geq 0$, say \mathbf{R}_{m} is free on a set X_{m} of generators,
- the sets X_{m} of free generators are stable under degeneracies: $s_{j}\left(X_{m}\right) \subseteq X_{m+1}$ for all $m \geq 0$,
- the augmentation ε induces an isomorphism $\pi_{0}(\mathbf{R}) \xrightarrow{\sim} R$.

Then for $n \geq 3$ the group $K_{n}(R)$ is defined as the $(n-2)$ nd homotopy group of the simplicial group $G L(\mathbf{R})$, and the groups $K_{1}(R)$ and $K_{2}(R)$ are given by the exactness of

$$
0 \rightarrow K_{2}(R) \rightarrow \pi_{0}(G L \mathbf{R}) \rightarrow G L(R) \rightarrow K_{1}(R) \rightarrow 0
$$

The groups $K_{n}(R)$ for $n \geq 3$ are Abelian because $G L(\mathbf{R})$ is a simplicial group. The group $K_{1}(R)$ is Abelian since it is the cokernel of $G L\left(\mathbf{R}_{0}\right) \rightarrow G L(R)$, and $K_{2}(R)$ is Abelian because it is the cokernel of $G L\left(\mathbf{R}_{1}\right) \rightarrow G L\left(Z_{0}\right)$, where $Z_{0}=\left\{\left(x_{0}, x_{1}\right) \mid\right.$ $\left.\epsilon\left(x_{0}\right)=\epsilon\left(x_{1}\right)\right\}$. In [3] it is shown using a comparison theorem that the higher K groups are thus well-defined and that they are actually functors. For the purpose of this paper we will confine to a functorial resolution $\operatorname{Fr}(R)$ of a ring R, which we now describe. Let $F: \mathcal{S} \rightarrow \mathcal{R}$ the free ring functor and let $U: \mathcal{R} \rightarrow \mathcal{S}$ be the underlying set functor, then the functor $F U: \mathcal{R} \rightarrow \mathcal{R}$ together with the obvious functor morphisms $\nu: F U \rightarrow(F U)^{2}$ and $\eta: F U \rightarrow I$ is a cotriple. Put

$$
\mathbf{F r}_{n}=(F U)^{n+1}
$$

Face and degeneracy morphisms are given by

$$
d_{i}=(F U)^{i} \eta(F U)^{n-1-i} \quad \text { and } \quad s_{j}=(F U)^{i} \nu(F U)^{n-1-i}
$$

The augmentation is then given by η.
A property of this functorial resolution is that, when applied to a surjective ringhomomorphism $R \rightarrow S$, it gives a dimensionwise surjective homomorphism $\mathrm{Fr} R \rightarrow \mathbf{F r} S$ of simplicial rings, and since the ringhomomorphisms are dimensionwise split it also gives a surjective simplicial grouphomomorphism $G L(\mathbf{F r} R) \rightarrow G L(\mathbf{F r} S)$. This is often convenient when considering homotopy fibres, because surjective simplicial grouphomomorphisms are fibrations themselves. So instead of taking a homotopy fibre one just takes a fibre, i.e. the kernel of the simplicial group homomorphism.

5 Cubes in a simplicial group

Let \mathbf{A} be a simplicial group with augmentation $d_{0}: \mathbf{A}_{\mathbf{0}} \rightarrow A$. It is a contravariant functor $\mathbf{A}: \Omega_{+}^{\text {op }} \rightarrow \mathcal{G}$ from the category Ω_{+}of finite ordered sets

$$
[n]=\{0, \ldots, n\} \quad(n \geq-1)
$$

(where $[-1]=\emptyset$) and monotone ($=$ order preserving) maps to the category of groups. (Here we use the notation $\mathbf{A}_{-1}=A$.) We will show that \mathbf{A} determines an m-cube of groups for every nonnegative integer m. In stead of the ordered set of subsets of \underline{m} for the description of an m-cube the ordered set of subsets of $[m-1$] will be used for this purpose.

