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Which Moments of a Logarithmic Derivative
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Michael Scheutzow, Heinrich v. Weizs

�

acker

Received: June 5, 1998

Communicated by Friedrich G�otze

Abstract. In many special contexts quasiinvariance of a measure under a

one-parameter group of transformations has been established. A remarkable

classical general result of A.V. Skorokhod [6] states that a measure � on a

Hilbert space is quasiinvariant in a given direction if it has a logarithmic

derivative � in this direction such that e

aj�j

is �-integrable for some a > 0.

In this note we use the techniques of [7] to extend this result to general

one-parameter families of measures and moreover we give a complete char-

acterization of all functions  : [0;1) ! [0;1) for which the integrability

of  (j�j) implies quasiinvariance of �. If  is convex then a necessary and

su�cient condition is that log (x)=x

2

is not integrable at 1.

1991 Mathematics Subject Classi�cation: 26 A 12, 28 C 20, 60 G 30

1 Overview

The paper is divided into two parts. The �rst part does not mention quasiinvariance

at all. It treats only one-dimensional functions and, implicitly, one-dimensional

measures. The reason is as follows: A measure � on R has a logarithmic derivative �

if and only if � has an absolutely continuous Lebesgue density f , and � is given by

�(x) =

f

0

f

(x) �-a.e.. Then the �-integrability of  (j�j) is equivalent to the Lebesgue-

integrability of  (j

f

0

f

j)f . The quasiinvariance of � is equivalent to the statement

that f(x) 6= 0 Lebesgue-a.e.. Therefore in the case of one-dimensional measures, a

function  allows a quasiinvariance criterion, as indicated in the abstract, i� for all

absolutely continuous functions f � 0, the integrability of  (j

f

0

f

j)f implies that f is

strictly positive. The main result of the �rst part, Theorem 1, gives necessary and

su�cient reformulations of this property which are easier to check. The most simple

of these reformulations is the divergence of the integrals

R

1

c

log 

�

(x)=x

2

dx where  

�

is the lower nondecreasing convex envelope of  . Moreover we give, for every  with

this property, explicit lower estimates for the values of f on an interval I , in terms
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of the length of this interval and of the integral

R

I

 

�

(j

f

0

f

j)fdx. Finally we give an

example showing that the introduction of the lower convex hull in these results really

is necessary.

The second part of the paper then proves that the one-dimensional situation is typi-

cal. The quasiinvariance criterion works on the real axis if and only if it works for the

transport of a measure under an arbitrary measurable ow, or even more generally

for general one parameter families of measures which are di�erentiable in the sense

of [7]. If this criterion applies then one gets even the typical Cameron-Martin type

formula for the Radon-Nikodym-densities between the members of such a family

(cf.e.g. [3], [1], [5], [7]). In the situation of Skorokhod's result mentioned in the

summary, we see that the exponential functions  (x) = e

ax

; a > 0 can be replaced by

exp(

x

log x

) but not by exp(

x

(log x)

2

). This shows that Skorokhod's exponential criterion

is not strictly optimal but it gives the optimal power of log .

2 A class of one-dimensional functions

Theorem 1: For a measurable function  : [0;1) ! [0;1) the following six condi-

tions are equivalent:

(A) Let f : R ! [0;1) be absolutely continuous such that

Z

1

�1

 (j

f

0

f

(x)j) f(x)dx <1 (1)

and f 6= 0.Then f(x) > 0 for Lebesgue-all x 2 R.

(A

0

) Let f : R ! [0;1) be absolutely continuous such that x 7!  (j

f

0

f

(x)j) f(x) is

locally Lebesgue integrable and f 6= 0.Then f(x) > 0 for all x 2 R.

(B) For some a > 0 the following implication holds

1

X

i=1

z

i

<1; z

i

> 0 =)

1

X

i=1

z

i

 (

1

z

i

)e

�ai

=1: (2)

.

(B

0

) The implication (2) holds for all a > 0 .

