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The Minimum Principle

from a Hamiltonian Point of View

Peter Heinzner*

Received: February 24, 1998

Communicated by Thomas Peternell

Abstract. Let G be a complex Lie group and GR a real form of G. For a
GR-stable domain of holomorphyX in a complex G-manifold we consider the
question under which conditions the extended domain G ·X is a domain of
holomorphy. We give an answer in term of GR-invariant strictly plurisubhar-
monic functions on X and the associate Marsden-Weinstein reduced space
which is given by the Kaehler form and the moment map associated with the
given strictly plurisubharmonic function. Our main application is a proof of
the so called extended future tube conjecture which asserts that G ·X is a
domain of holomorphy in the case where X is the N -fold product of the tube
domain in C4 over the positive light cone and G is the connected complex
Lorentz group acting diagonally.

1991 Mathematics Subject Classification: Primary 32M05

Let GR be a connected real form of a complex Lie group G and X a GR-stable domain
in a complexG-manifold Z such thatG·X = Z. In this paper we consider the following
question. Under which conditions on X is Z the natural domain of definition of the
GR-invariant holomorphic functions on X? If Z is an open submanifold of a Stein
manifold, then there is an envelope of holomorphy for Z. Consequently, every GR-
invariant holomorphic function on X which extends to Z also extends to the envelope
of holomorphy of Z. Thus one also has to ask under which additional requirements
is Z a Stein manifold.

In order that an invariant holomorphic function extends to Z = G · X it is
sufficient that X is orbit connected, i.e., for every z ∈ Z the set {g ∈ G; g · z ∈ X}
is connected (see [H]). Thus under this condition the main question is whether Z
is a Stein manifold. Now if Z is a domain in a Stein manifold V , then Z itself is
a Stein manifold if one can find a plurisubharmonic function Ψ on Z which goes
to +∞ at every boundary point of ∂Z ⊂ V . There is a natural way to construct

* Supported by a Heisenberg Stipendium of the Deutsche Forschungsgemeinschaft
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2 Peter Heinzner

G-invariant plurisubharmonic functions out of GR-invariant functions on X which
was first proposed by Loeb in [L]. In this paper Loeb used an extended version of
Kiselman’s minimum principle ([K]) in order to construct invariant plurisubharmonic
functions. The main idea is the following. Assume that there is a nice quotient
π : Z → Z/G and let φ be a smooth GR-invariant plurisubharmonic function on
X which is a strictly plurisubharmonic exhaustion on each fibre of π|X. Then the
fibre wise minimum of φ defines a function ψ on Z/G which is a candidate for a
plurisubharmonic function on Z/G. This procedure can be described in terms of
Hamiltonian actions as follows.

Assume for simplicity that φ is strictly plurisubharmonic. Then ω := 2i∂∂̄φ de-
fines an invariant Käher form on X and µ(x)(ξ) = dφ(JξX ) is the associated moment
map µ : X → g∗R. In this situation µ−1(0) is the set of fibre wise critical points of φ
which in good cases are exactly the points such that the restriction of φ to the fibre
attains its minimum. Again under some additional assumption, it then follows from
the principle of symplectic reduction that the reduced space µ−1(0)/GR has a sym-
plectic structure which in fact is Kählerian and moreover is given by the function ψ
which is induced on µ−1(0)/GR by φ|µ−1(0). It turns out that in the situation under
consideration the procedures given by symplectic reduction and minimum principle
are compatible. This is well known in the case where GR is a compact Lie group (see
e.g. [H-H-L], where a much more general result is proved) and we give here precise
conditions such that it also works for a non compact group GR.

The application of Loeb’s Minimum Principle is limited mainly to the case of free
GR-actions. For the more general case of proper actions it seems that the Hamiltonian
point of view is much more adequate. Moreover, for applications it is necessary to
consider also domains X of G-spaces Z which do not admit a geometrical quotient
Z/G. A typical example is given by the so called extended future tube which we will
describe next.

Let < , > denote the Lorentz product on R4 and also its C-bilinear extension to
C4. The future tube T is by definition the tube domain in C4 = R4 + iR4 over the
positive light cone C+ = {y = (y0, y1, y2, y3) ∈ R4; y0 > 0, < y, y >= (y0)

2− (y1)2−
(y2)

2 − (y3)2 > 0}, i.e.,
T = {z ∈ C4; Im z ∈ C+} .

This domain is invariant under the action of the connected component GR of the
identity of the homogeneous Lorentz group OR(1, 3). Now consider the N -fold product
T N with the diagonal action of GR. The extended future tube (T N )C is by definition
the orbit of T N under the action of the complexified group G of GR. In other words

(T N )C = G · T N = {(g · z1, . . . , g · zN); g ∈ G, zj ∈ T } .

Note that G is the group SO4(C) which is defined by the quadratic form < , >.
Although there is no geometric quotient of Z, we have a quotient π : (C4)N →
(C4)N//G which is given by the invariant holomorphic functions on (C4)N and it is a
fundamental fact that the extended tube (T N )C is saturated with respect to π ([H-W],
see §3 for additional remarks). In this case it turns out that this invariant theoretical
quotient has sufficiently many good properties in order to apply the main result of
this paper which we formulate now.
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The Minimum Principlefrom a Hamiltonian Point of View 3

Let V be a Stein G-manifold such that there exists almost a quotient π : V →
V//G. More precisely we will assume that V//G is a complex space, π : V → V//G
is a G-invariant surjective holomorphic map and for an analytically Zariski open π-
saturated subset V 0 of V the restriction map π : V 0 → V 0//G is a holomorphic fibre
bundle with typical fibre G/H. Thus V 0//G = V 0/G is a geometric quotient. Let
X be a GR-stable domain in V such that Z := G · X is saturated with respect to
π : V → V//G.

Theorem 1. Let φ : X → R be a smooth non-negative GR-invariant plurisubharmonic
function and assume that

(i) The fibres of π restricted to X0 := X ∩ V 0 are connected,
(ii) the restriction of φ0 := φ|X0 to the fibres of π restricted to X0 is strictly

plurisubharmonic,

(iii) φ0 is proper mod GR along π|Z0 where Z0 := V 0 ∩ Z and
(iv) φ is a weak exhaustion of X over V//G,

Then Z = G ·X is a Stein manifold.

In the case where GR acts properly on X
0 condition (iii) means that the map φ0 ×

π|X0 : X0 → R× (Z0//G) induces a proper map X0/GR → R× (Z0//G). By a weak
exhaustion of X over V//G we mean a function which goes to +∞ on a sequence if
the corresponding sequence in V//G converges to a boundary point of Z//G in V//G.

In the case where the G-action on Z0 is assumed to be free, the theorem can be
proved rather directly by applying Loeb’s minimum principle. For a compact group
it is a consequence of the methods presented in [H-H-K] (see also [H-H-L]).

In the last section we recall some previously known facts proved in [H-W] together
with a more recent result in [Z] about the orbit geometry of the extended future tube
in order to verify that the conditions of Theorem 1 are satisfied in the case of the
extended future tube. This leads to a conceptual proof of the so called extended
future tube conjecture in the last section.

Theorem 2. The extended future tube is a domain of holomorphy.

This result has conjecturally been known in constructive quantum field theory for
more then thirty years. For its relevance and other publications concerning problems
related to it we refer the reader to the literature ([B-L-T], [H-S], [J], [S-W], [S-V]).

There is a proof of Theorem 2 in [Z] which due to several mistakes and gaps is
difficult to understand.

1. Hamiltonian actions on Kähler spaces.

Let GR be a real connected Lie group and X a complex GR-space, i.e., GR acts on X
by holomorphic transformations such that the action GR × X → X, (g, x) → g · x,
is real analytic. If ω is a smooth GR-invariant Kähler structure on X, then a GR-
equivariant smooth map µ from X into the dual g∗R of the Lie algebra gR of GR is said
to be an equivariant moment map if

dµξ = ıξXω

Documenta Mathematica 3 (1998) 1–14



4 Peter Heinzner

holds on every GR-stable complex submanifold Y of X. Here ω denotes the Kähler
form on Y induced by the Kählerian structure on X (see [H-H-L]), µξ :=< µ, ξ > is
the component of µ in the direction of ξ ∈ gR, ξX is the vector field on X induced by
ξ and ιξXω denotes the one form given by contraction, i.e., η → ω(ξ, η).

Example. If ω is given by a smooth strictly plurisubharmonic GR-invariant function
φ, i.e., ω = 2i∂∂̄φ on every smooth part of X, then

µξ(x) := dφ(JξX) = (i(∂ − ∂̄)φ)(ξX ) = dcφ(ξX)
defines an equivariant moment map. This follows from invariance of φ, since in this
case we have

dµξ = dıξXd
cφ = −ıξXddcφ = ıξX2i∂∂̄φ .

Here we use the formula

Lξα = ıξdα+ dıξα
for all vector fields ξ and differential forms α where Lξ denotes the Lie derivative in
the direction of ξ.

Later we will need the following fact about the zero level set of µ.

Lemma. Assume that X is smooth and that GR acts properly on X. If the dimension
of the GR-orbits in µ

−1(0) is constant, then µ−1(0) is a submanifold of X.

Proof. Since the action is assumed to be proper, there is a local normal form for the
moment map (see e.g. [A] or [H-L]). The statement is an easy consequence of this
fact (see e.g. [A]. In [S-L] the argument is given for a compact group GR). �

Remark 1. It can be shown that the converse of the Lemma also holds. We will not
use this fact here.

Remark 2. The properness assumption is very often satisfied. Since one may assume
that GR acts effectively, GR is a Lie subgroup of the group I of isometries of the Rie-
mannian manifold X. The group of isometries acts properly on X and consequently
the GR-action on X is proper if and only if GR is a closed subgroup of I. This is the
case if and only if there is a point x ∈ X such that GR · x is closed and the isotropy
group (GR)x := {g ∈ GR; g · x = x} is compact.
Remark 3. If GR acts such that the isotropy groups are discrete, then µ has max-
imal rank. Thus in this case µ−1(0) is obviously a submanifold of X. Moreover
Tx(µ

−1(0)) = kerdµ(x) for all x ∈ µ−1(0).

2. Hamiltonian actions on invariant domains

Let G be a connected complex Lie group and Z a holomorphic G-space, i.e., the action
G × Z → Z is assumed to be a holomorphic map. Let GR be a connected real form
of G. By an invariant domain in Z we mean in the following a GR-stable connected
open subspace X of Z. In the homogeneous case we have the following

Documenta Mathematica 3 (1998) 1–14



The Minimum Principlefrom a Hamiltonian Point of View 5

Lemma 1. Let X be an invariant domain in Z and assume that Z is G-homogeneous.
If the zero level set of µ : X → gR is not empty, then µ−1(0) is a Lagrangian subman-
ifold of X and each connected component of µ−1(0) is a GR-orbit.

Proof. For z0 ∈ X let N be an open convex neighborhood of 0 ∈ gR such that
U := GR · exp iN · z0 ⊂ X. Since GR · exp iN is a neighborhood of GR in G, the set
U is a neighborhood of GR · z0 in X. The proof of Lemma 1 is a consequence of the
following

Claim. U ∩ µ−1(0) = GR · z0 for z0 ∈ µ−1(0).
In order to proof the claim, let z ∈ U ∩ µ−1(0) be given. Then there are h ∈ GR and
ξ ∈ N such that z = h exp iξ · z0 ∈ U ∩ µ−1(0). Thus exp iξ · z0 ∈ µ−1(0) ∩ U and
zt := exp itξ ·z0 ∈ U for t ∈ [0, 1]. Note that JξX(x) = d

dt |t=0 exp itξ ·x is the gradient
flow of µξ with respect to the Riemannian metric induced by ω. Thus, if zt is not
constant, then t→ µξ(zt) is strictly increasing. This contradicts µξ(z0) = 0 = µξ(z1).
Therefore z0 = exp itξ · z0 for all t ∈ R. This implies z = h · z1 = h · z0 ∈ GR · z0.
It is a consequence of the claim that every GR-orbit is closed in X. Therefore

every component of µ−1(0) is a GR-orbit. It remains to show that these orbits are
Lagrangian. Since µ(GR · z0) = 0 we have

0 = dµξ(ηX(z0)) = ω(ξX(z0), ηX(z0))

for all ξ, η ∈ gR. This means that GR · z0 is an isotropic submanifold of X. In
particular, dimR GR · z0 ≤ dimC X. In general the tangent space Tz0(GR · z0) spans
Tz0X over C. Thus dimRGR · z0 ≥ dimCG · z0 = dimCX. This shows that dimRGR ·
z0 =

1
2 dimRX. Hence GR · z0 is Lagrangian. �

Every Lagrangian submanifold of a Kähler manifold is totally real. Thus, if Z
is G-homogeneous, then µ−1(0) is a totally real submanifold of X. Note that the
GR-orbits in µ

−1(0) are closed since they are connected components of the zero fibre
of µ. Now if GR is such that 0 ∈ g∗R is the only GR-fixed point, then x ∈ µ−1(0) if and
only if the orbit GR ·x is isotropic. This condition holds for example for a semisimple
Lie group.

It almost never happens that there is a GR-invariant Kähler form ω which is
defined on Z. For example, if GR is a simple non compact Lie group or more generally
a semisimple Lie group without compact factors, then there does not exist a GR-
invariant Kähler form on a non trivial holomorphic G-manifold Z. In order to see
this, recall that since GR is semisimple there is a moment map µ : Z → g∗R. Now
let gR = k ⊕ p be a Cartan decomposition where k is the Lie algebra of the maximal
compact subgroup of GR. Then u = k⊕ ip is the Lie algebra of the maximal compact
subgroup U of G. For ξ ∈ ip the image of the one-parameter group γ : t → exp itξ
lies in U and therefore there is a basis of p consisting of ξ’s such that the image of γ
is compact, i.e., isomorphic to S1. But γ is the flow of the gradient vector field of µξ
and therefore t→ µξ(γ(t) · z) is strictly increasing for every z ∈ Z. This implies that
γ acts trivially on Z. Since G is semisimple and contains no compact factor, G itself
is the smallest complex subgroup of G which contains exp p. Thus G acts trivially on
Z.

Documenta Mathematica 3 (1998) 1–14



6 Peter Heinzner

A geometric interpretation of the zero fibre µ−1(0) of an equivariant moment map
µ : X → g∗R associated to a smooth GR-invariant strictly plurisubharmonic function
φ : X → R (see Section 1, Example) can be given in the case where X is an invariant
domain in Z as follows. For x ∈ X let Ω(x) := {g · x; g ∈ G and g · x ∈ X} be the
local G-orbit of G through x in X where (g, x) → g · x denotes the G-action on Z.
Then by GR-invariance of φ we have

µ−1(0) = {x ∈ X; x is a critical point of φ|Ω(x)} .

We consider now invariant domains X in G-homogeneous spaces Z such that
there is a moment map associated to φ : X → R more closely. In order to do that we
first introduce the notion of an exhaustion mod GR.

Let F be a complex space with a proper GR-action and let F/GR be the space of
GR-orbits endowed with the quotient topology. A GR-invariant function f : F → R
is said to be proper mod GR if the induced map f̄ : F/GR → R is proper. The map
f is said to be an exhaustion mod GR if f̄ is an exhaustion, i.e., if for all r ∈ R
the set {q ∈ F/GR; f̄(q) < r} is relatively compact in F . Note that a GR-invariant
continuous function which is bounded from below is proper mod GR if and only if it
is an exhaustion mod GR.

Lemma 2. Let Z be G-homogeneous and assume that the GR-action on X is proper.
Let φ : X → R be a smooth strictly plurisubharmonic GR-invariant function which is
an exhaustion mod GR. Then there is a z0 ∈ X such that

GR · z0 = µ−1(0) = {z ∈ X; φ(z) is a minimal value of φ} .

Proof. Since φ is plurisubharmonic and an exhaustion mod GR there is a point z0 ∈ X
which is a minimum for φ. In particular, µ−1(0) is not empty where µ denotes the
moment map associated with φ. We have to prove that µ−1(0) is connected. By
Lemma 1, every connected component of the set Mφ = µ

−1(0) of critical points of φ
is a GR-orbit. We claim that the GR-orbits are non degenerate in the sense that the
Hessian of φ in normal directions is positive definite. This is seen as follows.

The vector fields JξX , ξ ∈ gR span the normal space at x ∈Mφ and

(JξX)(JξX(φ)) = ıJξXdµξ = ω(ξX , JξX) .

Hence the Hessian at x ∈ Mφ is positive in the normal directions. Since φ is proper
mod GR and the gradient vector field of φ with respect to the GR-invariant Kähler
metric given by 2i∂∂̄φ is GR-invariant, Lemma 2 follows from standard arguments in
Morse Theory. �

In the situation of Lemma 2 every critical point of φ is a minimum and the set of
these points is a GR-orbit and coincides with µ

−1(0).

We will now generalize the results in the homogeneous case to spaces Z which
possess a geometric G-quotient and X is a weakly orbit connected invariant domain
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The Minimum Principlefrom a Hamiltonian Point of View 7

in Z. Here a GR-stable subset X of Z is said to be weakly orbit connected if for every
x ∈ X the local G-orbit Ω(x) := {g · x ∈ X; g ∈ G} is connected.
Remark 1. A GR-invariant set X in Z is said to be orbit connected if for every x ∈ X
the set Ωx := {g ∈ G; g ·x ∈ X} is connected. This is a stronger concept then weakly
orbit connectedness.

Let Z be a holomorphic G-space such that there is a geometric quotient π : Z →
Z/G. By this we mean that the orbit space Z/G is a complex space such that the
quotient map π : Z → Z/G is holomorphic. Moreover we assume that the structure
sheaf of Z/G is the sheaf of invariants, i.e., for an open subset Q of Z/G a function
f : Q→ C is holomorphic if and only if f ◦ π : π−1(Q)→ C is holomorphic.
Now let X ⊂ Z be an invariant domain which lies surjectively over Z/G or

equivalently such that Z = G · X. Assume that GR acts properly on X and that
X is weakly orbit connected. Let φ : X → R be a smooth GR-invariant strictly
plurisubharmonic function which is an exhaustion mod GR along π, i.e., π

−1(C)∩{x ∈
X; φ(x) ≤ r}/GR ⊂ X/GR is compact for every compact subset C in Z/G and r ∈ R.
We set Mφ = µ

−1(0) where µ : X → gR denotes the moment map associated with φ.

Proposition 1. The map ı̄ : Mφ/GR → Z/G induced by the inclusion ı : Mφ → Z
is a homeomorphism. If X is a manifold, then Mφ is smooth and

TxMφ = ker dµ(x)

holds for all x ∈Mφ.

Proof. The map ı̄ is continuous and by Lemma 2 it is also a bijection. We claim
that ı̄ is proper. Since the GR-action on Mφ is proper, Mφ/GR is a locally compact
topological space. Thus properness of ı̄ implies that ı̄ is a homeomorphism.

Let (qn) be a sequence in Mφ/GR and xn a point in Mφ which lies over qn.
Assume that (π(xn)) = (̄ı(qn)) has a limit in Z/G and let x0 ∈ Mφ be a point
which lies over limπ(xn). If some subsequence of φ(xn) goes to infinity, then we may
assume φ(xn) > φ(x0) + 1 for all n. Since π : Z → Z/G is an open map, there are
gn ∈ G such that lim gn · xn = x0 for some subsequence. This is a contradiction since
φ(xn) < φ(gn · xn) for all n such that gn · xn ∈ X. Thus, since φ is assumed to be an
exhaustion mod GR along π, there are hn ∈ GR such that a subsequence of (hn · xn)
converges to x0. This implies that a subsequence of (qn) converges in Mφ. So far we
proved that ı̄ is a homeomorphism.

Assume now that X is smooth. The existence of a geometric quotient implies
that the dimension of the G-orbits in Z is constant and therefore this is also true for
the GR-orbits inMφ (Lemma 1). ThusMφ is a submanifold of X (Section 1, Lemma).
Since TxMφ is a subspace of ker dµ(x) and ker dµ(x) = Tx(GR · x) + Tx(G · x)⊥, the
claim follows from the obvious dimension count as follows. Let d := dimRGR · x for
x ∈ Mφ. Note that d is the complex dimension of the π-fibres. Thus dimRMφ =
dimRMφ/GR + d = dimR Z/G + d = dimR Tx(G · x)⊥ + dimRGR · x implies that
TxMφ = ker dµ(x) for all x ∈Mφ. �

Remark 2. Without a reference to an embedding into a holomorphic G-space one can
show that µ−1(0)/GR is a complex space in a natural way (see [A-H-H] and [A]).
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8 Peter Heinzner

If GR does not act properly on X, then let GR be the closure of GR in the group
I of isometries of the Kähler manifold X. Since the GR-orbits in Mφ = µ−1(0) are
closed (Lemma 1), it follows that they coincide with the GR-orbits. Moreover φ is
GR-invariant and Mφ = µ̄−1(0) =: Mφ, where µ̄ is the moment map associated with
φ. Now if one redefines an exhaustion mod GR along π in terms of sequences in X,
then also in this case Mφ is smooth and TxMφ = Tx(GR · x)⊕ Tx(G · x)⊥ = kerdµ(x)
holds for all x ∈Mφ.
Proposition 1 can be generalized to the case where φ : X → R is only assumed

to be plurisubharmonic and strictly plurisubharmonic on the fibres. More precisely
we have the following consequence which can be thought of as a version of Loeb’s
minimum principle (see [L]).

Corollary 1. Let X ⊂ Z be a weakly orbit connected invariant domain with π(X) =
Z and φ : X → R a smooth GR-invariant plurisubharmonic function which is an
exhaustion mod GR along π such that the restriction of φ to the local G-orbits in X
is a strictly plurisubharmonic exhaustion mod GR. If π : Z → Z/G is a holomorphic
bundle, then

(i) Mφ = µ
−1(0) is smooth where µ : X → g∗R, µξ = dφ(JξX ),

(ii) Tx(Mφ) = ker dµ(x) for all x ∈Mφ.
(iii) Mφ/GR is homeomorphic to Z/G and the function ψ : Z/G → R which is

induced by φ|Mφ is a smooth plurisubharmonic function.

Proof. We may assume that GR acts properly on X and, since the statements are
local over Z/G that Z/G is a Stein manifold. Let ρ : Z → R be the the pull back
of a strictly plurisubharmonic function on Z/G. Then φ+ ρ is GR-invariant, strictly
plurisubharmonic and an exhaustion mod GR on the local G-orbits in X. Since
dρ(JξX) = 0 for all ξ ∈ gR, the moment map associated with φ+ ρ is the same as the
moment map associated with φ. Thus Proposition 1 implies directly (i), (ii) and the
first part of (iii). It remains to show that ψ : Z/G→ R is a smooth plurisubharmonic
function.

For the plurisubharmonicity of ψ we recall the calculation in [H-H-L], §2. For
z ∈ Mφ we have Tz(Mφ) = kerdµ(z) = Tz(GR · z) ⊕ Tz(G · z)⊥. We may assume
that Z = G/H ×∆ where ∆ is an open neighborhood of 0 in Cd ∼= Tz(G · z)⊥, and
π(z) = 0 where π is given by the projection on the second factor. Furthermore there
is a section η : ∆→Mφ, η(w) = (σ(w), w) and therefore we have ψ(w) = φ(η(w)). A
direct calculation shows that

∂∂̄ ψ(0) = ∂∂̄ φ(η(0)) .

Here one has to use that dφ(z) = 0 and that dσ(0) = 0. Thus ψ is plurisubharmonic
and smooth. �

If φ is strictly plurisubharmonic, then the proof shows that ψ is also strictly
plurisubharmonic. For a proper GR-action the space Z/G is then given by symplectic
reduction Mφ/GR and the induced Kählerian structure on Z/G is determined by
the function ψ(q) = inf

x∈π−1(q)∩X
φ(x) which is obtained by applying the minimum
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The Minimum Principlefrom a Hamiltonian Point of View 9

principle ([L]). Thus symplectic reduction and the minimum principle are compatible
procedures.

For the remainder of this section we assume now that Z is a holomorphic G-
manifold such that there is almost a quotient Z//G. More precisely we will assume
that Z//G is a complex space, π : Z → Z//G is a surjective G-invariant holomorphic
map and there is an analytically Zariski open π-saturated subset Z0 of Z such that
π : Z0 → Z0//G is a geometric quotient, i.e., Z0//G = Z0/G. Moreover, for the sake
of simplicity we assume that π : Z0 → Z0//G is a holomorphic fibre bundle.

Now let X be an invariant domain in Z with π(X) = Z and assume that X0 :=
X∩Z0 is weakly orbit connected. Let φ be a GR-invariant plurisubharmonic function
such that φ0 := φ|X0 is smooth, strictly plurisubharmonic on the local G-orbits in
X0 and an exhaustion mod GR along π|Z0. Thus the restriction φ0 := φ|M0

φ, M
0
φ :=

Mφ ∩ Z0 induces a plurisubharmonic function ψ0 : Z0//G→ R.

Lemma 3. There is a unique G-invariant plurisubharmonic function Ψ : Z →
[−∞,+∞) which extends Ψ0 := ψ0 ◦ π|Z0.

Proof. The function Ψ(z) = inf
g∈Ωz

φ(g · z) is upper semi-continuous on Z where Ωz :=
{g ∈ G; g · z ∈ X}. Now Ψ = Ψ0 on Z0 (Lemma 2), and Z \ Z0 is a proper analytic
subset of Z. Thus Ψ is plurisubharmonic and by definition G-invariant. �

Remark 3. If Z//G is smooth and π is an open map, then ψ0 extends uniquely to a
plurisubharmonic function ψ on Z//G. Of course in this case we have ψ(q) = inf

x∈Fq
φ(x),

where Fq := π−1(q) ∩X. If φ|Fq is an exhaustion mod GR, Mφ intersects every GR-
stable closed analytic subset of Fq non trivially. But it might happen that Mφ ∩ Fq
is a union of several GR-orbits. On the other hand for q ∈ Z0//G the intersection is
exactly one GR-orbit.

Assume now in addition that Z is an open G-stable subspace of a holomorphic
Stein G-manifold V which is saturated with respect to π : V → V//G. We say that
φ : X → R is a weak exhaustion of X over V//G if lim supφ(zn) = +∞ for any
sequence (zn) in X such that (π(zn)) converges to some q0 in the boundary ∂(Z//G)
in V//G.

Theorem. Let Z be a G-stable π-saturated open subspace of V , X an invariant
domain in Z with G · X = Z and φ : X → R a GR-invariant plurisubharmonic
function. Assume that

(i) X0 is weakly orbit connected,

(ii) the restriction of φ0 := φ|X0 to the local G-orbits is strictly plurisubharmonic,
(iii) φ0 is an exhaustion mod GR along π|Z0 and
(iv) φ is a weak exhaustion of X over V//G,

Then Z = G ·X is a Stein manifold.

Proof. Let z0 ∈ ∂Z and zn ∈ Z be such that z0 = lim zn. We have to show
lim supΨ(zn) = +∞. Thus assume that Ψ(zn) < r for all n and some r ∈ R.
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10 Peter Heinzner

There are wn ∈ G ·M0
φ = Z0 such that Ψ(wn) < r and z0 = limwn. Let wn =

gn · xn where gn ∈ G and xn ∈ M0
φ. Now Ψ(wn) = Ψ(xn) = φ(xn) < r and, since

Z = G · X is saturated, π(xn) = π(wn) → π(z0) ∈ ∂(Z//G). This contradicts the
assumption that φ is a weak exhaustion. Thus Z is a domain in a Stein manifold with
a plurisubharmonic weak exhaustion function and therefore Stein. �

Remark 4. Elementary examples show that for a Stein GR-manifold some conditions
are necessary in order that G ·X is a Stein manifold. For example there is an Sl2(R)-
invariant domain Ω of holomorphy in C2 such that Sl2(C) ·Ω = C2 \ {0}.
Now let G be complex reductive group and assume that the semistable quotient

π : Z → Z//G exists (see [H-M-P]). Thus Z//G is a complex space whose structure
sheaf OZ//G(U) = OZ(π−1(U)G is the sheaf of invariants and every point in Z//G has
an open Stein neighborhood such that the inverse image in Z is Stein. For example,
if V is a holomorphic Stein G-manifold, then a semistable quotient V//G alway exists.
Moreover it is shown in [H-M-P] that Z is a Stein space if and only if Z//G is a Stein
space.

Assume that Z is connected and that some orbit of maximal dimension is closed.
Then there exists a proper analytic subset A in Z//G such that Zo//G = Z//G \ A
is a geometric quotient of Zo := π−1(Z//G \ A). In particular, every fibre of π|Zo
is G-homogeneous or equivalently the dimension of the G-orbits in Zo is constant.
Every x ∈ Zo has a G-stable neighborhood U which is G-equivariantly biholomorphic
to G×H S where H is the isotropy group of G at x and S is a Stein space such that the
connected componentH0 of the identity ofH acts trivially on S. Here G×HS denotes
the bundle associated to the H-principal bundle G → G/H. Thus locally Zo//G is
given by S/Γ where Γ := H/H0 is a finite group. Moreover, there is an analytically
Zariski open G-stable subset Zoo of Z which is contained in Zo such that the isotropy
type is constant. This implies that Zoo is a fibre bundle over Zoo//G ⊂ Z//G.

3. Orbit geometry of the future tube.

In the following it will be convenient to introduce a linear coordinate change such
that < z, z >= (z0)

2 − (z1)2 − (z2)2 − (z3)2 has the form z0z1 − z2z3. Thus we set

Z :=

(
x

z

y

w

)
=

(
z0 + z3
z1 + iz2

z1 − iz2
z0 − z3

)

and obtain detZ =< z, z > and det ImZ =< Im z, Im z > where ImZ := 1
2i (Z− Z̄t).

Let H := {Z ∈ V ; ImZ > 0} denote the generalized upper half plane where
V := C2×2. Note that H is just the tube over the positive light cone in the new
coordinates. Moreover H is stable with respect to the action of GR := SL2(C) which
is given by GR ×H → H, (g, Z)→ g ∗ Z := gZḡt. This action is not effective. The
ineffectivity consists of Γ = {+I,−I} and the quotient SL2(C)/Γ is the connected
component of the identity of the homogeneous Lorentz group.

Let HN := H × · · · × H ⊂ V × · · · × V =: V N denote the N -fold product
of H and set G := (GR)

C = SL2(C) × SL2(C) where GR is embedded in G via
g → (g, ḡ). The diagonal GR action on V

N extends to a holomorphic G action
G× V N → V N , ((g, h), Z1, . . . , ZN )→ (g, h) ∗ (Z1, . . . , ZN ) := (gZ1ht, . . . , gZNht).
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The Minimum Principlefrom a Hamiltonian Point of View 11

Theorem. The extended future tube (HN )C := G ∗HN is a domain of holomorphy.

In the proof we will make an axiomatic use of the following statements

Fact 1 (see Streater Wightman [S-W], p. 66). The set HN is orbit connected in V N ,
i.e., {g ∈ G; g ∗ Z ∈ HN} is connected for every Z ∈ V N .
Fact 2. The extended future tube G ∗ HN is saturated with respect to π : V N →
V N//G.

Fact 2 implies that the semistable quotient G ∗HN//G exists and is an open subset
of V N//G. The quotient map is given by restricting π : V N → V N//G to G ∗HN .
There does not seem to be a proof in the literature of Fact 2 but there is a detailed

proof for the whole complex orthogonal group in [H-W]. A slight modification of the
proof there can be used for a proof of Fact 2. In order to be complete let us recall
briefly the main steps. First we note that it is sufficient to show the following (see
e.g. [H]).

Claim. If Z ∈ HN , then the unique closed orbit G ∗W in the closure of G ∗ Z lies in
G ∗HN .
This can be seen as follows. Let < , > be the complex Lorenz product, i.e., the
symmetric bilinear form on V which is associated to the quadratic form det : V →
V . Thus V is just the standard representation of G̃ := O4(C). Note that G̃ has
two connected components and the connected component of the identity is G. The
functions (Z1, . . . , ZN ) →< Zi, Zj >, form a set of generators for the algebra of
the G̃-invariant polynomials on V N . Thus the image of V N in the set of symmetric
N ×N -matrices of the map π̃ which sends (Z1, . . . , ZN ) to the matrix (< Zi, Zj >)
is an affine variety which is isomorphic to V N//G̃.

The matrices of rank 3 or 4 correspond to fibres of π̃ which are closed G̃-orbits.
It follows that the G-orbit through every point Z ∈ HN such that the rank r of Z̃
is greater or equal to 3 is already closed. Now assume that r ≤ 2. In this case the
following is shown in [H-W]: There exists an g ∈ G̃, αj ∈ C and an ω ∈ V with
< ω,ω >= 0 =< ω,W j > such that

Zj = g ∗W j + αjω , j = 1, . . . , N .

The proof actually shows that one can choose g ∈ G, i.e., det g = 1. Now an argument
of Hall-Wightman ([H-W], p.21) implies that g∗W j ∈ H for all j, i.e., G∗W ⊂ G∗HN .
Fact 3. The function φ : HN → R, φ(Z1, . . . , ZN) := 1

det ImZ1 + · · · + 1
det ImZN

is GR-invariant and strictly plurisubharmonic. Moreover, φ is a weak exhaustion of
HN .

The simplest way to see that φ is strictly plurisubharmonic is to note that Zj →
1

det ImZj it is given by the Bergmann kernel function on H. Since det ImZ = 0 for
Z ∈ ∂H, φ is a weak exhaustion of HN , i.e., φ(Zk) → +∞ if limZk = Z0 ∈
∂(HN) ⊂ V N .
Let KR := {(a, ā); a ∈ SU2(C)} be the maximal compact subgroup of GR. We

set V 0 := {Z ∈ V ; detZ 6= 0}. Note that V//G ∼= C and that after this identification
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12 Peter Heinzner

the quotient map is given by det : V → C. In particular, V 0 is saturated with respect
to V → V//G.

Lemma 1. Let (Wn) be a sequence in H such that (π(Wn)) converges in V//G. Then
there exist hn ∈ GR such that a subsequence of (hn ∗Wn) converges in V .

Proof. There exist un ∈ KR such that

Xn := un ∗Wn =:
(xn
0

zn
yn

)
.

Since (π(Wn)) = (π(Xn)) converges, it follows that |detXn| = |xnyn| ≤ R for some
R ≥ 0 and all n. Furthermore, Xn ∈ H implies that 14 |zn|2 < ImxnIm yn ≤ |xnyn| =
|detXn|. Therefore (zn) is bounded. Now 0 < |xnyn| ≤ R implies that |r2nxn| =
|r−2n yn| for some rn > 0. In particular the sequence (r2nxn, r−2n yn) is bounded. Hence
hn ∗Wn has a convergent subsequence where hn := rn · un ∈ GR and rn is identified
with

((
rn
0
0
1
rn

)
,
(
rn
0
0
1
rn

))
. �

Remark 1. Geometrically Lemma 1 asserts that H is relatively compact over V//G
mod GR.

Lemma 2. Let (Zn,Wn) be a sequence of points in H ×H and assume that
(i) π(Zn,Wn) converges in (V × V )//G and
(ii) W0 = limWn exists in H.

Then a subsequence of (Zn) converges to a Z0 ∈ H.

Proof. Note that V × V 0 is an open G-stable subset of V × V which is saturated
with respect to V × V → (V × V )//G and contains H × H. The map V × V 0 →
V, (Z,W ) → ZW−1, is G-equivariant, where G acts on the image V by conjugation
with the first component, i.e. by int(g, h) ·X = gXg−1. It is sufficient to show the
following

Claim. A subsequence of (Xn) converges.

Since the image ofXn := ZnW
−1
n in V//intG converges, the trace and the determinant

of Xn and therefore the eigenvalues of Xn are bounded. Let un = (an, ān) ∈ KR be
such that int an · Xn = (un ∗ Zn)(un ∗Wn)−1 =

(
xn
0
zn
yn

)
. Since KR is compact, we

may assume that Xn =
(
xn
0
zn
yn

)
.

Let Wn =:
(
an
cn

bn
dn

)
and W0 =:

(
a0
c0

b0
d0

)
. By assumption we have W0 ∈ H. There-

fore Im d0 6= 0. From

Zn = XnWn =

(
xnan + zncn xnbn + zndn

yncn yndn

)
∈ H

it follows that

1

|zn|2
(
Im (xnan + zncn)Im (yndn)−

1

4
|xnbn + zndn − ȳnc̄n|2

)
> 0
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The Minimum Principlefrom a Hamiltonian Point of View 13

for zn 6= 0. Since the eigenvalues xn, yn and an, bn, cn, dn are bounded, d0 6= 0 implies
that |zn| is bounded. Thus (Xn) has a convergent subsequence. �

Remark 2. The proofs of Lemma 1 and Lemma 2 use arguments which can be found
at least implicitly in [Z] on p. 17.

In the above proof we used that H ⊂ V 0 which is implied by det ImZ ≤ |detZ|.

Corollary 1. If Zn = (Z
1
n, . . . , Z

N
n ) ∈ HN are such that (π(Zn)) converges in

V N//G and (ZNn ) converges in H, then (Zn) has a convergent subsequence in H
N
. �

Lemma 3. φ is a weak exhaustion of X over V//G.

Proof. Let (Zn) = ((Z
1
n, . . . , Z

N
n )) be a sequence in H

N such that q := limπ(Zn) ∈
∂(G∗HN//G) ⊂ V N//G exists. There are hn ∈ GR such that a subsequence of (h∗ZNn )
converges to WN ∈ H (Lemma 1). Now, if WN ∈ ∂H, then lim supφ(Zn) = +∞.
Thus assume that WN ∈ H. It follows that (hn ∗ Zn) has a subsequence which
converges to W ∈ H

N
(Corollary 1). But W is not in HN , since q = π(W ) ∈

∂(G ∗HN//G). Thus W ∈ ∂HN and therefore again lim supφ(Zn) = +∞ follows. �

Lemma 4. The function φ is an exhaustion mod GR along π.

Proof. For r > 0 let Zn ∈ HN , Zn =: (Z
1
n, . . . , Z

N
n ), be such that φ(Zn) ≤ r and

assume that limπ(Zn) exists in G ∗ HN//G. Thus there are hn ∈ GR such that
(hn ∗ ZNn ) has a subsequence which converges to some WN ∈ H. If WN ∈ ∂H,
then φ(Zn) goes to infinity. This contradicts φ(hn ∗ Zn) ≤ r. Thus WN ∈ H and
therefore (hn ∗ Zn) has a subsequence with limit W = (W 1, . . . ,WN ) ∈ H

N
. The

same argument as above implies that W j ∈ H for j = 1, . . . , N . �

Proof of the Theorem. From the invariant theoretical point of view the G = SL2(C)×
SL2(C) action on V

N is the N -fold product of the standard representation of SO4(C)
on C4. It is well known that for any N = 1, 2, . . . the generic G-orbit in V N is closed.
Let (V N )0 denote the set of points in V N which lie in a generic closed orbit, i.e.,
(V N )0 is a union of the fibres of the quotient V → V//G which consist exactly of one
G-orbit. Since the GR-action on H is proper, GR acts properly on H

N . It follows
from the results in §2 that there is a G-invariant plurisubharmonic function Ψ on
G ∗HN which is a weak exhaustion. Thus G ∗HN is a domain of holomorphy. �

Corollary 2. The image G ∗HN//G of HN in V N//G is an open Stein subspace.
�
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Abstract. Let X be a projective complex 3-fold, quasihomogeneous with
respect to an action of a linear algebraic group. We show that X is a com-
pactification of SL2/Γ, Γ a finite subgroup, or that X can be equivariantly
transformed into P3, the quadric Q3, or into certain quasihomogeneous bun-
dles with very simple structure.

1991Mathematics Subject Classification: Primary 14M17; Secondary 14L30,
32M12

1 Introduction

Call a variety X quasihomogeneous if there is a connected algebraic group G acting
algebraically on X with an open orbit. A rational map X 99K Y is said to be
equivariant if G acts on Y and if the graph is stable under the induced action on
X × Y .
The class of varieties having an equivariant birational map to X is generally

much smaller then the full birational equivalence class. The minimal rational surfaces
are good examples: they are all quasihomogeneous with respect to an action of SL2,
but no two have an SL2-equivariant birational map between them. On the other
hand, if X is any rational SL2-surface, then the map to a minimal model is always
equivariant.
Generally, one may ask for a list of (minimal) varieties such that every quasiho-

mogeneous X has an equivariant birational map to a variety in this list.
We give an answer for dimX = 3 and G linear algebraic:

1The author was supported by scholarships of the Graduiertenkollegs “Geometrie und mathema-
tische Physik” and “Komplexe Mannigfaltigkeiten” of the Deutsche Forschungsgemeinschaft
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16 Stefan Kebekus

Theorem 1.1. Let X be a 3-dimensional projective complex variety. Let G be a
connected linear algebraic group acting algebraically and almost transitively on X.
Assume that the ineffectivity, i.e. the kernel of the map G→ Aut(X), is finite. Then
either G ∼= SL2, and X is a compactification of SL2/Γ, where Γ is finite and not
cyclic, or there exists an equivariant birational map X 99Keq Z, where Z is one of the
following:

• P3 or Q3, the 3-dimensional quadric

• a P2-bundle over P1 of the form P(O(e) ⊕O(e)⊕O).

• a linear P1-bundle over a smooth quasihomogeneous surface Y , i.e. Z ∼= P(E),
where E is a rank-2 vector bundle over Y . If G is solvable, then E can be chosen
to be split.

If G is not solvable, then the map X 99Keq Z factors into a sequence X ← X̃ → Z,
where the arrows denote sequences of equivariant blow ups with smooth center.

A fine classification of the (relatively) minimal varieties involving SL2 will be
given in a forthcoming paper.
The result presented here is contained the author’s thesis. The author would like

to thank his advisor, Prof. Huckleberry, and Prof. Peternell for support and valuable
discussions.

2 Existence of Extremal Contractions

The main tool we will use is Mori-theory. In order to utilize it, we show that in our
context extremal contractions always exist.

Lemma 2.1. Let X and G be as in 1.1, but allow for Q-factorial terminal singulari-
ties. Then there exists a Mori-contraction.

Proof. Let π : X̃ → X be an equivariant resolution of the singularities ofX, letH < G
be a (linear) algebraic subgroup and let v1 ∈ Lie(G) be the associated element of the
Lie-algebra. Since X̃ is quasihomogeneous, we can find elements v2, v3 ∈ Lie(G) such
that the associated vector fields

ṽi(x) =
d

dt

∣∣∣∣
t=0

exp(tvi)x ∈ H0(X̃, T X̃)

are linearly independent at generic points of X̃. In other words,

σ := ṽ1 ∧ ṽ2 ∧ ṽ3

is a non-trivial holomorphic section of the anticanonical bundle −KX̃ . Because H is
linear algebraic, the closure of a generic H-orbit is a rational curve, and H has a fixed
point on this curve. Therefore ṽ1 has zeros, and the divisor given as the zero-set of σ
is not trivial. In effect, we have shown that −KX̃ is effective and not trivial.
If r is the index of X, then the line bundle −rKX is effective. We are finished

if we exclude the possibility that −rKX is trivial. Assume that this is the case. The
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section σ not vanishing on the smooth points of X implies that X \ Sing(X) is G-
homogeneous. But the terminal singularities are isolated. Thus, by [HO80, thm. 1 on
p. 113], X is a cone over a rational homogeneous surface, a contradiction to −rKX
trivial.
Consequently −rKX is effective and not trivial. So there is always a curve C

intersecting an element of | − rKX | transversally. Hence C.KX < 0 and there must
be an extremal contraction.

Corollary 2.2. Let X and G be as in theorem 1.1 with the exception that X is
allowed to have Q-factorial terminal singularities. Let φ : X → Y be an equivariant
morphism with dimY < 3. Then there is a relative contraction over Y .

Proof. If Y is a point, this follows directly from lemma 2.1. Otherwise, if η ∈ Y
generic, we know that the fiber Xη is smooth, does not intersect the singular set
and is quasihomogeneous with respect to the isotropy group Gη. So there exists a
curve C ⊂ Xη with C.KXη < 0. Note that the adjunction formula holds, since X has
isolated singularities andXη does not intersect the singular set. HenceKXη = KX |Xη ,
and there must be an extremal ray C ⊂ NE(X) such that φ∗(C) = 0. Thus, there
exists a relative contraction.

Recall that all the steps of the Mori minimal model program (i.e. extremal
contractions and flips) can be performed in an equivariant way. For details, see
[Keb96, chap. 3].

3 Equivariant Rational Fibrations

In this section we employ group-theoretical considerations in order to find equivariant
rational maps fromX to varieties of lower dimension. These will later be used to direct
the minimal model program.
We start with the case that G is solvable.

Lemma 3.1. Let X and G be as in 1.1. Assume additionally that G is solvable. Then
there exists an equivariant rational map X 99Keq Y to a projective surface Y .

Proof. Since G is solvable, there exists a one-dimensional algebraic normal subgroup
N . Let H be the isotropy group of a generic point, so that Ω ∼= G/H, and consider
the map

Ω ∼= G/H → G/(N.H)

Recall that N.H is algebraic. Since N is not contained in H (or else G acted
with positive dimensional ineffectivity), the map has one-dimensional fibers. Now
dimG/(N.H) > 0 and G/(N.H) can always be equivariantly compactified to a pro-
jective variety Y . This yields an equivariant rational map X 99Keq Y .

Now consider the cases where G is not solvable.

Lemma 3.2. Let X and G be as above. Assume that G is neither reductive nor
solvable. Then there exists an equivariant rational map X 99Keq Y such that either

1. Y ∼= P3, and X 99Keq Y is birational, or dimY = 2, or
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2. dimY = 1, and there exists a normal unipotent group A and a semisimple group
S < G, acting trivially on Y . The unipotent part A acts almost transitively on
generic fibers.

Proof. Let G = U ⋊ L be the Levi decomposition of G, i.e. U is unipotent and L
reductive and define A to be the center of U . Note that A is non-trivial. Since A
is canonically defined, it is normalized by L, hence it is normal in G. Let H be the
isotropy group of a generic point, Ω the open G-orbit, so that Ω ∼= G/H, and consider
the map

Ω ∼= G/H → G/(A.H)

There are two things to note. The first is that A is not contained in H (or else G acted
with positive dimensional ineffectivity). So dimG/(A.H) < 3. If dimG/(A.H) >
0, it can always be equivariantly compactified G/(A.H) to a variety Y yielding an
equivariant rational map X 99K Y . If dimG/(A.H) = 2, we can stop here. If
dimG/(A.H) = 1, then note that A acts transitively on the fiber A.H/H. If A.H
does not contain a semi-simple group, we argue as in lemma 3.1 to find a subgroup
H ′, H < H ′ < A.H such that dimH ′/H = 1. Then dimG/H ′ = 2, and again we are
finished.
If dimG/(A.H) = 0, then A acts transitively on Ω. In this case A ∼= Cn, and

hence (because the G-action is algebraic) Ω ∼= C3. The theorem onMostow fibration
(see e.g. [Hei91, p. 641]) yields that L has to have a fixed point in Ω. Therefore,
without loss of generality, L < H. As a next step, consider the group B := (U ∩H)0.
Since both U and H are normalized by L, B is as well. Elements in A commute with
all elements of U , hence A.B normalizes B as well. Then B is a normal subgroup of
U⋊L = G. Note that A.B = U , because A.B = A.(H∩U) = (A.H)∩U = G∩U = U .
Consequently B acts trivially. Therefore B = {e}.
We are now in a position where we may write G = A ⋊ρ L, where ρ is the

action of L on A (L acting by conjugation). Now H = L, hence A ∼= Ω ∼= C3
and the L-action on A ∼= (C3,+) is linear. So G is a subgroup of the affine group
and Ω can be equivariantly compactified to P3, yielding an equivariant rational map
X 99Keq P3.

We study case (1) of the preceding proposition in more detail.

Lemma 3.3. Let X be as above and assume that G is reductive. Assume furthermore
that G is not semisimple. Then there is an equivariant rational map X 99Keq Z,
where dimZ = 2.

Proof. As a first step, recall that G = T.S, where S is semisimple, T is a torus, and
S and T commute and have only finite intersection. If η is a point in the open orbit
and Gη the associated isotropy group, then T 6⊂ Gη, or otherwise T would not act at
all. For that reason we will be able to find a 1-parameter group T1 < T , T1 6⊂ Gη and
consider the map

Ω := G/Gη → G/(T1.Gη).

Since T1 has non-trivial orbits, dimG/(T1.Gη) = 2. If we compactify the latter in an
equivariant way to a variety Z, we automatically obtain an equivariant rational map
X 99Keq Z as claimed.
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Lemma 3.4. Suppose G is semisimple. Then one of the following holds:

1. G ∼= SL2 and the open orbit Ω is isomorphic to SL2/Γ, where Γ is finite and
not contained in a Borel subgroup.

2. X ∼= P3
3. X is isomorphic to F1,2(3), the full flag variety

4. X is homogeneous and either X ∼= Q3, the 3-dimensional quadric or X is a
direct product involving only P1 and P2.

5. X admits an equivariant rational map X 99Keq Y onto a surface.

Proof. If G ∼= SL2, and Γ is embeddable into a Borel group B, then Γ is in fact
embeddable into a 1-dimensional torus T . Consider the map G/Γ → G/T , and we
are finished.
Assume for the rest of this proof that G 6∼= SL2. Then the claim is already true

in the complex analytic category: see [Win95, p. 3]. One must exclude torus bundles
by the fact that they never allow an algebraic action of a linear algebraic group.

We summarize a partial result:

Corollary 3.5. Let X and G be as above. If there exists an equivariant map
X 99K

eq P1 and no such map to P3 or to a surface, then G is not solvable and
there exist subgroups S and A as in lemma 3.2.

4 The case that Y is a curve

In this section we investigate relatively minimal models over P1. The main proposition
is:

Proposition 4.1. Let X and G be as in 1.1 with the exception that X is allowed
to have Q-factorial terminal singularities. Assume that φ : X → P1 is an extremal
contraction. Assume additionally that there does not exist an equivariant rational
map X 99Keq Y , where dimY = 2 or Y ∼= P3. Then

X ∼= P(OP1(e)⊕OP1(e)⊕OP1),

with e > 0. In particular, X is smooth.

Proof. As a first step, we show that the generic fiber Xη is isomorphic to P2. As φ
is a Mori-contraction, Xη is a smooth Fano surface. By corollary 3.5, the stabilizer
Gη < G of Xη contains a unipotent group A acting almost transitively on Xη and
a semisimple part S. This already rules out all Fano surfaces other than P2. Fur-
thermore, S ∼= SL2. Note that Gη stabilizes a unique line L ⊂ Xη and that S acts
transitively on L.
Set D′ := G.L and remark that D′ intersects the generic φ-fiber in the unique

Gη-stable line: D
′ ∩Xη = L. We claim that D′ is Cartier. The desingularization

D̃′ has a map to P1, the generic fiber is isomorphic to P1 and S acts non-trivially on
all the fibers. Thus, D̃′ is isomorphic to P1 × P1, and S does not have a fixed point
on D′. Consequently, D̃′ does not intersect the singular set of X and is Cartier.
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Take D′′ to be an ample divisor on Y . As φ is a Mori-contraction, the line
bundle L associated to D := D′+nφ∗(D′′), n >> 0, is ample on X. In this setting, a
theorem of Fujita (cf. [BS95, Prop. 3.2.1]) yields that X is of the form P(E), where
E is a vector bundle on P1.
The transition functions of E must commute with S, but the only matrices

commuting with SL2 are Diag(λ, λ, µ), hence E = O(e) ⊕ O(e) ⊕ O(f) and X ∼=
P(O(e− f)⊕O(e− f)⊕O).

For future use, we note

Lemma 4.2. Let X and G be as in proposition 4.1. Then, by equivariantly blowing up
and down, X 99Keq P(O(e′)⊕O(e′)⊕O) where the latter does not contain a G-fixed
point.

Proof. The semisimple group S fixes a unique point of each φ-fiber, so that there
exists a curve C of S-fixed points. Suppose that G has a fixed point f . Then f ∈ C,
and we can perform an elementary transformation X 99Keq X ′ with center f , i.e. if
Xµ is the φ-fiber containing f , then we blow up f and blow down the strict transform
of the Xµ, again obtaining a linear P2-bundle of type P(O(e) ⊕ O(e) ⊕ O). This
transformation exists, as has been shown in [Mar73]. Since all the centers of the
blow-up and -down are G-stable, the transformation is equivariant.
We will use this transformation in order to remove G-fixed points. Let g ∈ G be

an element not stabilizing C. The curves gC and C meet in f . We know that after
finitely many blow-ups of the intersection points of C and gC, the curves become
disjoint, so that there no longer exists a G-fixed point! This, however, is exactly what
we do when applying the elementary transformation.

5 The case that Y is a surface

The cases that G is solvable or not solvable are in many respects quite different. Here
we have to treat them separately.

5.1 The case G solvable

We will show that in this situation the open G-orbit can be compactified in a partic-
ularly simple way.

Proposition 5.1. Let X and G be as in theorem 1.1. Assume additionally that G
is solvable and φ : X → Y is an equivariant map with connected fibers onto a smooth
surface. Then there exists a splitting rank-2 vector bundle E on Y and an equivariant
birational map X 99Keq P(E).

We remark that if y ∈ Y is contained in the open G-orbit, then it’s preimage
is quasihomogeneous with respect to the isotropy group Gy, hence isomorphic to P1.
As a first step in the proof of proposition 5.1, we show the existence of very special
divisors in X.

Notation 5.2. We call a divisor D ⊂ X a “rational section” if it intersects the generic
φ-fiber with multiplicity one.

In our context, such divisors always exist:
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Lemma 5.3. Let φ : X → Y be as in lemma 5.1 and assume additionally that there
exists a group H∗ ∼= C∗ acting trivially on Y . Let D′X be the fixed point set of the
H∗-action. Then D′X contains two rational sections as irreducible components.

Proof. Let DX be the union of those irreducible divisors in D
′
X which are not preim-

ages of curves or points by φ. The subvariety DX intersects every generic φ-fiber at
least once. Hence DX 6= 0.
We claim that the set of branch points

M := {y ∈ Y : #(φ−1(y) ∩DX) = 1}

is discrete. Linearization of the H∗-action yields that for any point f ∈ DX \Sing(X),
there is a unique H∗-stable curve intersecting DX at f . Furthermore, the intersec-
tion is transversal. Assume dimM ≥ 1 and let y be a generic point in M . Then
dimφ−1(y) = 1 and φ−1(y) = 1 contains a smooth curve C as an irreducible compo-
nent intersecting DX . Now C.DX = 1 and, because C∩DX was the only intersection
point by assumption, φ−1(y).DX = 1. This is contrary to DX intersecting the generic
φ-fiber twice.
Set

N := {µ ∈ Y |dim(Xµ ∩DX) > 0} ∪M ∪ φ(Sing(X)).
By definition N is finite andDX is a 2-sheeted cover over Y \N . Now Y is smooth and
quasihomogeneous with respect to an algebraic action of the linear algebraic group
G. Hence it is rational. This implies that Y \N is simply connected. Hence DX has
two connected components over Y \ N . Now the set DX ∩ φ−1(N) is just a curve.
Therefore DX cannot be irreducible.

Lemma 5.4. Under the assumptions of lemma 5.1, there exists a G-stable rational
section E1 ⊂ X.
Proof. If G is a torus, then there exists a subgroup T1 acting trivially on Y . In this
case we are finished by applying lemma 5.3. Thus we may assume that the unipotent
part U of G is non-trivial. Let η ∈ Y be a generic point and x ∈ Xη \ Ω, where Ω
denotes the open G-orbit in X. If x is unique, then the divisor E1 := G.x has the
required properties. Similarly, if U acts almost transitively on Y , then it’s isotropy
at η is connected and we may set E1 := U.x.
If neither holds, then necessarily dimU = 1, and we can assume that U acts

non-trivially on Y . Otherwise Xη \Ω consists of a single point and we are finished as
above. Let T1 be a 1-dimensional subgroup of a maximal torus such that I := U.T1
acts almost transitively on Y . If η ∈ Y is generic, the isotropy group Iη is cyclic:
Iη has two fixed points in Xη. Consequently, there exist at least two I-orbits whose
closures Di are rational sections.
Note that I is normal in G, i.e. all elements of G map I-orbits to I-orbits. If Di

are the only rational sections occurring as closures of I-orbits, they are automatically
G-stable. Otherwise, all I-orbits are mapped injectively to Y , and at least one of
these is G-stable.

The existence of E1 already yields a map to a P1-bundle.

Lemma 5.5. Under the assumptions of lemma 5.1, there exists a rank-2 vector bundle
E on Y (not necessarily split) and an equivariant birational map X 99Keq P(E).
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Proof. Set E := (φ∗(OX(E)))∗∗. Since a reflexive sheaf on a smooth surface is locally
free, E is a vector bundle. If ΩY ⊂ Y is the open orbit, φ−1(ΩY ) ∼= P(E|ΩY )
(cf. [BS95, Prop. 3.2.1]), inducing a birational map ψ : X 99K P(E). Note that
φ∗(OX(E)) is torsion free. In particular, φ∗(OX(E)) is locally free over a G-stable
cofinite set Y0 ⊂ Y so that, by the universal property of Proj, ψ is regular over Y0.
As ψ|Y0 is proper, it is equivariant. The automorphisms over Y0 extend to the whole
of P(E) by the Riemann extension theorem. Hence ψ is equivariant as claimed.

In order to show that E can be chosen to be split we need to find another rational
section. We will frequently deal with the following situation, for which we fix some
notation.

Notation 5.6. Let φ : X → Y be as above and assume that there exists a map
π : Y → Z ∼= P1, e.g. if Y is isomorphic to a (blown-up) Hirzebruch surface Σn.
Then, if F ∈ Z is a generic point, set FY := π−1(F ) and FX := φ−1(FY ).

Lemma 5.7. In the setting of proposition 5.1, there exists a second rational section
E2. If E1 is as constructed in lemma 5.4, then E1 ∩E2 is G-stable.

Proof. If G is a torus, we are finished, as we have seen in the proof of lemma 5.4.
Hence we may assume that dimU > 0, where U is the unipotent part of G.
Suppose that U acts trivially on Y . Then we are able to choose a 2-dimensional

torus T < G such that T acts almost transitively on Y . If η ∈ Y is generic, then
the isotropy group Tη may not be cyclic, but since it has to fix the unique U -fixed
point in Xη, its image Tη → Aut(Xη) is contained in a Borel group, hence cyclic.
Consequently, Tη fixes another point x, and we may set E2 := T.x.
The other case is that U acts non-trivially on Y . We need to consider a mapping

π : Y → Z ∼= P1. If Y ∼= Σn, or a blow-up, there is no problem. If Y ∼= P2, we note
that, by G being solvable and Borel’s fixed point theorem (see [HO80, p. 32]), there
exists a G-fixed point y ∈ Y . We can always blow up y and Xy in order to obtain a
new P1-bundle over Σ1. If we are able to construct our rational sections here, then
we can simply take their images to be the desired rational sections in the variety we
started with. So let us assume that Y 6∼= P2.
There exists a 1-dimensional normal unipotent subgroup U1 < G. Assume first

that U1 acts non-trivially on Z. Using notation 5.6, FY is isomorphic to P1, FX to a
Hirzebruch surface Σn. Choose a section σ ⊂ FX with the property that φ(σ ∩E1)
does not meet the open G-orbit in Y . As the stabilizer of FX in G stabilizes E1, so
that E1 ∩ FX is either the infinity- or zero-section in FX ∼= Σn or the diagonal in
FX ∼= Σ0, and G stabilizes a section of Y → P1, this can always be accomplished. Set
E1 := U1.σ.
Secondly, we must consider the case that U1 acts trivially on Z. We proceed

similarly to the above. Choose a 1-dimensional group G1 < G such that the G1-orbit
in Z coincides with that of G. Now G1 stabilizes at least one section σY ⊂ Y over Z
which is not U1-stable! Set σX := φ−1(σY ) and consider a section σ ⊂ σX over σY
such that φ(σ ∩ E1) is disjoint from the open G-orbit in Y . Then E1 := U1.σ is the
divisor we were looking for.
We still have to show that the intersection E1 ∩ E2 is G-stable. Note that by

construction, φ(E1 ∩ E2) does not meet the open G-orbit in Y . This, together with
E1 being G-stable, yields the claim.
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We shall use the second rational section in order to transform E into a splitting
bundle.

5.1.1 Eliminating vertical curves

If S ⊂ φ(E1 ∩ E2) is an irreducible curve which is a φ-fiber, then we say that E1
and E2 intersect vertically in S. We know that after blowing up S we obtain a P1-
bundle over the blow-up of Y . Furthermore, the process is equivariant. The proper
transforms of E1 and E2 are again rational sections. If they still intersect vertically,
the blow-up procedure can be applied again. So we eventually obtain a sequence of
blow-ups. The strict transforms of the E1 and E2 are again rational sections in Xi.
We denote them by Ei1 or E

i
2, respectively. By the theorem on embedded resolution,

we have:

Lemma 5.8. The sequence described above terminates, i.e. there exists a number
i ∈ N such that the strict transforms Ei1 and Ei2 do not intersect vertically.

5.1.2 Eliminating horizontal curves

We may now assume that E1 and E2 do not intersect vertically. Let S ⊂ φ(E1 ∩E2)
be an irreducible curve. Then S gives rise to an elementary transformation as ensured
by [Mar73]. Again, the transformation is equivariant and the strict transforms of E1
and E2 are rational sections. If they still intersect over S, we transform as before.
Again one may use the embedded resolution to show (cf. [Keb96, thm. 5.30] for
details):

Lemma 5.9. The sequence described above terminates after finitely many transfor-

mations, i.e. there exists a j ∈ N such that for all curves C ⊂ E
(j)
1 ∩ E

(j)
2 it follows

that φ(j)(C) 6= S. Furthermore, if E1 and E2 do not intersect vertically, then E
(i)
1

and E
(i)
2 do not intersect vertically for all i.

5.1.3 The construction of independent sections

By lemma 5.8 the variety X can be transformed into a P1-bundle such that the
strict transforms of E1 and E2 do not intersect in fibers. A second transformation
will rid us of curves in E1 ∩ E2 which are not contained in fibers. Since the latter
transformation does not create new curves in the intersection, the strict transforms
of E1 and E2 eventually become disjoint. The resulting space is the compactification
of a line bundle.

Lemma 5.10. If E1 and E2 do not intersect, X is the compactification of a line
bundle.

Proof. Since E1 and E2 are disjoint, neither contains a fiber. Thus they are sections.

As a net result, we have shown proposition 5.1.

Documenta Mathematica 3 (1998) 15–26



24 Stefan Kebekus

5.2 The case G not solvable

As first step, we show that X is again a linear P1-bundle. We do this under an
additional hypothesis which will not impose problems in the course of the proof of
theorem 1.1.

Lemma 5.11. Let X and G be as in theorem 1.1, with the exception that X is allowed
to have Q-factorial terminal singularities. Let φ : X → Y be a Mori-contraction to
a surface and assume additionally that G is not solvable and that there exists an
equivariant morphism ψ : Y → Y ′, where Y ′ is a smooth surface. Then X and Y are
smooth and X is a linear P1-bundle over Y .

Proof. First, we show that all φ-fibers are of dimension 1. If there exists a fiber Xµ
which is not 1-dimensional, then dimXµ = 2. Take a curve C ⊂ Y so that µ ∈ C.
Set D := φ−1(C \ µ). The divisor D intersects an irreducible component of Xµ. Now
take a curve R ⊂ Xµ intersecting D in finitely many points. We have R.D > 0.
However, all generic q-fibers Xη are homologous to R (up to positive multiples). So
Xη.D > 0, contradicting the definition of D.
Secondly, we claim that X is smooth. Assume to the contrary and let x ∈ X be a

singular point, µ := φ(x). Recall that terminal singularities in 3-dimensional varieties
are isolated. Thus, if S is the semisimple part of G, then the fiber Xµ through x is
pointwise S-fixed. Linearizing the S-action at a generic point y ∈ Xµ, the complete
reducibility of the S-representation yields an S-quasihomogeneous divisor D which
intersects Xµ transversally at y and is Cartier in a neighborhood of y. The induced
map D → Y ′ must be unbranched: Y ′ contains an S-fixed point and is therefore
isomorphic to P2; but there is no equivariant cover of this other than the identity. So
D is a rational section which is Cartier over a neighborhood of µ. If H ∈ Pic(Y )
is sufficiently ample, then D + φ∗(H) is ample, and [BS95, Prop. 3.2.1] applies,
contradicting the assumption that X is singular.
Since X is smooth, the same theorem shows that in order to prove the lemma

it is sufficient to show that there exists a rational section. If all the simple factors
of S have orbits of dimension ≤ 2, then, after replacing the factors by their Borel
groups, we obtain a solvable group G′, acting almost transitively as well. In this case
lemma 5.4 applies.
If S′ < S is a simple factor acting with 3-dimensional orbit on X, its action on

Y is almost transitively. In particular, there exists a 2-dimensional group B < S,
isomorphic to a Borel group in SL2, which also acts almost transitively on Y . As
in the proof of lemma 5.4, B has cyclic isotropy at a generic point of Y and so there
exist two rational sections which are compactifications of B-orbits.

6 Proof of theorem 1.1

Prior to proving theorem 1.1, we still need to describe equivariant maps to P3 in more
detail:

Lemma 6.1. Let X 99Keq P3 be an equivariant birational map. Then either X has
an equivariant rational fibration with 2-dimensional base variety or X and P3 are
equivariantly linked by a sequence of blowing ups of X followed by a sequence of blow-
downs.
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Proof. If the G-action on P3 has a fixed point, we can blow up this point and obtain
a map from the blown-up P3 to P2. If there is no such G-fixed point in P3, then after
replacingX by an equivariant blow-up, there is a regular equivariant map φ : X → P3.
Recall that such a map factors through an extremal contraction. Since the base does
not contain a fixed point, the classification of extremal contractions of smooth varieties
yields the claim.

Now we compiled all the results needed to finish the

Proof of theorem 1.1. GivenX, we apply lemmata 3.1–3.4. UnlessX ∼= Q3, F1,2(3) or
a compactification of SL2/Γ, Γ not cyclic, there exists an equivariant map X 99K

eq Y ,
where Y is smooth and Y ∼= P3, dim(Y ) = 2 or, if no other case applies, dim(Y ) = 1.
If Y ∼= P3, then, by lemma 6.1, we may replace P3 by a surface, or else we are

finished.
In the case of a map to Y with dimY < 3, we can blow up X equivariantly to

obtains a morphism X̃ → Y . Recalling that all steps in the minimal model program
(i.e. contractions and flips) are equivariant, we may perform a relative minimal model
program over Y . In this situation corollary 2.2 shows that the program does not stop
unless we encounter a contraction of fiber type X ′ → Y ′ and dimY ′ < 3. Note that
dimY ′ ≥ dimY .
In case that Y ′ is a surface, X ′ is the projectivization of a line bundle or can

be equivariantly transformed into one (cf. lemma 5.5 and 5.11). If G is solvable,
proposition 5.1 allows us to transformX into the projectivization of a splitting bundle
over a surface.
If dimY ′ = 1 and there does not exist a map to one of the other cases, X ∼=

P(O(e)⊕O(e)⊕O) over P1, as was shown in proposition 4.1.
We still have to show that if G is not solvable, the map to one of the models in

our list factors into equivariant monoidal transformations. Recall that it suffices to
show that, after equivariantly blowing up, if necessary, the minimal models do not
have a G-fixed point. We do a case-by-case checking:

P2-bundles over P1: By lemma 4.2, these can be chosen not to contain a fixed
point.

P1-bundles over a surface Y : If the semisimple part S of G acts trivially on Y ,
we can stop. Otherwise, if the S-action on Y has a fixed point f , we blow up
f and the fiber over f and obtain a P1-bundle over Σ1. Recall that actions of
semisimple groups on Σn never have fixed points.

P3: This case has already been handled in lemma 6.1.

