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Abstract. In 1980, Lusztig posed the problem of showing the existence of

a unipotent support for the irreducible characters of a �nite reductive group

G(F

q

). This is de�ned in terms of certain average values of the irreducible

characters on unipotent classes. The problem was solved by Lusztig [16]

for the case where q is a power of a su�ciently large prime. In this paper

we show that, in general, these average values can be expressed in terms of

the Green functions of G. In good characteristic, these Green functions are

given by polynomials in q. Combining this with Lusztig's results, we can

then establish the existence of unipotent supports whenever q is a power of

a good prime.

1991 Mathematics Subject Classi�cation: Primary 20C33, secondary 20G40.

1 Introduction

Let G be a connected reductive group de�ned over the �nite �eld with q elements,

and let F : G ! G be the corresponding Frobenius map. We are interested in the

average values of the irreducible characters of the �nite group of Lie type G

F

on the

F -�xed points of F -stable unipotent classes of G. In 1980, Lusztig [9] has stated the

following problem.

Problem 1.1 Let � be an irreducible character of G

F

. Show that there exists a unique

F -stable unipotent class C of maximal possible dimension such that the average value

of � on C

F

is non-zero, that is,

r

X

j=1

[G

F

: C

G

(u

j

)

F

] �(u

j

) 6= 0;

where u

1

; : : : ; u

r

2 G

F

are representatives for the G

F

-conjugacy classes contained

in C

F

and C

G

(u

j

) denotes the centralizer of u

j

. If this is the case, we call C the

unipotent support of �.
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294 Meinolf Geck

In 1992, Lusztig [16] addressed this problem in the framework of his theory of

character sheaves and its application to Kawanaka's theory [8] of generalized Gelfand-

Graev representations. In this context, one is lead to consider the following related

question.

Problem 1.2 Let � be an irreducible character of G

F

. Show that there exists a unique

F -stable unipotent class C of maximal possible dimension such that

r

X

j=1

[A(u

j

) : A(u

j

)

F

] �(u

j

) 6= 0;

where A(u

j

) denotes the group of components of C

G

(u

j

).

Assuming that q is a su�ciently large power of a su�ciently large prime p, Lusztig

proves in [16], (9.11), a formula which expresses a `modi�ed' average value as above

in terms of the scalar products of the Alvis{Curtis{Kawanaka dual of � with the

characters of the various generalized Gelfand-Graev representations corresponding

to C. (The bound on p comes from the condition that, roughly speaking, one wants

to operate with the Lie algebra of G as if it were in characteristic 0.) It is then an

easy consequence of [16], Theorem 11.2, that Problem 1.2 has a positive solution.

Using the results in [16] and [6], we shall prove in Proposition 2.5 below a for-

mula which expresses an average value as in Problem 1.1 in similar terms as above.

Then the solution of Problem 1.1

1

also is an easy and formally completely analogous

consequence of [16], Theorem 11.2. For this argument we have to assume, as in [loc.

cit.], that q and p are large enough. It is one purpose of this paper to show that this

condition on p can be relaxed so that Problem 1.1 and Problem 1.2 have a positive

solution (and yield the same unipotent class) whenever p is a good prime for G. It

may be true that, eventually, no condition on p will be needed but this seems to

require some new arguments. (I have checked, using [19], that things go through for

exceptional groups in characteristic p 6= 2. A more detailed discussion of the bad

characteristic case appears in [7], where it is shown that Problem 1.2 always has a

positive solution { Problem 1.1 in bad characteristic remains open.)

The idea of our argument is as follows. It is clear that an average value as in

Problem 1.1 is given by the scalar product of � with the class function f

C

on G

F

such

that

f

C

(g) =

�

jG

F

j if g 2 C

F

;

0 if g 2 G

F

n C

F

:

A similar interpretation can also be given for the modi�ed average value in Prob-

lem 1.2, using the class function f

0

C

on G

F

with support on C

F

and such that

f

0

C

(u

j

) = [A(u

j

) : A(u

j

)

F

]jC

G

(u

j

)

F

j for 1 � j � r;

where (as above) u

1

; : : : ; u

r

2 C

F

are representatives for the G

F

-classes contained

in C

F

.

The statement concerning f

C

in the following result was already conjectured by

Lusztig in [9], (2.16). For large p, it follows easily from the results on Green functions

in [17] (see also Kawanaka [8], (1.3.8)).

1

Lusztig has informed me that this solution was known to him, but it was not included in [16]
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Proposition 1.3 The functions f

C

and f

0

C

are uniform, that is, they can be written

as linear combinations of various Deligne-Lusztig generalized characters R

G

T;�

.

The proof of this result in (3.6) below will be based on Proposition 3.5, where we

show that the known algorithm for computing the ordinary Green functions in [17]

works without any restriction on p and q. This may also be of independent interest. It

uses heavily the description of this algorithm in terms of Lusztig's character sheaves

in [13], Section 24. The (mild) restrictions on p in [loc. cit.] can be removed by using

Shoji's results [18] on cuspidal character sheaves in bad characteristic and the fact,

also proved in [18], that the ordinary Green functions of G

F

always coincide with

those de�ned in terms of character sheaves.

It then follows that in order to compute our average values we only need to

consider the uniform projection of �. We can also reduce to the case where G has

a connected center and is simple modulo its center, see Lemmas 5.1 and 5.2. Then

our average values can be expressed as linear combinations of Green functions of G

F

where the coe�cients are `independent of q', by [11], Main Theorem 4.23. Up to this

point we don't need any assumption on p or q.

Let now q be a power of a prime p which is good for G. Recall that this is the

case if p is good for each simple factor involved in G, and that the conditions for the

various simple types are as follows.

A

n

: no condition;

B

n

; C

n

; D

n

: p 6= 2;

G

2

; F

4

; E

6

; E

7

: p 6= 2; 3;

E

8

: p 6= 2; 3; 5:

Then the Green functions of G

F

are given by evaluating certain well-de�ned polyno-

mials at q (see [17]), and we obtain a similar statement for our average values. We can

then replace a given q by a power of a larger prime p for which the results in [16] are

applicable and thus deduce results about these average value polynomials being zero

or not. Finally, we deduce from the formulae in Proposition 2.5 that our polynomials

have the property that if one of them is non-zero then its evaluation at every prime

power is non-zero. The details and the precise formulation of this argument can be

found in Section 4, especially Proposition 4.4. Then the main result of this paper will

be established in Section 5.

Theorem 1.4 Assume that q is a power of a good prime p for G. Let � be an

irreducible character of G

F

.

(a) Both Problem 1.1 and Problem 1.2 have a positive solution for �, and they yield

the same unipotent class, C say.

(b) The p-part in the degree of � is given by q

d

where d is the dimension of the

variety of Borel subgroups of G containing a �xed element in C.

The characterization of the p-part of � in terms of C was also conjectured in [9].

Lusztig [16] proves the following re�nement (again assuming that q is a power of a

large enough prime): Let g 2 G

F

be any element such that �(g) 6= 0. Then the

unipotent part of g lies in the unipotent support C of � or in a unipotent class of
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strictly smaller dimension than C. Note that it is not clear how to pass from results

about the vanishing or non-vanishing of individual character values to results about

the non-vanishing of average values.

We remark that, as far as this re�nement is concerned, the situation de�nitely

is di�erent in the bad characteristic case. Consider, for example, the simple group G

of type G

2

de�ned over a �nite �eld of characteristic 3. Let C be the class of regular

unipotent elements. Then there exist unipotent characters of G

F

which are non-zero

on some element in C

F

but whose average value on C

F

is zero (see the character

table in [5]).

Completing earlier results of Lusztig's (see [14]), A.-M. Aubert [1] has shown

that such a re�nement holds for classical groups in good characteristic and with g

unipotent. For that purpose, one has to use the full power of the theory of character

sheaves and Shoji's proof of Lusztig's conjecture about almost characters and charac-

teristic functions of character sheaves (see [18]). I have checked that this also works

for exceptional groups in good characteristic. This will be discussed elsewhere.

I thank A.-M. Aubert for carefully reading earlier versions of this paper.

2 Generalized Gelfand-Graev representations and average values

Let G be a connected reductive group de�ned over F

q

, with corresponding Frobenius

map F . All of our characters and class functions will have values in an algebraic

closure of Q

l

, where l is prime not dividing q. If f; f

0

are two class functions on G

F

we denote by

(f; f

0

) :=

1

jG

F

j

X

g2G

F

f(g)f

0

(g)

their usual hermitian product, where x 7! �x is a �eld automorphism which maps roots

of unity to their inverses. We denote by G

uni

the set of unipotent elements in G. For

each element g 2 G we let C

g

denote the G-conjugacy class of g. There is a canonical

partial order on the set of unipotent classes of G: if C;C

0

are two such classes we

write C � C

0

if C is contained in the Zariski closure of C

0

. We write C < C

0

if C � C

0

but C 6= C

0

.

