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Abstract. Let X be a projective complex 3-fold, quasihomogeneous with

respect to an action of a linear algebraic group. We show that X is a com-

pacti�cation of SL

2

=�, � a �nite subgroup, or that X can be equivariantly

transformed into P

3

, the quadric Q

3

, or into certain quasihomogeneous bun-

dles with very simple structure.

1991 Mathematics Subject Classi�cation: Primary 14M17; Secondary 14L30,

32M12

1 Introduction

Call a variety X quasihomogeneous if there is a connected algebraic group G acting

algebraically on X with an open orbit. A rational map X 9 9 K Y is said to be

equivariant if G acts on Y and if the graph is stable under the induced action on

X � Y .

The class of varieties having an equivariant birational map to X is generally

much smaller then the full birational equivalence class. The minimal rational surfaces

are good examples: they are all quasihomogeneous with respect to an action of SL

2

,

but no two have an SL

2

-equivariant birational map between them. On the other

hand, if X is any rational SL

2

-surface, then the map to a minimal model is always

equivariant.

Generally, one may ask for a list of (minimal) varieties such that every quasiho-

mogeneous X has an equivariant birational map to a variety in this list.

We give an answer for dimX = 3 and G linear algebraic:

1
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16 Stefan Kebekus

Theorem 1.1. Let X be a 3-dimensional projective complex variety. Let G be a

connected linear algebraic group acting algebraically and almost transitively on X.

Assume that the ine�ectivity, i.e. the kernel of the map G! Aut(X), is �nite. Then

either G

�

=

SL

2

, and X is a compacti�cation of SL

2

=�, where � is �nite and not

cyclic, or there exists an equivariant birational map X 9 9 K

eq

Z, where Z is one of the

following:

� P

3

or Q

3

, the 3-dimensional quadric

� a P

2

-bundle over P

1

of the form P(O(e)�O(e) � O).

� a linear P

1

-bundle over a smooth quasihomogeneous surface Y , i.e. Z

�

=

P(E),

where E is a rank-2 vector bundle over Y . If G is solvable, then E can be chosen

to be split.

If G is not solvable, then the map X 9 9 K

eq

Z factors into a sequence X  

~

X ! Z,

where the arrows denote sequences of equivariant blow ups with smooth center.

A �ne classi�cation of the (relatively) minimal varieties involving SL

2

will be

given in a forthcoming paper.

The result presented here is contained the author's thesis. The author would like

to thank his advisor, Prof. Huckleberry, and Prof. Peternell for support and valuable

discussions.

2 Existence of Extremal Contractions

The main tool we will use is Mori-theory. In order to utilize it, we show that in our

context extremal contractions always exist.

Lemma 2.1. Let X and G be as in 1.1, but allow for Q-factorial terminal singulari-

ties. Then there exists a Mori-contraction.

Proof. Let � :

~

X ! X be an equivariant resolution of the singularities ofX, letH < G

be a (linear) algebraic subgroup and let v

1

2 Lie(G) be the associated element of the

Lie-algebra. Since

~

X is quasihomogeneous, we can �nd elements v

2

; v

3

2 Lie(G) such

that the associated vector �elds

~v

i

(x) =

d

dt

�

�

�

�

t=0

exp(tv

i

)x 2 H

0

(

~

X;T

~

X)

are linearly independent at generic points of

~

X . In other words,

� := ~v

1

^ ~v

2

^ ~v

3

is a non-trivial holomorphic section of the anticanonical bundle �K

~

X

. Because H is

linear algebraic, the closure of a generic H-orbit is a rational curve, and H has a �xed

point on this curve. Therefore ~v

1

has zeros, and the divisor given as the zero-set of �

is not trivial. In e�ect, we have shown that �K

~

X

is e�ective and not trivial.

