Chern Classes of Fibered Products of Surfaces

Mina Teicher
Received: March 16, 1998
Revised: September 18, 1998
Communicated by Thomas Peternell

Abstract. In this paper we introduce a formula to compute Chern classes of fibered products of algebraic surfaces. For $f: X \rightarrow \mathbb{C P}^{2}$ a generic projection of an algebraic surface, we define X_{k} for $k \leq n(n=\operatorname{deg} f)$ to be the closure of k products of X over f minus the big diagonal. For $k=n$ (or $n-1$), X_{k} is called the full Galois cover of f w.r.t. full symmetric group. We give a formula for c_{1}^{2} and c_{2} of X_{k}. For $k=n$ the formulas were already known. We apply the formula in two examples where we manage to obtain a surface with a high slope of c_{1}^{2} / c_{2}. We pose conjectures concerning the spin structure of fibered products of Veronese surfaces and their fundamental groups.

Keywords and Phrases: Surfaces, Chern classes, Galois covers, fibered product, generic projection, algebraic surface.

1991 Mathematics Subject Classification: 20F36, 14J10

0 . Introduction.

When regarding an algebraic surface X as a topological 4-manifold, it has the Chern classes c_{1}^{2}, c_{2} as topological invariants. These Chern classes satisfy:

$$
\begin{gathered}
c_{1}^{2}, \quad c_{2} \geq 0 \\
5 c_{1}^{2} \geq c_{2}-36 \\
\text { Signature }=\tau=\frac{1}{3}\left(c_{1}^{2}-2 c_{2}\right)
\end{gathered}
$$

The famous Bogomolov-Miyaoka-Yau inequality from 1978 (see [Re], [Mi], [Y]) states that the Chern classes of an algebraic surface also satisfy the inequality

$$
c_{1}^{2} \leq 3 c_{2}
$$

It is known that this inequality is the best possible since Hirzebruch showed in 1958 that the equality is achieved by complex compact quotients of the unit ball (see $[\mathrm{H}]$).

We want to understand the structure of the moduli space of all surfaces with given c_{1}^{2}, c_{2}; and, in particular, to populate it with interesting structures of surfaces. As a first step it is necessary to develop techniques to compute Chern classes of different surfaces.

In this paper we compute Chern classes of Galois covers of generic projections of surfaces. This was already computed in [MoTe 2$]$ for the case of the full Galois cover, where the product is taken n times (n is the degree of the projection). In this paper we deal with products taken k times, $k<n$, and we manage to give an example of a surface where the slope $\left(c_{1}^{2} / c_{2}\right)$ is very high (up to 2.73). In subsequent research, using the results of this paper and of our ongoing research on this subject, we plan to further study these constructions, to compute these fundamental groups and to decide when the examples are spin, of positive index, etc. We conjecture that for X_{b} the Veronese surface of order b greater than $4, X_{k}$ is spin if k is even or $b=2,3(4)$. We further conjecture that for the Hirzebruch surfaces in general the fundamental groups of X_{k} are finite.

In [RoTe], we used similar computations to produce a series of examples of surfaces with the same Chern classes and different fundamental groups which are spin manifolds where one fundamental group is trivial and the other one has a finite order which is increasing to infinity. The computations in this paper will lead to more examples of pairs in the $\tau>0$ area.

We consider in this paper fibered products and Galois covers of generic projections of algebraic surfaces. If $f: X \rightarrow \mathbb{C P}^{2}$ is generic of $\operatorname{deg} n$, we define the k-th Galois cover for $k \leq n$ to be $\overline{X \times \cdots \times X-\Delta}$ where Δ is the big diagonal and the fibered product is taken k times. There exists a natural projection $g_{k}: X_{k} \rightarrow \mathbb{C P}^{2}, \operatorname{deg} g_{k}=$ $n(n-1) \ldots(n-k+1)$.

The surface X_{k} for $k=n$, is called the full Galois cover (i.e., the Galois cover w.r.t. full symmetric group $)$, and is also denoted $X_{\text {Gal }}$ or \tilde{X}. Clearly, $\operatorname{deg}\left(X_{\mathrm{Gal}} \rightarrow \mathbb{C P}^{2}\right)=n$!. It can be shown that $X_{n} \simeq X_{n-1}$. The full Galois covers were first treated by Miyaoka in [Mi], who noticed that their signature should be positive. In our papers [MoTe1], [MoTe2], [MoTe3], [MoRoTe], [RoTe], [Te], [FRoTe], we discussed the full Galois covers for $X=f_{\left|a \ell_{1}+b \ell_{2}\right|}\left(\mathbb{C P}^{1} \times \mathbb{C P}^{1}\right)$, Veronese embeddings and Hirzebruch surfaces. In the papers cited above we computed their fundamental groups (which are finite), the Chern numbers and the divisibility of the canonical divisor (to prove that when considered as 4-manifolds they are spin manifolds). $X_{\text {Gal }}$ are minimal smooth surfaces of general type. Other examples of interest on surfaces in the $\tau>0$ area can be found in [Ch] and [PPX].