SL2/Γ: After desingularizing and blowing up all fixed points, if any, the compacti-
fication of SL2/Γ is fixed point free. Otherwise, linearization at a fixed point
yields a contradiction to S acting almost transitively.

other cases: The remaining cases occur only when X is homogeneous
(cf. lemma 3.4).
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Abstract. The main purpose of this paper is the construction in motivic
cohomology of the cyclotomic, or classical polylogarithm on the projective
line minus three points, and the identification of its image under the regula-
tor to absolute (Deligne or l-adic) cohomology. By specialization to roots of
unity, one obtains a compatibility statement on cyclotomic elements in mo-
tivic and absolute cohomology of abelian number fields. As shown in [BlK],
this compatibility completes the proof of the Tamagawa number conjecture
on special values of the Riemann zeta function.

The main constructions and ideas are contained in Beilinson’s and Deligne’s
unpublished preprint “Motivic Polylogarithm and Zagier Conjecture”
([BD1]). We work out the details of the proof, setting up the foundational
material which was missing from the original source: the paper contains
an appendix on absolute Hodge cohomology with coefficients, and its inter-
pretation in terms of Saito’s Hodge modules. The second appendix treats
K-theory and regulators for simplicial schemes.
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11R34, 11R42, 14D07, 14F99.

Keywords: Polylogarithm, motivic and absolute cohomology, regulators, cy-
clotomic elements.

Introduction

The aim of this work is to present the construction of the class of the cyclotomic, or
classical polylogarithm in motivic cohomology. It maps to the elements in Deligne and
l–adic cohomology defined and studied in Beilinson’s “Polylogarithm and cyclotomic
elements” ([B4]). The latter elements can be seen as being represented by a pro–
variation of Hodge structure, or a pro–l–adic sheaf on the projective line minus three
points.
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Our main interest lies in the specialization of these sheaves to roots of unity:
they represent the “cyclotomic” one–extensions of Tate twists already studied by
Soulé ([Sou5]), Deligne ([D5]) and Beilinson ([B2]).
Let us be more precise: denote by µ0d the set of primitive d–th roots of unity in

Q(µd) = Q[T ]/Φd(T ), d ≥ 2. We get an alternative proof of the following theorem of
Beilinson’s:
Corollary 9.6. Assume n ≥ 0, and denote by rD the regulator map

H1M(SpecQ(µd),Q(n+ 1)) −→
⊕

σ:Q(µd)→֒C
C/(2πi)n+1R .

There is a map of sets

ǫn+1 : µ
0
d −→ H1M(SpecQ(µd),Q(n+ 1))

such that

rD◦ǫn+1 : µ
0
d −→

⊕

σ:Q(µd)→֒C
C/(2πi)n+1R

maps a root of unity ω to (−Lin+1(σω))σ =
(
−∑k≥1 σω

k

kn+1

)
σ
.

Now fix a d–th primitive root of unity ζ in Q. This choice allows to identify
continuous étale cohomology H1cont(SpecQ(µd),Ql(n+ 1)) with a Ql–subspace of


 lim←−
r≥1

(
Q(µl∞ , ζ)

∗/(Q(µl∞ , ζ)
∗)l

r ⊗ µ⊗nlr
)
⊗Zl Ql



Gal(Q(µl∞ ,ζ)/Q(ζ))

.

Note that there is a distinguished root of unity T in Q(µd). As was observed already
in [B4], the study of the cyclotomic polylogarithm gives a proof of [BlK], Conjecture
6.2 (cf. [Sou5], Théorème 1 for the case n = 1; [Gr], Théorème IV.2.4 for the local
version if (l, d) = 1):
Corollary 9.7. Let ǫn+1 be the map constructed in 9.6. Under the above

inclusion, the l–adic regulator

rl : H
1
M(SpecQ(µd),Q(n+ 1)) −→ H1cont(SpecQ(µd),Ql(n+ 1))

maps ǫn+1(T
b) to

1

dn
· 1
n!
·


 ∑

αlr=ζb

[1− α]⊗ (αd)⊗n


r

.

This result implies in particular that Soulé’s cyclotomic elements in the group
K2n+1(F ) ⊗Z Zl (for an abelian number field F and a prime l) are induced by el-
ements in K–theory itself (Corollary 9.8). Furthermore, the case d = 2 of 9.7 forms a
central ingredient of the proof of the Tamagawa number conjecture modulo powers of
2 for odd Tate twists Q(n), n ≥ 2 ([BlK], § 6). Finally, as shown in [KNF], Theorem
6.4, the general case of 9.7 implies the modified version of the Lichtenbaum conjecture
for abelian number fields.
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The main ideas necessary for both the construction of the motivic polylogarithm
and the identification of the realization classes, together with a sketch of proof, are
contained in the unpublished preprint “Motivic Polylogarithm and Zagier Conjecture”
([BD1]) and its predecessors [B4], [BD1p]. Our aim in this paper is to work out the
details of the proofs. To do this we have to set up a lot of foundational material, which
was missing from the original sources: K-theory of simplicial schemes, regulators to
absolute (Hodge and l-adic) cohomology of simplicial schemes, and an interpretation
of the latter as Ext groups of Hodge modules and l-adic sheaves respectively. This
material is contained in the two appendices which we regard as our main contribution
to the subject. We hope they prove to be useful in other contexts than that treated
in the main text.

Other parts of [BD1] deal with (the weak version of) the Zagier conjecture. We
do not treat this since a complete proof has been given by de Jeu ([Jeu]), although
by somewhat different means from those used in [BD1].

We see two main groups of papers related to polylogarithms:

The first deals with mixed sheaves, i.e., variations of Hodge structure or l–adic
mixed lisse sheaves. Maybe the nucleus of these papers is Deligne’s observation that
the analytic and topological properties of the dilogarithm Li2, viewed as a multivalued
holomorphic function on P1(C)\{0, 1,∞}, can be coded by saying that Li2 is an entry
of the period matrix of a certain rank three variation of Q–Tate–Hodge structure on
P1C\{0, 1,∞}.
We refer to [Rm], section 7.6 for a nice survey of the construction of a pro–

variation on P1C \{0, 1,∞} containing all Lik. The étale analogue is constructed in
Beilinson’s “Polylogarithm and Cyclotomic elements” ([B4]), where he defined pro–
objects in the categories of l–adic sheaves on P1\{0, 1,∞}. In both settings, the fibres
at roots of unity different from 1 coincide with the cyclotomic extensions mentioned
above.

The hope and indeed, the motivation underlying these papers is that once a
satisfactory formalism of motivic sheaves is developed, the definition of polylogarithms
should basically carry over. We would thus obtain polylogarithmic classes in Ext
groups of motives, these groups being supposedly closely connected to K–theory, of
which everything already defined on the level of realizations would turn out to be the
respective regulator.

Nowhere is this hope documented more manifestly than in Beilinson’s and
Deligne’s “Interprétation motivique de la conjecture de Zagier reliant polylogarithmes
et régulateurs” ([BD2]): if there is such a motivic formalism, then the weak version of
Zagier’s conjecture necessarily holds: not only the values at roots of unity of higher
logarithms, but also appropriate linear combinations of arbitrary values must lie in
the image of the regulator.

For the time being, and in each case separately, honest work is needed to perform
the K–theoretic constructions, and calculate their images under the regulators.

The second class of papers is concerned with precisely that task. In analogy with
the above, one should first mention Bloch’s “Application of the dilogarithm function
in algebraic K–theory and algebraic geometry” ([Bl]).

Beilinson’s “Higher regulators and values of L–functions” ([B2]) provided the
K–theoretic construction of cyclotomic elements, together with the computation of
their images in Deligne cohomology (loc. cit., Theorem 7.1.5, [Neu], [E]).
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As for Zagier’s conjecture, we mention Goncharov’s “Polylogarithms and Motivic
Galois Groups” ([Go]), where Zagier’s conjecture, including the surjectivity statement
is proved for K5 of a number field, and de Jeu’s “Zagier’s Conjecture and Wedge
Complexes in Algebraic K–theory” ([Jeu]), which contains the proof of the weak
version of Zagier’s conjecture, independently of motivic considerations, for K2n−1 of
a number field, and arbitrary n ≥ 2.
Typically, the objects of interest in this class of papers are complexes, cocy-

cles, and symbols, i.e., objects which do not constantly afford a geometric, or sheaf–
theoretic interpretation. It is by no means easy to see, say, how a concrete element
in some Deligne cohomology group can be interpreted as an extension of variations
of R–Hodge structure. These and similar difficulties present themselves to the reader
willing to translate from one class to the other.

The authors like to think of the present article as an attempt to bridge the gap
between the two disciplines.

In a sense, the coarse structure of the article follows the above scheme: sections
1–6 are entirely sheaf–theoretic. Anything we say there is therefore a priori restricted
to the level of realizations, i.e., non–motivic. In sections 7–9, K–theory enters. The
appendices provide the foundations necessary to connect the two points of view.

Given that quite a lot has been said about the l–adic and Hodge theoretic incar-
nations of the classical polylogarithm ([B4], [BD2], [WiIV]), the reader may wonder
why sheaf theoretic considerations still take up one third of this work.

Indeed, the construction of the motivic polylog could be achieved much more eas-
ily if a satisfactory formalism of mixed motivic sheaves were available. The necessity
to replace a simple geometric situation by a rather complicated one, in order to replace
complicated coefficients like Log by Tate twists, should be seen as the main source of
difficulty in any attempt to the construction of motivic versions of polylogarithms.

We now turn to the description of the finer structure of the main text (sections
1–9):

In section 1, we normalize the sheaf theoretic notations used throughout the
whole article.

Section 2 gives a quick axiomatic description of the logarithmic sheaf Log, and
the (small) polylogarithmic extension pol. The universal property (2.1) is needed
only to connect the general definition of the logarithmic sheaf as a solution of a
representability problem to the somewhat ad hoc, but much more geometric definition
of section 4. A reader prepared to accept the results on the shape of the Hodge
theoretic and l–adic incarnation of the polylogarithm (2.5, 2.6) may therefore take
the constructions in sections 4 and 6 as a definition of both Log and pol, and view
section 2 as an extended introduction providing background material.

In section 3, we establish the geometric situation used thereafter. As section 1,
it is mainly intended for easier reference.
In section 4, we construct a pro-unipotent sheaf G on U = P1 \ {0, 1,∞} as

projective limit of relative cohomology objects of powers of Gm over U relative to
certain singular subschemes. The transition maps are given by the boundary maps in
the relative residue sequence (4.9). The universal property 2.1 then allows to identify
G with the restriction of Log to U (4.11).
Section 5 contains a geometric proof of the splitting principle (5.2): the fibres

of Log at roots of unity have split weight filtration. Since we need a proof which
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translates easily to the motivic situation, we return to Beilinson’s original approach
to the splitting principle ([B4], 4.2) which consists of an analysis of the action of the
multiplication by natural numbers on our absolute cohomology groups.

The main objective of section 6 is the description of pol in terms of geometric
data. The Leray spectral sequence suggests that one–extensions of Q(0) by Log
should be described as elements of the projective limit of cohomology groups with
Tate coefficients of powers of Gm relative to certain subschemes. The main result 6.6
allows to identify pol under this correspondence.

In Section 7 our main tool, the residue sequence is constructed in the setting of
motivic cohomology (Proposition 7.2 and Lemma 7.3). The arguments are very much
parallel to those used for absolute cohomology of realizations in section 4. However,
we have to replace the singular schemes by explicit simplicial schemes with regular
components. This is where the material of Appendix B enters.

Section 8 is the K–theoretic analogue of section 6. We consider a certain pro-
jective system of motivic cohomology groups. In order to identify its projective limit
(Corollary 8.8) we use bijectivity or at least controlled injectivity of the regulator
to Deligne cohomology, and the results of section 6. We are then able to define the
universal motivic polylog (8.9).

In the final section 9 the motivic version of the splitting principle is shown (9.3).
Again we strongly use the known behaviour of the regulator to show that the action
of multiplication by natural numbers splits into eigenspaces. Applied to the universal
motivic polylogarithm this induces the cyclotomic elements in motivic cohomology. In
the light of section 5 it is clear from their very construction that they induce the right
elements not only in Deligne but also in continuous étale cohomology. We conclude
by drawing the corollaries which are the main results announced at the beginning
(9.6–9.9).

The Appendices can be read independently of the main text and of each other.
They are meant to be used as a reference, but a careful reader might actually want
to read them first. We refer to the respective introductions for an account of their
content.

The reader might find it useful to consult [HW] for an overview of the strategy
of the proof of the main results.
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1 Mixed sheaves

We start by defining the sheaf categories which will be relevant for us. For our
purposes, it will be necessary to work in the settings of mixed l–adic perverse sheaves
([H2]), and of algebraic mixed Hodge modules over R (A.2). Since the procedures are
entirely analogous, we introduce, for economical reasons, the following rules: whenever
an area of paper is divided by a vertical bar

the text on the left of it will concern the Hodge theoretic setting, while the text on
the right will deal with the l–adic setting. Of course, we hope that before long, there
will be a satisfactory formalism of mixed motivic sheaves providing a third setting to
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which our constructions can be applied. We let

A := R ,

F := Q ,

l := a fixed prime number ,

A := Z

[
1

l

]
,

F := Ql

and set B := Spec(A).
For any reduced, separated and flat scheme X of finite type over B, we let

Xtop := X(C) as a topol. space,

Sh(Xtop) := Perv(Xtop,Q) ,

Xtop := X ⊗A Q ,

Sh(Xtop) := Perv(Xtop,Ql)

the latter categories denoting the respective categories of perverse sheaves on Xtop
([BBD], 2.2).
Next we define the category Sh(X): in the l–adic setting, we fix a pair (S, L) con-

sisting of a horizontal stratification S of X ([H2], § 2) and a collection L = {L(S) |S ∈
S}, where each L(S) is a set of irreducible lisse l–adic sheaves on S. For all S ∈ S
and F ∈ L(S), we require that for the inclusion j : S →֒ X, all higher direct images
Rnj∗F are (S, L)–constructible, i.e., have lisse restrictions to all S ∈ S, which are
extensions of objects of L(S). We assume that all F ∈ L(S) are pure.
We can make this more explicit: in our computations X will always be a lo-

cally closed subscheme of some An; the stratification is by the number of vanishing
coordinates in An; L(S) is the set of all Tate sheaves on S.
Following [H2], § 3, we define Db(S,L)(X,Ql) as the full subcategory of Dbc(X,Ql)

of complexes with (S, L)–constructible cohomology objects. Note that all objects will
be mixed. By [H2], § 3, Db(S,L)(X,Ql) admits a perverse t–structure, whose heart we
denote by Perv(S,L)(X,Ql).

Sh(X) := MHMQ(X/R)

(see A.2.4)

Sh(X) := Perv(S,L)(X,Ql) .

Because of the horizontality requirement in the l–adic situation we have the full
formalism of Grothendieck’s functors only on the direct limit Dbm(UX ,Ql) of the
Db(S,L)(XU ,Ql), for U open in B, and (S, L) as above (see [H2], § 2). However, for a
fixed morphism

π : X −→ Y ,

we have a notion of e.g. π∗–admissibility for a pair (S, L): this is the case if

Db(S,L)(X,Ql) →֒ Dbm(UX ,Ql)
π∗−→ Dbm(UY ,Ql)

factors through someDb(T,K)(Y,Ql). Our computations will show, at least a posteriori,

that for our choice of (S, L) all functors which appear are admissible. We will not
stress these technical problems and even suppress (S, L) from our notation.
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As in [BBD], we denote by π∗, π∗,Hom etc. the respective functors on the cate-
gories

Db Sh(X) := DbMHMQ(X/R) , Db Sh(X) := Db(S,L)(X,Ql) ,

and Hq for the (perverse) cohomology functors.
We refer to objects of Sh(X) as sheaves, and to objects of Sh(Xtop) as topological

sheaves. Let us denote by
V 7→ Vtop

the forgetful functor from Sh(X) to Sh(Xtop). If we use the symbol W·, it will always
refer to the weight filtration.
If X is smooth, we let

Shs(X) := VarQ(X/R) ⊂ Sh(X)
(see A.2.1) ,

Shs(Xtop) := the category of
Q–local systems on Xtop.

Shs(X) := Etl,mQl (X) ⊂ Sh(X) ,
the category of lisse
mixed Ql–sheaves on X,

Shs(Xtop) := the category of
lisse Ql–sheaves on Xtop.

We refer to objects of Shs(X) as smooth sheaves, and to objects of Shs(Xtop) as
smooth topological sheaves. Denote by UShs(X) the category of unipotent objects
of Shs(X), i.e., those smooth sheaves admitting a filtration whose graded parts are
pullbacks of smooth sheaves of Shs(B) via the structure morphism. Similarly, one
defines UShs(Xtop).
Remark: Note that in the l–adic situation, the existence of a weight filtration, i.e.,
an ascending filtration W· by subsheaves indexed by the integers, such that Gr

W
m is

of weight m, is not incorporated in the definition of Shs – compare the warnings in
[H2], § 3. In the Hodge theoretic setting, the existence of a weight filtration is part of
the data.

Remark: We have to deal with a shift of the index when viewing e.g. a variation as
a Hodge module, which occurs either in the normalization of the embedding

VarQ(X/R) −→ DbMHMQ(X/R)

or in the numbering of cohomology objects of functors induced by morphisms between
schemes of different dimension. In order to conform with the conventions laid down
in appendix A and [WiI], chapter 4, we chose the second possibility: a variation is
a Hodge module, not just a shift of one such. Similarly, a lisse mixed Ql–sheaf is a
perverse mixed sheaf. Therefore, if X is of pure relative dimension d over B, then the
embedding

Etl,mQl (X) −→ Dbm(UX ,Ql)

associates to V the complex concentrated in degree −d, whose only non–trivial coho-
mology object is V.
As a consequence, the numbering of cohomology objects of the direct image (say)

will differ from what the reader might be used to: e.g., the cohomology of a curve
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is concentrated in degrees −1, 0, and 1 instead of 0, 1, and 2. Similarly, one has to
distinguish between the “naive” pullback (πs)∗ of a smooth sheaf and the pullback
π∗ on the level of Db Sh(X): (πs)∗ lands in the category of smooth sheaves, while π∗

of a smooth sheaf yields only a smooth sheaf up to a shift.
In the special situation of pullbacks, we allow ourselves one notational inconsis-

tency: if there is no danger of confusion (e.g. in Theorem 2.1), we use the notation
π∗ also for the naive pullback of smooth sheaves. Similar remarks apply for smooth
topological sheaves.

For a scheme a : X → B, we define

F (n)X := a
∗F (n) ∈ Db Sh(X) ,

where F (n) is the usual Tate twist on B.
If X is smooth, we also have the naive Tate twist

F (n) ∈ Shs(X) ⊂ Sh(X)

on X. If X is of pure dimension d, then we have the equality

F (n) = F (n)X [d] .

In order to keep our notation transparent, we have the following

Definition 1.1. For any morphism π : X −→ S of reduced, separated and flat
B–schemes we let

RS(X, · ) := π∗ :Db Sh(X) −→ Db Sh(S) ,

HiS(X, · ) := Hiπ∗ :Db Sh(X) −→ Sh(S) .

Definition 1.2. For a closed reduced subscheme Z of a separated, reduced, flat B–
scheme X of finite type, with complement j : U →֒ X, and an objectM. of Db Sh(X),
define

RΓabs(X,M
.) := RHomDb Sh(X)(F (0)X ,M

.) ,a)

Hiabs(X,M
.) := HiRΓabs(X,M

.) ,

the absolute complex and absolute cohomology groups of X with coefficients in M..

RΓabs(X,n) := RΓabs(X,F (n)X) ,b)

Hiabs(X,n) := H
i
abs(X,F (n)X) .

RΓabs(X rel Z, n) := RΓabs(X, j!F (n)U ) ,c)

Hiabs(X rel Z, n) := H
i
abs(X, j!F (n)U ) ,

the relative absolute complex and relative absolute cohomology with Tate coefficients.
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In the Hodge setting, absolute cohomology with Tate coefficients coincides with
Beilinson’s absolute Hodge cohomology over R (Theorem A.2.7). In the l-adic set-
ting, it yields continuous étale cohomology (see the remark following Definition B.4.2).

Remark: If X is a scheme over S, then we have the formulae

RΓabs(X, · ) = RΓabs (S,RS(X, · )) ,
Hiabs(X, · ) = Hiabs(S,RS(X, · )) .

2 The Logarithmic Sheaf, and the Polylogarithmic Extension

We aim at a sheaf theoretic description of the (small) classical polylogarithm on
P1 \ {0, 1,∞}. The first step is an axiomatic definition of the logarithmic pro–sheaf.
We need the following result:

Theorem 2.1. Let X be the complement in a smooth, proper B–scheme of an NC–
divisor relative to B ([SGA1], Exp. XIII, 2.1), all of whose irreducible components
are smooth over B. Let x ∈ X(B), and write a : X → B. The functor

x∗ : UShs(X) −→ Shs(B)

is representable in the following sense:

a) There is a pro–object

Genx ∈ pro–UShs(X) ,

the generic pro–unipotent sheaf with basepoint x on X, which has a weight
filtration satisfying

Genx/W−nGenx ∈ UShs(X) for all n .

Note that this implies that the direct system
(
R0a∗Hom(Genx/W−nGenx,V)

)
n∈N

of smooth sheaves on B becomes constant for any V ∈ UShs(X).
This constant value is denoted by

R0a∗Hom(Genx,V) .

b) There is a section

1 ∈ Γ (B, x∗Genx) .

c) The natural transformation of functors from UShs(X) to Shs(B)

ev : R0a∗Hom(Genx, ) −→ x∗ ,

ϕ 7−→ (x∗ϕ)(1)
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is an isomorphism. Similarly for the transformation of functors from UShs(Xtop)
to Shs(Btop)

ev : R0a∗Hom((Genx)top, ) −→ x∗ ,

ϕ 7−→ (x∗ϕ)(1) .

Consequently, the pairs (Genx, 1) and ((Genx)top, 1) are unique up to unique
isomorphism.

d) The natural transformations of functors

HomUShs(X)(Genx, ) −→ HomShs(B)(F (0), x
∗ ) and

HomUShs(Xtop) ((Genx)top, ) −→ Γ(Btop, x
∗ )

from UShs(X) and UShs(Xtop) respectively are isomorphisms.

Proof. For a)–c), we refer to

[WiI], Remark d) after Theorem 3.6, [WiI], Theorem 3.5.i),

and loc. cit., Theorem 3.5.ii). Apply the functors HomShs(B)(F (0), ) and Γ(Btop, )
to the result in c) in order to obtain d).

Remark: In the Hodge setting and for the constant base B, Theorem 2.1 is
equivalent to the classification theorem for admissible unipotent variations of Hodge
structure ([HZ], Theorem 1.6). In this case, Genx is the canonical variation with base
point x of loc. cit., section 1.

Now let

Gm := Gm,B , U := P1B \ {0, 1,∞}B ,
j : U →֒ Gm ,

p : Gm −→ B , p̃ := p◦j : U −→ B .

We may form the generic pro–unipotent sheaf with basepoint 1 on Gm.

Definition 2.2. Log := Gen1 ∈ pro–UShs(Gm) is called the logarithmic pro–sheaf.
As we shall see below, there is an isomorphism

κ : GrW· Log
∼−→
∏

k≥0
F (k) .

Assuming this for the moment, we now describe the higher direct images
H·B(U, j∗Log(1)):
Theorem 2.3. a) HqB(U, j∗Log(1)) = 0 for q 6= 0.
b) H0B(U, j∗Log(1)) has a weight filtration, and W−1

(
H0B(U, j∗Log(1))

)
is split.

More precisely, any isomorphism κ as above induces an isomorphism

W−1
(
H0B(U, j∗Log(1))

) ∼−→
∏

k≥1
F (k) .
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Remark: By these statements on the higher direct images of the pro–sheaf j∗Log(1),
we mean the following:

a) For q 6= 0, the projective system

HqB (U, j∗(Log/W−nLog)(1))n≥1
is ML–zero.

b) κ induces a morphism of projective systems

H0B (U, j∗(Log/W−2mLog)(1))m≥1 −→
(
m∏

k=0

F (k)

)

m≥1

of sheaves with a weight filtration, such that the weight ≤ −1–parts of the
projective systems of kernels and co-kernels are ML–zero.

Proof. One uses the exact triangle

1∗1! −→ idGm
[1]տ ւ

j∗j∗

or rather, H·B(Gm, ) of it, and the fact that H·B(Gm,Log) is easily computable. For
the details, see [WiIII], Theorem 1.3. Or use 4.11 and 6.2, whose proof is independent
of 2.3.

A fixed choice of
κ : GrW· Log

∼−→
∏

k≥0
F (k)

induces in particular an isomorphism of GrW−2 Log and F (1). The theorem then en-
ables one to define the small polylogarithmic extension as the extension

pol ∈ Ext1UShs(U)
(
GrW−2 Log |U,Log(1) |U

)

mapping to the natural inclusion F (1) →֒∏
k≥1 F (k) under the isomorphism

Ext1Sh(U) (F (1),Log(1) |U) = HomDb Sh(U) (F (1)U,Log(1) |U)
= HomDb Sh(U) (p̃

∗F (1), j∗Log(1))

∼−→ HomSh(B)


F (1),

∏

k≥1
F (k)




induced by the projective limit of the edge homomorphisms in the Leray spectral
sequence for p̃, and the isomorphism of 2.3.b). Note that the definition of pol is
independent of the choice of κ. For the details, we refer to [WiIII], Theorem 1.5 – as
there, we define

Ext1Sh(U) (F (1),Log(1) |U) := lim←−
n

Ext1Sh(U) (F (1), (Log/W−nLog)(1) |U) .
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A description of Log and pol, in both incarnations, was given by Beilinson and Deligne;
see [B4], 2.1, 3.1 and [BD1], § 1 for the Hodge version and [B4], 3.3 for the l–adic
setting. The reader may find it useful to also consult [WiIV], chapters 3 and 4,
setting N = 1 in the notation of loc. cit.
We recall the “values” of pol at spectra of cyclotomic fields: let d ≥ 2, and

C := Spec(R), where R := A
[
1
d , T

]
/Φd(T ), where Φd(T ) is the d-th cyclotomic

polynomial.
C is canonically a closed, reduced subscheme of Gm ⊗A A

[
1
d

]
. For any integer b

prime to d, there is an embedding

ib : C
∼−→ C →֒ Gm ⊗A A

[
1

d

]
,

ζ 7−→ ζb .

Since d is invertible on C, the image of ib is actually contained in U, and hence we
may form the pullback of pol via ib,

polb ∈ Ext1Shs(C) (F (1),Logb(1)) ,

where Logb denotes the pullback of Log.
Now we have the following

Theorem 2.4 (Splitting Principle). Logb splits (uniquely) into a direct product

Logb =
∏

k≥0
GrW−2k (Logb) ,

and GrW−2k (Logb) is isomorphic to F (k) for any k ≥ 0.

Proof. [B4], 4, or [BD1], 3.6, or [WiIV], Lemma 3.10. Or use 4.11 and 5.2, whose
proof is independent of 2.4.

In order to identify polb with an element of

∏

k≥1
Ext1Shs(C) (F (1), F (k)) ,

we need to fix an isomorphism

κb : Gr
W
· Logb

∼−→
∏

k≥0
F (k) .

By definition, κb is the pullback via ib of the isomorphism

κ : GrW· Log
∼−→
∏

k≥0
F (k)

of pro–sheaves on Gm of [WiIV], chapters 3 and 4, which we briefly describe now:
By 2.1.d), there is a canonical projection

ε : Log −→ F (0) .
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Furthermore, there is a canonical isomorphism

γ : GrW−2 Log
∼−→ p∗H0B (Gm, F (0))∨

given by the fact that both sides are equal to p∗ of the mixed structure on the
(abelianized) fundamental group π1(Gm,top, 1) (see [WiI], chapter 2).
Observe that there is an isomorphism

res : H0B (Gm, F (0))
∼−→ F (1)

given by the map “residue at 0”.
Finally, both GrW· Log and

∏
k≥0 F (k) carry a canonical multiplicative structure:

for GrW· Log, this is a formal consequence of

[WiI], Corollary 3.4.ii) [WiI], Corollary 3.2.ii)

(see Remark b) at the end of chapter 3 of loc. cit.).
Our isomorphism

κ : GrW· Log
∼−→
∏

k≥0
F (k)

is the unique isomorphism compatible with ε, (res)∨◦γ, and the multiplicative struc-
ture of both sides.
Using the framing of Logb given by κb, we may identify polb with an element of

∏

k≥1
Ext1Shs(C) (F (1), F (k)) ,

or, after twisting and forgetting the component “k = 0”, as an element of
∏

k≥1
Ext1Shs(C) (F (0), F (k)) .

Note that in the Hodge setting we do not lose any information by forgetting the
component “k = 0” as there are no non–trivial extensions in Shs(C) of F (0) by itself.
This latter statement fails to hold in the l–adic context. It is however true that the
zero–component of polb is trivial. One way to see this is via [WiIII], Corollary 2.2,
where it is proved that there is in fact a mixed realization polb of which the above
extensions are merely the Hodge and l–adic components. In the category of mixed
realizations, there is a good concept of polarization, which ensures that there are
no non–trivial extensions of pure realizations of the same weight. Alternatively, one
uses Theorem 9.5, where it is proved that our polb lie in the image of the respective
regulators. The claim then follows from the vanishing of H1M(C, 0).

Theorem 2.5 (Beilinson). Under the isomorphism of A.2.12, we have in the Hodge
setting:

polb =
(
(−1)k Lik(ωb)

)
ω,k
∈
∏

k≥1


 ⊕

ω∈C(C)
C/(2πi)kQ



+

,

where Lik(z) :=
∑
n≥1

zn

nk for |z| ≤ 1 and z 6= 1.
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Proof. [B4], 4.1, or [BD1], 3.6.3.i), or [WiIV], Theorem 3.11.

Note that one may identify C(C) with {σ : Q(µd) →֒ C} by associating to ω the
unique embedding mapping T ∈ Q(µd) = Q[T ]/Φd(T ) to ω.
In the l–adic situation, choose a geometric point ζ ∈ C(Q). It allows to identify

C and

Spec

(
Z

[
ζ,
1

ld

])
,

and, furthermore, the category of continuous Ql–modules under the Galois group of
Q(ζ) that are mixed and unramified outside ld, and the category Shs(C) = Etl,mQl (C).

Given this, we think of Ext1Shs(C) (Ql(0),Ql(k)) as sitting inside

H1cont (Q(ζ),Ql(k)) .

Together with the natural map of Lemma B.4.9 we thus have an inclusion of
Ext1Shs(C) (Ql(0),Ql(k)) into


 lim←−
r≥1

(
Q(µl∞ , ζ)

∗/(Q(µl∞ , ζ)
∗)l

r ⊗ µ⊗(k−1)lr

)
⊗Zl Ql



Gal(Q(µl∞ ,ζ)/Q(ζ))

.

Theorem 2.6 (Beilinson). Under the above inclusion, we have in the
l–adic setting:

polb =


(−1)k−1 · 1

dk−1
· 1

(k − 1)! ·
∑

αlr=ζb

([1− α]⊗ (αd)⊗(k−1))



r,k≥1

.

Proof. [B4], 4.1, or [BD1], 3.6.3.ii), or [WiIV], Theorem 4.5.

Remarks: a) Using the defining property of pol, one can show (see [B4], 2.12 or
[BD1], proof of 3.1.1) that it coincides with a specific subquotient of the generic
pro-unipotent sheaf on U. The specializations to spectra of cyclotomic fields of this
subquotient were already studied in [D5], section 16. In particular, Theorems 2.5 and
2.6 are equivalent to the Hodge and l-adic versions of [D5], Théorème 16.24.
b) One of the main results of this work will be (Theorem 9.5) that the elements in 2.5
and 2.6, for fixed b and d, are the respective regulators of one and the same element
in motivic cohomology. This implies that Soulé’s construction of cyclotomic elements
in the K–theory with Zl–coefficients of an abelian number field ([Sou2], Lemma 1,
[Sou5]) actually factors over the image of K–theory proper (Corollary 9.8). As shown
in [BlK], § 6, Theorem 9.5 also implies that the Tamagawa number conjecture modulo
powers of 2 is also true for odd Tate twists (see our Corollary 9.9). Finally, 9.5 is used
in [KNF], Theorem 6.4 to prove the modified version of the Lichtenbaum conjecture
for abelian number fields.
c) There are relative versions of 2.1 and 2.3 for schemes over a base scheme S smooth
over B. They allow to directly define the small polylogarithmic extension polS on
U×B S, which however turns out to be the base change to S of pol.
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Remark: In our definition of pol, we chose not to follow [BD1], 3.1. The approach via
the universal property of Log and the computation of its cohomology rather imitates
that of Beilinson and Levin in the elliptic case ([BL], 1.2, 1.3). In fact, one of the
predecessors of loc. cit. contains a unified definition of Log and pol for relative curves
of arbitrary genus ([BLp], 1).

3 The Geometric Set-Up

For easier reference, we assemble the notation used in the next sections.
As before, we let

A := R ,

l := a fixed prime number,

A := Z

[
1

l

]
,

B := Spec(A) ,

Gm := Gm,B , U := P
1
B \ {0, 1,∞}B .

Furthermore, we let S denote a smooth separated scheme over B of pure relative
dimension d(S),

α, β ∈ Gm(S) ,

S ⊂ S the open subscheme of S where α and β are disjoint. We assume S to be dense
in S.

j : S →֒ S ,

i : S \ S →֒ S ,

where S \ S is equipped with the reduced scheme structure.

Z := α(S) ∪ β(S)

with the reduced scheme structure,

V := Gm,S \ Z .

For n ≥ 0, define

pn : Gnm,S → S ,

vn : V n →֒ Gnm,S ,
z(n) : Z(n) := Gnm,S \ V n →֒ Gnm,S ,

where Z(n) carries the reduced scheme structure. (So p0 = v0 = idS , and Z
(0) = ∅.)
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The base change of the above objects and morphisms to S is denoted by the same
letters not underlined:

α, β : S → Gm,S ,
Z := α(S)∐ β(S) ,
V := Gm,S \ Z ,

pn : Gnm,S → S ,

vn : V n →֒ Gnm,S ,
z(n) : Z(n) →֒ Gnm,S .

Also, we define partial compactifications of pn:

gn : Gnm,S →֒ AnS ,
h(n) : H(n) := AnS \Gnm,S →֒ AnS ,

where again H(n) has the reduced structure,

pn : AnS → S ,

V := A1S \ Z ,

vn : V
n →֒ AnS ,

z(n) : Z
(n)
:= AnS \ V

n →֒ AnS ,

where Z
(n)
is equipped with the reduced structure. (So Z

(1)
= Z(1) = Z.)

Remarks: a) The underlined objects should remind the reader that the partial com-
pactification comes from the compactification j of the base S. The overlined objects
refer to compactification upstairs, induced from gn.
b) For fixed n, we have a natural action of the symmetric group Sn on our geometric
situation.
For the purposes of K-theory in section 7 we will have to replace the singular

scheme Z(n) by some smooth simplicial scheme. Put

Z
(n)
0 = Z ×S Gn−1m,S ∐Gm,S × Z ×S Gn−2m,S ∐ . . . ∐Gn−1m,S ×S Z

Note that Z
(n)
0 is a proper covering of Z(n). This is the easiest case of a morphism

of schemes with cohomological descent, meaning that for any reasonable cohomology
theory the cohomology of Z(n) will agree with the cohomology of the smooth simplicial
scheme

Z(n). = cosk0(Z
(n)
0 /Gnm,S) ,

i.e.,

Z
(n)
k = Z

(n)
0 ×Gn

m,S
· · · ×Gn

m,S
Z
(n)
0 (k + 1-fold product).
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Put Z(0). = ⋆ (corresponding to the empty scheme). We will also use the simplicial

scheme Z
(n)

. which is attached to Z
(n)
sitting in AnS in the same way. Finally let

G∨nm,S = Cone(Z
(n)
. −→ Gnm,S)

A∨nS = Cone(Z
(n)

. −→ AnS)

where the cone is taken in the category of pointed simplicial sheaves on the big Zariski
site (cf. the discussion in appendix B.1).

4 Geometric Origin of the Logarithmic Sheaf

In section 2, we defined a pro–sheaf

Log ∈ pro−U Shs(Gm)

and an element

pol ∈ Ext1Sh(U)(F (1),Log(1) |U)
= lim←−

n

Ext1Sh(U)(F (1), (Log/W−nLog)(1) |U) .

The aim of this section is to identify Log |U, or rather, its Noetherian quotients,
as relative cohomology objects with coefficients in Tate twists of certain schemes over
U (Theorem 4.11).
Recall that according to our conventions, we have

F (0) = F (0)U[1] ,

and hence we may view pol as an element of

HomDb Sh(U)(F (0)U,Log |U) = H0abs(U,Log |U) ,

where we have used the notation introduced in Definition 1.2.
For the schemes of section 3, we have the following

Definition 4.1. For n ≥ 0,

G(n) := H0S
(
Gnm,S, v

n
! F (n)

)sgn
= Hn+d(S)S

(
Gnm,S, v

n
! F (n)V n

)sgn
,

where the superscript sgn refers to the sign–eigenspace under the natural action of
the symmetric group Sn on G

n
m,S and V

n.

Observe in particular that G(0) = F (0).

The following is an immediate consequence of the Künneth formula:

Lemma 4.2. There is a canonical isomorphism

G(n) ∼−→ Symn G(1) .
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We want to compute G(n), and simultaneously construct, for each n ≥ 1, a
projection

G(n) ։ G(n−1)

via the “residue at 0”, whose projective limit over n we shall then identify, for special
α and β, and S = U, with the restriction Log |U of the logarithmic pro–sheaf to U.
Let H

(n)
sing be the singular part of H

(n) and H
(n)
reg := H(n) \H(n)sing the smooth part.

For any subscheme of AnS , the subscript reg will mean the complement of H
(n)
sing. We

work with the following geometric arrangement:

V
n

reg ∩H(n)reg −−−−→ V
n

reg ←−−−− V n

v nH,reg

y v nreg

y vn
y

H
(n)
reg

h(n)reg−−−−→ AnS,reg
gnreg←−−−− Gnm,S

Both squares are cartesian. All maps are either open or closed immersions, and each
line gives in fact a smooth pair of S–schemes.

Lemma 4.3. For any complex M ∈ Db Sh(AnS,reg) such that (v nreg)∗M is a shift of a

smooth sheaf on V
n

reg, there is an exact triangle

(h
(n)
reg)∗ (v

n
H,reg)!

(
v nH,reg ◦ h

(n)
reg

)∗
M(−1)[−2] −→ (v nreg)! (v

n
reg)
∗M

[1]տ ւ
(gnreg)∗ v

n
!

(
vn ◦ gnreg

)∗
M

(∗)

Proof. This is (v nreg)! applied to the exact triangle obtained from purity for the closed
immersion

V
n

reg ∩H(n)reg −→ V
n

reg

of smooth schemes.

We apply this lemma toM = F (n)An
S,reg
, and evaluate the cohomological functors

Hiabs(A
n
S,reg, · )sgn on the triangle (∗). Following 1.2.c), we write everything as relative

cohomology with Tate coefficients:

. . . −→Hiabs(AnS,reg rel Z
(n)

reg , n)
sgn −→ Hiabs(G

n
m,S rel Z

(n), n)sgn

−→ Hi−1abs (H
(n)
reg rel (Z

(n) ∩H(n)reg ), n− 1)sgn

−→Hi+1abs (AnS,reg rel Z
(n)

reg , n)
sgn −→ . . .

We refer to this as the absolute residue sequence.
Application of the cohomological functors HiS(AnS,reg, · )sgn to the same exact

triangle yields a long exact sequence of sheaves on S that we call the relative residue
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sequence:

. . . −→HiS
(
AnS,reg, (v

n
reg)!F (n)V nreg

)sgn
−→ HiS

(
Gnm,S, v

n
! F (n)V n

)sgn

−→ Hi−1S
(
H(n)reg , (v

n
H,reg)!F (n− 1)V nreg∩H(n)reg

)sgn

−→Hi+1S
(
AnS,reg, (v

n
reg)!F (n)V nreg

)sgn
−→ . . .

Note that G(n) = Hn+d(S)S

(
Gnm,S, v

n
! F (n)V n

)sgn
occurs in this sequence.

We are now going to further analyse, and reshape these sequences. The final
form will be achieved in Proposition 4.8 and Theorem 4.9.
First, we need to identify the terms

Hi−1abs (H
(n)
reg rel (Z

(n) ∩H(n)reg ), n− 1)sgn , n ≥ 1 ,

Hi−1S
(
H(n)reg , (v

n
H,reg)!F (n− 1)V nreg∩H(n)reg

)sgn
, n ≥ 1 .

The complement of Z
(n) ∩H(n)reg in H(n)reg is given by

v nH,reg : V
n

reg ∩H(n)reg → H(n)reg .

Since V
n

reg ∩H(n)reg =
∐n
k=1 V

n−1 under the identification

H(n)reg =
n∐

k=1

Gn−1m,S ,

and these components are permuted transitively by Sn, we conclude

Lemma 4.4.

(v nH,reg)!F (n− 1)V nreg∩H(n)reg
=

(
n∐

k=1

vn−1
)

!

F (n− 1)∐n
k=1 V

n−1 .a)

Hi−1abs (H
(n)
reg rel (Z

(n) ∩H(n)reg ), n− 1) =
n⊕

k=1

Hi−1abs (G
n−1
m,S rel Z

(n−1), n− 1) ,b)

and hence the sign–eigenspace Hi−1abs (H
(n)
reg rel (Z

(n)∩H(n)reg ), n−1)sgn is isomorphic to

Hi−1abs (G
n−1
m,S rel Z

(n−1), n− 1)sgn ,

where the last sgn refers to the action ofSn−1. The isomorphism is given by projection
onto the components unequal to k, for some choice k ∈ {1, . . . , n}. It is independent
of the choice of k.

RS
(
H(n)reg , (v

n
H,reg)!F (n− 1)V nreg∩H(n)reg

)
=

n⊕

k=1

RS
(
Gn−1m,S , v

n−1
! F (n− 1)V n−1

)
.c)

Documenta Mathematica 3 (1998) 27–133



Classical Motivic Polylogarithm 47

As in b), the sign–eigenspace Hi−1S
(
H
(n)
reg , (v

n
H,reg)!F (n− 1)V nreg∩H(n)reg

)sgn
is canoni-

cally isomorphic to

Hi−1S
(
Gn−1m,S , v

n−1
! F (n− 1)V n−1

)sgn
.

For i = n+ d(S), the latter equals G(n−1).

Proof. The only point that remains to be shown is the independence of the isomor-
phisms in b) and c) of the choice of k. Recall the identity

RΓabs
(
Gnm,S rel Z

(n), n
)sgn

= RΓabs
(
S,RS

(
Gnm,S , v

n
! F (n)V n

))sgn
.

We are going to prove in 4.6.d) that H qS(Gnm,S , vn! F (n)V n)sgn = 0 for q 6= n + d(S).
So the associated spectral sequence degenerates, and shows that the independence of
the map in b) follows from that of the map in c).

For c), we only need to consider G(n) = Hn+d(S)S (Gnm,S , v
n
! F (n)V n)

sgn. There, our
claim follows from Lemma 4.2, and the graded–compatibility of the cup product with
boundary morphisms ([GH], Proposition 2.2 and Corollary 2.3).

Remark: The arguments of this section would become simpler if we could use an
object RsgnS in c). However, we do not know whether it is possible to make a decom-
position into eigenspaces in our triangulated categories.
By the identification of the lemma, the residue sequences define canonical residue

maps

res : Hiabs(G
n
m,S rel Z

(n), n)sgn −→ Hi−1abs (G
n−1
m,S rel Z

(n−1), n− 1)sgn ,

res : HiS
(
Gnm,S , v

n
! F (n)V n

)sgn −→ Hi−1S
(
Gn−1m,S , v

n−1
! F (n− 1)V n−1

)sgn

fitting into the relative and absolute residue sequences. In particular, observe that
we have a residue map

res : G(n) −→ G(n−1) .
Now we concern ourselves with the identification of the remaining terms

Hiabs(A
n
S,reg rel Z

(n)

reg , n)
sgn , n ≥ 0 ,

HiS
(
AnS,reg, (v

n
reg)!F (n)V nreg

)sgn
, n ≥ 0

of the residue sequences.
We use the following filtration of AnS by open subschemes:

FkA
n
S := {(x1, . . . , xn) ∈ AnS | at most k coordinates vanish} .

So we have FnA
n
S = A

n
S and F0A

n
S = G

n
m,S.

The “graded pieces” of this filtration are

GkA
n
S := FkA

n
S \ Fk−1AnS

= {(x1, . . . , xn) ∈ AnS |precisely k coordinates vanish} .
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GkA
n
S is equipped with the reduced scheme structure. Note that it splits into several

disjoint pieces. For k ≥ 2 and any such piece, there is a transposition of Sn acting
trivially. By using triangles similar to (∗) for the inclusions

GkA
n
S →֒ FkA

n
S ←֓ Fk−1A

n
S ,

we conclude inductively that the sign–eigenpart of the cohomology of H
(n)
sing is trivial:

Lemma 4.5. The adjunction morphism induces isomorphisms

Hiabs(A
n
S rel Z

(n)
, n)sgn

∼−→ Hiabs(A
n
S,reg rel Z

(n)

reg , n)
sgn ,

HiS (AnS , v n! F (n)V n)
sgn ∼−→ HiS

(
AnS,reg, (v

n
reg)!F (n)V nreg

)sgn
.

By 4.4.b) and 4.5, the absolute residue sequence takes the form

· · · →Hiabs(AnS rel Z
(n)
, n)sgn → Hiabs(G

n
m,S rel Z

(n), n)sgn

res−→ Hi−1abs (G
n−1
m,S rel Z

(n−1), n− 1)sgn

→Hi+1abs (AnS rel Z
(n)
, n)sgn → . . .

Similarly, the relative residue sequence looks as follows:

. . . −→HiS (AnS , v n! F (n)V n)
sgn −→ HiS

(
Gnm,S, v

n
! F (n)V n

)sgn

res−→ Hi−1S
(
Gn−1m,S , v

n−1
! F (n− 1)V n−1

)sgn

−→Hi+1S (AnS , v
n
! F (n)V n)

sgn −→ . . .

For the computation of the term

HiS (AnS , v n! F (n)V n)
sgn

,

we use the Künneth formula:

Lemma 4.6. a) RS (AnS , v n! F (n)) = H0S (AnS , v n! F (n)) [0], and the Künneth formula
gives an isomorphism

H0S (AnS , v n! F (n)) = H0S (AnS , v n! F (n))sgn
∼−→ SymnH0S

(
A1S , v

1
! F (1)

)
.

b) The choice of an ordering of the sections α and β gives an isomorphism

RS
(
A1S , v

1
! F (1)

)
= H0S

(
A1Sv

1
! F (1)

)
[0]

∼−→ F (1)[0] .

Up to sign, it is canonical.
c) The isomorphisms of a) and b) induce an isomorphism

Hn+d(S)S (AnS , v
n
! F (n)V n) = H0S (AnS , v n! F (n))

∼−→ F (n) .

It depends on the choice made in b) only up to the sign (−1)n. The group Sn acts
on these objects via the sign character.
d) For i 6= 0, we have

Hi+n+d(S)S

(
Gnm,S , v

n
! F (n)V n

)sgn
= HiS

(
Gnm,S, v

n
! F (n)

)sgn
= 0 .
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Proof. For b), consider the long exact cohomology sequence associated to the triangle

v1! F (1) −→ F (1)
[1]տ ւ

z
(1)
∗ F (1)

(∗∗)

We have

HiS
(
A1S , F (1)

)
=

{
F (1) , i = −1
0 , i 6= −1

and

HiS
(
A1S , z

(1)
∗ F (1)

)
=





⊕

α,β

F (1) , i = 0

0 , i 6= 0
.

The long exact cohomology sequence thus reads

0→H−1S
(
A1S , v

1
! F (1)

)
→ F (1)

∆→
⊕

α,β

F (1)→H0S
(
A1S , v

1
! F (1)

)
→ 0 .

If we let {α, β} = {s1, s2}, then we identify the cokernel of

∆ : F (1) −→
⊕

α,β

F (1) =
2⊕

i=1

F (1)

with F (1) by mapping (fs1 , fs2) ∈
⊕2
i=1 F (1) to fs2 − fs1 .

a) follows from b) since
⊗n

F (1) = Symn F (1).
c) is a consequence of a) and b).
d) follows from a) and the relative residue sequence by induction on n.

On the level of absolute cohomology, the isomorphism of 4.6.c) induces an iso-
morphism

Hi+nabs

(
AnS rel Z

(n)
, n
)
= Hi+nabs

(
AnS rel Z

(n)
, n
)sgn ∼−→ Hiabs(S, n) .

This gives the final shape of the absolute residue sequence:

· · · −→Hiabs(S, n)
δ−→ Hi+nabs (G

n
m,S rel Z

(n), n)sgn

res−→ Hi+n−1abs (Gn−1m,S rel Z
(n−1), n− 1)sgn

−→Hi+1abs (S, n)
δ−→ · · ·

By 4.6.d), the relative residue sequence collapses into the short exact sequence
of sheaves on S:

0 −→ F (n) −→ G(n) res−−→ G(n−1) −→ 0 .

In order to identify the long exact absolute cohomology sequence associated to
this sequence with the absolute residue sequence, we need the following:
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Lemma 4.7. Let K ∈ Db Sh(X) be a complex of sheaves on a separated, reduced and
flat B–scheme X. Suppose there is an action of a finite group G on K. Let χ be
the character of an absolutely irreducible representation of G over F . For any object
V with a G–action of an F -linear abelian category, denote by V(χ) the χ–isotypical
component of V, i.e., the image under the projector

eχ :=
1

#G

∑

g∈G
χ(g−1) · g .

Suppose that (HiK)(χ) vanishes for all i 6= 0. Then

HomDb(F,K[i])(χ) = HomDb(F, (H0K)(χ)[i])

Proof. By applying eχ and 1 − eχ, one checks the statement for a complex of the
special form K ∼= H0K. For the general case, consider the spectral sequence for
HomDb(F, · [i]) induced by the truncation functors τ≤n. It degenerates after applying
eχ.

Now that we know that formation of absolute cohomology commutes with for-
mation of sign eigenspaces, we have:

Proposition 4.8. The absolute residue sequence is the long exact sequence in abso-
lute cohomology attached to the short exact sequence

0 −→ F (n) −→ G(n) res−−→ G(n−1) −→ 0 .

We conclude the computational part of this section by collecting our results:

Theorem 4.9. a) For n ≥ 0, we have

H0S
(
Gnm,S , v

n
! F (n)

)sgn
= G(n) ,

and HiS
(
Gnm,S , v

n
! F (n)

)sgn
= 0 for i 6= 0.

b) The residue at 0, i.e., the boundary map of (∗), gives an epimorphism

res : G(n) ։ G(n−1)

for n ≥ 1.
c) The Künneth formula gives an isomorphism

H0S (AnS , v n! F (n)) = H0S (AnS , v n! F (n))sgn
∼−→ ker(res)

for n ≥ 1. A choice of an ordering of the sections α and β induces an isomorphism

F (n)
∼−→ ker(res) ,

which depends on this choice only up to the sign (−1)n.
d) Let G(n) ∼−→ SymnG(1) be the canonical isomorphism of 4.2, and

Symn F (0)
∼−→ F (0) ,

Symn F (1)
∼−→ F (n)
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the isomorphisms given by multiplication. Then the diagrams

G(n) −→ F (0)
↓ ≀ ↑ ≀

SymnG(1) −→ SymnF (0)

and

F (n) −→ G(n)
↑ ≀ ↓ ≀

SymnF (1) −→ SymnG(1)

commute. Here, the horizontal maps are given by the successive residue maps, and
by c) respectively.
e) Let W−2n−1 G(n) := 0,

W−2k G(n) :=W−2k+1 G(n) := ker(G(n) → G(k−1)) for 1 ≤ k ≤ n ,

and W0 G(n) := G(n). The choice in c) induces isomorphisms

GrW· G(n)
∼−→

n⊕

i=0

F (i) ,

which by their construction fit into commutative diagrams

GrW· G(n)
∼−→ ⊕n

i=0 F (i)

GrW· res ↓ ↓ can
GrW· G(n−1)

∼−→ ⊕n−1
i=0 F (i)

The filtration W· is therefore the weight filtration of G(n).
Proof. a), b) and c) follow from the previous results. The commutativity of the first
diagram in d) follows from the definition of the residue map. For the second diagram,
we use the fact that the Künneth formula of 4.2 is compatible with the Künneth
formula of the proof of 4.6.a). For e), apply induction on n.

Recall that S is the open subscheme of S where the sections α and β of Gm,S
are disjoint. For special S, α and β, the following is the main step towards the
identification of the projective limit of the G(n) with the restriction Log |U of the
logarithmic sheaf:

Lemma 4.10. a) There is a unique smooth sheaf G(n) on S extending G(n). It has a
weight filtration.
b) There is a canonical isomorphism

G(n) ∼−→ SymnG(1) ,

and a unique isomorphism

η(n) : GrW· G(n)
∼−→

n⊕

i=0

F (i) ,
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which is compatible with the isomorphism of 4.9.e).

c) The weight filtration of i∗G(n) is split: there is a canonical isomorphism

i∗G(n) ∼−→ GrW· i∗G(n) ∼−→
b)

n⊕

i=0

F (i) .

Here, i denotes the inclusion of S \ S into S.
d) There is an exact sequence

0 −→ i∗F (1) −→ H0S
(
Gm,S , v

1
! F (1)

)
−→ G(1) −→ 0

of sheaves on S.

Proof. If there is any smooth sheaf as in a), then it will automatically be unique, and
hence b) follows from a), and 4.9.d), e). Also, it will suffice, because of 4.9.d), to show
the lemma for the case n = 1.
There we have the following diagram

0
y

i∗F (1)y

H−1 −−−−→ F (1)
∆−−−−→ K −−−−→ H0 −−−−→ F (0) −−−−→ 0

y
⊕
α,β F (1)y

0

where

K = H−1Cone(δ :
⊕

α,β

F (1)S [d(S)]→ i∗F (1)S\S [d(S)])

with δ(v1, v2) := v1− v2 (in terms of constructible sheaves this is just Ker δ shifted in
the appropriate degree to define a perverse sheaf). The horizontal sequence is, as in
the proof of 4.6.b), the long exact cohomology sequence on S associated to the short
exact sequence on Gm,S

0→ z(1)∗ F (1)→ v1! F (1)→ F (1)→ 0 ,(∗∗)

where we have set
Hi := HiS

(
Gm,S, v

1
! F (1)

)
.

We thus get the equality

RS
(
Gm,S , v

1
! F (1)

)
= H0S

(
Gm,S, v

1
! F (1)

)
[0] ,
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and an exact sequence of sheaves on S

0→ K/∆(F (1))→H0S
(
Gm,S, v

1
! F (1)

)
→ F (0)→ 0 ,

whose restriction to S is isomorphic, via the choice of an ordering of α and β, to

0→ F (1)→ G(1) → F (0)→ 0 .

Push out of the above via the morphism

K/∆(F (1))→


⊕

α,β

F (1)


 /∆(F (1)) ,

whose kernel is i∗F (1) (recall again that we use perverse indices), gives the desired
extension G(1). By construction b) and d) hold. Applying i∗ to the pushout diagram
and taking cohomology, we see that the sheaf i∗G(1)[−1] is the pushout of F (0) via

0 →֒ F (1) ,

and we get c).

We now specialize our geometric situation: we let

S := Gm,B ,

α := 1 : Gm,B ։ B →֒ Gm,B ,
β := id : Gm,B → Gm,B .

So we have S = U and S \ S = 1B, the closed subscheme of Gm,B given by the
immersion 1 of B into Gm,B.
After having made precise which choice of normalization we have and in how far

it affects our identifications, we now fix it: we let

s1 := α = 1 and s2 := β = id in 4.9.c).

We thus get a projective system (G(n))n≥0 of smooth Tate sheaves on Gm,B with

G(n) |1B =
n⊕

i=0

F (i) .

By the universal property of Log (Theorem 2.1.d)), there is a unique morphism

ϕ : Log → G := lim←−
n

G(n)

such that ϕ |1(B) sends 1 ∈ Γ(B,Log |1B ) to

1 : F (0) →֒
∞∏

i=0

F (i) = G |1(B) .
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Theorem 4.11. ϕ is an isomorphism.

Proof. The claim can be shown on the level of the underlying topological sheaves. The
l–adic statement follows from the statement for the topological spaces of C–valued
points by comparison – recall that we are dealing with locally constant sheaves.
Over C, the fibre at 1 of the pro–local system Logtop equals the completion of the
group ring Q[π1] of π1 := π1(Gm(C), 1) ∼= Z with respect to the augmentation ideal a.
The representation of π1 is given by multiplication; compare the general construction
in [WiI], 2.5–2.7. In particular, we have

Logtop = lim←−
n

Symn(Logtop,≥−2) ,

where Logtop,≥−2 := Logtop/a2 is of dimension two. Now in the category of unipotent
local systems on Gm(C), the pro–sheaf Logtop has the universal property of Theorem
2.1.d).

We apply this universal property to Gtop,≥−2 := G
(1)
top. The resulting map factors over

ϕtop. Since Gtop,≥−2 is two-dimensional, the representation of Q[π1] is necessarily
trivial on a2, and we get a morphism of local systems

ϕtop,≥−2 : Logtop,≥−2 −→ Gtop,≥−2
giving rise to a morphism

lim←−
n

Symn(ϕtop,≥−2) : Logtop −→ Gtop .

Again because of the universal property of Logtop, this morphism is identical to ϕtop.
It therefore suffices to show that ϕtop,≥−2 is bijective, which amounts to saying that
the coinvariants of Gtop,≥−2 under the action of π1 are one–dimensional. But taking
coinvariants under π1 of a unipotent variation V amounts to computing singular
cohomology

H1(Gm(C),V) = H0Spec(R)(Gm,R,V) .
Firstly, we claim that

HiSpec(R)
(
Gm,R ×Gm,R, v1! F (1)

)
=

{
F (−1) , i = 0
0 , i 6= 0 :

e.g., identify the left hand side with

Hi+2 (Gm(C)×Gm(C),∆(Gm(C)) ∪ ({1} ×Gm(C)), F (1))
∼= Hi+2 (Gm(C)×Gm(C), (Gm(C)× {1})∪ ({1} ×Gm(C)), F (1)) ,

and apply the Künneth formula. From the proof of 4.10, we recall – remember that
we have S = Gm:

RGm,R
(
Gm,R ×Gm,R, v1! F (1)

)
= H0Gm,R

(
Gm,R ×Gm,R, v1! F (1)

)
[0] ,

from which we conclude:

HiSpec(R)
(
Gm,R,H0Gm,R

(
Gm,R ×Gm,R, v1! F (1)

))
=

{
F (−1) , i = 0
0 , i 6= 0 .
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The long exact sequence obtained by applying RSpec(R) (Gm,R, ) to the exact se-
quence of 4.10.d)

0 −→ 1∗F (1) −→ H0Gm,R
(
Gm,R ×Gm,R, v1! F (1)

)
−→ G(1) −→ 0

then shows that

H0Spec(R)(Gm,R,G(1)) = F (−1) .

Remark: The geometric situation used in this section is identical to the one of
[BD1], 4.1–4.3 (see in particular loc. cit., 4.1.9). The comparison statement of our
Proposition 4.8 is implicit in loc. cit., 4.3.3. We mention that basically the same
geometric arrangement was used in [Jeu]. More precisely, writing down the iterated
cone construction of loc. cit., one arrives at a simplicial object which is homotopy
equivalent to Beilinson’s and Deligne’s construction used here.

5 The Splitting Principle Revisited

In order to be able to translate easily to the motivic context, we recall Beilinson’s
original proof ([B4], 4) of the splitting of the logarithmic pro-sheaf over spectra of
cyclotomic fields (Theorem 2.4).
First, we return to the general situation considered at the beginning of section

4. For N ≥ 1, we have the morphism of S-schemes

φ : Gm,S −→ Gm,S ,

x 7−→ xN ,

and for each n ≥ 0, the induced morphism

φn : Gnm,S −→ Gnm,S .

We work under the additional assumption

φ◦α = α , φ◦β = β .(A)

If this is the case, we have (φn)−1(V n) ⊂ V n, and hence get a morphism

(φn)∗vn! F (n) −→ vn! F (n) ,

and hence a morphism

(φn)♯ : vn! F (n) −→ φn∗v!F (n) ,

which after application of pn∗ and projection onto the sign-eigenpart induces

(φn)♯ : G(n) −→ G(n) .

We need to understand the action of (φn)♯ on G(n), and on absolute cohomology.
First, we establish in how far (φn)♯ is compatible with the residue at 0:
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Lemma 5.1. a) Under any isomorphism

GrW· G(n)
∼−→

n⊕

i=0

F (i) ,

the map GrW· (φ
n)♯ is multiplication by Nn−i on F (i).

b) For any n ≥ 1, the diagram

G(n) (φn)♯−−−−→ G(n)

resn

y
yresn

G(n−1) N ·(φn−1)♯−−−−−−−→ G(n−1)

commutes.

Proof. Since the morphisms in b) are strict with respect to the weight filtration, it
suffices to check that

GrW· (resn)◦Gr
W
· (φ

n)♯ = N ·GrW· (φn−1)♯◦GrW· (resn) .

But if we choose the isomorphism of 4.9.e), then GrW· (resn) is simply the canonical
projection

n⊕

i=0

F (i)։
n−1⊕

i=0

F (i) ,

and therefore b) follows from a). For a), we note first that it suffices to show the
statement for one choice of isomorphism

GrW· G(n)
∼−→

n⊕

i=0

F (i) .

This time, we use the isomorphism on graded objects induced by 4.2, thereby reducing
ourselves to the case n = 1. There, we consider the long exact cohomology sequence
associated to the exact sequence

0→ z
(1)
∗ F (1)→ v1! F (1)→ F (1)→ 0 ,

and the cohomological functors HiS(Gm,S, · ). We know the cohomology of Gm:

HiS (Gm,S, F (1)) =





F (1) , i = −1
F (0) , i = 0
0 , i /∈ {−1, 0}

.

Of course, we know the cohomology of two points:

HiS
(
Gm,S, z

(1)
∗ F (1)

)
=





⊕

α,β

F (1) , i = 0

0 , i 6= 0
.
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We get an exact sequence

0→ F (1)
∆→
⊕

α,β

F (1)→ G(1) = H0S
(
Gm,S, v

1
! F (1)

)
→ F (0)→ 0 .

and because of assumption (A), it carries an action of (φn)♯. But this action can be

identified on HiS (Gm,S, F (1)) and HiS
(
Gm,S, z

(1)
∗ F (1)

)
: it is trivial on the F (1), and

multiplication by N on F (0).

Certainly (A) is only satisfied in very special situations, namely if α and β are
supported in the schemes of (N − 1)-torsion of Gm,S .
Let again d ≥ 2 , C := Spec(R), where R := A[ 1d , T ]/Φd(T ) as in section 2. For

b prime to d, consider

ib : C
∼−→ C →֒ Gm ,

ζ 7−→ ζb .

The pullback Logb of the pro-sheaf Log |U on U via ib is identical to the projective
limit of the sheaves G(n)b obtained by setting

S := C ,

α := 1 : C → B →֒ Gm ,

β := ib .

Since (A) is satisfied with N = d+ 1, we may apply 5.1, and conclude:

Corollary 5.2. G(n)b splits into a direct sum

G(n)b =
n⊕

i=0

GrW−2i G(n)b .

Therefore, there is a unique isomorphism

η
(n)
b : G(n)b

∼−→
n⊕

i=0

F (i) ,

which is compatible with the isomorphism η(n) of 4.10.b).

Proof. F (i) ⊂ G(n)b is the eigenspace of (d+ 1)n−i under the morphism (φn)♯.

We conclude with the implications of 5.1 and 5.2 for absolute cohomology with
coefficients. For this, recall the absolute residue sequence for n ≥ 1

. . .→ H ·abs(C, n)→ H ·+nabs (G
∨n
m,C , n)

sgn res→ H ·+n−1abs (G∨n−1m,C , n− 1)sgn → . . .

introduced after 4.6, where we have set

H ·+nabs (G
∨n
m,C , n)

sgn := H ·+nabs (G
n
m,C rel Z

(n), n)sgn ,

thus saving enough space to get the above sequence into a single line.
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Corollary 5.3. a) For n ≥ 1, the absolute residue sequence splits into short exact
sequences

0→ H ·abs(C, n)→ H ·+nabs (G
∨n
m,C , n)

sgn → H ·+n−1abs (G∨n−1m,C , n− 1)sgn → 0 .

b) For N = d + 1, the map (φn)∗ acts on the short exact sequences of a): there is a
commutative diagram

H ·abs(C, n) → H ·+nabs (G
∨n
m,C , n)

sgn → H ·+n−1abs (G∨n−1m,C , n− 1)sgn

id
y (φn)∗

y (d+ 1) · (φn−1)∗
y

H ·abs(C, n) → H ·+nabs (G
∨n
m,C , n)

sgn → H ·+n−1abs (G∨n−1m,C , n− 1)sgn

Proof. By 4.8, the absolute residue sequence is the absolute cohomology sequence for
the exact sequence of sheaves on C

0→ F (n)→ G(n)b
resb→ G(n−1)b → 0 .

Therefore, a) follows from 5.2, while b) follows from 5.1.b) and the fact that under
the identification of 4.9.a)

H ·abs(C,G(n))
∼−→ H ·+nabs (G

∨n
m,C , n)

sgn ,

the map induced by

(φn)♯ : G(n)b → G(n)b

is the map (φn)∗ of the absolute cohomology groups.

It follows that the eigenvalues of (φn)∗ on Hn+1abs (G
∨n
m,C , n)

sgn are
1, d+ 1, . . . , (d+ 1)n. The eigenspace decomposition yields

η
(n)
b : Hn+1abs (G

∨n
m,C , n)

sgn = Hn+1abs (G
n
m,C rel Z

(n), n)sgn
∼−→

n⊕

i=0

H1abs(C, i) ,

which in sheaf theoretic terms corresponds to the decomposition

η
(n)
b : Ext1Sh(C)(F (0),G(n)b )

∼−→
n⊕

i=0

Ext1Sh(C)(F (0), F (i))

given by Corollary 5.2.
The pullback polb of the small polylogarithmic extension pol on U is an element

of

lim←−
n≥1
Ext1Sh(C)(F (0),G(n)b ) = lim←−

n≥1
Hn+1abs (G

n
m,C rel Z

(n), n)sgn

= lim←−
n≥1

Hn+1abs (G
∨n
m,C , n)

sgn .
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We have shown that, using the eigenspace decomposition for the action of the (φn)♯,
these groups are isomorphic to

∏

k≥0
Ext1Sh(C)(F (0), F (k)) =

∏

k≥0
H1abs(C, k) .

2.5 and 2.6 describe polb as an element in this group.
Actually, in order to relate the above decomposition to the one used for 2.5 and

2.6, we shall need to compare the isomorphism

η := lim←−
n≥1

η(n) : GrW· G
∼−→
∏

k≥0
F (k)

of 4.10.b) to the isomorphism

κ : GrW· G = GrW· Log
∼−→
∏

k≥0
F (k)

of section 2.
A priori, we know that the isomorphisms

η−2k , κ−2k : Gr
W
−2k G

∼−→ F (k)

satisfy an identity of the type

η−2k = q−2k · κ−2k ,

for a constant q−2k ∈ F ∗.
We remark that in order to prove the main results announced in the introduction,

all one needs to know is that q−2k is a rational number, which is independent of
whether we work in the Hodge or the l–adic setting.
In order to exhibit the precise relation of the motivic analogue of pol (see section

8) to the cyclotomic elements in K–theory (see Corollary 9.6.b)), we need to identify
q−2k.

Proposition 5.4. We have the equality

η−2k = k! · κ−2k .

Proof. Because of the compatibility of κ0 with the canonical projection

ε : G −→ F (0) ,

we have η0 = κ0. In order to show η−2 = κ−2 we compare the classes of G(1) in

Ext1Sh(Gm) (F (0), F (1))

induced by η−2 and κ−2 respectively. Let

K := C, K := Q,
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and choose anyK–valued point t of U. Of course, the value of q−2 can still be detected
from the extensions of

mixed Q–Hodge structures Galois modules

given by the pullback t∗G(1) of G(1) via t. In both settings, there is a natural morphism
of K∗ ⊗Z F into the respective Ext1 (F (0), F (1)) (see e.g.