If r is the index of X, then the line bundle �rK

X

is e�ective. We are �nished

if we exclude the possibility that �rK

X

is trivial. Assume that this is the case. The
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Quasihomogeneous 3-Folds 17

section � not vanishing on the smooth points of X implies that X n Sing(X) is G-

homogeneous. But the terminal singularities are isolated. Thus, by [HO80, thm. 1 on

p. 113], X is a cone over a rational homogeneous surface, a contradiction to �rK

X

trivial.

Consequently �rK

X

is e�ective and not trivial. So there is always a curve C

intersecting an element of j � rK

X

j transversally. Hence C:K

X

< 0 and there must

be an extremal contraction.

Corollary 2.2. Let X and G be as in theorem 1.1 with the exception that X is

allowed to have Q-factorial terminal singularities. Let � : X ! Y be an equivariant

morphism with dimY < 3. Then there is a relative contraction over Y .

Proof. If Y is a point, this follows directly from lemma 2.1. Otherwise, if � 2 Y

generic, we know that the �ber X

�

is smooth, does not intersect the singular set

and is quasihomogeneous with respect to the isotropy group G

�

. So there exists a

curve C � X

�

with C:K

X

�

< 0. Note that the adjunction formula holds, since X has

isolated singularities andX

�

does not intersect the singular set. Hence K

X

�

= K

X

j

X

�

,

and there must be an extremal ray C � NE(X) such that �

�

(C) = 0. Thus, there

exists a relative contraction.

Recall that all the steps of the Mori minimal model program (i.e. extremal

contractions and ips) can be performed in an equivariant way. For details, see

[Keb96, chap. 3].

3 Equivariant Rational Fibrations

In this section we employ group-theoretical considerations in order to �nd equivariant

rational maps fromX to varieties of lower dimension. These will later be used to direct

the minimal model program.

We start with the case that G is solvable.

Lemma 3.1. Let X and G be as in 1.1. Assume additionally that G is solvable. Then

there exists an equivariant rational map X 9 9 K

eq

Y to a projective surface Y .

Proof. Since G is solvable, there exists a one-dimensional algebraic normal subgroup

N . Let H be the isotropy group of a generic point, so that 


�

=

G=H, and consider

the map




�

=

G=H ! G=(N:H)

Recall that N:H is algebraic. Since N is not contained in H (or else G acted

with positive dimensional ine�ectivity), the map has one-dimensional �bers. Now

dimG=(N:H) > 0 and G=(N:H) can always be equivariantly compacti�ed to a pro-

jective variety Y . This yields an equivariant rational map X 9 9 K

eq

Y .

Now consider the cases where G is not solvable.

Lemma 3.2. Let X and G be as above. Assume that G is neither reductive nor

solvable. Then there exists an equivariant rational map X 9 9 K

eq

Y such that either

1. Y

�

=

P

3

, and X 9 9 K

eq

Y is birational, or dimY = 2, or
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18 Stefan Kebekus

2. dimY = 1, and there exists a normal unipotent group A and a semisimple group

S < G, acting trivially on Y . The unipotent part A acts almost transitively on

generic �bers.

Proof. Let G = U o L be the Levi decomposition of G, i.e. U is unipotent and L

reductive and de�ne A to be the center of U . Note that A is non-trivial. Since A

is canonically de�ned, it is normalized by L, hence it is normal in G. Let H be the

isotropy group of a generic point, 
 the open G-orbit, so that 


�

=

G=H, and consider

the map




�

=

G=H ! G=(A:H)

There are two things to note. The �rst is that A is not contained inH (or else G acted

with positive dimensional ine�ectivity). So dimG=(A:H) < 3. If dimG=(A:H) >

0, it can always be equivariantly compacti�ed G=(A:H) to a variety Y yielding an

equivariant rational map X 9 9 K Y . If dimG=(A:H) = 2, we can stop here. If

dimG=(A:H) = 1, then note that A acts transitively on the �ber A:H=H. If A:H

does not contain a semi-simple group, we argue as in lemma 3.1 to �nd a subgroup

H

0

, H < H

0

< A:H such that dimH

0

=H = 1. Then dimG=H

0

= 2, and again we are

�nished.