§1. The Main Theorem.

We start with a precise definition.
Definition. A Galois cover of a generic projection w.r.t. the symmetric group $\mathbf{S}_{\mathbf{k}}$ (FOR $\mathbf{k}<$ DEGREE OF THE GENERIC PROJECTION). Let $X \hookrightarrow \mathbb{C P}^{N}$ be an embedded algebraic surface. Let $f: X \rightarrow \mathbb{C P}^{2}$ be a generic projection, $n=\operatorname{deg} f$. For $1 \leq k \leq n$, let

$$
\begin{aligned}
& X \times \cdots \times X=\left\{\left(x_{1}, \ldots x_{k}\right) \mid x_{i} \in X, f\left(x_{i}\right)=f\left(x_{j}\right) \forall i \forall j\right\}, \\
& \Delta=\left\{\left(x_{1}, \ldots, x_{k}\right) \in X \times \cdots \times X \mid x_{i}=x_{j} \text { for some } i \neq j\right\} \\
& X_{k}=\underbrace{\overline{X \times \cdots \times X-\Delta} .}_{k}
\end{aligned}
$$

X_{k} is the closure of $X \underset{f}{\times \cdots \times} X-\Delta . \quad X_{k}$ is the Galois cover w.r.t. the symmetric group on k elements. We denote $X_{0}=\mathbb{C P}^{2}$.

For every $k \geq 1$ we have the canonical projections $g_{k}: X_{k} \rightarrow \mathbb{C P}^{2}$ and a natural projection (on the first k factors) $f_{k}: X_{k} \rightarrow X_{k-1}$, which satisfy

$$
\begin{gathered}
f_{1}=g_{1}=f \\
g_{k-1} f_{k}=g_{k}, \quad(k \geq 2)
\end{gathered}
$$

Clearly,

$$
\begin{aligned}
& \operatorname{deg} g_{k}=n \cdot(n-1) \ldots(n-k+1) \\
& \operatorname{deg} f_{k}=n-k+1, \\
& X_{n-1} \simeq X_{n}\left(f_{n} \text { is an isomorphism }\right) .
\end{aligned}
$$

For $k=n$ (or $n-1$), we call X_{k} the Galois cover w.r.t. the full symmetric group or the full Galois cover and denote it also by $X_{\text {Gal }}$.

Remark. X_{k} is the interesting component in the fibered product $X \times \cdots \times X$

Notations.

For the rest of the paper we shall use the following notations:
$n=\operatorname{deg} f$.
X_{k}, the Galois cover of $f: X \rightarrow \mathbb{C P}^{2}$ as above, $k \leq n$.
$S=$ the branch curve of f in $\mathbb{C P}^{2}$ (S is a cuspidal curve)
$m=\operatorname{deg} S$
$\mu=\operatorname{deg} S^{*}\left(S^{*}\right.$ the dual to $\left.S\right)$
$=$ number of branch points in S w.r.t. a generic projection of \mathbb{C}^{2} to \mathbb{C}^{1}.
$d=$ number of nodes in S
$\rho=$ number of cusps in S

Theorem 1. The Chern classes of X_{k} are as follows:
(a)

$$
c_{1}^{2}\left(X_{1}\right)=9 n+\left(\frac{m}{2}-6\right) m-\rho-d .
$$

For $2 \leq k \leq n-1$

$$
\begin{aligned}
c_{1}^{2}\left(X_{k}\right) & =9(n-k+1) \ldots n \\
& +\frac{1}{2}[(n-k+1) \ldots(n-2)](2 n-k-1) k\left(\frac{m}{2}-6\right) m \\
& -[(n-k-1) \ldots(n-3)] k \rho \\
& -\frac{1}{2}[(n-k-1) \ldots(n-4)](2 n-k-5) k d
\end{aligned}
$$

(b)

$$
\begin{aligned}
c_{2}\left(X_{1}\right) & =3 n-2 m+\mu \\
c_{2}\left(X_{2}\right) & =3 n(n-1)-2(2 n-3) m+(2 n-3) \mu+\rho+2 d \\
c_{2}\left(X_{3}\right) & =3 n(n-1)(n-2)-3(2 n-4)(n-2) m+\frac{3}{2}(2 n-4)(n-2) \mu \\
& +2(3 n-9) d+(3 n-8) \rho
\end{aligned}
$$