(C) Let  

�

be the largest nondecreasing convex function �  und suppose  

�

(c) > 0.

Then

Z

1

c

log 

�

(x)

x

2

dx =1: (3)

(C

0

) Similarly, lim

x!1

 

�

(x) =1, and for d in the range of log 

�

,

Z

1

d

1

(log 

�

)

�1

(x)

dx =1: (4)
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In particular the conditions (A) � (B) hold for  if and only if they hold for  

�

. If

 is convex and nondecreasing and some power  

p

with p > 0 satis�es one of the

conditions then the same is true for  .

Proof: Clearly (A

0

) =) (A):

(A) =) (B) : Let z

i

> 0 and b :=

P

1

i=1

z

i

<1: De�ne f : R �! [0;1) by

f(s) = exp(�

s� (z

1

+ : : :+ z

i�1

)

z

i

� (i� 1))

for s 2 [z

1

+ : : : + z

i�1

; z

1

+ : : : + z

i

]; i = 1; 2; : : : . Note that e

�i

� f(s) � e

�(i�1)

and

f

0

f

(x) = (log f)

0

(x) = �

1

z

i

in this interval. Moreover, set f(s) = 0 for s � b and

f(�s) := f(s) for s � 0: Then f is absolutely continuous but not strictly positive.

Therefore by assumption (A) the integral in (1) diverges. Hence

1

X

i=1

 (

1

z

i

)e

�(i�1)

z

i

�

1

X

i=1

 (

1

z

i

)

Z

z

1

+:::+z

i

z

1

+:::+z

i�1

f(x)dx

=

Z

b

0

 (j

f

0

f

(x)j) f(x)dx =1

which proves (B) with a = 1.

(B) () (B

0

) : Denote by (B

a

) the statement that (B) holds with the constant a.

Clearly, (B

b

) =) (B

c

) if c � b: We prove B

a

=) B

2a

: Suppose

P

1

i=1

z

i

<1; z

i

> 0

and let y

2j

= y

2j�1

= z

j

for j 2 N: Then

P

1

j=1

y

j

<1 and hence

2

1

X

i=1

z

i

e

�2ai

 (

1

z

i

) � e

�a

1

X

j=1

y

j

e

�aj

 (

1

y

j

) =1:

(B

0

) =) (C

0

) : Let h(t) = (log 

�

)

�1

(t). De�ne the number z

�

i

by z

�

i

=

1

h(i)

. From

(B) it follows easily that

 (x)

x

! 1 as x ! 1. Thus the same holds for  

�

. Since

 

�

is convex and increasing the function 1=h is continuous and decreasing. Therefore

for the proof of (4) it is su�cient to prove that the sum

P

1

i=1

z

�

i

diverges.

Suppose, on the contrary, that

P

1

i=1

z

�

i

< 1. Choose y

i

� 2z

�

i

such that y

i

 (

1

y

i

) �

c

i

+ 1 where

c

i

= inf

x�

1

2z

�

i

 (x)

x

:

This is possible by de�nition of this in�mum c

i

. The a�ne function l

i

: x 7! c

i

x�

c

i

2z

�

i

is �  since it is negative on [0;

1

2z

�

i

), and on [

1

2z

�

i

;1) even the larger function x 7! c

i

x

is bounded by  . Therefore, from the de�nition of  

�

, we get

 

�

(

1

z

�

i

) � l

i

(

1

z

�

i

) =

1

2

c

i

z

�

i

: (5)

We apply (B

0

) with a = 1 and use the summability of the z

�

i

and hence of the y

i

to

get

1

X

i=1

c

i

e

�i

�

1

X

i=1

y

i

 (

1

y

i

)e

�i

�

1

X

i=1

e

�i

=1:
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Now  

�

(

1

z

�

i

) = e

i

by construction of the z

�

i

, thus (5) gives

1

X

i=1

z

�

i

=

1

X

i=1

z

�

i

 

�

(

1

z

�

i

)e

�i

�

1

2

1

X

i=1

c

i

e

�i

=1

which is a contradiction.