2.1 Unipotently supported class functions on G

F

Let C be an F -stable unipotent class in G. Let u 2 C

F

and A(u) be the group of

components of C

G

(u). If we twist u with any element y 2 A(u) we obtain an element

u

y

2 C

F

, well-de�ned up to G

F

-conjugacy. If we choose representatives for the F -

conjugacy classes of A(u) we obtain in this way a full set of representatives of the

G

F

-classes contained in C

F

; denote such a set of representatives by u

1

; : : : ; u

r

2 C

F

,

where we let u

1

= u.

Let I(C)

F

be the set of pairs i = (C;E) where E is an irreducible representation

of A(u) over

�

Q

l

(given up to isomorphism) for which there exists an automorphism

�

E

: E ! E of �nite order such that �

E

� y = F (y) � �

E

for all y 2 A(u). We de�ne

a class function Y

i

: G

F

!

�

Q

l

by

Y

i

(g) =

�

Trace(�

E

� y; E) if g is G

F

-conjugate to u

y

for some y 2 A(u),

0 otherwise.
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These functions form a basis of the space of class functions of G

F

with support on C

F

.

(Note that they are only well-de�ned up to non-zero scalar multiples.) For each j let

a

j

:= jA(u

j

)

F

j. The order of A(u

j

) is independent of j; we denote it by a. With this

notation we have the following orthogonality relations:

r

X

j=1

a

a

j

Y

i

(u

j

)Y

i

0

(u

j

) = a�

ii

0

and

X

i2I

0

(C)

F

Y

i

(u

j

)Y

i

(u

j

0

) = a

j

�

jj

0

;

for all i; i

0

2 I(C)

F

, or all 1 � j; j

0

� r, respectively.

The trivial module for A(u) always satis�es the above condition. The corre-

sponding pair will be denoted i

0

= (C;

�

Q

l

), and the isomorphism �

E

can be chosen

so that the function Y

i

0

is identically 1 on C

F

. Thus, we have

f

C

= jG

F

jY

i

0

with i

0

= (C;

�

Q

l

):

On the other hand, using the de�nition of f

0

C

and the above orthogonality relations

we compute that

(f

0

C

; Y

i

) = a�

i;i

0

for all i 2 I(C)

F

:

Note that these relations determine f

0

C

uniquely.

2.2 GGGR's

Recall that if q is a power of a good prime for G then Kawanaka [8] has de�ned

generalized Gelfand-Graev representations (GGGR's for short) for every unipotent

class in G

F

. (Usually, we will identify a GGGR with its character.) Very roughly, this

is done as follows. Let C be an F -stable unipotent class in G. Using the corresponding

weighted Dynkin diagram we can associate with C a pair of unipotent subgroups

U

2

� U

1

where U

1

is the unipotent radical of an F -stable parabolic subgroup P of G

and U

2

is an F -stable closed normal subgroup in P . Furthermore, C \ U

2

is dense

in U

2

and the centralizer in G of any element u 2 U

2

\ C is already contained in P .

(Note that Kawanaka [8] has checked that these statements indeed are true whenever

the characteristic is good.) Hence the subgroup U

F

2

contains representatives for all

G

F

-classes in C

F

. Using a Killing type form on U

2

we can associate with each such

representative u 2 C \ U

F

2

a certain linear character �

u

of U

F

2

such that

Ind

G

F

U

F

2

(�

u

) = [U

F

1

: U

F

2

]

1=2

�

u

;

where �

u

is the GGGR associated with u. With the notation in (2.1), we can assume

that u

j

2 U

2

for 1 � j � r. As in [16], (7.5), we de�ne the following `twisted' version

of GGGR's:

�

i

=

r

X

j=1

a

a

j

Y

i

(u

j

)�

u

j

for i 2 I(C)

F

:

2.3 Basic properties of GGGR's

We shall need two basic properties of GGGR which we now explain. Denote by D

G

the Alvis{Curtis{Kawanaka duality operation on the character ring of G

F

.
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Assume that p and q are large enough so that the results in [16] are applicable.

(a) For all g 2 G

F

uni

we have

D

G

(�

i

)(g) 6= 0 ) C � C

g

:

(b) For all i; i

0

2 I(C)

F

we have

(D

G

(�

i

); Y

i

0

) = a�

0

i

q

d

i

�

i;i

0

where �

0

i

is a certain 4-th root of unity and d

i

is half a certain integer.

Proofs of (a) and (b) can be obtained by combining [16], (8.6), with [16], (6.13)(i),

and (6.13)(iii), respectively. Properties (a) and (b) are also contained in [6], Corol-

lary 3.6(b) and Lemma 3.5. (Actually, the formula in the latter reference involves a

certain function X

i

0

instead of Y

i

0

, but X

i

0

is zero on all elements g 2 G

F

uni

unless

C

g

� C and coincides with Y

i

0

on C

F

; using (a) we can therefore take Y

i

0

.) Note

also that in [16] it is generally assumed that G is a split group, and the results in

[6] referred to above are also proved under this assumption. However, by [16], (8.7),

everything goes through for non-split groups as well, with only minor changes. Es-

pecially, properties (a) and (b) remain valid. Finally, we have the following special

property of the numbers �

0

, d

i

appearing in (b).

(c) If i

0

= (C;

�

Q

l

) then �

0

i

0

= 1 and d

i

0

= �d where d is the dimension of the variety

of Borel subgroups of G containing u.

For the proof see [6], Lemma 3.5, and the remarks concerning equation (a) in the

proof of [16], Theorem 11.2. We also use the formula dimG� dimC = rank(G) + 2d

(see [3], Theorem 5.10.1).

Lemma 2.4 Assume that p and q are large enough so that the results in [16] are

applicable. Let f

C

and f

0

C

be the functions introduced in Section 1. Then the following

hold.

f

C

(g) = q

d

r

X

j=1

[G

F

: C

G

(u

j

)

F

]D

G

(�

u

j

)(g) for all g 2 C

F

;

f

0

C

(g) = q

d

D

G

(�

i

0

)(g) = q

d

r

X

j=1

a

a

j

D

G

(�

u

j

)(g) for all g 2 C

F

:

Proof. Let i 2 I(C)

F

and Y

i

the corresponding class function as in (2.1). Since the

various functions Y

i

form a basis of the space of class functions on G

F

with support

on C

F

it will be su�cient to show that the scalar product of Y

i

with the left and right

hand sides of the above expressions are equal.

Consider at �rst f

C

. The scalar product with the left hand side is just (f

C

; Y

i

).

On the other hand, using the orthogonality relations in (2.1), we conclude that

�

u

j

=

1

a

X

i

0

2I(C)

F

Y

i

0

(u

j

)�

i

0

for all 1 � j � r:
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Inserting this into the expression on the right hand side we obtain that

(r.h.s.; Y

i

) = q

d

r

X

j=1

1

a

[G

F

: C

G

(u

j

)

F

]

X

i

0

2I(C)

F

Y

i

0

(u

j

)(D

G

(�

i

0

); Y

i

)

= q

d+d

i

�

0

i

r

X

j=1

[G

F

: C

G

(u

j

)

F

]Y

i

(u

j

) by (2.3)(b)

= q

d+d

i

�

0

i

(f

C

; Y

i

) by de�nition of the scalar product:

Hence it remains to prove that if (f

C

; Y

i

) 6= 0 then �

0

i

= 1 and d

i

= �d. This follows

from the fact that the set I(C)

F

can be partitioned into `blocks' according to the gen-

eralized Springer correspondence (see [16], (4.4)) and that the scalar product between

(Y

i

; Y

i

0

) is zero unless i; i

0

lie in the same block (see [16], (6.5)). Now remember that

f

C

= jG

F

jY

i

0

. Hence, if (f

C

; Y

i

) 6= 0 then i lies in the same block as i

0

. In this case,

�

0

i

= �

0

i

0

and d

i

= d

i

0

by [6], Lemma 3.5. So we are done by (2.3)(c).

Now consider f

0

C

. By (2.1) we have (f

0

C

; Y

i

) = a�

i;i

0

. The scalar product with

the right hand side evaluates to the same expression using (2.3)(b) and (c).

Proposition 2.5 (Cf. [16], (9.11)) Assume that p and q are large enough so that

the results in [16] are applicable. Let � be an irreducible character of G

F

such that

(*) �(g) = 0 for all g 2 G

F

uni

with C < C

g

.

Then we have

(�; f

C

) =

r

X

j=1

[G

F

: C

G

(u

j

)

F

] �(u

j

) = q

d

r

X

j=1

[G

F

: C

G

(u

j

)

F

] (�

u

j

; D

G

(��));

(�; f

0

C

) =

r

X

j=1

[A(u) : A(u

j

)

F

] �(u

j

) = q

d

r

X

j=1

[A(u) : A(u

j

)

F

] (�

u

j

; D

G

(��)):

Since these expressions are rational integers the above formulae are also valid with �

instead of �� on the right hand side.