[WiIV], Theorem 3.7). [WiIV], Theorem 4.6).

By

[WiIV], Proposition 3.13.a), [WiIV], Proposition 4.7.a),

the class of t∗G(1), calculated in the framing given by κ−2, equals the image of t ∈ K∗
under this morphism. By [Sch], 2.7, the same holds for the framing given by η−2 –
note that here it is vital to choose the ordering of the sections α and β in the way we
did before 4.11. For k ≥ 2, let

ϕ
(k)
0 : G(k)

∼−→ Symk G(1)

be the isomorphism of 4.10.b). By 4.9.d), the diagram

G(k) −→ F (0)

ϕ
(k)
0 ↓ ≀ ↑ ≀

SymkG(1) −→ SymkF (0)

commutes. By [WiIV], Theorem 3.12.a), the commutativity of this diagram char-

acterizes ϕ
(k)
0 uniquely. From loc. cit., Theorem 3.12.b) and c), we know that the

diagram

F (k)
1
k! ·κ

−1

−→ G(k)
↑ ≀ ≀ ↓ ϕ(k)0

SymkF (1)
Symk κ−1−→ SymkG(1)

commutes. So our identity
η−2k = k! · κ−2k

follows from 4.9.d).

6 Polylogs in Absolute Cohomology Theories

In section 4, we showed that the logarithmic pro–sheaf is the projective limit of
relative cohomology objects with coefficients in Tate twists of certain schemes over
U. The Leray spectral sequence suggests that is should be possible to recover pol as
a projective limit of elements in absolute cohomology with Tate coefficients of these
schemes, and indeed this is what we do in Theorem 6.6. That the coefficients are Tate
is of course the central point: it allows us, in section 7, to imitate the construction
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of this section, and thus to define a motivic version of pol. This detour is necessary
because we know, up to date, of no satisfactory formalism of mixed motivic sheaves,
whose absolute cohomology with Tate coefficients would give back motivic cohomology
defined via K-theory.
We return to the geometric situation set up before 4.11, and start by computing

the higher direct images of the restriction of Log to U:
Lemma 6.1. a) The inclusion F (1) →֒ G(1) and the projection
G(1) ։ F (0) induce natural isomorphisms

F (1)B
∼−→ H−1B

(
Gm,G(1)

)
,

H0B
(
Gm,G(1)

)
∼−→ H0B (Gm, F (0)) ,

and the latter group is isomorphic to F (−1)B via the map “residue at 0”.
b) The inclusion F (n) →֒ G(n) and the projection G(n) ։ F (0) induce natural identi-
fications

HiB
(
Gm,G(n)

)
=





F (n)B , i = −1
F (−1)B , i = 0
0 , i /∈ {−1, 0}

.

Proof. The statements need only be checked on the level of local systems. Part a)
is shown in the proof of 4.11. From there, we also recall that we have to compute
the invariants and coinvariants under the action of the group π1 := π1(Gm(C), 1), or
equivalently, of a generator of π1. Using 4.10.b), we may deduce b) from a).

Corollary 6.2.

HiB
(
U,G(n)

)
=

{
F (n)B , i = −1
0 , i /∈ {−1, 0} .

For i = 0, the sheaf H0B
(
U,G(n)

)
is the direct sum of

n⊕
k=1

F (k − 1)B and an object
which is an extension of F (−1)B by itself.
Proof. By [WiI], Theorem 4.3, there is a weight filtration on HiB

(
U,G(n)

)
. Now use

the exact triangle

1∗1
! −→ idGm,B

[1]տ ւ
j∗j∗

purity, and 4.10.c).

Remark: In the setting of Hodge modules, where a concept of polarization is avail-
able, any extension of pure objects of the same weight is necessarily split.

The mapH0B
(
U,G(n)

)
→ F (0) of the corollary yields in particular a map “residue

at 1B”, for n ≥ 1,

res : H0abs(U,G(n)) = H0abs
(
B,RB(U,G(n))

)
→ H0abs(B, 0) .
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Definition 6.3. Let n ≥ 1. The map

res : H0abs(U,G(n)) = Hn+1abs (G
n
m,U rel Z

(n), n)sgn → H0abs(B, 0)

is called the total residue map.

For later reference, we note

Corollary 6.4. H1abs(G
1
m,U rel Z

(1), 1) = 0.

Proof. We have

H1abs(G
1
m,U rel Z

(1), 1) = H−1abs(U,G(1)) ,

which because of 6.2 equals H0abs(B,F (1)) = 0.

Next we have

Lemma 6.5. i) The transition morphism

res : G(n) ։ G(n−1)

satisfies

H−1B (U, res) = 0 : F (n)B → F (n− 1)B ,
H0B(U, res) : H0B(U,G(n))→H0B(U,G(n−1))

is surjective with kernel F (n− 1)B.
In particular, the total residue for n ≥ 2 factors over the total residue for n− 1:

there is a commutative diagram

H0abs(B, 0)
res←− H0abs(U,G(n))

resտ ↓ res
H0abs(U,G(n−1))

ii) The Leray spectral sequences, for n ≥ 0, give exact sequences

0 −→ H1abs(B,n)
δ−→ H0abs(U,G(n))

res−→ H0abs(B, 0) −→ 0 .

The map

δ : H1abs(B,n)→ H0abs(U,G(n))

is the composition of H1abs(B,n)→ H1abs(U, n) = H
0
abs(U, F (n)) and the map induced

by the inclusion of F (n) into G(n), in other words, the same noted map of the residue
sequence.
The projective limit of the above sequences identifies

H0abs(U,Log |U) := lim←−
n

H0abs(U,G(n))

and H0abs(B, 0).
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iii) There are unique splittings

sn : H
0
abs(B, 0) →֒ H0abs(U,G(n))

of the sequences in ii), for any n ≥ 0, such that for any n ≥ 1 we have a commutative
diagram

H0abs(B, 0)
sn−→ H0abs(U,G(n))

sn−1ց ↓ res
H0abs(U,G(n−1))

Proof. i) The first statement is clear. For the second, either go through the construc-
tion or observe that the direct image of the morphism Utop → Btop has cohomological
dimension one, hence H0B(U, · ) is right exact on smooth sheaves.
ii) We have the Leray spectral sequence

Ep,q2 = Hpabs

(
B,HqB(U,G(n))

)
⇒ Hp+qabs (U,G(n)) ,

whose low-term sequence reads

0→ H1abs(B,n)→ H0abs(U,G(n))→ H0abs(B, 0)
d
(n)
2→ H2abs(B,n) .

By i), the Mittag–Leffler condition is satisfied for the projective system
(H1abs(B,n))n≥0, and therefore,

H0abs(U,Log|U) = lim←−
n

ker(d
(n)
2 ) = H

0
abs(B, 0)

since the projective system (im(d
(n)
2 ))n≥0 ⊂ (H2abs(B,n))n≥0 is ML-zero.

But then any of the

H0abs(U,G(n))→ H0abs(B, 0)

must be surjective as well.
iii) Apply ii).

Denote by pol(n) the image of the small polylogarithmic extension pol under

H0abs(U,Log |U)→ H0abs(U,G(n)) .

Theorem 6.6. a) Under the isomorphism

H0abs(U,Log |U)
∼−→ H0abs(B, 0)

of 6.5 ii), the small polylogarithmic extension pol is mapped to 1.
b) For each n ≥ 0, the map

sn : H
0
abs(B, 0)→ H0abs(U,G(n))

maps 1 to pol(n).
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Proof. This is the definition of pol and the sn.

Recall (4.9.a)) that we may identify

H0abs(U,G(n)) = H0abs(G
n
m,U, v

n
! F (n))

sgn

= Hn+1abs (G
n
m,U, v

n
! F (n)V n)

sgn

= Hn+1abs (G
n
m,U rel Z

(n), n)sgn .

In section 8, we are going to prove a motivic analogue of 6.5.ii), and then define
pol as the element in

lim←−
n

Hn+1M (Gnm,U rel Z
(n), n)sgn

mapping to 1 under the isomorphism to H0M(B, 0).
In order to prove a motivic version of 6.5.ii), we shall frequently use injectivity

of the Beilinson regulator on certain motivic cohomology groups, and two technical
results on H ·abs, that will occupy the rest of this section.
While this may appear artificial at first sight, we remind the reader that in the motivic
setting, we cannot make use of any sheaf theoretic means like Leray spectral sequences.
An important means will be the localization sequence associated to the geometric

situation

{0, 1}B →֒ A1B ←֓ U .

It is the result of the degeneration of the Leray spectral sequence and reads

· · · →H ·abs(A1B , p)→ H ·abs(U, p)→ H ·−1abs ({0, 1}B, p− 1)
→H ·+1abs (A1B, p)→ . . .

Lemma 6.7. a) The structure morphism is an isomorphism

H ·abs(B, p)
∼−→ H ·abs(A

1
B , p) .

b) The boundary map is trivial, i.e., we have short exact sequences

0→ H ·abs(B, p)→ H ·abs(U, p)→
1⊕

i=0

H ·−1abs (B, p− 1)→ 0 .

Proof. For a), note that RB
(
A1B, F (p)A1B

)
= F (p)B[0].

b) follows from the fact that there are B-valued points of U.

In particular, for p = 1, we have the exact sequence

0 −→ H1abs(B, 1) −→ H1abs(U, 1)
∂−→

1⊕

i=0

H0abs(B, 0) −→ 0 .

The last map equals the map of Ext groups

∂ : Ext1Sh(U) (F (0), F (1)) −→ HomSh(B)
(
F (0),H0B (U, F (1))

)
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obtained from the Leray spectral sequence; observe that the residues at 0B and 1B
provide an isomorphism

H0B (U, F (1))
∼−→

1⊕

i=0

F (0) .

We have a natural map

O(U)∗ → H1abs(U, 1) .

Its composition with

∂ : H1abs(U, 1) −→
1⊕

i=0

H0abs(B, 0)

associates to a function on U its orders at 0 and 1 respectively.
We need to understand the composition

res ◦ ∂ : H1abs(U, 1) =Ext
1
Sh(U) (F (0), F (1))

−→HomSh(B)
(
F (0),H0B

(
U,G(1)

))
.

Observe that due to 6.2, the last group is equal to H0abs(B, 0). Furthermore, we recall
from the proof of 6.2 and the definition of res that the composition

1⊕

i=0

F (0) = H0B (U, F (1)) −→ H0B
(
U,G(1)

)
res−→ F (0)

is given by projection onto the “1”–component of
⊕1
i=0 F (0). We have thus proved:

Lemma 6.8. Consider the non–vanishing functions t and 1− t on U. We have
res ◦ ∂(t) = 0 , res ◦ ∂(1− t) = 1 .

In particular, the map

δ : H1abs(U, 1) −→ H0abs(U,G(1)) = H2abs
(
G1m,U rel Z

(1), 1
)

does not map 1− t ∈ O(U)∗ to zero.
Proof. Observe that res ◦ ∂ factorizes through δ.

Remark: The main technical result of this section, 6.5.ii) corresponds to [BD1],
3.1.6.ii). Observe that pol and the polylogarithmic class Πφ of loc. cit. do not quite
agree: in our notation,

Πφ ∈ H0abs (U,Log(1)|U) ,
while pol ∈ H0abs(U,Log |U). The connection is as follows: there is a canonical
monomorphism

ι : Log(1) −→ Log
(identifying Log(1) with W−2Log), and pol is the push out of Πφ via ι. The present
definition of the polylog seems more natural since it is an element of an H0abs(B, 0)-
module of rank one, which is canonically trivialized. By contrast, H0abs(U,Log(1)|U)
is of rank two.
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7 Calculations in K-theory

The next step is to do the constructions of section 4 with K-groups, or more precisely,
with relative K-cohomology as introduced in appendix B.2. For technical reasons we
will have to use simplicial schemes to replace the singular schemes that appeared be-
fore. All constructions will be compatible with the regulator maps to absolute Hodge
cohomology (appendix A and B.5.8) and to continuous étale cohomology (appendix
B.4.6).
A priori these regulators have values in absolute cohomology groups for the same

simplicial object (cf. B.4.2 and B.5.2). Using B.4.5 and B.5.7 these absolute cohomol-
ogy groups are then identified with (relative) cohomology of singular schemes. This
identification is made tacitly.
Let B = Spec(Z) and S a smooth affine B-scheme. We will work in the category

of smooth S-schemes. K-cohomology is taken on the Zariski site over B.

Before returning to the geometric situation introduced in section 3, we have to
check a technical lemma. Let us consider the following general construction: Let X
be a smooth quasi-projective S-scheme and Y a closed subscheme of X which is itself
also smooth over S. Put

Y
(n)
0 = Y ×S Xn−1 ∐X ×S Y ×Xn−2 ∐ . . .∐Xn−1 ×S Y .

Note that Y
(n)
0 is a proper covering of the singular scheme

Y (n) = Xn r (X r Y )n .

This is the easiest case of a morphism of schemes with cohomological descent, meaning
that for any reasonable cohomology theory the cohomology of Y (n) will agree with
the cohomology of the smooth simplicial scheme

Y (n). = cosk0(Y
(n)
0 /Xn) ,

i.e.,

Y
(n)
k = Y

(n)
0 ×Xn · · · ×Xn Y (n)0 (k + 1-fold product).

For étale cohomology and absolute Hodge cohomology, the corresponding results are
B.4.5 and B.5.6 respectively.
We will work in the setting of spaces, i.e., pointed simplicial sheaves of sets

on the Zariski site of smooth B-schemes. We refer to appendix B.1 for details and
terminology. We use the notation

X∨n. = Cone(Y (n). −→ Xn)

for the space that computes relative cohomology for the closed embedding (cf. B.1.5).
The space Y (n). does not become degenerate above any simplicial degree. How-

ever, we have:

Lemma 7.1. a) Y (n). is isomorphic in Ho sT to a simplicial scheme which is degen-
erate above degree n− 1.
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b) In particular,. Y (n). and X∨n. are K-coherent.

c) X∨n. is a space constructed from schemes in a finite diagram over Xn in the sense
of B.2.13.

d) If T is another closed subscheme of X which is smooth over S and disjoint of Y ,
then the inclusions

T i ×S Xn−i −→ Xn

are tor-independent of all morphisms in the diagram in c).

Proof. By definition

Y
(n)
0 = Y1 ∐ · · · ∐ Yn

where Yi is the reduced closed subscheme of X
n of those points, whose i-th coordinate

lies in Y . This induces a decomposition of Y
(n)
k into disjoint subschemes of the form

Yi1 ×Xn · · · ×Xn Yik . Actually this subscheme is canonically isomorphic to

Yi1 ∩ · · · ∩ Yik = {(x1, . . . , xn) ∈ Xn | xij ∈ Y for 1 ≤ j ≤ k} .

We get the following more familiar form of the simplicial scheme

Y
(n)
k =

∐

I∈{1,...,n}k

⋂

i∈I
Yi .

Let ∆(n) be the simplicial set with

∆(n)k = {(i0, . . . , ik) | 1 ≤ i0 ≤ · · · ≤ . . . ik ≤ n} .

We define the simplicial scheme Y ∆(n). by

Y
∆(n)
k =

∐

I∈∆(n)k

⋂

i∈I
Yi

It is degenerate above the simplicial degree n−1 and from our previous considerations
we see that it is a natural subspace of Y (n). . We consider these simplicial schemes as
spaces in the sense of appendix B.1 by adding a disjoint base point ⋆.
For a scheme U in the big Zariski site over B we consider the morphism of simplicial
sets

Y ∆(n). (U) −→ Y (n). (U) .

By the combinatorial Lemma B.6.2 it induces an isomorphism of homotopy sets.
Hence the inclusion is a weak homotopy equivalence of spaces.
b) is an immediate consequence of a) and B.2.3.b). Recall that Y andX were assumed
smooth over B. We already have seen that all components of X∨n are disjoint unions
of Xn-schemes of the form Yi1 ∩ · · · ∩ Yik and a disjoint base point. All morphisms
between the scheme components are given by the natural closed immersions between
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them. The condition on the tor-dimension required in B.2.13 follows because are
schemes are regular. T , Y and X are all flat over S, hence the maps in the diagram

X ×S Yy

T ×S X −−−−→ X ×S X
are easily seen to be tor-independent. The inclusions of T and Y into X are trivially
tor-independent because this is a local condition.

Basically this lemma tells us that all conditions hold that are needed to apply
the machinery of appendix B.2. We have a well-behaved relative motivic cohomology
theory (cf. B.2.11 ).
Now we return to the geometric situation set up in section 3. We consider

Z(n). −−−−→ Gnm,Sy
y

Z
(n)

. −−−−→ AnS

where Z = Z = α(S) ∐ β(S) with disjoint S-rational points α and β of Gm,S. There
is a simplicial operation of Sn on the situation which induces an operation on relative
K-cohomology and on motivic cohomology.

Proposition 7.2. There is a natural residue map

HiM(G
n
m,S rel Z

(n)
. , j)sgn

resn−−→ Hi−1M (G
n−1
m,S rel Z

(n−1)
. , j − 1)sgn

where sgn means the sign eigen-space under the operation of the respective symmetric
group.
Moreover, there is a long exact sequence

· · · −→Hi−2M (Gn−1m,S rel Z
(n−1)
. , j − 1)sgn −→ HiM(A

n
S rel Z

(n)

. , j)sgn

−→ HiM(G
n
m,S rel Z

(n)
. , j)sgn

−→Hi−1M (Gn−1m,S rel Z
(n−1)
. , j − 1)sgn −→ · · · .

Under the regulators, the long exact sequences are compatible with the ones in abso-
lute cohomology (after 4.5).

Remark: Recall that Z(0). = ⋆ and hence HkM(G
0
m,S rel Z

(0)
. , j) = HkM(S, j) by

definition.

Proof. We filter AnS by the open subschemes FkA
n
S defined just before Lemma 4.5.

In particular, F0A
n
S = G

n
m,S. Again GkA

n
S = FkA

n
S r Fk−1A

n
S . We use the notation

FkA
∨n
. and GkA

∨n
. for the induced open respectively locally closed subspaces of A

∨n
. .

Note that the situation is still symmetric under permutation of coordinates. Hence
there is a compatible operation of the symmetric group on the space constructed from
schemes FkA

∨n
. .
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The closed immersion GkA
∨n
. → FkA

∨n
. satisfies the first condition in (TC) in B.2.13.

The maps we have to consider for the rest of (TC) are locally of the form considered
in 7.1.d). Hence B.2.19 applies, i.e., we can use the localization sequences for motivic
cohomology induced by the triples Fk−1A∨n. → FkA

∨n
. ← GkA

∨n
. . We get

. . . −→HiM(GkA∨n. , j) −→ Hi+2M (FkA
∨n
. , j + 1) −→ Hi+2M (Fk−1A

∨n
. , j + 1)

−→Hi+1M (GkA∨n. , j) −→ . . .

The sequence remains exact when we take sign–eigenspaces. Now let us compute one
of the groups involved.

HiM(GkA
∨n
. , j) =

⊕

{1≤a1<a2<···<ak≤n}
HiM(A

∨n
. ×An Gm,S(a1, . . . , ak), j)

where

Gm,S(a1, . . . , ak) = {(x1, . . . , xn) | xi = 0 if i = aj for some j; xi 6= 0 else } .

The decomposition corresponds to the decomposition of GkA
n into its connected

components. The notation A∨n. ×An Gm,S(a1, . . . , ak) means the open subspace lying
over the locally closed scheme. Now consider the operation of the symmetric group.
If k > 1, then there is for each component some transposition which acts trivially,
namely one that interchanges two vanishing coordinates. Hence the sign–eigenspace
vanishes altogether. For k = 1, the decomposition has the form

HiM(G1A
∨n
. , j) =

⊕

a=1,··· ,n
HiM(A

∨n
. ×An (Ga−1m,S × {0} ×Gn−am,S ), j) .

The operation of the symmetric group permutes the factors transitively. The stabilizer
of one summand is the symmetric group Sn−1. We get

HiM(G1A
∨n
. , j)sgn ∼= HiM(G∨n−1m,S , j)sgn

where the sign eigenspace on the right hand side is taken with respect to the smaller
symmetric group Sn−1. We have a choice of isomorphism here and use the one that
identifies Gn−1m,S with G

n−1
m,S × {0}. Putting these results in the long exact sequences

we get iteratively

HiM(A
n rel Z

(n)

. , j)sgn = HiM(FnA
∨n
. , j)sgn

∼=−→ · · ·HiM(F1A∨n. , j)sgn .

So the above sequence, for k = 1, gives the desired residue sequence. We can do the
same construction for absolute cohomology (Hodge or l-adic) considered as general-
ized cohomology theories. By B.4.6, B.5.8 and B.3.7, the long exact sequences for
motivic cohomology will be compatible via the regulator with the ones in generalized
cohomology. The next step is to pass from generalized cohomology to cohomology of
abelian sheaves. By B.4.5 and B.5.7 this can be done. In fact we get precisely the
residue sequence for absolute cohomology constructed in section 4.
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Remark: a) By B.2.19, we have the same maps and long exact sequences for the
K-cohomology groups themselves. However, note that there is a Riemann-Roch hid-
den in the compatibility of the localization sequence in K-cohomology and absolute
cohomology.
b) We shall show injectivity of the Beilinson regulator on

Hn+1M (Gnm,S rel Z
(n)
. , n)sgn

in Proposition 8.7. Together with Lemma 4.4.b), it shows that the residue map on

HiM(G
n
m,S rel Z

(n)
. , j)sgn

does not depend on the choice of embedding of Gn−1m,S in

⋃

a=1,··· ,n
Ga−1m,S × {0} ×Gn−am,S

of the above proof, if (i, j) = (n+ 1, n). Since we are only interested in these special
indices, we chose to exclude from the statement of 7.2 the dependence of resn in the
general case from the above choice.

Lemma 7.3. Let 2j ≥ k. Then

HkM(A
n
S rel Z

(n)

. , j) ∼= Hk−nM (S, j)

where the isomorphism is induced by a choice of ordering of the sections α and β. It
is compatible with the identification in 4.6 under the regulator map. Sn operates by
sign on the left hand side.

Remark: Here and in the sequel we put HiM(S, j) = 0 if j < 2i. This makes sense
as S is regular and the corresponding K–group vanishes (see B.2.3).

Proof. Fix j. We consider the skeletal spectral sequence B.2.12. We have

Ep,q1 = HqM((A
∨n
S )p, j) .

We will show that the only non-trivial E2-terms are concentrated in one vertical line

En,q2 = HqM(S, j) .

This means that the spectral sequence converges in the strongest possible way. This
yields isomorphisms as stated. Before we can check this we need some preparation.
If X. is a space constructed from schemes, we denote by Cp(X.) the simplicial set of

its connected components. Cp(Z
(n)

. ) has the same singular cohomology as Cp(Z
∆(n)

. )
(cf. proof of 7.1) which is the simplicial set attached to a CW-complex dual to the
boundary of the n-dimensional hypercube (note that Z has two disjoint components).

This means that Cp(Z
∆(n)

. ) has a 1-vertex for every (n − 1)-cell of the cube etc. In
particular we see that it has the homotopy type of an (n − 1)-sphere. Cp(AnS) is of
course contractible. It follows that Cp(A∨n. ) has singular cohomology concentrated
in degree n where it is one-dimensional.
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Let us make this more explicit:
In order to compute the cohomology of a cosimplicial group it suffices to consider

the sub-complex corresponding to nondegenerate simplices. Cp(Z
∆(n)

. ) is completely
degenerate from cosimplicial degree n on. In degree n−1, there is one nondegenerate
simplex for each vertex of the hypercube. They are indexed by {α, β}n. Hence any
element of HnCp(A∨n. ) = H

n−1(Cp(Z
∆(n)

. )) is represented by an element of

Kn−1 =
⊕

{α,β}n
Q .

Let g be a generator of the cohomology group. Cp(Z
(n)

. ) does not become degenerate.
The nondegenerate part in degree n−1 is given by one copy of {α, β}n for each possible
permutation of the numbers 0, . . . , n − 1. It is easy to see that ((−1)sgn(σ)g)σ is in
the kernel of the differential. It represents the generator of cohomology of Cp(Z

(n)

. ).
We see that Sn operates by the sign of the permutation.
We choose the generator g of cohomology given by the tuple

(−1)s(i1)+···+s(in) ∈ Qi1×···×in
where ik ∈ {α, β} and s(α) = 1, s(β) = 0. This choice of generator amounts to
picking the ordering α < β and extending it by the Künneth-formula. Now let us
analyze our E1-term: For fixed q we have the complex attached to the cosimplicial
abelian group HqM((A

∨n
S )p, j)p∈N0 . All connected components of A

∨n
. are isomorphic

to a copy of some power of A1S . By the homotopy property of K-theory we have

HqM((AS)
∨n
p , j)p∈N0 = H

q
M(S, j)⊗Q C∨n.

where C∨n. is the cosimplicial vector space computing singular cohomology of
Cp(A∨n. ). By the previous considerations we already know its cohomology. It also
follows that the operation of Sn on our motivic cohomology is by the sign.
Now compare our isomorphism to the one constructed in the realization. We have the
same spectral sequence there (attached to the weight filtration). The identification of
the E2-term also uses Künneth-formula and choice of an ordering of the sections.

Using this identification we obtain the motivic residue sequence:

. . . −→Hk−nM (S, j) −→ HkM(G
∨n
m,S, j)

sgn −→ Hk−1M (G∨n−1m,S , j − 1)sgn

−→Hk−n+1M (S, j) −→ . . .

for 2j ≥ k. By construction, we have the following:
Theorem 7.4. Under the regulator, the motivic residue sequence maps to the abso-
lute residue sequence of section 4.

Note that the residue sequences for all indices k and n organize into a spectral
sequence connecting the relative motivic cohomology of A∨?. and the relative motivic
cohomology of G∨?m . In particular for each n there is the converging cohomological
spectral sequence

Epq1 = H
p+q−n
M (S, p)⇒ Hp+qM (G∨nm,S , n) = H

p+q
M (Gnm,S rel Z

(n)
. , n) .
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This is the motivic version of the weight spectral sequence in absolute cohomology.
We refer to it as the motivic residue spectral sequence.
Remark: As in section 6, the residue sequence, or equivalently, the residue spectral
sequence turns out to be the central technical tool in the construction of the motivic
polylog (see Definition 8.9). The spectral sequence is identical to the one constructed
in [BD1], 4.2.6. The definition and basic properties of motivic cohomology of simplicial
schemes (B.1, B.2) allow to justify the construction.
At this point, we should stress that the proof of the innocent looking Theorem

7.4 requires the whole of the theory covered in the appendices.

8 Universal Motivic Polylogarithm

We now return to the special situation used in section 6. Let B = Spec(Z). We
consider now the case S = U. Let α = 1, and β the diagonal section of U×B Gm,B.
First we compute the motivic cohomology of U. We use the embedding of U into

A1 to do so. The long exact localization sequence B.2.18 reads

. . . −→Hn−2M (0(B)∐ 1(B), j − 1) −→ HnM(A
1
B, j) −→ HnM(U, j)

−→Hn−1M (0(B)∐ 1(B), j − 1) −→ . . .

By the homotopy property of K-theory we get

. . . −→HnM(B, j) −→ HnM(U, j) −→ Hn−1M (B, j − 1)⊕Hn−1M (B, j − 1)
−→Hn+1M (B, j) −→ . . .

The Gysin map for the inclusion of a point in the affine line vanishes by [Q2] Thm
8 ii. Hence we are actually dealing with a system of short exact sequences. As all
motivic cohomology groups of B vanish for n > 1 this sequence only gives non-trivial
cohomology of U for n = 0, 1, 2.

Lemma 8.1. For B = Spec(Z) we have

H0M(U, i) =

{
Q if i = 0,

0 else,

H1M(U, j) =





0 for j < 1,

Q⊕Q for j = 1,

H1M(B, j) for j > 1,

H2M(U, j) = H
1
M(B, j − 1)⊕H1M(B, j − 1) ,

HnM(U, j) = 0 if n > 2.

Proof. Clear from the above using B.2.20

By Borel’s Theorem (B.5.9) the Beilinson regulator

HiM(X, j)⊗Q R −→ HiHp(XR/R, j)

is injective for X = Spec(Z), even an isomorphism but in the one case H1M(B, 1)
where the codimension is one. (We call Beilinson regulator what strictly speaking is
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its tensor product with R.) This implies that it is also an isomorphism for HiM(U, k)
with the exception of the indices (1, 1) and (2, 2) where the codimension is 1 resp. 2.
This means that many of the residue maps are actually isomorphisms. The

following computations are carried out in the case B = Spec(Z). With a little more
effort they generalize to the case of the ring of integers of a number field.
Consider the residue sequence for n = j = 1 and S = U.

0 = H0M(U, 1) −→ H1M(G
∨1
m,U, 1) −→ H0M(U, 0)

−→ H1M(U, 1)
δ−→ H2M(G

∨1
m,U, 1) −→ H1M(U, 0) = 0 .

The Beilinson regulator induces a map between the above sequence and the residue
sequence in section 4. On H0M(U, 0) ⊗ R, the regulator is an isomorphism, and on
H1M(U, 1) ⊗ R it is injective of codimension one. By 6.4, the absolute Hodge coho-
mology group H1Hp(G

∨1
m,UR

/R, 1) vanishes. Hence the map from the first to the second

line is injective and the regulator is injective of codimension one on H2M(G
∨1
m,U, 1).

Furthermore, this last group is one dimensional.
The image of δ under the Beilinson regulator is the map occurring in 6.8 for

n = 1.

Definition 8.2. Let s1 be the composition of the maps

Q = H0M(B, 0)
i1−→

⊕

i=0,1

H0M(B, 0) = H1M(U, 1)
δ−→ H2M(G

∨1
m,U, 1)

where i1 is the inclusion of the 1-summand and δ is the map of the residue sequence.

Lemma 8.3. s1 is an isomorphism.

Proof. Because of dimension reasons we only have to check that δ does not vanish on
the image of i1. This follows from 6.8.

Definition 8.4. Let res1 be the inverse of s1. We define the total residue map

res : Hn+1M (G∨nm,U, n)
sgn −→ Q .

by composition of the residue maps in our long exact sequence 7.2 with res1.

We now have to check that the total residue map deserves its name. By definition
and 6.5.i) it suffices to consider res1.

Lemma 8.5. The regulators map the motivic res1 to res1 in absolute cohomology.

Proof. Let us consider the situation of 6.8. The morphism

O(U)∗ −→ H1Hp(UR/R, 1)

factors through H1M(U, 1) = K1(U)Q. There is a commutative diagram

H1Hp(UR/R, 1) −−−−→
⊕
i=0,1

H0HHp (BR/R, 0)

x ∼=
x

O(U)∗ −−−−→ H1M(U, 1)
∼=−−−−→ ⊕

i=0,1

H0M(B, 0)

,
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hence the functions t and 1− t on U correspond to the canonical generators of the two
summands. We consider the commutative diagram for absolute Hodge cohomology

H1
Hp
(UR/R, 1)

δR−−−−→ H2
Hp
(G∨1m,UR/R, 1)

resR−−−−→ H0
Hp
(BR/R, 0)x

xr
⊕
i=0,1

H0M(B, 0)
δ−−−−→ H2M(G

∨1
m,U, 1)

,

By 6.8 the composition from the bottom left to the top right corner is given by the
projection to the 1-component tensored by R. It follows that (resR ◦r) ⊗ R is an
isomorphism. In turn δ vanishes on the 0-component and is an isomorphism on the
1-component. But then by definition res1 ◦δ is also the projection to the 1-summand.
As δ is surjective, this suffices. The same argument works in the étale situation.

Lemma 8.6. There is a short exact sequence

0 −→ H1M(B, 2) −→ H3M(G
∨2
m,U, 2)

sgn res−−→ Q −→ 0

and the Beilinson regulator is an isomorphism on the middle term.

Proof. This is nothing but the residue sequence using our computation of
H2M(G

∨1
m,U, 1). The zeroes on both sides come from vanishing cohomology groups.

Comparison with the short exact sequence 6.5.ii) shows that the regulator is an
isomorphism.

Proposition 8.7. There are short exact sequences

0 −→ H1M(B,n)
δn−→ Hn+1M (G∨nm,U, n)

sgn res−−→ Q −→ 0 .

The Beilinson regulator is injective on allHn+1M (G∨nm,U, n)
sgn. It is even an isomorphism

for n > 1.

Proof. The n = 1 and n = 2 cases are the previous lemmas. By induction, one checks
that all HnM(G

∨n
m,U, n)

sgn vanish for n ≥ 1. Hence the residue sequence reads

0→ H1M(B,n)
δn−→ Hn+1M (G∨nm,U, n)

sgn→ HnM(G
∨n−1
m,U , n− 1)sgn→ H2M(U, n) .

By the five lemma and inductive hypothesis we see that the regulator is an isomor-
phism on the middle term for n. We need the previous lemma to get started.
Now consider the sequences of the proposition. All maps are well-defined. It follows
from 6.5.ii) that the sequence is exact.

Corollary 8.8. There are canonical splittings sn : Q → Hn+1M (G∨nm,U, n)
sgn such

that the diagram

H0M(B, 0)
sn−→ Hn+1M (G∨nm,U, n)

sgn

sn−1ց ↓ res
HnM(G

∨n−1
m,U , n− 1)sgn

commutes. They are compatible with the ones in 6.5.iii). Furthermore, the group
lim←−H

n+1
M (G∨nm,U, n)

sgn is canonically isomorphic to Q.
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Proof. Im(resn) is isomorphic to Q by the total residue on H
n+1
M (G∨nm,U, n)

sgn. This
induces the same splitting as in 6.5.

Definition 8.9. For n ∈ N the system poln = sn(1) defines the universal motivic
polylogarithm.

By construction poln is mapped to the polylogarithmic system in absolute Hodge
cohomology and continuous étale cohomology.
Remark: The main result of this section, 8.7 is identical to [BD1], 4.3.4. Although
part of the argument involves only constructions within K-theory, the proof of 8.7
relies heavily on a detailed analysis of the behaviour of the regulator between the
motivic and absolute residue sequences.

9 The Cyclotomic Case

Let d ≥ 2. As before let R = A[1/d, T ]/Φd(T ) the ring of d-integers of the cyclotomic
field of d-th roots of unity. Put C = SpecR. Let ζ be a primitive d-th root of unity
in Q, and b an integer prime to d. We work in the situation S = C, α = 1 ∈ Gm(C),
and β = ib ∈ Gm(C) as in section 5.
Lemma 9.1. a) For n ≥ 0 we have

HnM(G
∨n
m,C , n)

sgn = HnM(G
n
m,C rel Z

(n)
. , n)sgn = Q .

The Beilinson and the l-adic regulators are isomorphisms.

b) For n ≥ 1, the residue sequence induces short exact sequences

0 −→ H1M(C, n) −→ Hn+1M (G∨nm,C , n)
sgn −→ HnM(G

∨n−1
m,C , n− 1)sgn −→ 0 .

The l-adic regulator is injective on the group Hn+1M (G∨nm,C , n)
sgn for n ≥ 1.

Proof. For n = 0 we have H0M(G
∨0
m,C , 0) = H

0
M(C, 0), which is canonically isomorphic

to Q by B.2.20. In particular both regulator are isomorphisms.
H1M(G

∨0
m,C , 0) and its counterpart in absolute cohomology vanish.

Consider the following bit of the residue sequence for n ≥ 1:
Hn+1M (G∨n+1m,C , n+ 1)sgn → HnM(G

∨n
m,C , n)

sgn → H1M(C, n+ 1)

The first map is injective since H0M(C, n + 1) = 0. The l-adic regulator is always
injective on the last term by B.4.8. By inductive hypothesis it is an isomorphism on
the middle term. By Cor. 5.3, the last map vanishes in absolute cohomology. This
implies a) for n+ 1. In the next bit of the long exact sequence

H1M(C, n) −→ Hn+1M (G∨nm,C , n)
sgn −→ HnM(G

∨n−1
m,C , n − 1)sgn −→ (∗) ,

the first map is injective by a). For n ≥ 2 we have (∗) = H2M(C, n) = 0, while for
n = 1 the term

HnM(G
∨n−1
m,C , n− 1) = H1M(C, 0)

vanishes. Hence in any case we end up with the short exact sequence in b). The
regulator maps it to the short exact sequence 5.3. By induction and B.4.8 we can
control the injectivity of the l–adic regulator.
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Remark: The Beilinson regulator is not injective on H1M(C, 1) because d is inverted
in C.
Consider the morphism φ : Gm,C → Gm,C that raises points to the d+1-th power.

As in section 5 it induces a morphism of spaces φn : A∨nC → A∨nC . By contravariance
it induces an operation on motivic cohomology.

Lemma 9.2 ([BD1], Remark (ii) on page 78).
(φn)∗ operates on the short exact sequence of the previous lemma as follows:

H1M(C, n) −−−−→ Hn+1M (G∨nm,C , n)
sgn −−−−→ HnM(G

∨n−1
m,C , n− 1)sgn

id

y (φn)∗
y

y(d+1)(φn−1)∗

H1M(C, n) −−−−→ Hn+1M (G∨nm,C , n)
sgn −−−−→ HnM(G

∨n−1
m,C , n− 1)sgn

.

Proof. This description follows immediately from the injectivity of the l-adic regulator
and Cor. 5.3.b).

Remark: The operation (φn)∗ on H1M(C, n) is given by the operation on
Hn+1M (A∨nC , n). It is easy to check that it is trivial by considering the operation
on the starting terms of the degenerating skeletal spectral sequence. To understand
the compatibility with the residue map in terms of K-theory is a lot harder. The
factor d+1 is induced by a push-forward from a non-reduced scheme to its reduction.
The theory in Appendix B is not even set up to handle such schemes.
As in the case of absolute cohomology it follows that the eigenvalues of (φn)∗ on

Hn+1M (Gm,C rel Z
(n), n)sgn are 1, d+ 1, . . . , (d+ 1)n−1.

Lemma 9.3. The eigenspace decomposition yields a splitting

η
(n)
b : Hn+1M (G∨nm,C , n)

sgn ∼−→
⊕

1≤i≤n
H1M(C, i) ,

which is compatible with the splitting η
(n)
b after Cor. 5.3. There is a canonical

isomorphism

ηb : lim←−H
n+1
M (G∨nm,C , n)

sgn ∼−→
∏

i≥1
H1M(C, i) .

Proof. The first assertion is clear by construction. The second follows because the
eigenspace decomposition is compatible with the residue map.

Definition 9.4. Let ib : C → U be as before. Let polb be the pullback of the univer-
sal polylogarithm system pol defined in 8.9 to the inverse limit lim←−H

n+1
M (G∨nm,C , n)

sgn =

lim←−H
n+1
M (Gnm,C rel Z

(n)
. , n)sgn. Via the isomorphism ηb of 9.3, we have constructed

an element in
∏
i≥1H

1
M(C, i).

Theorem 9.5. Under the regulators, the element

polb ∈ lim←−H
n+1
M (G∨nm,C , n)

sgn =
∏

i≥1
H1M(C, i)
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is mapped to the elements

polb ∈ lim←−H
n+1
abs (G

∨n
m,C , n)

sgn =
∏

i≥1
H1abs(C, i)

constructed at the end of section 5.

Proof. This follows from the construction.

We list the consequences of this result: denote by µ0d the set of primitive d–th roots
of unity in Q(µd).
Firstly, the description of the regulator to absolute Hodge cohomology yields an

alternative proof of the following:

Corollary 9.6. Assume n ≥ 0.

a) ([B2], 7.1.5, [Neu], II.1.1, [E], 3.9.)
There is a map of sets

ǫn+1 : µ
0
d −→ H1M(C, n+ 1)

(= H1M(SpecQ(µd), n+ 1) for n ≥ 1)

such that

rD◦ǫn+1 : µ
0
d −→ H1Hp(SpecQ(µd)R/R, n+ 1)

∼−→
A.2.12


 ⊕

σ:Q(µd)→֒C
C/(2πi)n+1R



+

maps a root of unity ω to (−Lin+1(σω))σ. For n ≥ 1, this property characterizes the
map ǫn+1 uniquely.
b) For a root of unity T b ∈ Q(µd) = Q[T ]/Φd(T ), the element

ǫn+1(T
b) ∈ H1M(C, n + 1)

is given by

ǫn+1(T
b) := (−1)n · 1

(n+ 1)!
· ( (n+ 1)–component of polb) .

Proof. Note that a) really is Beilinson’s formulation of the result: his normalization
of the isomorphism

H1Hp(SpecQ(µd)R/R, n+ 1)
∼−→
(
⊕

σ

C/(2πi)n+1R

)+

differs from ours by the factor −1. The unicity assertion is a direct consequence of
the injectivity of the regulator. So our claim follows from 2.5, and from 5.4.
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In [B2], the above compatibility statement is used to prove Gross’s conjecture
about special values of Dirichlet L-functions. An alternative proof of this conjecture,
using an entirely different geometric construction, is given in section 3 of [Den].
Recall that the l–adic regulator rl factorizes as follows:

K2n+1(C) ⊗Z Q = H1M(C, n+ 1) →֒ H1M(C(l), n+ 1)

→֒ H1cont(C(l), n+ 1)

→֒ H1cont(SpecQ(µd), n+ 1) ,

where we let C(l) := C ⊗Z Z[1l ].
For the rest of this section, we fix ζ ∈ C(Q). As was observed already in [B4],

the study of the cyclotomic polylog yields a proof of the following result:

Corollary 9.7. Assume n ≥ 0.
a) ([Sou5], Théorème 1 for the case n = 1; [Gr], Théorème IV.2.4 for the local version
if (l, d) = 1.)
Let d and ǫn+1 be as in 9.6. Let l be a prime. Under the embedding of 2.6, the l–adic
regulator

rl : H
1
M(C, n+ 1) −→ H1cont(SpecQ(µd), n+ 1)

maps ǫn+1(T
b) to

1

dn
· 1
n!
·


 ∑

αlr=ζb

[1− α]⊗ (αd)⊗n


r

.

b) Conjecture 6.2 of [BlK] holds.

Proof. a) is 2.6 and 5.4. As for b), it remains to check the comparison statement of
[BlK], Conjecture 6.2 for the root of unity 1. For this, observe the relations

cn+1(1) =
2n

1− 2n cn+1(−1) ,

cn+1,2(1) =
2n

1− 2n cn+1,2(−1)

in the notation of loc. cit., if n ≥ 1 ([D5], Proposition 3.13.1.i)).
Soulé has constructed maps

ϕl : µ
0
d → K2n+1(C(l))⊗Z Zl

for any prime l (see end of Appendix B.4 for more details).
The l–adic regulator

rl : K2n+1(C(l))⊗Z Ql → H1cont(SpecQ(µd), n+ 1) (Prop. B.4.10)

takes ϕl(T
b) to the cyclotomic element in continuous Galois cohomology


 ∑

αlr=ζb

[1− α]⊗ (αd)⊗n


r

defined by Soulé and Deligne (cf. [Sou2], page 384, [D5], 3.1, 3.3).
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Corollary 9.8. For each d and n, there is a unique map

ϕ : µ0d → K2n+1(SpecQ(µd))

such that for each prime number l, the map

ϕl : µ
0
d → K2n+1(C(l))⊗Z Zl
→֒ K2n+1(SpecQ(µd))⊗Z Zl

equals the composition of ϕ and the natural map

K2n+1(SpecQ(µd))→ K2n+1(SpecQ(µd))⊗Z Zl .

Furthermore, the map ϕ⊗Z Q agrees with

ǫ′n+1 : µ
0
d → H1M(SpecQ(µd), n+ 1)

given by dn · n! · ǫn+1.

Proof. The uniqueness assertion is a formal consequence of the finite generation of
K2n+1(SpecQ(µd)): to give an element in a finitely generated abelian groupM is the
same as giving elements in M ⊗Z Q and all M ⊗Z Zl, which coincide in M ⊗ZQl. By
9.7, the maps rl◦ϕl and rl◦ǫ′n+1 agree for all l. From Theorem B.4.8, we conclude
that ϕl and ǫ

′
n+1 agree as maps to K2n+1 ⊗Z Ql.

As shown by Bloch and Kato, Corollary 9.7 implies the validity of the following
also for even n:

Corollary 9.9. Let n ≥ 1.
Then the Tamagawa number conjecture ([BlK], Conjecture 5.15) is true modulo a
power of 2 for the motif Q(n+ 1).

Proof. [BlK], Theorem 6.1.i) gives the complete proof for odd n, which is independent
of anything said in the present article. In loc.cit., Theorem 6.1.ii), it is shown that
the conjecture holds for even n if [BlK], 6.2 holds. But the latter is the content of
9.7.

Finally, the compatibility statement of 9.7 forms a central ingredient in the
proof of the modified version of the Lichtenbaum conjecture for abelian number fields
([KNF], Theorem 6.4).

A Absolute Hodge Cohomology with Coefficients

The aim of this appendix is to provide a natural interpretation of absolute Hodge
cohomology as extension groups in the category of algebraic Hodge modules over R
(A.2.7). That such a sheaf–theoretic interpretation should be possible was already
anticipated by Beilinson ([B1], 0.3), long before Hodge modules were defined.

The appendix is divided into two subsections. The first (A.1) starts with a
summary of those parts of Saito’s theory relevant to us. The central result is A.1.8,
where we prove that for a smooth scheme a : U → Spec(C), the polarizable Hodge
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complex RΓ(U,F ) of [D3], (8.1.12) and [B1], § 4 is a representative for a∗F (0)U , the
object in the derived category of polarizable F–Hodge structures defined via Saito’s
formalism ([S2], 4.3). As a consequence, we are able (A.1.10) to identify absolute
Hodge cohomology of a smooth scheme U over C, as defined in [B1], § 5: it equals
the Ext groups of Tate twists in the category of algebraic Hodge modules on U . The
compatibility between the approaches of Deligne–Beilinson and of Saito will come as
no surprise to the experts (see e.g. [S3], (2.8)). However, we were unable to find a
quotable reference.
In A.2, we turn to the variant of the theory we really need: algebraic Hodge

modules over R. These live on the complexification of separated, reduced schemes of
finite type over R, and are basically the objects fixed by the natural involution on
the category of mixed Hodge modules given by complex conjugation. The compari-
son statement for absolute Hodge cohomology over R (Theorem A.2.7) then follows
formally from A.1.10.

A.1 Algebraic Mixed Hodge Modules

In [S2], § 4, the category MHMA(X) of algebraic mixed A–Hodge modules is defined,
where A is a field contained in R, and X a separated reduced scheme of finite type
over C.
Saito’s construction admits the full formalism of Grothendieck’s functors π!, π

!,
π∗, π∗, Hom, ⊗, D on the level of bounded derived categories DbMHMA ([S2], 4.3,
4.4) and a forgetful functor

rat : MHMA(X) −→ PervA(X)

to the category of perverse sheaves on the topological spaceX underlyingX(C), which
have algebraic stratifications such that the restrictions of their cohomology sheaves
to the strata are local systems. By the definition of MHMA, which we shall partly
sketch in a moment, rat is faithful and exact. The functor rat on the level of derived
categories is compatible with Grothendieck’s functors ([S2], 4.3, 4.4).
For smoothX, one constructs MHMA(X) as an abelian subcategory ([S1], Propo-

sition 5.1.14) of the category MFhW(DX , A), whose objects are

((M,F ·,W·), (K,W·), α) ,

where (M,F ·) is an object of the category MFh(DX), i.e., a regular holonomic alge-
braic DX–module M together with a good filtration F ·, and K ∈ PervA(X). W· is a
locally finite ascending filtration, and α is an isomorphism

DR(M)
∼−→ K ⊗A C

respecting W·. Here, DR denotes the de Rham functor from the category of DX–
modules to the category of perverse sheaves.
We note that by definition, the weight graded objects of all algebraic Hodge

modules satisfy a certain polarizability condition (see [S1], 5.2.10).

Call an algebraic Hodge module on a smooth variety smooth if the underlying
perverse sheaf is a local system up to a shift.
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Theorem A.1.1 (Saito). Let X be smooth and separated. Then there is an equiv-
alence

VarA(X)
∼−→MHMA(X)s

between the category of admissible variations of mixed A–Hodge structure ([Ks]) and
the category of smooth algebraic A–Hodge modules on X.

Proof. This is the remark following [S2], Theorem 3.27.

In particular, we see that MHMA(Spec(C)) is the category MHSA of polarizable
mixed A–Hodge structures.
If V is a variation on X with underlying local system For(V), then the perverse

sheaf underlying the Hodge module V under the correspondence of A.1.1 is

For(V)[d]

if X is of pure dimension d.
It turns out that the definition of Tate twists in MHMA(X) is compatible with

the above equivalence only up to shift:

Definition A.1.2 ([S2], (4.5.5)). Let n ∈ Z, and A(n) ∈ MHSA the usual Tate
twist. For a separated reduced scheme a : X → Spec(C), define

A(n)X := a
∗A(n) ∈ DbMHMA(X) .

If X is smooth and of pure dimension d, then A(n)X [d] is the variation of Hodge
structure, which one denotes A(n).
For arbitraryX, the complex A(n)X will not even be the shift of a Hodge module,

but a proper element of DbMHMA(X), whose cohomology objects HpA(n)X are a
priori trivial only for p > dimX ([S2], (4.5.6)).
We note again that we follow Saito’s convention and write e.g. π∗ for the functor

on derived categories

DbMHMA(X) −→ DbMHMA(Y )

induced by a morphism π : X → Y .
In order to compare the Hodge structures on Betti cohomology given by Saito’s

and Deligne’s constructions, we need to go into the details of [S2]:

Theorem A.1.3 (Saito). Let j : U →֒ X be an open immersion of smooth sepa-
rated schemes over C, with Y := X \ U a divisor with normal crossings. If X is of
pure dimension d, then

j∗A(0)U [d] = Hdj∗A(0)U ∈MHMA(X) ⊂MFhW(DX , A)

equals the object

(wX(∗Y ), (jtop)∗AU [d], α) ,

where wX(∗Y ) denotes the DX–module ΩdX(log Y ), and (jtop)∗ the direct image for
the derived category of perverse sheaves.
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The de Rham complex with logarithmic singularities is quasi-isomorphic to

wX(∗Y )
L
⊗DX OX [−d] = DR(wX(∗Y ))[−d], hence

DR(wX(∗Y )) = Ω·X(log Y )[d]

(compare [Bo3], VIII, 13.1), and

α : Ω·X(log Y )[d]
∼−→ (jtop)∗C [d]

is the usual quasi-isomorphism

Ω·X(logY )
∼−→ (jtop)∗Ω·U

∼←− (jtop)∗C

(compare [D2], 3.1), shifted by d.
The Hodge filtration F · on wX(∗Y ) is induced from the stupid filtration, while

the weight filtrations W· on wX(∗Y ) and (jtop)∗C [d] are those induced from the
canonical filtration on (jtop)∗ΩU , shifted by d.

Proof. The equation j∗A(0)U [d] = Hdj∗A(0)U follows from the faithfulness of rat
and the fact that the corresponding statement for (jtop)∗ is true since j is affine. In
our geometric situation, the explicit construction of j∗ of any admissible variation of
A–Hodge structure is carried out in the proof of [S2], Theorem 3.27. For A(0)U , it
specializes to our claim.

In [B1], 3.9, Beilinson extends Deligne’s notion of Hodge complexes ([D3], 8.1)
to the polarizable situation:

Definition A.1.4 (Beilinson). A mixed A–Hodge complex

K = ((KC, F
·,W·), (K,W·), α)

is called polarizable if the cohomology objects of the weight n Hodge complexes
GrWn (K) are polarizable A–Hodge structures.

Remark: The weight filtration W· of a mixed Hodge complex K induces mixed
Hodge structures on its cohomology. Observe however that GrWn (H

iK) is of weight
n+ i.

As in the non–polarizable situation, Beilinson proves:

Theorem A.1.5 ([B1], Lemma 3.11). There is an equivalence of categories be-
tween DbMHSA and the derived category of polarizable A–Hodge complexes.

Let X be smooth and separated over C. Forgetting part of the structure of a
Hodge module yields a functor

For : CbMHMA(X) −→ T (X) .

Here, T (X) is the category of triples

M · = ((M ·, F ··,W ·· ), (K
·,W ·· ), α

·) ,
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where (M ·, F ··,W ·· ) is a class in the filtered derived category D
bW (MFh(DX)) of

MFh(DX), and (K ·,W ·· ) a class in the filtered derived category of sheaves of A–
vector spaces on X(C), denoted by DbW (X(C), A). Furthermore, the map α· is an
isomorphism

DR(M ·)
∼−→ K · ⊗A C

respecting W ·· .
Recall that in order to obtain a class inDbW (X(C), A) from a complex of perverse

sheaves, one applies the realization functor of [BBD], 3.1.9.
The global section functor Γ can be derived on DbW (X(C), A). By [S1], 2.3, we

have a functor RΓ on DbW (MFh(DX)) if X is proper, and the two constructions are
compatible with the comparison isomorphism α· of any object in T (X) ([S1], 2.3.7).
We end up with an object

RΓM · = (RΓ(M ·, F ··,W ·· ), RΓ(K
·,W ·· ), RΓα

·)

of T (Spec(C)). The functor

RΓ := RΓ◦For : CbMHMA(X) −→ T (Spec(C))

factorizes through DbMHMA(X).
Our second comparison result is the following:

Theorem A.1.6. Let a : X → Spec(C) be smooth and proper, and M · an object of
DbMHMA(X). Write

ForM · = ((M ·, F ··,W ·· ), (K
·,W ·· ), α

·) ∈ T (X) .

a)

RΓM · = (RΓ(M ·, F ··,W ·· ), RΓ(K
·,W ·· ), RΓα

·)

is a mixed polarizable A–Hodge complex.

b) The class of RΓM · in the derived category of polarizable Hodge complexes is
canonically isomorphic, under the identification of A.1.5, to

a∗M
· ∈ DbMHSA .

c) Let f : Y → X be a (proper) morphism of smooth and proper schemes over C,
and let b denote the structure morphism of Y , such that

b = a◦f .

For any N · ∈ DbMHMA(Y ) together with a morphism η : M · → f∗N · in
DbMHMA(X), the morphism

a∗η : a∗M
· = RΓM · −→ RΓN · = b∗N

· = a∗f∗N
·

equals, under the isomorphism of a), the morphism

(RΓη,RΓη,RΓη)

of A–Hodge complexes.
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Proof. a) We may assume that M · is pure of some weight. Using [S2], (4.5.4), we are
reduced to the case where M · = M is a Hodge module of weight n, and we have to
show that RΓM is a polarizable Hodge complex of the same weight. Axiom (CH1)
of [D3], (8.1.1) follows from [S2], Proposition 2.16, in particular (2.16.5), applied to
pr∗M , where

pr : X ×C A1C −→ X .

Furthermore, by the remark following [S2], (4.2.9), and by loc. cit., 2.15, we have
isomorphisms in MFhW(DSpec(C), A)

RiΓM :=
(
RiΓ(M,F ·,W·[i]), R

iΓ(K,W·[i]), R
iΓα

) ∼−→ Hia∗M .

Since the right hand side is a polarizable Hodge structure of weight i+n ([S2], (4.5.2)),
we have (CH2), and in addition, polarizability.
b) In the proof of a), we constructed a functor

a∼∗ := RΓ : D
bMHMA(X) −→ DbMHSA ,

such that

Hia∼∗ = Hia∗ : MHMA(X) →֒ DbMHMA(X) −→MHSA

for all i. Composition with j∗ : DbMHMA(U)→ DbMHMA(X) for open immersions
j : U →֒ X defines

(a◦j)∼∗ := a
∼
∗ ◦j∗ : D

bMHMA(U) −→ DbMHSA .

But for affine U , (a◦j)∗ is the left derived functor of

H0(a◦j)∗ : MHMA(U) −→MHSA

([S2], proof of Theorem 4.3.). If U is affine, then so is j : U →֒ X, and hence j∗ is
exact. Therefore,

H0(a◦j)∗ = H0a∗◦j∗ : MHMA(U) j∗−→MHMA(X) H
0a∗−→ MHSA

coincides with H0(a◦j)∼∗ , and we get a natural transformation

(a◦j)∗ −→ (a◦j)∼∗ ,

which is an isomorphism, since this is true on the level of cohomology objects, as
one checks on the level of vector spaces. Observe that this natural transformation is
compatible with restriction to smaller affine subschemes of X. Now recall ([S2], proof
of 4.3) that the functor a∗ is constructed using the Čech complex associated to an
affine covering of X (for details, see [B3], 3.4). In the same way, the functor a∼∗ is
recoverable from the (a◦j)∼∗ . We end up with an isomorphism of a∗ and a

∼
∗ , which is

independent of the covering.
c) In the proof of b), we constructed a natural isomorphism

κ : a∗
∼−→ a∼∗
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of functors from DbMHMA(X) to D
bMHSA. For f = id, our claim is therefore

proved. For the general situation, we use the same techniques as in the proof of b) to
first construct a natural isomorphism

b∗
∼−→ a∼∗ ◦f∗

of functors from DbMHMA(Y ) to D
bMHSA, and then to see that the triangle

b∗ −→ a∗◦f∗

ց
yκ

a∼∗ ◦f∗

commutes.

Corollary A.1.7 (cf. [S3], (2.8)). Let j : U →֒ X be a smooth compactification
of a smooth and separated scheme a : U → Spec(C), such that Y := X \U is a divisor
with normal crossings.

a) a∗A(0)U ∈ DbMHSA is isomorphic, under the identification of A.1.5, to the
class of the mixed polarizable A–Hodge complex

RΓ(U,A) := RΓ(DR−1Ω·X(logY ), (jtop)∗AU , α)

of [D3], (8.1.12) and [B1], § 4 (with the same notation).

b) If f : X → X ′ is a morphism of compactifications j : U →֒ X and j′ : U →֒ X ′

of U as in a), then f induces an isomorphism

RΓ(DR−1Ω·X′(log Y
′), (j′top)∗AU )

∼−→ RΓ(DR−1Ω·X(logY ), (jtop)∗AU )

([D3], remark preceding (8.1.17)), so RΓ(U,A) depends only on U .

The isomorphism in a) also depends only on U .

c) In particular, the Hodge structures on

rat(Hna∗A(n)U ) = HnB(U(C), (2πi)nA)

given by Deligne’s and Saito’s constructions coincide.

Proof. a) Combine A.1.3 and A.1.6.b).
b) Use A.1.6.c).
c) follows from a) and b).

Actually, the statement A.1.6.c) implies the functoriality property we were after:
we have two functors

(Sm/C)0 −→ DbMHSA ,

where (Sm/C) denotes the category of smooth separated schemes over C:

RΓ( , A) : U 7−→ RΓ(U,A) ,

∗(A) : (a : U −→ Spec(C)) 7−→ a∗ (A(0)U ) .
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Corollary A.1.8. The isomorphism of A.1.7.a) is functorial in U ∈ Sm/C. In
other words, there is a natural isomorphism

∗(A)
∼−→ RΓ( , A)

of functors from (Sm/C)0 to DbMHSA.

Proof. Let

U ′
j′→֒ X ′

f
y

yf

U
j→֒ X

be a commutative diagram of smooth and separated schemes over C, where X ′ and
X are proper, and Y ′ := X ′ \ U ′ and Y := X \ U are divisors with normal crossings.
We have a morphism

j∗A(0)U −→ f∗(j
′
∗A(0)U ′) .(∗)

Application of (aX)∗ gives the morphism

(aU)∗A(0)U −→ (aU ′)∗A(0)U ′

belonging to the functoriality requirement for ∗(A). Our claim follows from A.1.6.c),
applied to a shift of the morphism (∗).

Definition A.1.9. Let X/C be separated, reduced and of finite type, and M · an
object of DbMHMA(X).

a) The absolute Hodge complex of X with coefficients in M · is

RΓHp(X,M
·) := RHomDbMHMA(X)(A(0)X ,M

·) .

b) Its cohomology groups

HiHp(X,M
·) := HiRΓHp(X,M

·)

are called absolute Hodge cohomology groups of X with coefficients in M ·.

c) We denote absolute Hodge cohomology with coefficients in Tate twists by

HiHp(X,n) := H
i
Hp(X,A(n)X) .

d) For a closed reduced subscheme Z of X with complement j : U →֒ X, we define
relative absolute Hodge cohomology with coefficients in Tate twists as

HiHp(X rel Z, n) := HHp(X, j!A(n)U ) .
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Note that if X is smooth and of pure dimension d, and if

M · =M ∈MHMA(X) ,

then the right hand side of A.1.9.b), being equal to

HomDbMHMA(X)(A(0)X [d],M [d+ i]) ,

admits an interpretation as the group of (d+ i)–extensions of Hodge modules modulo
Yoneda equivalence.

Corollary A.1.10. If X is smooth and separated over C, and n ∈ Z, then

RΓHp(X,n) = RΓHp(X,A(n)X) and H ·Hp(X,n) = H
·
Hp(X,A(n)X)

coincide functorially with the same noted objects of [B1], § 5.

Proof. This follows from A.1.8 and the adjunction formula

RHomDbMHMA(X)(A(0)X ,M
·) = RHomDbMHSA(A(0), a∗M

·) .

Remark: The Leray spectral sequence for a : X → Spec(C) yields exact sequences

0→ Ext1MHSA
(
A(0),Hi−1

)
→ HiHp(X,A(n)X)→ HomMHSA

(
A(0),Hi

)
→ 0

(withHk := HkB(X(C), (2πi)
nA)) since MHSA has cohomological dimension one ([B1],

Corollary 1.10). Comparing them with the analogous sequences for Hi
H
, we see that

HiHp(X,A(n)X) = H
i
H(X,A(n)X)

(in the notation of [B1], § 5) if Hi−1B (X(C), (2πi)nA) has weights smaller than zero,
which is the case if i ≤ n (i ≤ 2n if X is proper).
Observe that this is the same range of indices where Deligne cohomology coincides

with Hi
H
(X,R(n)X) ([N], (7.1)): we have natural morphisms

HiHp(X,R(n)X) −→ HiH(X,R(n)X) −→ HiD(X,R(n)X) ,

both of which are isomorphisms if i ≤ n (i ≤ 2n if X is proper).

A.2 Algebraic Mixed Hodge Modules over R

Algebraic Hodge modules over R are defined as the category of Hodge modules fixed
under a certain involution given by complex conjugation. We start by constructing
this involution:
Let X/C be smooth, and let ιX denote the complex conjugate scheme. We have

an equivalence

ι∗ : VarA(
ιX)

∼−→ VarA(X)
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of the categories of admissible variations, induced by complex conjugation

ι : X(C) −→ ιX(C) ,

and defined as follows:
The local system and the weight filtration on X(C) are the pullbacks via ι of the

local system and the weight filtration on ιX(C), and the Hodge filtration on X(C) is
the pullback of the conjugate of the Hodge filtration on ιX(C).

ι∗ preserves admissibility, and behaves, in an obvious sense, involutively.
In particular, if X is defined over R, we get an involution ι∗ on VarA(X ⊗R C).

Definition A.2.1. Let X/R be smooth and separated.

a) The category Var∼A(X/R) consists of pairs (V, F∞), where V is an object of
VarA(X ⊗R C), and F∞ is an isomorphism

V
∼−→ ι∗V

of variations such that ι∗F∞ = F−1∞ .

In the category Var∼A(X/R), we may define Tate twists A(n): F∞ acts via
multiplication by (−1)n.

b) VarA(X/R), the category of admissible variations of mixed A–Hodge structure
over R, is the full subcategory of Var∼A(X/R) of pairs (V, F∞) which are graded–
polarizable: for n ∈ Z, there is a morphism

GrWn (V, F∞)⊗A GrWn (V, F∞) −→ A(−n)

in Var∼A(X/R), such that the induced morphism

GrWn V⊗A GrWn V −→ A(−n)

is a polarization in the usual sense.

Remark: We note that implicit in our definition is a descent datum over R of the
bifiltered flat vector bundle on X ⊗R C underlying any admissible variation (V, F∞)
of mixed A–Hodge structure over R:
For this claim to make sense, recall first ([D1], II, Théorème 5.9) that any flat

analytic vector bundle on X(C) carries a canonical algebraic structure. If the vector
bundle underlies an admissible variation, then the Hodge filtration is a filtration by
algebraic subbundles ([Ks], Proposition 1.11.3).
Now the descent datum is given by the anti-linear isomorphism

cDR := Fdiff(F∞)◦c∞ = c∞◦Fdiff(F∞) : Fdiff(V)
∼−→ Fdiff(ι

∗V)

of the C∞–bundles underlying V and ι∗V. Here, c∞ denotes the anti-linear involutions
given by complex conjugation of coefficients, and Fdiff is the forgetful functor to C

∞–
bundles.

Lemma A.2.2. The category VarA(Spec(R)/R) equals the category MHS
+
A of mixed

polarizable A–Hodge structures over R ([B1], § 7).

Documenta Mathematica 3 (1998) 27–133



Classical Motivic Polylogarithm 89

Proof. Straightforward.

Our aim is to generalize our definition of sheaves over R to algebraic Hodge
modules.
For smooth and separatedX/C, recall that MHMA(X) is an abelian subcategory

of MFhW(DX , A). Objects of the latter are

((M,F ·,W·), (K,W·), α) ,

where (M,F ·) is an object of the category MFh(DX) of regular holonomic algebraic
DX–modules with a good filtration, and K ∈ PervA(X). W· is a locally finite ascend-
ing filtration, and α is an isomorphism

DR(M)
∼−→ K ⊗A C

respecting W .
The equivalence

ι∗ : MFhW(DιX , A) ∼−→MFhW(DX , A)

is constructed componentwise:
The perverse sheaf and the weight filtration on X(C) are the pullbacks via ι :

X(C)→ ιX(C) of the perverse sheaf and the weight filtration on ιX(C).
The equivalence

ι∗ : ModDιX
∼−→ModDX ,

which by construction will respect holonomicity, comes about as follows:
Given a DιX–module N , we may form the inverse image (in the sense of sheaves

of abelian groups) ι−1N , which is a ι−1DιX–module. All we therefore need is an
isomorphism c∞ : ι−1DιX ∼−→ DX of sheaves of rings extending the isomorphism
c∞ : ι−1OιX ∼−→ OX given by complex conjugation of coefficients – we then define

ι∗N := ι−1N ⊗ι−1DιX DX .

Of course, the map c∞ is itself given by conjugation of coefficients: in local coordinates
x1, . . . , xn, we have

c∞

(
∑

α

fα∂
α
x

)
=
∑

α

(c∞◦fα◦ι)∂
α
x .

Altogether, we get

ι∗ : MFhW(DιX , A) ∼−→MFhW(DX , A) ,

which again behaves involutively.
Going through the definition, one checks that ι∗ induces

ι∗ : MHMA(
ιX)

∼−→MHMA(X) .

Using local embeddings as in [S2], 2.1, we can define ι∗ for any scheme X, which is
separated, reduced and of finite type over C. Furthermore, if X is defined over R, we
get an involution ι∗ on MHMA(X ⊗R C).
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Theorem A.2.3. Let X and Y be separated and reduced schemes of finite type over
C.

a) ι∗ is compatible with Hom, ⊗, and D: e.g., for M ·, N · ∈ DbMHMA(
ιX), we

have

HomX(ι
∗M ·, ι∗N ·) = ι∗HomιX(M

·, N ·) .

b) If π : X → Y is a morphism, then ι∗ is compatible with π!, π!, π∗, π∗: e.g., for
M · ∈ DbMHMA( ιX), we have

ι∗( ιπ)∗M
· = π∗(ι

∗M ·) ∈ DbMHMA(Y ) .

Proof. This follows from the definitions.

Definition A.2.4. a) Let a : X → Spec(R) be smooth and separated. The
category MHM∼A(X/R) consists of pairs (M,F∞), where M is an object of
MHMA(X ⊗R C), and F∞ is an isomorphism

M
∼−→ ι∗M

such that ι∗F∞ = F−1∞ .

By A.2.3.b), we have a!A(n) ∈ MHM∼A(X/R).

b) Let a : X → Spec(R) be smooth and separated. MHMA(X/R), the category
of algebraic mixed A–Hodge modules over R on X, is the full subcategory of
MHM∼A(X/R) of pairs (M,F∞) which are graded–polarizable: for any n ∈ Z,
there is a morphism

GrWn (M,F∞)⊗A GrWn (M,F∞) −→ a!A(−n)

in MHM∼A(X/R), such that the induced morphism

GrWn M ⊗A GrWn M −→ a!A(−n)

is a polarization in the sense of [S1], 5.2.10.