For $4 \leq k \leq n-1$

$$
\begin{aligned}
c_{2}\left(X_{k}\right) & =3(n-k+1) \ldots n \\
& -(n-k+1) \ldots(n-2)(2 n-k-1) k m \\
& +\frac{1}{2}(n-k+1) \ldots(n-2)(2 n-k-1) k \mu \\
& +(n-k+1) \ldots(n-3)(k-1) k\left(\frac{n}{2}-\frac{k+1}{3}\right) \rho \\
& +[(n-k+1) \ldots(n-4)] \frac{k(k+1)}{4}\{(k+6)(k-1)+4 n(n-k-1)\} d \\
& +[(n-k+1) \ldots(n-4)]\left\{4 n k-2 n^{2} k\right\} d
\end{aligned}
$$

Remarks.

(a) We consider an empty multiplication as 1.
(b) The case $k=n-1\left(X_{k}=X_{\text {Gal }}\right)$, of this Theorem was treated in [MoTe2], Proposition 0.2 (proof there is given by F. Catanese). (See also [MoRoTe]). One can easily see that for $k=n$ the formulas here coincide with the formulas from [MoTe 2]. For c_{1}^{2} it is enough to use remark (a) about empty multiplication. We get:

$$
c_{1}^{2}\left(X_{\mathrm{Gal}}\right)=c_{1}^{2}\left(X_{n-1}\right)=\frac{n!}{4}(m-6)^{2} .
$$

Note that d and ρ do not appear in this formula. For c_{2} we get here (using $\left(a_{1}\right)$)

$$
c_{2}\left(X_{\mathrm{Gal}}\right)=c_{2}\left(X_{n-1}\right)=n!\left(3-m+\frac{1}{4} d+\frac{\mu}{2}+\frac{\rho}{6}\right)
$$

which coincide with [MoTe2], using the formula for the degree of the dual curve:

$$
\mu=m^{2}-m-2 d-3 \rho
$$

Proof of the Theorem.

Let $g_{k}: X_{k} \rightarrow \mathbb{C P}^{2}, f_{k}: X_{k} \rightarrow X_{k-1}$ be the natural projections. Clearly, $g_{1}=$ $f_{1}=f, g_{k}=g_{k-1} f_{k}$, for $k \geq 2 \quad \operatorname{deg} f_{k}=n-k+1, \operatorname{deg} g_{k}=\frac{n!}{(n-k)!}$. Let E_{k} and $K_{X_{k}}$ be the hyperplane and canonical divisors of X_{k}, respectively $\left(E_{k}=g^{*}(\ell)\right.$ for a line ℓ in $\left.\mathbb{C P}^{2}\right)$.

Let S_{k} be the branch curve of $f_{k}\left(\right.$ in $\left.X_{k-1}\right), m_{k}$ its degree and μ_{k}^{\prime} the number of branch points that do not come from $S_{k-1}\left(S_{1}=S\right)$. Let S_{k}^{\prime} be the ramification locus of f_{k} (in X_{k}). Let T_{k}^{\prime} be the ramification locus of g_{k} (in X_{k}).

We recall that the branch points in S (or S_{k}) come from two points coming together in the fibre, the cusps from (isolated) occurrences of three points coming together and nodes from 4 points coming together into 2 distinct points. Generically, cusps and nodes are unbranched. We use this observation in the sequel.

To compute $c_{1}^{2}\left(X_{k}\right)$ we shall use:

$$
\begin{aligned}
& c_{1}^{2}\left(X_{k}\right)=K_{X_{k}}^{2} \\
& K_{X_{k}}=-3 E_{k}+T_{k}^{\prime}
\end{aligned}
$$

and the following identities.

$$
\begin{aligned}
T_{k}^{\prime} & = \begin{cases}S_{k}^{\prime}+f_{k}^{*}\left(T_{k-1}^{\prime}\right) & k \geq 2 \\
S_{1}^{\prime} & k=1\end{cases} \\
T_{k}^{\prime} & =-\frac{1}{2} S_{k+1}+\frac{1}{2} g_{k}^{*}(S)
\end{aligned}
$$

To compute $c_{2}\left(X_{k}\right)$ we shall assume that all cusps and nodes of S are vertices of a triangulation. Using the standard stratification computations, this implies the following recursive formula:

$$
c_{2}\left(X_{k}\right)=\operatorname{deg} f_{k} \cdot c_{2}\left(X_{k-1}\right)-2 m_{k}+\mu_{k}^{\prime} .
$$