Proof. It is clear that in order to evaluate the left hand sides of the above expressions

we only need to know the values of � on C

F

. Let us check that the same also holds

for the expressions on the right hand side. We start by looking at the scalar product

of �� with D

G

(�

i

), for i 2 I(C)

F

, that is, the expression

(D

G

(�

i

); ��) =

1

jG

F

j

X

g2G

F

D

G

(�

i

)(g)�(g):

First, the sum need only be extended over g 2 G

F

uni

since �

i

, and hence also its dual,

is zero outside G

F

uni

. Now assume that g 2 G

F

uni

gives a non-zero contribution to the

above sum. On one hand, by (2.3)(a), we must have C � C

g

. On the other hand,

our assumption (*) then forces C = C

g

. Hence, in order to evaluate the above scalar

product we only need to look at the values of � and D

G

(�

i

) on C

F

. A similar remarks

holds, of course, if we consider �

u

j

instead of �

i

. Using the self-adjointness of D

G
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we can therefore conclude that the right hand sides of our desired equalities are also

determined by the restriction of � to C

F

.

To complete the proof, it remains to use the expressions for f

C

and f

0

C

which are

given in Lemma 2.4.

Corollary 2.6 (Lusztig) Assume that p and q are large enough so that the results

in [16] are applicable. Let � be an irreducible character of G

F

. Then both Problem 1.1

and Problem 1.2 have a positive solution for �, and the corresponding unipotent classes

are equal.

Proof. (Compare with the argument in the last part of the proof of [16], Theo-

rem 11.2.) Let �

0

be the irreducible character such that �

0

= �D

G

(�). By [16],

Theorem 11.2, there exists an F -stable unipotent class C such that the following two

conditions hold (among others).

(1) There exists some u 2 C

F

such that (�

u

; �

0

) 6= 0.

(2) If C

0

is an F -stable unipotent class such that �(g) 6= 0 for some g 2 C

0

F

then

dimC

0

� dimC with equality only if C = C

0

.

We show that C satis�es the requirements for both Problem 1.1 and Problem 1.2.

If C

0

is some F -stable unipotent class such that an average value on C

0

F

as in

Problem 1.1 or Problem 1.2 is non-zero then � has a non-zero value on some element

in C

0

F

and (2) implies that dimC

0

� dimC.

Recall that our average values are given by (�; f

C

) and (�; f

0

C

), respectively. It

remains to prove that these two scalar products are non-zero. By (2), assumption (*)

in Proposition 2.5 is satis�ed. So we have

(�; f

C

) = �q

d

X

j

[G

F

: C

G

(u

j

)

F

] (�

u

j

; �

0

);

(�; f

0

C

) = �q

d

X

j

[A(u

j

) : A(u

j

)

F

] (�

u

j

; �

0

):

In both cases all terms in the sums on the right hand sides are non-negative and at

least one of them is non-zero by (1). Hence there are no cancellations and the left

hand sides must be non-zero, too. This completes the proof.

Example 2.7 Assume that p and q are large enough so that the above results are

applicable. Let � be an irreducible character of G

F

and C its unipotent support.

The assumption (*) in Proposition 2.5 is satis�ed (see Property (2) in the proof of

Corollary 2.6). Assume that the centralizer of an element in C is connected. In this

case we have r = 1 in the formulae in Proposition 2.5 and the left and the right hand

sides contain just one summand. So we �nd that

�(u) = q

d

(�

u

; D

G

(�)):

In particular, the character value �(u) is an integer divisible by q

d

. In fact, using

a similar argument as in [6], Proposition 5.4, one can show that the scalar product

between D

G

(�) and �

u

must be �1. Hence we have

�(u) = �q

d

where the sign is such that �D

G

(�)(1) > 0:

Theorem 1.4 and the results in Section 4 will imply that this last formula holds

whenever q is a power of a good prime p. We omit further details.
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3 Average values and uniform functions

The �rst aim of this section is to prove Proposition 1.3. We then derive in Corollary 3.8

a formula for the scalar products of an irreducible character of G

F

with the functions

f

C

and f

0

C

for an F -stable unipotent class C. This will be in terms of Lusztig's

parametrization of irreducible characters in [11].

We shall now introduce some notation and recall some facts from [13] which will

be needed for the proof of Proposition 1.3. With each F -stable maximal torus T in G,

we can associate two types of Green functions: one is the ordinary Green function Q

G

T

de�ned as the restriction of a corresponding Deligne-Lusztig generalized character to

G

F

uni

; the other is a special case of a more general construction of generalized Green

functions which are de�ned in terms of characteristic functions of F -stable character

sheaves on G (see [13], (8.3.1)). Shoji has shown in [18], Theorem 5.5 (part II), that

these two types of Green functions coincide (without any restriction on p or q).

We shall need some more detailed properties about the values of Green functions.

For this purpose we take a closer look at Lusztig's algorithm in [13], Theorem 24.4, for

the computation of all generalized Green functions. The properties that we need can

be obtained from this algorithmic description. However, there is a mild restriction

on p in [loc. cit.] which comes from the fact that certain properties of character

sheaves on G are not yet established in complete generality. We will now go through

[13], Section 24, and check that everything works without any restriction on p, if

we only consider those generalized Green functions which correspond to the ordinary

Green functions. This will use in an essential way Shoji's results in [18] on cuspidal

character sheaves in bad characteristic.

3.1 The generalized Springer correspondence

Let I be the set of all pairs (C; E) where C is a unipotent class in G and E is an

irreducible G-equivariant

�

Q

l

-local system, given up to isomorphism. If i = (C; E) and

i

0

= (C

0

; E

0

) are elements in I we write i � i

0

if C � C

0

, and i � i

0

if C = C

0

. With

each pair i 2 I there is associated a triple (L;C

1

; E

1

) consisting of a Levi subgroup L

in some parabolic subgroup of G and (C

1

; E

1

) is a pair like i for L, but where E

1

is

`cuspidal' (in the sense of [12]). The pairs in I associated with a �xed triple as above

are parameterized by the irreducible characters of a groupW

G

(L;C

1

; E

1

) which is the

inertia group of the pair (C

1

; E

1

) in the normalizer of L. This correspondence is the

generalized Springer correspondence de�ned and studied in [12].

A pair i 2 I which corresponds to a triple where the Levi subgroup L is a maximal

torus, the class C

1

is the trivial class and the local system E

1

is trivial, will be called

uniform (see the remark following [13], Theorem 24.4). In this case, the inertia group

W

G

(T; f1g;

�

Q

l

) is nothing but the Weyl group of G with respect to T , and the above

correspondence reduces to Springer's original correspondence. We will denote by I

0

the subset of I consisting of uniform pairs.

Remark 3.2 Let i

0

= (C;

�

Q

l

) 2 I where

�

Q

l

denotes the trivial local system. Then

i

0

is uniform.

Proof. This is a general property of the generalized Springer correspondence. Let i =

(C; E) 2 I and B

G

u

be the variety of Borel subgroups containing a �xed element u 2 C.
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Recall from [12] that E corresponds to an irreducible representation of A(u), and that i

is uniform if and only if that representation appears with non-zero multiplicity in the

permutation representation of A(u) on the irreducible components of B

G

u

.

Now the trivial local system on C corresponds to the trivial representation

of A(u), and this certainly appears with non-zero multiplicity in any permutation

representation of A(u). Hence i

0

= (C;

�

Q

l

) is uniform.

3.3 Basic relations

The Frobenius map F acts naturally on I . An F -stable pair i = (C; E) 2 I

F

gives

rise to a pair in I(C)

F

as in (2.1) and hence to a function Y

i

(cf. the proof of [13],

(24.2.7).) This function can be extended to a function X

i

on the Zariski closure of C

by the construction in [10], (24.2.8), so that we have equations of the form

X

i

=

X

i

0

2I

F

P

i

0

;i

Y

i

0

with P

i

0

;i

2

�

Q

l

for all i; i

0

2 I

F

;

and where P

i;i

= 1 and P

i

0

;i

= 0 if i

0

6� i or if i

0

� i, i

0

6= i. Now we also have

`contragredient' versions of these functions which will be denoted by

~

X

i

and

~

Y

i

(see

[13], (24.2.12) and (24.2.13)). We have

~

Y

i

= Y

i

, see [13], (25.6,4). Correspondingly,

we have similar equations as above with coe�cients

~

P

i

0

;i

. The various class functions

introduced so far are only well-de�ned up to some scalar multiple, but [13], (24.2.1)

and (24.2.2), singles out a certain `good' normalization which we also assume chosen

here. Finally, we de�ne

�

i;i

0

:= (Y

i

; Y

i

0

) and !

i;i

0

:=

1

jG

F

j

X

g2G

F

uni

X

i

(g)

~

X

i

0

(g) for all i; i

0

2 I

F

:

As in [13], (24.3), we see that �

i;i

0

= 0 unless i � i

0

, and that the matrix (�

i;i

0

)

i;i

0

2I

F

is invertible. (The functions Y

i

form a basis of the space of class functions on G

F

uni

.)