(C) () (C

0

) : Both, (3) and (4), imply that  

�

is continuous, nondecreasing and

unbounded at in�nity. Therefore there is some c such that  

�

is even strictly increasing

on [c;1), and the assertion follows from lemma 1 below, applied to ' = log 

�

.

(C

0

) =) (A

0

). Presumably, this is the most useful implication. We formulate the

main part of the proof as the separate Theorem 2 since it involves only integrals over

�nite intervals and can be applied also to functions which do not satisfy the conditions

of the theorem. In order to deduce our implication from Theorem 2 assume (4) and

let 	(x) =  

�

(x)� 

�

(0). Then lim

x!1

log	(x)� log 

�

(x) = 0 and hence using the

equivalence of (3) and (4) we get

Z

1

0

1

(log	)

�1

(y)

dy =1:

Now if f is absolutely continuous and x 7!  (j

f

0

f

(x)j)f(x) is locally integrable then

also the function x 7! 	(j

f

0

f

(x)j)f(x) is locally integrable and hence (9) below gives

a lower bound for the values of f on any interval [s; t] such that f(s) > 0. The case

f(t) > 0 follows by reection. In particular f is strictly positive which is the assertion

of (A

0

).

Finally we prove the last statement. Let  be convex and nondecreasing and suppose

that  

p

satis�es one of the conditions. If p < 1 then  � max(1;  

p

) and using

criterion (B) it follows that  satis�es the same condition. If p > 1 then  

p

, by

Jensen's inequality, is also convex nondecreasing and hence  =  

�

and  

p

= ( 

p

)

�

.

Since log 

p

= p log , the criterion (C) carries over from  

p

to  .

In the proof we have used the following elementary fact.

Lemma 1: Let c > 0 and let ' : [c;1)! [d;1) be a homeomorphism. Then

Z

1

d

1

'

�1

(y)

dy =

Z

1

c

'(x)

x

2

dx�

d

c

; (6)

i.e. both integrals converge at the same time and if they do (6) holds.

Proof: The change of variables y = '(x) gives

Z

'(T )

d

1

'

�1

(y)

dy =

Z

T

c

1

x

d'(x)(x) =

'(x)

x

�

�

�

T

c

+

Z

T

c

'(x)

x

2

dx: (7)

Since

'(T )

T

> 0 for large T the left-hand side of (6) dominates the right-hand side.

For the converse inequality assume that the integral on the right-hand side of (6) is

�nite. The inde�nite integral on the left-hand side of (7) is monotone in T , so it has
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a �nite or in�nite limit. Therefore by (7) the limit lim

T!1

'(T )

T

exists and it must

be 0 because otherwise the integral on the right-hand side of (6) would be in�nite.

This implies (6).

The following result gives a quantitative version of the implication (C

0

) =) (A

0

)

in Theorem 1.

Theorem 2: Let 	 : R �! [0;1) be a convex even function with 	(0) = 0. Let

f : [s; t] �! [0;1) be absolutely continuous such that f(s) > 0. Then

1

f(s)

Z

t

s

	(

f

0

(x)

f(x)

)f(x)dx �

� min

s�x�t

log(f(x)=f(s))

Z

0

1

(log	)

�1

(x)

dx � (t� s): (8)

Remark: Let I =

R

t

s

	(

f

0

(x)

f(x)

)f(x) dx be �nite. De�ne F (y) :=

R

y

0

1

(log )

�1

(x)

dx

for y � 0. If the range of F contains the number

I

f(s)

+ t� s (which certainly is true

if F (y)!1 for y !1) then (8) can be rewritten as

f(t) � f(s) exp

�

� F

�1

(

I

f(s)

+ t� s)

�

: (9)

This gives a lower estimate of the uctuation of the function f in terms of the integral

I and the length of the interval [s; t].

Remark: In the special case  (x) = e

ax

there is an elegant more abstract proof

of property (A) of Theorem 1, see [4], prop. 2.18. That proof does not give a lower

bound for the values of f in terms of I but on the other hand it works also in higher

dimensions whereas our method is strictly one-dimensional.