Thus we need to get a formula for $E_{k} \cdot T_{k}^{\prime}, \quad S_{k+1} \cdot T_{k}^{\prime}, \quad m_{k}$ and μ_{k}^{\prime}. We shall use the following 3 claims:

Claim 1.
(i) Let $m_{k}=\operatorname{deg} S_{k}$. For $k \geq 2, m_{k}=(n-k) \ldots(n-2) m, \quad m_{1}=m$.
(ii) Let $d_{k}=\#$ nodes in S_{k}. For $k \geq 2, \quad d_{k}=(n-k-2) \ldots(n-4) d, \quad d_{1}=d$.
(iii) Let $\rho_{k}=\#$ cusps in S_{k}. For $k \geq 2, \rho_{k}=(n-k-1) \ldots(n-3) \rho, \quad \rho_{1}=\rho$.
(iv) Let μ_{k}^{\prime} be the number of branch points of S_{k} that do not come from S_{k-1}, $\mu_{k}^{\prime}=\mu_{k}-(n-k+1) \mu_{k-1}(k \geq 2)$ and $\mu_{1}^{\prime}=\mu$. Then for $k=2, \mu_{2}^{\prime}=(n-2) \mu+\rho+2 d$ and for $k \geq 3 \mu_{k}^{\prime}=(n-k) \ldots(n-2) \mu+(n-k) \ldots(n-3)(k-1) \rho+[(n-k) \ldots$ $(n-4)](k-1)(2 n-k-4) d$. (For $k=3$ the coefficient of d is $2(2 n-7)$.)

Claim 2.

$$
E_{k .} T_{k}^{\prime}= \begin{cases}m & k=1 \\ \frac{1}{2} m[(n-k+1) \ldots(n-2)]\left\{(2 n-1) k-k^{2}\right\} & k \geq 2\end{cases}
$$

Claim 3.

$$
S_{k+1} \cdot T_{k}^{\prime}= \begin{cases}2 \rho+2 d & k=1 \\ 2(n-k-1) \ldots(n-3) k \rho+(n-k-1) \ldots(n-4)(2 n-k-5) k d & k \geq 2\end{cases}
$$

Proof of Claim 1.

Items (i), (ii) and (iii) are easy to verify from the definition of fibered product. For (iv) we notice that $\left\{\mu_{k}^{\prime}\right\}$ satisfy the following recursive equations:

$$
\begin{aligned}
& \mu_{k}^{\prime}=(n-k) \mu_{k-1}^{\prime}+\rho_{k-1}+2 d_{k-1} \quad k \geq 2 \\
& \mu_{1}^{\prime}=\mu
\end{aligned}
$$

The formula for $\mu_{2}^{\prime}, \mu_{3}^{\prime}$ follows immediately from the recursive formula. For $k \geq 4$ we substitute the formulas for ρ_{k-1} and d_{k-1} from (ii) and (iii) to get $\mu_{k}^{\prime}=(\bar{n}-$ $k) \mu_{k-1}^{\prime}+(n-k) \ldots(n-3) \rho+2(n-k-1) \ldots(n-4) d$ and we shall proceed by induction. By the induction hypothesis $\mu_{k-1}^{\prime}=(n-k+1) \ldots(n-2) \mu+(n-k+$ 1) $\ldots(n-3)(k-2) \rho+[(n-k+1) \ldots(n-4)](k-2)(2 n-k-3) d$.

We substituted the last expression in the previous one to get

$$
\begin{aligned}
\mu_{k}^{\prime} & =(n-k)(n-k+1) \ldots(n-2) \mu+(n-k)(n-k+1) \ldots(n-3)(k-2) \rho \\
& +(n-k)(n-k+1) \ldots(n-4)(k-2)(2 n-k-3) d \\
& +(n-k) \ldots(n-3) \rho+2(n-k-1) \ldots(n-4) d \\
& =(n-k) \ldots(n-2) \mu+(n-k) \ldots(n-3)(k-1) \rho \\
& +(n-k) \ldots(n-4)\{(k-2)(2 n-k-3)+2(n-k-1)\} d
\end{aligned}
$$

which coincide with the claim since $(k-2)(2 n-k-3)+2(n-k-1)=$ $(k-1)(2 n-k-4)$.for Claim 1 Proof of Claim 2.