As in A.1.1, we identify the category of smooth objects in MHMA(X/R) with
VarA(X/R).

c) For an arbitrary separated and reduced scheme X of finite type over R, one
defines the category MHMA(X/R) using local embeddings as in [S2], 2.1.

Remark: a) As in the case of variations over R, we get a descent datum over R for
the bifiltered DX⊗RC–module underlying any Hodge module over R on a smooth and
separated scheme X over R.
b) As in [S2], (4.2.7), the category MHMA(Z/R), for any closed reduced subscheme
Z of X, is equivalent to the category of Hodge modules over R on X with support in
Z.
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Theorem A.2.5. There is a formalism of Grothendieck’s functors π!, π
!, π∗, π∗,

Hom, ⊗, D on DbMHMA(·/R). It is compatible with the forgetful functor

DbMHMA(·/R) −→ DbMHMA(· ⊗R C) .

Proof. By A.2.3, we may e.g. define

π!(M
·, F ·∞) := (π!M

·, π!F
·
∞) .

Definition A.2.6. Let X/R be separated, reduced and of finite type, and M · an
object of DbMHMA(X/R).

a) The absolute Hodge complex of X/R with coefficients in M · is

RΓHp(X/R,M
·) := RHomDbMHMA(X/R)(A(0)X ,M

·) .

b) Its cohomology groups

HiHp(X/R,M
·) := HiRΓHp(X/R,M

·)

are called absolute Hodge cohomology groups of X/R with coefficients in M ·.

c) We denote absolute Hodge cohomology with coefficients in Tate twists by

HiHp(X/R, n) := H
i
Hp(X/R, A(n)X) .

d) For a closed reduced subscheme Z of X with complement j : U →֒ X, we define
relative absolute Hodge cohomology with coefficients in Tate twists as

HiHp(X rel Z/R, n) := HHp(X/R, j!A(n)U ) .

Again, if X is smooth and of pure dimension d, and M · =M ∈MHMA(X), we have

HiHp(X/R,M) = Ext
d+i
MHMA(X/R)

(A(0)X [d],M) .

We have statements analogous to A.1.1–A.1.10 for the situation over R. For
reference, we note explicitly:

Theorem A.2.7. If X is smooth and separated over R, and n ∈ Z, then

RΓHp(X/R, n) and H ·Hp(X/R, n)

coincide functorially with the absolute Hodge complex and cohomology groups of [B1],
§ 7.

Next, we have
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Lemma A.2.8. Let X/R be separated, reduced and of finite type, and M · an object
of DbMHMA(X/R). Then the forgetful functor

DbMHMA(X/R) −→ DbMHMA(X ⊗R C)

induces functorial isomorphisms

RΓHp(X/R,M
·)

∼−→ RΓHp(X ⊗R C,M ·)+ ,
H ·Hp(X/R,M

·)
∼−→ H ·Hp(X ⊗R C,M ·)+ .

Here, the superscript + denotes the fixed part of the action of the involution ι∗ on

RHomDbMHMA(X⊗RC)(A(0)X⊗RC,M
·) .

In particular, the category MHS+A has cohomological dimension one since this is
true for MHSA. Furthermore, observe that the above action of Z/2Z on RΓHp(X ⊗R
C, A(n)X⊗RC) is precisely that of [B1], § 7.

Corollary A.2.9. Let X/R be separated, reduced and of finite type. The forgetful
functor

rat : MHMA(X/R) −→ PervA(X ⊗R C)

is faithful and exact.

Remark: Again we have

HiHp(X/R, A(n)X) = H
i
H(X/R, A(n)X)

if i ≤ n (i ≤ 2n if X is proper). We have natural morphisms

HiHp(X/R,R(n)X) −→ HiH(X/R,R(n)X) −→ HiD(X/R,R(n)X) ,

which are isomorphisms in the same range of indices.

We conclude with an explicit formula for Ext1 in MHMA(X/R) of a finite scheme
X/R.

Theorem A.2.10. For any H ∈MHS+A , there is a canonical isomorphism
(
W0HC/(W0HA +W0F

0HC)
)+ ∼−→ Ext1

MHS+
A

(A(0),H)

= H1Hp(Spec(R)/R,H) ,

where the superscript + on the left hand side denotes the fixed part of the de Rham–
conjugation

W0HC/(W0HA +W0F
0HC)

c∞−→ W0HC/(W0HA +W0F
0
HC)

= W0 ι
∗HC/(W0 ι

∗HA +W0F
0ι∗HC)

F∞−→ W0HC/(W0HA +W0F
0HC) .
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The isomorphism is given by sending the class of h ∈W0HC to the extension described
by the matrix

(
1 0
−h idH

)
.

This means that we equip C⊕HC with the diagonal weight and Hodge filtrations, and
the A–rational structure extending the A–rational structure HA of HC by the vector

1− h ∈ C⊕HC ,

thereby obtaining an extension E of A(0) by H in the category MHSA.
The conjugate extension ι∗E ∈ Ext1MHSA(A(0), ι∗H) is given, with the same

notation, by the matrix
(

1 0
−F∞(h) idι∗H

)
,

and the extension of F∞ to an isomorphism

F∞ : E
∼−→ ι∗E

sends 1− h to 1− F∞(h). Thus

(F∞)C = id⊕(F∞)C : C⊕HC −→ C⊕ ι∗HC .

Proof. Using [B1], § 1 or [Jn3], Lemma 9.2 and Remark 9.3.a), we see that there is
an isomorphism

W0HC/(W0HA +W0F
0HC)

∼−→ Ext1MHSA(A(0),H) .

Note that our normalization follows that of Jannsen, and therefore differs from that
of Beilinson by the factor −1.
In general, if h ∈W0HC corresponds to an extension E in MHSA, then c∞h ∈W0ι∗HC
corresponds to ι∗E, and its pullback via

F∞ : ι
∗H −→ H ,

is described by F∞c∞h. The action of the involution on Ext
1
MHSA(A(0),H) therefore

corresponds to F∞c∞ on the left hand side of the above isomorphism.

Corollary A.2.11. Let X/R be finite and reduced, and M ∈ MHMA(X/R). Then
there is a canonical isomorphism


 ⊕

x∈X(C)
W0Mx,C/(W0Mx,A +W0F

0Mx,C)



+

∼−→
A.2.10

Ext1
MHS+

A


A(0),

⊕

x∈X(C)
Mx




= H1Hp(X/R,M) .
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Proof. The last isomorphism is given by the observation that we have

MHMA(X) =
⊕

x∈X(C)
MHSA .

Corollary A.2.12. For X/R finite and reduced, and n ≥ 1, we have

 ⊕

x∈X(C)
C/(2πi)nA



+

∼−→ Ext1MHMA(X/R)(A(0)X , A(n)X)

= H1Hp(X/R, n) .

Here, the superscript + denotes the fixed part with respect to the conjugation on both
X(C) and C/(2πi)nA, and the isomorphism associates to (zx)x∈X(C) the extension,
whose stalk at x ∈ X(C) is given by the matrix

(
1 0

− 1
(2πi)n · zx 1

)
:

if e0 and en are the base vectors 1 ∈ F ⊂ C and (2πi)n ∈ (2πi)nA ⊂ C, then the
Hodge structure is specified by

F 0 := 〈e0〉C , W−2n ⊗A C = 〈en〉C ,

and the A–rational structure is generated by en and

e0 −
1

(2πi)n
· zxen .

Proof. This is A.2.11 and A.2.10, using the basis (en) of A(n).

B K-Theory of Simplicial Schemes and Regulators

We start with a presentation of K-theory (B.2.1) for simplicial schemes in terms
of generalized cohomology. Applied to a regular scheme, we get back its K-groups
(cf. B.2.3.a)). Next we define λ-operations on K-cohomology (cf. B.2.10). Motivic
cohomology of simplicial schemes, in particular relative motivic cohomology (B.2.11)
is introduced as graded pieces of the γ-filtration with respect to these λ-operations.
This discussion is based on the extremely useful (unfortunately unpublished) paper
[GSo1] by Gillet and Soulé. More often than not the results in B.1 and B.2 will be due
to them. The wish for a complete published reference made us go over the material
again. Meanwhile an alternative approach to K-theory of simplicial schemes and λ-
operations was also worked out by Levine [Le]. De Jeu was the first to use the setting
of [GSo1] to define motivic cohomology of simplicial objects. In his article [Jeu] he
proves Riemann-Roch in this setting. We give a more general version in B.2.18.
We then construct regulators (i.e., Chern classes) from K-cohomology to con-

tinuous étale cohomology (B.4) and to absolute Hodge cohomology (B.5) in this sit-
uation. Our main interest is the construction of a long exact sequence for relative
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K-cohomology of simplicial schemes as well as for their motivic cohomology which is
mapped to the corresponding long exact sequences in sheaf cohomology (B.3.8).
We would like to thank the referee for her or his competent and detailed comments

and corrections.

B.1 Generalized Cohomology Theories

We need a framework which is general enough to treat K-theory and the usual coho-
mology theories in parallel. It turns out such a framework is given by homotopical
algebra as axiomatized by Quillen in [Q1].
We define cohomology of spaces (=simplicial sheaves of sets) with coefficients in

another space (B.1.4). We then construct a long exact sequence for relative cohomol-
ogy in this context (B.1.6). Finally we deduce the spectral sequence relating general-
ized cohomology of a space to generalized cohomology of its components (B.1.7).
A systematic investigation of generalized cohomology for Grothendieck topologies

was carried out by Jardine, in particular [Jr2]. We recapitulate the definitions for the
convenience of the reader. A first introduction to the necessary simplicial methods is
[M].
We fix a regular affine irreducible base scheme B of finite Krull dimension. In

our applications B is either a field or an open subscheme of the ring of integers of
a number field. We fix a small category of noetherian finite dimensional B–schemes
which is closed under finite disjoint unions and contains all open subschemes of all
its objects. We turn it into a site using the Zariski topology. Typically this will be a
subcategory of all smooth schemes over the base B.
Let T be the topos of sheaves of sets on our Zariski site over B. Let sT be

the category of pointed simplicial T-objects. Its objects will be called spaces in the
sequel. We denote the final and initial object of sT by ⋆.
Remark: A space is given by a simplicial sheaf of sets X. and a simplicial map ι from
⋆ (the constant simplicial sheaf all of whose components are given by the constant
sheaf ⋆̃ attached to the set with one element) to X.. Equivalently we can consider it
as a simplicial object in the category of sheaves pointed by ⋆̃.
Let X be a scheme. We can also see it as an object of T. The corresponding

constant simplicial object pointed by a disjoint base point,

U 7→MorB(U,X) ∪ {⋆} for connected U ∈ T,

will also be denoted X.

Definition B.1.1. A space is said to be constructed from schemes if all components
are representable by a scheme in the site plus a disjoint base point.

Note that any simplicial scheme (whose components are schemes in the site)
gives rise to a space constructed from schemes but there are many spaces constructed
from schemes which do not come from simplicial schemes. The main example is the
mapping cone of a map of schemes taken in sT (cf. B.1.5 below).
If P is a property of schemes and if the space X is constructed from schemes, we

say X has P if the scheme parts of the components have P.
The easiest way to define the homotopy sets πn(X,x) of a simplicial set X with

basepoint x ∈ X0 is to take the homotopy sets of its geometric realization. πn(X,x)
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is a group for n ≥ 1, even abelian for n ≥ 2. If X is a space and K a finite simplicial
set (i.e., all Kn are finite), then we define the space X⊗K componentwise as the sum
of pointed sheaves

n 7→
∨

σ∈Kn
Xn .

Definition B.1.2 (Brown, Gersten, Gillet, Soulé). Let X be a space and f :
X → Y be a map of spaces.

a) f is called a weak equivalence if all stalks fP : XP → YP are weak equivalences of
simplicial sets, i.e., if fP induces an isomorphism on all homotopy sets for all
choices of base point.

b) f is called a cofibration if for all schemes U in T the induced map f(U) : X(U)→
Y (U) is injective.

c) f is called a fibration if it has the following lifting property: given a commutative
diagram

A −−−−→ X

i

y
yf

B −−−−→ Y

where i is a cofibration and a weak equivalence, there exists a map B → X that
makes the diagram commute.

d) For two spaces X and Y , let Hom.(X,Y ) be the pointed simplicial set

n 7→ HomsT(X ⊗∆(n), Y )

where ∆(n) is the standard simplicial n-simplex (e.g. [M] 5.4) pointed by zero.

This is the pointed version of the global theory discussed in [Jr2] §2.
Quillen’s notion of a closed model category axiomatizes the properties which

are needed in order to pass to a homotopy category which behaves similar to the
homotopy category of CW-spaces.

Proposition B.1.3 (Brown, Gersten, Joyal). sT is a pointed closed simplicial
model category in the sense of Quillen [Q1].

Proof. For a model category we need fibrations, cofibrations and weak equivalences
satisfying a set of axioms ([Q1] I Def. 1). This is [GSo1] Theorem 1. Gillet and
Soulé attribute this theorem to Joyal (letter to Grothendieck). For simplicial sheaves
a published proof of all properties can be found in [Jr2] Cor. 2.7. It is an abstract
non-sense fact that with the category of simplicial sheaves the category of pointed
simplicial sheaves is also a model category. It is pointed by ⋆. The simplicial structure
([Q1] II Def. 1) is given by B.1.2.d).
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Technical Remark: Note that the unique map ⋆ → X is always a cofibration,
i.e., all spaces are cofibrant. A space will be called fibrant if the unique map X → ⋆
is a fibration. If a space is fibrant, than its sections X(U) over a scheme U form
a simplicial set satisfying Kan’s extension condition (cf. [M] 1.3). However, this
property does not suffice to make X fibrant. Part of the proof of the proposition is
the existence of fibrant resolutions. In fact, the construction in [Jr2] Lemma 2.5 is
even functorial.
Let Ho(sT) be the homotopy category associated to the model category sT by

localizing at the class of weak equivalences. As usual we will write [X,Y ] for the
morphisms from X to Y in the homotopy category. If Y is fibrant, then this set is
given by the set of morphisms from X to Y in sT up to simplicial homotopy. For
general Y , we compute [X,Y ] by [X, Ỹ ] where Ỹ is a fibrant resolution of Y .
Remark: The category of pointed presheaves with the same notions as in B.1.2 is
also a pointed model category. By [Jr2], Lemma 2.6 the map from a presheaf to its
sheafification is a weak equivalence and we get the same homotopy category from
presheaves or sheaves.
If X is a space, then its suspension SX is given by X ⊗ ∆(1)/ ∼ where ∼ is

the usual equivalence relation generated by (x, 0) ∼ (x, 1). By [Q1] Ch. I 2, the loop
space functor Ω is right adjoint to S on the homotopy category.
There are two natural ways of thinking about Ho(sT). From the point of view of

algebraic topology it corresponds to the category of CW-complexes with morphisms
up to homotopy. From the point of view of homology theory it corresponds to the
category of homological complexes which are concentrated in positive degrees with
morphisms up to homotopy. S and Ω shift the complexes. This second point of view
is not quite precise - note that in general morphisms in Ho(sT) form pointed sets
rather than groups.

Definition B.1.4. For any space A we define cohomology of spaces with coefficients
in A by setting

H−msT (X,A) = [S
mX,A] for m ≥ 0 .

This is a pointed set for m = 0, a group for m > 0 and even an abelian group for
m > 1. If A belongs to an infinite loop spectrum, i.e., if there are spaces Ai for i ≥ 0
with A0 = A and weak equivalences Ai → ΩAi+1, then we also define cohomology
groups with positive indices by setting

Hn−msT (X,A) = [SmX,An] for m,n ≥ 0 .

Note that the set only depends on n−m because the suspension S and the loop
functor Ω are adjoint.

Definition B.1.5. Let f : X → Y be a map of spaces. Then the mapping cone of f
is the space

C(f) = X ⊗∆(1)∐ Y/ ∼

where ∼ is the usual equivalence relation of the mapping cone (i.e., (x, 1) ∼ f(x),
(x, 0) ∼ ⋆). For any map of spaces f : X → Y , we define relative cohomology by

H−msT (Y rel X,A) = H
−m
sT (C(f), A) .
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C(f) is the standard construction of the homotopy cofibre of a map.

Proposition B.1.6. For any morphism f : X → Y of spaces there is a long exact
cohomology sequence:

→ H−msT (Y,A)→ H−msT (X,A)→ H−m+1sT (Y rel X,A)→ H−m+1sT (Y,A) .

Proof. By [Q1] Ch. I 3 we have the above long exact sequence attached to the triple
of spaces

X
i−→ Y ′ −→ Y ′ ∨X ⋆

if i is a cofibration. The mapping cylinder of f is defined asX⊗∆(1)∨XY . It is weakly
equivalent to Y , and the induced mapping X → X⊗∆(1)∨X Y is a cofibration. The
mapping cone of f is nothing but the cofibre of this inclusion. Hence the long exact
sequence of the lemma is a special case of Quillen’s with Y ′ = X ⊗∆(1) ∨X Y .

If A is only a space, then the sequence will end at the index zero. There is no
reason for the last arrow to be right exact. The H0sT are only pointed sets. The
H−1sT are groups, all others are even abelian groups. However, if A is an infinite loop
spectrum, then all cohomology groups will be abelian groups and the sequence is
unbounded in both directions.
We will consider a couple of spectral sequences which are constructed by means

of homotopical algebra. Their differentials are

dr : E
p,q
r −→ Ep+r,q+r−1r .

We refer to this behaviour as homological spectral sequence as opposed to a cohomo-
logical spectral sequences with differentials

dr : E
p,q
r −→ Ep−r,q−r+1r .

In the same way as with the long exact sequences which involve pointed sets we
also have to be careful about our spectral sequences. They will be constructed by the
method of Bousfield-Kan (cf. [BouK] Ch. IX §§4-5). We refer to them as spectral
sequences of Bousfield-Kan type. We give an overview over their properties. They
look like this:

Ep,qr ⇒ Lq−p q ≥ p ≥ 0, r ≥ 1

with homological differentials.

Lq−p, Ep,qr =





are abelian groups if q − p ≥ 2;
are groups if q − p = 1;
are pointed sets if q − p = 0.

We have Ep,qr+1 = Kerd
p,q
r / im dp−r,q−r+1. (Treat non-existing Ep,qr as zero for this

formation.) By [BouK] IX 4.2.iv) this makes also sense for p = q. Let

Ep,q∞ = lim←−r E
p,q
r =

⋂

r>p

Ep,qr .
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There is a descending cofiltration Q∗ on the limit term Ln (i.e., QiL
n is a quotient of

Ln). Let

ep,q∞ = Ker
(
QpL

q−p −→ Qp−1L
q−p) .

In general, there will be an injection ep,q∞ −→ Ep,q∞ . Convergence is a more complicated
question. The spectral sequence stabilizes if all projective systems (Ep,qr )r>p become
eventually stable. Then we have complete convergence ([BouK] IX 5.3). Hence the
cofiltration on the limit term is exhaustive (lim←−QsL

n = Ln), and we have isomor-
phisms

ep,q∞
∼=−→ Ep,q∞ for p− q > 0.

Note that even then the case p = q has to be discussed separately. We refer to this
problem and more generally the fact that pointed sets rather then groups appear as
the fringe effect.

Proposition B.1.7. a) Let X and A be spaces. The filtration of X by its skeletons
sqnX induces a spectral sequence of Bousfield-Kan type for its A-cohomology

Ep,q1 = H
−q
sT (Xp, A)⇒ H

−(q−p)
sT (X,A) for q ≥ p ≥ 0 .

It converges completely if X is degenerate above some degree (i.e., if there is N
such that for n ≥ N , Xn is covered by the image of the degeneracy maps.).

b) If A is an infinite loop spectrum and X as in a), then we have a converging
homological spectral sequence

Ep,q1 = H−qsT (Xp, A)⇒ H
−(q−p)
sT (X,A) for p ≥ 0 .

Proof. This is the hypercohomology spectral sequence of [GSo1] 1.2.3. We sketch
their proof: We can assume A to be fibrant. We can construct a weak equivalence
X ′ → X such that skpX

′/skp−1X ′ ∼= SpXp. The Hom.(skpX
′, A) form a tower of

fibrations of simplicial sets converging to Hom.(X,A). The attached Bousfield-Kan
spectral sequence ([BouK] §4 -§5) has starting terms

Ep,q1 = πq−n Hom.(skpX
′/skp−1X

′, A)

= πq−pHom.(S
pXp, A) = H

−q
sT (Xp, A) .

This finishes the construction of the spectral sequence. In order to discuss convergence
we consider the same spectral sequence attached to X itself. It stabilizes by the
assumption on degeneracy (see [BouK] §5). Both spectral sequences agree from r = 2
on.
For b) we consider the spectral sequence in a) for each space in the spectrum. By
shifting q accordingly we get a direct system of spectral sequences whose limit is the
one we are interested in.

Remark: It would be much nicer to work with spectra and their homotopy category
throughout. It would be a triangulated category. It would help to get rid of the fringe
effects. However, the question of convergence of the spectral sequences does not get
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easier, the reason behind this being that all these spectral sequences are constructed
for some kind of homotopy limit, and projective limits are not exact. However, the
literature we want to use is in the setting of spaces. The reason is that we want to
use the λ-ring structure in order to define motivic cohomology and the λ-operators
do not deloop.

B.2 K-theory

We now introduce higher algebraic K–theory of spaces as a generalized cohomology
theory. It gives back usual K-theory in the case of regular schemes (B.2.3). We then
define λ-operators on these K-cohomology groups (B.2.10). This allows definition of
motivic cohomology of spaces as graded parts of the γ-filtration (B.2.11). We then
prove a Grothendieck-Riemann-Roch type theorem (B.2.18). As a consequence we
get a long exact localization sequence for motivic cohomology (B.2.19).
Recall that all schemes in the site underlying T are assumed to be noetherian

and finite dimensional.
Let K be the space Z×Z∞BGl where Z∞BGl is the simplicial sheaf associated

to the simplicial presheaf U 7→ Z∞BGl(U) = lim−→Z∞BGln(U). K is pointed by
0 × lim−→BGln(En). It is in fact part of an infinite loop spectrum. We also need the

“unstable” spaces KN = Z × Z∞BGlN . There are natural transition maps KN →
KN+1 → K. As K-groups commute with direct limits, the stalk of K in a point P
on U ∈ T is weakly equivalent to

KP ∼= Z× Z∞BGl(OP ) .

where OP is the stalk of the structural sheaf.
Remark: Even though it is well-known that K-theory is defined by a spectrum, it
is not completely trivial to define it as a functor from schemes to spectra (rather
than just a functor up to homotopy). We refer to [GSo2], 5.1.2 for the details of this
construction. For a different account of K-theory as a presheaf and its properties
(including the product structure) we also refer to Jardine’s book [Jr4].

Definition B.2.1 (Gillet, Soulé). For any space X in sT we define its K-
cohomology

H−msT (X,K) = [S
mX,K] for m ∈ Z

and the unstable K-groupsH−msT (X,K
N) for m ≥ 0. Following [GSo1] we call a space

K-coherent if lim−→H−msT (X,K
N )→ H−msT (X,K) for m ≥ 0 is an isomorphism.

Proposition B.2.2 (Brown). Let Kq be the sheafification of the presheaf Y 7→
H−qsT (Y,K). Let X be a scheme in T. There is a homological spectral sequence

Epq2 ⇒ H
−(q−p)
sT (X,K)

with

Epq2 = H
p
ZAR(X,Kq)

It converges completely.
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Proof. For q − p ≥ 0 this is the spectral sequence [GSo1] Prop. 2. The basic version
for the small Zariski site was constructed in [BrG] Theorem 3. Our generalization
follows from the proof of [Jr2] 3.4 and 3.5, which deals with the étale topology. The
key is to construct a Postnikov-tower for K. This is done as in in the proof of [BrG]
Thm 3. We then have to check that the homotopy sheaves of K are isomorphic to
the homotopy sheaves of the limit of its Postnikov-tower. It suffices to check this
for the small Zariski site Zar /Y for all schemes Y in T. Hence we are reduced to
the situation considered in loc. cit. Note that Y was assumed to be noetherian and
finite dimensional. We extend to arbitrary p, q using the full K-theory spectrum.
Convergence follows because X has finite cohomological dimension.

Remark: We could generalize the spectral sequence to arbitrary spaces X.
HpZAR(X,Kq) would have to be understood as in B.3. Convergence would not be
guaranteed anymore.

The most important application of this proposition is that it allows to transport
properties which are well-known for cohomology with coefficients in an abelian sheaf
to cohomology with coefficients in a space. One such property is the comparison
between different Zariski sites.

Proposition B.2.3 (Gillet, Soulé, de Jeu). a) Let X be a noetherian regular
finite dimensional scheme in the site. Then one has the equality H−msT (X,K) =
Km(X), where the right hand side means Quillen K-theory of the scheme X.
In particular, H−msT (X,K) = 0 for m < 0.

b) Let X be a space constructed from schemes. Assume that all components are
regular Noetherian finite dimensional schemes and that X is degenerate above
some simplicial degree. Then X is K-coherent.

Proof. The constant case is proved in [GSo1] 2.2.2 Prop. 5. We sketch a slightly
different argument: We use the converging Brown spectral sequence and comparison
theorems for sheaf cohomology to show that it suffices to prove the proposition in
the case of T = Zar/X. (Note that the existence of the whole spectrum means we
do not have to worry about fringe effects.) In this case we have a Mayer-Vietoris se-
quence for K-theory ([Q2] Rem. 3.5) and hence the presheaf defining K-cohomology
is pseudo-flasque in the sense of Brown and Gersten ([BrG] p. 285). By loc. cit.
Thm. 4 this implies a) for the site Zar /X.
The vanishing follows because the K-theory spectrum is connective. The general-
ization to spaces constructed from schemes using the skeletal spectral sequence was
carried out in [Jeu] 2.1 (1) and Lemma 2.1.

Corollary B.2.4. If X is a space meeting the conditions of part b) of the proposi-
tion, then its K-cohomology does not depend on the category of schemes underlying
the topos.

Proof. If X is constant, then we always get its K-theory. For more general X we
have to use the converging skeletal spectral sequence. There are no fringe problems
because K is an infinite loop spectrum.
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The direct sum of matrices (cf. [Lo] 1.2.4) together with addition on Z induces
a compatible system of maps

KN ×KN → K .

Our aim is to show that its direct limit defines an H-group structure on K. It will
be used to define addition on K-cohomology.

Lemma B.2.5. Let G,G′ be algebraic groups over Z, E a subgroup of G with E =
[E,E]. Let f1, f2 : G

′ → G be homomorphisms which differ by conjugation by a
global section of E. Then the induced maps

Z∞BG
′ f1,f2−−−→ Z∞BG

agree in the homotopy category of spaces.

Proof. The construction in [Lo] A.3. is functorial. Hence it yields a free homotopy η
between Bf1 and Bf2. By construction we get a commutative diagram

∆(1)× ⋆ η|∆(1)×⋆−−−−−→ Z∞BEy i

y

∆(1)× Z∞BG′ η−−−−→ Z∞BG .

The composition of η with d : Z∞BG → C(i) is a homotopy between df1 and df2.
Now it suffices to show that d is a weak equivalence, i.e., that Z∞BE is contractible.
This can be checked on stalks. As homotopy groups commute with direct limits it is
enough to show that Z∞BE(U) is contractible for all affine schemes U . We consider
the diagram

BE(U)
φ−−−−→ BE(U)+

y
y

Z∞BE(U)
Z∞(φ)−−−−→ Z∞BE(U)+ .

By definition of Quillen’s +-construction (see [Lo] ch. 1.1) φ induces an isomorphism
on homology. Hence Z∞(φ) is a weak equivalence ([BlK] Ch. I, 5.5). BE(U)+ is con-
tractible because [E(U), E(U)] = E(U) ([Lo] Proposition 1.1.7). Hence Z∞BE(U)+

is also contractible.

The standard application of this lemma is with G′ = Gln, G = Gl and E the
subgroup generated by elementary matrices (which contains all even permutation
matrices), see [Lo] 1.1.10.

Proposition B.2.6. The direct sum of matrices induces an H-group structure on
K.

Proof. The same proof as in [Lo] Theorem 1.2.6 allows to check the identities of an
H-space. On finite level, they hold up to conjugation with a permutation matrix.
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By the previous lemma this implies that they hold in the homotopy category. We
use that the transition maps KN → KN+1 are cofibrations in order to show that the
maps on finite level define one on K. For the existence of a homotopy inverse we
argue differently. An H-space is an H-group if and only if the shear map

K×K→ K×K , (k1, k2) 7→ (k1, k1 + k2)

is a weak equivalence. This can be checked on stalks. But the stalks of K are the
simplicial sets computing K-theory of local rings. They are H-groups with the same
addition by the affine case [Lo] 1.2.6.

Remark: We now have two H-group structures on K: the explicit one we just have
constructed and one because K is a loop space as part of a spectrum. We expect
them to be equal but have not been able to prove it. They certainly induce the same
addition on higher K-cohomology groups. On H0sT(X,K) they agree at least if X is
represented by a scheme because they do for K-theory of schemes. This is enough for
our needs. In the sequel the addition on K-cohomology is the one of the proposition.
The next aim is the definition of a multiplicative structure on K. We start with

the operation of Z on K. The H-group structure on K allows to define a map of
spaces

µZ : Z×K→ K .

It vanishes on Z× ⋆ ∨ ⋆×K and hence factors over Z ∧K.

The construction of the Loday product [Lo] 2.1.5

Z∞BGlN (U) ∧ Z∞BGlN (U)→ Z∞BGl(U)

is functorial in U . Together with the product µZ on the factor Z it defines a system
of maps

µK : K
N ∧KN → K

(compatible up to homotopy), which defines a product

[Y,K]× [Y,K]→ [Y,K]

for all K–coherent spaces Y . It turns all H−nsT (Y,K) for n ≥ 0 into a ring, possibly
without unity.
Remark: Note that this product on [Y,K] is zero on H−nsT (Y,K) for n > 0 (cf. [Kr]
Ex. 1 p. 243). The same map µK of spaces also induces a non-trivial product

[SnY,K]× [SmY,K]→ [Sn+mY,K] .

This is the one which is usually called Loday product. We do not need it in the sequel.
Let S0 be the simplicial version of the 0-sphere, i.e., the constant simplicial sheaf

associated to {0, 1} pointed by 0. We will use the notation K0(sT) for H0sT(S0,K).
It is a ring with unity where the ring structure is induced by the ring structure on Z.

Documenta Mathematica 3 (1998) 27–133



104 Annette Huber, Jörg Wildeshaus

Lemma B.2.7. If the site underlying T has a final object X, then

K0(X) ∼= K0(sT) .
Proof. If X is the final object of the site, then the space we denote by X is equal to
S0.

The following lemma generalizes an operation of K0(X) which was explained to
us by de Jeu in the case where Y is constructed from X–schemes.

Lemma B.2.8. Let Y be a space in sT. Then the ringK0(sT) operates onH
−n
sT (Y,K)

for n ≥ 0 and makes it into an K0(sT)-algebra.
Proof. If Y is a space in sT, then there is canonical isomorphism Y ∼= S0 ∧ Y . The
product α ∈ K0(sT) with β ∈ H−nsT (Y,K) is defined by the composition

Y −→ S0 ∧ Y α∧β−−−→ K ∧K µK−−→ K .

Lemma B.2.9 (Gillet, Soulé). Let G be a group over Z. Let RZ(G) be the
Grothendieck group of representations of G on free Z–modules of finite type.

a) Let A be an N -dimensional representation of G. There is a canonical class in
[Z × Z∞BG,K] which depends only on the equivalence class of A. The direct
sum of representations is mapped to the sum of classes.

b) The map in a) induces an algebra homomorphism

r : RZ(G)→ [Z× Z∞BG,K] .

Proof. We follow [GSo1] 3.2 or the affine case [Kr] 3. By choice of a basis of an
N -dimensional representation A induces a map of sheaves

A : G→ GlN

and hence by functoriality a map

r′(A) : Z∞BG→ {N} × Z∞BGlN → KN .

For different choices of basis the maps differ by conjugation with an element of α ∈
GlN . The matrix

(
α 0
0 α−1

)
is in the perfect subgroup E = [Gl,Gl] hence by Lemma

B.2.5 the image of r′(A) in [Z∞BG,K2N ] does not depend on the choice of matrix.
Viewed as map to K, this r′(A) extends to the factor Z using the above product µZ.
The last statement of a) follows by definition of the H-group structure on K.
For b) we have to check that the relations of the Grothendieck-group are mapped to
zero and that the multiplicative structure is well-behaved. We first prove the analogue
of [Kr] Theorem 3.1: The canonical maps

Gl

(
? 0
0 ?

)
←−−→ Gl

(
? ?
0 ?

)

induce weak equivalences of simplicial sheaves after applying Z∞B. This can be
checked on stalks and is hence reduced to the affine case. From now, the proof works
precisely as in the affine case, see [Kr] Cor. 3.2.
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K0(sT) is a λ–ring, i.e., the axioms in [Kr] Def. 4.1 are satisfied. If R is a
K0(sT)–algebra, then it is called a K0(sT)–λ–algebra if it is equipped with operators
λi for i ≥ 1 such that K0(sT)⊕R is a λ–ring (cf. [Kr] 5.). Note that λ0 has to have
the constant value 1. If R itself does not have a unity, then it cannot be a λ–ring.

Theorem B.2.10 (Gillet, Soulé). Let Y be a K–coherent space. For k ≥ 1 and
m ≥ 0 there are maps

λk : H−msT (Y,K) −→ H−msT (Y,K) .

They turn H−msT (Y,K) into a K0(sT)–λ–algebra.

Proof. This is essentially [GSo1] Prop. 8. Put G = Gln in the previous lemma. Let
Z̃n = [Znid] − [n · 1] ∈ RZ(Gln) where Znid is the canonical representation of Gln on
Zn and 1 is the trivial representation. We define λkn = r(λ

k(Z̃n)). By composition it
induces a map λkn : H

−m
sT (Y,K

n)→ H−msT (Y,K). These form a projective system and
hence define an operation on K–cohomology of a K–coherent space. Well-definedness
and all properties of a λ–ring are checked on the universal level (i.e., onKn for varying
n) and hence as in the affine case [Kr] Thm 5.1. For example, we want to show

λk(x+ y) =
k∑

i=0

λi(x)λj(y) .

Assume that x, y are represented by elements in [Y,Kn]. On RZ(Gln ×Gln) we have
the λ-ring identity

λk ◦
⊕
=

k∑

i=0

λi ⊗ λj .

We evaluate this identity in Z̃n and get an equality of elements in RZ(Gln × Gln).
By the previous lemma it induces the same equality of elements in [Kn × Kn,K].
Composed with (x, y) this is the required equality.

Remark: A more conceptual proof was suggested to us by Soulé and the referee.
One should use the integral completion functor constructed by Goerss and Jardine
[GoeJr]. It has a universal property similar to the one of the +-construction and
hence allows to copy directly Kratzer’s arguments.
Technical Remark: When we try to define λ0 in the same way, then we still get a
map

λ0 : Z∞BGlN −→ Z× Z∞BGl .

It does not extend to the factor Z because λ0 : Z → Z does not respect the base
point - in fact it maps 0 to 1. This reflects the fact that the ring K0(Y ) does not
have a unity for a general space Y . The most striking example is Y = C(i) where
i : Z → X is a morphism between regular schemes (cf. [Sou4] 4.3). Then K0(Y ) =
Ker (K0(X)→ K0(Z)) does not contain 1.
Gillet and Soulé ([GSo1] Prop. 8) consider the structure as a H0sT(Y,K)–λ–algebra.
This only makes sense if H0sT(Y,K) happens to have a unity. However, we can check
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in general that the operation of H0sT(Y,K) on H
−m
sT (Y,K) is compatible with the

K0(sT)–λ–algebra structure of both groups.
Note that the λ-structure is compatible with the contravariant functoriality of

K-cohomology. This means that the long exact sequences for relative K-theory are
compatible with the λ-operation where it is defined.
Once we have λ-operations we get as usual a γ-filtration and Adams-operators

on the λ-module HnsT(Y,K) for n ≤ 0. If the γ-filtration is locally finite, then we
have in particular the Chern character

ch : HnsT(Y,K)Q −→
⊕

j∈N0
Grjγ H

n
sT(Y,K)Q for n ≤ 0,

which is an isomorphism. For a quick survey cf. [T] pp. 117–123.

Definition B.2.11. Let Y be a K-coherent space. Suppose that the γ-filtration is
locally finite and hence that rationally K-cohomology splits into Adams-eigenspaces.
Then we put for j ≥ n/2

HnM(Y, j) = Gr
j
γ H

n−2j
sT (Y,K)Q ,

the motivic cohomology of the space Y . If i : X → Y is a morphism of spaces then
we define relative motivic cohomology by

HnM(Y rel X, j) = H
n
M(Cone(i), j) .

Remark: We restrict to this range of indices because we did not define Adams-
eigenspaces for K-cohomology with positive indices (=K-theory with negative in-
dices). However, if these K-groups vanish we can simply define the corresponding
motivic cohomology groups to be zero. This is the case if X is a regular scheme.
The long exact sequence for relative cohomology (B.1.6) together with the above

remarks on the λ-operation give a long exact sequence for relative motivic cohomology

→ H−mM (Y,A)→ H−mM (X,A)→ H−m+1M (Y rel X,A)→ H−m+1M (Y,A) .

Lemma B.2.12. Let X be a space degenerate above some simplicial degree. We
assume the conditions of the previous definition. Fix an integer j. There is a coho-
mological spectral sequence with starting terms

Es,t1 =

{
HtM(Xs, j) for s ≥ 0, 2j ≥ t,
0 else.

It converges to Hs+tM (X, j) for 2j ≥ s+ t.

Proof. Consider the skeletal spectral sequence B.1.7.a) with coefficients in the space
K. It reads

Ep,q1 = H−qsT (Xp,K)⇒ H
−(q−p)
sT (X,K)

for p ≥ 0. By carefully checking the construction of the spectral sequence, we see that
all differentials dp,qr are induced by functoriality in the first argument. Hence they
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are morphisms of λ-modules. For q − p ≥ 0 the limit terms are also λ-modules and
by construction the morphisms ep,q∞ → Ep,q∞ are compatible with this structure. They
are isomorphisms for q > p. Note, however, that we do not get enough information
on the limit terms on the p = q-line. Convergence only implies that ep,p∞ injects into
Ep,p∞ . We want to show that it is even a bijection. In order to see this we consider the
skeletal spectral sequence with coefficients in the spectrumK. The spectral sequences
agree where the first is defined, in particular convergence of the second spectral se-
quence implies our isomorphism. (There is an issue here with the H-group structure.
A priori the two spectral sequences use different group laws. But on all initial terms
they give the same addition and hence also on all higher terms.)
Now we take Adams-eigenspaces. By re-indexing s = p, t = −q + 2j we get a coho-
mological spectral sequence as stated. Note that we use the terms below the p = q-
diagonal to compute the terms on it but we do not consider their limit terms.

The same spectral sequence also shows that the conditions in the definition of
motivic cohomology hold if X is a space constructed from schemes and degenerate
above some degree.
The next thing we need is pushout at least for certain closed immersions and a

Riemann-Roch theorem. Over a field push-forward was defined by de Jeu in [Jeu] 2.2.
We adapt his method to more general bases and formalize the geometric situation.

Definition B.2.13. Let S be a regular irreducible Noetherian affine scheme. Let X
be smooth and quasi-projective over S. A finite diagram DX over X is a category
of finitely many smooth quasi-projective S-schemes with final object X such that all
MorDX (Y, Y

′) are finite sets and such that all morphisms in DX are of finite Tor-
dimension.
By the small Zariski site ZarDX we mean the category of all finite disjoint unions of
open subschemes of objects in DX with the induced morphisms between them. It is
equipped with the Zariski-topology. The corresponding topos will be denoted TX .

An easy case of such a diagram is a single morphism Y → X that meets the
conditions.
We consider the following situation: Let i : Z → X be a closed immersion of

smooth quasi-projective S-schemes and DX a finite diagram over X. We assume the
following conditions, corresponding to the ones formulated by de Jeu in [Jeu] 2.2:

(TC) For all X ′ in DX , the pullback X ′ ×X Z is S–smooth. If f : X1 → X2 is a
morphism in DX , then in the cartesian diagram

Z1 = X1 ×X Z −−−−→ X1

f×XZ
y

yf

Z2 = X2 ×X Z i−−−−→ X2

the maps f and i are tor-independent, i.e.,

TorkOX2 (OZ2 ,OX1) = 0

for k > 0. (Tork denotes the sheaf of tor-groups.)
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Lemma B.2.14. The pullback DZ of DX by Z satisfies the conditions for a finite
diagram over Z.

Proof. Finite Tor-dimension in DZ follows from Tor-independence and the same prop-
erty in DX .

Let Y. be a space in sTX . Let j : U → X be the open complement of Z in X.
Let Y.×X U be the pointed version of j!j∗Y., i.e., the sheaf associated to the presheaf

V 7→
{
Y.(V ) if V → U ⊂ X,
0 else.

It is a space in sTX . Let Y. ×X Z = i−1Y., a space in sTZ . If Y. is constructed from
schemes, then so are Y. ×X U and Y. ×X Z. The scheme components are given by
the base change with U or Z respectively. Note that i−1(Y.×X U) is empty, i.e., only
consists of the base point.

Proposition B.2.15 (de Jeu). Let i : Z → X be a closed immersion with open
complement U . Let DX be a finite diagram over X such that (TC) holds with respect
to i. Then for Y. ∈ sT:

a) There is a natural pushout map

HksTZ (Y. ×X Z,K) −→ HksTX (Y.,K) .

b) Let Y. be a space in sTX which is constructed from schemes. We assume that it
is degenerate above some simplicial degree. Then

Y. ×X Z = C(Y. ×X U ⊂ Y.)×X Z

and the pushout

HksTZ (Y. ×X Z,K) −→ HksTX (Y. rel Y. ×X U,K)

is an isomorphism.

Proof. For an object V of the site ZarDX let M(V ) be the category of all coherent
sheaves on V . In it let P (V,DX) be the subcategory of those sheaves F satisfying

TorjOV (OV ′ ,F) = 0

for all j > 0 and all V ′ → V in DX . Note that there are only finitely many conditions
as our diagram is finite. The nice thing about P (V,DX) is that it is contravariantly
functorial. Hence Quillen’s ΩBQP ( · ,DX) (loop space of the classifying space of the
Q-construction) defines a presheaf of simplicial sets on the site by [Q2] §7 2.5. It is
here where we use the fact that all schemes are quasi-projective. Let ΩBQP ′X be the
space in sTX defined by its sheafification. By Quillen’s Resolution Theorem ([Q2]
Thm 3, Cor 3, p. 27) there is a weak equivalence of spaces ΩBQP ′X → KX . (Basically
this is the fact that K ′-theory and K-theory agree for regular schemes.)
We also have the space ΩBQP ′Z in sTZ . For the closed immersion i : V ×XZ → V

the pushout i∗ is exact on the category of coherent sheaves. Because of (TC), it maps
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the the subcategory P (V ×Z,DZ) to P (V,DX). In fact we get a morphism of spaces
in sTX

i∗(ΩBQP
′
Z)

i∗−→ ΩBQP ′X .

Using the weak equivalences to K? this defines a map in the homotopy category

i∗(KZ)
i∗−→ KX .

If Y. is a space in sTX , then we get the map in a) as

HksTZ (i
−1Y.,KZ) −→ HksTX (i∗i

−1Y., i∗KZ) −→ HksTX (Y.,KX) .

In the special case of a scheme Y part b) is nothing but Quillen’s pushout isomorphism

Kn(i
−1Y ) −→ Kn(Y rel Y ×X U)

for regular schemes [Q2] §7 Prop. 3.2 (recall that all schemes in the site are regular).
This generalizes to the case of spaces constructed from schemes by the skeletal spectral
sequence.

Lemma B.2.16. Consider a cartesian diagram of smooth quasi-projective S-schemes

Z ′
i′−−−−→ X ′

fZ

y fX

y

Z
i−−−−→ X

where i is a closed immersion. Let DX be a finite diagram on X. Assume that the
pullback DX′ defines a finite diagram over X ′ and that both i and i′ satisfy (TC).
We also assume that for all V in DX the maps

V ×X X ′ −→ V

and

V ×X Z −→ V

are tor-independent.
Then for all spaces Y. in sTX there is a commutative diagram

HksTZ′ (f
∗
Zi
∗Y.,K)

i′∗−−−−→ HksTX′ (f
∗
XY.,K)

f∗Z

x
xf∗X

HksTZ (i
∗Y.,K)

i∗−−−−→ HksTX (Y.,K)

.

Proof. We have to refine the categories P (V,DZ) used in the proof of B.2.15 further.
Let P ′′(V,DZ) be the subcategory of P ′(V,DZ) of those coherent sheaves F satisfying

TorjOZ (OZ′ ,F) = 0 .
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The induced space ΩBQP ′′Z is again weakly equivalent to KZ . By [Q2] §7 2.11 there
is a commutative diagram of spaces in sTX

i′∗fX,∗ΩBQP
′
Z′ −−−−→ fX,∗ΩP ′X′x

x

i∗ΩBQP ′′Z −−−−→ ΩBQP ′X

.

This proves the lemma.

We also need the following lemma from algebraic geometry.

Lemma B.2.17. Suppose we are given a cartesian diagram

Z ′
i′−−−−→ X ′

y
yf

Z
i−−−−→ X

of smooth S-schemes where i is a closed embedding, then the blow-up of X ′ in Z ′ is
the base change by f of the blow-up of X in Z provided i and f are tor-independent.

Proof. In order to see this, note that by [EGAII] 3.5.3 we have to check that f∗(In) =
In ⊗OX OX′ is isomorphic to J n where I is the sheaf of ideals of Z in X and J the
one of Z ′ in X ′. This follows from tor-independence in the case n = 1. Note that in
general we have a surjection f∗In → J n. Let Kn be the kernel. Pull-back by f∗ is
right exact, i.e., we have an exact sequence

f∗I2 → J → f∗(I/I2)→ 0 .

Together with the above surjectivity this implies f∗(I/I2) ∼= J /J 2. As X respec-
tively X ′ are regular and Z respectively Z ′ are locally given by regular sequences, the
structural theorem [Ha] II Theorem 8.21A e) implies

f∗(In/In+1) ∼= J n/J n+1 .

By the snake lemma Kn+1 → Kn is surjective and hence f
∗(In/In+k) ∼= J n/J n+k

for all k. But then

J n ∼= lim←−J
n/J n+k ∼= lim←− f

∗In/ im f∗In+k ∼= lim←− f
∗In/J kf∗In ∼= f∗In .

Push-forward is not a λ-ring morphism but it does respect the γ-filtration up to a
shift, at least under good conditions. This is made precise in the following Riemann-
Roch Theorem, which is a slight generalization of de Jeu’s in [Jeu] 2.3. He considers
a special type of diagram and restricts to a base field. De Jeu imitates the proof in
[T] Theorem 1.1, which is over a field. However, his arguments work for our base as
well. Indeed, the original article [Sou4] Thm 3 treated the more general case.
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Theorem B.2.18 (Grothendieck-Riemann-Roch). Let S be a regular irre-
ducible Noetherian affine scheme S. Let i : Z → X be a closed immersion of
constant codimension d of quasi-projective smooth S-schemes. For ? = X,Z let
td(?) ∈ Gr∗γK0(?)Q be the usual Todd classes (e.g. [T] p. 135). Let a finite diagram
DX be given that satisfies the conditions (TC) with respect to i. Finally let Y. be a
space constructed from schemes in sTX .

a) The homomorphism i∗ : Kn(i−1Y.)Q → Kn(Y.)Q has degree −d with respect to
the γ-filtration, i.e.,

F jKn(i
−1Y.)Q

i∗−→ F j−dKn(Y.)Q .

b) The following diagram commutes:

Kn(i
−1Y.)Q

td(Z)ch−−−−−→ Gr∗γKn(i
−1Y.)Q

i∗

y
yi∗

Kn(Y.)Q
td(X)ch−−−−−→ Gr∗γKn(Y.)Q

Remark: td(?) is a unit with augmentation 1. Hence the horizontal maps in b) are
isomorphisms.

Proof. We essentially have to prove classical Riemann-Roch for the inclusion Z → X.
The conditions on our situation are chosen in a way that the diagrams we drag along do
not make any difficulties. Note also that we can replace Y. by the cone of Y.×U → Y.,
i.e., we can assume that all pushout maps are isomorphisms. Having observed this
we can follow de Jeu’s arguments in [Jeu] 2.3.
The first step is to prove the analogue of [T] Theorem 1.2 or [Jeu] Proposition

2.5 (“Riemann-Roch without denominators”). We only sketch the idea: Because
of functoriality B.2.16 and the homotopy property of K ′-theory we can make the
transformation to the normal cone. Hence we can assume without loss of generality
that i is a section of a projective bundle over Z. The existence of the projection
p which is a left-inverse of i allows to make explicit calculations. All details of the
argument can be found in [Jeu] 2.5 when replacing K0(Y0) (= K0(X0) there) by
K0(X) = K0(sTX). The necessary compatibility of blow-up and base change is
guaranteed by the previous lemma.
We then show that up to multiplication with the appropriate Todd class i∗ has

the required behaviour with respect to Adams eigenspaces. The argument is the same
as in [Jeu] Proposition 2.3 or [T] Lemma 2.2. Now the theorem follows by the same
formal manipulations as in the proof of [T] Lemma 2.3.

Corollary B.2.19. Let i : Z → X (closed immersion of constant codimension d)
and Y. be as in the theorem. Let U = X r Z. Then there is a natural localization
sequence

. . . −→ Km(Z ×X Y.)Q −→ Km(Y.)Q −→ Km(U ×X Y.)Q
−→ Km−1(Z ×X Y.)Q −→ . . .
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or in terms of motivic cohomology

. . . −→ Hi−2dM (Z ×X Y., j − d) −→ HiM(Y., j) −→ HiM(U × Y., j)
−→ Hi−2d+1M (Z ×X Y., j − d) −→ . . .

Proof. Part b) of Theorem B.2.18 implies that

i∗ :
⊕

j∈N0
GrjγKm(Y. rel Y. × U) −→

⊕

j∈N0
Grj−dγ Km(Y. × Z)

is an isomorphism, i.e., HiM(Y. rel Y. × U, j) ∼= Hi−2dM (Z ×X Y., j − d).
We consider the long exact sequence of relative K-cohomology or relative motivic
cohomology for the open embedding U × Y. ⊂ Y.. We can use i∗ to identify the
relative cohomology with cohomology of the closed complement.

Only a few K-groups are known. However, the ranks of the K-groups of number
fields are understood.

Theorem B.2.20 (Borel). Let K be a number field with ring of S-integers oS
where S is a finite set of primes of K. Let B = Spec oS. As usual r1 is the number of
real places of K and r2 the number of complex places. Then the motivic cohomology
has the following ranks:

H0M(B, 0) 1
H1M(B, 1) #S + r1 + r2 − 1
H1M(B,n) r2 n > 1, even ;
H1M(B,n) r1 + r2 n > 1, odd ;
HiM(B, j) 0 else .

Proof. The computation of K0(B) and K1(B) is classical ([Ba] Ch. IX, Prop. 3.2 and
Ch. X, Cor. 3.6). The higher K-groups for the ring of integers oK were calculated by
Borel ([Bo1], Prop 12.2). It follows from Quillen’s computation of the K-groups of
finite fields that the ranks are not changed by localizing at finite primes.

B.3 Cohomology of Abelian Sheaves

We now show how the usual cohomology theories fit in the set-up of generalized
cohomology. This is well documented in the literature [BrG], [G], [Jeu]. In the
case of a cohomology theory defined by a pseudo-flasque complex of presheaves F ,
we compare the different possible points of view. These are Zariski-cohomology of
the associated complex of sheaves, generalized cohomology of the associated space or
simply cohomology of the sections. We always get the same cohomology groups (B.3.2
and B.3.4). If the complex of presheaves F is part of a twisted duality theory (B.3.7),
we define Chern classes fromK–cohomology of spaces to cohomology with coefficients
in F . Finally we check compatibility of the localization sequence in K–cohomology
with the one for cohomology of spaces with coefficients in F (B.3.8).
By a complex we always mean a cohomological complex. Of course it can also

be considered as a homological complex by inverting the signs of the indices.
The Dold-Puppe functor [M] Thm 22.4 attaches to a complex of abelian groupsG

which is concentrated in non-positive degrees a simplicial abelian groupK(G) pointed
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by 0 whose homotopy groups πi(K(G), 0) agree with the cohomology groups h
−i(G).

It induces an equivalence between the homotopy category of simplicial abelian groups
and the homotopy category of complexes of abelian groups concentrated in non-
positive degrees. By construction of the functor K there is a natural weak equivalence
of spaces

Cone(K(G)→ ∗) −→ K(Cone(G→ 0)) = K(G[1])

and hence a natural map ΩK(G[1]) → K(G) in the homotopy category of pointed
simplicial sets, which is a homotopy equivalence. If G is an arbitrary complex of
abelian groups, let τ≤NG be the canonical sub-complex in degrees less or equal to N .
We put

K(G)N = K(τ≤NG[N ]) .

The natural map τ≤N−1G[N ]→ τ≤NG[N ] induces

K(G)N−1 ∼= ΩK(τ≤N−1G[N ]) −→ ΩK(G)N ,

which is a weak equivalence. This means the K(G)N form an infinite loop spectrum
whose homotopy groups reflect all cohomology groups of the complex.

Definition B.3.1. Let G be a cohomological complex of sheaves of abelian groups
on the big Zariski site. The sheafified version of the above construction yields an
infinite loop spectrum of spaces K(G) with

h−i(G) ∼= πi(K(G), 0)

where the right hand side is the sheafification of the presheaf

U 7→ πi(K(G)(U), 0) .

As a spectrum K(G) defines generalized cohomology groups with indices in Z for
any space X.

Proposition B.3.2. Let G be a bounded below complex of sheaves on the big Zariski
site. Let X be a scheme. Then

HisT(X,K(G)) ∼= HiZAR(X,G) .

Proof. As G is bounded below it has a bounded below resolution by flasque sheaves.
Now the proof proceeds as in [BrG] Prop. 2. The main ingredient is that K(I) is a
fibrant space if I is a flasque sheaf.

Definition B.3.3. a) Following [BrG], Sect. 2 a complex F of abelian presheaves
on the big Zariski site is called pseudo-flasque if it has the Mayer-Vietoris prop-
erty, i.e., for open subschemes U and V of some scheme X, we have a long exact
sequence of abelian groups

. . . −→ hi (F(U ∪ V )) −→ hi (F(U)⊕F(V )) −→ hi (F(U ∩ V ))
−→ hi+1 (F(U ∪ V )) −→ . . .
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More precisely, the square

F(U ∩ V ) −−−−→ F(U)
y

y

F(V ) −−−−→ F(U ∪ V )
is homotopically cartesian.

b) Let F be a complex of abelian presheaves. For the object ⋆∐ U in T where U
is a scheme, we put

F(⋆∐ U) = F(U) .

Let X be a space constructed from schemes. Then we put

F(X) = Toti F(Xi) .

the total complex of the cosimplicial complex F(Xi)i∈N0 .
Taking the total complex of a bicomplex as in b) of course involves a choice of

signs which we fix once and for all. Different choices of signs differ by a canonical
isomorphism of the total complex.

Lemma B.3.4. Let F be a bounded below pseudo-flasque complex of abelian
presheaves. Let F̃ be its sheafification. Then

HisT(X,K(F̃)) = hi(F(X))

for all spaces X constructed from schemes.

Proof. Let I be a (bounded below) flasque resolution of F̃ . This is in particular a
pseudo-flasque complex of presheaves that is quasi-isomorphic to F as a complex of
presheaves because both compute Zariski-cohomology of F̃ . As in the proof of [BrG]
Theorem 4, the simplicial sheaf K(I) is a fibrant resolution of K(F̃). Hence we can
assume without loss of generality that F itself is a complex of flasque sheaves.
For the case of a scheme X the lemma is the reformulation of [BrG] Theorem 4 in the
easier case of simplicial presheaves that come from a complex of abelian presheaves.
In the general case

HisT(X,K(F̃)) = π−iHom.(X,K(F̃))
= π−iHom.(hocolimXj ,K(F̃))
= π−i holimHom.(Xj ,K(F̃)) [BouK] XII Prop. 4.1

= hi(TotF(Xi)) = hi(F(X)) .

This means if we define a cohomology theory by a pseudo-flasque complex of
presheaves on the big Zariski site we can freely change from the point of view of
generalized cohomology to ordinary Zariski-cohomology or cohomology of the sections
of the presheaf.
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If X → Y is a morphism of schemes, we consider as usual its Čech-nerve
cosk0(X/Y ), i.e., the simplicial Y -scheme given by

cosk0(X/Y )n = (X ×Y · · · ×Y X) n+ 1-fold product

with the natural boundary and degeneracy morphisms.

Definition B.3.5. We say that a morphism X → Y of schemes has cohomological
descent for the cohomology theory given by the complex of abelian Zariski-sheaves G
if the natural morphisms

HisT(Y,K(G)) −→ HisT(cosk0(X/Y ),K(G))

are isomorphisms for all i ∈ Z.
This is of course a very special case of the general notion of cohomological descent.

Lemma B.3.6. Let j : U → X be an open immersion with closed complement Y .
Let F be a pseudo-flasque complex of presheaves on ZARX with sheafification F̃ .
a) There are natural isomorphisms

HisT(X rel Y,K(F̃)) −→ HiZAR(X, j!j
∗F̃)) .

b) If Ỹ → Y is a morphism with cohomological descent for F̃ , then we get a natural
isomorphism

HisT(X rel cosk0(Ỹ /Y ),K(F̃))
∼=−→ HiZAR(X, j!j

∗F̃) .

Proof. By B.3.4 the left-hand side of a) is canonically isomorphic to the cohomology
of

F(C(Y i−→ X)) ∼= Cone
(
F(X) F(i)−−−→ F(Y )

)
[−1]

where the right hand side is the cone in the category of cohomological complexes. We
assume without loss of generality that F̃ is a flasque complex. The key point is the
short exact sequence of complexes of sheaves on X

0 −→ j!j
∗F̃ −→ F̃ −→ i∗i

∗F̃ −→ 0 .

It induces a canonical quasi-isomorphism of complexes

j!j
∗F̃ −→ Cone

(
F̃ → i∗i

∗F̃
)
[−1] .

We now take RΓZar(X, · ) of the right-hand side. Because F was assumed to be
pseudo-flasque the morphism

Cone (F(X)→ F(Y )) −→ Cone
(
F̃(X)→ F̃(Y )

)
.

is a quasi-isomorphism. This last fact follows from B.3.4 and B.3.2. (Of course it can
also be proved, even more easily, in terms of complexes of abelian groups rather than
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simplicial abelian groups.) In the case of a morphism Ỹ → Y with cohomological
descent the left hand side of the statement is by B.3.4 given by the cohomology of

Cone
(
F(X)→ F(cosk0(Ỹ /Y )

)
[−1] .

The natural morphism F(Y ) −→ F(cosk0(Ỹ /Y )) is a quasi-isomorphism by definition
and Lemma B.3.4.

Theorem B.3.7 (Gillet, de Jeu). Let F = ⊕i∈Z F(i) be a pseudo-flasque com-
plex of abelian presheaves on the big Zariski site. Assume that F defines a twisted
duality theory, i.e., the extra data of [G] Def. 1.1 exist and all conditions of loc. cit.
Def. 1.2 are fulfilled. Then:

• There are Chern class maps of spaces

cj : K −→ K(F̃(j)[2j]) .

They induce morphisms

cj : H
i
sT(Y,K) −→ Hi+2jsT (Y,K(F̃(j)))

for all spaces Y in sT.

• If Y is a K-coherent space, then the total Chern class cΓ is a morphism of
λ-algebras on K–cohomology of Y .

• Let i : Z → X a closed immersion of smooth S–schemes with open complement
U . The map i! : i∗F(r) |Z→ F(r + d) |X [2d] required in [G] Def. 1.2. induces
push-forward on generalized cohomology. If Y. is a space over X as in B.2.18,
then the diagram

GrjγKn(Y. ×X Z)Q
i∗−−−−→ Grj+dγ Kn(Y.)Q

cj

y
ycj+d

H2j−nsT (Y. ×X Z,K(F̃(j)))Q i!−−−−→ H2j+2d−nsT (Y.,K(F̃(j + d)))Q
is commutative.

Proof. The construction of the Chern classes is [G] Thm 2.2. Gillet’s formulation is
for schemes but he constructs in fact a morphism of spaces (loc. cit. p. 225) so the
results hold for more general spaces (see also [GSo1] 4.1). The assertion on the λ-ring
structure is [GSo1] Thm. 7. We sketch the idea: Everything is defined on the level
of coefficients, so it does not depend on Y . Compatibility with multiplication is [G]
2.3.2. Compatibility with γ-operators can be checked on the level of universal Chern
classes, i.e., for elements Ci,N ∈ H2isT(BGln, F̃(i)). Now use the splitting principle
([G] 2.4).
The last part of the proposition is a generalization of Gillet’s Riemann-Roch Theorem
[G] 4.1 to spaces of our special type. The proof carries over by the same method as in
the proof of Riemann-Roch for K-cohomology B.2.18. Mutis mutanda the statement
can be found in [Jeu] Lemma 2.13.
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Remark: This will allow to define regulator maps from K-cohomology to the coho-
mology theories we are interested in.

Corollary B.3.8. Let X, Z, d, Y. and F be as in the theorem. In addition assume
that F is pseudo-flasque. Let U be the complement of Y in X. We abbreviate
YU = Y. ×X U , YZ = Y. ×X Z and Fj = K(F̃(j)). Then there is a natural morphism
of long exact sequences

Hi−1M (YU , j) −−−−→ Hi−2dM (YZ , j − d) −−−−→ HiM(Y., j) −−−−→ HiM(YU , j)y
y

y
y

Hi−1sT (YU , Fj)−−−−→ Hi−2dsT (YZ , Fj−d) −−−−→HisT(Y., Fj)−−−−→HisT(YU, Fj)

=

y =

y =

y =

y

hi−1F(j)(YU )−−−−→hi−2dF(j − d)(YZ)−−−−→ hiF(j)(Y.)−−−−→ hiF(j)(YU )

Proof. We start with the long exact sequences for relative cohomology (B.1.7) with
coefficients in the spectrum K and in the spectrum K(F̃). Their compatibility is
nothing but functoriality. Relative cohomology is replaced by cohomology of Y.×X Z
using B.3.7. Finally we pass to graded pieces of the γ-filtration. Note that the indices
in the definition of motivic cohomology are chosen in a way that they agree with the
indices of other cohomology theories under Chern class maps. Equality of the last
two lines is B.3.4

Note that the last line has nothing to do with generalized cohomology or spaces.

B.4 Continuous Etale Cohomology

There are different ways of defining continuous étale cohomology. We will see that
they all give the same thing.
Fix a number field K and a prime l. Let B be an open subscheme of Spec oK [1/l]

where oK is the ring of integers of K.

Proposition B.4.1 (Deligne, Ekedahl). Let f : Y → X be a morphism of B-
schemes of finite type. Then there are triangulated categoriesDbc(X−Zl) and Dc(Y −
Zl) admitting the following: there is a t-structure whose heart are the constructible
l-adic systems. There are functors

f!, f∗ : D
b
c(Y − Zl) −→ Dbc(X − Zl)

and

f∗, f ! : Dbc(X − Zl) −→ Dbc(Y − Zl)

having all the usual properties of Grothendieck functors.

Proof. This is [Ek] Thm 6.3. In the case B = Spec oK [1/l] the category was already
constructed in [D4], 1.1.2.
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Remark: Dbc(X − Zl) should be thought of as the bounded derived categories of
constructible l-adic sheaves on Xet. By Ekedahl’s construction D

b
c(X − Zl) is a sub-

category of a localization of a subcategory of the derived category of the abelian
category (Xet)

N−Zl. By this notation Ekedahl means the category of projective sys-
tems of étale sheaves on X ringed by the projective system Z/ln. The four functors
are defined on the level of this last derived category. Ekedahl then shows that they
induce well-defined functors on Dbc(X − Zl). In the case B open in Spec oK [1/l], we
get away with Deligne’s more straightforward construction.

Definition B.4.2 (1. Version). a) For k ∈ Z let Zl(k) be the constructible l-adic
sheaf on B given by the projective system µ⊗kln .

b) We define continuous étale cohomology of s : X → B by

Hicont(X, k) = HomDbc(X−Zl)(s
∗Zl(0), s

∗Zl(k)[i]) .

c) If j : U → X is an open immersion with complement Y we define relative contin-
uous étale cohomology by

Hicont(X rel Y, k) = HomDbc(X−Zl)(s
∗Zl(0), j!(s ◦ j)∗Zl(k)[i]) .

d) More generally, let M be an object of Dbc(X − Zl). We define continuous étale
cohomology of X with coefficients inM as

Hicont(X,M) = HomDbc(X−Zl)(s
∗Zl(0),M[i]) .

This definition allows to derive all the usual spectral sequences from the calculus
of the Grothendieck functors.
Remark: As checked in [H2] §4 this definition coincides with Jannsen’s original one
in [Jn1] sect. 3. In our case continuous étale cohomology with coefficients in a
constructible l-adic sheaf (F̃n)n is nothing but the naive lim←−H

n
et(X, F̃n) because all

Hnet(X, F̃n) are finite.
Let us now define continuous étale cohomology in a way that fits in with the

setting of the previous section.

Definition B.4.3 (2. Version). Consider the projective system of sheaves(
µ⊗kln

)
n∈N on the big étale site over B. Let I be an injective resolution in the

category of projective systems. It is given by a projective system In of injective res-
olutions of µ⊗kln on the big étale site with split surjective transition morphisms ([Jn1]
1.1). By taking sections we get a projective system of complexes of Zariski-presheaves
RΓ
(
µ⊗kln

)
n∈N. The functor R lim←− turns it into a complex Fl(k) of Zariski-presheaves.

For any space X put

Hicont(X, k) = H
i
sT(X,K(F̃l(k))) .

In particular if ι : Y → X is a morphism of spaces, then we put

Hicont(X rel Y, k) = H
i
sT(C(ι),K(F̃l(k))) .
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Lemma B.4.4. If X is a B-scheme, then both versions of the definition of continuous
étale cohomology agree canonically. If Z → X is a closed immersion, then the same
is true for both definitions of relative continuous étale cohomology.

Proof. Fl(X) is nothing but an explicit version of the derived functor R lim←−RΓ(X, · )
from the derived category of projective systems of étale sheaves to the derived category
of abelian groups. Hence the complex Fl(X) computes the first version of continuous
étale cohomology. In particular it has the Mayer-Vietoris property. Hence we can
apply the lemmas of the previous section (B.3.4) and get

HisT(X,K(F̃l)) = hi(Fl(X)) .

To extend the result to relative étale cohomology we use essentially the same
argument as in B.3.6.b).

Remark: When we say that the isomorphism is canonical, we think in particular of
the following situation: The cartesian diagram of schemes

U ′
j′−−−−→ X ′

i′←−−−− Y ′
y f

y
y

U
j−−−−→ X

i←−−−− Y
x g

x
x

U ′′
j′′−−−−→ X ′′

i′′←−−−− Y ′′

(f , j open, g, i closed complements) induces a map

Hicont(X rel Y, n)
f∗−→ Hicont(X

′ rel Y ′, n) ,

which is compatible with the identification. If all schemes are smooth and X ′′ inter-
sects Y transversally, then we also get the same long exact sequence

· · · → Hi−2dcont (X
′′ rel Y ′′, n− d)→ Hicont(X rel Y, n)→ Hicont(X

′ rel Y ′, n)

→ Hi+1−2dcont (X ′′ rel Y ′′, n− d)→ · · ·

using either definition of relative cohomology.

Lemma B.4.5. If Ỹ → Y is a proper covering (i.e., a proper and surjective map),
then it has cohomological descent for continuous étale cohomology. In particular if
Y → X is a closed embedding and Ỹ a proper covering of Y , then there is a natural
isomorphism

Hicont(X rel Y, j) −→ Hicont(X rel cosk0(Ỹ /Y ), j)

where the right hand side is taken in the sense of spaces.