If dimG=(A:H) = 0, then A acts transitively on 
. In this case A

�

=

C

n

, and

hence (because the G-action is algebraic) 


�

=

C

3

. The theorem onMostow �bration

(see e.g. [Hei91, p. 641]) yields that L has to have a �xed point in 
. Therefore,

without loss of generality, L < H. As a next step, consider the group B := (U \H)

0

.

Since both U and H are normalized by L, B is as well. Elements in A commute with

all elements of U , hence A:B normalizes B as well. Then B is a normal subgroup of

UoL = G. Note that A:B = U , because A:B = A:(H\U ) = (A:H)\U = G\U = U .

Consequently B acts trivially. Therefore B = feg.

We are now in a position where we may write G = A o

�

L, where � is the

action of L on A (L acting by conjugation). Now H = L, hence A

�

=




�

=

C

3

and the L-action on A

�

=

(C

3

;+) is linear. So G is a subgroup of the a�ne group

and 
 can be equivariantly compacti�ed to P

3

, yielding an equivariant rational map

X 9 9 K

eq

P

3

.

We study case (1) of the preceding proposition in more detail.

Lemma 3.3. Let X be as above and assume that G is reductive. Assume furthermore

that G is not semisimple. Then there is an equivariant rational map X 9 9 K

eq

Z,

where dimZ = 2.

Proof. As a �rst step, recall that G = T:S, where S is semisimple, T is a torus, and

S and T commute and have only �nite intersection. If � is a point in the open orbit

and G

�

the associated isotropy group, then T 6� G

�

, or otherwise T would not act at

all. For that reason we will be able to �nd a 1-parameter group T

1

< T , T

1

6� G

�

and

consider the map


 := G=G

�

! G=(T

1

:G

�

):

Since T

1

has non-trivial orbits, dimG=(T

1

:G

�

) = 2. If we compactify the latter in an

equivariant way to a variety Z, we automatically obtain an equivariant rational map

X 9 9 K

eq

Z as claimed.
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Quasihomogeneous 3-Folds 19

Lemma 3.4. Suppose G is semisimple. Then one of the following holds:

1. G

�

=

SL

2

and the open orbit 
 is isomorphic to SL

2

=�, where � is �nite and

not contained in a Borel subgroup.

2. X

�

=

P

3

3. X is isomorphic to F

1;2

(3), the full ag variety

4. X is homogeneous and either X

�

=

Q

3

, the 3-dimensional quadric or X is a

direct product involving only P

1

and P

2

.

5. X admits an equivariant rational map X 9 9 K

eq

Y onto a surface.

Proof. If G

�

=

SL

2

, and � is embeddable into a Borel group B, then � is in fact

embeddable into a 1-dimensional torus T . Consider the map G=� ! G=T , and we

are �nished.

Assume for the rest of this proof that G 6

�

=

SL

2

. Then the claim is already true

in the complex analytic category: see [Win95, p. 3]. One must exclude torus bundles

by the fact that they never allow an algebraic action of a linear algebraic group.

We summarize a partial result:

Corollary 3.5. Let X and G be as above. If there exists an equivariant map

X 9 9 K

eq

P

1

and no such map to P

3

or to a surface, then G is not solvable and

there exist subgroups S and A as in lemma 3.2.

4 The case that Y is a curve

In this section we investigate relatively minimalmodels overP

1

. The main proposition

is:

Proposition 4.1. Let X and G be as in 1.1 with the exception that X is allowed

to have Q-factorial terminal singularities. Assume that � : X ! P

1

is an extremal

contraction. Assume additionally that there does not exist an equivariant rational

map X 9 9 K

eq

Y , where dimY = 2 or Y

�

=

P

3

. Then

X

�

=

P(O

P

1

(e)� O

P

1

(e) �O

P

1

);

with e > 0. In particular, X is smooth.