We obtain the following basic relations:

X

i

0

1

;i

0

2

2I

F

P

i

0

1

;i

1

~

P

i

0

2

;i

2

�

i

0

1

;i

0

2

= !

i

1

;i

2

for all i

1

; i

2

2 I

F

:

Theorem 24.4 in [13] states that the coe�cients P

i

0

;i

,

~

P

i

0

;i

and �

i

0

;i

are determined by

this system of equations once the right hand side coe�cients !

i

0

;i

are known. Now,

under some mild restriction on p, the coe�cient !

i

0

;i

is given by the equation [13],

(24.3.4) (arising from a scalar product formula for characteristic functions of character

sheaves). In general, we can at least obtain the following information.

Lemma 3.4 Assume that the center of G is connected. Let i 2 I

F

0

and i

0

2 I

F

. Then

the following hold.

(i) If i

0

62 I

F

0

then !

i

0

;i

= !

i;i

0

= 0.

(ii) If i

0

2 I

F

0

then !

i

0

;i

= !

i;i

0

is a rational number.
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Proof. Given any i; i

0

2 I

F

the relevant scalar product formula for the evaluation of

P

g

X

i

(g)

~

X

i

0

(g) (sum over all g 2 G

F

uni

) can be found in [13], Theorem 10.9. Let

(L;C

1

; E

1

) and (L

0

; C

0

1

; E

0

1

) be the triples associated with i and i

0

, and K

1

, K

0

1

the

corresponding cuspidal perverse sheaves on L;L

0

, respectively. One of the assumptions

for the validity of [13], Theorem 10.9, is that K

1

and K

0

1

must be `strongly cuspidal'

(see the description of these assumptions in [13], (10.7)).

We claim that a cuspidal perverse sheaf on any group G with a connected center

is always strongly cuspidal (hence in particularK

1

and K

0

1

; note that L;L

0

also have a

connected center). This can be seen as follows. By [13], (7.1.6), it is su�cient to show

that a cuspidal perverse sheaf onG is a character sheaf. By the reduction arguments in

[13], (17.10) and (17.11), we can reduce to the case where G is simple of adjoint type.

If p is an almost good prime the result is already covered by [13], Theorem 23.1(b).

For G of type E

6

or E

7

, see [13], Proposition 20.3. It remains to consider G of type

G

2

, F

4

, E

8

. The result in this case is contained in [18], Theorem 7.3(a) in part I and

Proposition 5.3 in part II. So our claim is established.

Another assumption for the validity of [13], Theorem 10.9, is that if L;L

0

are

conjugate in G then K

1

, K

0

1

must be `clean' (see again [13], (7.7)). Now if i; i

0

2 I

0

then both L and L

0

are maximal tori and the `cleanness' is clear (we have to consider

the trivial local system on the trivial class). If one of i; i

0

is uniform and the other

is not, then one of the Levi subgroups L;L

0

is a maximal torus and the other is not,

hence the above condition is vacuous. In combination with the `good' normalization

of X

i

; X

i

0

mentioned in (3.3), this proves both (i) and (ii) (cf. [13], (24.3.5)).

Now we can state the analogue of [13], Theorem 24.4, for uniform pairs i 2 I

0

.

Proposition 3.5 Assume that the center of G is connected. Let i 2 I

F

0

and i

0

2 I

F

.

Then the following hold.

(i) P

i

0

;i

=

~

P

i

0

;i

and �

i

0

;i

= �

i;i

0

are rational numbers.

(ii) P

i

0

;i

and �

i

0

;i

are zero if i

0

62 I

F

0

.

Moreover, the coe�cients P

i

0

;i

and �

i

0

;i

(for i; i

0

2 I

F

0

) are determined from the

basic relations in (3.3) by an algorithm as described in [13], Theorem 24.4 or [17],

Remark 5.4.

Proof. This is almost completely analogous to the proof of [13], Theorem 24.4, with

some minor changes concerning the ordering of the arguments. We will go through

that proof and check that things go through as desired for uniform pairs in I

F

0

. For

any integer � consider the following two statements.

(A

�

) If i

0

= (C

0

; E

0

) 2 I

F

with dimC

0

� � and if i 2 I

F

, then P

i

0

;i

=

~

P

i

0

;i

is a rational

number if i or i

0

is uniform, and it is zero if one of i; i

0

is uniform and the other

is not.

(B

�

) If i

0

= (C

0

; E

0

) 2 I

F

with dimC

0

� � and if i 2 I

F

, then �

i

0

;i

= �

i;i

0

is a rational

number if i or i

0

is uniform, and it is zero if one of i; i

0

is uniform and the other

is not.

It is clear that these statements are true if � < 0. As in [loc. cit.] we �rst show that
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if � � 0 and (A

��1

), (B

�

) are true then (A

�

) is true.

Let us just describe this in more detail. Let i 2 I

F

and i

0

2 I

F

such that dimC

0

= �.

If i

0

6� i or if i � i

0

, i 6= i

0

then P

i

0

;i

=

~

P

i

0

;i

= 0. So we may assume that i

0

< i. From

the basic relations in (3.3) we derive, as in [loc. cit.], the following equations for any

a 2 I

F

with a � i

0

.

X

i

0

2

�i

0

~

P

i

0

2

;i

�

a;i

0

2

= !

a;i

�

X

i

0

1

<i

0

;i

0

2

�i

0

1

P

i

0

1

;a

~

P

i

0

2

;i

�

i

0

1

;i

0

2

;

X

i

0

2

�i

0

P

i

0

2

;i

�

i

0

2

;a

= !

i;a

�

X

i

0

1

<i

0

;i

0

2

�i

0

1

P

i

0

2

;i

~

P

i

0

1

;a

�

i

0

2

;i

0

1

:

We denote the right hand sides of these two equations by ~r(a) and r(a), respectively.

We claim that

(1) if a and i are uniform then r(a) = ~r(a) is a rational number, and

(2) if one of a; i is uniform and the other is not then ~r(a) = r(a) = 0.

This is proved as follows. Lemma 3.4 shows that it is su�cient to consider the sum

over i

0

1

; i

0

2

in each of the de�ning equations for r(a) and ~r(a). At �rst let us consider

r(a), and assume that there exists some i

0

1

; i

0

2

such that the corresponding term is

non-zero. Then P

i

0

2

;i

6= 0,

~

P

i

0

1

;a

6= 0, and �

i

0

2

;i

0

1

6= 0. For each of these terms we

can apply (A

��1

) or (B

��1

). If one of a; i is uniform and the other is not we obtain

a contradiction; while if both of a; i are uniform we obtain a summand which is a

rational number. We can argue similarly for ~r(a). Moreover, if both a and i are

uniform this analysis shows that r(a) = ~r(a) is a rational number. Our claim is

proved.

We have already mentioned above that the matrix of coe�cients (�

a;a

0

) (where

a; a

0

2 I

F

, a � a

0

� i

0

) is invertible. Let (�

0

a;a

0

) be the coe�cients in the inverse of

this matrix. Then we obtain that

~

P

i

0

;i

=

X

i

0

2

�i

0

~

P

i

0

2

;i

 

X

a�i

0

�

0

i

0

;a

�

a;i

0

2

!

=

X

a�i

0

~r(a)�

0

i

0

;a

;

P

i

0

;i

=

X

i

0

2

�i

0

P

i

0

2

;i

 

X

a�i

0

�

i

0

2

;a

�

0

a;i

0

!

=

X

a�i

0

r(a)�

0

a;i

0

:

By (B

�

) we know that �

a;a

0

is zero if one of a; a

0

is uniform and the other is not;

moreover, �

a;a

0

= �

a

0

;a

is a rational number if both a; a

0

are uniform. It follows that

the matrix of coe�cients (�

0

a;a

0

) has the analogous properties. Hence, if i

0

is uniform

(respectively, not uniform) we can restrict the above sums to those a which are also

uniform (respectively, not uniform).

Now assume that both i; i

0

are uniform. As we have just seen, we can assume

that a in the above sums is uniform, and then r(a) = ~r(a) by (1). Moreover, �

0

i

0

;a

=

�

0

a;i

0

is a rational number. Hence also P

i

0

;i

=

~

P

i

0

;i

is a rational number.

Next assume that i is uniform and i

0

is not uniform. We can now assume that a

in the above sums is not uniform. By (2), we know that then both r(a) and ~r(a) are
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zero. Hence P

i

0

;i

=

~

P

i

0

;i

= 0. A similar argument shows that this is also the case if i

0

is uniform and i is not uniform. This completes the proof of (A

�

).