Proof: Both sides of (8) remain unchanged if f is multiplied by some positive

constant. Therefore we may and shall, for notational convenience, assume f(s) = 1.

For a > 0; i 2 N

0

let x

(a)

i

:= inffy � s : f(y) = e

�ai

g;We also introduce the numbers

z

(a)

i

:= x

(a)

i

�x

(a)

i�1

, z

(a)

i

:=

a

(log )

�1

(ai)

for i 2 N and �nally N

a

:= supfn 2 N : x

(a)

n

�

tg: We apply Jensen's inequality in the second step of the following estimates
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Z

t

s

	(

f

0

(x)

f(x)

)f(x) dx �

N

a

X

i=1

e

�ai

Z

x

(a)

i

x

(a)

i�1

	(

f

0

(x)

f(x)

) dx

�

N

a

X

i=1

e

�ai

z

(a)

i

	

�

1

z

(a)

i

Z

x

(a)

i

x

(a)

i�1

�f

0

(x)

f(x)

dx

�

=

N

a

X

i=1

e

�ai

z

(a)

i

	

�

1

z

(a)

i

(� ln f(x

(a)

i

) + ln f(x

(a)

i�1

))

�

=

N

a

X

i=1

e

�ai

z

(a)

i

	

�

a

z

(a)

i

�

�

N

a

X

i=1

z

(a)

i

�z

(a)

i

z

(a)

i

	

�

a

z

(a)

i

�

e

�ai

:

Since 	 is convex and 	(0) = 0 the function y 7!

	(y)

y

is increasing on [0;1).

Moreover 	(

a

z

(a)

i

) = e

ai

and hence the last sum can be further estimated from below

by

N

a

X

i=1

z

(a)

i

�z

(a)

i

z

(a)

i

	(

a

z

(a)

i

)e

�ai

=

N

a

X

i=1

z

(a)

i

�z

(a)

i

z

(a)

i

�

N

a

X

i=1

z

(a)

i

�

N

a

X

i=1

z

(a)

i

�

N

a

X

i=1

a

(log	)

�1

(ai)

� (t� s):

Because of

N

a

X

i=1

a

(log	)

�1

(ai)

�!

a#0

Z

b

0

1

(log	)

�1

(y)

dy

where

b = lim

a#0

N

a

a = � lim

a#0

log f

�

x

(a)

N

a

�

= � min

s�x�t

log f(x);

the proof is complete.

Example 1 For every 0 < p < 1 there is a convex increasing function  : [0;1) �!

[0;1) which satis�es the conditions of Theorem 1, but  

p

does not.

This function then satis�es

Z

1

c

log 

p

(x)

x

2

dx =

Z

1

c

p

log (x)

x

2

dx = p

Z

1

c

log 

�

(x)

x

2

dx =1

but (C) does not hold for  

p

. This shows that in (C) (and in (C

0

)) the convex lower

envelope cannot be replaced by the function itself. Switching roles of  and  

p

, the
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example also shows that in the last statement of the theorem the convexity of  

cannot be replaced by the convexity of  

p

for p > 1. With some additional e�ort one

could modify the example in such a way that for no p < 1 the function  

p

satis�es

the conditions of Theorem 1.

Construction: We write q instead of

1

p

. We start by setting b

0

= 0, 

0

= 0,

�

0

= 1: We shall choose recursively points a

1

< b

1

< a

2

< b

2

< : : : and real numbers

�

k

; �

k

; 

k

; k 2 N and set

 (x) =

8

<

:

a

q

k

for x = a

k

�

k

e

qx

for a

k

< x < b

k

�

k

x+ 

k

for b

k

� x < a

k+1

(10)

So the function alternates between a�ne and exponential type. The constants

are chosen in such a way that at the points a

k

the graph of  is bent upwards, while

at the points b

k

the two one-sided derivatives agree.