Proof. As a �rst step, we show that the generic �ber X

�

is isomorphic to P

2

. As �

is a Mori-contraction, X

�

is a smooth Fano surface. By corollary 3.5, the stabilizer

G

�

< G of X

�

contains a unipotent group A acting almost transitively on X

�

and

a semisimple part S. This already rules out all Fano surfaces other than P

2

. Fur-

thermore, S

�

=

SL

2

. Note that G

�

stabilizes a unique line L � X

�

and that S acts

transitively on L.

Set D

0

:= G:L and remark that D

0

intersects the generic �-�ber in the unique

G

�

-stable line: D

0

\X

�

= L. We claim that D

0

is Cartier. The desingularization

~

D

0

has a map to P

1

, the generic �ber is isomorphic to P

1

and S acts non-trivially on

all the �bers. Thus,

~

D

0

is isomorphic to P

1

�P

1

, and S does not have a �xed point

on D

0

. Consequently,

~

D

0

does not intersect the singular set of X and is Cartier.
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20 Stefan Kebekus

Take D

00

to be an ample divisor on Y . As � is a Mori-contraction, the line

bundle L associated to D := D

0

+n�

�

(D

00

), n >> 0, is ample on X. In this setting, a

theorem of Fujita (cf. [BS95, Prop. 3.2.1]) yields that X is of the form P(E), where

E is a vector bundle on P

1

.

The transition functions of E must commute with S, but the only matrices

commuting with SL

2

are Diag(�; �; �), hence E = O(e) � O(e) � O(f) and X

�

=

P(O(e� f) � O(e � f) �O).

For future use, we note

Lemma 4.2. Let X and G be as in proposition 4.1. Then, by equivariantly blowing up

and down, X 9 9 K

eq

P(O(e

0

)� O(e

0

) �O) where the latter does not contain a G-�xed

point.

Proof. The semisimple group S �xes a unique point of each �-�ber, so that there

exists a curve C of S-�xed points. Suppose that G has a �xed point f . Then f 2 C,

and we can perform an elementary transformation X 9 9 K

eq

X

0

with center f , i.e. if

X

�

is the �-�ber containing f , then we blow up f and blow down the strict transform

of the X

�

, again obtaining a linear P

2

-bundle of type P(O(e) � O(e) � O). This

transformation exists, as has been shown in [Mar73]. Since all the centers of the

blow-up and -down are G-stable, the transformation is equivariant.

We will use this transformation in order to remove G-�xed points. Let g 2 G be

an element not stabilizing C. The curves gC and C meet in f . We know that after

�nitely many blow-ups of the intersection points of C and gC, the curves become

disjoint, so that there no longer exists a G-�xed point! This, however, is exactly what

we do when applying the elementary transformation.

5 The case that Y is a surface

The cases that G is solvable or not solvable are in many respects quite di�erent. Here

we have to treat them separately.

5.1 The case G solvable

We will show that in this situation the open G-orbit can be compacti�ed in a partic-

ularly simple way.

Proposition 5.1. Let X and G be as in theorem 1.1. Assume additionally that G

is solvable and � : X ! Y is an equivariant map with connected �bers onto a smooth

surface. Then there exists a splitting rank-2 vector bundle E on Y and an equivariant

birational map X 9 9 K

eq

P(E).

We remark that if y 2 Y is contained in the open G-orbit, then it's preimage

is quasihomogeneous with respect to the isotropy group G

y

, hence isomorphic to P

1

.

As a �rst step in the proof of proposition 5.1, we show the existence of very special

divisors in X.

Notation 5.2. We call a divisor D � X a \rational section" if it intersects the generic

�-�ber with multiplicity one.