For $k \geq 2$

$$
\begin{aligned}
E_{k .} T_{k}^{\prime} & =\frac{1}{2} E_{k .}\left(g_{k}^{*}(S)-S_{k+1}\right) \\
& =\frac{1}{2} E_{k} g_{k}^{*}(S)-\frac{1}{2} E_{k .} S_{k+1} \\
& =\frac{1}{2} g_{k}^{*}(\ell) g_{k}^{*}(S)-\frac{1}{2} E_{k .} S_{k+1} \\
& =\frac{1}{2} g_{k}^{*}(\ell . S)-\frac{1}{2} E_{k .} S_{k+1} \\
& =\frac{1}{2}\left(\operatorname{deg} g_{k .}\right) m-\frac{1}{2} m_{k+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} m(n-k+1) \ldots n-\frac{1}{2}(n-k-1)(n-k) \ldots(n-2) m \\
& =\frac{1}{2} m[(n-k+1) \ldots(n-2)]\{(n-1) n-(n-k-1)(n-k)\} \\
& =\frac{1}{2} m[(n-k+1) \ldots(n-2)]\left\{2 n k-k-k^{2}\right\} . \quad \square \text { for Claim 2 }
\end{aligned}
$$

Proof of Claim 3.

Since $T_{1}^{\prime}=S_{1}^{\prime}$, the formula trivializes for $k=1 . S_{2} \cdot T_{1}^{\prime}=S_{2} \cdot S_{1}^{\prime}=2 \rho+2 d=$ $2 \rho_{1}+2 d_{1}$. For $k \geq 2$

$$
\begin{aligned}
S_{k+1} \cdot T_{k}^{\prime} & =S_{k+1}\left(f_{k}\left(T_{k-1}^{\prime}\right)^{\prime}+S_{k}^{\prime}\right) \\
& =S_{k+1} \cdot f_{k}^{*}\left(T_{k-1}^{\prime}\right)+\left(S_{k+1} \cdot S_{k}^{\prime}\right) \\
& =\left(\left.\operatorname{deg} f_{k}\right|_{S_{k+1}}\right) \cdot\left(S_{k} \cdot T_{k-1}^{\prime}\right)+2 \rho_{k}+2 d_{k} \\
& =\left(\operatorname{deg} f_{k}-2\right)\left(S_{k} \cdot T_{k-1}^{\prime}\right)+2 \rho_{k}+2 d_{k} \\
& =(n-k-1)\left(S_{k} \cdot T_{k-1}^{\prime}\right)+2 \rho_{k}+2 d_{k} .
\end{aligned}
$$

Denote $a_{k}=S_{k+1} \cdot T_{k}^{\prime}$.
We shall prove the claim by induction using the recursive formula $a_{k}=(n-k-1) a_{k-1}+2 \rho_{k}+2 d_{k}$. For $k=2$:

$$
\begin{aligned}
a_{2} & =(n-3) a_{1}+2 \rho_{2}+2 d_{2} \\
& =(n-3)(2 \rho+2 d)+2(n-3) \rho+2(n-4) d \\
& =4(n-3) \rho+2 d(n-3+n-4) \\
& =4(n-3) \rho+2 d(2 n-7) .
\end{aligned}
$$

Thus the statement is true for $k=2$.
Let $k \geq 3$. Assume the formula is true for $k-1$. We shall prove it for k.

$$
\begin{aligned}
a_{k} & =(n-k-1) a_{k-1}+2 \rho_{k}+2 d_{k} \\
& =(n-k-1)\{2(n-k) \ldots(n-3)(k-1) \rho+(k-1)(n-k) \ldots(n-4)(2 n-k-4) d\} \\
& +2(n-k-1) \ldots(n-3) \rho+2(n-k-2) \ldots(n-4) d \\
& =2(n-k-1) \ldots(n-3) k \rho+(n-k-1) \ldots(n-4)\{(2 n-k-4)(k-1)+2(n-k-2)\} \\
& =2(n-k-1) \ldots(n-3) k \rho+(n-k-1) \ldots(n-4)\left\{2 n k-k^{2}-5 k\right\} d .
\end{aligned}
$$

From the two formulae, we can see that the product $(n-k-1) \ldots(n-4)$ should be 1 for $k \leq 2$.
\square for Claim 3
We go back to the proof of the theorem. To prove (a) we write

$$
\begin{aligned}
c_{1}^{2}\left(X_{k}\right) & =K_{X_{k}}^{2}=\left(-3 E_{k}+T_{k}^{\prime}\right)^{2} \\
& =9 E_{k}^{2}-6 E_{k} \cdot T_{k}^{\prime}+\left(T_{k}^{\prime}\right)^{2} \\
& =9 E_{k}^{2}-6 E_{k} \cdot T_{k}^{\prime}+T_{k}^{\prime}\left[-\frac{1}{2} S_{k+1}+\frac{1}{2} g_{k}^{*}(S)\right] \\
& =9 E_{k}^{2}-6 E_{k} \cdot T_{k}^{\prime}-\frac{1}{2} T_{k}^{\prime} \cdot S_{k+1}+\frac{1}{2} T_{k}^{\prime} \cdot g_{k}^{*}(S) .
\end{aligned}
$$

Now: $E_{k}^{2}=\operatorname{deg} g_{k}=(n-k+1) \ldots n\left(=\frac{n!}{(n-k)!}\right)$. Since S is of $\operatorname{deg} m T_{k}^{\prime} \cdot g_{k}^{*}(S)=$ $m E_{k} \cdot T_{k}^{\prime}$. We substitute the results from Claim 2 and Claim 3 to get (a).