Proof. Cohomological descent is a consequence of the same descent for étale coho-
mology with torsion coefficients prime to the characteristic of the schemes ([SGA4,II],
Exp. Vbis, 4.1.6). By B.3.6.b) the second part follows.

Documenta Mathematica 3 (1998) 27–133



120 Annette Huber, Jörg Wildeshaus

Proposition B.4.6. On the Zariski site of smooth schemes over B, the presheaf
F̃l has the properties of a twisted duality theory. There are regulator maps from
K-cohomology to continuous étale cohomology

HiM(Y, j) −→ Hicont(Y, j)

for all K–coherent spaces Y . They are compatible with pullback, i.e., if f : Y → Y ′

is a map of K–coherent spaces, we get commutative diagrams

HiM(Y
′, j)

f∗−−−−→ HiM(Y, j)

cj

y
ycj

Hicont(Y
′, j)

f∗−−−−→ Hicont(Y, j)

.

If i : Z → X is a closed immersion of smooth schemes (constant codimension d) with
open complement U and Y. a space constructed form schemes over X as in B.2.18,
then the regulator is compatible with pushout, i.e., the diagram

Hn−2dM (Y. ×X Z, j − d) i∗−→ HnM(Y., j)

cj−d

y
ycj

Hn−2dcont (Y. ×X Z, j − d)
i!−→ Hncont(Y., j)

is commutative.

Proof. We restrict to smooth schemes for simplicity. We have to define the extra-
structure from [G] 1.1 and 1.2. We put

Hi(X, j) = H
2d−i
cont (X, d− j)

for a d-dimensional smooth connected scheme. Pull-back on cohomology and pushout
on homology are induced from the functors on sheaves on the étale site. We do not
work out the details. For a single étale sheaf µln this is actually one of Gillet’s
examples 1.4 (iii).

There is really only one case when this regulator is understood.

Lemma B.4.7. Let K be a number field, oK be its ring of integers and l a prime.
Assume 2i− k ≥ 2, then Soulé’s l-adic regulator

K2i−k(oK [1/l])⊗ Zl −→ Hkcont(Spec oK [1/l], i)

agrees with the one obtained from Prop. B.4.6.

Proof. Put A = oK [1/l]. Soulé’s definition in [Sou2] is the composition

K2i−k(A) −→ lim←−K2i−k(A,Z/l
ν)

lim←− ci,k−−−−→ lim←−H
k
et(A,Z/l

ν(i))
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where ci,k is as in [Sou1] II.2.3. There is a natural map of presheaves Fl(i) →
RΓ( · ,Z/lν(i)). Hence in Gillet’s definition of Chern classes, we get a commutative
diagram

K2i−k(A)
ci−→ Hkcont(SpecA, i)

ց
y

Hket(SpecA,Z/l
ν(i)) .

Hence we only have to consider finite coefficients. Furthermore in this simple case of
a regular commutative ring, we do not really need to consider the sheafified versions
and generalized cohomology. Gillet’s construction boils down to a composition of the
Hurewicz-map with universal Chern classes.
For 2i − k ≥ 2, the map ci,k is defined by the same type of composition ([Sou2] II
2.3.) with the same universal Chern classes.
By the definition of K-theory with coefficients, we have a commutative diagram (loc.
cit. II.2.2) with X = Z∞BGl(A):

−−−−→ πn(X)
×lν−−−−→ πn(X) −−−−→ πn(X,Z/l

ν) −−−−→

h

y h

y
yhq

−−−−→ Hn(X,Z)
×lν−−−−→ Hn(X,Z) −−−−→ Hn(X,Z/q) −−−−→ .

For the prime 2 compare also [We].

Theorem B.4.8 (Soulé). Let K be a number field, oK be its ring of integers and l
any prime. Let S′ be a finite set of prime ideals of oK and S = S′ ∪ {l}. Let oS be
the localization of oK at S. The regulator map

cj : H
i
M(Spec oS′ , j)⊗Q Ql −→ Hicont(Spec oS , j)Q

is always injective and an isomorphism for i = 1 and j > 1. We have the following
behaviour for pairs of indices (i, j):

(0, j) j ∈ Z isomorphism
(1, j) j < 1 mot. coh. vanishes, l-adic does not in general
(1, 1) injective of finite codimension
(1, j) j > 1 isomorphism
(2, j) j < 1 conjectured to be isom., i.e., etale coh. to vanish
(2, 1) injective of finite codimension
(2, j) j > 1 isomorphism, i.e., both vanish
(i, j) else both vanish

Proof. We have

Hicont(Spec oS , j)Q = H
i(GS ,Ql(j))

where GS is the Galois group of the maximal extension of K that is unramified
outside of S. We first check that these groups vanish for i > 2: By [Mi] I Cor. 4.15
all Hi(GS , µ

⊗j
ln ) are finite. This means that the projective systems for varying n are
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Artin-Rees. We do not get a lim←−
1-contribution to continuous cohomology. Moreover,

by loc. cit. I. 4.10.c) the Hi(GS , µ
⊗j
ln ) for i ≥ 3 are 2-torsion. This implies that their

projective limit is 2-torsion. In total we have vanishing cohomology Hi(GS ,Ql(j))
for i ≥ 3.
The case i = 0 is trivial. H1(GS ,Ql(1)) = ES ⊗Ql where ES are the S-units, while
H1M(Spec oS′ , 1) = o

∗
S′⊗Ql. ForH2(GS ,Ql(1)) (the S-Brauer-group) the codimension

is the same as in the (1, 1)–case by Euler-Poincaré duality (cf. the discussion in
[Jn2] Lemma 2 and Cor. 1.). In the remaining cases, neither motivic (B.2.20) nor
continuous étale cohomology ([Jn3] Lemma 4) is changed by the inversion of S′, at
least up to torsion. We assume S′ = ∅. For odd l, the cases (1, j) and (2, j) for
j > 1 are Soulé’s result in [Sou2] Theorem 1. Note that we are in the range where
the previous lemma applies.
For l = 2, we have to refine the argument. On the level of Q2-coefficients we may, by
Galois descent, assume that K contains

√
−1 – note that the only prime which could

possibly ramify in this quadratic extension has been inverted, and hence we get an
étale extension of rings. By [DwF], Theorem 8.7 and the succeeding remark, we have
surjectivity even for l = 2.
To conclude, we need to show that the Q2-vector spaces have the right dimension.
Let j > 1. By [Jn2], proof of Lemma 1, the dimension of

Hicont(Spec oK [1/2], j)Q

equals the corank of

Hicont(Spec oK [1/2],Q2/Z2(j)) .

By [Sou3], 1.2 and Proposition 2, this corank, for i = 1, equals the rank of the
K–group if and only if

H2cont(Spec oK [1/2],Q2/Z2(j))

is torsion. This in turn follows from [We], Theorem 7.3.

Finally we want to discuss Soulé’s elements in K-theory with coefficients. Every-
thing is in the setting of simplicial sets and spectra in the usual sense. Generalized
cohomology does not enter. Let Σ be the sphere spectrum and lr a prime power. By
definition of the Moore spectrum there is a cofibration sequence

Σ
lr−→ Σ ilr−→Mlr

jlr−−→ SΣ .

Recall that for the ring of integers in a number field A

Kn(A,Zl) = lim←−Kn(A,Z/l
ν) = lim←−πn(K ∧Mlν ) .

The Moore spectrum has a unique product for l > 2. For l = 2, r ≥ 2 there are two
projective systems of regular product structures on Mlr ([O], Theorem 2 (a), (b)
and Lemma 5). Together with the product structure on K this defines a product on
K∗(A,Zl) for l ≥ 2.
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For d ≥ 2, we define R = Z(µd, 1/dl). Recall ([Sou2], Lemma 1, [Sou5], 4.1–4.3)
Soulé’s construction of maps

ϕl : primitive elements of µd −→ K2n+1(R,Zl) = K2n+1(R)⊗Z Zl .

The original statement is for odd primes l, but using the above 2-adic product the
construction works without any changes for l = 2. For a primitive d-th root of unity
ω, choose some (αr)r≥1 ∈ lim←−µdlr satisfying α

l
1 = ω. Let (βr)r≥1 ∈ lim←−K2(R,Z/l

r)

be the projective system of Bott elements with j2r (βr) = αr ∈ K1(R). Using the
formalism of norm compatible units developed in [Sou2], one lets ϕl(ω) denote the
projective system

(
Nr((1− αr) ∪ (βdr )∪n)

)
r
∈ lim←−K2n+1(R,Z/l

rZ) .

Remark: It is not clear to the authors whether the 2-adic Soulé elements depend on
the choice of product on the Moore spectrum. By [O] pp. 263–264, the difference
between the two regular products µ and µ′ on M2r is given by

M2r ∧M2r j2r∧j2r−−−−−→ SΣ ∧ SΣ η2−→ Σ i2r−−→M2r .

Lemma B.4.9. Let ζ be a root of unity and n ≥ 0. The restriction map from
H1cont (Q(ζ),Ql(n+ 1)) into

H1cont (Q(µl∞ , ζ),Ql(n+ 1))
Gal(Q(µl∞ ,ζ)/Q(ζ))

=


 lim←−
r≥1

(
H1cont (Q(µl∞ , ζ), µlr )⊗ µ⊗nlr

)
⊗Zl Ql



Gal(Q(µl∞ ,ζ)/Q(ζ))

=


 lim←−
r≥1

(
Q(µl∞ , ζ)

∗/(Q(µl∞ , ζ)
∗)l

r ⊗ µ⊗nlr
)
⊗Zl Ql



Gal(Q(µl∞ ,ζ)/Q(ζ))

is injective.

Proof. Note that the argument given in the discussion preceding [WiIV], Theorem
4.5 is incorrect since the transition maps

H1cont

(
Q(µlm , ζ), µ

⊗(n+1)
lr

)
−→ H1cont

(
Q(µlm+1 , ζ), µ

⊗(n+1)
lr

)

are in general not injective. The kernel of the restriction map is given by

H1cont (Q(µl∞ , ζ)/Q(ζ),Ql(n+ 1)) .

Since [Q(µl, ζ) : Q(ζ)] is prime to l, we have to show that

H1cont (Q(µl∞ , ζ)/Q(µl, ζ),Zl(n+ 1))

is torsion. But the Galois group G of Q(µl∞ , ζ)/Q(µl, ζ) is isomorphic to Zl, and
hence its first cohomology equals the functor of coinvariants. Our claim follows since
n ≥ 0.
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Proposition B.4.10. Let ζ be a fixed d-th root of unity. The l-adic regulator

rl : K2n+1(R)⊗Z Ql → H1cont(Q(µd),Ql(n+ 1))

takes ϕl(ζ
b) to the cyclotomic element in continuous Galois cohomology


 ∑

αlr=ζb

[1− α]⊗ (αd)⊗n


r

(in the description of the last lemma) defined by Soulé and Deligne (cf. [Sou2], page
384, [D5], 3.1, 3.3).

Proof. If l is odd, then this is [Sou1], Théorèmes 1 and 2. For l = 2 the same is true
using the properties of the 2-adic regulator (see [We]).

B.5 Absolute Hodge Cohomology

Let B = SpecC or B = SpecR in this section.

In A.1.9 a definition of absolute Hodge cohomology and relative cohomology for
general varieties over C was given. The variant over R was A.2.6.

By A.1.10 resp. A.2.7 absolute Hodge cohomology of smooth varieties is given
functorially by Beilinson’s complexes RΓHp( · /B, n).
Lemma B.5.1. These form a pseudo-flasque complex of presheaves on the Zariski site
of smooth B-schemes.

Proof. By construction [B1] they form a presheaf on pairs (U,U) where U is a com-
pactification with complement an NC-divisor. (For more details cf. [H1] Prop. 8.3.3.)
Taking the limit over all choices of U we get the desired presheaf. To say it is pseudo-
flasque means that absolute Hodge cohomology has the Mayer-Vietoris property. In
the context of A.1.9 and A.2.6 it is a formal consequence of the existence of triangles
(i∗i!, id, j∗j∗) for open immersions j with closed complement i. In the context of [B1]
it follows from the Mayer-Vietoris property of De Rham-cohomology and singular
cohomology.

We now consider the corresponding generalized cohomology.

Definition B.5.2 (2. Version). If X is a space over B, then we define absolute
Hodge cohomology by

HiHp(X/B, n) = H
i
sT(X,K(R̃ΓHp( · /B, n)) .

If f : Z → X is a morphism of spaces, then we define relative cohomology

HiHp(X rel Z/B, n) = H
i
sT(Cone(f),K(R̃ΓHp( · /B, n)) .

Lemma B.5.3. There is a functorial isomorphism between both definitions of absolute
Hodge cohomology for a smooth varietyX. If Y → X is a closed immersion of smooth
schemes, then the same is true for relative cohomology.
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Proof. Lemma B.3.4 and Lemma B.3.6.a).

In order to get the same equalities at least for some singular varieties we have
to check a descent property for Hodge modules. For this we need functoriality of
i∗i∗ with values in complexes of Hodge modules rather than objects in the derived
category.

Lemma B.5.4. Let X/C be smooth and i : Y → X a closed reduced subscheme of
pure codimension 1. Let Y =

⋃n
i=0 Yi. For I ⊂ {0, . . . , n} and M ∈MHMF (X) let

iI : YI =
⋂

i∈I
Yi −→ X

jI : UI = X r
⋃

i∈I
Yi −→ X

MI = jI!j
∗
IM ∈ MHMF (X) .

All YI are equipped with the reduced structure. Then iI∗i∗IM defines a functor

{subsets of {0, . . . , n}} −→ Cb(MHMF (X)) .

Proof. As jI is affine both j
∗
I and jI! map Hodge modules to such. Note that locally

each Yi is given by a function fi on X. The functor iI∗i∗I has an explicit description
for closed subschemes of the type YI given in the proof of [S2] Prop. 2.19. In fact

iI∗i
∗
IM = . . . −→

⊕

I′⊂I;|I′|=2
MI′ −→

⊕

I′⊂I;|I′|=1
MI′ −→M

where the complex sits in degrees less or equal to zero.

Proposition B.5.5. Let X/C be smooth and i : Y → X a closed subscheme as in
the lemma. Let Ỹ = Y0 ∐ · · · ∐ Yn and

Ỹ. = cosk0(Ỹ /Y )
s−→ Y ,

i.e.,

Ỹk = Ỹ ×Y · · · ×Y Ỹ (k + 1 factors) .

Then the functor s∗s∗ defined by the total complex of the cosimplicial complex
(sn∗s∗n)n∈N0 is isomorphic to i∗i

∗.

Proof. Note that

Ỹk =
∐

I∈{0,...,n}k+1
YI

where YI = Y{i0,...,ik} in the notation of the previous lemma. LetM be in MHMF (X).
By the previous lemma we get indeed a cosimplicial complex hence s∗s∗M is a well-
defined complex of Hodge modules. Let Ỹ ≤. be the simplicial subscheme given by

Ỹ ≤k =
∐

I=(i0≤i1≤···≤ik)
YI

s≤
k−→ Y .
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By the Hodge module version of the combinatorial Lemma B.6.2, the morphism
s∗s∗M → s≤∗ s≤∗M is a quasi-isomorphism. By definition ([S2] 2.19)

i∗i
∗M =M{0,...,n} →M ,

and this complex is canonically quasi-isomorphic to the total complex of the constant
cosimplicial complex i∗i∗M . It is easy to see that the natural morphism

Tot i∗i
∗M −→ s≤∗ s

≤∗M

is a quasi-isomorphism.

Corollary B.5.6. Let X/B be smooth. Suppose Y → X is an NC-divisor over B
all of whose irreducible components are smooth over B. Then the group HiHp(Y/B, j)
as defined in A.1.9 resp. A.2.6 is isomorphic to the generalized cohomology group
HiHp(Ỹ./B, j) and to the same noted group in [B1].

Proof. The condition on Y ensures that Ỹ. is indeed a smooth simplicial scheme. It
gives rise to a space over B. Cohomological descent for the coefficients as in B.5.5
implies cohomological descent for their global sections in the sense of B.3.5. We can
use Ỹ. as the smooth proper hyper-covering needed in Beilinson’s definition. Equality
to the generalized cohomology version is again B.3.4.

This is of course cohomological descent for a closed Čech-covering. We have
restricted to this case which is built into the very definition of Hodge modules for
simplicity. There is no reason why there should not be cohomological descent in the
same generality as for constructible sheaves.

Lemma B.5.7. Let X/B be smooth, and Z ⊂ X a closed immersion of an NC-
divisor all of whose irreducible components are smooth over B. Let Z̃. be the smooth
simplicial scheme of B.5.5, then there is a canonical isomorphism

HiHp(X rel Z/B, n) = H
i
Hp(X rel Z̃./B, n)

where we use the original definition on the left and the second on the right.

Proof. This follows by the general method of B.3.6.b) from the descent property that
we have just established.

Remark: If we had checked cohomological descent in general, then we would get
B.5.6 for arbitrary varieties and B.5.7 for arbitrary closed immersions.

Theorem B.5.8. On the site of smooth schemes over B, the presheaves
RΓHp( · /B, n) have the properties of a twisted duality theory. There are regu-
lator maps from K-cohomology to absolute Hodge cohomology

HiM(Y, j) −→ HiHp(Y/B, j)

for all K–coherent spaces Y . They are compatible with pullback, i.e., if f : Y → Y ′

is a map of K–coherent spaces, we get commutative diagrams

HiM(Y
′, j)

f∗−−−−→ HiM(Y, j)

cj

y
ycj

HiHp(Y
′/B, j)

f∗−−−−→ HiHp(Y/B, j)

.
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If i : Z → X is a closed immersion of smooth schemes (constant codimension d) with
open complement U and Y. a space constructed form schemes over X as in B.2.18,
then the regulator is compatible with pushout, i.e., the diagram

Hn−2dM (Y. ×X Z, j − d) i∗−−−−→ HnM(Y., j)

cj−d

y
ycj

Hn−2d
Hp

(Y. ×X Z/B, j − d) i!−−−−→ Hn
Hp
(Y. /B, j)

is commutative.

Proof. We use Gillet’s method B.3.7. All axioms of a twisted duality theory hold e.g.
[H1] Ch. 15. Granted this the proof proceeds as in the l-adic case (B.4.6).

Remark: Recall ([N], (7.1)) that there is a natural transformation from absolute
Hodge to Deligne cohomology. The composition of the above regulator with this
transformation was already constructed in [Jeu], 2.5.

Theorem B.5.9 (Borel). Let K be a number field with r1 real and r2 pairs of
complex embeddings into C. We consider the ring of integers oK as a scheme over Z.
Then the Beilinson regulator

HiM(Spec oK , j)⊗Q R −→ HiHp ((Spec oK)R/R, j)

is an isomorphism for all pairs (i, j) 6= (0, 0), (1, 1). It is injective of codimension
r1+r2−1 for (i, j) = (0, 0), and injective of codimension one in the case (i, j) = (1, 1).
Proof. Note that the cohomological dimension of the category of Hodge structures is
1. The case i = 0 is trivial, and the case (1, 1) is Dirichlet’s classical result. In [Bo2],
the claim (and much more) is proved for the Borel regulator instead of the Beilinson
regulator. By [Rp], Corollary 4.2, the two regulators coincide up to a non–vanishing
rational factor.

B.6 A Combinatorial Lemma

This section gives a purely combinatorial proof why two conceivable definitions of the
Čech-nerve of a covering are homotopically equivalent. This is well-known at least
for open coverings and Čech-cohomology (and probably in general). But for lack of
finding an appropriate reference we work out the combinatorics here.
Let C(n) be the following simplicial set:

C(n)k = {1, . . . , n}k+1

with the obvious face and degeneracy maps. Let C(n)≤ be the simplicial subset of
simplices whose entries are ordered by ≤. In fact this is the simplicial version of the
n-simplex.
Suppose we are given a covariant functor from the category of subsets of

{1, . . . , n} to the category of sets. We get simplicial sets by setting

A(n)k =
⋃̇
I∈C(n)k

AI

A(n)≤k =
⋃̇
I∈C(n)≤

k

AI
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where AI is the value of our functor on the set I = {i0, . . . , ik}. Note that the elements
of C(n)k are ordered tuples but the value of AI does not depend on the ordering.

Lemma B.6.1. If the functor has constant value A, then both simplicial sets have
the homotopy

πi
(
A(n)?. , ⋆

)
=

{
A if i = 0,

0 else.

Proof. Obviously it is enough to consider the case A = ⋆, i.e., of the simplicial sets
C(n)≤ → C(n) themselves. Both simplicial sets satisfy the extension condition [M]
1.3 rather trivially. Hence we can use the combinatorial computation of the homotopy
groups given in [M] Def. 3.6. We immediately get the result.

Proposition B.6.2. For a general functor A the injection A(n)≤ → A(n) of simpli-
cial sets is a weak homotopy equivalence.

Proof. We filter the simplicial sets C(n)? by the simplicial subsets F iC(n)? of sim-
plices in which at most i different integers occur. This induces a filtration of the simpli-
cial sets A(n)?. Let GiA(n)? be the cofibre of the cofibration F i−1A(n)? ⊂ F iA(n)?.
It consists of simplices in which precisely i different integers occur. We argue by
induction on i for all functors A at the same time. There is a long exact homotopy
sequence attached to the cofibration sequence

F i−1A(n)? −→ F iA(n)? −→ GiA(n)? .

By induction it suffices to show that all cofibres GiA(n)/(GiA(n)≤) are weakly equiv-
alent to the final object ⋆. The cofibre decomposes into a union of simplicial sets
corresponding to a different choice of i elements in {1, . . . , n} each. If suffices to
prove acyclicity for one choice e.g for the subset {1, . . . , i}. Hence we only have to
consider GiA(i)/GiA(i)≤. But this last cofibre is isomorphic to GiB(i)/GiB(i)≤

where B is the functor with constant value A{1,...,i}. For i > 1 it is easy to see that
π0G

iB(i)/GiB(i)≤ = ⋆. By B.6.1 the quotients B(n)/B(n)≤ are acyclic for all n. Us-
ing the same cofibration sequence as for A and the inductive hypothesis this implies
that all GiB(i)/GiB(i)≤ are acyclic.

Note that A could also be a functor to the category of abelian groups or to the
dual of the category of abelian groups.
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scient. Ec. Norm. Sup., 4e série, t. 9 (1976), pp. 309–377.

[M] P. May, “Simplicial objects in algebraic topology”, Van Nostrand 1967.

[Mi] J.S. Milne, “Arithmetic Duality theorems”, Academic Press 1986.

[N] J. Nekovář, “Beilinson’s Conjectures”, in U. Jannsen, S.L. Kleiman, J.–P.
Serre, “Motives”, Proceedings of the Research Conference on Motives held
July 20 – August 2, 1991, in Seattle, Washington, Proc. of Symp. in Pure
Math. 55, Part I, AMS 1994, pp. 537–570.

Documenta Mathematica 3 (1998) 27–133



132 Annette Huber, Jörg Wildeshaus

[Neu] J. Neukirch, “The Beilinson Conjecture for Algebraic Number Fields”, in
M. Rapoport, N. Schappacher, P. Schneider (eds.), “Beilinson’s Conjec-
tures on Special Values of L–Functions”, Perspectives in Mathematics 4,
Academic Press 1988, pp. 193–247.

[O] S. Oka, “Multiplications on the Moore Spectrum”, Memoirs of the Fac. of
Sciences, Kyushu Univ., Ser. A, Vol. 38, No. 2 (1984), pp. 257–276.

[Q1] D. Quillen, “Homotopical Algebra”, LNM 43, Springer 1967.

[Q2] D. Quillen, “Higher Algebraic K–Theory”, in “Alg. K–Theory I”, LNM
341, Springer 1973 (1988), pp. 207–245.

[Rm] D. Ramakrishnan, “Regulators, algebraic cycles, and values of L-
functions”, in M. R. Stein, R. Keith Dennis (eds.), “Algebraic K-Theory
and Algebraic Number Theory”, Proc. of a Seminar held at the East-West
Center in Honolulu, Hawaii on Jan. 12-16, 1987, Cont. Math. 83 (1988),
pp. 183–310.

[Rp] M. Rapoport, “Comparison of the regulators of Beilinson and of Borel”,
in M. Rapoport, N. Schappacher, P. Schneider (eds.), “Beilinson’s Con-
jectures on Special Values of L–Functions”, Perspectives in Mathematics
4, Academic Press 1988, pp. 169–192.

[S1] Morihiko Saito, “Modules de Hodge Polarisables”, Publ. RIMS, Kyoto
Univ. 24 (1988), pp. 849–995.

[S2] Morihiko Saito, “Mixed Hodge Modules”, Publ. RIMS, Kyoto Univ. 26
(1990), pp. 221–333.

[S3] Morihiko Saito, “Hodge Conjecture and Mixed Motives. I”, in J.A. Carl-
son, C.H. Clemens, D.R. Morrison, “Complex Geometry and Lie Theory”,
Proc. of Symp. in Pure Math. 53, AMS 1991, pp. 283–303.

[Sch] A.J. Scholl, “Height pairings and Special Values of L–functions”, in U.
Jannsen, S.L. Kleiman, J.–P. Serre, “Motives”, Proceedings of the Re-
search Conference on Motives held July 20 – August 2, 1991, in Seattle,
Washington, Proc. of Symp. in Pure Math. 55, Part I, AMS 1994, pp.
571–598.
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1. Introduction

Let Y be a smooth irreducible projective curve defined over the real number field
R and k = R (Y ) be the field of R-rational functions on Y . For a point P ∈ Y (R) we
denote the completion of k at the point P by kP . The present paper is devoted to the
Hasse principle for the existence of a rational point on principal homogeneous spaces
of a connected linear algebraic group G defined over k. It was Colliot-Thélène who
conjectured ( [CT], Conjecture 2.9 ) that for any such space X the Hasse principle
holds relative to all local fields kP , P ∈ Y (R), i.e. X(k) 6= ∅ iff X(kP ) 6= ∅ for
each P ∈ Y (R). Since principal homogeneous spaces of G are in natural one-to-one
correspondence with elements of the set H1(k,G) the latter statement is equivalent
to the following: the natural map of pointed sets

H1(k,G) −→
∏

P∈Y (R)
H1(kP , G)(1)

has trivial kernel ( [S] ).
In [CT] Colliot-Thélène proved the Hasse principle for algebraic k-tori and re-

duced the general case to that of a simple simply connected algebraic group G. The
case of an arbitrary connected k-group G has been studied by Scheiderer ( [Sch1] ).

1The author gratefully acknowledges the support of the Alexander von Humboldt-Stiftung and
SFB 343 “Diskrete Strukturen in der Mathematik” and the hospitality of the University of Bielefeld.
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To prove the Hasse principle he first made an important observation (which eventu-
ally turned out to be crucial ) that local objects kP can be replaced by real closures
kξ of k, ξ ∈ Ωk, where Ωk denotes the set of all orderings of k. Indeed, using the
description of orderings of k and the so-called Artin-Lang homomorphism theorem
( [Srl], Theorem 3.1 ) it is easy to show that the condition X(kP ) 6= ∅ for each real
point P on Y implies X(kξ) 6= ∅ for each ordering ξ of k and hence the triviality of
the kernel of (1) follows immediately from the triviality of the kernel of

θ : H1(k,G) −→
∏

ξ∈Ωk
H1(kξ, G)(2)

The question whether θ is injective makes sense not only for the function fields
of curves but also for an arbitrary field k and it turned out that θ is indeed injective
if k has virtual cohomological dimension ( vcd ) at most 1 (recall that function fields
in one variable over R are such). We have even more.

Theorem 1. ( Scheiderer, [Sch1] ) Let K be any field of virtual cohomological dimen-
sion ≤ 1. Then the Hasse principle holds for any homogeneous K-space X of a
connected linear algebraic K-group G.

Scheiderer’s proof can be divided into two parts. In the first one it is proved
that for X as in the theorem (here G may even be not connected) there exists a
principal homogeneous space Z which is everywhere locally trivial and dominates X.
The strategy of the proof in this part going back to Springer ( [S], [Sp] ) consists of
replacing X by a homogeneous space which dominates X and has a smaller stabilizer.
It is worth mentioning that in this part most arguments do not use specific properties
of K and so most of them are valid over an arbitrary perfect field.
The second part of Scheiderer’s proof is devoted to the case of a principal ho-

mogeneous space. To treat such a space Scheiderer first constructs a locally constant
sheaf of sets H1(G) on ΩK whose stalks are just the sets H1(Kξ, G). Then he shows
that there exists a natural bijection between the set of global sections of H1(G) and
H1(K,G). As a whole the proof in this part is quite complicated. It is based on using
étale machinery and, in particular, strongly relies on results of the book [Sch2].
The aim of this paper is to provide a simpler and shorter self-contained proof

which is based only on the Bruhat decomposition in semisimple algebraic groups and
the so-called strong approximation property (SAP) of fields (see § 3). We show that
in fact the Hasse principle follows immediately modulo two facts. Informally speaking
one of them says that the kernel of the natural map H1(K,T ) → H1(K,G), where
G is an (absolutely) simple simply connected linear K-group and T is a K-torus
splitting over K(

√
−1), can be parametrized by “good” rational functions (see § 2)

and the other says that any field of virtual cohomological dimension ≤ 1 is an SAP
field.

Acknowledgment. The author is grateful to J.-P. Serre and the referee for
remarks that helped to improve the initial exposition.

2. Algebraic groups splitting over quadratic extensions

Throughout the section K denotes an arbitrary field of characteristic 0. Let G
be an (absolutely) simple simply connected algebraic group of rank n defined over K
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and splitting over quadratic extension L = K(
√
d ). Let

Θ = Gal (L/K) = 〈τ | τ2 = 1〉.
Consider a Borel L-subgroup B such that T = B ∩ τ(B) is a maximal torus which
will be assumed for simplicity to be K-anisotropic. Since T is splitting over L, one
has

T ≃ R(1)L/K(Gm)× . . .×R
(1)
L/K(Gm).

To prove the Hasse principle we need to describe Ker [H1(Θ, T (L)) →
H1(Θ, G(L))]. This description can be easily extracted from [Ch]. However this
paper is written in Russian and the translation made by the AMS is unreadable and
contains a lot of misprints. So for the sake of expository completeness and the reader’s
convenience we include here details.
First recall some basic facts about the structure of the group G(L) ( for details

see [St1] ). Let Σ = R(T,G) be the root system of G relative to T . The Borel
subgroup B determines an ordering on the set Σ and hence a system of simple roots
Π = {α1, . . . , αn}. If α =

∑
niαi ∈ Σ+, then the number ht(α) =

∑
ni is called the

height of α. If {Xα, α ∈ Σ;Hα1 , . . . ,Hαn} is a Chevalley basis of the Lie algebra of G,
then G(L) is generated by the corresponding root subgroups Gα = 〈x±α(t) | t ∈ L〉,
where

xα(t) =
∞∑

n=0

tnXnα /n! ,

and the torus T is generated by Tα = T ∩ Gα = 〈hα(t)〉 , where hα(t) =
wα(t)wα(1)

−1 and wα(t) = xα(t)x−α(−t−1)xα(t).
Furthermore, since G is simply connected the following relations hold in G (cf.

[St1], Lemma 28 b), Lemma 20 c), Lemma 15 ):

A) T = 〈hα1(t1)〉 × · · · × 〈hαn(tn)〉 and for α ∈ Σ we have

hα(t) =
n∏

i=1

hαi(t)
ni , where Hα =

n∑

i=1

niHαi ;(3)

B) For α, β ∈ Σ let 〈β, α〉 = 2 (β, α)/(α, α). Then we have

hα(t)xβ(u)hα(t)
−1 = xβ(t

〈β,α〉u)(4)

C) For all u, v ∈ L such that 1 + uv 6= 0 we have

x−α(u)xα(v) = xα(v(1 + uv)
−1)hα(1 + uv)

−1x−α(u(1 + uv)
−1)(5)

D) For all α, β ∈ Σ, β 6= −α, we have

xα(v)xβ(u)xα(v)
−1xβ(u)

−1 =
∏

i,j>0

xiα+jβ(ci,jv
iuj)(6)

where the product on the right hand side is taken over all roots of the form iα+ jβ
and the ci,j are integers which depend on α, β and on the chosen ordering of the roots
but do not depend on v and u.
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Since T is K-defined, τ acts on the root system Σ. More exactly, for any α ∈
Σ the character α + τ(α) is K-defined and hence is zero, i.e. τ(α) = −α, since,
by assumption, T is K-anisotropic. It follows that there exists cα ∈ L∗ such that
τ(Xα) = cαX−α; in particular, the subgroup Gα is K-defined.
The constants cα actually lie in K and c−α = c−1α . Indeed, for rank one groups,

i.e. of the form SL (1, D), where D is a quaternion K-algebra, this fact can be verified
directly. The general case easily reduces to the rank one case since Gα is a simple
simply connected K-group of rank 1. Thus, we have

Lemma 1. There exists constant cα ∈ K∗ such that for any u ∈ L one has τ(xα(u)) =
x−α(cατ(u)). Moreover, Gα ≃ SL(1, D), where D is a quaternion algebra over K of
the form D = (d, cα).

Proof: Straightforward computations.

Lemma 2. The positive roots Σ+ = {β1, . . . , βm} can be ordered in such a way that
the following two properties hold:
1) for any pair of roots βi, βj, for which i < j and βi + βj = βk ∈ Σ+, the root βk is
between βi and βj, i.e. i < k < j;
2) if Σ is a root system of type either A2n−1 or Dn or E6 and σ is the outer au-
tomorphism of Σ induced by the non-trivial automorphism of order 2 (resp. 3) of
the corresponding Dynkin diagram, then for any root βi ∈ Σ+ the roots βi and σ(βi)
(resp. βi, σ(βi), σ

2(βi)) are neighbours.

Proof. a) Let Σ = {εi − εj | 1 ≤ i 6= j ≤ 2n} be a root system of type A2n−1. Let
α1 = ε1−ε2, . . . , α2n−1 = ε2n−1−ε2n be a basis of Σ and Σ1 be the subsystem generated
by the roots α2, . . . , α2n−2. By induction, we can pick an ordering Σ

+
1 = {β1, . . . , βk}

with the required properties. Let γ = α1+· · ·+α2n−1. We number the remaining roots
Σ+ \ {Σ+1 ∪ γ} = {βk+1, . . . , βm−1} in the order of decreasing height. If βi denotes
the last root among {βk+1, . . . , βm−1} such that ht (βi) ≥ n, then the ordering

Σ+ = {β1, . . . , βk, βk+1, . . . , βi, γ, βi+1, . . . , βm−1}
is as required.
b) Σ is a root system of type A2n, Bn, Cn, Dn, E7. It follows from the description

of root systems of these types that there exists a subsystem Σ1 generated by n − 1
simple roots, say α1, . . . , αn−1, such that any root β ∈ Σ+ \ Σ+1 can be written as a
sum β = m1α1+ · · ·+mn−1αn−1+αn. If Σ is of type Dn and |σ| = 2, we may assume
in addition that the set {α1, . . . , αn−1} is stable under σ. The root system Σ1 has
rank n− 1 and so by induction, there exists an ordering of the required type on the
set Σ+1 = {β1, . . . , βk}. We number the remaining roots Σ+ \ Σ+1 = {βk+1, . . . , βm}
in the order of decreasing height. Then the ordering {β1, . . . , βm} is as required.
c) Σ is a root system of type E6, E8, F4, G2. Here one can argue as in case a).

Namely, there exists a subsystem Σ1 generated by simple roots α1, . . . , αn−1 such that
any root β ∈ Σ+ \Σ+1 is of the form β = m1α1+ · · ·+mn−1αn−1+αn except for the
maximal root α̃ and α̃ is of the form α̃ = m1α1+· · ·+mn−1αn−1+2αn. Let b = ht (α̃).
Again, applying induction we can find an ordering Σ+1 = {β1, . . . , βk} with the desired
properties and then we number the roots Σ+ \ {Σ+1 ∪ α̃} = {βk+1, . . . , βm−1} in the
order of decreasing height. If Σ has type E6, we may assume in addition that β and
σ(β) are neighbours for all β ∈ Σ+. Let βi be the last root among {βk+1, . . . , βm−1}
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such that ht (βi) ≥ b/2. We claim that the ordering
Σ+ = {β1, . . . , βk, βk+1, . . . , βi, α̃, βi+1, . . . , βm−1}

has the desired properties. Indeed, if βj = βs+βt, where s < t and j ∈ {k+1, . . . ,m−
1}, then clearly βs belongs to Σ+1 . It follows that βj lies between βs and βt, since
ht (βj) ≥ ht (βs),ht (βt). Now let α̃ = βs + βt, s < t,. Then s, t ∈ {k + 1, . . . ,m− 1}
and ht (βs) ≥ b/2, ht (βt) < b/2 (we use the fact that ht(α̃) is odd ), implying α̃ is
also between βs and βt.
d) Σ has type D4 and |σ| = 3. Let α1, . . . , α4 be simple roots such that σ

permutes α1, α3, α4. Then the required ordering is as follows: first we place α2, then
all roots of the height 2, then the maximal root and then the roots of heights 3, 4, 1
respectively.

Corollary 1. Let βi, βj , j < i, be any two positive roots. Then for any positive root
βk of the form βk = rβj − lβi, r, l > 0, one has k < j. Analogously, for any negative
root of the form −βk = rβj − lβi, r, l > 0, one has k > i.

Proof. We distinguish three cases.
a) 〈βi, βj〉Q ∩ Σ has type A2. Then r = l = 1 and hence if βk = βj − βi is a

positive root then βk + βi = βj , implying k < j < i. Analogously, if βj − βi = −βk
then we have j < i < k.
b) 〈βi, βj〉Q ∩ Σ has type B2. Then either r = l = 1 or r = 1 and l = 2 or r = 2

and l = 1. The case r = l = 1 was already handled in part a). Now let βk = βj − 2βi.
Then βj − βi = βs is also a positive root implying s < j. Futhermore, βk = βs − βi
and s < j < i. So again we have k < s < j. The remaining cases can be handled in a
similar way.
c) 〈βi, βj〉Q ∩ Σ has type G2. Here the proof is similar to that of case b) and we

omit it.

Proposition 1. Fix an order in Σ+ as in Lemma 2. Then the regular map

ω : Gnm × IA2m −→ G , (t1, . . . , tn, u1, . . . , um, v1, . . . , vm) −→
n∏

i=1

hαi(ti)x−β1(u1)xβ1(v1) · · ·x−βm(um)xβm(vm)

is birational over L.

Remark 1. This statement is also true in positive characteristic. There is the only
place which require additional work: one need additionally to check that ω is a sepa-
rable map.

Proof. Both sides have the same dimension and hence it suffices to prove the injec-
tivity of ω on some Zariski open subset, since charK = 0.
First we show that for any integer i and any parameters u1, . . . , ui and v1, . . . , vi

from some Zariski open subset the element

Ai = x−β1(u1)xβ1(v1) · · ·x−βi(ui)xβi(vi)
of the group G can be written in the form

Ai =
n∏

k=1

hαk(fk)
m∏

j=1

x−βj (rj)
i−1∏

j=1

xβj (sj)xβi(vi),
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where fk, rj , sj are rational functions depending on u1, . . . , ui, v1, . . . , vi−1.
If i = 1 there is nothing to prove. By induction, we may write Ai−1 in the form

n∏

k=1

hαk(fk)
m∏

j=1

x−βj (rj)
i−2∏

j=1

xβj (sj)xβi−1(vi−1).

To write Ai = Ai−1 x−βi(ui)xβi(vi) in the same form we have to transpose x−βi(ui)

with each factor in the product
∏i−2
j=1 xβj (sj)xβi−1(vi−1). By (6) and by Corollary 1,

every time doing so we obtain additional factors xβs( ) or x−βs( ), where s < i−1 in the
first case and s > i in the second case. Collecting together all these factors correspond-

ing to negative roots we can write the element
∏i−2
j=1 xβj (sj)xβi−1(vi−1)x−βi(ui) in

the form
n∏

k=1

hαi(f̃k)
m∏

j=1

x−βj (r̃j)
i−1∏

j=1

xβj (s̃j)

and so our claim follows.
Now we are ready to prove the injectivity of ω. Suppose that

ω(t1, . . . , tn, u1, . . . , um, v1, . . . , vm) = ω(t̃1, . . . , t̃n, ũ1, . . . , ṽm)(7)

From the above argument and the Bruhat decomposition we get immediately vm =
ṽm. To show that um = ũm, we use (4), (5). Namely, it follows from (4), (5) that the
left hand side of (7) may be written in the form

n∏

i=1

hαi(fi) [xβ1(s1)x−β1(r1)] · · · [xβm−1(sm−1)x−βm−1(rm−1)]

xβm [vm(1 + umvm)]x−βm [um(1 + umvm)
−1] ,

where f1, . . . , fn, s1, . . . , sm−1, r1, . . . , rm−1 are rational functions. Rewriting the
right hand side of (7) in the same form we conclude that

um(1 + umvm)
−1 = ũm(1 + ũmṽm)

−1,

hence um = ũm. After cancelling the factor x−βm(um)xβm(vm) in (7) the same
argument shows that vm−1 = ṽm−1, um−1 = ũm−1 and so on.

Now we are in position to formulate the main result of the section.

Theorem 2. Let g ∈ G(L) be such that g1−τ ∈ T (L). Then there exist quaternion
algebras D1, . . . , Dm over K and elements w1, . . . , wm ∈ K which are reduced norm
of D1, . . . , Dm respectively and elements t1, . . . , tn ∈ L such that

g1−τ =
n∏

i=1

hαi(tiτ(ti))
m∏

i=1

hβi(wi)

Proof. If g1−τ ∈ T (L), then for any x ∈ G(K) one has g1−τ = (gx)1−τ . Since
G(K) is Zariski dense in G, we may always assume that our element g is in “generic”
position by which we mean point in some Zariski open subset U ⊂ G which can be
easily specified from the argument. So let

g =
n∏

i=1

hαi(ti)x−β1(u1)xβ1(v1) · · ·x−βm(um)xβm(vm)
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where ti, ui, vi ∈ L. Denote t =
∏n
i=1 hαi(ti) and gi = x−βi(ui)xβi(vi), i = 1, . . . ,m.

Let also t′ = g1−τ , so that

t · g1 · · · gm = t′ · τ(t) · τ(g1) · · · τ(gm)(8)

By Lemma 1, we have τ(gi) ∈ Gβi . Then applying Proposition 1 we conclude that
gm and τ(gm) coincide modulo Tβm(L) = T (L) ∩ Gβm and so the element g

τ−1
m is

of the form hβm(wm) for some parameter wm. We claim that wm ∈ K and it is a
reduced norm of the quaternion K-algebra Dm = (d, dβm), where dβm = cβm . Indeed,
by construction the cocycle (gτ−1m ) ∈ Z1(Θ, Tβm(L)) is trivial in Z1(Θ, Gβm(L)) and
by Lemma 1, Gβm ≃ SL(1, Dm), hence our claim follows.
Substituting τ(gm) = hβm(wm) · g in (8) and cancelling g, we have then

t · g1 · · · gm−1 = t′ · τ(t) · hβm(wm) · [hβm(wm)−1τ(g1)hβm(wm)] · · ·
· · · [hβm(wm)−1τ(gm−1)hβm(wm)]

Applying again Proposition 1 and arguing analogously we have

[hβm(wm)
−1τ(gm−1)hβm(wm)] = hβm−1(wm−1) · gm−1

for some parameter wm−1, which is again a reduced norm of the quaternionK-algebra
Dm−1 = (d, dβm−1), where

dβm−1 = cβm−1w
〈βm−1,βm〉
m .

To see it, let g̃m−1 = hβm(wm)
−1τ(gm−1)hβm(wm). Using (4) we have

g̃m−1 = xβm−1(c
−1
βm−1

w−〈βm−1,βm〉m τ(um)) · xβm−1(cβm−1w 〈βm−1,βm〉m τ(vm)).

It follows that (hβm−1(wm−1)) = (g̃m−1 · g−1m−1) can be viewed as a trivial cocycle in
an K-group of rank 1 whose K-structure, i.e. action of τ , is given by the constant
dβm−1 . This fact combined with Lemma 1 implies wm−1 is a reduced norm of Dm−1,
as claimed, and so on. Theorem 2 is proved.

In § 4 we will also deal with a simple simply connected algebraicK-groupG which
is quasi-split over a quadratic extension L/K and for such a group we also need to
describe elements of the form g1−τ ∈ T (L), where g ∈ G(L).
Clearly, K-groups of type 2A2n split over a quadratic extension of K. Since this

case has been already handled, we may assume that G is an outer form of type not
A2n. As above, let B be an L-Borel subgroup B of G such that T = B ∩ τ(B) is a
maximal K-anisotropic torus.
Let F/K be the minimal extension over whichG is an inner form and letE = F ·L.

Let τ and σ be non-trivial automorphisms of E/K such that τ |F = 1 and σ|L = 1
respectively. In the case 3,6D4 by σ we denote any automorphism of order 3.
Clearly, σ induces an outer automorphism of the root system Σ = R(T,G) which

will be denoted by the same letter. Let Λ = {γ1, . . . , γs} ⊂ Σ+ ( resp. Λ′ ) be a set
of representatives of all orbits of σ in Σ+ ( resp. in Π ). We divide Λ into two parts:
Λ1 = {γi ∈ Λ | σ(γi) = γi} and Λ2 = Λ \Λ1. Let also Λ′i = Λ′ ∩ Λi, i = 1, 2. For
γi ∈ Λ1 ( resp. Λ2 ) we denote by Hi the subgroup in G generated by Gγi ( resp.
Gγi , Gσ(γi) and Gσ2(γi), if |σ| = 3 ).
Lemma 3. Hi is a simple simply connected K-group of type A1 ( resp. A1 × A1 or
A1 ×A1 ×A1 ) if γi ∈ Λ1 ( resp. γi ∈ Λ2 and |σ| = 2 or |σ| = 3 ).
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Proof. It suffices to note that τ acts on Σ as either −1, if Σ has type D2n, or −σ
otherwise, since it permutes positive and negative roots. Moreover, the combination
βi ± σ(βi) is not a root, hence Gγi and Gσ(γi) commute.
Theorem 3. Let g ∈ G(L) be such that g1−τ ∈ T (L). Then there exist quaternion
algebras D1, . . . , Ds and elements w1, . . . , ws which are reduced norm of D1, . . . , Ds
respectively and elements t1, . . . , tp such that:
1) If Σ is not of type 3,6D4, then

g1−τ =
∏

αi∈Λ′1

hαi(tiτ(ti))
∏

αi∈Λ′2

hαi(tiτ(ti))hσ(αi)[σ(ti)(τ ◦ σ)(ti)]·

∏

γi∈Λ1
hγi(wi)

∏

γi∈Λ2
hγi(wi)hσ(γi)(σ(wi))

2) If Σ is of type 3,6D4, then

g1−τ =
∏

αi∈Λ′2

hαi(tiτ(ti))hσ(αi)[σ(ti)(τ ◦ σ)(ti)]hσ2(αi)[σ2(ti)(τ ◦ σ2)(ti)]·

∏

αi∈Λ′1

hαi(tiτ(ti))
∏

γi∈Λ1
hγi(wi)

∏

γi∈Λ2
hγi(wi)hσ(γi)(σ(wi))hσ2(γi)(σ

2(wi))

Here Di is over K ( resp. over F ) and wi ∈ K (resp. F ), if γi ∈ Λ1 ( resp. γi ∈ Λ2 ),
and ti ∈ L (resp. E), if αi ∈ Λ′1 (resp. αi ∈ Λ′2).
Proof. As in the L-split case first we may assume that g is in “generic” position
and so by property 2 in Lemma 2 and by Proposition 1, it can be written in the
form g = t g1 · · · gs, where t ∈ T, gi ∈ Hi, i = 1, . . . , s. Then the rest of the proof
works exactly as in the L-split case, since by Lemma 3 all subgroups Hi are of the
form RK′/K(SL(1, D)), where D is a quaternion algebra over K

′ and K ′ is either F
or K.

3. Some cohomological computations

From now on we assume that vcd (K) ≤ 1 and we let L = K(
√
−1 ). We also

assume that the set ΩK of all orderings on K is non-empty; this means, in particular,
that charK = 0. Recall ( [Srl] ) that there is a canonical topology on ΩK under which
ΩK is compact and totally disconnected.

Remark 2. If ΩK = ∅, then −1 is a sum of squares in K and so cd (K) =
cd (K(

√
−1)) ≤ 1 ( [S], Ch. 2, Prop. 10′ ). Therefore, if ΩK = ∅, then by Steinberg’s

theorem ( [St2] ) one has H1(K,G) = 1 for any connected linear algebraic K-group
G.

To reduce the proof of the Hasse principle to the case of simply connected
semisimple groups we need two auxiliary cohomological statements (Propositions 2
and 4 below) which are very particular cases of the general Theorem 12.13 in [Sch2].
Since we do not need to consider such a generality as in [Sch2] we include here the
straightforward proofs of these statements.
Let A be a discrete Γ-module, where Γ = Gal (K/K), and let

ϕi : H
i(K,A)→

∏

ξ∈ΩK
Hi(Kξ, A)
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be the canonical map induced by resKξ . We want to describe Kerϕi, i ≥ 2, and
Imϕ1. To do so first remind that there is not a canonical way of choosing a real
closure of K at ξ ∈ ΩK . If Kξ and K ′ξ are two real closures of K at ξ, then by the
theorem of Artin-Schreier ( [Srl] Ch. 3, Theorem 2.1 ) there is a unique K-isomorphism
Kξ ≃ K ′ξ, hence there is an element g ∈ Γ such that gτξg−1 = τ ′ξ, where τξ (resp.
τ ′ξ) is the involution (= element of order 2) in Γ corresponding to Kξ (resp. K

′
ξ) (in

other words, there is a natural one-to-one correspondence between points of the set
ΩK and conjugacy classes of involutions in Γ).
The element g induces a natural map λi,g : H

i(Kξ, A) → Hi(K ′ξ, A) and obvi-
ously we have resK′

ξ
= λi,g ◦ resKξ . It follows that the question on whether ϕi is

injective does not depend on a choice of real closures Kξ, ξ ∈ ΩK .
Clearly, any cocycle from Z1(Kξ, A) is determined by the single element a ∈ A

such that aτξ(a) = 1. We will say that an element {aξ}ξ∈ΩK ∈
∏
ξ∈ΩK H

1(Kξ, A) is
locally constant if there are a decomposition ΩK = U1 ∪ . . . ∪ Ul into disjoint clopen
(= open and closed ) sets and elements {a1, . . . , al} of A for which the following
condition holds: for any ξ ∈ Ui there are a cocycle cξ representing aξ and gξ ∈ Γ such
that the cocycle λ1,gξ (cξ) is determined by ai. Analogously, for any i ≥ 1 one defines
the subset of elements in

∏
ξ∈ΩK H

i(Kξ, A) which are locally constant. We denote

this subset by
(∏

ξ∈ΩK H
i(Kξ, A)

)lc
. Since for any ζ ∈ Hi(K,A) the element ϕi(ζ)

is locally constant we denote by the same letter the canonical map

ϕi : H
i(K,A) −→


 ∏

ξ∈ΩK
Hi(Kξ, A)



lc

⊂
∏

ξ∈ΩK
Hi(Kξ, A)

Proposition 2. If A is a finite discrete Γ-module, then the maps ϕi are injective for
all integers i ≥ 2.
Proof. Since Hi(L,A) = 1, i ≥ 2, the “res-cores” argument shows that Hi(K,A)
has exponent 2. So replacing A, if necessary, by its 2-Sylow subgroup we may assume
that A is a 2-group. First examine the case A = Z/2Z.

Lemma 4. Let A = Z/2Z. Then ϕi is surjective if i ≥ 1 and injective if i ≥ 2.
Proof. Recall ( [L], §17 ) that a field F is said to be an SAP field (strong approxima-
tion property) if for any two disjoint closed subsets A,B ⊂ ΩF there exists an element
f ∈ F such that f is positive at all orderings in A, but negative at all orderings in B.
We need

Proposition 3. ( [L], Theorem 17.9 ) If vcd (K) ≤ 1, then K is a SAP field.
Surjectivity of ϕi, i ≥ 1. In view of the periodicity of Hi(Kξ,Z/2Z) it suffices to
consider the cases i = 1, 2. If i = 1 then H1(K,Z/2Z) = K∗/K∗2, hence the sur-
jectivity of ϕ1 follows immediately from Proposition 3. Furthermore, any element
from H2(K,Z/2Z) splits over L and so can be represented by a quaternion algebra
having L as a maximal subfield. Then clearly, the surjectivity of ϕ2 again follows
from Proposition 3.
Injectivity of ϕi, i ≥ 2. The proof is similar to that of [B-P], Lemma 2.3. Namely,
by Arason’s theorem ( [A1], Satz 3 ), local triviality of ζ ∈ Hi(K,Z/2Z) implies that
ζ ∪ (−1)r = 0 for some integer r, where ∪ denotes the cup product. On the other
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hand from the exact sequence

Hi(L,Z/2Z)
cor−→ Hi(K,Z/2Z)

∪(−1)−→ Hi+1(K,Z/2Z)
res−→ Hi+1(L,Z/2Z)

( [A2], Corollary 4.6 ) and from the equalities

Hi(L,Z/2Z) = Hi+1(L,Z/2Z) = 1, i ≥ 2
we conclude that the product ∪(−1) is an isomorphism. Therefore, ζ = 1, as required.
Lemma 4 is proved.

We come back to an arbitrary finite 2-primary module A. Let Γ2 be a Sylow
2-subgroup of Γ. Since the restriction map Hi(K,A) → Hi(Γ2, A) is injective, after
replacing Γ by Γ2 we may assume that Γ is a pro-2-group. But for such a group any
irreducible module is isomorphic to Z/2Z ( [S], §4, Proposition 20 ). Therefore there
exists a submodule A′ ⊂ A such that A/A′ = Z/2Z. It induces the commutative
diagram

Hi(K,Z/2Z) −→ Hi+1(K,A′) −→yθ1
yθ2

(
∏
ξ∈ΩK

Hi(Kξ,Z/2Z)

)lc
−→

(
∏
ξ∈ΩK

Hi+1(Kξ, A
′)

)lc
−→

Hi+1(K,A) −→ Hi+1(K,Z/2Z)yθ3
yθ4

(
∏
ξ∈ΩK

Hi+1(Kξ, A)

)lc
−→

(
∏
ξ∈ΩK

Hi+1(Kξ,Z/2Z)

)lc

By what has been proved above, θ1 (resp. θ4) is surjective (resp. injective) and by
induction, θ2 is injective. It follows that θ3 is injective as well. Proposition 2 is
proved.

Proposition 4. If A is a finite discrete Γ-module, then ϕ1 is surjective.

Proof. Since ϕi, i ≥ 2, are injective, one can easily verify that if the statement
holds both for a submodule A′ ⊂ A and the quotient A/A′, then it also holds for A.
So we may assume, if necessary, that A is irreducible. It suffices to prove that for a
given ξ ∈ ΩK and an element a ∈ A for which aτξ(a) = 1 there exist a small clopen
neighbourhood U ⊂ ΩK of ξ and a cocycle ζ ∈ Z1(K,A) such that for a proper real
closure Kξ′ of K at ξ

′ the cocycle resKξ′ (ζ) is determined by the element a if ξ
′ ∈ U ,

and is trivial otherwise.
We need the following simple property of orderings of K ( see [Srl] ):

if F/K is an extension of odd degree then for any ordering ξ ∈ ΩK there is an exten-
sion of ξ to F ; moreover, the restriction map φ : ΩF → ΩK is a local homeomorphism.
Let E be a finite Galois extension of K over which A is a trivial module and let

F ⊂ E be the subfield corresponding to a Sylow 2-subgroup of Gal (E/K). Denote
∆ = Gal (K/F ). Let φ−1(ξ) = {ξ1, . . . , ξt} ⊂ ΩF , where, as above, φ : ΩF → ΩK is
the restriction map.
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By construction, φ(ξi) = ξ. So we can pick a small clopen neighbourhoodU ⊂ ΩK
of ξ and disjoint small clopen neighbourhoods Ui ⊂ ΩF of ξi, i = 1, . . . , t, such that
the restriction map φ|Ui : Ui → U is a homeomorphism and φ−1(U) = U1 ∪ . . . ∪ Ut.
Taking smaller neighbourhoods, if necessary, one can additionally assume that for
any ξ′ ∈ U1 there is an involution τξ′ ∈ ∆ corresponding to ξ′ for which the following
property holds:

if g ∈ Γ\∆ be such that τ̃ξ′ = g τξ′ g−1 ∈ ∆ then the point of ΩF
corresponding to the involution τ̃ξ′ does not lie in U1.(9)

Indeed, let I∆ ⊂ ∆ be a subset of involutions and τ ∈ I∆ be an involution
which corresponds to ξ1. Assume the contrary. Since I∆, Γ are compact and totally
disconnected there exist then in ∆ a sequence of involutions (τ1, τ2, . . . ) converging to
τ and a converging sequence of elements (g1, g2, . . . ) in Γ\∆ such that gi τi g−1i ∈ ∆.
Letting g = lim gi, one has g ∈ Γ\∆ and τ ′ = g τ g−1 ∈ ∆. But by assumption,
the point ξ′ of ΩF corresponding to τ ′ lies in U1 and φ(ξ′) = ξ. This means that
ξ′ = ξ1, hence there is δ ∈ ∆ such that τ ′ = δ τ δ−1, implying g−1 δ lies in the
centralizer CΓ(τ). But every involution in Γ is self-centralizing, i.e. CΓ(τ) = 〈τ〉 ,– a
contradiction.
The map ϕ1 is clearly surjective for the field F , since A can be viewed

as Gal (E/F )-module and Gal (E/F ) is a 2-group, implying that any irreducible
Gal (E/F )-module is of the form Z/2Z. Therefore, we can pick ζ′ ∈ Z1(F,A) such
that for proper real closures the cocycle resFξ′ (ζ

′) is determined by the element a if

ξ′ ∈ U1 and is trivial otherwise. We claim that the cocycle ζ = cor FK (ζ
′) has the

same property. To verify it we need

Proposition 5. ( [Br], Ch. III, Proposition 9.5 ) Let A be a Γ-module and Θ ⊂ ∆ ⊂
Γ be subgroups. If [Γ : ∆] <∞ and z ∈ H∗(∆, A) then we have

res ΓΘ ◦ cor Γ∆ (z) =
∑

g∈Λ
corΘΘ∩g∆g−1 ◦ res g∆g

−1

Θ∩g∆g−1 (ĝ(z)),

where Λ is a set of representatives of double cosets Θ g∆ and

ĝ : H∗(∆, A)→ H∗(g∆ g−1, A)

is the natural map induced by pair ( int(g−1), g ).

To prove our claim first take η ∈ U . Let ξ′ = φ−1(η) ∩ U1 and let τξ′ ∈ ∆ be
an involution corresponding to ξ′ and satisfying (9). Then applying Proposition 5 we
have

resKξ′ (ζ) =
∑
res g∆g

−1

Θξ′∩g∆g−1
(ĝ(ζ′)) =

∑
res∆g−1Θξ′ g∩∆(ζ

′) = res∆Θξ′ (ζ
′)

where Θξ′ = 〈τξ′〉 , hence resKξ′ (ζ) is defined by a. Analogously, one shows that
resKη (ζ) is trivial if η /∈ U . Proposition 4 is proved.
Corollary 2. Let A be a commutative connected linear algebraic K-group. Then
ϕ2 is injective.

Proof. One has Hi(L,A) = 1, i ≥ 1. So Hi(K,A) has exponent 2 and hence the
map Hi(K, 2A) → Hi(K,A) is surjective, where 2A consists of all elements of A
killed by 2. By Proposition 4, it gives the surjectivity of ϕ1 for A. Then the result
follows from the injectivity of ϕ2 for 2A.
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Corollary 3. The Hasse principle holds for algebraic K-tori.

Proof. Let T be a K-torus. There exists K-quasi-split torus S and its connected
K-subtorus H such that T = S/H. Then the commutative diagram

H1(K,S) = 1 −→ H1(K,T ) −→ H2(K,H)yθ1
yθ2

yθ3
∏
ξ∈ΩK

H1(Kξ, S) = 1 −→
∏
ξ∈ΩK

H1(Kξ, T ) −→
∏
ξ∈ΩK

H2(Kξ,H)

shows that the injectivity of θ2 follows from that of θ3.

4. The Hasse principle for principal homogeneous spaces

Let us keep the notations of § 3. In particular, we assume that K is a field with
vcd (K) ≤ 1, L = K(

√
−1 ) and ΩK 6= ∅. Let also τ be the non-trivial element of

Gal (L/K). Using the results of the previous sections we may produce a simple proof
of the triviality of the kernel of (2).
a) Let G′ be a connected linear algebraic K-group, Z ≤ G′ be a finite central

K-subgroup and let G = G′/Z.

Lemma 5. If the Hasse principle holds for G′ then it also holds for G.

Proof. Consider the commutative diagram

H1(K,Z) −→ H1(K,G′) −→ H1(K,G)
λ1−→yθ1

yθ2
yθ3

∏
ξ∈ΩK

H1(Kξ, Z) −→
∏
ξ∈ΩK

H1(Kξ, G
′) −→ ∏

ξ∈ΩK
H1(Kξ, G)

λ2−→
λ1−→ H2(K,Z)yθ4
λ2−→ ∏

ξ∈ΩK
H2(Kξ, Z)

By assumption and by Proposition 2, the maps θ2, θ4 are injective. Then from the
above diagram and from Proposition 4 we have Ker θ3 = 1.

b) Reduction to semisimple groups. Since unipotent K-groups have trivial co-
homology we may assume without loss of generality that G is reductive. Then
G = T · H is an almost direct product of the central torus T and the semisimple
group H = [G,G]. Let G′ = T × H. Clearly, the kernel of the natural morphism
G′ → G is finite and by induction and by Corollary 3, the Hasse principle holds for
H and T . So by Lemma 5, it holds for G as well.

c) Reduction to simple simply connected groups. One can again apply Lemma 5
to a simply connected covering G′ of G.

d) Let G be an (absolutely) simple simply connected K-group. By Stein-
berg’s theorem ( [St2] ), G has a Borel subgroup B over L. We may assume
that T = B ∩ τ(B) is a maximal K-torus of G. Since H1(L,G) = 1, the
map H1(L/K,G(L)) → H1(K,G) is surjective. By Lemma 6.28 [Pl-R], the map
H1(L/K, T (L)) → H1(L/K,G(L)) is surjective as well, hence any class [ζ] ∈
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H1(K,G) can be represented by a cocycle ζ′ ∈ Z1(L/K, T (L)). Let S be a max-
imal K-split subtorus of T .
First let S 6= 1. Then CG(S) is a proper connected subgroup of G. Since CG(S)

is a reductive part of some parabolic K-subgroup, one has Ker (H1(E,CG(S)) →
H1(E,G)) = 1 for any extension E/K ( [Pr-R], Lemma 5.1 ). So if in addition
ζ ∈ Ker θ, then for each ξ ∈ ΩK the element resKξ(ζ′) is trivial as an element of
H1(Kξ, CG(S)), hence the claim follows by induction.

e) S = 1, i.e. T is a K-anisotropic torus. By Steinberg’s theorem, G is either split
or quasi-split over L. We examine the L-splitting case only, since the L-quasi-splitting
case can be handled analogously. Identify Z1(Θ, T (L)) with (K∗)n. Arguing as in d)
we get that any element from Ker θ can be represented by a cocycle ζ ∈ Z1(Θ, T (L)).
We claim that there exist a maximal K-torus T ′ ⊂ G isomorphic to T over K and a
cocycle ζ′ ∈ Z1(Θ, T ′(L)) equivalent to ζ in Z1(Θ, G(L)) such that ζ′ is everywhere
locally positive. By Corollary 3, the last would mean that ζ′ is trivial as an element
of H1(Θ, T ′(L)), hence ζ is trivial in H1(Θ, G(L)) as well.
To show it, we proceed as in Theorem 2. Namely, we construct inductively

quaternion algebras D1, . . . , Dm over K and elements gi ∈ Gβi(L) such that for
g = g1 · · · gm the element g1−τ ∈ T (L) and the components of the cocycles (g1−τ )
and ζ everywhere locally have the same signs.
As in Theorem 2, we begin with Dm = (−1, dβm), where dβm = cβm . For ξ ∈ ΩK

let gξ ∈ G(Kξ) be such that ζ = (g1−τξ ) ( note that T is still anisotropic over Kξ ).
We may assume that gξ is in “generic” position and so we may write gξ as a product
gξ = tξ gξ,1 · · · gξ,m, where tξ ∈ T, gξ,i ∈ Gβi , i = 1, . . . ,m.
We have already known that τ(gξ,m) = hβm(wξ,m) gξ,m for some parameter

wξ,m ∈ Kξ. By virtue of the facts that our field K has the property SAP and
the Hasse principle holds for groups of type A1 ( [B-P], [Sch1] ) we can pick wm ∈ K,
which has everywhere locally the same sign as wξ,m, and gm ∈ Gβm(L) such that
hβm(wm) = g

1−τ
m .

Next consider the quaternion K-algebra Dm−1 = (−1, dβm−1), where

dβm−1 = cβm−1w
〈βm−1,βm〉
m .

Let wξ,m−1 ∈ Kξ be such that hβm−1(wξ,m−1)hβm(wξ,m) = (gξ,m−1 gξ,m)1−τ Again
we can pick wm−1 ∈ K such that for all ξ ∈ ΩK the elements wm−1 and wξ,m−1 have
the same sign. By construction, the equation hβm−1(wm−1)hβm(wm) = (x gm)

1−τ ,
where x ∈ Gβm−1(L), has solution everywhere locally, so it has solution gm−1 globally,
and so on.
Thus, there exists g ∈ G(L) such that the components of both cocycles (gτ(g−1))

and ζ have the same signs in Kξ for each ξ ∈ ΩK . To complete the proof of the
theorem it remains to notice that the cocycle ζ′ = τ(g)−1ζ g is equivalent to ζ in
Z1(Θ, G(L)), takes values in the K-defined and L-splitting torus T ′ = τ(g)−1Tτ(g)
and ζ′ is everywhere locally positive.

Remark 3. The same argument shows that θ is still injective if we replace ΩK by a
dense set of orderings.

Documenta Mathematica 3 (1998) 135–148



148 Vladimir Chernousov

References

[A1] J. Arason, Primideale im graduierten Wittring und im mod 2 Cohomologiering,
Math. Z. 145 (1975), 139–143.

[A2] J. Arason, Cohomologische Invarianten quadratischer Formen, J. Algebra 36
(1975), 448–491.

[B-P] E. Bayer-Fluckiger, R. Parimala, Classical groups and the Hasse principle, Ann.
of Math. 147 (1998), 1–43.

[Br] K. Brown, Cohomology of groups, Springer, 1982.
[Ch] V. Chernousov, On projective simplicity of groups of rational points of some
algebraic groups over algebraic number fields, Izvestiya Akad. Nauk SSSR, Ser.
Math., 53 (1989), N 2, 398–410 (in Russian).

[CT] J–L. Colliot-Thélène, Groupes linéaires sur les corps de fonctions de courbes
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Introduction

In 1930 Ramsey published his paper On a problem in formal logic [12]. He established
a result, nowadays known as Ramsey’s Theorem:

Let k and r be positive integers. Then for every r-coloring of the k-element
subsets of ω there exists an infinite subset S ⊆ ω such that all k-element
subsets of S are colored the same.

Already in 1927 van der Waerden published his theorem on arithmetic progressions
[15]. He proved that for every coloring of the natural numbers with finitely many
colors there exists a monochromatic arithmetic progression of given length. Van der
Waerden’s result can be seen in the context of Schur’s investigations [14] on the
distribution of quadratic residues and nonresidues. Schur knew about the existence
of monochromatic solutions of x + y = z. He worked on such problems in order to
resolve Fermat’s conjecture, which was proved by Wiles in 1994.