In a completely similar way, we can also prove that

if � � 0 and (A

��1

), (B

��1

) are true then (B

�

) is true.

We can then proceed as in [loc. cit.] to complete the proof.

3.6 Uniform pairs and uniform functions

We claim that (without any assumptions on the center of G or on p, q)

(a) the pair i 2 I

F

is uniform (cf. (3.1)) if and only if Y

i

is a uniform function,

and

(b) we have �

i;i

0

= (Y

i

; Y

i

0

) = 0 if one of i; i

0

2 I

F

is uniform and the other is not.

Before we prove this let us check that this implies Proposition 1.3.

Let C be an F -stable unipotent class and i

0

= (C;

�

Q

l

) 2 I

F

. By Remark 3.2 we

know that i

0

is uniform. By (2.1) we have f

C

= jG

F

jY

i

0

(for a suitable normalization)

hence (a) implies that this is a uniform function and we are done. Now consider f

0

C

.

We can write f

0

C

=

P

i

b

i

Y

i

where the sum is over all i 2 I(C)

F

and b

i

2

�

Q

l

. By the

orthogonality relations in (2.1) we have

a�

i

0

;i

0

= (f

0

C

; Y

i

0

) =

X

i2I(C)

F

b

i

(Y

i

; Y

i

0

) =

X

i2I(C)

F

b

i

�

i;i

0

for all i

0

2 I(C)

F

:

The matrix (�

i;i

0

) (where i

0

; i 2 I(C)

F

) is invertible. Let (�

0

i;i

0

) denote its inverse.

Then the above equations imply that b

i

= a�

0

i

0

;i

. Now (b) shows that �

i;i

0

= 0 if one

of i

0

; i is uniform and the other is not. The coe�cients �

0

i;i

0

in the inverse matrix then

have the analogous property. Since i

0

is uniform we conclude that b

i

= 0 unless i is

uniform. Hence f

0

C

is uniform. This completes the proof of Proposition 1.3.

We now prove (a). Recall that a class function on G

F

uni

is uniform if and only it is

a linear combination of the Green functions of G

F

. Since the functions fY

i

j i 2 I

F

g

form a basis of the space of class functions on G

F

uni

it will therefore be su�cient to

show that the Green functions can be expressed as linear combinations of the functions

fY

i

j i 2 I

F

0

g and vice versa.

Assume at �rst that G has a connected center. By Proposition 3.5, we can write

X

i

=

X

i

0

2I

F

0

P

i

0

;i

Y

i

0

for all i 2 I

F

0

:

If we choose a total order on I

0

which re�nes the order relation i

0

� i, we see that the

matrix of coe�cients P

i

0

;i

has a triangular shape with 1's along the diagonal. Hence

these equations can be inverted, and every Y

i

(for i 2 I

F

0

) can be expressed as a linear

combination of the functions X

i

0

, for various i

0

2 I

F

0

.

By [13], (10.4.5), and the character formula in [13], Theorem 8.5, a functionX

i

for

which i 2 I

F

is uniform can be expressed as a linear combination of generalized Green

functions corresponding to various F -stable maximal tori in G. (This is because i is

uniform; otherwise, one would have to use generalized Green functions corresponding
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to Levi subgroups in G which are not maximal tori.) But now [18], Theorem 5.5

(part II), states that these generalized Green functions (corresponding to maximal

tori) coincide with the ordinary Green functions of G

F

. Moreover, this can be reversed

and hence every Green function is a linear combination of the functions fX

i

j i 2 I

F

0

g.

Combining this with the above relations among the X

i

and Y

i

we see that, indeed,

the Green functions can be expressed in terms of the functions fY

i

j i 2 I

F

0

g and vive

versa.

If the center of G is not connected let � : G! G

0

be a regular embedding. Recall

from [15] that this means that � is a homomorphism of connected reductive groups over

F

q

such that G

0

has a connected center, � is an isomorphism onto a closed subgroup of

G

0

, and �(G); G

0

have the same derived subgroup. To simplify notation, we identify G

and its image �(G).

The embedding G � G

0

de�nes a bijection between the F -stable unipotent classes

in G and in G

0

. Let u 2 C

F

and consider the canonical quotient C

G

0

(u) ! A

G

0

(u).

Since G

0

= GZ(G

0

) the restriction of this map to C

G

(u) de�nes a surjective map

A

G

(u) ! A

G

0

(u) whose kernel is given by the image of Z(G) in A

G

(u). Via this

surjection (which is compatible with the action of F ) we also obtain a canonical

injective map I

G

0

(C)

F

! I

G

(C)

F

. Since this holds for all F -stable unipotent classes

C we obtain an injective map I

F

G

0

! I

F

G

. The characterization of uniform pairs in

terms of multiplicities in permutation representations as in the proof of Remark 3.2

immediately shows that i 2 I

F

G

certainly is uniform if i is the image of a uniform pair

in I

F

G

0

under this map. On the other hand the number of uniform pairs in I

F

G

is always

given (via the Springer correspondence) by the number of irreducible characters of

the Weyl groupW which are invariant under the action of F . Since the latter number

is the same for G and G

0

we conclude that the uniform pairs in I

F

G

are precisely the

images of the uniform pairs in I

F

G

0

.

It follows from the de�nitions that for all i 2 I

F

G

0

we have

Res

G

0

G

(Y

G

0

i

) = Y

G

i

where we also regard i as an element in I

F

G

:

Now it is also known (see [17]) that the Green functions for G

F

are the restrictions

of the Green functions for G

0

F

. Hence we can use the results from the connected

center case to conclude that the Green functions of G

F

are linear combinations of the

functions fY

G

i

j i 2 I

F

G

uniformg and vice versa. This completes the proof of (a).

Finally, let us consider (b). If the center of G is connected then this is already

contained in Proposition 3.5(ii). If the center of G is not connected we use a regular

embedding G � G

0

as above. Recall that we then have a surjective map A

G

(u) !

A

G

0

(u) with kernel given by the image of Z(G) in A

G

(u). Using the de�nitions this

easily implies that (Y

i

; Y

i

0

) = 0 if one of i; i

0

2 I

F

G

lies in the image of the map

I

F

G

0

! I

F

G

and the other does not. This implies (b), and the proof is complete.

3.7 Series of irreducible characters

We assume for the rest of this section that the center of G is connected. (We will see

in Section 5 that this is no loss of generality as far as Problem 1.1 and Problem 1.2

are concerned.) Let T � G be an F -stable maximal torus contained in some F -stable

Borel subgroup of G, and W be the Weyl group of G with respect to T . Let G

�

be a

group dual to G (see [11], (8.4)). Then G

�

is also de�ned over F

q

and we denote again
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by F the corresponding Frobenius map. We can identify W with the Weyl group of

an F -stable maximal torus T

0

� G

�

dual to T ; note that the actions of the Frobenius

maps of G and G

�

on W are inverse to each other.

(a) Let s 2 T

0

be a semisimple element such that the G

�

-conjugacy class of s

is F -stable. Let W

s

be the stabilizer of s in W . Then W

s

is a reection subgroup

of W . Let w

1

2 W be the unique element of minimal length in the coset Z

s

= fw 2

W j F (s) = w(s)g. Then we have an induced automorphism  : W

s

!W

s

de�ned by



�1

(w) = F (w

1

ww

�1

1

) for all w 2W

s

(see [11], (2.15) and the remarks in [11], p.258).

Let

�

X(W

s

; ) be the parameter set de�ned in [11], (4.21.12); this set only depends on

W

s

and .

(b) If s 2 T

0

is as in (a), we let

~

W

s

=W

s

h�i be the semidirect product of W and

the cyclic group h�i with generator � such that �w�

�1

= (w) for all w 2W

s

. Let  

be an irreducible character of W

s

which can be extended to

~

W

s

; we �x one possible

extension of  and denote it by

~

 . As in [11], (3.7), we de�ne

R

s

[

~

 ] :=

1

jW

s

j

X

w2W

s

~

 (�w)R

G

T

w

1

w

;�

s

;

where T

w

1

w

� G is an F -stable maximal torus obtained from T by twisting with

w

1

w and �

s

is an irreducible character of T

F

w

1

w

in `duality' with s. (This `duality' is

described in [11], proof of Lemma 6.2 and the remarks on p.257.)

(c) The irreducible characters of G

F

are divided into series corresponding to

conjugacy classes of F -stable semisimple elements in G

�

. If s 2 T

0

is as in (a), we

denote by E

s

the corresponding series. By [11], Main Theorem 4.23, there exists a

bijection

E

s

$

�

X(W

s

; ); �$ �x

�

;

such that the scalar product

(�;R

s

[

~

 ])

is a rational number depending only on w

1

W

s

,  , and �x

�

2

�

X(W

s

; ). Let us denote

this number by a(w

1

W

s

;  ; �x

�

).