In our context, such divisors always exist:
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Quasihomogeneous 3-Folds 21

Lemma 5.3. Let � : X ! Y be as in lemma 5.1 and assume additionally that there

exists a group H

�

�

=

C

�

acting trivially on Y . Let D

0

X

be the �xed point set of the

H

�

-action. Then D

0

X

contains two rational sections as irreducible components.

Proof. Let D

X

be the union of those irreducible divisors in D

0

X

which are not preim-

ages of curves or points by �. The subvariety D

X

intersects every generic �-�ber at

least once. Hence D

X

6= 0.

We claim that the set of branch points

M := fy 2 Y : #(�

�1

(y) \D

X

) = 1g

is discrete. Linearization of the H

�

-action yields that for any point f 2 D

X

nSing(X),

there is a unique H

�

-stable curve intersecting D

X

at f . Furthermore, the intersec-

tion is transversal. Assume dimM � 1 and let y be a generic point in M . Then

dim�

�1

(y) = 1 and �

�1

(y) = 1 contains a smooth curve C as an irreducible compo-

nent intersecting D

X

. Now C:D

X

= 1 and, because C\D

X

was the only intersection

point by assumption, �

�1

(y):D

X

= 1. This is contrary to D

X

intersecting the generic

�-�ber twice.

Set

N := f� 2 Y j dim(X

�

\D

X

) > 0g [M [ �(Sing(X)):

By de�nition N is �nite and D

X

is a 2-sheeted cover over Y nN . Now Y is smooth and

quasihomogeneous with respect to an algebraic action of the linear algebraic group

G. Hence it is rational. This implies that Y nN is simply connected. Hence D

X

has

two connected components over Y n N . Now the set D

X

\ �

�1

(N ) is just a curve.

Therefore D

X

cannot be irreducible.

Lemma 5.4. Under the assumptions of lemma 5.1, there exists a G-stable rational

section E

1

� X.

Proof. If G is a torus, then there exists a subgroup T

1

acting trivially on Y . In this

case we are �nished by applying lemma 5.3. Thus we may assume that the unipotent

part U of G is non-trivial. Let � 2 Y be a generic point and x 2 X

�

n 
, where 


denotes the open G-orbit in X. If x is unique, then the divisor E

1

:= G:x has the

required properties. Similarly, if U acts almost transitively on Y , then it's isotropy

at � is connected and we may set E

1

:= U:x.

If neither holds, then necessarily dimU = 1, and we can assume that U acts

non-trivially on Y . Otherwise X

�

n
 consists of a single point and we are �nished as

above. Let T

1

be a 1-dimensional subgroup of a maximal torus such that I := U:T

1

acts almost transitively on Y . If � 2 Y is generic, the isotropy group I

�

is cyclic:

I

�

has two �xed points in X

�

. Consequently, there exist at least two I-orbits whose

closures D

i

are rational sections.

Note that I is normal in G, i.e. all elements of G map I-orbits to I-orbits. If D

i

are the only rational sections occurring as closures of I-orbits, they are automatically

G-stable. Otherwise, all I-orbits are mapped injectively to Y , and at least one of

these is G-stable.

The existence of E

1

already yields a map to a P

1

-bundle.

Lemma 5.5. Under the assumptions of lemma 5.1, there exists a rank-2 vector bundle

E on Y (not necessarily split) and an equivariant birational map X 9 9 K

eq

P(E).
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Proof. Set E := (�

�

(O

X

(E)))

��

. Since a reexive sheaf on a smooth surface is locally

free, E is a vector bundle. If 


Y

� Y is the open orbit, �

�1

(


Y

)

�

=

P(Ej




Y

)

(cf. [BS95, Prop. 3.2.1]), inducing a birational map  : X 9 9 KP(E). Note that

�

�

(O

X

(E)) is torsion free. In particular, �

�

(O

X

(E)) is locally free over a G-stable

co�nite set Y

0

� Y so that, by the universal property of Proj,  is regular over Y

0

.

As  j

Y

0

is proper, it is equivariant. The automorphisms over Y

0

extend to the whole

of P(E) by the Riemann extension theorem. Hence  is equivariant as claimed.