The above mentioned work of Ramsey [12] and van der Waerden [15] gave rise to
the part of discrete mathematics, known as Ramsey Theory or Partition Theory. An
important contribution was made by Rado [10] in 1933. Working on his dissertation,
supervised by Schur, he was able to prove a common generalization of Schur’s and
van der Waerden’s results by introducing the concept of regularity: A system of linear
equations A~x = ~0 is called regular over a ring R if it has monochromatic solutions
for every coloring of R with finitely many colors. In his Studien zur Kombinatorik
(1933) [10] Rado gave a complete characterization of all regular systems of linear
equations over the rational numbers. The property Rado used in order to describe
regular systems of linear equations is an syntactical property of the matrix. It is

1For this work, the author has been awarded with the Richard-Rado-Preis 1998, which is granted
every two years for outstanding dissertations in discrete mathematics by the Fachgruppe Diskrete
Mathematik of the Deutsche Mathematiker-Vereinigung.
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characterized by certain linear dependences of the columns of the matrix A and is
called column property.

It is possible to generalize the concept of regularity to systems of linear inequalities.
We call a system of linear inequalities A~x ≤ ~0 partition regular if for every coloring of
the natural numbers with finitely many colors there exists a monochromatic solution
of A~x ≤ ~0. Rado considered systems of linear inequalities only incidentally. He stated
the following proposition which is easy to prove:

Let the system
∑n
j=1 aijxj = 0, 1 ≤ i ≤ m be partition regular and

assume that the following system of inequalities has a solution in the
natural numbers:

(∗)
n∑

j=1

aijxj

{
= 0 for 1 ≤ i ≤ m1,
> 0 for m1 < i ≤ m.

Then also (∗) is partition regular.

Of course this observation is far away from being a characterization of partition regular
systems of inequalities but it can be taken as a starting point for our investigations.

The characterization of all partition regular systems of linear inequalities is a central
goal of this paper. In the first chapter we define a generalized column property called
cpi, which can be used to characterize partition regular systems of linear inequalities.
It is an interesting feature of Rado’s proof that the linear system A~x = ~0 is already
regular if there exists a monochromatic solution with respect to one (number theoretic)
type of coloring. Systems of inequalities let things tend to be more difficult.

Several years after finishing his Studien zur Kombinatorik, Rado [11] considered
systems of linear equations with coefficients in R and he also extended the set of
partitioned numbers to the field of real numbers. It turned out that it is possible
to carry over the previous results from the natural numbers to the reals. We will
show in chapter 1 that our arguments can also be used if we consider real systems of
inequalities partitioning the set of reals.

As well as for homogeneous systems the column property can be used to describe
partition regularity of inhomogeneous systems of inequalities. We will give a com-
plete characterization of those systems which are partition regular, over the natural
numbers, over the set of integers and over the rationals.

The column property for systems of inequalities as well as the column property in the
sense of Rado is a syntactical property of the matrix and does not explicitly refer to the
set of solutions of the system. In 1973 Deuber [1] gave a semantical characterization
of partition regular systems of equations. The approach is by a description of the
arithmetic structure of the sets of solutions of regular linear systems A~x = ~0. The
central notion is the one of (m, p, c)−sets. He proved the following theorem:

A system A~x = ~0 is partition regular if and only if there exist positive
integersm, p, c such that every (m, p, c)−set contains a solution of A~x = ~0.
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In chapter two we will show that (m, p, c)−sets can also be used to characterize
solution spaces of partition regular systems of linear inequalities.

Starting with results of Erdös and Rado [4] another part of partition theory was
developed, which is nowadays known as Canonical Ramsey Theory. In Canonical
Ramsey Theory one considers colorings with no restriction on the number of colors.
The first result is a canonical version of Ramsey’s theorem. Later Erdös and Graham
[3] proved a generalization of van der Waerden’s theorem:

For every coloring ∆ of the natural numbers with arbitrary many colors
there exists an arithmetic progression, which is colored monochromatic or
injective with respect to ∆.

A canonical analogue of the Rado-Deuber-Theorem on regular systems of equations
and (m, p, c)-sets was proved by Lefman [7]. His result states:

Let A~x = ~0 be a partition regular system of linear equations. For every
coloring ∆ of the natural numbers with arbitrary many colors there exists
a solution of the system A~x = ~0 such that ∆ restricted to this solution is
either monochromatic, injective or a block-coloring.

The third case is related to the partitioning of the columns of A into blocks, corre-
sponding to the column property and to the rows of the (m, p, c)-sets. In chapter 3.
we prove a canonical partition theorem for systems of inequalities.

Acknowledgment: I would like to thank Prof. Dr. Walter Deuber for his encour-
agement and guidance and Dr. Wolfgang Thumser for helpful discussions.

1. Systems of Homogeneous, Linear Inequalities

Notations By N = {1, 2, 3, . . .} we denote the set of positive integers; [n] =
{1, 2, . . . , n} is the set of the natural numbers less or equal than n. A matrix A
with m rows and n columns is denoted by A = (aij)1≤i≤m,1≤j≤n, where aij is the en-
try of A which belongs to the ith row and jth column. For i, j ≤ n the jth column of
a matrix A is denoted by a(j) the ith row by a(i). For a matrix A = (aij)1≤i≤m,1≤j≤n
the system

n∑

j=1

aijxj ≤ 0, 1 ≤ i ≤ m

is abbreviated as A~x ≤ ~0. For a given matrix A = (aij)1≤i≤m,1≤j≤n, k ≤ n and ǫ > 0
by Ak(ǫ) = (akij(ǫ))1≤i≤m,1≤j≤n we denote the following matrix:




a11 . . . a1k−1 a1k − ǫ a1k+1 . . . a1n
...

...
...

...
...

...
...

am1 . . . amk−1 amk − ǫ amk+1 . . . amn


 ,

obtained from A by subtracting ǫ in column k.
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For k, l ∈ [n], k < l and ǫ > 0 the matrix




a11 . . . a1k−1 a1k − ǫ a1k+1 . . . a1l−1 a1l+1 . . . a1n
...

...
...

...
...

...
...

...
...

...
am1 . . . amk−1 amk − ǫ amk+1 . . . aml−1 aml+1 . . . amn




obtained by deleting column l in Ak(ǫ), is denoted by Akl (ǫ) and the matrix




a11 . . . a1k−1 a1k + a1l − ǫ a1k+1 . . . a1l−1 a1l+1 . . . a1n
...

...
...

...
...

...
...

...
...

...
am1 . . . amk−1 amk + aml − ǫ amk+1 . . . aml−1 aml+1 . . . amn


 ,

obtained from Ak(ǫ) by adding the kth and the lth column, is denoted by A(k)+(l)(ǫ).

Rado considered systems of linear equations over Q. In his paper, published in 1933
[10], Rado gives a characterization of all systems of linear homogeneous equations
which have for every coloring of the natural numbers with finitely many colors a
solution in one color class. Rado called those systems regular. The central definition
in this context is the following:

Definition 1.1. Let A = (aij)1≤i≤m,1≤j≤n be a matrix with m rows an n columns
and with entries aij ∈ Z. A has the column property if there exists l ∈ N and a
partition [n] = I0 ∪ I1 ∪ . . . Il of the column indices such that

1. for all 1 ≤ i ≤ m we have ∑j∈I0 aij = 0 and

2. for all k < l, j ∈ ∪s≤kIs there exist ck, ckj ∈ N such that for all 1 ≤ i ≤ m we
have ∑

j∈∪s≤kIs
cjkaij + ck

∑

j∈Ik+1
aij = 0.

Rado proved the following theorem:

Theorem 1.1. (Rado 1933) A system of homogeneous linear equations A~x = ~0 is
regular if and only if A has the column property.

In the following we will consider systems of linear inequalities rather than systems of
linear equations. First we define partition regularity for systems of inequalities.

Definition 1.2. Let A = (aij)1≤i≤m1≤j≤n be a rational matrix and let ~b =
(b1, . . . , bm) ∈ Qm. The system

(∗)
n∑

j=1

aijxj ≤ bi, 1 ≤ i ≤ m
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is called partition regular over N if for every c ∈ N and every c-coloring of the natural
numbers ∆ : N → [c] there exists a solution ~x = (x1, . . . xn) ∈ Nn of (∗) such that
∆
∣∣{x1,...,xn} = const.

In the following section we will give a characterization of all systems of homogeneous
linear inequalities which are partition regular over N. It turns out that a natural
generalization of Rado’s column property can be used to describe these systems.

Definition 1.3. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix. A has the column
property for systems of inequalities (abbreviated as cpi ) over N if there exists l ∈ N
and a partition [n] = I0 ∪ I1 . . . ∪ Il such that
1. for all 1 ≤ i ≤ m we have ∑j∈I0 aij ≤ 0 and
2. for all k < l, j ∈ ∪s≤kIs there exist ck, cjk ∈ N such that for all 1 ≤ i ≤ m we
have ∑

j∈∪s≤kIs
ckjaij + ck

∑

j∈Ik+1
aij ≤ 0.

If a matrix A has the column property (in the sense of Rado) [10] the system A~x ≤ ~0
obviously is partition regular. But there are many other systems of inequalities which
are partition regular without A having Rado’s column property. For example the
matrix (

−1 0 0
−1 0 0

)

has cpi but not the column property.

Theorem 1.2. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix. The system of
inequalities (∗) A~x ≤ ~0 is partition regular over N if and only if A has cpi over N.

Both implications stated in theorem 1.5. are not completely trivial to prove. We
start by showing that cpi implies partition regularity. This part of the proof proceeds
along the general lines of the corresponding proof for systems of equations [10]. The
following lemma combines arithmetic progressions and partition regular systems of
linear inequalities:

Lemma 1.1. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix, A~x ≤ ~0 a partition
regular system of inequalities and let p ∈ N. Then for every c ∈ N and every c-
coloring ∆ : N→ [c] there exists ~x = (x1, . . . , xn) ∈ Nn and d ∈ N such that
1. A~x ≤ ~0 and
2. for all i, j ≤ n, for all k, l ≤ p we have ∆(xi + ld) = ∆(xj + kd).

Proof of lemma 1.1.: A~x ≤ ~0 is partition regular. Thus by compactness [6] for
every c ∈ N there exists N∗ = N∗(c) ∈ N such that for every c-coloring ∆ : [N∗]→ [c]
there exists a monochromatic solution ~x = (x1 . . . xn) of A~x ≤ ~0 such that for all
1 ≤ i ≤ n we have xi ≤ N∗.
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Let ∆ : N→ [c] be an arbitrary c-coloring. Define the following coloring
∆∗ : N→ [rN∗ ] by

∆∗(x) = (∆(ix))1≤i≤N∗ .

By van der Waerden’s theorem [15] there exists a “long” arithmetic progression which
is monochromatic with respect to ∆∗, i. e. there exist a′, d′ ∈ N such that for all
l ≤ pN∗n−1 we have ∆∗(a′ + ld′) =const.
Define ∆∗∗ : N→ [c] by

∆∗∗(x) = ∆(a′x).

By the choice of N∗ there exists a solution ~x′ = (x′1, . . . , x
′
n) ∈ [N∗]n of A~x ≤ ~0 which

is monochromatic for ∆∗. For all i ≤ n let xi = x′ia′. By homogeneity ~x = (x1, . . . xn)
is a solution of A~x ≤ ~0 and because of the definition of ∆∗∗ for all i, j ≤ n we have
∆(xia

′) = ∆(xja′).
Let d = d′x′1 . . . x

′
n. Then for i ≤ n and l ≤ p we have:

x′ia
′ + ld = x′i(a

′ + ld′x′1 . . . x
′
i−1x

′
i+1 . . . x

′
n).

Hence by the definition of a′, d′ and ∆∗ for all l ≤ p we have ∆(x′ia
′ + ld) =const.
2lemma 1.6.

Proof of theorem 1.2. (first part): First we show that if A has cpi over N
then (∗) is partition regular. We know by assumption that there is some l ∈ N and a
partition [n] = I0 ∪ I1 ∪ . . . ∪ Il such that

1. for all 1 ≤ i ≤ m we have∑j∈I0 aij ≤ 0 and

2. for all k < l, for all j ∈ ∪s≤kIs there exist ckj , ck ∈ N, such that for all 1 ≤ i ≤ m
we have ∑

j∈∪s≤kIs
ckjaij + ck

∑

j∈Ik+1
aij ≤ 0.

To prove that (∗) is partition regular we will use a double induction. We proceed
by main induction on the number of colors c and by subsidiary induction on l, the
number of column classes.

Let Ak = (aij)1≤i≤m,j∈∪s≤kIs be the submatrix of A which only consists of the
columns belonging to block 1 up to k. We will show by induction that for all k ≤ l
Ak is partition regular.

For k = 0 there is nothing to show because every singleton forms a solution of the
system A0~x ≤ ~0. Assume that Ak~x ≤ ~0 is partition regular for some k ≥ 0 (which will
be kept fix by now), i. e. (by compactness) for every c ∈ N there exists R(c, Ak) ∈ N
such that for every c-coloring ∆ : [R(c, Ak)] → [c] there exists a monochromatic
solution (xj)j∈∪s≤kIs , such that Ak~x ≤ ~0 and for all j ∈ ∪s≤kIs we have xj ≤
R(c, Ak). We will show that Ak+1 is partition regular, i. e. for all c ∈ N there exists
R(c, Ak+1) ∈ N
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First we observe that xj = cjk for j ∈ ∪s≤kIs and xj = ck for j ∈ Ik+1 form a solution
of the system Ak+1~x ≤ ~0. So we are done if only one color is used for the coloring, i.
e. there exists R(1, Ak+1). Now assume that R(c, Ak+1) exists for some (fixed) c ≥ 1.
We will show that R(c+ 1, Ak+1) exists.

Let ∆ : N → [c + 1] be an arbitrary (c+1)-coloring. Use lemma 1.6. for the (by
assumption) partition regular system Ak~x ≤ ~0 with
p = R(c, Ak+1) · (maxj∈∪s≤kIs{ckj}). Hence there exists (yj)j∈∪s≤kIs , such that for
all 1 ≤ i ≤ m we have ∑

j∈∪s≤kIs
aijyj ≤ 0

and there exists d ∈ N such that for all j ∈ ∪s≤kIs and t ≤ p we have

∆(yj + td) = const.

for all 1 ≤ i ≤ m and t ∈ [R(c, Ak+1)] it follows
∑

j∈∪s≤kIs
(yj + ckjtd)aij +

∑

j∈Ik+1
cktdaij

=
∑

j∈∪s≤kIs
yjaij + td(

∑

j∈∪s≤kIs
ckjaij + ck

∑

j∈Ik+1
aij) ≤ 0.

Further for all j ∈ ∪s≤kIs and t ≤ p we have

∆(yj + ckjtd) = const.

Say ∆(yj + ckjtd) = c+ 1.

We distinguish the following cases:

1. There exist t ∈ [R(c, Ak+1)] such that ∆(cktd) = c+ 1. Then we are done.

2. For all t ∈ [R(c, Ak+1)] the relation ∆(cktd) ∈ [c] holds. Then consider the
c-coloring: ∆′ : [R(c, Ak+1)]→ [c] which is defined by

∆′(x) = ∆(ckxd).

By definition of R(c, Ak+1) there exists a solution (tj)j∈∪s≤kIs of the system

Ak+1~x ≤ ~0 which is monochromatic for ∆′. Hence (ckdtj)j∈∪s≤k+1Is forms a

solution of Ak+1~x ≤ ~0 which is monochromatic with respect to ∆.
2theorem 1.2.(first part)

In order to demonstrate the structure of the proof of the second part of theorem 1.5.
we will give a short overview. For his characterization of regular systems of linear
equations Rado [10] had to prove that for each systems A~x = ~0, which is regular, A
has the column property. It is an interesting feature of Rado’s proof that a system
A~x = ~0 is regular if there exists a monochromatic solution with respect to one type of
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coloring. For systems of linear inequalities A~x ≤ ~0 with A having only two columns
there also exists a certain type of coloring such that A~x ≤ ~0 is partition regular if it
has a monochromatic solution with respect to this type of coloring. In lemma 1.12.
we will show, that a system (∗) a ≤ x1

x2
≤ b, where a, b ∈ Q and 1 < a ≤ b, is not

partition regular. It is easy to see that essentially each system A~x ≤ ~0 with A having
only two columns can be transformed into a system (∗) for suitable a and b. If such
a system is partition regular this means that one of the following cases holds:

1. a ≤ 0 and b > 0 or
2. a ≤ 1 and b ≥ 1.

It is not difficult to see that these conditions exactly lead to cpi. If we visualize a
partition regular system

(∗∗)
{
a11x1 + a12x2 ≤ 0
a21x1 + a22x2 ≤ 0

geometrically then obviously the solutions are bounded by two straight lines. Three
typical cases occur, i.e. one of the axes is a limiting line or the diagonal is contained
in the solution space:
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We will prove theorem 1.5. by induction on the number of columns of A. In order to
start the induction we described the situation for n = 2. Let us consider a rational
matrix A with n columns. Assume that the system

A~x ≤ ~0 (∗ ∗ ∗)

is partition regular. Under certain assumptions we can transform the system A~x ≤ ~0
for each choice of k, l with 1 ≤ k < l ≤ n into the following system:

− asl
ask
−

n∑

j=1,j 6=l,k

asj
ask

xj
xl
≤ xk
xl
≤ − atl

atk
−

n∑

j=1,j 6=l,k

atj
atk

xj
xl

for all s with ask < 0 and for all t with atk > 0. Thus we have a similar situation
as in (∗) except that the fraction xkxl is not bounded by constant terms a and b but
by terms which depend on x1 . . . xk−1, xk−2, . . . xn. Thus we cannot directly apply
lemma 1.12. Consider this situation for fixed k and l. Assume that there are colorings
of the natural numbers with finitely many colors such that for each monochromatic
solution x1, . . . xn of the system (∗ ∗ ∗) either
1. there exists ǫ1 > 0 and r ∈ N such that 1 + ǫ1 ≤ xk

xl
≤ r or

2. there exists ǫ2 > 0 and ǫ3 > 0 such that ǫ2 ≤ xk
xl
≤ 1− ǫ3.

Then again by lemma 1.12. (∗∗∗) cannot be partition regular. To avoid such situations
the terms − aslask −

∑n
j=1,j 6=l,k

asj
ask

xj
xl
and − atlatk −

∑n
j=1,j 6=l,k

atj
atk

xj
xl
have to fulfill certain

conditions for every coloring. This is what is shown in lemma 1.13. With this kind of
arguments it is possible to show that for every choice of k and l with 1 ≤ k < l ≤ n
either for all ǫ > 0 the system Akl (ǫ) is partition regular or for all ǫ > 0 the system

Alk(ǫ) is partition regular, if the system A~x ≤ ~0 is partition regular. By induction we
can conclude that either for all ǫ > 0 the matrix Akl (ǫ) has cpi or for all ǫ > 0 the
matrix Alk(ǫ) has cpi. Therefore we define:

Definition 1.4. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix. A has the ǫ-property
if the following conditions are satisfied:

1. The system A~x ≤ ~0 has a solution in the natural numbers and
2. For all 1 ≤ k < l ≤ n one of the following conditions is satisfied:
(a) For all ǫ > 0 the matrix Ak(ǫ) has cpi over N,

(b) for all ǫ > 0 the matrix Al(ǫ) has cpi over N,

i.e. for at most one r with 1 ≤ r ≤ n there is an ǫ0 > 0 such that A
r(ǫ0) has

not cpi.

Note that if the matrix Ak(ǫ0) has cpi for some ǫ0 > 0 then for all ǫ ≥ ǫ0 A
k(ǫ) has

cpi.

Remark 1.1. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix, such that A~x ≤ ~0 has
a solution in N. Let 1 ≤ k < l ≤ n.
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1. If the matrix Akl (ǫ) has cpi then A
k(ǫ) has cpi.

Akl has cpi. Let I0, . . . , Ir be the corresponding partition of the column indices.
Define Ir+1 = {l}. Then I0, . . . , Ir+1 is a partition of [n] which proves cpi for
Ak(ǫ).

2. If the matrix A(k)+(l)(ǫ) has cpi then the matrices Ak(ǫ) and Al(ǫ) have cpi.

Let the blocks for A(k)+(l)(ǫ) be I ′0, . . . , I
′
q and assume that the column

a(k
′)(ǫ) =




a1k + a1l − ǫ
a2k + a2l − ǫ

...
amk + aml − ǫ




belongs to the block I ′p. Then A
k(ǫ) and Al(ǫ) have cpi with the corresponding

blocks being Ir = I
′
r for r 6= p and Ip = I ′p − {k′} ∪ {k, l}.

Up to now we did not succeed in proving that A has cpi, but we know that if we
transform A only a little then the transformed matrix has cpi and it is possible to do
this transformations in nearly each column. What we will show in lemma 1.9. is that
the property cpi is continuous in a certain manner.

Lemma 1.2. If A = (aij)1≤i≤m,1≤j≤n is a rational matrix, which satisfies the ǫ-
property, then A has cpi.

In order to prove lemma 1.9. we need the following lemma:
Lemma 1.3. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix such that for all 1 ≤ i ≤
m the entries of row i sum up to zero, i.e.

∑n
j=1 aij = 0. Let s1, . . . , sm ∈ Q. For all

ǫ > 0 let A′(ǫ) = (a′ij(ǫ))1≤i≤m,1≤j≤n+1, be the matrix with entries a
′
ij(ǫ) = aij for

1 ≤ i ≤ m, 1 ≤ j ≤ n and ain+1 = si − ǫ for 1 ≤ i ≤ m. Further let A′ = A′(0).
If for all ǫ > 0 the system A′(ǫ)~x ≤ ~0 has a solution in N, then the system A′~x ≤ ~0
has a solution in N.

Proof of lemma 1.3.: Let A, A′(ǫ) and A′ be as in the assumptions of lemma
1.10. Assume that for all 1 ≤ i ≤ m we have ∑nj=1 aij = 0. Thus the system A~x ≤ ~0
can be transformed into the following system

(∗)
n−1∑

j=1

aij(xj − xn) ≤ 0, 1 ≤ i ≤ m,

which will be abbreviated in the following as A∗~y ≤ ~0, where A∗ =
(aij)1≤i≤m,1≤j≤n−1, and yj = xj − xn for 1 ≤ j ≤ n− 1.
The system A~x ≤ ~0 (resp. A~x < ~0) has a solution in N if and only if (∗) (resp.
A∗~y < 0) has a solution in Z.

In the following we will consider A∗ instead of A. (The entries of A∗ will be denoted
without ∗.) Assume that the set of rows of A∗ is linear independent over Q. Then

Documenta Mathematica 3 (1998) 149–187



Partition Regular Systems of Linear Inequalities 159

there exists ~y = (y1, . . . yn−1) ∈ Qn−1 such that A∗~y < ~0.Multiplication with the least
common multiple of the denominators of yj yields a solution ~y

′ = (y′1 . . . y
′
n−1) ∈ Zn−1

of the system A∗~y < 0. Thus the system A~x < ~0 has a solution in N and therefore
A′~x ≤ ~0 has a solution in N. Hence we are done in this case.

Next we consider the case where the set of rows of A∗ is not linear independent.
Assume that A∗ consists of the rows a(1), . . . a(k), b(k+1), . . . , b(m) for some k ≥ 0,
where a(1), . . . , a(k) are linear independent and for all k + 1 ≤ i ≤ m we have b(i) =∑k
s=1 c

i
sa(s) for suitable c

i
s ∈ Q.

We will prove the lemma by induction on k. If k = 0 then A∗ is the zero-matrix.
Hence A is the zero-matrix and therefore the system A′(ǫ)~x ≤ ~0 has a solution in N
if and only if for all 1 ≤ i ≤ m we have si − ǫ ≤ 0. This is true for all ǫ > 0 by
assumption and therefore for all 1 ≤ i ≤ m we have si ≤ 0.
If k = 1 for all 2 ≤ i ≤ m we have b(i) = ci1a(i) for suitable c

i
1 ∈ Q. We distinguish

the following cases:

1. for all 2 ≤ i ≤ m we have ci1 > 0.
If a(1)~y < 0 holds then for all 2 ≤ i ≤ m we have b(i)~y < 0. Because a(1) is not
the zero-vector there exists a solution ~y ∈ Zn such that A∗~y < ~0 and hence we
are done in this case.

2. There exists i such that ci1 = 0.

In this case we have b(i) = ~0 and the system A′(ǫ)~x ≤ ~0 has a solution only
if si − ǫ ≤ 0. Because this is true for every ǫ > 0, we have si ≤ 0. Hence
(b(i)si)~x ≤ ~0 is true for every choice of ~x where xn+1 ≥ 0. Therefore the matrix
keeps its properties if we omit the row b(i).

3. There exists i such that ci1 < 0.

Let i be arbitrary with ci1 < 0. By assumption we know that for every ǫ > 0
the system A′(ǫ)~x ≤ ~0 has a solution. Let ~x(ǫ) = (x1(ǫ), . . . , xn(ǫ)), x(ǫ) be one
specific solution of the system A′(ǫ)~x ≤ ~0, i. e.

a(1)~x(ǫ) + (s1 − ǫ)x(ǫ) ≤ 0,

which is equivalent to

n∑

j=1

a1jxj(ǫ) ≤ −(s1 − ǫ)x(ǫ)

and correspondingly we have

b(i)~x(ǫ) + (si − ǫ)x(ǫ) ≤ 0,

which is equivalent to

ci1(
n∑

j=1

a1jxj(ǫ)) ≤ −(si − ǫ)x(ǫ)
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Dividing by ci1 > 0 we obtain

n∑

j=1

a1jxj(ǫ) ≥ −
si − ǫ
ci1

x(ǫ).

Hence a solution x1(ǫ), . . . , xn(ǫ) exists if and only if

−si − ǫ
ci1

≤ s1 − ǫ,

which means
si ≤ −ci1si + (ci1 − 1)ǫ.

This is true for all ǫ > 0 and hence

si ≤ −ci1s1

holds.

Thus the statement is true for k = 1.

Assume that our statement is true for some (fixed) k ≥ 1. Let A∗ consist of the rows
a(1), . . . , a(k+1), b(k+2), . . . , b(m), where a(i) are linear independent and for k+1 ≤ i ≤
m let

b(i) =
k+1∑

s=1

cisa(s)

for suitable cis ∈ Q. Further assume that for every ǫ > 0 the system A′(ǫ)~x ≤ ~0 has a
solution in N. We distinguish the following cases:

1. There exists 1 ≤ s ≤ k + 1 such that for all k + 2 ≤ i ≤ m we have cis > 0.
Let c = maxk+1<i<m,1≤l≤k,l6=s|cil|. a(1), . . . , a(k+1) are linearly independent by
assumption. Hence there exists ~y = (y1, . . . , yn) such that for all 1 ≤ i ≤ k we
have a(i)~y < 0 and

mink+1≤i≤m|cis(a(s)~y)| > c · (max1≤l≤k,l6=s|a(l)~y|)(k − 1).

Then y1, . . . yn−1 form a solution for the whole system A∗~y < ~0 and hence
A′~x ≤ ~0 has a solution.

2. There exists s such that for all k + 1 ≤ i ≤ m we have cis ≥ 0 and cis = 0 for at
least one i.

Without loss of generality let s = 1 and ci1 > 0 for k + 1 ≤ i ≤ l and
ci1 = 0 for l < i ≤ m. Then the matrix which consists of the rows
a(1), . . . , a(k+1), b(k+2), . . . , b(l) is dealt within case 1. But the rows b(l+1) up
to b(m) only depend on the k− 1 generators a(2) up to a(k+1). Hence by induc-
tion we obtain a solution y1, . . . , yn for the rows a(2), . . . , a(k+1), b(k+2), . . . , b(m)
which are independent of a(1). Thus we also obtain a solution for the whole
system.
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3. For a ≤ i ≤ k + 1 we define

cij =

{
1 for j = i
0 for j 6= i.

Then it remains to consider the case where there exist 1 ≤ i1, i2 ≤ m and there
exists 1 ≤ s ≤ k + 1 such that ci1s > 0 and ci2s < 0.

Without loss of generality let s = 1. Further we can divide the entries of each
row i by |ci1|, if |ci1| 6= 0, such that we may assume that |ci1| = 1 for each i,
where |ci1| 6= 0.
For every ǫ > 0 the system A∗(ǫ)′~x ≤ ~0 has a solution. Let ~yǫ =
(yǫ1, . . . , y

ǫ
n−1), x

ǫ be such a solution, i. e.

k+1∑

s=1

cis(a(s)~y
ǫ) + (si − ǫ)xǫ ≤ 0 for k + 2 ≤ i ≤ m

and
a(i)~y

ǫ ≤ −(si − ǫ)xǫ for 1 ≤ i ≤ k + 1.
Thus we have

k+1∑

s=2

cis(a(s)~y)
ǫ + (si − ǫ)xǫ ≤ −ci1a(1)~yǫ.

Dividing by −ci1 leads to
k+1∑

s=2

crs(a(s)~y
ǫ) + (sr − ǫ)xǫ ≤ a(1)~yǫ ≤ −

k+1∑

s=2

cjs(a(s)~y
ǫ)− (sj − ǫ)xǫ

for all r with cr1 = −1 and j with cj1 = 1. Further we know that a(1)~y ≤
−(s1 − ǫ)xǫ. Hence we additionally obtain:

k+1∑

s=2

crs(a(s)~y
ǫ) ≤ −(s1 − ǫ)xǫ

for all i satisfying ci1 = −1 and
k+1∑

s=2

cis(a(s)~y
ǫ) ≤ −(si − ǫ)xǫ

for all i satisfying ci1 = 0. Transforming these inequalities we get the following
system of inequalities:

(∗ ∗ ∗)





a(i)~y
ǫ + (si − ǫ)xǫ ≤ 0 2 ≤ i ≤ k + 1

(
∑k+1
s=2 c

i
s(a(s)~y

ǫ)) + (si − ǫ)xǫ ≤ 0 for all i with
ci1 = 0

(
∑k+1
s=2 c

i
s(a(s)~y

ǫ)) + (si + s1 − 2ǫ)xǫ ≤ 0 for all i with
ci1 = −1

(
∑k+1
s=2 (c

i
s + c

j
s)(a(s)~y

ǫ)) + (si + sj − 2ǫ)xǫ ≤ 0 for all i, j with
ci1 = −1, cj1 = 1
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By assumption we know that for all ǫ > 0 the system A∗(ǫ)′~x ≤ ~0 has a solution.
Hence the system (∗ ∗ ∗) has a solution for every ǫ > 0. In system (∗ ∗ ∗) only
k row vectors are linear independent, namely a(2), . . . , a(k+1). Thus we can use
induction to show that the system (∗ ∗ ∗) has a solution for ǫ = 0. Thus the
system A′~x ≤ ~0 has a solution in N.

2lemma 1.2.

Claim 1.1. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix which has cpi with the

first block being IA0 = {1, . . . k} and
∑k
j=1 aij = 0. Let

B =




b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

...
bl1 bl2 . . . bln

A




such that for all 1 ≤ i ≤ l the relation ∑kj=1 bij < 0 holds. Then B has cpi.

Proof of claim 1.1.: Obviously IB0 = {1, . . . , k} satisfies the first condition of
cpi. Let IA0 , . . . , I

A
v be the partition of columns of A and for 1 ≤ r < v, j ∈

∪s≤rIs let cArj, cAr ∈ N be the corresponding coefficients . Let the parameters
b(r), δ, B(r), c(r) 1 ≤ r ≤ v be “big enough”, in particular we define:

b(r) = max1≤i≤l{
∑

j∈IAr+1

bij , }

δ = max1≤i≤l{
k∑

j=1

bij} (< 0),

B(r) = max1≤i≤l{
∑

j∈∪w≤rIAw

|bij |},

c(r) = maxj∈∪w≤rIAw {c
A
rj, c

A
r }.

and let a(r) ∈ N be minimal such that

a(r)δ ≤ −(c(r)B(r) + crb(r)).

Such an a=a(r) exists because δ is negative. Let cBrj = cArj + a if j ≤ k and cBrj = crj
otherwise. For 1 ≤ r ≤ v let cBr = cAr and IBr = IAr . Then for all 1 ≤ i ≤ l we have:

k∑

j=1

(a+ crj)bij +
∑

j∈∪w≤rIAw ,j>k
crjbij + cr

∑

j∈IAr+1

bij

= a
k∑

j=1

bij +
k∑

j=1

crjbij +
∑

j∈∪w≤rIAw ,j>k
crjbij + cr

∑

j∈IAr+1

bij

Documenta Mathematica 3 (1998) 149–187



Partition Regular Systems of Linear Inequalities 163

≤ aδ + c(r)B(r) + crb(r) ≤ 0.
Further for all 1 ≤ i ≤ l we have:

k∑

j=1

(a+ cij)aij = (
k∑

j=1

crjaij) + a(
k∑

j=1

aij)

=
k∑

j=1

crjaij .

Hence B has cpi. 2claim 1.1.

Proof of lemma 1.2.: Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix which has
the ǫ-property, i. e. for all 1 ≤ k < l ≤ n either Ak(ǫ) or Al(ǫ) has cpi for every
ǫ > 0. We will prove that A has cpi. If the matrix Ak(ǫ) has cpi for some k ≤ n, let
Ik0 , . . . , I

k
lk
be a partition of columns of Ak(ǫ), which certifies cpi. We can assume that

the partition of [n] into blocks does not depend on ǫ because there are only finitely
many possibilities of partitioning [n] into blocks. By the pigeonhole principle at least
one partition has to occur for arbitrary small ǫ > 0. But if a matrix Ak(ǫ0) has cpi
with blocks Ik0 (ǫ0), . . . I

k
lk
(ǫ0) then for all ǫ > ǫ0 the matrix A

k(ǫ) has cpi with the
same blocks.

We will prove lemma 1.3. by a downward induction on the size of the block Ik0 which
is maximal for k ≤ n, for which the matrix Ak(ǫ) has cpi for all ǫ > 0. To illustrate
the main idea of the proof we first show the theorem for matrices with one and two
columns.

n = 1 :

A =




a11
a21
...

am1


 .

The system A~x ≤ ~0 has a solution x ∈ N. Therefore we have ai1 ≤ 0 and thus A has
cpi with I0 = {1}.

n = 2:

A =




a11 a12
a21 a22
...

...
am1 am2




There are only three (finitely many) possibilities to arrange the columns of A into
blocks. Hence we can assume that there is an ǫ0 > 0 such that for all ǫ < ǫ0 the
partition of the columns of Ai(ǫ) into blocks is the same.
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1. I10 = {1} or I20 = {2} resp.
For all 1 ≤ i ≤ m and all ǫ > 0 we have ai1− ǫ ≤ 0. Hence for all 1 ≤ i ≤ m the
relation ai1 ≤ 0 holds. So the first condition of cpi is satisfied with I0 = {1}.
Further by the definition of the ǫ-property the system A~x ≤ ~0 has a solution
in N, Let x∗1, x

∗
2 be such a solution. Then the second condition is fulfilled with

c11 = x
∗
1 and c1 = x

∗
2, i. e. for all 1 ≤ i ≤ m we have c11ai1 + c1ai2 ≤ 0. Hence

A has cpi.

2. I10 = {1, 2}
In this case for all 1 ≤ i ≤ m and for all ǫ > 0 we have ai1 + ai2 − ǫ ≤ 0. Hence
for all 1 ≤ i ≤ m we have ai1 + ai2 ≤ 0. Therefore A has cpi with I0 = {1, 2}.

Now we will prove the lemma for matrices of arbitrary size.

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn




Let 1 ≤ k < l ≤ n. We know by assumption that for all ǫ > 0 either Ak(ǫ) or Al(ǫ)
has cpi. As mentioned above we can assume that the partition of [n] into blocks does
not depend on ǫ. In order to start the induction we consider the case where we can
find some 1 ≤ k ≤ n such that Ak(ǫ) has cpi for every ǫ > 0 and |Ik0 |=n, i. e. the
sum over all columns of Ak(ǫ) is less of equal to zero. In this case for all 1 ≤ i ≤ m
and every ǫ > 0 we have

ai1 + ai2 + . . .+ ain − ǫ ≤ 0.

Hence for all 1 ≤ i ≤ m we have

ai1 + ai2 + . . .+ ain ≤ 0

and therefore A has cpi with I0 = [n].
Next we consider the case where we can find some k, 1 ≤ k ≤ n such that Ak(ǫ) has
cpi for every ǫ > 0 and |Ik0 | = n−1. First assume that k ∈ Ik0 . Then for all 1 ≤ i ≤ m
and all ǫ > 0 we have:

(
∑

j∈Ik0

aij)− ǫ ≤ 0.

In this case for all 1 ≤ i ≤ m we obtain
∑

j∈Ik0

aij ≤ 0.

If k /∈ Ik0 for all 1 ≤ i ≤ m we also have
∑

j∈Ik0

aij ≤ 0.
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Thus in both cases the first condition of cpi is satisfied choosing I0 = I
k
0 .

Let I1 = [n] − I0. Note that |I1| = 1 and assume p ∈ I1. We know that the system
A~x ≤ ~0 has a solution in N. Let x∗1, . . . x∗n be such a solution. Then for all 1 ≤ i ≤ m
we have ∑

j∈I0
c1jaij + c1aip ≤ 0,

if we choose c1j = x
∗
j for j ∈ I0 and c1 = x∗p.

Assume inductively that the following is true for some (fixed) k ≤ n− 1: Let A be a
rational matrix with m rows and n columns which has the ǫ- property. If there exists
a column s, such that for all ǫ > 0 As(ǫ) has cpi and |Is0 | ≥ k, then A has cpi.

In the following we will show that if A is a rational matrix which has the ǫ-property
and there exists a column s, such that for all ǫ > 0 As(ǫ) has cpi and |Is0 | = k − 1,
then A has cpi. Without loss of generality we can assume that Is0 = {1, . . . k − 1}
for some (fixed) s. For k − 1 ≤ n− 2, we have |[n]− Is0 | ≥ 2. A has the ǫ- property,
therefore either Ak(ǫ) or Ak+1(ǫ) has cpi for all ǫ > 0. Without loss of generality we
can assume that Ak(ǫ) has cpi. We will consider several cases:

1. Ik0 6⊆ Is0 .
In this case for all ǫ > 0 and all 1 ≤ i ≤ m we have

(
k−1∑

j=1

aij)− ǫ ≤ 0

and therefore
k−1∑

j=1

aij ≤ 0.

Further for all 1 ≤ i ≤ m we have
∑

j∈Ik0

aij ≤ 0.

We distinguish the following cases:

(a) Ik0 ∩ Is0 = ∅
Then we have ∑

j∈Ik0 ∪Is0

aij ≤ 0.

Let I0 = Ik0 ∪ Is0 and Il = Ikl − Is0 . Because of the definition of Ikl for all ǫ > 0
and for all j ∈ ∪s≤lIks there exists cklj(ǫ) and ckl (ǫ) such that for all 1 ≤ i ≤ m
we have ∑

j∈∪s≤lIks

cklj(ǫ)a
k
ij(ǫ) + c

k
l (ǫ)

∑

j∈Ik
l+1

akij(ǫ) ≤ 0
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and therefore

∑

j∈∪s≤lIks

cklj(ǫ)a
k
ij(ǫ) +

∑

j∈(Is0−Ikl+1)
akij(ǫ) +

∑

j∈Is0∩Ikl+1

(1 + ckl (ǫ))a
k
ij(ǫ)+

∑

j∈(Ik
l+1−Is0 )

cl(ǫ)a
k
ij(ǫ) ≤ 0.

Hence we conclude that we can choose I0 = Ik0 ∪ Is0 to prove cpi and |I0| >
|Is0 | = k − 1. So we are done by induction.
(b) Ik0 ∩ Is0 6= ∅
Without loss of generality we can assume that Ik0 ∩ Is0 = {1, . . . , l}. Consider
the matrix

B =



2a11 2a12 . . . 2a1l a1l+1 . . . a1n
...

...
...

...
...

...
...

2am1 2am2 . . . 2aml aml+1 . . . amn


 = (bij)1≤i≤m,1≤j≤n.

We claim that B has the ǫ-property. This is true because

(i) the system A′~x ≤ ~0 has a solution in N for if x1, . . . , xn is a solution of
A~x ≤ ~0, then x1, . . . , xl, 2xl+1, . . . , 2xn forms a solution of B~x ≤ ~0.
(ii) Let 1 ≤ p ≤ n such that Ap(ǫ) has cpi for every ǫ > 0 with blocks Ip0 , Ip1 , . . ..
Let I ′p0 = I

k
0 ∪ Is0 . Then for all 1 ≤ i ≤ m the following is true:

0 ≥
∑

j∈Ik0

akij(ǫ) +
∑

j∈Is0

asij(ǫ) =
∑

j∈I′p0

bpij(ǫ).

Let I ′pr = Ipr−1 − (Ik0 ∪ Is0 ). Ap(ǫ) has cpi for every ǫ > 0. Hence there exist
cpr−1j = c

p
r−1j(ǫ), c

p
r−1 = c

p
r−1(ǫ) such that for all 1 ≤ i ≤ m we have

∑

j∈∪q≤r−1Ipq

cr−1ja
p
ij(ǫ) + cr−1

∑

j∈Ipr

apij(ǫ) ≤ 0.

Hence we have

l∑

j=1

bpij(ǫ) +
∑

j∈I′p0 −{1,...,l}

2bpij(ǫ) +
∑

j∈∪q≤r−1Ipq∩(Ik0∪Is0)
cr−1j2b

p
ij(ǫ)+

∑

j∈(∪q≤r−1Ipq )−(Ik0∪Is0 )
cr−1j2b

p
ij(ǫ) +

∑

j∈Ipr∩(Ik0∪Is0)
cr−12b

p
ij(ǫ) +

∑

j∈I′pr

cr−12b
p
ij(ǫ)

≤ 0.

Hence Bp(ǫ) has cpi if Ap(ǫ) has cpi. Therefore B has the ǫ-property and
|I ′p0 | ≥ k. Hence B has cpi by induction.
We claim that if B has cpi then A has cpi.
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Let the partition into blocks for B be IB0 , I
B
1 , . . . , I

B
v . Let I0 = {1, . . . , k − 1}.

We know that
k−1∑

j=1

aij ≤ 0.

Let I1 = (I
k
0 ∪Is0 )−{1, . . . , k−1}, let c01 = . . . = c0l = 2, c0l+1 = . . . = c0k−1 = 1

and c0 = 1. Then for all 1 ≤ i ≤ m we have
∑

j∈I0
cj0aij + c0

∑

j∈I1
aij ≤ 0.

Let Ir = IBr−2 − (Ik0 ∪ Is0). We know that there exist cBr−2j , cBr−2 such that we
have

∑

j∈∪w≤r−3IBw

cBr−2jbij + c
B
r−2

∑

j∈IBr−2

bij ≤ 0

and thus

l∑

j=1

2aij +
∑

j∈(Ik0 ∪Is0)−{1,...,l}
aij +

∑

j∈(∪w≤r−3IBw )−(Ik0∪Is0 )
cBr−2jaij+

∑

j∈(∪w≤r−3IBw )∩(Ik0∪Is0)
cBr−2jaij + c

B
r−2

∑

j∈IBr−2∩(Ik0∪Is0)
aij + c

B
r−2

∑

j∈Ir
aij

≤ 0.

Hence A has cpi.

2. Ik0 ⊆ Is0 = {a(1), . . . a(k−1)}.
(If Is0 ⊂ Ik0 , we would have |Ik0 | ≥ k and we were done by induction.)
Without loss of generality we can assume that Ik0 = Is0 , because otherwise it is
possible to choose Ik0 as the first block for the matrix A

s(ǫ). We distinguish the
following cases:

(a) k /∈ Ik1
In this case there exist c1j ∈ N, c1 ∈ N such that for all 1 ≤ i ≤ m we have

∑

j∈Ik0

c1jaij + c1
∑

j∈Ik1

aij ≤ 0.

Consider the following matrix B = (bij)1≤i≤m,1≤j≤n, where for all
1 ≤ i ≤ m bij is defined by

bij =





c1jaij for 1 ≤ j ≤ k − 1
c1aij for j ∈ Ik1
aij otherwise.

We claim that B has the ǫ-property.
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(i) The system B~x ≤ ~0 has a solution, for if x1, . . . xn is a solution of
the system A~x ≤ ~0, then define a solution of the system B~y ≤ ~0, ~y =
(y1, . . . , yn) by

yj =





1
c1j
xj if 1 ≤ j ≤ k − 1

1
c1
xj if j ∈ Ik1

xj otherwise.

If we multiply ~y by the least common multiple of c1j , c1 we obtain a solution

of the system B~x ≤ ~0 in N.
(ii) Let 1 ≤ p ≤ n be given such that for every ǫ > 0 Ap(ǫ) has cpi and
let Ip0 , . . . , I

p
l be the blocks and c

p
rj(ǫ), c

p
r(ǫ) the corresponding coefficients,

such that for all 1 ≤ i ≤ m we have
∑

j∈Ip0

apij(ǫ) ≤ 0

and ∑

j∈∪w≤rIpw

cprj(ǫ)a
p
ij(ǫ) + c

p
r(ǫ)

∑

j∈Ipr+1

apij(ǫ) ≤ 0.

Now we will show that Bp(ǫ) has cpi for all ǫ > 0. Let I ′p0 = Ik0 ∪ Ik1 and
I ′pr = I

p
r−1 − I ′p0 . Then for all 1 ≤ i ≤ m we have

∑

j∈I′p0

bij ≤ 0

and ∑

j∈∪w≤r−1Ipw

cpr−1j(ǫ)a
p
ij(ǫ) + c

p
r−1(ǫ)

∑

j∈Ipr

apij(ǫ) ≤ 0.

It follows that
∑

j∈I′p0

bpij(ǫ) +
∑

j∈((∪w≤r−1Ipw)∩I′p0 )

cpr−1j(ǫ)a
p
ij(ǫ) +

∑

j∈Ipr−1∩I
p
0

cpr(ǫ)a
p
ij(ǫ)+

∑

j∈(∪w≤r−1Ipw)−I′p0

cpr−1j(ǫ)a
p
ij(ǫ) +

∑

j∈I′pr

cpr(ǫ)a
p
ij(ǫ) ≤ 0.

Hence B has the ǫ-property. Thus B has cpi by induction. Let the cor-
responding partition of blocks be IB0 , . . . , I

B
l and let c

B
rj , c

B
r be the corre-

sponding coefficients. We claim that A has cpi.

Let I0 = I
k
0 , I1 = I

k
1 , Ir = I

B
r−2 − (Ik0 ∪ Ik1 ). Obviously for all 1 ≤ i ≤ m we

have ∑

j∈I0
aij ≤ 0.

For 2 ≤ r ≤ l− 1, for all 1 ≤ i ≤ m we have
∑

j∈∪w≤r−2IBw

cBr−2jbij + c
B
r−1(

∑

j∈IBr−1

bij) ≤ 0.
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Thus for all 1 ≤ i ≤ m the following is true
∑

j∈Ik0

aij +
∑

j∈Ik1

aij +
∑

j∈(∪w≤r−2IBw∩(Ik0∪Ik1 ))
cBr−2jbij

+
∑

j∈IBr−1∩(Ik0∪Ik1 )
cBr−2bij +

∑

j∈∪w≤r−2IBw−(Ik0∪Ik1 )
cBr−2jbij + c

B
r−2(

∑

j∈Ir+1
bij)

≤ 0.
Hence A has cpi.

(b) k ∈ Ik1 .
Without loss of generality we can assume that Ik1 = {k, . . . , r}. For all
1 ≤ i ≤ m we know that ∑k−1j=1 aij ≤ 0. It is no restriction to assume that

k∑

j=1

aij

{
= 0 for 1 ≤ i ≤ m1
< 0 for m1 < i ≤ m

for some m1 ≤ m. In claim 1.11. we have shown that it is enough to
consider the first m1 rows of A. Let

B = (a(1), . . . , a(k−1))

be the matrix which consists of the first k − 1 columns of A. Let

B′(ǫ) =




a11 . . . a1k−1 (
∑r
j=k a1j − ǫ)

...
...

...
...

am11 . . . am1k−1 (
∑r
j=k am1j − ǫ)


 .

Obviously adding up the columns of B we get the zero vector. Further for
all ǫ > 0 the system B′(ǫ)~x ≤ ~0 has a solution. Hence we can apply lemma
1.10. to show that the system B′(0)~x ≤ ~0 has a solution in N. Assume
that c11, . . . , c1k−1, c1 is such a solution, hence for all 1 ≤ i ≤ m we have

k−1∑

j=1

aijc1j + c1

r∑

k

aij ≤ 0.

Then we consider the matrix B = (bij)1≤i≤m,1≤j≤n

bij =





c1jaij for 1 ≤ j ≤ k − 1
c1aij for k ≤ j ≤ r
aij otherwise.

As in case a) it is now possible to show that B has the ǫ-property. Then
by induction B has cpi which again implies as in case a) that A has cpi.

2lemma 1.3.

Lemma 1.4. Let a, b ∈ Q and let the following system of inequalities be given:

(∗) a ≤ x1
x2
≤ b.

Let
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1. 1 < a ≤ b or
2. 0 < a ≤ b < 1.

Then (∗) is not partition regular over N.

Proof of lemma 1.4.:

1. Assume that 1 < a ≤ b.
Let n ∈ N be minimal such that an > b. Consider the following coloring:
∆a,b : N→ [n+ 1] which is defined by

(∗∗) ∆a,b(x) = (⌊loga(x)⌋mod(n + 1)) + 1.
In the following we will show that (∗) has no monochromatic solution for ∆a,b.

Assume on the contrary that x1, x2 form a solution of (∗) which is monochro-
matic with respect to ∆a,b. Let loga(x1) = µx1 and loga(x2) = µx2 . Then we
have

µx1 ≡ µx2mod(n+ 1).
Say µx1 = kx1(n+1)+ r and µx2 = kx2(n+1)+ r for some 0 ≤ r ≤ n. Because
x1, x2 forms a solution of (∗) we have

a ≤ x1
x2
≤ b

and thus

a ≤ x1
x2

<
aµx1+1

aµx2
= a(kx1−kx2 )(n+1)+1.

Therefore we have
(kx1 − kx2)(n+ 1) + 1 > 1

and hence
kx1 − kx2 > 0.

On the other hand we have:

an > b ≥ x1
x2
≥ aµx1

aµx2+1
= a(kx1−kx2 )(n+1)−1,

which implies
(kx1 − kx2)(n+ 1)− 1 < n

and hence
kx1 − kx2 < 1.

which is in contradiction to (∗∗).
2. Assume that 0 < a ≤ b < 1. Consider the following system of inequalities which
is equivalent to (∗):

1

a
≥ x2
x1
≥ 1
b
.

Then we have 1 < 1
b ≤ 1

a and we can follow the arguments of case 1.

2lemma 1.4.
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Lemma 1.5. Let z ∈ N be given. Let n ≥ 2 and let fi(x2, . . . , xn) : Rn−1 → R,
gi(x2, . . . , xn) : R

n−1 → R for 1 ≤ i ≤ z be given. Consider the following system of
inequalities:

fi(x2, . . . , xn) ≤
x1
x2
≤ gi(x2, . . . , xn). (∗)

Let (∗) satisfy the following conditions:

1. ∃i1, 1 ≤ i1 ≤ z,∃ǫ1, 0 < ǫ1 < 1,∃c1 ∈ N and ∃∆1 : N → [c1] such that (∗) has
no solution x1, . . . , xn which is monochromatic with respect to ∆

1 and

fi1(x2, . . . , xn) ≤ ǫ1.

2. ∃i2, 1 ≤ i2 ≤ z,∃ǫ2, ǫ3, 0 < ǫ2, ǫ3 < 1,∃c2 ∈ N and ∃∆2 : N→ [c2] such that (∗)
has no solution x1, . . . , xn which is monochromatic with respect to ∆

2 and

fi2(x2, . . . , xn) ≤ 1 + ǫ2

or there is no solution x1, . . . , xn which is monochromatic with respect to ∆
2

and
gi2(x1, . . . , xn) ≥ ǫ3.

3. ∃k ∈ N,∃c3 ∈ N and ∃∆3 : N → [c3] such that (∗) has no solution x1, . . . , xn
which is monochromatic with respect to ∆3 and

x1
x2
≥ k.

Then there exists c∗ ∈ N and a coloring ∆∗ : N→ [c∗], such that (∗) has no solution
which is monochromatic for ∆∗.

Proof of lemma 1.5.: Let ǫ1, ǫ2, ǫ3, k, c1, c2, c3 and ∆
1,∆2,∆3 be defined as in the

assumptions of lemma 1.13. Consider colorings of the form ∆a,b which are defined as
in the proof of lemma 1.11. (∗∗) with appropriate a and b, namely:

∆4 = ∆
1

1−ǫ3
, 1
ǫ1 : N→ [c4],

where c4 ∈ N is minimal such that 1
1−ǫ3

(c4−1) > 1
ǫ1
and

∆5 = ∆1+ǫ2,k : N→ [c5],

where c5 ∈ N is minimal such that (1 + ǫ2)(c5−1) > k.
Then define ∆∗ as follows:

∆∗ : N→
5∏

j=1

[cj ],

∆∗(x) = (∆1(x),∆2(x),∆3(x),∆4(x),∆5(x)).
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We claim that (∗) has no solution which is monochromatic for ∆∗.
Assume on the contrary that x1, . . . , xn is a solution of (∗) which is monochromatic
with respect to ∆∗. Because x1, . . . , xn is monochromatic for ∆∗ it is monochromatic
for ∆1. Hence we have

fi1(x2, . . . , xn) ≥ ǫ1,
which implies

x1
x2
≥ ǫ1. (1)

Besides x1, . . . , xn is monochromatic for ∆
2. Hence we have

fi2(x2, . . . , xn) ≥ 1 + ǫ2
or

gi2(x2, . . . , xn) ≤ 1− ǫ3,
which implies

x1
x2
≥ 1 + ǫ2 (2)

or
x1
x2
≤ 1− ǫ3. (3)

Finally x1, . . . , xn is monochromatic for ∆3 and therefore we have:

x1
x2
≤ k. (4)

If we put together (1) and (3) and (2) and (4) respectively, we obtain:

ǫ1 ≤
x1
x2
≤ 1− ǫ3 (5)

or
1 + ǫ2 ≤

x1
x2
≤ k. (6)

By lemma 1.12. (5) has no monochromatic solution for ∆4 and
(6) has no monochromatic solution for ∆5. Hence x1, . . . , xn is not
monochromatic for ∆∗. That is in contradiction to our assumption.

2lemma 1.13.

Now we are able to prove the second part of theorem 1.5., i.e. A has cpi if the system
A~x ≤ ~0 is partition regular.

Proof of theorem 1.3. (second part): We will prove the theorem by induction
on the number of columns of A. Note that a system, which is partition regular,
necessarily has a solution.
n = 1 :

A =




a11
a21
...

am1
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The system (ai1x1 ≤ 0)1≤i≤m is partition regular. Hence it has a solution in N,
therefore for all 1 ≤ i ≤ m we have ai1 ≤ 0 and thus A has cpi with I0 = {1}.
In order to demonstrate the idea of the proof we additionally consider the case
n = 2 :

A =




a11 a12
a21 a22
...

...
am1 am2




We distinguish the following cases:

1. For each row I 1 ≤ i ≤ m the first entry is less or equal zero, i.e. ai1 ≤ 0.
Let I0 = {1} and I1 = {2}. Assume that y1, y2 ∈ N form a solution of the
system A~x ≤ ~0. Then for all 1 ≤ i ≤ m we have

∑

j∈I0
c1jaij + c1

∑

j∈I1
aij = c11ai1 + c1ai2 ≤ 0

if we choose c11 = y1 and c1 = y2.

2. For each row i 1 ≤ i ≤ m the first entry is greater or equal zero, i.e. ai1 ≥ 0.
In this case for all 1 ≤ i ≤ 0 we have ai2 ≤ 0
Then A has cpi with blocks I0 = {2} and I1 = {1}.

3. There exist s, t ∈ [m] such that as1 < 0 and at1 > 0.
Then the system A~x ≤ ~0 can be transformed as follows:

−at2
at1
≤ x1
x2
≤ −as2

as1

for all t with at1 < 0 and for all s with as1 > 0 and

at2x2 ≤ 0 for all t with at1 = 0.

By lemma 1.12. we know that one of the following cases holds:

(a) −at2at1 ≤ 0 for all t with at1 < 0 and −
as2
as1
≥ 0 for all s with as1 > 0 and

(obviously) at2 ≤ 0 for all t with at1 = 0. In this case for all 1 ≤ i ≤ m we
obtain

at2 ≤ 0.
Thus A has cpi with blocks I0 = {2} and I1 = {1}.

(b) −at2at1 ≤ 1 for all t with at1 < 0 and −
as2
as1
≥ 1 for all s with as1 > 0 and

hence for all 1 ≤ t ≤ m with at1 6= 0 we have

at1 + at2 ≤ 0

and obviously for all 1 ≤ t ≤ m with at1 = 0 we have

at2 ≤ 0
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and hence

at1 + at2 ≤ 0.
Thus A has cpi with I0 = {1, 2} in this case.

Hence we are done in the case n = 2.
Let us assume that the theorem is true for all matrices A with less than n columns
for some (fixed) n ≥ 2. Let

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . anm


 .

To prove the theorem we distinguish the following cases:

1. There exists 1 ≤ j∗ ≤ n such that for all 1 ≤ i ≤ m the j∗th entry satisfies
aij∗ < 0.

In this case let I0 = {j∗} and I1 = [n]− {j∗} and choose
c1j∗ > max1≤i≤m{

∑n
s=1,s 6=j∗ |ais|
|aij∗ | }, c1 = 1.

2. There exists 1 ≤ j∗ ≤ n such that for all 1 ≤ i ≤ m the j∗th entry satisfies
aij∗ ≤ 0.
Without loss of generality assume j∗ = 1 and ai1 < 0 for 1 ≤ i ≤ m1 and
ai1 = 0 for m1 < i ≤ m for some m1 ≤ m. Then we have:

A =




a11 < 0
...

a1m1 < 0

∗

0
...
0

A′




.

Hence A is partition regular if and only if A′ is partition regular. By induction
A′ has cpi. Let the corresponding blocks be I ′0, . . . I

′
r for a suitable r ∈ N and

for 1 ≤ k ≤ r and for j ∈ ∪s≤kIs let the coefficients be c′kj , c′k. Then A has cpi
with blocks I0 = {1}, Is = I ′s−1 for 1 ≤ s ≤ r and coefficients

ck1 =
max1≤i≤m1{

∑
j∈∪s≤kI′s c

′
kjaij + c

′
k

∑
j∈I′

k+1
aij}

min1≤i≤m1 |a1i|

for 2 ≤ k ≤ r and

c11 =
max1≤i≤m1

∑
j∈I′1 aij

min1≤i≤m1 |a1i|
,

c1 = 1 and ckj = c
′
k−1j for all j 6= 1 and all 1 ≤ k ≤ r.
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3. There exists j∗ such that for all 1 ≤ i ≤ m we have aij∗ ≥ 0.
In this case obviously A′ = A− {a(j∗)}, the matrix which we obtain from A by
omitting the column j∗, is partition regular and has cpi by induction. Let the
blocks of A′ be I ′0, . . . I

′
r and define for all 1 ≤ s ≤ r Is = I ′s and Ir+1 = {j∗}.

Further let y1, . . . , yn ∈ N be a solution of the system A~x ≤ ~0. Then A has cpi
with coefficients crj = yj for j 6= j∗, and cr = yj∗ .

4. Each column has both positive and negative entries.

Let 1 ≤ k < l ≤ n be given. Then the system A~x ≤ ~0 can be transformed as
follows:

(∗)





−ask
asl
−

n∑

j=1,j /∈{k,l}

asj
asl

xj
xk
≤ xl
xk
≤ −atk

atl
−

n∑

j=1,j /∈{k,l}

asj
asl

xj
xk

for all s, t with asl < 0 and atl > 0,∑n
j=1,j 6=l aijxj ≤ 0

for all i with ail = 0.

By lemma 1.13. we know that one of the following cases holds:

(a) For all ǫ > 0 the following system of inequalities is partition regular:

−ask
asl
−

n∑

j=1,j /∈{k,l}

asj
asl

xj
xk
≤ ǫ for all s with asl < 0

−atk
atl
−

n∑

j=1,j /∈{k,l}

atj
atl

xj
xk
≥ 0 for all t with atl > 0

and
n∑

j=1,j 6=l
aijxj ≤ 0 for all i with ail = 0.

That means that for every ǫ > 0 the system

Akl (ǫ)~y ≤ ~0

is partition regular and has cpi by induction. Hence by remark 1.8. Ak(ǫ)
has cpi for all ǫ > 0.

(b) For all r > 0 and each coloring of the natural numbers with finitely many
colors the system (∗) has a monochromatic solution x1, . . . , xn such that

xl
xk

> r,

which is equivalent to
xk
xl

<
1

r
.
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We transform the system A~x ≤ ~0 as in (∗) exchanging k and l. Then we
obtain:

− asl
ask
−

n∑

j=1,j /∈{k,l}

asj
ask

xj
xl
≤ xk
xl
≤ − atl

atk
−

n∑

j=1,j /∈{k,l}

atj
atk

xj
xl

for all s, t with ask < 0 and atk > 0 and

n∑

j=1,j 6=k
aijxj ≤ 0

for all i with aik = 0. Therefore the following system is partition regular
for each r > 0 :





− aslask −
∑n
j=1,j /∈{k,l}

asj
ask

xj
xl
≤ 1
r

for all 1 ≤ s ≤ m with ask < 0
− atlatk −

∑n
j=1,j /∈{k,l}

atj
atk

xj
xl
≥ 0

for all 1 ≤ t ≤ m with atk > 0 and∑n
j=1,j 6=k aijxj ≤ 0
for all 1 ≤ i ≤ m with aik = 0.

Hence the system Alk(
1
r ) is partition regular for every r > 0 and has cpi

by induction. Therefore by remark 1.8. the system Al(1r ) has cpi for every
r > 0.

(c) For all ǫ > 0 the following system is partition regular:

(∗)





−ask
asl
−

n∑

j=1,j /∈{k,l}

asj
asl

xj
xk
≤ 1 + ǫ

for all 1 ≤ s ≤ m with asl < 0

−atk
atl
−

n∑

j=1,j /∈{k,l}

atj
atl

xj
xk
≥ 1− ǫ

for all 1 ≤ t ≤ m with atl > 0
n∑

j=1,j 6=l
aijxj ≤ 0

for all 1 ≤ i ≤ m with ail = 0.

Then for every ǫ > 0 the system A(k)+(l)~y ≤ ~0 is partition regular and has
cpi by induction, therefore by remark 1.8. Al(ǫ) and Ak(ǫ) have cpi.

The system A~x ≤ ~0 has a solution in N because otherwise it could not be
partition regular and hence A has the ǫ-property. Therefore by lemma 1.9. A
has cpi.

2theorem 1.5.

In the following we will generalize the set of partitioned numbers. We will first state
results over Z and Q and finally we will consider real matrices and generalize the set
of partitioned numbers to the reals.
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Definition 1.5. Let K ⊂ R − {0} be a set. Let A = (aij)1≤i≤m,1≤j≤n be a matrix
with entries in R. A has the column property for systems of inequalities (cpi) over
K if there exists l ∈ N and a partition [n] = I0 ∪ I1 ∪ . . . ∪ Il of the column indices
such that

1. There exists c ∈ K such that for all 1 ≤ i ≤ m we have c∑j∈I0 aij ≤ 0 and

2. for all k < l, j ∈ ∪s≤kIs there exist ck, ckj ∈ K such that for all 1 ≤ i ≤ m we
have ∑

j∈∪s≤kIs
cjkaij + ck

∑

j∈Ik+1
aij ≤ 0.

And correspondingly we define:

Definition 1.6. Let K ⊂ R − {0} be a set. Let A = (aij)1≤i≤m,1≤j≤n be a real
matrix. Let ~b = (b1, . . . , bn) ∈ Rn. The system A~x ≤ ~b is called partition regular over
K, if for every c ∈ N and every c-coloring of K ∆ : K → [c] there exists a solution
x1, . . . xn ∈ K of A~x ≤ ~b such that ∆

∣∣{x1...xn} = const.

Lemma 1.6. Let K ⊂ R − {0} and K = K1 ∪ K2 such that K1 ∩ K2 = ∅. Let
A = (aij)1≤i≤m,1≤j≤n be a real matrix. Then the following statements are equivalent:

1. The system A~x ≤ ~0 is partition regular over K.

2. The system A~x ≤ ~0 is partition regular over K1 or the system is partition regular
over K2.

Proof of lemma 1.6.: If the system A~x ≤ ~0 is partition regular over K1 or over
K2 then it is clearly partition regular over K. For the opposite direction assume
that the system A~x ≤ ~0 is neither partition regular over K1 nor over K2, i. e. there
exists c1 ∈ N and a coloring ∆1 : K1 → [c1] and there exists c2 ∈ N and a coloring
∆2 : K2 → [c2], such that A~x ≤ ~0 has no monochromatic solution in K1 for ∆1 and
no monochromatic solution in K2 with respect to ∆2. Define the following coloring:
∆ : K → [max{c1, c2}]× [2] by

∆(x) =

{
(∆1(x), 1) if x ∈ K1
(∆2(x), 2) if x ∈ K2.

Obviously the system A~x ≤ ~0 has no monochromatic solution with re-
spect to the coloring ∆ which is a contradiction to the partition regularity.

2lemma 1.6.

If we use lemma 1.16. together with theorem 1.5. we obtain the following theorem:

Theorem 1.4. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix. The system A~x ≤ ~0
is partition regular over Z−{0} if and only if A has cpi either over Z+−{0} or over
Z
− − {0}.
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Proof of theorem 1.4.: By lemma 1.16. we know that the system A~x ≤ ~0 is
partition regular over Z− {0} iff it is either partition regular over Z+ − {0} or over
Z− − {0}. The first case is equivalent to A having cpi over N by theorem 1.5. In
the second case consider (∗) −A~x ≤ ~0 where −A = (−aij)1≤i≤m,1≤j≤n. A~x ≤ ~0

is partition regular over Z− − {0} iff −A~x ≤ ~0 is partition regular over N. This is
equivalent to −A having cpi over N, which is equivalent to A having cpi over Z−−{0}.

2theorem 1.4.

Theorem 1.5. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix. Then the following
statements are equivalent:

1. The system A~x ≤ ~0 is partition regular over Q− {0}.

2. A has cpi over Q+ − {0} or over Q− − {0}.

3. A has cpi over Z+ − {0} or over Z− − {0}.

Proof of theorem 1.5. :
1. implies 2.:
It is enough to show that if A~x ≤ ~0 is partition regular over Q+ −{0} then it has cpi
over Q+ − {0}. This can be shown following the arguments of the second part of the
proof of theorem 1.5. using Q+ − {0} instead of N.
2. implies 3.:
Assume that A has cpi over Q+−{0}, i. e. there exists a partition of the columns of
A into blocks [n] = I0 ∪ . . . ∪ Il such that

1. There exists q ∈ Q+ − {0} such that for all 1 ≤ i ≤ m we have q∑j∈I0 aij ≤ 0,
i. e.

∑
j∈I0 aij ≤ 0.

2. For k < l, j ∈ ∪s≤kIs there exist ckj , ck ∈ Q+ − {0} such that for all 1 ≤ i ≤ m
we have ∑

j∈∪s≤kIs
ckjaij + ck

∑

j∈Ik+1
aij ≤ 0.

By multiplying the above inequality with the common divisor of ckj , ck we obtain
positive integer coefficients.

3. implies 1.:
If A has cpi over Z+ − {0} or over Z− − {0} then by theorem 1.17. the system
A~x ≤ ~0 is partition regular over Z− {0}. Hence it is partition regular over Q− {0}.

2theorem 1.5.