We prove (b) by induction on k. For $k=1$ we take the recursive formula $c_{2}\left(X_{k}\right)=$ $(n-k+1) c_{2}\left(X_{k-1}\right)-2 m_{k}+\mu_{k}^{\prime}$ and substitute $k=1$ to get $c_{2}\left(X_{1}\right)=3 n-2 m+\mu$ which coincides with formula (b) for $k=1$. We do the same for $k=2,3$. To prove $k-1$ implies k we use Claim 1(iv) and (ii) to write

$$
\begin{aligned}
c_{2}\left(X_{k}\right)=(n-k+1) & c_{2}\left(X_{k-1}\right)-2(n-k) \ldots(n-2) m+(n-k) \ldots(n-2) \mu \\
& +(k-1)(n-k) \ldots(n-3) \rho \\
& +(n-k) \ldots(n-4)(k-1)(2 n-k-4) d
\end{aligned}
$$

When substituting the inductive statement for $c_{2}\left(X_{k-1}\right)$ and shifting around terms, we get (b).
\square for the Theorem

§2. A Different Presentation of the Chern Classes.

Proposition 2. Let E and K denote the hyperplane and canonical divisors of X, respectively. Then the Chern classes of X_{k} are functions of $c_{1}^{2}(X), c_{2}(X), \operatorname{deg}(X)$, E, K, and k.

Proof. (Proof for X_{n} appeared in [RoTe]) Let S be the branch curve of the generic projection $f: X \rightarrow \mathbb{C P}^{2}\left(S \subseteq \mathbb{C P}^{2}\right)$. By Theorem 1 , the Chern classes of X_{k} depend on $k, \operatorname{deg}(S), \operatorname{deg}(X)$ and μ, d, ρ, the number of branch points, nodes and cusps of S, respectively.

We shall first show that μ, d, ρ depends on $c_{2}(X), \operatorname{deg} X, \operatorname{deg}(S), e(E)$ and $g(R)$ where g denotes the genus of an algebraic curve, e denotes the topological Euler characteristic of a space, and $R(\subset X)$ is the ramification locus of f which is, in fact, the non-singular model of S.

Recall that μ also is equal to $\operatorname{deg}\left(S^{*}\right)$, where S^{*} is the dual curve to S. For short we write $n=\operatorname{deg}(X), m=\operatorname{deg}(S)$.

We show this by presenting three linearly independent formulae:

$$
\begin{aligned}
& \mu=m(m-1)-2 d-3 \rho \\
& g(R)=\frac{(m-1)(m-2)}{2}-d-\rho \\
& c_{2}(X)+n=2 e(E)+\mu
\end{aligned}
$$

The first two are well-known formulae for the degree of the dual curve and the genus of a non singular model of a curve. For the third, we may find a Lefschetz pencil of hyperplane sections of X whose union is X. The number of singular curves in the pencil is equal to μ. The topological Euler characteristic of the fibration equals $e(X)=e\left(\mathbb{C P}^{1}\right) \cdot e(E)+\mu-n$ (n appears from blowing up n points in the hyperplane sections). The formula follows from $e\left(\mathbb{C P}^{1}\right)=2$ and $e(X)=c_{2}(X)$.

We shall conclude by showing that $\operatorname{deg}(S), e(E)$ and $g(R)$ depend on $c_{1}^{2}(X), \operatorname{deg} X$ and E.K.

This follows from the Riemann-Hurwitz formula, $R=K+3 E$, the adjunction formula $2-2 g(C)=-C .(C+K)$, and the fact that $E^{2}=\operatorname{deg} X$ and $K^{2}=c_{1}^{2}(X)$. In fact, we have:

$$
\begin{aligned}
& g(R)=1+\frac{1}{2} R(R+K)=1+\frac{1}{2}(K+3 E)(2 K+3 E) \\
& e(E)=2-2 g(E)=-E(E+K) \\
& \operatorname{deg}(S)=\operatorname{deg}(R)=E \cdot R=E(K+3 E)
\end{aligned}
$$