Assume that all numbers a

i

; b

i

; �

i

; �

i

; 

i

with i < k are already chosen such that (10)

gives a continuous convex increasing function on some interval [0; b

k�1

+ "] which is

di�erentiable with the possible exception of the points a

i

for i < k. In the case k = 1

let a

1

= 1. For k > 1 we then know that a

k�1

� 1 and, comparing logarithmic deriva-

tives of  and of x

q

, respectively, we see that  (x) > x

q

on the interval (a

k�1

; b

k�1

],

in particular �

k�1

b

k�1

+

k�1

> b

q

k�1

. Since q > 1 this implies that there is a solution

> b

k�1

of the equation

�

k�1

x+ 

k�1

= x

q

(11)

which we choose as a

k

. Then  is de�ned on [b

k�1

; a

k

] by the third part of (10).

Choose �

k

such that �

k

e

qa

k

= a

q

k

; i.e. �

k

= a

q

k

e

�qa

k

: Let b

k

=

3

2

a

k

and de�ne  on

[a

k

; b

k

] according to the second part of (10). The numbers �

k

and 

k

are determined

by the equation of the (left) tangent of  at b

k

.

Verification: By construction,

 

0

(a

k

�) = �

k�1

=  

0

(b

k�1

�) = q (b

k�1

) < q (a

k

) =  

0

(a

k

+):

i.e. this extension of  continues to be convex and continuous. Moreover,

 (b

k

) = �

k

e

qb

k

= a

q

k

e

�qa

k

e

q

3

2

a

k

= a

q

k

e

q

2

a

k

: (12)

The sequence (a

k

) is certainly unbounded by the choice of the b

k

. By construction of

a

k

, at this point the slope of y = x

q

is bigger than �

k�1

. Thus,

qa

q�1

k

> �

k�1

=  

0

(b

k�1

) > q (a

k�1

) = qa

q

k�1

and hence

a

k

a

k�1

> (a

k�1

)

1

q�1

: This implies

a

k

a

k�1

�!1: (13)
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Because of (12) and (13)

Z

a

k+1

a

k

log (x)

x

2

dx � log (b

k

)

Z

a

k+1

b

k

1

x

2

dx

= (q log a

k

+

q

2

a

k

)

�

1

3

2

a

k

�

1

a

k+1

�

�

q

4

for eventually all k. Together with the convexity this shows that  satis�es condition

(C).

On the other hand, for z

k

=

1

a

k

, (13) implies

P

1

k=1

z

k

<1. But

z

k

 

p

(

1

z

k

) =

1

a

k

(a

q

k

)

1

q

= 1

and, therefore,

P

1

k=1

z

k

 

p

(

1

z

k

)e

�i

< 1: So  

p

does not have property (B). This

concludes the discussion of the example.

3 Logarithmic derivatives and quasiinvariance

LetM(E) be the linear space of �nite signed measures on a measurable space (E;B),

equipped with the total variation norm k � k . Let C be a linear space of bounded test

functions on E which is normde�ning for M(E), k�k = supf

R

' d� : ' 2 C; k'k

1

�

1g for all � 2 M(E). Typical examples of spaces C with this property are the space of

bounded continuous functions for a topology for which B is the class of Baire sets, i.e.

the �-�eld generated by C, or the space of smooth cylindrical functions on a Hilbert

space. Let I be a real interval and let (�

t

)

t2I

be a family of elements of M(E). We

call this map �

C

-di�erentiable at t 2 I with logarithmic derivative �

t

2 L

1

(�

t

) if for

every ' 2 C the function s 7!