(d) Consider the special case where s = 1. Then W

s

=W , w

1

= 1 and � is given

by the action of F . We denote by Irr(W )

F

the set of irreducible characters of W

which can be extended to

~

W , and we assume chosen once and for all a �xed extension

for such a character. The corresponding functions R

s

[

~

�] will be denoted by Q

�

, where

� 2 Irr(W )

F

. (These are the same as the functions in [17], Remark 5.5(i).)

With this notation we can now state the following result, which expresses our

average values as linear combinations of Green functions with coe�cients `independent

of q'.

Corollary 3.8 Assume that the center of G is connected. Let s 2 T

0

be as in

(3.7a) and � 2 E

s

. Let C be an F -stable unipotent class in G and u

1

; : : : ; u

r

be

representatives for the G

F

-classes contained in C

F

. Then there exists constants
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b(w

1

W

s

; �; �x

�

) 2

�

Q

l

(depending only on w

1

W

s

; �; �x

�

) such that

(�; f

C

) =

r

X

j=1

X

�

[G

F

: C

G

(u

j

)

F

] b(w

1

W

s

; �; �x

�

)Q

�

(u

j

);

(�; f

0

C

) =

r

X

j=1

X

�

[A(u

j

) : A(u

j

)

F

] b(w

1

W

s

; �; �x

�

)Q

�

(u

j

);

where in both formulae the second sum is over all � 2 Irr(W )

F

.

Proof. Let �

unif

denote the uniform projection of �. By Proposition 1.3 we know that

f

C

and f

0

C

are uniform. Hence we can replace � by �

unif

in order to evaluate the

scalar products with f

C

and f

0

C

.

The various functions R

s

[

~

 ] have norm 1 and are mutually orthogonal. The

uniform projection of � is given by projecting � on the space generated by the various

R

s

[

~

 ]. Hence we have

�

unif

=

X

 

a(w

1

W

s

;  ; �x

�

)R

s

[

~

 ]

where the sum is over all irreducible characters  ofW

s

which can be extended to

~

W

s

.

We insert the de�ning equation for R

s

[

~

 ] and note that the value of a Deligne-Lusztig

generalized character at a unipotent element is the value of the corresponding Green

function. Now the Green functions for G

F

can be re-written in terms of the functions

Q

�

, where � 2 Irr(W )

F

and where the coe�cients are given by the entries in the

inverse of the matrix of values (

~

�(Fw)). This yields the above expressions for the

average values.

Finally note that the coe�cients in these linear combinations involve the con-

stants a(w

1

W

s

;  ; �x

�

), the character values

~

 (�w), and the entries in the inverse of

the matrix of values (

~

�(Fw)). Having chosen �xed extensions of the various char-

acters involved we see that these coe�cients only depend on w

1

W

s

; � and �x

�

. This

completes the proof.

4 Considering q as a variable

We continue to assume that G has a connected center. We have seen in Corollary 3.8

that average values of irreducible characters of G

F

as in Problem 1.1 and Problem 1.2

can be expressed in terms of certain combinatorial objects associated with various

reection subgroups of the Weyl group of G and the values of the Green functions of

G

F

. There is a sense in which the latter are given by `polynomials in q', and hence

the same holds for our average value. In this section we will give a precise formulation

for this statement, and this will eventually allow us to remove the assumption on p

and q in Corollary 2.6. It will be technically simpler if our group G is simple modulo

its center. (In Section 5 below we will see that this is no loss of generality as far as

Problem 1.1 and Problem 1.2. are concerned.)

For the remainder of this section, our group G has a connected center and is

simple modulo its center. As remarked above we will want to say that certain quan-

tities or objects associated with G

F

are given by `polynomials in q' or are classi�ed
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`independently of q'. In order to make this precise, we let 	 be the root datum of G

with respect to a �xed F -stable maximal torus T contained in some F -stable Borel

subgroup of G. We denote by W the Weyl group of G with respect to T ; this only

depends on 	. Let X = X(T ) be the character group of T . Then F acts as q times an

automorphism F

0

of �nite order on X , and the pair (G; T ) together with the Frobe-

nius map F is determined by (	; F

0

) and the choice of the prime power q. We now

assume given, once and for all, the root datum 	, the corresponding Weyl group W ,

and the automorphism F

0

. Then each choice of a prime power q

1

determines a pair

(G

1

; T

1

) and a Frobenius map F

1

such that G

1

has root datum 	 and F

1

acts as q

1

times F

0

on the character group of T

1

.

4.1 Classification of unipotent classes

We summarize the known results on the classi�cation of unipotent classes in good

characteristic, as follows. There exists a �nite index set A and a map A ! N

0

,

� 7! d

�

, depending only on (	; F

0

) and having the following properties. If q is a

power of a good prime and G is the corresponding group over F

q

, there is a map

A! G

F

uni

; � 7! u

�

;

such that fu

�

j � 2 Ag is a set of representatives for the F -stable unipotent classes

in G and d

�

= dimC

�

where C

�

is the class of G containing u

�

. (This is contained,

for example, in [3], Chapter 5).

Moreover, there is a collection of �nite groups (A

�

)

�2A

such that the map A!

G

F

uni

can be chosen to have the following additional properties.

(i) For each �, the group of components of the centralizer of u

�

is isomorphic to A

�

,

and the action of F on this group is trivial.

(ii) For each �, the element u

�

is split in the sense of [17], Remark 5.1, except

possibly when G is of type E

8

, q � �1 mod 3, and u

�

lies in the class D

8

(a

3

)

(notation of the table in [3], pp.405).

Each u

�

is uniquely determined up to G

F

-conjugacy by (i) and (ii). This follows in

all cases where split elements exist, see Shoji [17] and the references there. For type

E

8

, see Kawanaka [8], (1.2.1); the uniqueness of u

�

in this case is mentioned in [2],

p.590.

For each � 2 A we let Cl(A

�

) be a set of representatives of the conjugacy classes

of A

�

. By property (i), the set Cl(A

�

) parametrizes the various G

F

-classes contained

in C

F

�

(for q and G as above). If j 2 Cl(A

�

) we denote by u

�;j

an element in C

F

�

which is obtained from the representative u

�

by twisting with j.

4.2 Values of Green functions

We summarize the known results about the values of Green functions in good char-

acteristic as follows. For � = 0;�1 there exist maps

Q

�

: Irr(W )

F

�

a

�2A

A

�

! Z[t] and h

�

:

a

�2A

Cl(A

�

)! Q[t]
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depending only on (	; F

0

) and having the following properties. If q is a power of a

good prime such that q � � mod 3 and G is the corresponding group over F

q

then

Q

�

(u

�;j

) = Q

�

(�; �; j)(q) for all w 2W , � 2 A and j 2 Cl(A

�

);

where � 2 Irr(W )

F

and u

�;j

is an element in C

F

�

obtained by twisting the repre-

sentative u

�

with j. Moreover, h

�

(�; j)(q) is the size of the G

F

-conjugacy class of

u

�;j

.

The results concerning the Green functions are contained in [17]. The existence of

the polynomials h

�

(�; j) follows, for example, from the algorithm for the computation

of generalized Green functions in [13], Theorem 24.4. These polynomials (for �xed �)

all have the same degree which is the integer d

�

= dimC

�

. Note that the parameter

� makes a di�erence only for G of type E

8

.

4.3 The average value polynomials

Fix � = 0;�1. Let q be any power of a good prime with q � � mod 3 and G

the corresponding group over F

q

with dual group G

�

. Let s 2 T

0

, W

s

� W and

w

1

2 W as in (3.7a). Then w

1

has minimal length in the coset w

1

W

s

and we have

F (w

1

W

s

w

�1

1

) = W

s

. The cosets w

1

W

s

arising in this way (for various choices of q

and elements s 2 T

0

) will be called the �-admissible cosets of W .

Let w

1

W

0

be a �-admissible coset. We de�ne the automorphism  : W

0

!W

0

and

the corresponding semidirect product

~

W

0

analogously as in (3.7a). The constructions

in [11], Chapter 4, yield a parameter set

�

X(W

0

; ) and rational numbers a(w

1

W

0

; �; �x)

(as in (3.7b)) for all irreducible characters � of W

0

which can be extended to

~

W

0

.

Moreover, we obtain constants b(w

1

W

s

; �; �x) (for � 2 Irr(W )

F

) by the rewriting

process as in the proof of Corollary 3.8. We now de�ne two polynomial functions

A�

�

X(W

0

; )! Q[t] by

AV

�

(1:1)

(�; �x) :=

X

j2Cl(A

�

)

X

�2Irr(W )

F

h

�

(�; j) b(w

1

W

0

; �; �x)Q

�

(�; �; j);

AV

�

(1:2)

(�; �x) :=

X

j2Cl(A

�

)

X

�2Irr(W )

F

[A

�

: C

A

�

(j)] b(w

1

W

0

; �; �x)Q

�

(�; �; j):

Given � and �x we call the corresponding polynomials the average value polynomials

of type (1.1) and (1.2), respectively.

