
Doc.Math. J. DMV 1

Singularities, Double Points,

Controlled Topology and Chain Duality

Andrew Ranicki

Received: August 7, 1998

Revised: February 10, 1999

Communicated by Joachim Cuntz

Abstract. A manifold is a Poincar�e duality space without singular-

ities. McCrory obtained a homological criterion of a global nature for

deciding if a polyhedral Poincar�e duality space is a homology mani-

fold, i.e. if the singularities are homologically inessential. A home-

omorphism of manifolds is a degree 1 map without double points.

In this paper combinatorially controlled topology and chain complex

methods are used to provide a homological criterion of a global na-

ture for deciding if a degree 1 map of polyhedral homology manifolds

has acyclic point inverses, i.e. if the double points are homologically

inessential.
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Introduction

A chain duality on an additive category A is an involution on the derived cate-

gory of �nite chain complexes in A and chain homotopy classes of chain maps.

The precise de�nition will be recalled in x1. Chain duality was introduced in

Ranicki [29] in order to construct the algebraic surgery exact sequence of a

space X

� � � ! H

n

(X ;L

�

)

A

! L

n

(Z[�

1

(X)])! S

n

(X)! H

n�1

(X ;L

�

)! : : :

with L

�

(Z[�

1

(X)]) the surgery obstruction groups of Wall [43], and A the

assembly map. Here, L

�

is the 1-connective simply-connected algebraic surgery
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2 Andrew Ranicki

spectrum of Z, and the generalized homology groups are the (1-connective) L-

theory of the X-controlled Z-module category A (Z; X) of Ranicki and Weiss

[34]

H

�

(X ;L

�

) = L

�

(A (Z; X)) :

The algebraic surgery exact sequence was used in [29, Chapter 17] to give alge-

braic formulations of the obstructions to the two basic questions of Browder-

Novikov-Sullivan-Wall surgery theory :

A1. Is an n-dimensional Poincar�e duality space X homotopy equivalent to an

n-dimensional manifold?

A2. Is a homotopy equivalence f : M ! N of n-dimensional manifolds ho-

motopic to a homeomorphism?

The following are the basic questions of Chapman-Ferry-Quinn controlled

topology :

B1. How close is an n-dimensional controlled Poincar�e duality space X to

being an n-dimensional manifold?

B2. How close is a controlled homotopy equivalence f : M ! N of n-

dimensional manifolds to being a homeomorphism?

Here is a very crude approximation to controlled topology. Given a topological

space X de�ne an X-controlled space to be a space M equipped with a map

p

M

: M ! X . A map of X-controlled spaces f : M ! N is a map of the

underlying spaces such that there is de�ned a commutative diagram

M

f

//

p

M

  

A

A

A

A

A

A

A

A

N

p

N

~~}

}

}

}

}

}

}

X

The map f is an X-controlled homology equivalence if the restrictions

f j : p

�1

M

(x)! p

�1

N

(x) (x 2 X)

induce isomorphisms

(f j)

�

: H

�

(p

�1

M

(x))

�

=

H

�

(p

�1

N

(x)) :

An n-dimensional X-controlled Poincar�e space is an X-controlled spaceN with

Lefschetz duality isomorphisms

H

n��

(N;Nnp

�1

N

(x))

�

=

H

�

(p

�1

N

(x)) (x 2 X) :
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Singularities and Controlled Topology 3

There are two extreme cases :

� If X = fpt.g then :

{ an X-controlled homology equivalence f : M ! N of X-controlled

spaces is just a homology equivalence, with

f

�

: H

�

(M)

�

=

H

�

(N) ;

{ an n-dimensional X-controlled Poincar�e space N is just an n-

dimensional Poincar�e space, with

H

n��

(N)

�

=

H

�

(N) :

� If p

N

= 1 : N ! N = X then :

{ an N -controlled homology equivalence f : M ! N of N -controlled

spaces is just a map with acyclic point inverses, with

(f j)

�

: H

�

(f

�1

(x))

�

=

H

�

(fxg) (x 2 N) ;

{ an n-dimensional N -controlled Poincar�e space N is just an n-

dimensional homology manifold, with

H

n��

(N;Nnfxg)

�

=

H

�

(fxg) (x 2 N) :

In a more sophisticated exposition of controlled topology X would be a metric

space, and the condition p

M

= p

N

f in the de�nition of an X-controlled map

would be weakened to

d(p

M

(x); p

N

f(x)) < � (x 2M)

for some � > 0. In principle, Quinn [24] characterized ANR homology mani-

folds X as metrically X-controlled Poincar�e duality spaces. (See Ranicki and

Yamasaki [37] for a preliminary account of the metrically controlled L-theory

required for the details of the characterization).