Let $\Omega(m)$ be the category of injective monotone maps

$$
\alpha:[k] \rightarrow[m-1] .
$$

A morphism from $\alpha:[k] \rightarrow[m-1]$ to $\beta:[l] \rightarrow[m-1]$ is a monotone map $\gamma:[k] \rightarrow[l]$ such that $\beta \gamma=\alpha$. It exists if and only if $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(\beta)$, and it is unique if it exists.

For each $I \subseteq[m-1]$ there is a unique injective monotone map

$$
\alpha_{I}:[k] \rightarrow[m-1]
$$

where $k=m-1-\#(I)$ and $\operatorname{Im}\left(\alpha_{I}\right)=[m-1] \backslash I$. If $I \subseteq J \subseteq[m-1]$, then $\operatorname{Im}\left(\alpha_{I}\right) \supseteq \operatorname{Im}\left(\alpha_{J}\right)$, so then there is a unique

$$
\gamma_{I}^{J}: \alpha_{J} \rightarrow \alpha_{I}
$$

i.e. a monotone $\gamma_{I}^{J}:[m-1-\#(J)] \rightarrow[m-1-\#(I)]$ such that $\alpha_{I} \gamma_{I}^{J}=\alpha_{J}$.

Definition 5. Let \mathbf{A} be an augmented simplicial group and let m be a nonnegative integer. Then the m-cube of \mathbf{A} is the m-cube $\mathbf{A}(m): \mathcal{C}_{m} \rightarrow \mathcal{G}$ with

$$
\begin{cases}\mathbf{A}(m)_{I}=\mathbf{A}_{[m-1-\#(I)]} & \text { for all } I \subseteq[m-1] \\ r_{J}^{I}=\mathbf{A}\left(\gamma_{I}^{J}\right): \mathbf{A}(m)_{I} \rightarrow \mathbf{A}(m)_{J} & \text { for all } I \subseteq J \subseteq[m-1]\end{cases}
$$

Lemma 5.1. Let the augmentation $d_{0}: \mathbf{A}_{0} \rightarrow \mathbf{A}_{-1}$ induce a surjective homomorphism $\pi_{0}(\mathbf{A}) \rightarrow \mathbf{A}_{-1}$. Then for all integers i, j, m such that $0 \leq j<i \leq m$

$$
d_{i}^{(m)}\left(\operatorname{Ker}\left(d_{j}^{(m)}\right)\right)=\operatorname{Ker}\left(d_{j}^{(m-1)}\right)
$$

Proof. Let $x \in \operatorname{Ker}\left(d_{j}^{(m)}\right)$. Then, since $i>j, d_{j} d_{i}(x)=d_{i-1} d_{j}(x)=1$. So $d_{i}\left(\operatorname{Ker}\left(d_{j}\right)\right) \subseteq \operatorname{Ker}\left(d_{j}\right)$. Now, let $y \in \operatorname{Ker}\left(d_{j}^{(m-1)}\right)$. There is an $x \in \mathbf{A}_{m}$ such that $d_{j}(x)=1$ and $d_{i}(x)=y$. For $m>1$ this is the case because a simplicial group is a Kan-complex, while for $m=1$ it follows from the condition on the augmentation.

Proposition 5.1. Let \mathbf{A} be a simplicial group with an augmentation $d_{0}: \mathbf{A} \rightarrow A$ that induces an isomorphism $\pi_{0}(\mathbf{A}) \rightarrow A$. Then for all $m \geq 1$ the m-cube $\mathbf{A}(m)$ is induced by the m-tuple

$$
\left(\mathbf{A}_{m-1}, \operatorname{Ker}\left(d_{0}\right), \ldots, \operatorname{Ker}\left(d_{m-1}\right)\right)
$$