The relevance of this de�nition is as follows. Let q be a power of a good prime

with q � � mod 3, andG the corresponding group over F

q

. Let s 2 T

0

andW

s

; w

1

;  be

as in (3.7a). Then w

1

W

s

is a �-admissible coset, hence AV

�

(1:1)

(�; �x) and AV

�

(1:2)

(�; �x)

are de�ned for all � 2 A and �x 2

�

X(W

s

; ). Corollary 3.8 can now be rephrased by

saying that if � 2 E

s

we have

(�; f

C

) = AV

�

(1:1)

(�; �x

�

)(q) and (�; f

0

C

) = AV

�

(1:2)

(�; �x

�

)(q):

Proposition 4.4 Let w

1

W

0

be a �-admissible coset and �x a �xed element in the

corresponding parameter set

�

X(W

0

; ).

(i) There exists a unique � 2 A with maximal possible value d

�

such that the

polynomial AV

�

(1:1)

(�; �x) is non-zero.
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(ii) There exists a unique ~� 2 A with maximal possible value d

~�

such that the

polynomial AV

�

(1:2)

(~�; �x) is non-zero.

(iii) We have � = ~�.

(iv) AV

�

(1:1)

(�; �x)(q) 6= 0 and AV

�

(1:2)

(�; �x)(q) 6= 0 for all good prime powers q such

that q � � mod 3.

(Recall from (4.1) that d

�

= dimC

�

.)

Proof. Let M be the set of integers q which are powers of various good primes and

such that the following conditions are satis�ed.

(a) All elements in M are congruent to � modulo 3.

(b) If an average value polynomial is non-zero then it is non-zero when evaluated

at every q 2M .

(c) If q 2M and G is the corresponding group over F

q

with Frobenius map F the

results in Section 2 are applicable.

(d) If q 2M and G is the corresponding group over F

q

with Frobenius map F then

the coset w

1

W

0

arises from an F -stable semisimple class in G as in (3.7a).

The set M contains in�nitely many elements. Indeed, condition (b) holds for all but

�nitely many good prime powers since we only have a �nite number of average value

polynomials; condition (c) holds for all large enough powers of large enough primes.

Using Dirichlet's Theorem on primes in an arithmetic progression, the setM

1

of good

prime powers satisfying (a), (b), (c) is in�nite. Finally, Deriziotis has shown in [4],

Theorem 3.3, that condition (d) either holds for none of for all but �nitely many good

prime powers q in a �xed congruence class modulo a certain integer depending only

on (	; F

0

). The de�nition of �-admissibility therefore implies that the set of elements

in M

1

which also satisfy (d) is still in�nite.

Let us prove (i). Let q 2 M and G the corresponding group over F

q

. By

condition (d), the coset w

1

W

0

arises from some F -stable semisimple class (s) in G

�

as in (3.7a). Let � be an irreducible character of G

F

in the corresponding series E

s

such that �x

�

is the given element �x 2

�

X(W

0

; ). By (c) we can apply Corollary 2.6

and conclude that there exists a unique � 2 A with maximal possible value d

�

such

that

(�; f

C

) = AV

�

(1:1)

(�; �x)(q) 6= 0:

But then property (b) implies that (i) holds. The proof of (ii) is completely analogous,

and yields the same class C

�

by Corollary 2.6. This also proves (iii).

Now we prove (iv). For this purpose note that the class C

�

has the properties (1)

and (2) in the proof of Corollary 2.6. By [16], Theorem 11.2, we also have the following

additional property.

(1') For all u 2 C

F

�

, the absolute value of (�

u

; D

G

(�)) is � jA

�

jjW j.
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Recall that property (2) implies that assumption (*) in Proposition 2.5 is satis�ed

for the character � and the class C

�

, and this holds for each choice of q 2 M . The

formulae in Proposition 2.5 yield that

AV

�

(1:1)

(�; �x)(q) = q

d

X

j2Cl(A

�

)

h

�

(�; j)(q)N

j

(q) and

AV

�

(1:2)

(�; �x)(q) = q

d

X

j2Cl(A

�

)

[A

�

: C

A

�

(j)]N

j

(q);

where N

j

(q) denotes the multiplicity of D

G

(�) in the GGGR associated with the

representative in C

�

corresponding to j. Property (1') gives a bound on the absolute

value of N

j

(q) `independently of q'. So there exists an in�nite subset M

0

� M such

that (N

j

(q))

j2Cl(A

�

)

is constant for all q 2 M

0

. Let N

j

denote this constant for

j 2 Cl(A

�

). We conclude that

AV

�

(1:1)

(�; �x)(q) = q

d

X

j2Cl(A

�

)

h

�

(�; j)(q)N

j

for all q 2M

0

;

AV

�

(1:2)

(�; �x)(q) = q

d

X

j2Cl(A

�

)

[A

�

: C

A

�

(j)]N

j

for all q 2M

0

:

So we actually obtain identities of polynomials in Q[t]:

AV

�

(1:1)

(�; �x) = t

d

X

j2Cl(A

�

)

h

�

(�; j)N

j

;

AV

�

(1:2)

(�; �x) = t

d

X

j2Cl(A

�

)

[A

�

: C

A

�

(j)]N

j

:

Since �D

G

(��) is an irreducible character, either all numbers N

j

are non-negative or

all numbers �N

j

are non-negative, and by (i) at least one N

j

must be non-zero. So

the expression

t

d

X

j2Cl(A

�

)

[A

�

: C

A

�

(j)]N

j

is a non-zero constant times t

d

. Hence, in particular, its value at any q as in (iv) is

non-zero. A slight modi�cation of this argument also works for the other expression.

Indeed, since h

�

(�; j) gives a strictly positive integer when evaluated at any good

prime power (namely the size of a conjugacy class), we conclude that the expression

t

d

X

j2Cl(A

�

)

h

�

(�; j)N

j

is a polynomial with the property that if we evaluate it at any good prime power then

we obtain a strictly positive or a strictly negative number as a result. Again we are

done.

5 Proof of Theorem 1.4

Let q be a power of a prime p and G be a connected reductive group de�ned over F

q

,

with corresponding Frobenius map F . For the moment we make no assumption on p

or on the center of G.
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Lemma 5.1 Let G � G

0

be a regular embedding of G into a connected reductive

group G

0

over F

q

with a connected center and such that G, G

0

have the same derived

subgroup. Then Problem 1.1 (respectively, Problem 1.2) has a positive solution for G

if and only if it has a positive solution for G

0

.

Proof. At �rst note that the embedding G � G

0

de�nes a bijection between the F -

stable unipotent classes of G and those of G

0

. Let C be any F -stable unipotent class

of G, let �

0

be an irreducible character of G

0

F

, and let � be an irreducible component

of the restriction of �

0

to G

F

. By Cli�ord's Theorem the restriction of �

0

to G

F

is

a sum of irreducible characters of G

F

which are of the form �

x

:= � � c

x

, where c

x

denotes the automorphism of G

F

induced by conjugation with an element x 2 G

0

F

.

It is clear that the function f

C

de�ned with respect to G is [G

0

F

: G

F

] times

the restriction of the corresponding function de�ned with respect to G

0

. Hence f

C

is

invariant under G

0

F

and we have f

x

C

= f

C

for all x 2 G

0

F

.

Using the methods in (3.6) it can be easily seen that a similar statement also

holds for the function f

0

C

on G

F

. Hence it is also invariant under G

0

F

and we have

(f

0

C

)

x

= f

0

C

for all x 2 G

0

F

.

We conclude that the scalar product of �

x

with f

C

(respectively, with f

0

C

) is

the same as the scalar product of � with f

C

(respectively, with f

0

C

). Using Cli�ord's

Theorem in the above form, we see that the scalar product of �

0

with f

C

(respectively,

with f

0

C

) is a non-zero multiple of the scalar product of � with f

C

(respectively, with

f

0

C

). This implies the desired equivalence.

So from now on, we can assume that the center of G is connected. The next

result shows that we can reduce to the case where G is simple modulo its center.

Lemma 5.2 Let p be a �xed prime. Assume that Problem 1.1 (respectively, Prob-

lem 1.2) has a positive solution for all groups G which are de�ned over a �nite �eld

of characteristic p, which have a connected center and which are simple modulo their

center. Then Problem 1.1 (respectively, Problem 1.2) has a positive solution for all

groups de�ned over a �nite �eld of characteristic p.

Proof. Let G be any group de�ned over F

q

, where q is a power of p. By Lemma 5.1

we may assume that the center of G is connected. The following reasoning is almost

entirely analogous to that in [11], (8.8).