R

' d�

s

is di�erentiable at t with derivative

d

ds

js=t

Z

' d�

s

=

Z

'�

t

d�

t

: (14)

The measure �

t

�

t

is the derivative of the M(E)-valued curve (�

t

) with respect to

the topology �

C

= �(M(E); C) and is denoted by �

0

t

. An important special class of

examples are families (�

t

)

t2R

which are induced by a measurable ow: If T = (T

t

)

t2R

is a one-parameter group of bimeasurable bijections of E, and � 2 M(E) is a �xed

measure, one considers the family of measures �

t

= ��T

�1

t

. If (�

t

) satis�es the above

di�erentiability condition at one (and then at all) t we call � di�erentiable along T

with logarithmic derivative � = �

0

. In this case the logarithmic derivative for general

t is given by

�

t

(x) = �(T

�t

x): (15)

This extends the concept of the di�erentiability of a measure on a linear space in

a certain direction which was the main subject of [2] and the relevant parts of [6].

The more general aspects have been studied, starting with [3], in [5] and [7], for a

Documenta Mathematica 3 (1998) 261{272



Which Moments of a Logarithmic Derivative : : : 269

comparison with concepts of the Gross-Malliavin calculus see e.g. [8].

We need two results from [7]: (a) Suppose that �

t

exists for all t 2 I , and that

Z

I

k�

t

k

1;�

t

dt =

Z

I

k�

0

t

k dt <1: (16)

Then there are a probability measure � on B and B�B(I)-measurable functions g; g

0

on

E � I such that �

t

(dx) = g(t; x)�(dx); �

0

t

(dx) = g

0

(t; x)�(dx) and thus �

t

(x) =

g

0

(t;x)

g(t;x)

�-a.e. for Lebesgue almost all t 2 I and �nally

g(b; x)� g(a; x) =

Z

b

a

g

0

(s; x)ds for all x 2 E and a; b 2 I: (17)

(b) If, moreover, the pointwise integrability condition

Z

b

a

j�

s

(x)j ds <1 j�

a

j+ j�

b

j � a:e: (18)

holds then all measures �

t

; a � t � b are equivalent and we have the 'abstract

Cameron-Martin' formula

d�

b

d�

a

(x) = exp

Z

b

a

�

s

(x) ds: (19)

The condition (18) clearly is necessary for (19) to make sense. But how can one

verify it ? The interaction of the Radon-Nikodym derivatives �

t

for varying t may

be complicated. Therefore, it seems desirable to have su�cient conditions for the

equivalence of the �

t

in terms of the onedimensional laws of the �

t

with respect to

the measures �

t

. The following continuation of the main result of the �rst section

provides an answer of this type.

Theorem 3: A function  : [0;1) ! [0;1) satis�es the conditions (A) � (C

0

) of

Theorem 1 if and only if the following holds: For every �

C

-di�erentiable and k � k-

bounded family (�

t

)

t2I

; I � R of signed measures on a measurable space and a; b 2 I

with

Z

b

a

k (j�

t

j)k

1;�

t

dt <1 (20)

the measures �

t

; a � t � b are equivalent to each other. Moreover, for such functions

 the condition (20) implies the abstract Cameron-Martin formula formula (19).

Proof: 1. Suppose that  has the indicated property. We want to show that

condition (A

0

) of Theorem 1 is ful�lled. Let f be an absolutely continuous nonnegative

function on the real axis for which x 7!  (j

f

0

f

(x)j) f(x) is locally integrable and such

that f does not vanish everywhere. We have to show that f is strictly positive.

Otherwise there are two points a; b with f(a) > 0 and f(b) = 0. Without loss of

generality a < b. Let �

t

(dx) = f(x+ t)dx. In order to apply our condition, we have
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to make sure that these measures are �nite. For this, rede�ne f on [b;1) by f(x) = 0

and on [�1; a) by f(x) = f(a) exp(x� a) Then

Z

a

�1

 (j

f

0

f

(x)j)f(x) dx =

Z

a

�1

 (1)f(a) exp(x� a) dx <1

and, similarly,

R

1

b

 (j

f

0

f

(x)j)f(x) dx = 0 <1. The modi�ed f still satis�es (1) and

it is certainly Lebesgue integrable. Thus, we have the ow situation mentioned above

with T

t

x = x� t. The family �

t

is di�erentiable (even for the topology induced by the

total variation norm) with �

t

(x) =

f

0

f

(x+ t). Then the local integrability assumption

and the two tail estimates imply

R

 (j�

t

(x)j) �

t

(dx) =

R

 (j�

0

(x)j) �(dx) <1 for all

t. Therefore, the condition (20) is satis�ed. By our assumption on  this implies that

the measures �

t

are all equivalent, i.e. the function f cannot vanish on a half-line as

our f does. This contradiction shows that f must be strictly positive. Hence  has

property (A

0

).