Proof. All face maps are surjective, so it remains to show that for all $J \subseteq[m-1]$

$$
\operatorname{Ker}\left(r_{J}^{\emptyset}\right)=\prod_{j \in J} \operatorname{Ker}\left(d_{j}^{(m-1)}\right)
$$

For $J=\emptyset$ this is trivially true. Let J be nonempty and proceed by induction. Let $x \in \operatorname{Ker}\left(r_{J}^{\emptyset}\right)$. Let $k \in J$ be maximal. Then $r_{\{k\}}^{\emptyset}(x)=d_{k}(x) \in \operatorname{Ker}\left(r_{J}^{\{k\}}\right)$. By induction this group is equal to $\prod_{j \in J^{\prime}} \operatorname{Ker}\left(d_{j}^{(m-2)}\right)$, where $J^{\prime}=J \backslash\{k\}$. (Here we used the maximality of k in J and the same result for the ($m-1$)-cube $\mathbf{A}(m-1)$.) By the lemma we have

$$
d_{k}\left(\prod_{j \in J^{\prime}} \operatorname{Ker}\left(d_{j}^{(m-1)}\right)\right)=\prod_{j \in J^{\prime}} \operatorname{Ker}\left(d_{j}^{(m-2)}\right)
$$

Choose $y \in \prod_{j \in J^{\prime}} \operatorname{Ker}\left(d_{j}^{(m-1)}\right.$ such that $d_{k}(y)=d_{k}(x)$. Then $x y^{-1} \in \operatorname{Ker}\left(d_{k}\right)$. It follows that

$$
\operatorname{Ker}\left(r_{J}^{\emptyset}\right) \subseteq \prod_{j \in J} \operatorname{Ker}\left(d_{j}^{(m-1)}\right)
$$

For the other inclusion note that $d_{j}=r_{\{j\}}^{\emptyset}$ and

$$
r_{J}^{\{j\}} r_{\{j\}}^{\emptyset}=r_{J}^{\emptyset} .
$$

Proposition 5.2. Let \mathbf{A} be as in Proposition 5.1 and assume moreover that \mathbf{A} is aspherical. Then the m-tuple

$$
\left(\mathbf{A}_{m-1}, \operatorname{Ker}\left(d_{0}\right), \ldots, \operatorname{Ker}\left(d_{m-1}\right)\right)
$$

is normal.
Proof. The edges of the m-cube are face maps of the simplicial group (A). Normality means that these maps preserve intersections of (the images of) the normal subgroups $\operatorname{Ker}\left(d_{0}\right), \ldots, \operatorname{Ker}\left(d_{m-1}\right)$. By induction it suffices to show this for the face maps $d_{i}^{(m-1)}$. Let $J \subseteq[m-1]$. Then to show that

$$
d_{i}\left(\bigcap_{j \in J} \operatorname{Ker}\left(d_{j}\right)\right)=\bigcap_{j \in J} d_{i}\left(\operatorname{Ker}\left(d_{j}\right)\right) .
$$

for $i \notin J$. The inclusion of the left hand side in the right hand side is trivial. So let $x \in \bigcap_{j \in J} d_{i}\left(\operatorname{Ker}\left(d_{j}\right)\right)$. Then for $j \in J$ there is an $y_{j} \in \operatorname{Ker}\left(d_{j}\right)$ such that $x=d_{i}\left(y_{j}\right)$. For $j<i$ it follows that $d_{j}(x)=d_{j} d_{i}\left(y_{j}\right)=d_{i-1} d_{j}\left(x_{j}\right)=1$. Similarly for $j>i$ we have $d_{j-1}(x)=1$. So, since a simplicial group is a Kan-complex and for $J=[m-1]$ since \mathbf{A} is aspherical, there is a $y \in \mathbf{A}_{m-1}$ such that $d_{j}(y)=1$ for all $j \in J$ and $d_{i}(y)=x$. This shows that $x \in d_{i}\left(\bigcap_{j \in J} \operatorname{Ker}\left(d_{j}\right)\right)$.