We can �nd a surjective homomorphism f : G

0

! G of algebraic groups over

F

q

such that the center of G

0

is connected, the kernel of f is a central torus, and

the derived subgroup of G

0

is semisimple and simply-connected. We claim that if

Problem 1.1 (respectively, Problem 1.2) has a positive solution for G

0

then it also has

a positive solution for G. Indeed, the map f induces a bijection between the unipotent

classes of G

0

and G. Since the kernel of f is connected this bijection also works on

the level of the �nite groups, and we have f(G

0

F

) = G

F

. So, if � is an irreducible

character of G

F

then �

0

:= � � f is an irreducible character of G

0

F

. Furthermore, the

function f

C

(respectively, f

0

C

) lifts to the analogously de�ned function of G

0

F

. This

implies the claim.

Hence we may now also assume that the derived group G

der

of G is simply-

connected.
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Let us write G

der

= R

f

1

(G

1

) � : : : � R

f

n

(G

n

) where each G

i

is a closed simple

simply-connected subgroup and R

f

denotes restriction of scalars from F

q

f to F

q

(for

some f � 1). We can embed each G

i

regularly (over F

q

f

i

) into a connected reductive

group G

00

i

with a connected center and which is simple modulo its center. Let G

00

:=

R

f

1

(G

00

1

)� : : :�R

f

n

(G

00

n

). Then we also have a regular embedding G

der

! G

00

(over

F

q

).

Finally, as in [loc. cit.], there exists a connected reductive group G

000

with con-

nected center and de�ned over F

q

and there exist regular embeddings G ! G

000

,

G

00

! G

000

(over F

q

) which are compatible with the regular embedding G

der

! G

00

.

Now we can argue as follows. Using Lemma 5.1 twice we see that Problem 1.1

(respectively, Problem 1.2) has a positive solution for G if and only if this is the

case for G

000

if and only if this is the case for G

00

. Now G

00

has a decomposition into

a direct product of various factors of the form R

f

i

(G

i

), and this leads to a similar

decomposition on the level of the �nite groups. Correspondingly, the irreducible

characters of G

00

F

are exterior tensor products of irreducible characters for the various

factors, and it follows easily that Problem 1.1 (respectively, Problem 1.2) has a positive

solution for G

00

if this is the case for each factor G

i

. Hence we are reduced to groups

which have a connected center and are simple modulo their center. This completes

the proof.

We are now ready for the proof of Theorem 1.4.

5.3 Existence of unipotent supports

Let G be as in the �rst sentence of this section, and assume that p is good.

Let us �rst show that Problem 1.1 has a positive solution (that is, the unipotent

support of an irreducible character exists). By Lemmas 5.1 and 5.2 we may assume

that G has a connected center and is simple modulo its center. Then we can apply

the formalism of Section 4. Let � be an irreducible character of G

F

contained in the

series E

s

, say. Let w

1

W

s

and

�

X(W

s

; ) as in (3.7a). By Proposition 4.4(i), there

exists a unique � 2 A with maximal possible value for d

�

such that the average value

polynomial AV

�

(1:1)

(�; �x

�

) is non-zero (where q � � mod 3). By Proposition 4.4(iv),

we also have

X

g2C

F

�

�(g) = AV

�

(1:1)

(�; �x

�

)(q) 6= 0:

Now let � 2 A be any element such that the average value of � on C

F

�

is non-zero.

Then, clearly, the corresponding average value polynomial itself is non-zero hence

Proposition 4.4(i) implies that dimC

�

= d

�

� d

�

= dimC

�

with equality only for

� = �. Hence the class C

�

is the unipotent support of �.

A completely analogous argument shows that also Problem 1.2 has a positive

solution, and Proposition 4.4(iii) proves that we obtain the same class as before. This

proves part (a) in Theorem 1.4.

5.4 The p-parts of character degrees

Let again G be as in the �rst sentence of this section, with p good. Now we turn

to Theorem 1.4(b), that is, the problem concerning the p-part in the degree of an

irreducible character � of G

F

. We know already by (5.3) that � has a unipotent
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support, C say. Now we must show that the p-part in the degree of � is q

d

where d is

the dimension of the variety of Borel subgroups containing a �xed element in C. By

the dimension formula in [3], Theorem 5.10.1, we have d = (2N � dimC)=2 where N

is the number of positive roots in the root system of G.

We can use a similar reasoning as before to reduce to the case where G has a

connected center and is simple modulo its center. Indeed, let G � G

0

be a regular

embedding and �

0

an irreducible character of G

0

F

whose restriction to G

F

contains �

as a constituent. Then �

0

also has unipotent support C (see Lemma 5.1). Since the

index of G

F

in G

0

F

is certainly prime to p, Cli�ord's Theorem implies that the degree

of �

0

is a multiple (coprime to p) of the degree of �. So the characters � and �

0

have the

same p-part in their degrees and the dimensions of the unipotent supports are equal.

Hence it is su�cient to consider groups G with a connected center. It is then also

straightforward to check that the constructions in the proof of Lemma 5.2 behave well

with respect to p-parts in character degrees and dimensions of unipotent supports.

(This is certainly the case for the �rst reduction to groups G with a connected center

and such that the derived group G

der

is simply-connected; note that the remaining

constructions just involve taking regular embeddings and direct products.)

Let us now assume that G has a connected center and is simple modulo its center.

We use again the formalism of Section 4. Let q � � mod 3 and � be an irreducible

character of G

F

contained in the series E

s

, say. Let

�

X(W

s

; ) be the associated

parameter set as in (3.7a), and �x = �x

�

be the element in this set corresponding to �.

Let A be as in (4.1) and �

0

2 A be the unique element such that d

�

0

= 0 (so that

C

�

0

is the class of the trivial element in G). We de�ne

deg(�) := AV

�

(1:1)

(�

0

; �x

�

) 2 Q[t]:

Then, by the formula (4.4), the value of deg(�) at q is the degree of �. Let a = a(�x) � 0

such that t

a

is the maximal power of t dividing deg(�). We claim that q

a

is the p-part

in the degree of �. Indeed, from the explicit description of the Fourier coe�cients in

[13], Chapter 4, and the formulae [13], (4.26.1) and (4.26.3), we deduce that there

exists a positive integer d which is divisible by bad primes only and a monic polynomial

f 2 Z[t] such that deg(�) = (1=d)t

a

f and f � �1 mod t. This implies our claim since

p is good.

Thus, we have described the p-part in the degree of � purely in terms of our

average value polynomials. On the other hand, we know by Proposition 4.4 and the

argument in (5.3) that the unipotent support of � is also characterized purely in terms

of the average value polynomials corresponding to our �xed �x = �x

�

. Therefore, it will

be su�cient to prove the following statement.

Given a �-admissible coset w

1

W

0

and �x 2

�

X(W

0

; ) let � 2 A be as in

Proposition 4.4(i). Show that a(�x) = (2N � d

�

)=2.

Since this statement only concerns properties of the average value polynomials and

dimensions of unipotent classes we can assume, without loss of generality, that q and

p are large enough so that the results in [16] are applicable. Then the unipotent

support C = C

�

of our character � can also be characterized in terms of the map

� : firreducible characters of G

F

g ! fF -stable unipotent classes in Gg
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de�ned in [11], (13.4), or [16], (11.1). Indeed, by [16], Theorem 11.2, we have

C

�

= �(�

0

) where �

0

= �D

G

(�):

The above statement is an immediate consequence of the properties of the map �, as

we will now check.

The �rst step in de�ning � is to associate with �

0

a so-called special conjugacy

class in G

�

(see [11], (13.2), for the precise de�nition). This is done as follows. With

the character �

0

there is associated a family F of representations of W

s

, and we let E

1

be the unique special representation in the family sign
F (cf. [11], (13.1.3)). By the

Springer correspondence, we can associate with E

1

the class of a unipotent element

v 2 C

G

�

(s). Then the G

�

-conjugacy class C

0

of the element sv is the desired special

class in G

�

. Next, Lusztig [11], (13.3), de�nes a map � from special classes in G

�

to

unipotent classes in G, and we have �(�

0

) = �(C

0

). The main property of the map �

that we need is that it preserves the dimensions of classes. So we can conclude that

d

�

= dimC

�

= dim �(�

0

) = dim�(C

0

) = dimC

0

;

and it remains to check that a(�x) = (2N �dimC

0

)=2. Translating this back using the

dimension formula in [3], Theorem 5.10.1, we see that we must show that a(�x) equals

the dimension of the variety of Borel subgroups of C

G

�

(s) containing the unipotent

element v. By [11], (13.1.1), the latter dimension is equal to the integer a

E

1

associated

with the special representation E

1

as in [11], (4.1). So, eventually, we see that we

must show that

a

E

1

= a(�x):

Now since �

0

= �D

G

(�) and F is the family associated with �

0

, the results in [11],

(8.6), imply that the family associated with � is sign 
 F . But then the formula in

[11], (4.26.3), just says that a(�x) = a

E

1

, and we are done.
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