From the above proof we can, in fact, get the precise formulae of $c_{1}^{2}\left(X_{k}\right)$ and $c_{2}\left(X_{k}\right)$ in terms of $c_{1}^{2}(X), c_{2}(X), \operatorname{deg}(X), E . K$, and k. For certain (computerized) computations, it is easier to work with these formulae rather than those of Theorem 1.
Corollary 2.1. In the notations of the above proposition:

$$
\begin{aligned}
& c_{1}^{2}\left(X_{n}\right)=\frac{n!}{4}\left[(E . K)^{2}+6 n(E . K)+9 n^{2}-12(E . K)-36 n+36\right] \\
& c_{2}\left(X_{n}\right)= \\
& \frac{n!}{24}\left[72-10 c_{1}^{2}(X)-54(E . K)-114 n+27 n^{2}+14 c_{2}(X)+3(E . K)^{2}+18 n(E . K)\right]
\end{aligned}
$$

Similar formulas can be obtained for X_{k} for $k<n$.

§3. Examples.

To use Theorem 1, we need computations of n, m, μ, ρ and d. We compute them for two examples.
Examples 3.1. For $X=V_{b}$, a Veronese embedding of order b, we have

$$
\begin{aligned}
& n=b^{2} \\
& m=3 b(b-1) \\
& \mu=3(b-1)^{2} \\
& \varphi=3(b-1)(4 b-5) \\
& d=\frac{3}{2}(b-1)\left(3 b^{3}-3 b^{2}-14 b+16\right)
\end{aligned}
$$

(see [MoTe3]).
Proof. For n, m, μ and ρ, see [MoTe3] and [MoTe4]. Since $\mu=m(m-1)-2 d-3 \rho$, we get the following formula for $d: 2 d=m^{2}-m-\mu-3 \varphi$ and thus

$$
\begin{aligned}
2 d & =3 b(b-1)(3 b(b-1)-1)-3(b-1)^{2}-9(b-1)(4 b-5) \\
& =3(b-1)\left\{\left(3 b^{2}-3 b-1\right) b-(b-1)-3(4 b-5)\right\} \\
& =3(b-1)\left\{3 b^{3}-3 b^{2}-14 b+16\right\} .
\end{aligned}
$$

When one substitutes $b=3$ and $k=4$, one gets $\frac{c_{1}^{2}}{c_{2}}=2.73$. By experimental substitutions it seems that for large b , the signature $\tau\left(X_{k}\right)\left(=c_{1}^{2}-2 c_{2}\right)$, changes from negative to positive at about $\frac{3}{4} n$.

Example 3.2. For $X=X_{t(a, b)}=f_{\left|a \ell+b C_{+}\right|}$(Hirzebruch surface of order t), where ℓ is a fiber, $\left(C_{+}\right)^{2}=t$, and $a \geq 1$, we have

$$
\begin{aligned}
& n=2 a b+t b^{2} \\
& m=6 a b-2 a-2 b+t\left(3 b^{2}-b\right) \\
& \mu=6 a b-4 a-4 b+4+t\left(3 b^{2}-2 b\right) \\
& \varphi=24 a b-18 a-18 b+12+t\left(12 b^{2}-9 b\right)
\end{aligned}
$$

Proof. [MoRoTe], Lemma 7.1.3.
Example 3.3. (in the $\tau<0$ area)
For X a K3 surface:

$$
\begin{aligned}
& K=0 \\
& c_{1}^{2}(X)=K^{2}=0 \\
& c_{2}(X)=24 \\
& n=4 \\
& m=12 \\
& \mu=36 \\
& \rho=24 \\
& d=12 \\
& c_{1}^{2}\left(X_{2}\right)=48 \\
& c_{2}\left(X_{2}\right)=144 \\
& c_{1}^{2}\left(X_{3}\right)=c_{1}^{2}\left(X_{\text {Gal }}\right)=216 \\
& c_{2}\left(X_{3}\right)=c_{2}\left(X_{\text {Gal }}\right)=240 .
\end{aligned}
$$

Proof. It is well known that for a $K 3$ surfaces $K=0, c_{1}^{2}=0, c_{2}=24, S^{\prime}=3 E$, $n=E^{2}=4$. Using this we can get m and μ :

$$
\begin{aligned}
m & =S^{\prime} \cdot E=3 E \cdot E=3 E^{2}=12 \\
\mu & =c_{2}(X)-2 e(E)+n \quad \text { (see proof of Proposition 2) } \\
& =c_{2}(X)-2(2-2 g(E))+n \\
& =c_{2}(X)+2 E \cdot(E+K)+n=36
\end{aligned}
$$

Now from

$$
m(m-1)=\mu+3 \rho+2 d
$$

and

$$
\begin{aligned}
m(m-3) & =2 g\left(S^{\prime}\right)-2+2 \rho+2 d=\left(K+S^{\prime}\right), S^{\prime}+2 \rho+2 d \\
& =3 E \cdot 3 E+2 \rho+2 d=9 E^{2}+2 \rho+2 d
\end{aligned}
$$

we get $2 m=\mu-9 E^{2}+\rho=24$ and $\rho=2 m+9 E^{2}-\mu=24$.
Moreover, we get $d=\frac{1}{2}(m(m-1)-\mu-3 \rho)=12$. We substitute these quantities in the formula from Theorem 1 to get the values of the Chern classes.