Theorem 1.6. Let A = (aij)1≤i≤m,1≤j≤n be a real matrix. Then the following
statements are equivalent:

1. The system A~x ≤ ~0 is partition regular over R− {0}.

2. A has cpi over R+ − {0} or over R− − {0}.
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Proof of theorem 1.6. :
1. implies 2.:
It is enough to show that if the system A~x ≤ ~0 is partition regular over R+−{0} then
A has cpi over R+ − {0}. This can be shown following the arguments of the second
part of the proof of theorem 1.5. using R+ − {0} instead of N.
2. implies 1. :
Again it is enough to show that if A has cpi over R+−{0} then the system A~x ≤ ~0 is
partition regular over R+ − {0}. To prove this we employ a generalized environment
lemma using the multidimensional version of van der Waerden’s Theorem which is
due independently to Gallai (see [10]) and Witt [16] instead of van der Waerden’s
Theorem [15]:

Lemma 1.7. Let A = (aij)1≤i≤m,1≤j≤n be a real matrix such that the system A~x ≤ ~0
is partition regular over R+ − {0}. Let t ∈ N and W ⊂ R, W = {w1, . . . wt} be
given. Let c ∈ N. Then for every c-coloring ∆ : R+ − {0} → [c] there exists ~x =
(x0, . . . , xn) ∈ (R+ − {0})n and there exists r ∈ R+ − {0} such that
1. A~x ≤ ~0 and

2. For all j, k with 1 ≤ j ≤ n, 1 ≤ k ≤ t we have ∆(xj + rwk) = const.

Proof of lemma 1.7.: Assume that A is partition regular. Hence by compactness
[6] there exists a finite set V = V (A, c) ⊂ R+ − {0} such that for every c-coloring
of V there exists a monochromatic solution of the system A~x ≤ ~0 in V . Let V =
{v1, . . . , vt}.
Let ∆ : R+−{0} → [c] be an arbitrary coloring. Define a coloring ∆∗ : R+−{0} → [ct]
by

∆∗(x) = (∆(xvi))1≤i≤t.

Define a finite set W = {w|w = ∏ns=1 vjs , js ∈ [t]}. By Gallai-Witt’s Theorem there
exists a homothetic copy of the set W which is monochromatic with respect to ∆∗, say
W ′ = a′+ r′W = {a′+ r′w|w ∈W}. Consider another coloring ∆∗∗ :V→ [c] which is
defined by ∆∗∗(x) = ∆(a′x). By definition of V there exists a monochromatic solution
of the system A~x ≤ ~0 in V with respect to ∆∗∗, say x′1, . . . , x′n. Then (x′1a′, . . . , x′na′)
is a solution and for all 1 ≤ j ≤ n we have ∆(x′ja′) = const.
Let r = r′x′1 . . . x

′
n. Then we have:

x′ia
′ + rvj = x

′
i(a
′ + r′vjx

′
1 · . . . · x′i−1x′i+1 · . . . · x′n)

and by the definition of W

(vjx
′
1 · . . . · x′i−1x′i+1 · . . . · x′n) ∈W.

Hence for all 1 ≤ i ≤ n, 1 ≤ j ≤ t we finally have

∆(x′ia
′) = ∆(x′ia

′ + rvj).

2lemma 1.7.

Now we are able to prove the second part of theorem 1.19.:
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Let A be a real matrix which has cpi over R+ − {0}. Let [n] = I0 ∪ . . . ∪ Il be the
corresponding partition. We prove theorem 1.19. by main induction over the number
of colors and by subsidiary induction over the number of blocks. In both cases the
start of the induction is easy to obtain: The system A~x ≤ ~0 has a solution (just take
the coefficients cjl−1, cl). If only one color is used every solution is monochromatic.
If l = 0 every singleton provides a solution.

Let Ak = (a
(j)|j ∈ ∪j≤kIk) be the submatrix of A which only consists of the columns

belonging to the first k blocks. Assume that Ak is partition regular over R
+ − {0}

for some k ≥ 0 and assume that for every coloring with c − 1 colors the system (∗)
Ak+1~x ≤ ~0 has a monochromatic solution, i. e. by compactness there exists a finite
set Vc−1 ⊂ R+ − {0} such that for every (c − 1)-coloring (∗) has a monochromatic
solution in Vc−1.

Let ∆ : R+ − {0} → [c] be an arbitrary coloring. We define W, a finite subset of R,
by W = {w = vu|v ∈ V, u ∈ {cjk, ck|1 ≤ j ≤ n, 1 ≤ k < l}}. We apply lemma 1.20.
to Ak and W . Thus there exists a solution (yi)i∈∪s≤kIs of the system Ak~y ≤ ~0 and
r ∈ R+−{0} such that for all i ∈ ∪s≤kIs and all w ∈W we have ∆(yi+ rw) = const.
Combining cpi and the fact that the yi form a solution for every v ∈ V we obtain:

∑

j∈∪s≤kIs
aij(yj + ckjrv) +

∑

j∈Ik+1
aijckrv ≤ 0.

Without loss of generality we may assume that ∆(yi + rckjv) = c for all i ∈ ∪s≤kIs
and v ∈ V .
If now one of the numbers ckrv is also colored in c we have found a monochromatic
solution of the system Ak+1~x ≤ ~0. Otherwise the coloring

∆∗ : V → [c− 1]

defined by

∆∗(x) = ∆(xrck)

is well defined. Therefore by induction on the number of col-
ors and the definition of V there exists a monochromatic solu-
tion of Ak+1~x ≤ ~0 with respect to ∆∗, say (x∗i )i∈∪s≤k+1Is . Then
(x∗i rck)i∈∪s≤k+1Is forms a solution which is monochromatic with respect to ∆.

2theorem 1.6.

In his dissertation [10] Rado also considered systems of inhomogeneous equations.
As well as for homogeneous systems the columns property plays an important role
for the characterization of partition regular systems of inhomogeneous inequalities.
We are able to give a complete characterization of those systems which are par-
tition regular over the natural numbers, over the set of integers and over the rationals.

Theorem 1.7. LetA = (aij)1≤i≤m,1≤j≤n be a rational matrix, let~b = (b1, . . . , bm) ∈
Q
m. The system of inequalities A~x ⊆ 0 is partition regular over N if and only if one
of the following conditions is satisfied:
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1. There exists a ∈ N such that A




a
...
a


 ≤ −→b

2. A has cpi and there exists −→x = (x1, . . . , xn) ∈ Nn and there exists I ⊆ [m],
such that

n∑
j=1

aijxj

{
< 0 for i ∈ I
≤ 0 for i ∈ [m]− I.

and there exists a ∈ Z such that for all i ∈ [m]− I we have
n∑
j=1

aija ≤ bi

The proof of theorem 1.21 is a little bit tricky and in its main parts very technical.
The interested reader can find the complete proof in [17].

Theorem 1.8. Set A = (aij)1≤i≤m,1≤j≤n be a rational matrix and~b = (b1, . . . , bm) ∈
Qm. The system A~x ≤ ~b is partition regular over Q − {0} if and only if A~x ∈ ~b is
partition regular over N or the system − ~A~x ≤ ~b with −A = (−aij)1≤i≤m,1≤j≤n is
partition regular over N.

If we partition the set Q− {0} the situation is different:

Theorem 1.9. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix, let ~b = (b1, . . . , bn) ∈
Q
n. The system (x)A~x ≤ ~b is partition regular over Q if and only if one of the
following cases is valid:

1. There exists a∗ ∈ Q such that for all 1 ≤ i ≤ m we have
n∑
j=1

aija
∗ ≤ bi

2. There exists I ⊆ [m] such that bi ≥ 0 for i ∈ I, bi > 0 for i ∈ [m]J − I and the
matrix AI = (aij)i∈I,1≤j≤n has cpi over Q

+ − {0}.

3. A has cpi over Q+ − {0} and there exists I ⊆ [m] and there exists
~x(x1 − xn) ∈ (Q+ − {0}n such that
n∑
j=1

aijxj

{
< 0 for i ∈ I
≤ 0 for i ∈ [m]− I.

and there exists ax ∈ Q+−{0} such that for all i ∈ [m]−I we have
n∑
j=1

aija
∗ ≤ bi.

4. −A = (−aij)1≤i≤m,1≤j≤n fulfills condition 1, 2, or 3.

2. (m, p, c)-sets

In 1973 Deuber [1] gave a semantical characterization of partition regular system
of linear equations. The nature of this characterization is somewhat different form
Rado’s approach. Deuber described the arithmetic structure of the sets of solutions
of partition regular linear systems A~x = ~0. The central definition is that of (m, p, c, )-
sets, which are m-fold arithmetic progressions together with c-fold differences:
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Definition 2.1. Let m, p, c ∈ N. A set D ⊆ N is an (m, p, c)-set if there exist
d0, . . . , dm ∈ N such that D = Dp,c(d0 . . . dm) consists of all numbers of the following
list:

cd0 + l1d1 + l2d2 + . . . + lmdm,
cd1 + l2d2 + . . . + lmdm,

cd2 + . . . + lmdm,
...

cdm,

where li ∈ [−p, p], i. e.

Dp,c(d0, . . . , dm) = {cdi +
m∑

j=i+1

ljdj |i ≤ m, lj ∈ [−p, p]}.

In particular a (1, k, c)-set is a (2k+1)-term arithmetic progressions together with its
differences. Deuber proved the following theorem [1]:

Theorem 2.1. (Deuber 1973) A linear system A~x = ~0 is partition regular if and
only if there exist positive integers m, p, c such that every (m, p, c)−set D contains a
solution of A~x = ~0.

(m, p, c)-sets not only describe the arithmetic structure of sets of solutions of partition
regular systems of linear equations but they can also be used to characterize sets of
solutions of systems of linear inequalities.

Theorem 2.2. Let A = (aij)1≤i≤l,1≤j≤n be a rational matrix. Let A~x ≤ ~0 be a
partition regular system of linear inequalities. Then there exist m, p, c ∈ N such that
every (m, p, c)-set contains a solution of the system A~x ≤ ~0.

Proof of Theorem 2.2.: By theorem 1.5. we know that A has cpi, i. e. there
exists m ∈ N and a partition I0 ∪ . . . ∪ Im = [n] such that

1. for all 1 ≤ i ≤ l we have ∑j∈I0 aij ≤ 0 and

2. for k ≤ m and j ∈ ∪s≤kIs there exist ckj , ck ∈ N such that for every k < m and
for all 1 ≤ i ≤ l we have

∑

j∈∪s≤kIs
ckjaij + ck

∑

j∈Ik+1
aij ≤ 0.

Let c be the least common multiple of {ck|1 ≤ k < m}. Multiply each inequality by
c
ck
such that for all 1 ≤ i ≤ l we have

∑

j∈∪s≤kIs
c′kjaij + c

∑

j∈Ik+1
aij ≤ 0.
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Further let p = max1≤i≤l,1≤k<m|c′kj |. We claim that these m, p, c have the desired
properties. Let Ak = (aij)1≤i≤m,j∈∪s≤kIs be the submatrix of A which only consists
of the columns of A belonging to the blocks one up to k. We will prove the claim by
induction on m.
Let m = 0. Hence A = A0, i. e. for all 1 ≤ i ≤ l we have

∑n
j=1 aij ≤ 0. Thus

every singleton forms a solution of the system A~x ≤ ~0 and Dpc(d0) = {cd0} 6=
∅. Assume that the statement is true for some k ≥ 0. Consider a (k + 1, p, c)-set
D = Dp,c(d0, . . . , dk+1). By induction we know that the (k, p, c)-set Dp,c(d0, . . . , dk)

contains a solution of the system Ak~x ≤ ~0. Let (yi)i∈∪s≤kIs be such a solution, i. e.
yi ∈ Dp,c(d0, . . . , dk) and for all 1 ≤ i ≤ l we have

∑

j∈∪s≤kIs
aijyj ≤ 0,

which implies

∑

j∈∪s≤kIs
aijyj

︸ ︷︷ ︸
≤0

+ dk+1(
∑

j∈∪s≤kIs
ckjaij + c

∑

j∈Ik+1
aij)

︸ ︷︷ ︸
≤0

≤ 0.

Hence for all 1 ≤ i ≤ l we have
∑

j∈∪s≤kIs
aij(yj + dk+1ckj) +

∑

j∈Ik+1
cdk+1aij ≤ 0.

For yj ∈ Dp,c(d0, . . . , dk) and |ckj | ≤ p we have

yi + ckjdk+1 ∈ Dp,c(d0, . . . , dk+1) and

cdk+1 ∈ Dp,c(d0, . . . , dk+1).
Hence we found a solution of the systemAk+1~x ≤ ~0 in the arbitrary chosen (k+1, p, c)-
set Dp,c(d0, . . . , dk+1). 2Theorem 2.2.

Theorem 2.3. Let A = (aij)1≤i≤m,1≤j≤n be a rational matrix. If there exist m, p, c ∈
N such that every (m, p, c)−set contains a solution of the system A~x ≤ ~0 then the
system A~x ≤ ~0 is partition regular.

Proof of Theorem 2.3.: Let m, p, c ∈ N be given such that every (m, p, c)−set
contains a solution of the system A~x ≤ ~0. By Deuber’s theorem [1] we
know that for every coloring ∆ of the natural numbers with finitely many col-
ors there exist d0 . . . dm such that the (m, p, c)-set D = Dp,c(d0, . . . , dm) is
monochromatic with respect to ∆. For every (m, p, c)-set contains a solution
of the system A~x ≤ ~0, so does D and hence A~x ≤ ~0 is partition regular.

2theorem 3.4.

Deuber [1] also proved a partition theorem for (m, p, c)−sets in order to resolve the
following conjecture Rado stated 1933 [10].
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Call a subset S ⊆ N partition regular if every partition regular system of linear
equations can be solved in S. Rado conjectured that coloring a partition regular set
S there is one color class which is again partition regular.

Theorem 2.4. (Deuber 1973) Let m, p, c and r be positive integers. Then there
exist positive integers n, q, d such that for every (n, q, d)-set D ⊆ N and every r-
coloring ∆→ [r] there exists a monochromatic (m, p, c)−set D′ ⊆ D.

We can enlarge the definition of a partition regular set [1] to systems of linear in-
equalities:

Definition 2.2. Call a subset S ⊆ N partition regular for systems of inequalities
(pri) if every partition regular system of inequalities A~x ≤ ~0 can be solved in S.

Note that for matrices A and B having cpi over N also the direct sum
(
A 0
0 B

)

has cpi over N.

Theorem 2.5. For every coloring of a pri set with finitely many colors at least one
of the color classes again is partition regular for inequalities.

Proof of Theorem 2.5.: Assume that the statement is false, i. e. there exists a
set S ⊆ N which is pri and there exists r ∈ N and a coloring ∆ : S → [r] such that no
color class of ∆ is pri. Thus for each color class i there exists a matrix Ai such that
the system Ai~x ≤ ~0 is partition regular but has no solution in ∆−1(i). Consider the
system

(∗)




A1 0 0 . . . 0
0 A2 0 . . . 0
...

. . .
...

0 . . .
. . . 0

0 . . . 0 Ar



~x ≤ ~0.

(∗) is partition regular therefore there exist m, p, c ∈ N such that every (m, p, c)−set
contains a solution of (∗). By Deuber’s theorem [1] there exist n, q, d ∈ N such
that each coloring of an arbitrary (n, q, d)−set with finitely many colors contains a
monochromatic (m, p, c)−set. For S is pri, it contains a (n, q, d)−set. Hence there
is some (m, p, c)−set in S which is monochromatic with respect to ∆ and thus there
exists a monochromatic solution of (∗) in S which contradicts the definition of (∗).

2theorem 2.5.

3. Canonical Results

In this chapter we want to extend our considerations to colorings with an unlimited
number of colors. Call a coloring ∆ of a set S canonical if ∆ is either
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1. monochromatic, i. e. for all s, t ∈ S it holds ∆(s) = ∆(t) or
2. distinct, i.e. for all s, t ∈ S with s 6= t it holds ∆(s) 6= ∆(t).

In 1950 Erdös and Rado [4] proved a canonical version of Ramsey’s theorem:

Theorem 3.1. (Erdös, Rado 1950) If an infinite set S is colored then some infinite
subset T is canonically colored. For all k ∈ N if |S| > (k−1)2+1 and S colored there
exists a subset T ⊆ S, |T | = k which is canonically colored.

Later Erdös and Graham [3] proved a canonical version of van der Waerden’s theorem,
i. e. for every k ∈ N and every coloring of the positive integers there exists a
canonically colored k-term arithmetic progression. In 1986 Lefmann [7] extended the
Erdös-Graham canonical theorem for arithmetic progressions to a canonical partition
theorem for (m, p, c)−sets and partition regular systems of linear equations.

Let D = Dp,c(d0, . . . , dm) = {cdi +
∑m
j=i+1 ljdj |i ≤ m, lj ∈ [−p, p]}. Say that the

elements of the form cdi+li+1di+1+. . .+lmxm belong to the ith row of the (m, p, c)−set
Dp,c(d0, . . . , dm). Let us further say that ∆ : Dp,c(d0, . . . , dm) → ω is a row-coloring
provided that any two numbers a, b ∈ Dp,c(d0, . . . , dm) are colored the same if and
only if they belong to the same row of Dp,c(d0, . . . , dm).
Lefmann proved the following theorem [7]:

Theorem 3.2. (Lefmann 1986) Let m, p, c ∈ N. Then there exists a least positive
integer L(m, p, c) with the following property: For every coloring ∆ : [L(m, p, c)]→ ω
there exists a (m, p, c)-set Dp,c(d0, . . . , dm) ⊆ [L(m, p, c)] such that ∆

∣∣
Dp,c(d0,...,dm)

either is a canonical coloring or a row-coloring.

As a corollary Lefmann [7] proved a canonical version of Rado’s theorem:

Corollary 3.1. (Lefmann) Let A = (aij)1≤i≤l,1≤j≤n be an integer valued matrix

having the column property, i. e. the system of linear equations A~x = ~0 is partition
regular. Let I0 ∪ . . . ∪ Im = [n] be the corresponding partition of the columns of A
into blocks. Then there exists a positive integer N ∈ N such that for every coloring
∆ : [N ] → ω there exists a solution ~x = (x1 . . . xn) such that one of the following
cases holds:

1. ∆
∣∣{x1,...,xn} is a canonical coloring.

2. Each two elements xi, xj of {x1, . . . , xn} are colored the same if and only if
{i, j} ⊆ Ik for some k ≤ m.

In the following we will prove a canonical theorem for systems of linear inequalities,
which is similar to the above canonical version of Rado’s theorem.

Theorem 3.3. Let A = (aij)1≤i≤l,1≤j≤n be a rational matrix and let the system

A~x ≤ ~0 be partition regular, i. e. A has cpi. Let I0∪. . .∪Im = [n] be the corresponding
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partition of the columns of A into blocks. Then for every coloring ∆ : N → ω of the
natural numbers there exists a solution ~x = (x1 . . . , xn) ∈ Nn such that one of the
following cases is valid:

1. ∆
∣∣{x1,...,xn} is a canonical coloring

2. ∆(xi) = ∆(xj) for some i, j ∈ [n] if and only if there exists some k ≤ m such
that i, j ∈ Ik.

Proof of theorem 3.3.: The system A~x ≤ ~0 is partition regular. Thus by the-
orem 3.3. there exist positive integers m, p, c such that every (m, p, c)−set contains
a solution of the system A~x ≤ ~0. In the proof of lemma 3.3. in chapter 3 we saw
that a solution of A~x ≤ ~0 in an arbitrary (m, p, c)−set D can be constructed in such
a way that for i ∈ Il xi comes from the lth row of D. Let ∆ : N → ω be given.
Theorem 4.2. gives us a (m, p, c)−set Dp.c(d0, . . . , dm) such that ∆

∣∣
Dp,c(d0,...,dm) ei-

ther is a canonical or a row-coloring. Let ~y = (y1 . . . yn) be a solution of the system
A~x ≤ ~0 such that for all 1 ≤ i ≤ n we have yi ∈ Dp,c(d0, . . . , dm) and for i ∈ Ik yi
belongs to the kth row of Dp,c(d0, . . . , dm). If Dp,c(d0, . . . , dm) is canonically colored
then ∆

∣∣{y1,...,yn} is a canonical coloring and if ∆
∣∣
Dp,c(d0,...,dm) is a row coloring then

∆(yi) = ∆(yj) if and only if yi and yj belong to the same row of Dp,c(d0, . . . , dm),
i. e. if and only if i and j belong to the same block Ik for some k ≤ m.

2theorem 3.3.
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Abstract. Let F be a field of characteristic 6= 2. We define certain prop-
erties D(n), n ∈ {2, 4, 8, 14}, of F as follows : F has property D(14) if each
quadratic form ϕ ∈ I3F of dimension 14 is similar to the difference of the
pure parts of two 3-fold Pfister forms; F has property D(8) if each form
ϕ ∈ I2F of dimension 8 whose Clifford invariant can be represented by a
biquaternion algebra is isometric to the orthogonal sum of two forms similar
to 2-fold Pfister forms; F has property D(4) if any two 4-dimensional forms
over F of the same determinant which become isometric over some quadratic
extension always have (up to similarity) a common binary subform; F has
property D(2) if for any two binary forms over F and for any quadratic
extension E/F we have that if the two binary forms represent over E a
common nonzero element, then they represent over E a common nonzero
element in F . Property D(2) has been studied earlier by Leep, Shapiro,
Wadsworth and the second author. In particular, fields where D(2) does not
hold have been known to exist.

In this article, we investigate how these properties D(n) relate to each other
and we show how one can construct fields which fail to have property D(n),
n > 2, by starting with a field which fails to have property D(2) and then
passing to transcendental field extensions. Particular emphasis is devoted to
the situation where K is a field with a discrete valuation with residue field k
of characteristic 6= 2. Here, we study how the properties D(n) behave when
one passes from K to k or vice versa. We conclude with some applications
and an explicit and detailed example involving rational function fields of
transcendence degree at most four over the rationals.
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1 Introduction

After Pfister [P] proved his structure results on quadratic forms of even dimension
≤ 12 and of trivial signed discriminant and Clifford invariant (cf. Theorem 2.1(i)–(iv)
in this paper) over a field F of characteristic 6= 2, there have been various attempts
to extend and generalize his results. Merkurjev’s theorem [Me 1] implies that even-
dimensional forms of trivial signed discriminant and Clifford invariant are exactly the
forms whose Witt classes lie in I3F , the third power of the fundamental ideal IF of
even-dimensional forms in the Witt ring WF of F . But there have been no further
results concerning the explicit characterization of such forms of a given dimension
≥ 14 until Rost [R] gave a description of 14-dimensional forms with trivial invariants
as being transfers of scalar multiples of pure parts of 3-fold Pfister forms defined over
a quadratic extension of the base field (cf. Theorem 2.1(v) in this paper). It remained
open whether such 14-dimensional forms can always be written up to similarity as
the difference of the pure parts of two 3-fold Pfister forms over F . It turns out that
this question is related to the question whether 8-dimensional forms in I2F whose
Clifford invariant is given by the class of a biquaternion algebra are always isometric
to a sum of scalar multiples of two 2-fold Pfister forms.

Izhboldin suggested a method to construct counterexamples to the second ques-
tion which then leads to counterexamples to the first one (after a ground field exten-
sion). One crucial step to make his approach work depended on the construction of
examples of two quaternion algebras over a suitable field F such that there exists a
quadratic extension E/F over which these two quaternion algebras have a common
slot, but no such common slot over E can be chosen to be an element in F . In this
paper, we reduce this existence problem to the existence of quadratic field extensions
which do not have a certain property CV (2, 2) defined by Leep [Le] (see also [SL]).
This property has been studied in [STW], where it is shown that generally quadratic
extensions do not have this property CV (2, 2). As a consequence, both questions
above concerning 14-dimensional forms in I3F and 8-dimensional forms in I2F have
negative answers in general.

It should be noted that the examples in [STW] of quadratic extensions not having
CV (2, 2) are all in characteristic 0. Independently, Izhboldin and Karpenko [IK2]
found a method to construct counterexamples to the common slot problem above
which is of a very general nature and works in all characteristics, thus also leading
to counterexamples to the above questions on quadratic forms and incidentally also
providing counterexamples to CV (2, 2) for quadratic extensions. Needless to say that
they employ machinery quite different from what is used in [STW].

In the next section, we will recall the known results on forms in I3F and prove
certain others which are crucial in the understanding of 14-dimensional forms in I3F .
In section 3 we will then investigate the relations between the questions raised above.
We will state these results in terms of certain properties D(n) of the ground field F
which describe the behaviour of certain forms of dimension n ∈ {2, 4, 8, 14} over F .
In section 4, we consider the situation of a discrete valuation ring R with residue field
k of characteristic not 2 and quotient field K. The purpose is to determine how the
properties D(n) for k and K relate to each other. These results can then be used
to show that starting with a field F which does not have property D(2), one obtains
fields which do not have property D(n), n ∈ {4, 8, 14}, by passing to rational field
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extensions. In section 5, we exhibit the properties D(n) for fields with finite Hasse
number and for their power series extensions. Finally, in section 6, we derive some
further consequences and exhibit in all detail an example, starting over Q(x), which
will then lead (after going up to rational field extensions over Q(x)) to the explicit
construction of counterexamples to all the problems touched upon in this article.
The standard references for those results in the theory of quadratic forms and

division algebras which we will need in this paper are Lam’s book [L 1] and Scharlau’s
book [S]. Most of the notations we will use are also borrowed from these two sources.
Fields are always assumed to be of characteristic 6= 2, and we only consider

nondegenerate finite dimensional quadratic forms. Let ϕ and ψ be two quadratic
forms over a field F . We write ϕ ≃ ψ (resp. ϕ ∼ ψ) to denote that the two forms
are isometric (resp. equivalent in the Witt ring WF ). The forms ϕ and ψ are said to
be similar if there exists some a ∈ F× such that ϕ ≃ aψ. We call ψ a subform of ϕ,
and write ψ ⊂ ϕ, if ψ is isometric to an orthogonal summand of ϕ. The hyperbolic
plane 〈1,−1〉 is denoted by H. We write d±(ϕ) for the signed discriminant of a form
ϕ, and c(ϕ) for its Clifford invariant. For a field extension E/F , we write DE(ϕ) to
denote the set of elements in E× represented by ϕE , the form obtained from ϕ by
scalar extension to E.
We use the convention 〈〈a1, · · · , an〉〉 to denote the n-fold Pfister form 〈1,−a1〉 ⊗

· · · ⊗ 〈1,−an〉 over F . By PnF (resp. GPnF ) we denote the set of all forms over F
which are isometric (resp. similar) to n-fold Pfister forms.
Forms of dimension 6 with trivial signed discriminant are called Albert forms, in

reference to the following theorem of Albert:

The biquaternion algebra (a1, a2)F ⊗ (a3, a4)F is a division algebra if and
only if the quadratic form 〈−a1,−a2, a1a2, a3, a4,−a3a4〉 is anisotropic.

For a proof, see [A, Th. 3] or [P, p. 123].

2 Pfister’s and Rost’s results and some consequences

We begin by stating the results of Pfister and Rost on even-dimensional forms with
trivial signed discriminant and Clifford invariant. Pfister proved the results on forms
of dimension ≤ 12 in [P, Satz 14, Zusatz] (our statement of the 12-dimensional case
is a little different but can easily be deduced from Pfister’s original proof). The
14-dimensional case is due to Rost [R].

Theorem 2.1 Let ϕ be an even-dimensional form over F with d±ϕ = 1 and
c(ϕ) = 1.

(i) If dimϕ < 8 then ϕ is hyperbolic.

(ii) If dimϕ = 8 then ϕ ∈ GP3F .
(iii) If dimϕ = 10 then ϕ ≃ π ⊥ H with π ∈ GP3F .
(iv) If dimϕ = 12 then ϕ ≃ α⊗β for some Albert form α and some binary form

β or, equivalently, there exist r, s, t, u, v, w ∈ F× such that ϕ ∼ r(〈〈s, t, u〉〉 −
〈〈s, v, w〉〉) in WF .

(v) If dimϕ = 14 and ϕ is anisotropic, then there exists a quadratic extension
L = F (

√
d) and some π ∈ P3L such that ϕ is the trace of

√
dπ′, where π′
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denotes the pure part of π. (Here, “trace” means the transfer defined via the
trace map.)

Part (i) of the following corollary can also easily be deduced from the classifica-
tions given in [H 2, Th. 4.1, Th. 5.1]. We will give a self-contained proof. Part (ii) is
an observation due to Karpenko [K, Cor. 1.3].

Corollary 2.2 Let ϕ be a form over F .

(i) If dimϕ = 10 and there exists σ ∈ P2F such that ϕ ≡ σ (mod I3F ), then
there exist r ∈ F× and π ∈ GP3F such that ϕ ∼ π + rσ.

(ii) If dimϕ = 14 and ϕ ∈ I3F then there exists an Albert form α such that
α ⊂ ϕ.

Proof. (i) Let s ∈ F× such that ϕ ≃ 〈s〉 ⊥ ϕ′, and let σ′ be the pure part of σ. Let
ψ := (ϕ′ ⊥ −sσ′)an. Note that dimψ ≤ 12. We have

ψ ≡ ϕ ⊥ −sσ ≡ σ ⊥ −sσ ≡ 0 (mod I3F ).

If dimψ ≤ 10 then by Th. 2.1 there exists π ∈ GP3F (possibly hyperbolic) such that
ψ ∼ π in WF . Thus, ϕ ∼ ψ + sσ ∼ π + sσ in WF and we put r = s.
So suppose that dimψ = 12. Then, by Th. 2.1(iv), there exists a quadratic

extension E = F (
√
d) such that ψE is hyperbolic, i.e. ϕ

′
E ∼ sσ′E , and comparing

dimensions yields that iW (ϕ
′
E) ≥ 3. In particular, there exist x, y, z ∈ F× such that

ϕ′ ≃ 〈1,−d〉 ⊗ 〈x, y, z〉 ⊥ ϕ′′ with dimϕ′′ = 3 (cf. [S, Ch. 2, Lemma 5.1]). Consider
π := 〈1,−d〉 ⊗ 〈x, y, z, xyz〉 ∈ GP3F and α := −xyz〈1,−d〉 ⊥ ϕ′′ ⊥ 〈s〉. Then
ϕ− π ∼ α in WF and thus α ≡ σ (mod I3F ). Note that α is an Albert form with
c(α) = c(σ). It follows from Jacobson’s theorem (see, e.g., [MaS]) that there exists
r ∈ F× such that α ∼ rσ and therefore ϕ ∼ π + rσ in WF .
(ii) Any isotropic form of dimension ≥ 7 contains some Albert form as a subform

as can readily be verified. Thus, if ϕ is isotropic, it contains some Albert form (which
also follows from Th. 2.1(iv)). So assume that ϕ is anisotropic. By Th. 2.1(v), there
exists a quadratic extensionE = F (

√
d) and some form 〈〈u, v, w〉〉 ∈ P3E such that ϕ ≃

tr(
√
d〈〈u, v, w〉〉′). Let α := tr(

√
d〈−u,−v, uv〉). Clearly, 〈−u,−v, uv〉 ⊂ 〈〈u, v, w〉〉′

and thus α ⊂ ϕ. Furthermore, dimα = 6, and we have by [S, Ch. 2, Th. 5.12] that,
in F×/F×2, detα = d3NE/F (det(

√
d〈−u,−v, uv〉)) = d3NE/F (

√
d) = −d4 = −1.

Therefore α ∈ I2F . Hence, α is an Albert subform of ϕ.

Proposition 2.3 Let ϕ be a form over F with dimϕ = 14 and ϕ ∈ I3F . Then there
exist forms πi ∈ GP3F , i = 1, 2, 3, such that ϕ ∼ π1 + π2 + π3 in WF . Furthermore,
the following statements are equivalent :

(i) There exist τ1, τ2 ∈ P3F and s1, s2 ∈ F× such that ϕ ∼ s1τ1 + s2τ2 in WF .

(ii) There exist τ1, τ2 ∈ P3F and s ∈ F× such that ϕ ≃ s(τ ′1 ⊥ −τ ′2), where τ ′1
and τ ′2 are the pure parts of τ1 resp. τ2.

(iii) There exists σ ∈ GP2F such that σ ⊂ ϕ.

Proof. Let ϕ be a 14-dimensional form if I3F . By Cor. 2.2(ii), we can write ϕ ≃ α ⊥ ψ
with an Albert form α and some ψ ∈ I2F , dimψ = 8. After scaling, we may assume
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that α ∼ σ1 − σ2 in WF with σ1, σ2 ∈ P2F . Let x ∈ F× such that ψ ≃ 〈−x〉 ⊥ ψ′

and consider the 10-dimensional form ψ′ ⊥ xσ′1. We then have

ψ′ ⊥ xσ′1 ≡ ψ + xσ1 ≡ ϕ− α+ xσ1 ≡ σ2 − σ1 + xσ1 ≡ σ2 (mod I3F ).

By Cor. 2.2(i), there exists y ∈ F× and π3 ∈ GP3F such that ψ′ ⊥ xσ′1 ∼ ψ + xσ1 ∼
π3 + yσ2 in WF . Let now π1 := 〈〈x〉〉 ⊗ σ1 ∈ P3F and π2 := 〈〈y〉〉 ⊗ σ2 ∈ P3F . One
checks readily that we have ϕ ∼ π1 − π2 + π3 in WF .
As for the equivalences, (ii) trivially implies (i), and the converse follows readily

after comparing dimensions of ϕ and s1τ1 ⊥ s2τ2, implying that the latter form is
isotropic, and then using the multiplicativity of the Pfister forms τ1, τ2.
(ii) implies (iii) since τ ′1 as well as τ

′
2 clearly contain subforms in GP2F .

Finally, let ϕ ∈ I3F with dimϕ = 14 and suppose there exists σ ∈ GP2F with
ϕ ≃ σ ⊥ ψ. Then dimψ = 10 and ψ ≡ −σ (mod I3F ). By Cor. 2.2, there exist
π1 ∈ GP3F and x ∈ F× such that ψ ∼ π1 − xσ in WF . Let π2 := 〈〈x〉〉 ⊗ σ ∈ GP3F .
We then have ϕ ∼ ψ + σ = π1 + π2 in WF , which implies (i).

The fact that each 14-dimensional form in I3F is Witt equivalent to the sum
of three forms in GP3F has been noticed independently by Izhboldin. A somewhat
different proof of the equivalence of the three statements above is given in [IK2,
Prop. 17.2].
Let us now turn our attention to 8-dimensional I2-forms over a field F . It is well-

known that if ϕ is such a form, then the Clifford invariant c(ϕ) can be represented
as the class of Q1 ⊗ Q2 ⊗ Q3 for suitable quaternion algebras Qi. In particular, its
index is 1, 2, 4, or 8. Which of these cases occurs can be determined in terms of the
splitting behaviour of ϕ over (multi)quadratic extensions of F . To this end, we will
need results on the Scharlau transfer of certain quadratic forms.

Lemma 2.4 (i) (See also [S, Ch. 2, Lemma 14.8].) Let E = F (
√
d) and τ ∈ GP2E.

Then there exist a1, a2 ∈ F×, b1, b2, c ∈ E×, such that inWE, one has cτ ∼ 〈〈a1, b1〉〉−
〈〈a2, b2〉〉.
(ii) Let ϕ ∈ I2F be anisotropic, dimϕ = 8, and suppose that ind c(ϕ) = 4.

Then there exists a quadratic extension E = F (
√
d) and some τ ∈ GP2E such that

ϕ ≃ tr(τ), where “tr” denotes the transfer defined via the trace map (cf. also Theo-
rem 2.1(iv) ).

Proof. (i) After scaling, we may assume that τ ≃ 〈〈x1, x2〉〉 with x1, x2 ∈ E×. If
x1 or x2 lies in F , then obviously we are done. So let us assume that x1, x2 /∈ F .
Since E is 2-dimensional over F , the elements 1, x1, x2 are not linearly independent
over F , hence we may find a1, a2 ∈ F× such that a1x1 + a2x2 = 0 or 1. The form
〈〈a1x1, a2x2〉〉 is then hyperbolic. Multiplying by 〈a1,−a1a2x2〉 both sides of

〈1,−a1x1〉 ∼ 〈a1,−a1x1〉+ 〈1,−a1〉

we get
〈〈x1, a2x2〉〉 ≃ 〈〈a1, a2x2〉〉.

Substituting 〈1,−a2x2〉 ∼ 〈a2,−a2x2〉+ 〈1,−a2〉 in the left side, we obtain

a2〈〈x1, x2〉〉 ∼ 〈〈a1, a2x2〉〉 − 〈〈a2, x1〉〉.
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We may thus choose b1 = a2x2 and b2 = x1.

Part (ii) is due to Izhboldin and Karpenko [IK2, Th. 16.10], and its proof (which
we will omit) is based on Rost’s result on 14-dimensional I3-forms.

Proposition 2.5 Let ϕ be an 8-dimensional form in I2F . Then ind c(ϕ) ∈
{1, 2, 4, 8} and there exists a multiquadratic extension L/F of degree 1, 2, 4 or 8
such that ϕL ∼ 0. Moreover, for i = 0, 1, 2, 3, we have ind c(ϕ) ≤ 2i if and only
if there exists a multiquadratic extension L/F of degree ≤ 2i such that ϕL ∈ GP3L.
For i = 1, 2, 3, this condition is also equivalent to the existence of a multiquadratic
extension L′/F of degree ≤ 2i such that ϕL′ ∼ 0.

Proof. Write ϕ ≃ β1 ⊥ β2 ⊥ β3 ⊥ β4, where the βi are binary forms with d±βi =
di ∈ F×/F×2. Then d4 = d1d2d3 as ϕ ∈ I2F , and for L = F (

√
d1,
√
d2,
√
d3), we

obviously have (βi)L ∼ 0 and thus ϕL ∼ 0. Hence, we also have that c(ϕL) = 0 in
BrL. Thus, c(ϕ)L is split and it follows readily that ind c(ϕ) ∈ {1, 2, 4, 8}. (Of course,
this also follows from the fact mentioned above that c(ϕ) can be represented as the
class of some triquaternion algebra.)

As for the remaining statements, the case i = 0 follows from Theorem 2.1(ii).

If ϕL ∈ GP3L for some quadratic extension L/F , then c(ϕL) = 0 in BrL. We
then have ind c(ϕ) ≤ 2, hence c(ϕ) = [Q] for some quaternion algebra Q over F . It
is well-known that in this case ϕ is divisible by some binary form β (see for example
[H 2, Th. 4.1]). With d = d±β and L′ = F (

√
d), we get ϕL′ ∼ 0. Finally, if ϕL′ ∼ 0 for

some quadratic extension L′/F , then ϕL′ ∈ GP3L′, as it is isometric to the hyperbolic
3-fold Pfister form over L′.
Similarly as above, the existence of a biquadratic extension L′/F such that ϕL′ ∼

0 trivially implies the existence of a biquadratic extension L/F with ϕL ∈ GP3L,
which in turn implies that ind c(ϕ) ≤ 4. It remains to show that ind c(ϕ) ≤ 4
implies the existence of L′ as above. We may assume by (ii) that ind c(ϕ) = 4. By
Lemma 2.4(ii), there exists a quadratic extension E = F (

√
d) and a form τ ∈ GP2E

such that ϕ ≃ tr(τ). By Lemma 2.4(i), there exist a1, a2 ∈ F× and binary forms β1,
β2 over E such that τ ∼ 〈〈a1〉〉⊗β1+ 〈〈a2〉〉⊗β2 in WE. By [S, Ch. 2, Th. 5.6], we get

ϕ ∼ tr(τ) ∼ 〈〈a1〉〉 ⊗ tr(β1) + 〈〈a2〉〉 ⊗ tr(β2) .

Let L′ = F (
√
a1,
√
a2). Then 〈〈ai〉〉L′ ∼ 0 and hence ϕL′ ∼ 0.

Remark 2.6 Using Rost’s description of 14-dimensional I3-forms as certain transfers,
one can prove, similarly as in part (iii) of the previous proposition, that every 14-
dimensional I3-form becomes hyperbolic over some multiquadratic extension of degree
≤ 4. Another way of proving this is as follows. Let ϕ ∈ I3F , dimϕ = 14. By Cor. 2.2,
we can write ϕ ≃ ψ ⊥ α for some Albert form α. Let a ∈ F× such that ψ ⊥ aα is
isotropic. Note that the anisotropic part of ψ ⊥ aα has dimension ≤ 12, and it is
again in I3F . By Theorem 2.1, there exists b ∈ F× such that this anisotropic part is
divisible by 〈〈b〉〉. Thus, for E = F (√a,

√
b) we get

ϕE ∼ (ψ ⊥ α)E ∼ (ψ ⊥ aα)E ∼ 0 .
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3 Forms of dimension 14 in I3, of dimension 8 in I2, and the property
CV (2, 2)

Let E/F be a field extension. Then E/F is said to have the common value property
for pairs of forms of dimension n and m, property CV (n,m) for short, if for any pair
of forms ϕ and ψ over F with dimϕ = n and dimψ = m we have that if ϕE and ψE
represent a common element over E, then they already represent a common element
of F× over E, i.e., if DE(ϕ) ∩ DE(ψ) 6= ∅, then DE(ϕ) ∩ DE(ψ) ∩ F× 6= ∅. This
definition is originally due to Leep [Le]. Trivially, the property CV (1, n) holds for all
n and all extensions E/F . We are interested in the case where E/F is a quadratic
extension. The following was shown in [STW, Lemma 2.7].

Lemma 3.1 Let E/F be a quadratic extension. Then E/F has property CV (2, 2) iff
E/F has property CV (n,m) for all pairs of positive integers n,m.

We now define certain properties of a field F pertaining to quadratic forms and
quaternion algebras and we will investigate the relationships among them.

Property D(14): Every 14-dimensional form in I3F is similar to the difference of
two forms in P3F or, equivalently by Prop. 2.3, contains a subform in GP2F .

Property D(8): Every 8-dimensional form ϕ ∈ I2F whose Clifford invariant c(ϕ)
can be represented by a biquaternion algebra contains a subform in GP2F .

Property D(4): Suppose ϕ1 and ϕ2 are 4-dimensional forms over F with d±ϕ1 =
d±ϕ2. If there is a quadratic extension E/F such that (ϕ1)E ≃ (ϕ2)E , then
there is a binary form β over F which is similar to a subform of both ϕ1 and ϕ2.

Property CS: Suppose Q1 and Q2 are quaternion algebras over F and E/F is a
quadratic extension. If (Q1)E and (Q2)E have a common slot over E, then such
a slot can be chosen in F , i.e., if there exist u, v, w ∈ E× such that (Q1)E ≃
(u, v)E and (Q2)E ≃ (u,w)E , then there exists u′ ∈ F×, v′, w′ ∈ E× such that
(Q1)E ≃ (u′, v′)E and (Q2)E ≃ (u′, w′)E .

Property D(2): Every quadratic extension E/F has property CV (2, 2).

(The notation D(n) alludes to the fact that the thus-labelled property describes a
certain behaviour of certain forms of dimension n over the field in question.)

Remark 3.2 (i) As for property D(8), if there exist a biquaternion algebra B over
F and an 8-dimensional form ϕ ∈ I2F such that c(ϕ) = [B] in BrF and such that ϕ
does not contain a subform in GP2, then B is necessarily a division algebra and ϕ is
anisotropic.
For if ϕ were isotropic, one could readily find 4-dimensional subforms of deter-

minant 1 as ϕ would contain the universal form H as a subform. Furthermore, if
B were not a division algebra, then there would exist a quaternion algebra Q such
that c(ϕ) = [B] = [Q]. By Prop. 2.5, ϕ would become hyperbolic over some quadratic
extension F (

√
d) and would therefore be divisible by 〈〈d〉〉. The existence of a subform

in GP2F would follow immediately.
(ii) As for property D(4), if there exist forms ϕ1 and ϕ2 over F with dimϕ1 =

dimϕ2 = 4 and d±ϕ1 = d±ϕ2 = d and a quadratic extension E/F such that (ϕ1)E ≃
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(ϕ2)E , but there does not exist a binary form β over F such that β is similar to a
subform of both ϕ1 and ϕ2, then the quadratic extension cannot be given by F (

√
d).

In fact, Wadsworth [W] showed that if two 4-dimensional forms over F of the
same determinant d become similar over the extension F (

√
d), then they are already

similar over F . In view of this result, it is even more remarkable that there are fields
where property D(4) fails.
Furthermore, if the two forms ϕ1 and ϕ2 are as above, then necessarily d /∈ F×2,

i.e. ϕ1, ϕ2 /∈ GP2F . In fact, suppose that ϕ1 ≃ r〈〈a, b〉〉 and ϕ2 ≃ s〈〈u, v〉〉, and
let α ≃ 〈−a,−b, ab, u, v,−uv〉. If there exists a quadratic extension E = F (

√
e)/F ,

e ∈ F×\F×2, such that (ϕ1)E ≃ (ϕ2)E , then it follows readily that 〈〈a, b〉〉E ≃ 〈〈u, v〉〉E
and hence that αE is hyperbolic. Suppose that α is anisotropic over F . Then there
exists a 3-dimensional form γ over F such that α ≃ 〈〈e〉〉 ⊗ γ and therefore d±α = e,
a contradiction. Hence, α is isotropic and there exists x ∈ F× such that −x is
represented by 〈−a,−b, ab〉 and 〈−u,−v, uv〉. In particular, there exist y, z ∈ F×

such that 〈〈a, b〉〉 ≃ 〈〈x, y〉〉 and 〈〈u, v〉〉 ≃ 〈〈x, z〉〉. It follows that β := 〈〈x〉〉 is similar to
a subform of both ϕ1 and ϕ2.

The following observation provides a useful criterion as for when an 8-dimen-
sional I2-form whose Clifford invariant can be represented by a biquaternion algebra
contains a subform in GP2F . We will use it in various proofs involving property D(8)
(see also [IK2, Prop. 16.4] ).

Lemma 3.3 Let ϕ be an 8-dimensional form in I2F such that c(ϕ) = [A] for some
biquaternion algebra A over F with associated Albert form α. The following are
equivalent :

(i) ϕ contains a subform in GP2F .

(ii) There exists a quadratic extension L = F (
√
d) such that ϕL is isotropic and

AL is not a division algebra.

(iii) There exists a quadratic extension L = F (
√
d) such that ϕL and αL are both

isotropic.

(iv) There exists a binary form over F which is similar to a subform of both ϕ
and α.

Proof. The equivalence of (ii) and (iii) is clear by Albert’s theorem, and the equiva-
lence of (iii) and (iv) is also rather obvious. In view of Remark 3.2(i), we may assume
that ϕ is anisotropic and that A is a division algebra, i.e. α is anisotropic. It remains
to show (i)⇐⇒ (ii).
Suppose that (i) holds. Then ϕ ≃ ψ1 ⊥ ψ2 with ψi ∈ GP2F . Let L = F (

√
d) be

any quadratic extension such that ψ2 becomes isotropic and hence hyperbolic over L.
Then we have c(ϕL) = c((ψ1)L) = [AL]. Since ψ1 ∈ GP2F , there exists a quaternion
algebra Q over F such that c(ψ1) = [Q]. Hence, [QL] = [AL], which implies that AL
cannot be a division algebra.
Conversely, suppose that there exists a quadratic extension L = F (

√
d) with

ϕL isotropic and AL not division. Since ϕL is isotropic and in I
2L, there exists a

6-dimensional form ψ ∈ I2L with ϕL ∼ ψ, in particular, c(ψ) = c(ϕL) = [AL]. By
Albert’s theorem, ψ must be isotropic, hence the Witt index of ϕ over L is ≥ 2. Thus,
there exists a binary form β over F such that 〈〈d〉〉 ⊗ β ⊂ ϕ (cf. [S, Ch. 2, Lemma
5.1]). (i) now follows as 〈〈d〉〉 ⊗ β ∈ GP2F .
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Theorem 3.4

D(2)⇒ CS ⇐⇒ D(4) and D(8)⇒ D(14).

Proof. D(2) ⇒ CS: It is well-known that (a, b)F ≃ (a′, b′)F iff 〈−a,−b, ab〉 ≃
〈−a′,−b′, a′b′〉. Suppose that F does not have property CS, and let (a, b)F and
(u, v)F be quaternion algebras over F and let E/F be a quadratic extension such
that the quaternion algebras have a common slot over E but such that no common
slot over E can be given by an element in F . By the remark above, the fact that they
have a common slot over E translates into DE(〈−a,−b, ab〉)∩DE(〈−u,−v, uv〉) 6= ∅,
and the fact that such a common slot cannot be chosen in F translates into
DE(〈−a,−b, ab〉) ∩ DE(〈−u,−v, uv〉) ∩ F× = ∅. We conclude that E/F does not
have property CV (3, 3), which, by Lemma 3.1, yields that F does not have property
D(2).

CS ⇐⇒ D(4): Suppose F does not have property CS and let (a, b)F and (u, v)F
be quaternion algebras over F such that they have a common slot over L = F (

√
d),

but no such common slot can be chosen in F . Let

ψ1 := 〈d,−a,−b, ab〉 and ψ2 := 〈d,−u,−v, uv〉 .

We first show that there does not exist a binary form β such that β is similar to
a subform of ψ1 and ψ2. Then we show that there exists a quadratic extension
E = F (

√
e) and some x ∈ F× such that (ψ1)E ≃ (xψ2)E . This then implies that

property D(4) fails.
Suppose there exists a binary form β with, say, d±β = s such that β is similar to

a subform of ψ1 and ψ2. Then the forms (ψ1)L ≃ 〈〈a, b〉〉L and (ψ2)L ≃ 〈〈u, v〉〉L are,
over L(

√
s), isotropic and hence hyperbolic, or, equivalently, the quaternion algebras

(a, b)L and (u, v)L are split over L(
√
s). Hence, there exist t, w ∈ L× such that

(a, b)L ≃ (s, t)L and (u, v)L ≃ (s, w)L, which yields the common slot s ∈ F×, a
contradiction.
Let now r ∈ F× and consider ψ1 ⊥ −rψ2 ∈ I2F . We then have in WF

ψ1 ⊥ −rψ2 ∼ 〈d,−rd〉 + 〈−a,−b, ab〉 − r〈−u,−v, uv〉
∼ 〈−1, r, d,−rd〉+ 〈1,−a,−b, ab〉 − r〈1− u,−v, uv〉
∼ 〈〈a, b〉〉 − r〈〈u, v〉〉 − 〈〈d, r〉〉 ,

which yields c(ψ1 ⊥ −rψ2) = [(a, b)F (u, v)F (d, r)F ]. Now (a, b)F and (u, v)F have
a common slot over L = F (

√
d), i.e. (a, b)F (u, v)F is not a division algebra over L

and thus there exist x, y, z ∈ F× such that (a, b)F (u, v)F ≃ (d, x)F (y, z)F , by [LLT,
Prop. 5.2]. The above computation then shows that c(ψ1 ⊥ −xψ2) = [(y, z)F ]. Hence,
ψ1 ⊥ −xψ2 is an 8-dimensional form in I2F whose Clifford invariant is given by the
class of a quaternion algebra, thus there exists a quadratic extension E = F (

√
e)/F

such that (ψ1 ⊥ −xψ2)E is hyperbolic (cf. also Rem. 3.2(i)), i.e. (ψ1)E ≃ (xψ2)E .
As for the converse, suppose that F does not have property D(4) and let ϕ1 and

ϕ2 be two 4-dimensional forms such that d±ϕ1 = d±ϕ2 = d and that there exists a
quadratic extension E/F such that (ϕ1)E ≃ (ϕ2)E , but there does not exist β ∈ P1F
similar to a subform of both ϕ1 and ϕ2. After scaling, we may assume that there
exist a, b, u, v, x ∈ F× such that

ϕ1 ≃ 〈d,−a,−b, ab〉 and ϕ2 ≃ x〈d,−u,−v, uv〉 .
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Similar to above, we have that ϕ1 ⊥ −ϕ2 ∈ I2F and that c(ϕ1 ⊥ −ϕ2) =
[(a, b)F (u, v)F (d, x)F ]. On the other hand, ϕ1 ⊥ −ϕ2 is hyperbolic over the quadratic
extension E of F . Hence, the index of the Clifford algebra of ϕ1 ⊥ −ϕ2 can be at most
2, which implies that the Clifford invariant can be represented by a quaternion algebra,
say, c(ϕ1 ⊥ −ϕ2) = [(y, z)F ], y, z ∈ F×. In particular, (a, b)F (u, v)F ≃ (d, x)F (y, z)F ,
and it follows that (a, b)F (u, v)F is not a division algebra over L = F (

√
d), i.e. (a, b)L

and (u, v)L have a common slot. To show that property CS fails, it suffices to show
that this common slot cannot be in F .
Suppose there exist r ∈ F× and s, t ∈ L× such that (a, b)L ≃ (r, s)L and (u, v)L ≃

(r, t)L. Let K = F (
√
r). Since (r, s)L and (r, t)L split over L(

√
r) = K(

√
d), one sees

easily that (ϕ1)K(
√
d) and (ϕ2)K(

√
d) are hyperbolic. On the other hand, d±ϕ1 =

d±ϕ2 = d, and it is well-known and easy to show that an anisotropic 4-dimensional
form stays anisotropic over the field obtained by adjoining the square root of the
determinant of the form. Hence, (ϕ1)K and (ϕ2)K are both isotropic, which yields
that both ϕ1 and ϕ2 contain subforms similar to 〈1,−r〉, a contradiction.

D(8)⇒ D(14): If F does not have property D(14), there exists a form ϕ ∈ I3F
with dimϕ = 14 such that ϕ does not contain a subform in GP2F . By Cor. 2.2, we
can write ϕ ≃ α ⊥ ψ with an Albert form α and some 8-dimensional form ψ ∈ I2F .
Clearly ψ ≡ α (mod I3F ) and therefore c(ψ) = c(α). Since α is an Albert form,
there exists a biquaternion algebra B over F such that c(α) = c(ψ) = [B] in BrF .
Furthermore, ψ does not contain a subform in GP2F as ϕ does not contain such a
subform, hence F does not have property D(8).

We do not know whether D(4) implies D(8) or not.

4 The properties D(n) over fields with a discrete valuation

Let R be a discrete valuation ring with residue class field k and quotient field K.
Suppose that char k 6= 2, and let π be a uniformizing element of R. For each form
ϕ over K, there exist forms ϕ1 and ϕ2 which have diagonalizations containing only
units in R× such that ϕ ≃ ϕ1 ⊥ πϕ2. The residue forms ϕ1 and ϕ2 are called the
first and second residue forms respectively; they are uniquely determined by ϕ (see
[S, Ch. 6, Def. 2.5]). If ϕ1 and ϕ2 are both anisotropic, then ϕ is anisotropic. The
converse holds if R is 2-henselian, by Springer’s theorem [S, Ch. 6, Cor. 2.6]. A typical
example of such a discrete valuation ring in the equal characteristic case is R = k[[t]],
the power series ring in one variable t.
Our aim is to investigate how the properties D(n), n ∈ {2, 4, 8, 14}, behave after

going down from K to k or going up from k to K (under the extra hypothesis that
R is 2-henselian).
We first go down from K to k, assuming that the residue map R → k has a

section, hence that k can be viewed as a subfield of K. (For instance, K may be an
intermediate field between the field of rational fractions k(t) and the power series field
k((t)), and R the t-adic valuation ring.)

Theorem 4.1 Suppose the residue map R→ k has a section, and view k as a subfield
of R.

(i) If K has property D(4), then k has property D(2) (hence also D(4)).
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(ii) If K has property D(8), then k has properties D(4) and D(8).

(iii) If K has property D(14), then k has property D(8) (hence also D(14)).

Proof. (i) Suppose that k does not have property D(2). It will suffice to show that K
does not have propertyCS, since Theorem 3.4 shows that CS andD(4) are equivalent.
Let a, b, c ∈ k× and let E = k(√e)/k be a quadratic extension such thatDE(〈1,−a〉)∩
DE(〈b,−bc〉) 6= ∅ but DE(〈1,−a〉) ∩DE(〈b,−bc〉) ∩ k× = ∅. Let L = K(

√
e). Then

DL(〈−a,−π, aπ〉) ∩DL(〈−c,−bπ, bcπ〉) 6= ∅ as these 3-dimensional subforms contain
−π〈1,−a〉L and −π〈b,−bc〉L, respectively. We will show that DL(〈−a,−π, aπ〉) ∩
DL(〈−c,−bπ, bcπ〉) ∩K× = ∅, which, by the remark at the beginning of the proof of
D(2) ⇒ CS in Theorem 3.4, implies that (a, π)K and (c, bπ)K have a common slot
over L, but no such common slot can be chosen in K, which then shows that property
CS fails for K.
In order to do this, we may replace K by its 2-henselization (or by its comple-

tion) for the discrete valuation. Then L is 2-henselian with residue field E, and it
follows from Springer’s theorem (cf. [S, Ch. 6, Cor. 2.6]) that if DL(〈−a,−π, aπ〉) ∩
DL(〈−c,−bπ, bcπ〉) ∩ K× 6= ∅, then DE(〈−a〉) ∩ DE(〈−c〉) ∩ k× 6= ∅, which actu-
ally implies that ac ∈ E×2, or DE(〈1,−a〉) ∩ DE(〈b,−bc〉) ∩ k× 6= ∅. The latter
can be ruled out by our choice of a, b, c ∈ k×. Suppose that ac ∈ E×2. Then
〈1,−a〉E ≃ 〈1,−c〉E . Since DE(〈1,−a〉)∩DE(〈b,−bc〉) 6= ∅, there exists r ∈ E× such
that 〈1,−a〉E ≃ r〈1,−a〉E and 〈b,−bc〉E ≃ r〈1,−c〉E . These facts together yield

〈b,−bc〉E ≃ r〈1,−c〉E ≃ r〈1,−a〉E ≃ 〈1,−a〉E .

In particular, 1 ∈ DE(〈1,−a〉) ∩DE(〈b,−bc〉) ∩ k×, a contradiction.
(ii) Suppose k does not have property D(4). Let ϕ1 and ϕ2 be 4-dimensional

forms over k such that there exists a quadratic extension E = k(
√
e)/k with (ϕ1)E ≃

(ϕ2)E but such that there does not exist a binary form β over k which is similar to a
subform of both ϕ1 and ϕ2. Let ϕ := ϕ1 ⊥ −πϕ2 ∈ I2K. Then ϕ becomes hyperbolic
over the biquadratic extension K(

√
e,
√
π). This shows that the index of the Clifford

algebra of ϕ can be at most 4 and hence there exists a biquaternion algebra B such
that c(ϕ) = [B].
In order to prove that K does not have property D(8), it remains to show that ϕ

does not contain a subform inGP2K. For this, we may replaceK by its 2-henselization
for the discrete valuation. Suppose σ ∈ GP2K is such that σ ⊂ ϕ. We may decompose
σ ≃ σ1 ⊥ −πσ2, where σ1 and σ2 are even-dimensional forms which have a diago-
nalization containing only units in R×. By Springer’s theorem, the residue forms σ1
and σ2 satisfy σ1 ⊂ ϕ1 and σ2 ⊂ ϕ2. If dimσ1 = 0 or dimσ2 = 0, then ϕ2 or ϕ1
lies in GP2F , which is not possible (cf. Rem. 3.2). Therefore, dimσ1 = dimσ2 = 2.
Since d±σ = 1, there exists s ∈ k× such that σ2 ≃ sσ1, in which case σ1 ⊂ ϕ1 and
sσ1 ⊂ ϕ2, a contradiction to the choice of ϕ1 and ϕ2. We conclude that ϕ does not
contain a subform in GP2K.
If k does not have propertyD(8), there exists an 8-dimensional form ψ ∈ I2k such

that ind c(ψ) ≤ 4 which does not contain any subform in GP2k. As in the preceding
argument, we may use residues and Springer’s theorem to show that, viewed over
K, the form ψ does not contain any subform in GP2K. Therefore, K does not have
property D(8).
(iii) Suppose k does not have propertyD(8), i.e. there exist an 8-dimensional form

ψ ∈ I2k and a biquaternion algebra B over k such that c(ψ) = [B], and such that
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ψ does not contain a subform in GP2k. Let α be an Albert form with c(α) = [B].
By Remark 3.2, ψ and α are both anisotropic (in the case of α this follows after
invoking Albert’s theorem because B is a division algebra). In particular, α also does
not contain a subform in GP2k. Consider the form ϕ := α ⊥ πψ over K. Obviously,
c(ϕ) = c(α)c(ψ) = 1 in BrK and thus ϕ ∈ I3K and dimϕ = 14. We will show that
ϕ does not contain a subform in GP2K which then implies that property D(14) fails
for K. For this, we may replace K by its 2-henselization for the discrete valuation.
Suppose there exists σ ∈ GP2K such that σ ⊂ ϕ. As in the proof of (ii) above,

we decompose σ ≃ σ1 ⊥ πσ2 and obtain by Springer’s theorem σ1 ⊂ α and σ2 ⊂ ψ.
If dimσ1 = 0 or dim σ2 = 0, it follows that ψ or α contains a subform in GP2k,
a contradiction. Therefore, dimσ1 = dimσ2 = 2 and, since d±σ = 1, we have
d±σ1 = d±σ2. Let d ∈ k× be a representative of d±σ1 and E = k(

√
d). Then αE and

ψE are isotropic and it follows from Lemma 3.3 that ψ contains a subform in GP2k,
a contradiction.

Corollary 4.2 Let k be a field and let Ki, 1 ≤ i ≤ 3, be any field with k(t1, · · · , ti) ⊂
Ki ⊂ k((t1)) · · · ((ti)), where t1, t2, t3 are independent variables over k. If k does not
have property D(2), then K1 does not have property D(4), K2 does not have property
D(8), and K3 does not have property D(14).

A more precise statement is in Corollary 6.2 below.

Remark 4.3 The hypothesis that the residue map has a section is used in the
proof of Theorem 4.1 to find suitable lifts for quadratic forms over k. If the
valuation is 2-henselian, this hypothesis is not needed. Indeed, in the proof
of part (i) we may choose any lifts a′, b′, c′, e′ ∈ R of a, b, c, e, and set
L = K(

√
e′). Since DE(〈1,−a〉) ∩ DE(〈b,−bc〉) 6= ∅, the 2-henselian hypoth-

esis ensures that DL(〈1,−a′〉) ∩ DL(〈b′,−b′c′〉) 6= ∅, hence DL(〈−a′,−π, a′π〉) ∩
DL(〈−c′,−b′π, b′c′π〉) 6= ∅. The rest of the proof holds without change.
Similarly, in the proof of part (ii), we may choose for ϕ the quadratic form over

K whose first and second residues are ϕ1 and ϕ2 respectively, and use the henselian
hypothesis to see that ϕ becomes hyperbolic over the biquadratic extension L(

√
π),

where L is the quadratic extension of K with residue field E.
For the proof of (iii), choose for ϕ the quadratic form over K whose first and

second residues are α and ψ respectively, and use Witt’s theorem on the structure of
BrK (which is a Brauer-group analogue of Springer’s theorem) (see [Se, Ch. XII, §3])
to see that c(ϕ) = 1.

Our next goal is to lift properties D(n) from k to K, assuming that the valuation
is 2-henselian.

Theorem 4.4 Suppose the valuation ring R is 2-henselian.

(i) If k has property D(2), then K has property D(2) (hence also D(4)).

(ii) If k has properties D(4) and D(8), then K has property D(8).

(iii) If k has property D(8), then K has property D(14).

Proof. (i) If k has property D(2), then property D(2) for K follows from [STW,
Th. 3.10].
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(ii) Assume that k has properties D(4) and D(8). Let ϕ ∈ I2K, dimϕ = 8,
such that c(ϕ) can be represented by a biquaternion algebra. We want to show
that ϕ contains a subform in GP2K. By Remark 3.2(i), we may assume that ϕ is
anisotropic. There exists an Albert form α over K such that ϕ ≡ α (mod I3K).
(Note that scaling ϕ resp. α does not affect this congruence.) With decompositions
ϕ ≃ ϕ1 ⊥ πϕ2 and α ≃ α1 ⊥ πα2 as above, and using the fact that ϕ, α ∈ I2K, we
obtain for the first and second residue forms, respectively, that ϕi, αi ∈ Ik, i = 1, 2,
and that d±ϕ1 = d±ϕ2 and d±α1 = d±α2 in k×/k×2. Furthermore, (ϕ1 ⊥ −α1) ⊥
π(ϕ2 ⊥ −α2) ∈ I3K, hence ϕi ⊥ −αi ∈ I2k, i = 1, 2, and thus in fact d±ϕ1 =
d±ϕ2 = d±α1 = d±α2.
If dimϕ1 = 0 then ϕ2 is an 8-dimensional form in I

2k whose Clifford invariant can
obviously be represented by some biquaternion algebra over k. Since k has property
D(8), ϕ2 contains some form in GP2k as a subform. This subform can be lifted to a
form in GP2K which will be a subform of ϕ2 and thus similar to a subform of ϕ. The
case dimϕ2 = 0 is treated in an analogous way. Thus, we may assume after scaling
ϕ that (dimϕ1,dimϕ2) ∈ {(2, 6), (4, 4)}.
If dimα1 = 0 or dimα2 = 0, then αi ∈ I2k which, by the above discriminant

comparison, yields that ϕ1, ϕ2 ∈ I2k. In the case dimϕ1 = 2, this forces ϕ1 ≃ H
which in turn implies that ϕ is isotropic, contrary to our assumption. If dimϕ1 = 4,
we have ϕ1 ∈ GP2k, and thus we even have ϕ1 ∈ GP2K. Hence, we may assume after
scaling α that dimα1 = 2, dimα2 = 4, and that α1 ⊥ −ϕ1 is isotropic.
If dimϕ1 = 2, then the isotropy of α1 ⊥ −ϕ1 together with d±ϕ1 = d±α1 = d

for some d ∈ R× implies that ϕ1 ≃ α1 which in turn is similar to 〈1,−d〉. Thus, over
ℓ = k(

√
d), we get (α2)ℓ ≡ (ϕ2)ℓ (mod I3ℓ) and (α2)ℓ, (ϕ2)ℓ ∈ I2ℓ. In particular,

(ϕ2)ℓ is an Albert form, (α2)ℓ ∈ GP2ℓ, and c((ϕ2)ℓ) = c((α2)ℓ). Since c((α2)ℓ) can be
represented by a single quaternion algebra, this implies that the Albert form (ϕ2)ℓ is
isotropic, and ϕ2 contains therefore a subform similar to 〈1,−d〉 over k. After lifting,
we see that there exist x, y ∈ R× such that ϕ1 ≃ x〈1,−d〉 and y〈1,−d〉 ⊂ ϕ2. Hence,
ϕ contains 〈x, yπ〉 ⊗ 〈1,−d〉 ∈ GP2K as a subform.
Finally, suppose that dimϕ1 = 4. The fact that ϕ1 is anisotropic of dimension 4,

dimα1 = 2 and α1 ⊥ −ϕ1 is isotropic imply that ψ1 = (α1 ⊥ −ϕ1)an is not hyperbolic
and of dimension ≤ 4. Since d±ϕ1 = d±α1, we also have ψ1 ∈ I2k. All this together
yields ψ1 ∈ GP2k. Lifting ψ1 to a form ψ1 ∈ GP2K, we get by Springer’s theorem

−ψ1 + π(ϕ2 ⊥ −α2) ∼ (ϕ1 ⊥ −α1) + π(ϕ2 ⊥ −α2) ∈ I3K ,

thus
ψ1 ≡ π(ϕ2 ⊥ −α2) ≡ ϕ2 ⊥ −α2 (mod I3K) ,

which obviously implies ψ1 ≡ ϕ2 ⊥ −α2 (mod I3k). Since ϕ2 ⊥ −α2 is an 8-
dimensional I2k-form whose Clifford invariant is the same as that of ψ1 ∈ GP2k, i.e.,
it can be represented by a single quaternion algebra, there exists e ∈ R× such that
ϕ2 ⊥ −α2 becomes hyperbolic over k(

√
e) (see also Remark 3.2(i)), i.e., ϕ2 and α2

are 4-dimensional forms which become isometric over the quadratic extension k(
√
e).