6 Multirelative K-theory

A normal m-tuple of ideals $A=\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$ induces an m-cube in \mathcal{R}

$$
A: I \mapsto R / \sum_{i \in I} \mathfrak{a}_{i}
$$

which by Proposition 2.2 is split in \mathcal{S}. Application of $\mathbf{F r}$ to this m-cube gives an m-cube of simplicial rings which is dimensionwise split in \mathcal{R}. Put

$$
\operatorname{Fr}\left(R, \mathfrak{a}_{i}\right):=\operatorname{Ker}\left(\mathbf{F r}(R) \rightarrow \mathbf{F r}\left(R / \mathfrak{a}_{i}\right)\right)
$$

This is a simplicial ideal. The m-cube is then induced by the m-tuple

$$
\left(\operatorname{Fr}(R), \operatorname{Fr}\left(R, \mathfrak{a}_{1}\right), \ldots, \operatorname{Fr}\left(R, \mathfrak{a}_{m}\right)\right)
$$

of simplicial ideals, an object of the category $s \mathcal{R}_{m}$ of normal m-tuples of simplicial ideals. We also define the simplicial ideal

$$
\operatorname{Fr}\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right):=\bigcap_{i=1}^{m} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right)
$$

Application of $G L$ gives an m-cube of simplicial groups, which is dimensionwise split in \mathcal{G}. This m-cube is induced by the m-tuple

$$
\left(G L \mathbf{F r}(R), G L \mathbf{F r}\left(R, \mathfrak{a}_{1}\right), \ldots, G L \mathbf{F r}\left(R, \mathfrak{a}_{m}\right)\right)
$$

of simplicial normal subgroups. For $n \geq 3$ we define multirelative K_{n} by

$$
K_{n}\left(R, \mathfrak{a}_{1}, \ldots \mathfrak{a}_{m}\right):=\pi_{n-2}\left(G L \operatorname{Fr}\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)\right)
$$

Multirelative K_{2} and K_{1} are then given by the exactness of

$$
\begin{aligned}
& 0 \rightarrow K_{2}\left(R, \mathfrak{a}_{1}, \ldots \mathfrak{a}_{m}\right) \rightarrow \pi_{0}\left(G L \operatorname{Fr}\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)\right) \rightarrow \\
& \quad G L\left(\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{m}\right) \rightarrow K_{1}\left(R, \mathfrak{a}_{1}, \ldots \mathfrak{a}_{m}\right) \rightarrow 0 .
\end{aligned}
$$

These multirelative K_{1} and K_{2} are Abelian groups for the same reason as in the absolute case.

Now let $A \in \mathcal{R}_{m}$ with $m \geq 1$. Then $\phi_{*}: G L \operatorname{Fr}(D A) \rightarrow G L \operatorname{Fr}(M A)$ is a fibration with fibre $G L \operatorname{Fr}(A)$. The long exact sequence of homotopy groups is a long exact sequence of multirelative K-groups which can easily be extended to include multirelative K_{2} and K_{1}.

Proposition 6.1. Let $A \in \mathcal{R}_{m}$ with $m \geq 1$. Then we have a functorial exact sequence

$$
\cdots \rightarrow K_{n}(A) \rightarrow K_{n}(D A) \rightarrow K_{n}(M A) \rightarrow K_{n-1}(A) \rightarrow \cdots \rightarrow K_{1}(M A)
$$

The connecting map $K_{n}(M A) \rightarrow K_{n-1}(A)$ will be denoted by δ and the map $K_{n}(A) \rightarrow K_{n}(D A)$ by ι. To put it in an even more functorial way, we have an exact sequence of functors and functor morphisms

$$
\cdots \rightarrow K_{n} \xrightarrow{\iota} K_{n} D \xrightarrow{K_{n}(\phi)} K_{n} M \xrightarrow{\delta} K_{n-1} \rightarrow \cdots \rightarrow K_{1} M .
$$

In the remaining part of this section multirelative K_{0} is defined and the long exact sequence for multirelative K-theory is extended with multirelative K_{0}-groups.