In order to show that E can be chosen to be split we need to �nd another rational

section. We will frequently deal with the following situation, for which we �x some

notation.

Notation 5.6. Let � : X ! Y be as above and assume that there exists a map

� : Y ! Z

�

=

P

1

, e.g. if Y is isomorphic to a (blown-up) Hirzebruch surface �

n

.

Then, if F 2 Z is a generic point, set F

Y

:= �

�1

(F ) and F

X

:= �

�1

(F

Y

).

Lemma 5.7. In the setting of proposition 5.1, there exists a second rational section

E

2

. If E

1

is as constructed in lemma 5.4, then E

1

\E

2

is G-stable.

Proof. If G is a torus, we are �nished, as we have seen in the proof of lemma 5.4.

Hence we may assume that dimU > 0, where U is the unipotent part of G.

Suppose that U acts trivially on Y . Then we are able to choose a 2-dimensional

torus T < G such that T acts almost transitively on Y . If � 2 Y is generic, then

the isotropy group T

�

may not be cyclic, but since it has to �x the unique U -�xed

point in X

�

, its image T

�

! Aut(X

�

) is contained in a Borel group, hence cyclic.

Consequently, T

�

�xes another point x, and we may set E

2

:= T:x.

The other case is that U acts non-trivially on Y . We need to consider a mapping

� : Y ! Z

�

=

P

1

. If Y

�

=

�

n

, or a blow-up, there is no problem. If Y

�

=

P

2

, we note

that, by G being solvable and Borel's �xed point theorem (see [HO80, p. 32]), there

exists a G-�xed point y 2 Y . We can always blow up y and X

y

in order to obtain a

new P

1

-bundle over �

1

. If we are able to construct our rational sections here, then

we can simply take their images to be the desired rational sections in the variety we

started with. So let us assume that Y 6

�

=

P

2

.

There exists a 1-dimensional normal unipotent subgroup U

1

< G. Assume �rst

that U

1

acts non-trivially on Z. Using notation 5.6, F

Y

is isomorphic to P

1

, F

X

to a

Hirzebruch surface �

n

. Choose a section � � F

X

with the property that �(�\E

1

)

does not meet the open G-orbit in Y . As the stabilizer of F

X

in G stabilizes E

1

, so

that E

1

\ F

X

is either the in�nity- or zero-section in F

X

�

=

�

n

or the diagonal in

F

X

�

=

�

0

, and G stabilizes a section of Y ! P

1

, this can always be accomplished. Set

E

1

:= U

1

:�.

Secondly, we must consider the case that U

1

acts trivially on Z. We proceed

similarly to the above. Choose a 1-dimensional group G

1

< G such that the G

1

-orbit

in Z coincides with that of G. Now G

1

stabilizes at least one section �

Y

� Y over Z

which is not U

1

-stable! Set �

X

:= �

�1

(�

Y

) and consider a section � � �

X

over �

Y

such that �(� \E

1

) is disjoint from the open G-orbit in Y . Then E

1

:= U

1

:� is the

divisor we were looking for.

We still have to show that the intersection E

1

\ E

2

is G-stable. Note that by

construction, �(E

1

\ E

2

) does not meet the open G-orbit in Y . This, together with

E

1

being G-stable, yields the claim.
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We shall use the second rational section in order to transform E into a splitting

bundle.

5.1.1 Eliminating vertical curves

If S � �(E

1

\ E

2

) is an irreducible curve which is a �-�ber, then we say that E

1

and E

2

intersect vertically in S. We know that after blowing up S we obtain a P

1

-

bundle over the blow-up of Y . Furthermore, the process is equivariant. The proper

transforms of E

1

and E

2

are again rational sections. If they still intersect vertically,

the blow-up procedure can be applied again. So we eventually obtain a sequence of

blow-ups. The strict transforms of the E

1

and E

2

are again rational sections in X

i

.