The original development of controlled topology for metric spaces involved

quite complicated controlled algebra, starting with Connell and Hollingsworth

[5]. However, these questions will only be considered here in the combinatorial

context of compact polyhedra, homology manifolds and PL maps, for which

the controlled algebra is much easier :

C1. Is a polyhedral n-dimensional Poincar�e duality space X an n-dimensional

homology manifold?

C2. Does a degree 1 PL map f :M ! N of polyhedral n-dimensional homol-

ogy manifolds have acyclic point inverses?
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4 Andrew Ranicki

McCrory [17] obtained a homological obstruction for C1 (under slightly dif-

ferent hypotheses), which was interpreted in Ranicki [29, 8.5] in terms of the

chain duality on the X-controlledZ-module category A (Z; X). The obstruction

is the image in H

n

(X � Xn�

X

) of the Poincar�e dual in H

n

(X � X) of the

diagonal class �

�

[X ] 2 H

n

(X �X). The obstruction vanishes if and only if X

is an n-dimensional homology manifold, if and only if the Z-module Poincar�e

duality chain equivalence

[X ] \ � : �(X)

n��

! �(X

0

)

is an X-controlled chain equivalence.

The main results of this paper are the following homological obstructions for

C1 and C2.

Theorem A. An n-dimensional polyhedral Poincar�e complex X is an n-dim-

ensional homology manifold if and only if there is de�ned a Lefschetz duality

isomorphism

H

n

(X �X;�

X

)

�

=

H

n

(X �Xn�

X

) ;

with

�

X

= f(x; x) 2 X �X jx 2 Xg

the diagonal of X.

Theorem B. A simplicial map f :M ! N of n-dimensional polyhedral homology

manifolds has acyclic point inverses if and only if it has degree 1

f

�

[M ] = [N ] 2 H

n

(N)

and

H

n

((f � f)

�1

�

N

;�

M

) = 0 ;

with

(f � f)

�1

�

N

= f(x; y) 2M �M j f(x) = f(y) 2 Ng

the double point set of f .

Theorems A, B are proved in xx6,7 respectively, appearing as Theorem 6.13

and Corollary 7.5.

Here are the contents of the rest of the paper.

In x8 the obstructions of Theorems A, B are interpreted using bundles, specif-

ically the Spivak normal bundle of a Poincar�e complex and the tangent topo-

logical block bundle of a homology manifold.

In x9 the obstructions of Theorems A, B are related to the `total surgery

obstruction' s(X) 2 S

n

(X) of Ranicki [29] for the existence of a topological

manifold in the homotopy type of a Poincar�e space.
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Singularities and Controlled Topology 5

In x10 chain duality is used to develop a combinatorial version of the controlled

surgery theory.

In x11 some standard results on intersections and self-intersections of manifolds

are interpreted in terms of the chain duality.

In x12 (resp. x13) the controlled topology point of view on Whitehead torsion

(resp. �brations) is adapted to the combinatorially controlled chain homotopy

theory.

In x14 some standard results in high-dimensional knot theory are interpreted

in terms of the chain duality.

In this paper only oriented polyhedral Poincar�e complexes and homology man-

ifolds will be considered, and orientation-preserving PL maps between them.

A preliminary version of some of the material in this paper appeared in Ranicki

[32].

I am grateful to Michael Weiss for valuable comments which helped improve

the exposition of the paper.

1. Chain duality

Let A be an additive category, and let B (A ) be the additive category of �nite

chain complexes in A and chain maps. A contravariant additive functor T :

A ! B (A ) extends to T : B (A ) ! B (A ) by de�ning T (C) for a chain complex

C to be the total of a double complex, with

T (C)

n

=

X

p+q=n

T (C

�p

)

q

:

De�nition 1.1 (Ranicki [29, 1.1])

A chain duality (T; e) on A is a contravariant additive functor T : A ! B (A ),

together with a natural transformation e : T

2

! 1 such that for each object A

in A :

� e(T (A)) : T (e(A)) = 1 : T (A) ! T (A) ;

� e(A) : T

2

(A)! A is a chain equivalence.