Definition 6. For a normal m-tuple A of ideals we define

$$
K_{0}(A)=K_{0}(I A) .
$$

Thus defined, K_{0} is a functor from \mathcal{R}_{m} to \mathcal{A}.
For $m=1$ we take the long exact sequence to be the long exact sequence of an ideal in a ring. Now assume that $m \geq 1$ and that we have an extended long exact sequence

$$
\cdots \rightarrow K_{1} D \rightarrow K_{1} M \rightarrow K_{0} \rightarrow K_{0} D \rightarrow K_{0} M
$$

of functors $\mathcal{R}_{m} \rightarrow \mathcal{A}$. We will show that there is also such a sequence of functors $\mathcal{R}_{m+1} \rightarrow \mathcal{A}$.

Let $A=\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m+1}\right) \in \mathcal{R}_{m+1}$. Put $\mathfrak{b}=I A=\bigcap_{i=1}^{m+1} \mathfrak{a}_{i}$. We have exact sequences for the following m-tuples of ideals

$$
\begin{aligned}
& B=D A=\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right), \\
& \bar{B}=\left(R / \mathfrak{b}, \mathfrak{a}_{1} / \mathfrak{b}, \ldots, \mathfrak{a}_{m} / \mathfrak{b}\right)
\end{aligned}
$$

and

$$
\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m-1}, \mathfrak{b}\right)
$$

These m-tuples are normal and their K-groups fit into a commutative diagram

Let the dashed arrow be the composition $K_{1}(\bar{B}) \rightarrow K_{1}(D \bar{B}) \rightarrow K_{0}(\mathfrak{b})$. By an easy diagram chase we see that the sequence with the dashed arrow is exact as well. The identity on R is a morphism

$$
\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}, \mathfrak{b}\right) \rightarrow A
$$

in \mathcal{R}_{m+1}. So we have a commutative diagram with exact rows:

It now suffices to show that the morphism α in this diagram is an isomorphism. The $(m+1)$-tuple $\left(R / \mathfrak{b}, \mathfrak{a}_{1} / \mathfrak{b}, \ldots, \mathfrak{a}_{m+1} / \mathfrak{b}\right)$ induces an exact sequence

$$
K_{1}\left(R / \mathfrak{b}, \mathfrak{a}_{1} / \mathfrak{b}, \ldots, \mathfrak{a}_{m+1} / \mathfrak{b}\right) \rightarrow K_{1}(\bar{B}) \rightarrow K_{1}(M A)
$$

The group $K_{1}\left(R / \mathfrak{b}, \mathfrak{a}_{1} / \mathfrak{b}, \ldots, \mathfrak{a}_{m+1} / \mathfrak{b}\right)$ is a quotient of $G L\left(\left(\mathfrak{a}_{1} / \mathfrak{b}\right) \cap \cdots \cap\left(\mathfrak{a}_{m+1} / \mathfrak{b}\right)\right)=$ $\{1\}$, so α is injective. On the other hand, since the $(m+1)$-tuple A of ideals is normal, the identity on R induces an isomorphism $I(\bar{B}) \rightarrow I(M A)$ and hence also an isomorphism

$$
G L(I(\bar{B})) \xrightarrow{\sim} G L(I(M A)) .
$$

Since the multirelative K_{1} is a quotient of the general linear group of the underlying ideal, the map α is surjective. This proves:

Theorem 1. Let $A \in \mathcal{R}_{m}$ for $m \geq 1$. Then we have a functorial exact sequence

$$
\cdots \rightarrow K_{n}(A) \rightarrow K_{n}(D A) \rightarrow K_{n}(M A) \rightarrow K_{n-1}(A) \rightarrow \cdots \rightarrow K_{0}(M A) .
$$

7 Axioms for multirelative K-THEORY

It will be shown in this section that an axiomatic approach to multirelative K-theory is possible. We take some of the properties of multirelative K-groups as axioms and show that they determine all of multirelative K-theory.