2. Suppose, conversely, that  is a function of the type considered in Theorem 1. Let

�

t

be a �

C

-di�erentiable and k � k-bounded family (�

t

)

t2I

; I � R of signed measures

on a measurable space and let a; b 2 I with (20) be given. First we claim that (16)

holds. In fact from condition (C) in Theorem 1 we �nd positive constants u; v such

that v (y) � y for all y > u. Then

k�

t

k

1;�

t

=

Z

E

j�

t

(x)j d�

t

� v

Z

j�

t

j>u

 (j�

t

j) dj�

t

j+

Z

E

u dj�

t

j

� vk (j�

t

j)k

1;�

t

+ uk�

t

k:

Since the measures are k � k-bounded (20) implies (16). Therefore we can choose g; g

0

and � with the properties listed after (16). Then (20) can be rewritten as

Z

b

a

Z

E

 (j

g

0

(t; x)

g(t; x)

j)g(t; x) �(dx) dt <1:

By Fubini, there is a �-nullset N such that

R

b

a

 (j

g

0

t

g

t

(x)j)g

t

(x) dt < 1 for every

x 2 E n N . Then extending t 7! g(t; x) outside of the interval [a; b] by exponential

tails (or zero) as in the �rst part of this proof we can apply condition (A) in Theorem

1 and conclude that for each x 2 E nN either g(t; x) > 0 for all t 2 [a; b] or g(t; x) = 0

for all t 2 [a; b]. This implies that the measures �

t

; t 2 [a; b] are all equivalent.

3. Moreover the function g(�; x) is continuous by (17) and therefore it is bounded

away from 0 by some constant �(a; b; x) on the interval [a; b] for �

a

- (and �

b

-) almost

all x 2 E. Then (17) and the representation �

t

(x) =

g

0

(t;x)

g(t;x)

show that (18) and hence

also (19) hold.

In particular, we get the following version of Skorokhod's theorem for the function

given by  (y) = exp(

y

j log(y)j

) for y > 0.

Corollary 4 Let � be a probability measure on a measurable space E and let T =

(T

t

)

t2R

be a measurable ow on E. Suppose � is �

C

-di�erentiable along T with

logarithmic derivative �. If � satis�es the following integrability condition

Z

E

exp

�

j�(x)j

j log(j�(x)j)j

�

�(dx) <1
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then � is quasiinvariant under the ow T and the corresponding Radon-Nikodym

derivatives are given by (19). But, even for translation families on the real axis, the

quasiinvariance is not implied by the weaker condition

Z

E

exp

�

j�(x)j

log(j�(x)j)

2

�

�(dx) <1:

Proof: We consider the function  (y) = exp(

y

j log(y)j

) for y > 0. Then it is easily

veri�ed that  is convex and increasing for su�ciently large y and, thus, it satis�es

the criterion (C). Because of (15) we have

k (j�

t

j)k

1;�

t

=

Z

 (j�j) � T

�1

t

d�

t

=

Z

 (j�j) d�

for all t, and hence our integrability assumption implies (20).

On the other hand  (y) = exp(

y

log(y)

2

) for y > 0 de�nes a function which does

not satisfy the condition (C). The function f used in the proof of (A) =) (B) in

Theorem 1 then satis�es (1) for this function  but f has compact support. Therefore

the logarithmic derivative � =

f

0

f

of the measure � 2 M(R) whose density is f ,

satis�es the weakened integrability condition of our Corollary, but this measure is not

quasiinvariant under the ow of translations.
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