Chain duality has the following properties :

� The dual of an object A is a chain complex T (A).

� The dual of a chain complex C is a chain complex T (C).
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6 Andrew Ranicki

Example 1.2 (i) An involution (T; e) on an additive category A is a chain duality

such that T (A) is a 0-dimensional chain complex (= object) for each object A

in A , with e(A) : T

2

(A)! A an isomorphism.

(ii) An involution R ! R; r 7! r on a ring R determines the involution (T; e)

on the additive category A (R) of f.g. free left R-modules with :

� T (A) = Hom

R

(A;R)

� R� T (A)! T (A) ; (r; f) 7! (x 7! f(x)r)

� e(A)

�1

: A! T

2

(A) ; x 7! (f 7! f(x)) .

2. Simplicially controlled algebra

Let X be a simplicial complex, and let R be a commutative ring.

De�nition 2.1 (Ranicki and Weiss [34])

(i) An (R;X)-module is a �nitely generated free R-module A with direct sum

decomposition

A =

X

�2X

A(�) ;

such that each A(�) is a f.g. free R-module.

(ii) An (R;X)-module morphism f : A ! B is an R-module morphism such

that for each � 2 X

f(A(�)) �

X

���

B(�) :

Write the components of f as f(�; �) : A(�)! B(�).

Let A (R) be the additive category of f.g. free R-modules, and let A (R;X)

be the additive category of (R;X)-modules. Regard the simplicial complex X

as the category with objects the simplexes � 2 X , and morphisms the face

inclusions � � � . An (R;X)-module A =

P

�2X

A(�) determines a contravariant

functor

[A] : X ! A (R) ; � 7! [A][�] =

X

���

A(�) :

The (R;X)-module category A (R;X) is thus a full subcategory of the category

of contravariant functors X ! A (R).

Proposition 2.2 (Ranicki and Weiss [34, 2.9])

The following conditions on a chain map f : C ! D of �nite chain complexes

in A (R;X) are equivalent :

(i) f is a chain equivalence,

(ii) the R-module chain maps

f(�; �) : C(�) ! D(�) (� 2 X)
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Singularities and Controlled Topology 7

are chain equivalences,

(iii) the R-module chain maps

[f ][�] : [C][�] ! [D][�] (� 2 X)

are chain equivalences.

3. Simplicially controlled topology

The barycentric subdivision X

0

of a simplicial complex X is the simplicial com-

plex with the same polyhedron

jX

0

j = jX j

and one n-simplex b�

0

b�

1

: : : b�

n

for each sequence of simplexes in X

�

0

< �

1

< � � � < �

n

:

The dual cell of a simplex � 2 X is the contractible subcomplex

D(�;X) = fb�

0

b�

1

: : : b�

n

j� � �

0

g � X

0

;

with boundary

@D(�;X) = fb�

0

b�

1

: : : b�

n

j� < �

0

g � D(�;X) :

De�nition 3.1 (i) An X-controlled simplicial complex (M;p

M

) is a �nite sim-

plicial complex M with a simplicial map p

M

:M ! X

0

, the control map.

(ii) A map f : (M;p

M

) ! (N; p

N

) of X-controlled simplicial complexes is a

simplicial map f :M ! N such that p

M

= p

N

f :M ! X

0

.

In practice, (M;p

M

) will be abbreviated to M .

De�nition 3.2 The (R;X)-module chain complex �(M ;R) of an X-controlled

simplicial complex M is the R-coe�cient simplicial chain complex of M with

�(M ;R)(�) = �(p

�1

M

D(�;X); p

�1

M

@D(�;X);R) :

and

[�(M ;R)

r

][�] =

X

���

�(M ;R)(�)

r

= �(p

�1

M

D(�;X);R)

r

(r 2 Z; � 2 X) :

A map of X-controlled simplicial complexes f : M ! N induces an (R;X)-

module chain map

f : �(M ;R)! �(N ;R) :