We denote them by E

i

1

or E

i

2

, respectively. By the theorem on embedded resolution,

we have:

Lemma 5.8. The sequence described above terminates, i.e. there exists a number

i 2 N such that the strict transforms E

i

1

and E

i

2

do not intersect vertically.

5.1.2 Eliminating horizontal curves

We may now assume that E

1

and E

2

do not intersect vertically. Let S � �(E

1

\E

2

)

be an irreducible curve. Then S gives rise to an elementary transformation as ensured

by [Mar73]. Again, the transformation is equivariant and the strict transforms of E

1

and E

2

are rational sections. If they still intersect over S, we transform as before.

Again one may use the embedded resolution to show (cf. [Keb96, thm. 5.30] for

details):

Lemma 5.9. The sequence described above terminates after �nitely many transfor-

mations, i.e. there exists a j 2 N such that for all curves C � E

(j)

1

\E

(j)

2

it follows

that �

(j)

(C) 6= S. Furthermore, if E

1

and E

2

do not intersect vertically, then E

(i)

1

and E

(i)

2

do not intersect vertically for all i.

5.1.3 The construction of independent sections

By lemma 5.8 the variety X can be transformed into a P

1

-bundle such that the

strict transforms of E

1

and E

2

do not intersect in �bers. A second transformation

will rid us of curves in E

1

\ E

2

which are not contained in �bers. Since the latter

transformation does not create new curves in the intersection, the strict transforms

of E

1

and E

2

eventually become disjoint. The resulting space is the compacti�cation

of a line bundle.

Lemma 5.10. If E

1

and E

2

do not intersect, X is the compacti�cation of a line

bundle.

Proof. Since E

1

and E

2

are disjoint, neither contains a �ber. Thus they are sections.

As a net result, we have shown proposition 5.1.
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5.2 The case G not solvable

As �rst step, we show that X is again a linear P

1

-bundle. We do this under an

additional hypothesis which will not impose problems in the course of the proof of

theorem 1.1.

Lemma 5.11. Let X and G be as in theorem 1.1, with the exception that X is allowed

to have Q-factorial terminal singularities. Let � : X ! Y be a Mori-contraction to

a surface and assume additionally that G is not solvable and that there exists an

equivariant morphism  : Y ! Y

0

, where Y

0

is a smooth surface. Then X and Y are

smooth and X is a linear P

1

-bundle over Y .

Proof. First, we show that all �-�bers are of dimension 1. If there exists a �ber X

�

which is not 1-dimensional, then dimX

�

= 2. Take a curve C � Y so that � 2 C.

Set D := �

�1

(C n �). The divisor D intersects an irreducible component of X

�

. Now

take a curve R � X

�

intersecting D in �nitely many points. We have R:D > 0.

However, all generic q-�bers X

�

are homologous to R (up to positive multiples). So

X

�

:D > 0, contradicting the de�nition of D.

Secondly, we claim that X is smooth. Assume to the contrary and let x 2 X be a

singular point, � := �(x). Recall that terminal singularities in 3-dimensional varieties

are isolated. Thus, if S is the semisimple part of G, then the �ber X

�

through x is

pointwise S-�xed. Linearizing the S-action at a generic point y 2 X

�

, the complete

reducibility of the S-representation yields an S-quasihomogeneous divisor D which

intersects X

�

transversally at y and is Cartier in a neighborhood of y. The induced

map D ! Y

0

must be unbranched: Y

0

contains an S-�xed point and is therefore

isomorphic to P

2

; but there is no equivariant cover of this other than the identity. So

D is a rational section which is Cartier over a neighborhood of �. If H 2 Pic(Y )

is su�ciently ample, then D + �

�

(H) is ample, and [BS95, Prop. 3.2.1] applies,

contradicting the assumption that X is singular.