Axioms

Multirelative K-THEORY consists of functors

$$
K_{n}: \mathcal{R}_{m} \rightarrow \mathcal{A} \quad \text { for } m \text { and } n \text { integers } \geq 0
$$

morphisms

$$
\delta: K_{n+1} M \rightarrow K_{n} \quad(\text { for } m \text { and } n \text { integers } \geq 0)
$$

of functors $\mathcal{R}_{m+1} \rightarrow \mathcal{A}$ and morphisms

$$
\iota: K_{n} \rightarrow K_{n} D \quad(\text { for } m \text { and } n \text { integers } \geq 0)
$$

of functors $\mathcal{R}_{m+1} \rightarrow \mathcal{A}$, such that
(MK1) the following sequence is an exact sequence of functors $\mathcal{R}_{m+1} \rightarrow \mathcal{A}$ for all non-negative integers m and n

$$
K_{n+1} D \xrightarrow{K_{n+1} \phi} K_{n+1} M \xrightarrow{\delta} K_{n} \xrightarrow{\iota} K_{n} D \xrightarrow{K_{n} \phi} K_{n} M .
$$

(MK2) $K_{n}(R)=0$ for all $n \geq 0$ and all free associative non-unital rings R,
(MK3) $K_{0}(A)=K_{0}(I A)$ for all $A \in \mathcal{R}_{m}$ for all m.
Loosely speaking, the multirelative K-groups are only defined for normal m tuples of ideals and they fit into exact sequences the way one can expect, the (absolute) K-groups of free non-unital rings are trivial and the multirelative K_{0} is just the Grothendieck group of the intersection of the ideals.

Let $\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$ be a normal m-tuple of ideals. It induces an m-cube

$$
I \mapsto R_{I}=R / \sum_{i \in I} \mathfrak{a}_{i}
$$

which is split in \mathcal{S}. Application of $\mathbf{F r}$ gives an m-cube

$$
I \mapsto \operatorname{Fr}\left(R_{I}\right)
$$

of aspherical simplicial rings, which is dimensionwise split in \mathcal{R}.
Proposition 7.1. Let m and n be positive integers. Then the $(m+n)$-tuple

$$
\left(\operatorname{Fr}(R)_{n-1}, \operatorname{Fr}\left(R, \mathfrak{a}_{1}\right)_{n-1}, \ldots, \operatorname{Fr}\left(R, \mathfrak{a}_{m}\right)_{n-1}, \operatorname{Ker}\left(d_{0}^{(n-1)}\right), \ldots, \operatorname{Ker}\left(d_{n-1}^{(n-1)}\right)\right)
$$

is normal.
Proof. First we show that the induced $(m+n)$-cube is

$$
\left(I_{1}, I_{2}\right) \mapsto \operatorname{Fr}\left(R_{I_{1}}\right)_{n-1-\#\left(I_{2}\right)}
$$

where the cube is indexed by pairs of subsets of \underline{m} and $[n-1]$. This set of pairs is ordered by componentwise inclusion:

$$
\left(I_{1}, I_{2}\right) \leq\left(J_{1}, J_{2}\right) \Longleftrightarrow I_{1} \subseteq J_{1} \quad \text { and } \quad I_{2} \subseteq J_{2}
$$