Since k has propertyD(4), there exists b ∈ R× such that 〈1,−b〉 is similar to a subform
of both ϕ2 and α2. After lifting, this shows that 〈1,−b〉 is similar to a subform of
both ϕ and α. It follows from Lemma 3.3 that ϕ contains a subform in GP2K.
(iii) Suppose that k has property D(8) and let ϕ be a 14-dimensional I3-form

over K, which we write as ϕ ≃ ϕ1 ⊥ πϕ2 with first resp. second residue form ϕ1
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resp. ϕ2 over k. To establish property D(14), it suffices by Prop. 2.3 to show that ϕ
contains a subform in GP2K. This is obvious if ϕ is isotropic, so that we may assume
that ϕ and hence ϕ1 and ϕ2 are anisotropic. We have that ϕ1, ϕ2 ∈ I2k as ϕ ∈ I3K,
and after scaling we may assume that dimϕ2 ∈ {0, 2, 4, 6}.
If dimϕ2 = 0, then ϕ ≃ ϕ1 and we have in fact ϕ1 ∈ I3k. Since k has property

D(8), it has property D(14) by Theorem 3.4, and by Prop. 2.3, ϕ1 contains a subform
in GP2k which can be lifted to a subform of ϕ in GP2K.
If dimϕ2 = 2, then ϕ2 ∈ I2k implies that ϕ2 is isotropic, contrary to our as-

sumption.
If dimϕ2 = 4, then ϕ2 ∈ I2k implies that ϕ2 ∈ GP2k, and after lifting we find

again a subform of ϕ which is in GP2K.
Finally, if dimϕ2 = 6, then ϕ2 is an Albert form over k with associated biquater-

nion algebra A over k. Furthermore, ϕ1 is an 8-dimensional I
2-form over k and one

has that ϕ1 ≡ ϕ2 (mod I3k), so that c(ϕ1) = [A]. Since k has property D(8), it
follows from Lemma 3.3 that there is a binary form β over k which is similar to both
a subform of ϕ1 and of ϕ2. Lifting β to a binary form β over K, we see that ϕ1 and
ϕ2 each contain a subform similar to β, say, uβ ⊂ ϕ1 and vβ ⊂ πϕ2, u, v ∈ K×.
Hence, ϕ contains 〈u, v〉 ⊗ β ∈ GP2K as a subform.

Combining Remark 4.3 and Theorem 4.4, we obtain:

Corollary 4.5 (i) k has property D(2) iff K has property D(2) iff K has property
D(4).
(ii) k has properties D(4) and D(8) iff K has property D(8).
(iii) k has property D(8) iff K has property D(14).

Note that for n ∈ {4, 8, 14} it is generally not true that if D(n) holds over k then
D(n) also holds over K, cf. Ex. 5.4 below.

Recall that a field F is called linked if the quaternion algebras over F form a
subgroup in BrF , in particular, any two quaternion algebras over F have a common
slot and there are therefore no biquaternion division algebras. This readily implies
that a linked field F always has properties D(n), n ∈ {4, 8, 14}. We will encounter
typical examples, like finite, local or global fields, etc., also in Cor. 5.1 below. But
first, let us state the following immediate consequences of Theorem 4.4.

Corollary 4.6 Let K0,K1,K2, · · · be fields of characteristic 6= 2 such that Ki+1 is
the quotient field of a 2-henselian discrete valuation ring Ri+1 with residue field Ki,
i ≥ 0. If K0 has property D(2), then Ki has property D(2) for all i ≥ 0.
(i) If K0 has property D(2) and D(8), then Ki has property D(n) for all i ≥ 0

and all n ∈ {2, 4, 8, 14}.
(ii) If K0 is linked, then K0 has property D(n) for n ∈ {4, 8, 14}, K1 has proper-

ties D(8) and D(14), and K2 has property D(14).

Proof. (i) follows by induction from Theorems 3.4 and 4.4, and (ii) is a consequence
of the preceding remarks together with Theorem 4.4.
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5 Fields with finite Hasse number

For a field F , the Hasse number ũ(F ) is defined to be the supremum of the dimensions
of anisotropic totally indefinite quadratic forms over F , where totally indefinite means
indefinite with respect to each ordering on F . If F is not formally real, i.e., if F does
not possess any orderings, then ũ(F ) is nothing but the supremum of the dimensions
of anisotropic forms over F and coincides with the u-invariant u(F ), the supremum
of the dimensions of anisotropic torsion forms. In the sequel, we investigate the
properties D(n), n ∈ {2, 4, 8, 14}, over fields with finite Hasse number and of power
series extensions of such fields.
For basic properties of fields with finite Hasse number, we refer the reader to

[ELP]. Let us just mention that one always has ũ(F ) 6= 3, 5, 7, and that F is a
so-called SAP field if ũ(F ) < ∞. Furthermore, using Merkurjev’s index reduction
formulas [Me2], one can construct fields F with ũ(F ) = 2n for any integer n ≥ 0, see
for example [L 2], [Ho]. It is also well-known that fields of transcendence degree ≤ 1
over a real closed field have ũ ≤ 2 (cf. [ELP, Th. I]), finite fields have ũ = 2, and local
and global fields have ũ = 4 (for global fields, this is Meyer’s theorem). Furthermore,
if ũ(F ) ≤ 4, then F is linked. Conversely, if F is linked, then ũ(F ) ∈ {0, 1, 2, 4, 8} (cf.
[EL], [E, Th. 4.7]).

Corollary 5.1 Let F0 be a field with ũ(F0) ≤ 2, or let F0 be a local or global field.
Let Fi = F ((t1)) · · · ((ti)) be the iterated power series field in i variables over F0. Then
Fi has property D(n) for all i ≥ 0 and all n ∈ {2, 4, 8, 14}.

Proof. By Cor. 4.6, it suffices to verify that F0 has properties D(2) and D(8). For
propertyD(2), this follows from [STW, Ths. 3.6, 3.7]. PropertyD(8) is a consequence
of the fact that in each case, F0 is a linked field (cf. [EL, § 1]).

In the sequel, XF denotes the space of orderings on F , and sgnP (ϕ) denotes the
signature of the form ϕ at the ordering P ∈ XF .

Lemma 5.2 (i) Let ϕ be an anisotropic form over F . Then

dimϕ ≤ sup{ũ(F ), |sgnP (ϕ)|;P ∈ XF } .

(ii) Let ũ(F ) ≤ r and let ϕ1, ϕ2 be forms over F of dimension ≥ 3 such that
dimϕ1 + dimϕ2 ≥ r + 3. Then there exists a binary form β which is similar to a
subform of both ϕ1 and ϕ2.

Proof. (i) If dimϕ > sup{|sgnP (ϕ)|;P ∈ XF}, then ϕ is totally indefinite, hence
dimϕ ≤ ũ(F ).
(ii) Since F is SAP, there exist a1, a2 ∈ F× such that sgnP (a1ϕ1), sgnP (a2ϕ2) ≥ 0

for all P ∈ XF . Hence, |sgnP (a1ϕ1 ⊥ −a2ϕ2)| ≤ dimϕ1+dimϕ2− 3 for all P ∈ XF ,
and since dimϕ1+dimϕ2−3 ≥ ũ(F ), it follows from (i) that dim(a1ϕ1 ⊥ −a2ϕ2)an ≤
dimϕ1+dimϕ2−3, which in turn yields for the Witt index that iW (a1ϕ1 ⊥ −a2ϕ2) ≥
2. This shows that a1ϕ1 and a2ϕ2 have a common binary subform.

We have seen above that iterated power series fields over fields with ũ ≤ 2 always
have the properties D(n), n ∈ {2, 4, 8, 14}. We now ask what happens if the base
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field has ũ ≥ 4. Note that if ũ ≤ 4, then F is linked as already mentioned above.
(One can see this also by applying Lemma 5.2(ii), which shows that two 4-dimensional
forms over F have always up to similarity a common binary subform, which, applied
to 2-fold Pfister forms, implies linkage.) Of particular interest is the case ũ = 4 as
will be illustrated by Ex. 5.4 below. For this reason, we state explicitly the following
special case of Cor. 4.6(ii).

Corollary 5.3 Let Fi = F ((t1)) · · · ((ti)) be the iterated power series field in i vari-
ables over a field F0 with ũ(F0) = 4.

(i) F0 has property D(n) for n ∈ {4, 8, 14};
(ii) F1 has property D(n) for n ∈ {8, 14};
(iii) F2 has property D(14).

Example 5.4 Let F = C(x, y), the rational function field in two variables x, y over
the complex numbers C. It is well-known that u(F ) = ũ(F ) = 4. F does not
have property D(2) (cf. [STW, Remarks 4.18, 5.10]). But it has property D(n),
n ∈ {4, 8, 14} by Cor. 5.3. It also shows that linked fields generally do not have
property D(2).
By Theorem 4.1, F1 = F ((t1)) does not have property D(4), but it has property

D(n) for n ∈ {8, 14} by Cor. 5.3. Similarly, we see that F2 = F ((t1))((t2)) does not
have property D(8), but that it does have property D(14).
All this shows that generally, the statements regarding the properties D(n) in

Cor. 5.3 cannot be strengthened. It shows furthermore for n,m ∈ {2, 4, 8, 14},m > n,
that generally D(m) 6⇒ D(n), so that the implications in Theorem 3.4 cannot be
reversed without any further assumptions on the field in question.

For values of ũ possibly bigger than 4, let us note the following.

Corollary 5.5 (i) If ũ(F ) < 12, then F has properties D(8), D(14), and F ((t)) has
property D(14).
(ii) If ũ(F ) < 14, then F has property D(14).

Proof. (i) Let ϕ be an 8-dimensional I2-form over F such that c(ϕ) can be represented
by a biquaternion algebra A with associated Albert form α. To establish property
D(8), it suffices by Lemma 3.3 to show that ϕ and α have a common binary subform.
Since ũ(F ) < 12, this is an easy consequence of Lemma 5.2(ii). Property D(14) for
F ((t)) follows from Theorem 4.4.
(ii) Let ϕ ∈ I3F , dimϕ = 14. If F is not formally real, then ũ(F ) < 14 implies

that ϕ is isotropic and D(14) follows easily. If F is formally real, then we first note
that for each P ∈ XF we have sgnP (ϕ) ≡ 0 (mod 8) because ϕ ∈ I3F . Hence,
sgnP (ϕ) ∈ {0,±8} as dimϕ = 14. By Lemma 5.2(i), dimϕan < 14. Thus, again we
have that ϕ is isotropic and we are done.

Example 5.6 It is again interesting in this context to consider the example from
above based on C(x, y). As was shown there, the field F1 = C(x, y)((t1)) has property
D(8), but notD(4), and F2 = F1((t2)) has propertyD(14), but notD(8). F3 = F2((t3))
does not even have property D(14). One has ũ(F1) = u(F1) = 8, which shows that in
part (i) of the above corollary, one cannot always expect that property D(8) carries
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over to a power series extension. Also, F2 is a field for which D(8) fails, and we have
ũ(F2) = u(F2) = 16, which is still a little higher than the bound given in part (i)
above which assures that D(8) holds. This naturally raises the question whether the
bound given there is the best possible.
We note furthermore that ũ(F3) = u(F3) = 32. For F3, we know that D(14)

fails, but its Hasse number is considerably higher than the bound in part (ii) of the
above corollary, and therefore this example does not give an indication on how good
this bound really is.

Knowing that D(4) always holds if ũ(F ) ≤ 4 (see Corollaries 5.1 and 5.3) and
that it can fail if ũ(F ) ≥ 8 (see Examples 5.4 and 5.6), it would be interesting to know
if there exist fields F with ũ(F ) = 6 for which D(4) fails. We do know by Corollary
5.5 that D(8) holds whenever ũ(F ) ≤ 12, so it holds in particular for all fields with
ũ(F ) ≤ 6. In the following proposition, we establish property D(8) for another class
of fields which also contains all fields F with ũ(F ) ≤ 6.
In the sequel, Int F = I

n ∩WtF , where WtF denotes the torsion part of the Witt
ring. If F is not formally real, thenWF =WtF , otherwiseWtF consists of the classes
of forms which have total signature zero (Pfister’s local-global principle).

Proposition 5.7 Suppose that I3t F = 0 and that F is SAP. Then F has property
D(8) (and hence also D(14)), and F ((t)) has property D(14).

Proof. In view of Theorems 3.4 and 4.4, it suffices to establish property D(8) for F .
Let ϕ ∈ I2F , dimϕ = 8 and c(ϕ) = c(α) with α an Albert form. We have to

show that ϕ contains a subform in GP2F .
Suppose first that F is not formally real. By Merkurjev’s theorem, we have

ϕ − α ∈ I3F = I3t F = 0, hence ϕ ∼ α, and comparing dimensions yields that ϕ is
isotropic and therefore contains a subform in GP2F (see Remark 3.2(i)).
Hence, we may assume that F is formally real. Since ϕ, α ∈ I2F , we have

for all orderings P ∈ XF that sgnP (ϕ), sgnP (α) ≡ 0 (mod 4). Since dimα = 6
and dimϕ = 8, and since F is SAP, we may assume after scaling that sgnP (ϕ) ∈
{0, 4, 8} and sgnP (α) ∈ {0, 4}. On the other hand, we have ϕ − α ∈ I3F and thus
sgnP (ϕ ⊥ −α) ≡ 0 (mod 8). Thus, we always have sgnP (ϕ ⊥ −α) ∈ {0, 8}. Now
if π ∈ P3F , then sgnP (π) ∈ {0, 8}, and since F is SAP, there exists π ∈ P3F such
that sgnP (π) = sgnP (ϕ ⊥ −α) for all P ∈ XF . Hence, sgnP (ϕ ⊥ −α ⊥ −π) = 0 for
all P ∈ XF , i.e. ϕ ⊥ −α ⊥ −π ∈ I3F ∩WtF = I3t F = 0. Thus, ϕ ⊥ −π ∼ α, and
comparing dimensions yields that the Witt index of ϕ ⊥ −π is ≥ 5. In particular, ϕ
contains a 5-dimensional Pfister neighbor of π as a subform. It is well-known that 5-
dimensional Pfister neighbors always contain a subform in GP2F . Hence, ϕ contains
a subform in GP2F .

Remark 5.8 (i) Note that the two classes of fields for which we established property
D(8), fields with ũ < 12 and SAP-fields with I3t F = 0, respectively, are such that one
class is not contained in the other. Indeed, using constructions similar to those in
[L 2], [Ho], it is not difficult to construct fields F with ũ(F ) = 8 or 10 and I3t F 6= 0.
On the other hand, to any positive integer n, there exist fields with ũ(F ) = 2n and
I3t F = 0 (cf. [Ho]). Since their Hasse number is finite, they are SAP-fields. Thus,
there are SAP-fields with I3t F = 0 for which ũ ≥ 12.
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(ii) We do not know whether I3t F = 0 alone already suffices for property D(8) (or
maybe even D(4)) to hold, or whether we can replace SAP by some weaker property
which together with I3t F = 0 would imply property D(8). Consider, for example,
the field F = R((t1)) · · · ((ti)) with i ≥ 2. We have I3t F = 0 (in fact, we even have
WtF = 0), and it is well-known that F is not SAP. However, F does have property
D(n), n ∈ {2, 4, 8, 14} by Corollary 5.1. Note also that I3t F = 0 alone does not imply
property D(2) in general, as exemplified by the field C(x, y) (see Example 5.4).

(iii) It is well-known that a field F satisfies I2t F = 0 and SAP if and only if
ũ(F ) ≤ 2 (cf. [ELP, Theorems E, F]). In this case, F and its iterated power series
extensions have property D(n), n ∈ {2, 4, 8, 14} by Corollary 5.1.

6 Some further consequences and examples

A field extension K/F is said to be excellent if for every quadratic form ϕ over F
there exists a form ψ over F such that (ϕK)an ≃ ψK , i.e. the anisotropic part of
ϕ over K is defined over F . Izhboldin and Karpenko [IK 1, Part II] considered the
question of excellence of extensions K/F where K is the function field of a Severi-
Brauer variety SB(A) of a central simple algebra A over F . One of the crucial cases
in their investigations was the case where A was an algebra of exponent 2. In this
situation, if the algebra is of index ≤ 2, then K/F is excellent as was shown by Arason
in [ELW, App. II]. If the index is 8, then K/F is never excellent as was shown in [IK1,
Part II, Th. 3.10]. If the index is equal to 4, i.e. A is a biquaternion division algebra,
examples are given in [IK1] which show that both excellence and nonexcellence are
possible for such an extension. Izhboldin himself noticed that if a field F does not
have property D(8), then one can readily find examples of biquaternion algebras A
over F such that F (SB(A))/F is nonexcellent.

In [Ma], Mammone gave counterexamples to a question raised by Knus concerning
the product of a biquaternion algebra B and a quaternion algebra Q over F , both
assumed to be division algebras : If B ⊗F Q is not a division algebra, does it follow
that there exists a quadratic extension L/F over which both Q and B are not division
(i.e. Q and B have a quadratic extension of F as a common subfield) ? Again, if F
does not have property D(8) then a pair B, Q can be readily found which provides a
counterexample.

The previous two implications for a field where property D(8) fails are summa-
rized in the following proposition.

Proposition 6.1 Let F be a field where property D(8) fails. Then the following
holds:

(i) (Izhboldin) There exists a biquaternion division algebra A over F such that
F (SB(A))/F is nonexcellent.

(ii) There exist a biquaternion division algebra B over F and a quaternion di-
vision algebra Q over F which have the following properties:

(a) B ⊗F Q is not a division algebra, and yet
(b) there does not exist a quadratic extension L/F which is a common

subfield of B and Q.
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Proof. Since F does not have property D(8), there exist a biquaternion division
algebra A over F and a form ϕ ∈ I2F , dimϕ = 8 such that c(ϕ) = [A] and such that
ϕ does not contain a subform in GP2F . After scaling, we may assume that 1 ∈ D(ϕ).
(i) Let K = F (SB(A)). By Rem. 3.2(i), ϕ is anisotropic and thus ϕK is also

anisotropic (cf. [La, Th. 4]). In particular, ϕK is an anisotropic form in I
3K represent-

ing 1. Hence, ϕK ∈ P3K. Let ϕ ≃ 〈1,−a,−b, · · ·〉, a, b ∈ F×. It follows readily that
there exists c ∈ K× such that ϕK ≃ 〈〈a, b, c〉〉K . Suppose that K/F is excellent. Then,
by [ELW, Prop. 2.11], we may assume that c ∈ F× and we put π := 〈〈a, b, c〉〉 ∈ P3F .
Let ψ := (ϕ ⊥ −π)an. We have ψ ∈ I2F , c(ψ) = c(ϕ) = [A], and dimψ ≤ 10.

If dimψ ≤ 6 then ϕ and π have at least a 5-dimensional subform in common, i.e., ϕ
contains a Pfister neighbor of π. Now each 5-dimensional Pfister neighbor contains a
subform in GP2F , thus ϕ contains a subform in GP2F , a contradiction.
If dimψ = 8, then it follows again from [La, Th. 4] that ψK is anisotropic, a

contradiction because we have by construction that ψK is hyperbolic.
Finally, suppose that dimψ = 10. Let E = F (ψ). Then dim(ψE)an = 8 or 6 (cf.

[H 1, Cor. 1]). If dim(ψE)an = 8, then, since c(ψE) = [AE ] in BrE, we have again that
(ψE)an stays anisotropic over E(SB(AE)), obviously a contradiction to ψ becoming
hyperbolic over K = F (SB(A)). Hence, dim(ψE)an = 6, and by [H 2, Lemma 3.3] it
follows that there exist a 6-dimensional form β and an anisotropic τ ∈ GP4F such
that ψ ⊥ β ≃ τ . On the other hand, ψ and thus τ contain a 5-dimensional subform
of −π ∈ GP3F . Hence, τ becomes hyperbolic over F (π). Using the multiplicativity
of Pfister forms and the fact that τ ∈W (F (π)/F ) is anisotropic, we conclude readily
that there exists x ∈ F× such that τ ≃ −π ⊥ xπ. In the Witt ring, we thus get

ψ + β ∼ ϕ− π + β ∼ −π + xπ
and hence xπ − ϕ ∼ β. Comparing dimensions yields that ϕ and xπ have a 5-
dimensional subform in common, i.e., ϕ contains a Pfister neighbor of π and we get
a contradiction as before.
(ii) After scaling, we may assume that ϕ ≃ 〈−x,−y, xy〉 ⊥ ϕ′ for suitable x, y ∈

F× and some form ϕ′ over F with dimϕ′ = 5 and detϕ′ = 1. Now ϕ′ does not
represent 1 = detϕ′ as ϕ′ does not contain a subform in GP2F . In particular, the
Albert form β := ϕ′ ⊥ 〈−1〉 is anisotropic, and therefore the biquaternion algebra
B with c(β) = [B] is a division algebra by Albert’s theorem. Since 〈−x,−y, xy〉 is
anisotropic, we also have that the quaternion algebraQ = (x, y)F is a division algebra.
Furthermore, ϕ ∼ 〈〈x, y〉〉 + β in WF and therefore

[A] = c(ϕ) = c(〈〈x, y〉〉 ⊥ β) = c(〈〈x, y〉〉)c(β) = [Q][B]
and it follows that Q⊗F B is not a division algebra.
Suppose there exists a quadratic extension L = F (

√
d)/F such that QL and BL

are both not division. Then 〈〈x, y〉〉L is hyperbolic and βL is isotropic. It follows that
ϕL is isotropic and AL is not division. By Lemma 3.3, this implies that ϕ contains a
subform in GP2F , a contradiction.

For an element a ∈ F×, let NF (a) denote the norm group DF (〈1,−a〉). Let now
a, b, c ∈ F× and let E = F (√c). Consider the following factor group :

N1(a, b, c) =
F× ∩NE(a)NE(b)

(F× ∩NE(a))(F× ∩NE(b))
.
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Corollary 6.2 Let F be a field such that there exist a, b, c ∈ F× with N1(a, b, c) 6= 1.
Let E = F (

√
c) and let d ∈ F×∩NE(a)NE(b)\(F×∩NE(a))(F×∩NE(b)). Let t1, t2, t3

be independent variables over F and Fi = F (t1, · · · , ti) (or Fi = F ((t1)) · · · ((ti))),
i = 1, 2, 3, and let Ei = Fi(

√
c).

(i) 〈1,−a〉 and d〈1,−b〉 represent a common element over E = F (√c), but there
does not exist an element in F× which is represented by 〈1,−a〉 and d〈1,−b〉
over E = F (

√
c).

(ii) The two quaternion algebras (a, t1)F1 and (b, t1d)F1 have a common slot over
E1, but such a common slot cannot be chosen in F1.

(iii) Let ψ1 := 〈c,−a,−t1, t1a〉 and ψ2 := 〈c,−b,−t1d, t1db〉. Then there exist
u, v ∈ F×1 such that for L = F1(

√
u) one has (ψ1)L ≃ v(ψ2)L, but there does

not exist a binary form over F1 which is similar to a subform of both ψ1 and
ψ2.

(iv) The Clifford invariant of the form ψ := ψ1 ⊥ −t2ψ2 ∈ I2F2 can be rep-
resented by a biquaternion algebra A over F2, but ψ does not contain any
subform in GP2F2.

(v) Let α be the Albert form over F2 associated to A, and let ϕ := α ⊥ t3ψ.
Then ϕ ∈ I3F3, dimϕ = 14, but ϕ is not similar to the difference of the
pure parts of two forms in P3F3.

Proof. Let d = rs, where r ∈ NE(a) and s ∈ NE(b). By multiplicativity of the norm
form, we have s−1 ∈ NE(b), and the equality r = ds−1 shows that r ∈ DE(〈1,−a〉)
is represented by d〈1,−b〉. Suppose DE(〈1,−a〉) ∩DE(d〈1,−b〉) contains an element
x ∈ F×; then x ∈ F×∩NE(a) and x = dy for some y ∈ NE(b). Since y = d−1x ∈ F×,
we have y ∈ F× ∩ NE(b). It follows that d ∈ (F× ∩ NE(a))(F× ∩ NE(b)) since
d = xy−1. This proves (i) (see also [STW, p. 69]). The remaining statements follow
from Theorem 4.1 and its proof.

Part (i) shows that property D(2) fails for F if there exist a, b, c ∈ F× with
N1(a, b, c) 6= 1. Actually, tracing back through the proof, it is easily seen that property
D(2) is equivalent to the vanishing of the group N1(a, b, c) for all a, b, c ∈ F× (see
[STW, Cor. 2.14]).
The groupN1(a, b, c) occurs in [STW] as the homology group of a certain complex

associated with the multiquadratic extensionM = F (
√
a,
√
b,
√
c). A more symmetric

description of this group is given in [G, Prop. 3]:

N1(a, b, c) ≃
NF (a) ∩NF (b) ∩NF (c)

F×2NM/F (M×)
.

As mentioned in the introduction, there exist fields F such that D(2) fails, i.e.,
there exist a, b, c ∈ F× with N1(a, b, c) 6= 1. In [STW, Cor. 5.6 and 5.7], it is for ex-
ample shown that D(2) fails for finitely generated extensions of transcendence degree
≥ 2 (resp. ≥ 1) over any field of characteristic 0 (resp. over Q).
Examples whereN1(a, b, c) 6= 1 arise in various contexts: in [LW], they are related

to transfer ideals: for an arbitrary finite extension K/F , let TK/F denote the image
of the Witt ring WK in WF under the Scharlau transfer map associated with any
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nonzero linear form s: K → F . Leep and Wadsworth show in [LW, Prop. 2.4] that if
N1(a, b, c) 6= 1, then for M = F (

√
a,
√
b,
√
c) we have

TM/F 6= TF (√a)/F ∩ TF (√b)/F ∩ TF (√c)/F .

The group N1(a, b, c) is also related to problems in Galois cohomology and to the
rationality problem for group varieties: over the field L = F ((t1))((t2))((t3)), consider
the division algebra D = (a, t1)L⊗ (b, t2)L⊗ (c, t3)L and the 8-dimensional quadratic
form q ∈ I2L such that

q ∼ 〈〈a, t1〉〉 − 〈〈b, t2〉〉 − a〈〈c, t3〉〉.

Using the alternative description of N1(a, b, c) above, it is shown in [KLST, p. 283]
and [Me 3, p. 329] that if N1(a, b, c) 6= 1, then

L×2Nrd(D×) 6= {x ∈ L× | (x) ∪ (D) = 0 in H3(L, µ2)},

where Nrd is the reduced norm, (D) ∈ H2(L, µ2) is the Galois cohomology class
corresponding to D under the canonical isomorphism mapping H2(L, µ2) to the 2-
torsion part of the Brauer group of L, and (x) ∈ H1(L, µ2) corresponds to x ∈ L×
under the canonical isomorphism H1(L, µ2) ≃ L×/L×2. On the other hand, under
the same hypothesis, Gille shows in [G] that the adjoint group PSO(q) over L is not
R-trivial, hence not stably L-rational.

To conclude, we illustrate Corollary 6.2 by an explicit example over Q(x) which
is derived from the example given in [STW, Remark 5.4].

Example 6.3 Let F = Q(x) be the rational function field in one variable over the
rationals. Then it follows from [STW, Remark 5.4] that N1(x + 4, x + 1, x) 6= 1
and that the two binary forms 〈1,−(x+ 4)〉 and 2〈1,−(x+ 1)〉 represent a common
element over E = F (

√
x), but no element in F× is represented by both these forms

over E.
In fact, we have

〈1,−(x+ 4)〉 ⊥ −2〈1,−(x+ 1)〉 ≃ 〈2,−1,−(x+ 4), 2(x+ 1)〉
≃ 〈−1, x, 2(x+ 2)(x+ 4),−2x(x+ 1)(x+ 2)〉 ,

which shows that the difference of these two binary forms becomes isotropic over
E = F (

√
x), i.e., the two forms represent a common element over E. Indeed, we can

compute such an element directly. We have that

(
√
x+ 2)2 − (x+ 4) = 4

√
x ∈ DE(〈1,−(x+ 4)〉),

2(
√
x+ 1)2 − 2(x+ 1) = 4

√
x ∈ DE(2〈1,−(x+ 1)〉),

and therefore
√
x ∈ DE(〈1,−(x+ 4)〉) ∩DE(2〈1,−(x+ 1)〉).

Over F1 = F (t1) = Q(x, t1), we now define the two 4-dimensional forms

ψ1 = 〈x,−(x+ 4)〉 ⊥ −t1〈1,−(x+ 4)〉
ψ2 = 〈x,−(x+ 1)〉 ⊥ −2t1〈1,−(x+ 1)〉
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and the two quaternion algebras

Q1 = (x+ 4, t1)F1
Q2 = (x+ 1, 2t1)F1

over F1. By our construction, we know that Q1 and Q2 have a common slot over
E1 = F1(

√
x), but that no such common slot can be chosen in F1. A common slot

over E1 is given by
√
xt1.

Consider now the biquaternion algebra B = Q1⊗Q2 with associated Albert form

β ≃ 〈x+ 1,−(x+ 4)〉 ⊥ t1〈1,−x,−2(x+ 2)(x+ 4), 2x(x+ 1)(x+ 2)〉 ∼ ψ1 ⊥ −ψ2 .

We then get

x(x+ 4)β ≃ 〈−x,−t1(x+ 4), t1x(x+ 4)〉
⊥ 〈x(x+ 1)(x+ 4),−2t1x(x+ 2), 2t1(x+ 1)(x+ 2)(x+ 4)〉

from which we conclude that

B = (x, t1(x+ 4))F1 ⊗ (x(x+ 1)(x+ 4),−2t1x(x+ 2))F1 .

As in the proof of CS ⇐⇒ D(4) in Theorem 3.4, we get for u ∈ F×1 that c(ψ1 ⊥
−uψ2) = [B ⊗ (u, x)F1 ], and by putting u = t1(x+ 4), we obtain

c(ψ1 ⊥ −t1(x+ 4)ψ2) = [(x(x+ 1)(x+ 4),−2t1x(x+ 2))F1 ] .

Now with 〈x,−(x+ 1)〉 ≃ 〈−1, x(x+ 1)〉, we obtain

ψ1 ⊥ −t1(x+ 4)ψ2 ≃ 〈x,−(x+ 4), 2(x+ 4),−2(x+ 1)(x+ 4)〉
⊥ t1〈−1, (x+ 4), (x+ 4),−x(x+ 1)(x+ 4)〉 .

Also, 〈−1, x+ 4, x+ 4〉 ≃ 〈x,−x(x+ 4), x+ 4〉 represents xx2+(x+4)x2 = 2x2(x+2).
Hence,

〈x, 2t1x2(x+ 2)〉 ≃ x〈1, 2t1x(x+ 2)〉
⊂ ψ1 ⊥ −t1(x+ 4)ψ2 .

Let L = F1(
√
−2t1x(x+ 2)). The above shows that ψ1 ⊥ −t1(x + 4)ψ2 becomes

isotropic over L. On the other hand, [(x(x + 1)(x + 4),−2t1x(x + 2))L] = 0, and it
follows that (ψ1 ⊥ −t1(x+4)ψ2)L is an isotropic 8-dimensional form in I3L and hence
hyperbolic. Thus, (ψ1)L ≃ (t1(x+ 4)ψ2)L. However, by construction there does not
exist a binary form over F1 which is similar to a subform of both ψ1 and ψ2.
Let us now consider ψ := ψ1 ⊥ −t2ψ2 over F2 = Q(x, t1, t2). Then ψ ∈ I2F2 is

of dimension 8, by construction it does not contain a subform in GP2F2, and for its
Clifford invariant we get

c(ψ) = [B ⊗ (t2, x)F2 ] = [(x, t1t2(x+ 4))F2 ⊗ (x(x+ 1)(x+ 4),−2t1x(x+ 2))F2 ] .

Consider the biquaternion algebra

A = (x, t1t2(x+ 4))F2 ⊗ (x(x+ 1)(x+ 4),−2t1x(x+ 2))F2 ,
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which by our construction is necessarily a division algebra, and an associated Albert
form

α ≃ 〈−x,−t1t2(x+ 4), t1t2x(x+ 4)〉
⊥ 〈x(x+ 1)(x+ 4), 2t1(x+ 1)(x+ 2)(x+ 4),−2t1x(x+ 2)〉 .

Then, over F3 = Q(x, t1, t2, t3), the form ϕ := α ⊥ t3ψ is a 14-dimensional form in
I3F3 which is not similar to the difference of the pure parts of two forms in P3F3.
We summarize the above results.

• The two forms 〈1,−(x+ 4)〉 and 2〈1,−(x+ 1)〉 over Q(x) both represent √x
over Q(x)(

√
x), but there is no element in Q(x)× which is represented by both

forms over Q(x)(
√
x). In particular, Q(x) does not have property D(2).

• The two quaternion algebras (x+ 4, t1)F1 and (x+ 1, 2t1)F1 over F1 = Q(x, t1)
have a common slot over Q(x, t1)(

√
x), for example t1

√
x, but no such common

slot can be chosen in Q(x, t1). In particular, Q(x, t1) does not have property
CS.

• The two forms ψ1 = 〈x,−(x+ 4)〉 ⊥ −t1〈1,−(x+ 4)〉 and ψ2 = 〈x,−(x+ 1)〉 ⊥
−2t1〈1,−(x+ 1)〉 overQ(x, t1) do not simultaneously become isotropic over any
quadratic extension of Q(x, t1), i.e., there is no binary form over Q(x, t1) which
is similar to a subform of both ψ1 and ψ2. However, the forms ψ1 and t1(x+4)ψ2
become isometric over Q(x, t1)(

√
−2t1x(x+ 2)). In particular, Q(x, t1) does

not have property D(4).

• The Clifford invariant of the 8-dimensional form ψ = ψ1 ⊥ −t2ψ2 ∈ I2F2, where
F2 = Q(x, t1, t2), is represented by the biquaternion algebra

A = (x, t1t2(x+ 4))F2 ⊗ (x(x+ 1)(x+ 4),−2t1x(x+ 2))F2 .

However, ψ does not contain a subform in GP2F2. In particular, Q(x, t1, t2)
does not have property D(8).

• The extension F2(SB(A))/F2 is not excellent (cf. Prop. 6.1(i) ).

• With
ψ ∼ 〈−(x+ 4),−t1, t1(x+ 4), x,−t2x, t2〉

− t2〈1,−(x+ 1),−2t1, 2t1(x+ 1)〉
as above, and with

c(〈−(x+ 4),−t1, t1(x+ 4), x,−t2x, t2〉) = [(x+ 4, t1)F2 ⊗ (x, t2)F2 ]
c(〈1,−(x+ 1),−2t1, 2t1(x+ 1)〉) = [(x+ 1, 2t1)F2 ] ,

we have that (x + 4, t1)F2 ⊗ (x, t2)F2 ⊗ (x + 1, 2t1)F2 is not a division algebra,
but (x+4, t1)F2 ⊗ (x, t2)F2 and (x+1, 2t1)F2 have no proper common quadratic
subextension of F2 = Q(x, t1, t2) (cf. Prop. 6.1(ii) ).

• With α an Albert form associated to A, the form α ⊥ t3ψ of dimension 14 over
F3 = Q(x, t1, t2, t3) is in I

3F3, but it is not similar to the difference of the pure
parts of two forms in P3F3. In particular, Q(x, t1, t2, t3) does not have property
D(14).
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Abstract. Let a compact Lie group act ergodically on a unital C∗-algebra A.
We consider several ways of using this structure to define metrics on the state
space of A. These ways involve length functions, norms on the Lie algebra, and
Dirac operators. The main thrust is to verify that the corresponding metric
topologies on the state space agree with the weak-∗ topology.

Primary 46L87; Secondary 58B30, 60B10

Connes [C1, C2, C3] has shown us that Riemannian metrics on non-commutative
spaces (C∗-algebras) can be specified by generalized Dirac operators. Although in
this setting there is no underlying manifold on which one then obtains an ordinary
metric, Connes has shown that one does obtain in a simple way an ordinary metric
on the state space of the C∗-algebra, generalizing the Monge-Kantorovich metric on
probability measures [Ra] (called the “Hutchinson metric” in the theory of fractals
[Ba]).

But an aspect of this matter which has not received much attention so far [P] is the
question of when the metric topology (that is, the topology from the metric coming
from a Dirac operator) agrees with the underlying weak-∗ topology on the state space.
Note that for locally compact spaces their topology agrees with the weak-∗ topology
coming from viewing points as linear functionals (by evaluation) on the algebra of
continuous functions vanishing at infinity.

In this paper we will consider metrics arising from actions of compact groups on
C∗-algebras. For simplicity of exposition we will only deal with “compact” non-
commutative spaces, that is, we will always assume that our C∗-algebras have an
identity element. We will explain later what we mean by Dirac operators in this
setting (section 4). In terms of this, a brief version of our main theorem is:

1The research reported here was supported in part by National Science Foundation Grant DMS–
96–13833.
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Theorem 4.2. Let α be an ergodic action of a compact Lie group G on a unital
C∗-algebra A, and let D be a corresponding Dirac operator. Then the metric topology
on the state space of A defined by the metric from D agrees with the weak-∗ topology.
An important case to which this theorem applies consists of the non-commutative

tori [Rf], since they carry ergodic actions of ordinary tori [OPT]. The metric geometry
of non-commutative tori has recently become of interest in connection with string
theory [CDS, RS, S].
We begin by showing in the first section of this paper that the mechanism for

defining a metric on states can be formulated in a very rudimentary Banach space
setting (with no algebras, groups, or Dirac operators). In this setting the discussion of
agreement between the metric topology and the weak-∗ topology takes a particularly
simple form.
Then in the second section we will see how length functions on a compact group

directly give (without Dirac operators) metrics on the state spaces of C∗-algebras on
which the group acts ergodically. We then prove the analogue in this setting of the
main theorem stated above.
In the third section we consider compact Lie groups, and show how norms on the

Lie algebra directly give metrics on the state space. We again prove the corresponding
analogue of our main theorem.
Finally, in section 4 we use the results of the previous sections to prove our main

theorem, stated above, for the metrics which come from Dirac operators.
It is natural to ask about actions of non-compact groups. Examination of [Wv4]

suggests that there may be very interesting phenomena there. The considerations of
the present paper also make one wonder whether there is an appropriate analogue of
length functions for compact quantum groups which might determine a metric on the
state spaces of C∗- algebras on which a quantum group acts ergodically [Bo, Wn].
This would be especially interesting since for non-commutative compact groups there
is only a sparse collection of known examples of ergodic actions [Ws], whereas in [Wn]
a rich collection of ergodic actions of compact quantum groups is constructed. Closely
related is the setting of ergodic coactions of discrete groups [N, Q]. But I have not
explored any of these possibilities.
I developed a substantial part of the material discussed in the present paper during

a visit of several weeks in the Spring of 1995 at the Fields Institute. I am appreciative
of the hospitality of the Fields Institute, and of George Elliott’s leadership there. But
it took trying to present this material in a course which I was teaching this Spring, as
well as benefit from [P, Wv1, Wv2, Wv3, Wv4], for me to find the simple development
given here.

1. Metrics on states

Let A be a unital C∗-algebra. Connes has shown [C1, C2, C3] that an appropriate
way to specify a Riemannian metric in this non-commutative situation is by means of
a spectral triple. This consists of a representation of A on a Hilbert space H, together
with an unbounded self-adjoint operator D on H (the generalized Dirac operator),
satisfying certain conditions. The set L(A) of Lipschitz elements of A consists of
those a ∈ A such that the commutator [D, a] is a bounded operator. It is required
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that L(A) be dense in A. The Lipschitz semi-norm, L, is defined on L(A) just by the
operator norm L(a) = ‖[D, a]‖.
Given states µ and ν of A, Connes defines the distance between them, ρ(µ, ν), by

(1.1) ρ(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ L(A), L(a) ≤ 1} .

(In the absence of further hypotheses it can easily happen that ρ(µ, ν) = +∞. For
one interesting situation where this sometimes happens see the end of the discussion
of the second example following axiom 4’ of [C3].)
The semi-norm L is an example of a general Lipschitz semi-norm, that is [BC, Cu,

P, Wv1, Wv2], a semi-norm L on a dense subalgebra L of A satisfying the Leibniz
property:

(1.2) L(ab) ≤ L(a)‖b‖+ ‖a‖L(b) .

Lipschitz norms carry some information about differentiable structure [BC, Cu], but
not nearly as much as do spectral triples. But it is clear that just in terms of a given
Lipschitz norm one can still define a metric on states by formula (1.1).
However, for the purpose of understanding the relationship between the metric

topology and the weak-∗ topology, we do not need the Leibniz property (1.2), nor
even that A be an algebra. The natural setting for these considerations seems to be
the following very rudimentary one. The data is:

(1.3a) A normed space A, with norm ‖ ‖, over either C or R.

(1.3b) A subspace L of A, not necessarily closed.

(1.3c) A semi-norm L on L.

(1.3d)
A continuous (for ‖ ‖) linear functional, η, on K = {a ∈ L : L(a) = 0}
with ‖η‖ = 1. (Thus, in particular, we require K 6= {0} .)

Let A′ denote the Banach-space dual of A, and set

S = {µ ∈ A′ : µ = η on K, and ‖µ‖ = 1} .

Thus S is a norm-closed, bounded, convex subset of A′, and so is weak-∗ compact.
In general S can be quite small; when A is a Hilbert space S will contain only one
element. But in the applications we have in mind A will be a unital C∗-algebra, K
will be the one-dimensional subspace spanned by the identity element, and η will be
the functional on K taking value 1 on the identity element. Thus S will be the full
state-space of A. (That K will consist only of the scalar multiples of the identity
element in our examples will follow from our ergodicity hypothesis. We treat the case
of general K here because this clarifies slightly some issues, and it might possibly be
of eventual use, for example in non-ergodic situations.)
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We do not assume that L is dense in A. But to avoid trivialities we do make one
more assumption about our set-up, namely:

(1.3e) L separates the points of S.

This means that given µ, ν ∈ S there is an a ∈ L such that µ(a) 6= ν(a). (Note that
for µ ∈ S there exists a ∈ L with µ(a) 6= 0, since we can just take an a ∈ K such that
η(a) 6= 0.)
With notation as above, let L̃ = L/K. Then L drops to an actual norm on L̃,

which we denote by L̃. But on L̃ we also have the quotient norm from ‖ ‖ on L,
which we denote by ‖ ‖∼. The image in L̃ of a ∈ L will be denoted by ã.
We remark that when L is a unital algebra (perhaps dense in a C∗-algebra), and

when K is the span of the identity element, then the space of universal 1-forms Ω1 over
L is commonly identified [BC, Br, C2, Cu] with L⊗L̃, and the differential d : L → Ω1
is given by da = 1⊗ ã. Thus in this setting our L̃ is a norm on the space of universal
1-coboundaries of L. The definition of L which we will use in the examples of section
3 is also closely related to this view.

On S we can still define a metric, ρ, by formula (1.1), with L(A) replaced by L.
The symmetry of ρ is evident, and the triangle inequality is easily verified. Since we
assume that L separates the points of S, so will ρ. But ρ can still take the value +∞.
We will refer to the topology on S defined by ρ as the “ρ-topology”, or the “metric
topology” when ρ is understood.
It will often be convenient to consider elements of A as (weak-∗ continuous) func-

tions on S. At times this will be done tacitly, but when it is useful to do this explicitly
we will write â for the corresponding function, so that â(µ) = µ(a) for µ ∈ S.
Without further hypotheses we have the following fact. It is closely related to

proposition 3.1a of [P], where metrics are defined in terms of linear operators from
an algebra into a Banach space.

1.4 Proposition. The ρ-topology on S is finer than the weak-∗ topology.

Proof. Let {µk} be a sequence in S which converges to µ ∈ S for the metric ρ. Then
it is clear from the definition of ρ that {µk(a)} converges to µ(a) for any a ∈ L with
L(a) ≤ 1, and hence for all a ∈ L.
This says that â(µk) converges to â(µ) for all a ∈ L. But L̂ is a linear space of

weak-∗ continuous functions on S which separates the points of S by assumption (and
which contains the constant functions, since they come from any a ∈ K on which η
is not 0). A simple compactness argument shows then that L̂ determines the weak-∗
topology of S. Thus {µk} converges to µ in the weak-∗ topology, as desired. �

There will be some situations in which we want to obtain information about (L, L)
from information about S. It is clear that to do this S must “see” all of L. The
convenient formulation of this for our purposes is as follows. Let ‖ ‖∞ denote the
supremum norm on functions on S. Let it also denote the corresponding semi-norm
on L defined by ‖a‖∞ = ‖â‖∞. Clearly ‖â‖∞ ≤ ‖a‖ for a ∈ L.
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1.5 Condition. The semi-norm ‖ ‖∞ on L is a norm, and it is equivalent to the
norm ‖ ‖, so that there is a constant k with

‖a‖ ≤ k‖â‖∞ for a ∈ L.

This condition clearly holds when A is a C∗-algebra, L is dense in A, and S
is the state space of A, so that we are dealing with the usual Kadison functional
representation [KR]. But we remark that even in this case the constant k above
cannot always be taken to be 1 (bottom of page 263 of [KR]). This suggests that in
using formula (1.1) one might want to restrict to using just the self-adjoint elements
of L, since there the function representation is isometric. But more experience with
examples is needed.
We return to the general case. If we are to have the ρ-topology on S agree with

the weak-∗ topology, then S must at least have finite ρ-diameter, that is, ρ must be
bounded. The following proposition is closely related to theorem 6.2 of [P].

1.6 Proposition. Suppose there is a constant, r, such that

(1.7) ‖ ‖∼ ≤ rL̃ .

Then ρ is bounded (by 2r).
Conversely, suppose that Condition 1.5 holds. If ρ is bounded, (say by d), then

there is a constant r such that (1.7) holds (namely r = kd where k is as in 1.5).

Proof. Suppose that (1.7) holds. If a ∈ L and L(a) ≤ 1, then L̃(ã) ≤ 1 and so
‖ã‖∼ ≤ r. This means that, given ε > 0, there is a b ∈ K such that ‖a− b‖ ≤ r + ε.
Then for any µ, ν ∈ S, we have, because µ and ν agree on K,

|µ(a)− ν(a)| = |µ(a− b)− ν(a− b)| ≤ ‖µ− ν‖ ‖a− b‖ ≤ 2(r + ε) .

Since ε is arbitrarily small, it follows that |µ(a)− ν(a)| ≤ 2r. Consequently ρ(µ, ν) ≤
2r.
Assume conversely that ρ is bounded by d. Fix ν ∈ S, and choose b ∈ K such that

η(b) = 1. Then for any µ ∈ S and any a ∈ L with L(a) ≤ 1 we have

d ≥ ρ(µ, ν) ≥ |µ(a)− ν(a)| = |µ(a− ν(a)b)| .

Suppose now that Condition 1.5 holds. We apply it to a − ν(a)b. Thus, since S is
compact, we can find µ such that

‖a− ν(a)b‖ ≤ k|µ(a− ν(a)b)| .

Consequently ‖a−ν(a)b‖ ≤ kd, so that ‖ã‖∼ ≤ kd. All this was under the assumption
that L(a) ≤ 1. It follows that for general a ∈ L we have ‖ã‖∼ ≤ kdL̃(ã), as desired.

�

We now turn to the question of when the ρ-topology and the weak-∗ topology on
S agree. The following theorem is closely related to theorem 6.3 of [P].
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1.8 Theorem. Let the data be as in (1.3a–e), and let L1 = {a ∈ L : L(a) ≤ 1}. If
the image of L1 in L

∼

is totally bounded for ‖ ‖∼ , then the ρ-topology on S agrees
with the weak-∗ topology.
Conversely, if Condition 1.5 holds and if the ρ-topology on S agrees with the weak-∗

topology, then the image of L1 in L
∼

is totally bounded for ‖ ‖∼.
Proof. We begin with the converse, so that we see why the total-boundedness as-
sumption is natural. If the ρ-topology gives the weak-∗ t opology on S, then ρ must
be bounded since S is compact. Thus by Proposition 1.6 there is a constant, ro, such
that ‖ ‖∼ ≤ roL

∼

, since we assume here that Condition 1.5 holds. Choose r > ro.
Then ‖a‖∼ < r if a ∈ L1. Consequently, if we let

Br = {a ∈ L : L(a) ≤ 1 and ‖a‖ ≤ r} ,

then the image of Br in L
∼

is the same as the image of L1. Thus it suffices to show
that Br is totally bounded.
Let a ∈ Br and let µ, ν ∈ S. Then

|â(µ)− â(ν)| = |µ(a)− ν(a)| ≤ ρ(µ, ν) .

Thus (Br) ˆ can be viewed as a bounded family of functions on S which is equi-
continuous for the weak-∗ topology, since ρ gives the weak-∗ topology of S. It follows
from Ascoli’s theorem [Ru] that (Br)ˆis totally bounded for ‖ ‖∞. By Condition 1.5
this means that Br is totally bounded for ‖ ‖ as a subset of A, as desired.
For the other direction we do not need Condition 1.5. We suppose now that the

image of L1 in L̃ is totally bounded for ‖ ‖
∼

. Let µ ∈ S and ε > 0 be given, and
let B(µ, ε) be the ρ-ball of radius ε about µ in S. In view of Proposition 1.4 it
suffices to show that B(µ, ε) contains a weak-∗ neighborhood of µ. Now by the total
boundedness of the image of L1 we can find a1, . . . , an ∈ L1 such that the ‖ ‖

∼

-balls
of radius ε/3 about the âj ’s cover the image of L1. We now show that the weak-∗
neighborhood

O = O(µ, {aj}, ε/3) = {ν ∈ S : |(µ− ν)(aj)| < ε/3, 1 ≤ j ≤ n}

is contained in B(µ, ε). Consider any a ∈ L1. There is a j and a b ∈ K, depending
on a, such that

‖a− aj − b‖ < ε/3 .

Hence for any ν ∈ O we have

|µ(a)− ν(a)| ≤ |µ(a)− µ(aj + b)|+ |µ(aj + b)− ν(aj + b)|+ |ν(aj + b)− ν(a)|
< ε/3 + |µ(aj)− ν(aj)|+ ε/3 < ε .

Thus ρ(µ, ν) < ε. Consequently O ⊆ B(µ, ε) as desired. �

Examination of the proof of the above theorem suggests a reformulation which
provides a convenient subdivision of the problem of showing for specific examples
that the ρ-topology agrees with the weak-∗ topology. We will use this reformulation
in the next sections.
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1.9 Theorem. Let the data be as in (1.3a–e). Then the ρ-topology on S will agree
with the weak-∗ topology if the following three hypotheses are satisfied:

i) Condition 1.5 holds.
ii) ρ is bounded.
iii) The set B1 = {a ∈ L : L(a) ≤ 1 and ‖a‖ ≤ 1} is totally bounded in A for ‖ ‖.

Conversely, if Condition 1.5 holds and if the ρ-topology agrees with the weak-∗ topol-
ogy, then the above three conditions are satisfied.

Proof. If conditions i) and ii) are satisfied, then, just as in the first part of the proof

of Theorem 1.8, there is a constant r such that the image of Br in L̃ contains the
image of L1. But Br ⊆ rB1. Thus if B1 is totally bounded then so is Br, as is then
the image of L1. Then we can apply Theorem 1.8 to conclude that the ρ-topology
agrees with the weak-∗ topology.
Conversely, if the ρ-topology and the weak-∗ topology agree, then condition ii)

holds by Proposition 1.6. But by the first part of the proof of Theorem 1.8 there
is then a constant r such that Br is totally bounded. By scaling we see that B1 is
also. �

We remark that if we take any 1-dimensional subspace K of an infinite-dimensional
normed space A, set L = A, and let L be the pull-back to A of ‖ ‖˜on A/K, we obtain
an example where ρ is bounded but the image of L1 in L∼ is not totally bounded,
nor is B1 totally bounded in A.
In the next sections we will find very useful the following:

1.10 Comparison Lemma. Let the data be as in (1.3a–e). Suppose we have a
subspace M of L which contains K and separates the points of S, and a semi-norm
M onM which takes value 0 exactly on K. Let ρL and ρM denote the corresponding
metrics on S (possibly taking value +∞). Assume that

M ≥ L on M,

in the sense that M(a) ≥ L(a) for all a ∈ M. Then
ρM ≤ ρL ,

in the sense that ρM (µ, ν) ≤ ρL(µ, ν) for all µ, ν ∈ S. Thus
i) If ρL is finite then so is ρM .
ii) If ρL is bounded then so is ρM .
iii) If the ρL-topology on S agrees with the weak-∗ topology then so does the ρM -
topology.

Proof. If a ∈ M and M(a) ≤ 1 then L(a) ≤ 1. Thus the supremum defining ρM is
taken over a smaller set than that for ρL, and so ρM ≤ ρL. Conclusions i) and ii) are
then obvious. Conclusion iii) follows from the fact that a continuous bijection from a
compact space to a Hausdorff space is a homeomorphism. �

For later use we record the following easily verified fact.

1.11 Proposition. Let data be as above. Let t be a strictly positive real number. Set
M = tL on L. Then ρM = t−1ρL. Thus properties for ρL of finiteness, boundedness,
and agreement of the ρL-topology with the weak-∗ topology carry over to ρM .
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2. Metrics from actions and length functions

Let G be a compact group (with identity element denoted by e). We normalize
Haar measure to give G mass 1. We recall that a length function on a group G is a
continuous non-negative real-valued function, ℓ, on G such that

(2.1a) ℓ(xy) ≤ ℓ(x) + ℓ(y) for x, y ∈ G,

(2.1b) ℓ(x−1) = ℓ(x),

(2.1c) ℓ(x) = 0 exactly if x = e.

Length functions arise in a number of ways. For example, if π is a faithful unitary
representation of G on a finite-dimensional Hilbert space, then we can set ℓ(x) =
‖πx − πe‖. We will see another way in the next section. We will assume for the rest
of this section that a length function has been chosen for G.
Let A be a unital C∗-algebra, and let α be an action (strongly continuous) of G by

automorphisms of A. We let L denote the set of Lipschitz elements of A for α (and
ℓ), with corresponding Lipschitz semi-norm L. That is [Ro1, Ro2], for a ∈ A we set

L(a) = sup{‖αx(a)− a‖/ℓ(x) : x 6= e} ,

which may have value +∞, and we set

L = {a ∈ A : L(a) <∞} .

It is easily verified that L is a ∗-subalgebra of A, and that L satisfies the Leibniz
property 1.2. (More generally, for 0 < r < 1 we could define Lr by

Lr(a) = sup{‖αx(a)− a‖/(ℓ(x))r : x 6= e}

along the lines considered in [Ro1, Ro2]. For actions on the non-commutative torus
this has been studied in [Wv2], but we will not pursue this here.)
It is not so clear whether L is carried into itself by α, but we do not need this fact

here. (For Lie groups see theorem 4.1 of [Ro1] or the comments after theorem 6.1 of
[Ro2].) Let us consider, however, the α-invariance of L. We find that

L(αz(a)) = sup{‖αz(αz−1xz(a)− a)‖/ℓ(x) : x 6= e}
= sup{‖αx(a)− a‖/ℓ(zxz−1) : x 6= e}.

Thus if ℓ(zxz−1) = ℓ(x) for all x, z ∈ G, then L is α-invariant, and L is carried into
itself by α. The metric ρ on S defined by L will then be α-invariant for the evident
action on S. But we will not discuss this matter further here.
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2.2 Proposition. The ∗-algebra L is dense in A.
Proof. For f ∈ L1(G) we define αf as usual by αf (a) =

∫
f(x)αx(a) dx. It is standard

[BR] that as f runs through an “approximate delta-function”, αf (a) converges to a.
Thus the set of elements of form αf (a) is dense in A. Let λ denote the action of
G by left translation of functions on G. A quick standard calculation shows that
αx(αf (a)) = αλx(f)(a). Thus

‖αx(αf (a))− αf (a)‖ = ‖α(λxf−f)(a)‖ ≤ ‖λxf − f‖1‖a‖,

where ‖ ‖1 denotes the usual L1-norm. Thus we see that αf (a) ∈ L if f ∈ Lip1λ, the
space of Lipschitz functions in L1(G) for λ (and ℓ).
Consequently it suffices to show that Lip1λ is dense in L

1(G). We first note that it
contains a non-trivial element, namely ℓ itself. For if x, y ∈ G, then

|(λxℓ)(y)− ℓ(y)| = |ℓ(x−1y)− ℓ(y)| ≤ ℓ(x),
where the inequality follows from 2.1a and 2.1b above. We momentarily switch at-
tention to C(G) with ‖ ‖∞, and the action λ of G on it. Of course ℓ ∈ C(G). The
above inequality then says that ℓ ∈ Lip∞λ , the space of Lipschitz functions in C(G)
for λ. But as mentioned earlier, Lip∞λ is easily seen to be a ∗-subalgebra of C(G) for
the pointwise product, and it contains the constant functions. Furthermore, a simple
calculation shows that Lip∞λ is carried into itself by right translation. Since Lip

∞
λ

contains ℓ, which separates e from any other point, it follows that Lip∞λ separates
the points of G. Thus Lip∞λ is dense in C(G) by the Stone-Weierstrass theorem.
Since ‖ ‖∞ dominates ‖ ‖1 for compact G, it follows that Lip1λ is dense in L1(G) as
needed. �

For simplicity of exposition we will deal only with the case in which we obtain
metrics on the entire state space of the C∗-algebra A. For this purpose we want the
subspace where L takes the value 0 to be one-dimensional. It is evident that L takes
value 0 on exactly those elements of A which are α-invariant, and in particular on the
scalar multiples of the identity element of A. Thus we need to assume that the action
α is ergodic, in the sense that the only α-invariant elements are the scalar multiples
of the identity.
The main theorem of this section is:

2.3 Theorem. Let α be an ergodic action of a compact group G on a unital C∗-
algebra A. Let ℓ be a length function on G, and define L and L as above. Let ρ be
the corresponding metric on the state space S of A. Then the ρ-topology on S agrees
with the weak-∗ topology.
Proof. Because L is dense by Proposition 2.2, it separates the points of S. Conse-
quently the conditions 1.3a–e are fulfilled (for the evident η). Thus L indeed defines
a metric, ρ, on S (perhaps taking value +∞).
Since G is compact, we can average α over G to obtain a conditional expectation

from A onto its fixed-point subalgebra. Because we assume that α is ergodic, this
conditional expectation can be viewed as a state on A. By abuse of notation we will
denote it again by η, since it extends the evident state η on the fixed-point algebra.
Thus

η(a) =

∫

G

αx(a) dx
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for a ∈ A, interpreted as a complex number when convenient.
We will follow the approach suggested by Theorem 1.9. Now hypothesis (i) of

that theorem is satisfied in the present setting, as discussed right after Condition 1.5
above. We now check hypothesis (ii), that is:

2.4 Lemma. ρ is bounded.

Proof. Let µ ∈ S. Then for any a ∈ L we have

|µ(a)− η(a)| = |
∫
µ(a)dx−µ(

∫
αx(a)dx)| = |

∫
µ(a−αx(a))dx| ≤ L(a)

∫

G

ℓ(x)dx .

It follows that ρ(µ, η) ≤
∫
ℓ(x)dx. Thus for any µ, ν ∈ S we have

ρ(µ, ν) ≤ 2
∫

G

ℓ(x)dx ,

which is finite since ℓ is bounded. �

We now begin the verification of hypothesis (iii) of Theorem 1.9. For this we
need the unobvious fact [HLS, Bo] that because G is compact and α is ergodic, each
irreducible representation of G occurs with at most finite multiplicity in A. (In [HLS]
it is also shown that η is a trace, but we do not need this fact here.) The following
lemma is undoubtedly well-known, but I do not know a reference for it.

2.5 Lemma. Let α be a (strongly continuous) action of a compact group G on a
Banach space A. Suppose that each irreducible representation of G occurs in A with
at most finite multiplicity. Then for any f ∈ L1(G) the operator αf defined by

αf (a) =

∫

G

f(x)αx(a)dx

is compact.

Proof. If f is a coordinate function for an irreducible representation π of G, then it is
not hard to see (ch. IX of [FD]) that αf will have range in the π-isotypic component
of A, which we are assuming is finite-dimensional. Thus αf is of finite rank in this
case. But by the Peter-Weyl theorem [FD] the linear span of the coordinate functions
for all irreducible representations is dense in L1(G). So any αf can be approximated
by finite rank operators. �

Proof of Theorem 2.3. We show now that B1, as in (iii) of Theorem 1.9, is totally
bounded. Let ε > 0 be given. Since ℓ(e) = 0 and ℓ is continuous at e, we can find
f ∈ L1(G) such that f ≥ 0,

∫
G f(x)dx = 1, and

∫
G f(x)ℓ(x)dx < ε/2. By the

previous lemma αf is compact. Since B1 is bounded, it follows that αf (B1) is totally
bounded. Thus it can be covered by a finite number of balls of radius ε/2. But for
any a ∈ B1 we have

‖a− αf (a)‖ = ‖a
∫
f(x)dx−

∫
f(x)αx(a)dx‖ ≤

∫
f(x)‖a− αx(a)‖dx

≤ L(a)
∫
f(x)ℓ(x)dx ≤ ε/2 .

Thus B1 itself can be covered by a finite number of balls of radius ε. �
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3. Metrics from actions of Lie groups

We suppose now that G is a connected Lie group (compact). We let g denote the Lie
algebra of G. Fix a norm ‖ ‖ on g. For any action α of G on a Banach space A we
let A1 denote the space of α-differentiable elements of A. Thus [BR] if a ∈ A1 then
for each X ∈ g there is a dXa ∈ A such that

lim
t→0
(αexp(tX)(a)− a)/t = dXa ,

and X 7→ dXa is a linear map from g into A, which we denote by da. Since g and A
both have norms, the operator norm, ‖da‖, of da is defined (and finite). A standard
smoothing argument [BR] shows that A1 is dense in A.
Suppose now that A is a C∗-algebra and that α is an action by automorphisms of

A. We can set L = A1 and L(a) = ‖da‖. It is easily verified that L is a ∗-subalgebra
of A and that L satisfies the Leibniz property 1.2, though we do not need these facts
here. Because G is connected, L(a) = 0 exactly if a is α-invariant.

3.1 Theorem. Let G be a compact connected Lie group, and fix a norm on g. Let
α be an ergodic action of G on a unital C∗-algebra A. Let L = A1 and L(a) = ‖da‖,
and let ρ denote the corresponding metric on the state space S. Then the ρ-topology
on S agrees with the weak-∗ topology.
Proof. Choose an inner-product on g. Its corresponding norm is equivalent to the
given norm, and so by the Comparison Lemma 1.10 it suffices to deal with the norm
from the inner-p roduct. We can left-translate this inner-product over G to obtain
a left-invariant Riemannian metric on G, and then a corresponding left-invariant
ordinary metric on G. We let ℓ(x) denote the corresponding distance from x to e.
Then ℓ is a continuous length function on G satisfying conditions 2.1 [G, Ro2].
Then the elements of L = A1 are Lipschitz for ℓ. This essentially just involves the

following standard argument [G, Ro2], which we include for the reader’s convenience.
Let a ∈ A1 and let c be a smooth path in G from e to a point x ∈ G. Then φ, defined
by φ(t) = αc(t)(a), is differentiable, and so we have

‖αx(a)− a‖ = ‖
∫
φ′(t)dt‖ ≤

∫
‖αc(t)(dc′(t)a)‖dt ≤ ‖da‖

∫
‖c′(t)‖dt .

But the last integral is just the length of c. Thus from the definition of the ordinary
metric on G, with its length function ℓ, we obtain

‖αx(a)− a‖ ≤ ‖da‖ℓ(x) .

(Actually, the above argument works for any norm on g.) Then if we let L0 and L0 be
defined just in terms of ℓ as in the previous section, we see that L ⊆ L0 and L0 ≤ L.
Thus we are exactly in position to apply the Comparison Lemma 1.10 to obtain the
desired conclusion. �

We remark that Weaver (theorem 24 of [Wv1]) in effect proved for this setting the
total boundedness of B1 for the particular case of non-commutative 2-tori, by different
methods.
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4. Metrics from Dirac operators

Suppose again that G is a compact connected Lie group, and that α is an ergodic
action of G on a unital C∗-algebra A. Let g denote the Lie algebra of G, and let g′

denote its vector-space dual. Fix any inner-product on g′. We will denote it by g, or
by 〈 , 〉g, to distinguish it from the Hilbert space inner-products which will arise.
With this data we can define a spectral triple [C1, C2, C3] for A. For simplicity of

exposition we will not include gradings and real structure, and we will oversimplify
our treatment of spinors, since the details are not essential for our purposes. But
with more care they can be included. (See, e.g. [V, VB].) We proceed as follows. Let
C = Clif(g′,−g) be the complex Clifford C∗-algebra over g′ for −g. Thus each ω ∈ g′
determines a skew-adjoint element of C such that

ω2 = −〈ω, ω〉g 1C .

Depending on whether g is even or odd dimensional, C will be a full matrix algebra,
or the direct sum of two such. We let S be the Hilbert space of a finite-dimensional
faithful representation of C (the “spinors”).
Let A∞ denote the space of smooth elements of A. (We could just as well use the

A1 of the previous section. We use A∞ here for variety. It is still a dense ∗-subalgebra
[BR].) Let W = A∞ ⊗ S, viewed as a free right A∞-module. From the Hilbert-space
inner-product on S we obtain an A∞-valued inner-product on W . Let η be as in the
previous section, viewed as a faithful state on A. Combined with the A-valued inner
product on W , it gives an ordinary inner-product on W . We will denote the Hilbert
space completion by L2(W, η).
Now A∞ and C have evident commuting left actions on W . These are easily

seen to give ∗-representations of A and C on L2(W, η), which we denote by λ and c
respectively.
We define the Dirac operator, D, on L2(W, η) in the usual way. Its domain will be

W , and it is defined as the composition of operators

W
d−→ g′ ⊗W i−→ C ⊗W c−→W .

Here d is the operator which takes b ∈ A∞ to db ∈ g′⊗A∞, defined by db(X) = dX(b),
which we then extend to W so that it takes b⊗ s to db⊗ s. The operator i just comes
from the canonical inclusion of g′ into C. The operator c just comes from applying
the representation of C on S, and so on W .
It is easily seen that D is a symmetric operator on L2(W, η). It will not be impor-

tant for us to verify that D is essentially self-adjoint, and that its closure has compact
resolvant.
Let {ej} denote an orthonormal basis for g′, and let {Ej} denote the dual basis

for g. Then in terms of these bases we have

D(b⊗ s) =
∑

αEj (b)⊗ c(ej)s .

When we use this to compute [D,λa] for a ∈ A∞, a straightforward calculation shows
that we obtain

[D,λa](b⊗ s) =
∑
(αEj (a)⊗ c(ej)))(b⊗ s) .
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That is,

(4.1) [D,λa] =
∑

αEj (a)⊗ ej ,

acting on L2(W, η) through the representations λ and c. It is clear from (4.1) that
[D,λa] is bounded for the operator norm from L2(W, η).
We can now set L = A∞, and

L(a) = ‖[D,λa]‖ .

It is clear that L(1A) = 0. To proceed further we compare L with the semi-norm of
the last section. If we view g′ as contained in the C∗-algebra C, we have e2j = −1 and
e∗j = −ej for each j. In particular, ‖ej‖ = 1. From (4.1) it is then easy to see that
there is a constant, K, such that

L(a) ≤ K‖da‖

for all a ∈ L, where ‖da‖ is as in the previous section, for the inner-product dual to
that on g′. However, what we need is an inequality in the reverse direction so that
we will be able to apply the Comparison Lemma 1.10.
For this purpose, consider any element t =

∑
bj ⊗ ej in A ⊗ C, with the ej as

above. Let fj = iej, so that f
∗
j = fj, f2j = 1, and fjfk = −fkfj for j 6= k. Let

pj = (1 + fj)/2 and qj = 1 − pj = (1 − fj)/2, both being self-adjoint projections.
Then pjfk = fkqj for j 6= k. Consequently pjfkpj = 0 = qjfkqj for j 6= k. Thus

(1⊗ pj)t(1⊗ pj) = bj ⊗ pjejpj = bj ⊗ ipj

and
(1⊗ qj)t(1⊗ qj) = −bj ⊗ iqj .

Since at least one of pj and qj must be non-zero, it becomes clear that ‖t‖ ≥ ‖bj‖ for
each j. When we apply this to (4.1) we see that

L(a) ≥ ‖αEj(a)‖

for each j. Consequently, for a suitable constant k we have

L(a) ≥ k‖da‖ ,

where again ‖da‖ is as in the previous section. On applying Proposition 1.11, Theorem
3.1, and the Comparison Lemma 1.10, we obtain the proof of:

4.2 Theorem. Let α be an ergodic action of the compact connected Lie group G
with Lie algebra g on the unital C∗-algebra A. Pick any inner-product on the dual, g′,
of g. Let D denote the corresponding Dirac operator, as defined above. Let L = A∞,
and let L be defined by

L(a) = ‖[D, a]‖
for a ∈ A. Let ρ be the corresponding metric on S. Then the ρ-topology on S agrees
with the weak-∗ topology.
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