Since X is smooth, the same theorem shows that in order to prove the lemma

it is su�cient to show that there exists a rational section. If all the simple factors

of S have orbits of dimension � 2, then, after replacing the factors by their Borel

groups, we obtain a solvable group G

0

, acting almost transitively as well. In this case

lemma 5.4 applies.

If S

0

< S is a simple factor acting with 3-dimensional orbit on X, its action on

Y is almost transitively. In particular, there exists a 2-dimensional group B < S,

isomorphic to a Borel group in SL

2

, which also acts almost transitively on Y . As

in the proof of lemma 5.4, B has cyclic isotropy at a generic point of Y and so there

exist two rational sections which are compacti�cations of B-orbits.

6 Proof of theorem 1.1

Prior to proving theorem 1.1, we still need to describe equivariant maps to P

3

in more

detail:

Lemma 6.1. Let X 9 9 K

eq

P

3

be an equivariant birational map. Then either X has

an equivariant rational �bration with 2-dimensional base variety or X and P

3

are

equivariantly linked by a sequence of blowing ups of X followed by a sequence of blow-

downs.
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Proof. If the G-action on P

3

has a �xed point, we can blow up this point and obtain

a map from the blown-up P

3

to P

2

. If there is no such G-�xed point in P

3

, then after

replacingX by an equivariant blow-up, there is a regular equivariant map � : X ! P

3

.

Recall that such a map factors through an extremal contraction. Since the base does

not contain a �xed point, the classi�cation of extremal contractions of smooth varieties

yields the claim.

Now we compiled all the results needed to �nish the

Proof of theorem 1.1. GivenX, we apply lemmata3.1{3.4. Unless X

�

=

Q

3

, F

1;2

(3) or

a compacti�cation of SL

2

=�, � not cyclic, there exists an equivariant mapX 9 9 K

eq

Y ,

where Y is smooth and Y

�

=

P

3

, dim(Y ) = 2 or, if no other case applies, dim(Y ) = 1.

If Y

�

=

P

3

, then, by lemma 6.1, we may replace P

3

by a surface, or else we are

�nished.

In the case of a map to Y with dimY < 3, we can blow up X equivariantly to

obtains a morphism

~

X ! Y . Recalling that all steps in the minimal model program

(i.e. contractions and ips) are equivariant, we may perform a relative minimalmodel

program over Y . In this situation corollary 2.2 shows that the program does not stop

unless we encounter a contraction of �ber type X

0

! Y

0

and dimY

0

< 3. Note that

dimY

0

� dimY .

In case that Y

0

is a surface, X

0

is the projectivization of a line bundle or can

be equivariantly transformed into one (cf. lemma 5.5 and 5.11). If G is solvable,

proposition 5.1 allows us to transformX into the projectivization of a splitting bundle

over a surface.

If dimY

0

= 1 and there does not exist a map to one of the other cases, X

�

=

P(O(e)�O(e) � O) over P

1

, as was shown in proposition 4.1.

We still have to show that if G is not solvable, the map to one of the models in

our list factors into equivariant monoidal transformations. Recall that it su�ces to

show that, after equivariantly blowing up, if necessary, the minimal models do not

have a G-�xed point. We do a case-by-case checking:

P

2

-bundles over P

1

: By lemma 4.2, these can be chosen not to contain a �xed

point.

P

1

-bundles over a surface Y : If the semisimple part S of G acts trivially on Y ,

we can stop. Otherwise, if the S-action on Y has a �xed point f , we blow up

f and the �ber over f and obtain a P

1

-bundle over �

1

. Recall that actions of

semisimple groups on �

n

never have �xed points.

P

3

: This case has already been handled in lemma 6.1.

SL

2

=�: After desingularizing and blowing up all �xed points, if any, the compacti-

�cation of SL

2

=� is �xed point free. Otherwise, linearization at a �xed point

yields a contradiction to S acting almost transitively.

other cases: The remaining cases occur only when X is homogeneous

(cf. lemma 3.4).
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