The homomorphism

$$
\operatorname{Fr}(R)_{n-1} \rightarrow \operatorname{Fr}\left(R_{I_{1}}\right)_{n-1-\#\left(I_{2}\right)}
$$

is the composition

$$
\operatorname{Fr}(R)_{n-1} \rightarrow \mathbf{F r}\left(R_{I_{1}}\right)_{n-1} \rightarrow \mathbf{F r}\left(R_{I_{1}}\right)_{n-1-\#\left(I_{2}\right)},
$$

the first map being induced by $\emptyset \subseteq I_{1}$ and the second by $[n-1] \backslash I_{2} \subseteq[n-1]$. Both homomorphisms are surjective. The first one has kernel $\bigcap_{i \in I_{1}} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right)_{(n-1)}$ and the second one $\bigcap_{i \notin I_{2}} \operatorname{Ker}\left(d_{i}\right)$, where the d_{i} are face maps of $\operatorname{Fr}\left(R_{I_{1}}\right)$. Since $\operatorname{Fr}(R)$ and $\operatorname{Fr}\left(R_{I_{1}}\right)$ are both aspherical, elements of the second kernel can be lifted to elements of $\bigcap_{i \notin I_{2}} \operatorname{Ker}\left(d_{i}\right)$, where the d_{i} are face maps of $\operatorname{Fr}(R)$.

For the $(m+n)$-tuple to be normal it suffices that the intersections of the images of the $m+n$ ideals are preserved under the maps on the edges of the induced $(m+n)$ cube. These are the homomorphisms

$$
\operatorname{Fr}\left(R_{J}\right)_{l} \rightarrow \mathbf{F r}\left(R_{J \cup\{k\}}\right)_{l},
$$

where $J \subseteq \underline{m}, k \in \underline{m} \backslash J$ and $l \in[n-1]$, and also the face maps

$$
d_{i}: \mathbf{F r}\left(R_{J}\right)_{p} \rightarrow \mathbf{F r}\left(R_{J}\right)_{p-1},
$$

where $p \in[n-1]$ and $0 \leq i \leq p$. Without loss of generality we may assume that $J=\underline{m}, l=n-1$ and $p=n-1$.

Because the m-cube $J \mapsto \operatorname{Fr}\left(R_{J}\right)$ is dimensionwise split we have short exact sequences

$$
0 \rightarrow \bigcap_{i \in I \cup\{k\}} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right) \rightarrow \bigcap_{i \in I} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right) \rightarrow \bigcap_{i \in I} \operatorname{Fr}\left(R / \mathfrak{a}_{k}, \overline{\mathfrak{a}}_{i}\right) \rightarrow 0
$$

of aspherical simplicial rings. It follows that for all $J \subseteq[n-1]$ we have

$$
\bigcap_{i \in I} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right)_{n-1} \cap \bigcap_{j \in J} \operatorname{Ker}\left(d_{j}\right)=\bigcap_{j \in J} \operatorname{Ker}\left(d_{j}^{\prime}\right),
$$

where the d_{j}^{\prime} are the face maps of $\bigcap_{i \in I} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right)$. Under $\operatorname{Fr}(R) \rightarrow \operatorname{Fr}\left(R / \mathfrak{a}_{k}\right)$ this maps onto

$$
\bigcap_{j \in J} \operatorname{Ker}\left(d_{j}^{\prime \prime}\right)=\bigcap_{i \in I} \operatorname{Fr}\left(R / \mathfrak{a}_{k}, \overline{\mathfrak{a}}_{i}\right)_{n-1} \cap \bigcap_{j \in J} \operatorname{Ker}\left(d_{j}^{\prime \prime \prime}\right),
$$

where the $d_{j}^{\prime \prime}$ are the face maps of $\bigcap_{i \in I} \operatorname{Fr}\left(R / \mathfrak{a}_{k}, \overline{\mathfrak{a}}_{i}\right)$ and $d_{j}^{\prime \prime \prime}$ those of $\bigcap_{i \in I} \operatorname{Fr}\left(R / \mathfrak{a}_{k}\right)$.
Because the simplicial rings $\bigcap_{i \in I} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right)$ are aspherical also the face maps $d_{i}: \operatorname{Fr}(R)_{n-1} \rightarrow \mathbf{F r}(R)_{n-2}$ preserve intersections

$$
\bigcap_{i \in I} \operatorname{Fr}\left(R, \mathfrak{a}_{i}\right)_{n-1} \cap \bigcap_{j \in J} \operatorname{Ker}\left(d_{j}\right) .
$$