Remark. For $t=0, X_{t(a, b)}$ are actually embeddings of $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$. In [FRoTe], we computed the fundamental group of $X_{n}=X_{\mathrm{Gal}}$ for $X=X_{t(a, b)}$ which is \mathbb{Z}_{c}^{n-2} for
$c=$ g.c.d. (a, b). Thus for $(a, b)=1$ these surfaces are simply connected. All these surfaces are smooth minimal surfaces of general type. For $a \geq 6, b \geq 5$, the signature of these surfaces is positive. For five pairs of (a, b), these surfaces have signature 0 (see $[\mathrm{MoRoTe}]$). Four of these surfaces are simply connected and the fifth one for which $a=b=5, \pi_{1}\left(X_{\text {Gal }}\right)=\mathbb{Z}_{5}^{48}$.

In our ongoing research, we shall apply Theorem 1 and Proposition 2 in order to obtain more examples of non diffeomorphic surfaces or surfaces in different deformation families with the same c_{1}^{2} and c_{2}, as well as to compute the slope $\frac{c_{1}^{2}}{c_{2}}$ and to search for higher slopes.

We are also interested in the fundamental groups (in particular, in the finite ones) and the divisibility of the canonical class (in particular, the case where the canonical class is divided by 2 , i.e., the spin case), which we will investigate in a subsequent paper. The results in this paper are a basis for producing interesting examples of surfaces with positive index, $\left(c_{1}^{2}-c_{2}\right)$, finite fundamental groups and spin (K even) structure. In particular, we plan to prove the following two conjectures.

Conjecture. For $X=V_{b}$, Veronese of order $b, b>4$, we have X_{k} is a spin manifold $\Leftrightarrow k$ even or $b=2,3(4)$.

Conjecture. For $X=F_{t(a, b)}$ (the Hirzebruch surface), $\pi_{1}\left(X_{k}\right)$ is finite.

References

[Ch] Chen Z., On the geography of surfaces (simply connected surfaces with positive index), Math. Ann. 277 (1987), 141-164.
[FRoTe] Freitag P., Robb A., Teicher M., The fundamental group of Galois covers of Hirzebruch surfaces, in preparation.
[H] Hirzebruch F., Automorphe Formen und der Satz von Riemann-Roch, Internat. Sympos. on Algebraic Topology, Univ. Nacional Autonoma de Mexico and UNESCO, Mexico City (1958), 129-144.
[Mi] Miyaoka M., On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977), 239-272.
[MoRoTe] Moishezon B., Robb A., Teicher M., On Galois covers of Hirzebruch surfaces, Math. Ann. 305 (1996), 493-539.
[MoTe1] Moishezon B., Teicher M., Existence of simply connected algebraic surfaces of positive and zero indices, Proceedings of the National Academy of Sciences, United States of America 83 (1986), 6665-6666.
[MoTe2] Moishezon B., Teicher M., Simply connected algebraic surfaces of positive index, Invent. Math. 89 (1987), 601-643.
[MoTe3] Moishezon B., Teicher M., Galois coverings in the theory of algebraic surfaces, Proc. of Symp. in Pure Math. 46 (1987), 47-65.
[MoTe4] Moishezon B., Teicher M., Braid group techniques in complex geometry III, Projective degeneration of V_{3}, Contemporary Math. 162 (1994), 313-332.
[PPX] Persson U., Peters C., Xiao G., Geography of spin manifolds, Math. Ann. (to appear).
[Re] Reid M., On the Bogomolov' Theorem, Preprint, 1976.
[RoTe] Robb A., Teicher M., Applications of braid group techniques to the decomposition of moduli spaces, new examples, Topology and its Applications 78 (1997), 143-151.
[Te] Teicher M., Braid groups, algebraic surfaces and fundamental groups of complements of branch curves, Amer. Math. Soc. Publications PSPM 62 (1997), no. 1, 127-150.
[Y] Yau S.-T., Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA 74 (1977), 1798-1799.

Mina Teicher
Emmy Noether Research
Institute for Mathematics.
Bar-Ilan University
Ramat-Gan, 52900
Israel
teicher@macs.biu.ac.il