Theorem 2. Let $A=\left(R, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right) \in \mathcal{R}$. Then for all $n \geq 0$ it follows from the axioms (MK1) and (MK2) that $K_{n}(A)$ is naturally isomorphic to K_{0} of the following object of \mathcal{R}_{m+n} :

$$
\left(\operatorname{Fr}(R)_{n-1}, \operatorname{Fr}\left(R, \mathfrak{a}_{1}\right)_{n-1}, \ldots, \operatorname{Fr}\left(R, \mathfrak{a}_{m}\right)_{n-1}, \operatorname{Ker}\left(d_{0}\right), \ldots, \operatorname{Ker}\left(d_{n-1}\right)\right)
$$

From axiom (MK3) it then follows that $K_{n}(A)$ is determined. So (MK1), (MK2) and (MK3) can be taken as axioms for the (multirelative) K-theory of rings.

Proof. The proof follows from the following three lemmas.
Lemma 7.1. Let $m \geq-1$ and $q, n \geq 0$. Then

$$
K_{q}\left(\operatorname{Fr}(R)_{n}, \operatorname{Fr}\left(R, \mathfrak{a}_{1}\right)_{n}, \ldots, \operatorname{Fr}\left(R, \mathfrak{a}_{m}\right)_{n}\right)=0
$$

Proof. Since for $m \geq 0$ the $(m-1)$-tuples $D(A)$ and $M(A)$ are of the same type, the proof reduces by (MK1) to the case $m=-1$. For $m=-1$ the lemma follows from (MK2).

Put

$$
A[n, p]=\left(\mathbf{F r}(R)_{n}, \mathbf{F r}\left(R, \mathfrak{a}_{1}\right)_{n}, \ldots, \mathbf{F r}\left(R, \mathfrak{a}_{m}\right)_{n}, \operatorname{Ker}\left(d_{0}\right), \ldots, \operatorname{Ker}\left(d_{p}\right)\right)
$$

where $-1 \leq p \leq n$. It is an object of \mathcal{R}_{m+p+1}.
Lemma 7.2. For all $p<n$ and all $q>0$ we have

$$
K_{q}(A[n, p])=0
$$

Proof. For $p \geq 0$ we have

$$
D(A[n, p])=A[n, p-1] \quad \text { and } \quad M(A[n, p])=A[n-1, p-1] .
$$

By (MK1) the problem reduces to the case $p=-1$, which is covered by the previous lemma.

Lemma 7.3. For all $q, n \geq 0$ we have

$$
K_{q}(A[n, n]) \cong K_{q+1}(A[n-1, n-1]) .
$$

Proof. This follows from (MK1) and the previous lemma.
From this lemma the theorem follows:

$$
K_{n}(A)=K_{n}(A[-1,-1]) \cong K_{n-1}(A[0,0]) \cong \cdots \cong K_{0}(A[n-1, n-1])
$$

References

[1] Bloch, S. and S. Lichtenbaum, A Spectral Sequence for Motivic Cohomology, preprint (K-theory Preprint Archives 62, 1995 Mar 3).
[2] Dayton, B.H. and C.A. Weibel, A spectral sequence for the K-theory of affine glued schemes, in "Algebraic K-theory", Proceedings Evanston 1980, Lecture Notes in Mathematics 854, Springer-Verlag, Berlin, 1981.
[3] Keune, Frans, Nonabelian derived functors and algebraic K-theory, in "Algebraic K-theory," Vol. I, Proceedings Seattle 1972, Lecture Notes in Mathematics 341, Springer-Verlag, Berlin, 1973.
[4] Levine, Marc, The Weight Two K-Theory of Fields, K-Theory 9, 443-501 (1995).

Frans Keune
Department of Mathematics
University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands
keune@sci.kun.nl