Documenta Mathematica 4 (1999) 1{59



8 Andrew Ranicki

De�nition 3.3 A map of X-controlled simplicial complexes f : M ! N is an

X-controlled R-homology equivalence if the restrictions

f j : p

�1

M

D(�;X)! p

�1

N

D(�;X) (� 2 X)

induce isomorphisms in R-homology

(f j)

�

: H

�

(p

�1

M

D(�;X);R)

�

=

H

�

(p

�1

N

D(�;X);R) (� 2 X) :

Proposition 3.4 A map of X-controlled simplicial complexes f : M ! N is an

X-controlled R-homology equivalence if and only if the induced (R;X)-module

chain map f : �(M ;R)! �(N ;R) is a chain equivalence.

Proof Immediate from 2.2. 2

Proposition 3.5 (i) If X = fpt.g an X-controlled map f : M ! N is an

X-controlled R-homology equivalence if and only if f induces R-homology iso-

morphisms

f

�

: H

�

(M ;R)

�

=

H

�

(N ;R) :

(ii) If X = N an X-controlled map f :M ! N is an X-controlled R-homology

equivalence if and only if f has R-acyclic point inverses

H

�

(f

�1

(x);R)

�

=

H

�

(fxg;R) (x 2 jX j) :

Proof (i) Immediate from 3.4, since a chain map of �nite free R-module chain

complexes is a chain equivalence if and only if it induces isomorphisms in ho-

mology.

(ii) Immediate from 3.4, since every point x 2 jX j is in the interior

D(�;X)n@D(�;X) of a unique dual cell D(�;X), and

H

�

(fxg;R)

�

=

H

�

(D(�;X);R) ; H

�

(f

�1

(x);R)

�

=

H

�

(f

�1

D(�;X);R) :

2

Here is another way in which (R;X)-module chain complexes arise :

De�nition 3.6 (Ranicki [29, 4.2])

Let �

��

(X ;R) be the (R;X)-module chain complex de�ned by

�

��

(X ;R) = Hom

R

(�(X ;R); R)

��

;

�

��

(X ;R)

r

(�) =

(

R if r = �j�j

0 otherwise.

(r 2 Z; � 2 X) :

As an R-module chain complex �

��

(X ;R) is just the R-coe�cient simplicial

cochain complex of X regraded to be a chain complex.
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Singularities and Controlled Topology 9

4. The (R;X)-module chain duality

Proposition 4.1 (Ranicki [29, 5.1])

The additive category A (R;X) of (R;X)-modules has a chain duality (T; e)

with the dual of an (R;X)-module A the (R;X)-module chain complex

T (A) = Hom

R

(Hom

(R;X)

(�

��

(X ;R); A); R)

with

� TA(�) = [A][�]

j�j��

;

� T (A)

r

(�) =

8

<

:

P

���

Hom

R

(A(�); R) if r = �j�j

0 if r 6= �j�j .

The chain duality is such that

T (C) '

R

Hom

(R;X)

(C;�(X

0

;R))

��

'

R

Hom

R

(C;R)

��

for any �nite (R;X)-module chain complex C.

De�nition 4.2 Given an X-controlled simplicial complex M let

�(M ;R)

��

= T (�(M ;R))

be the (R;X)-module chain complex dual to �(M ;R).

Note that there is de�ned an R-module chain equivalence

�(M ;R)

��

'

R

Hom

R

(�(M ;R); R)

��

;

with Hom

R

(�(M ;R); R)

��

the simplicial R-coe�cient cochain complex of M

regraded to be a chain complex, and note also that

�(M ;R)

��

(�)

r

= Hom

R

(�(p

�1

M

D(�;X);R)

�r+j�j

; R) (r 2 Z; � 2 X) :

A map of X-controlled simplicial complexes f : M ! N induces an (R;X)-

module chain map

f

�

: �(N ;R)

��

! �(M ;R)

��

:

The (R;X)-module chain complex �

��

(X ;R) of 3.6 and the (R;X)-module

chain complex �(X ;R)

��

of 4.2 (with p

M

= 1 :M !M = X

0

) are related by

the (R;X)-module chain equivalence

�

��

(X ;R) '

(R;X)

�(X ;R)

��

induced by the projections �(D(�;X);R)! R.
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10 Andrew Ranicki

5. Products

De�nition 5.1 The product of X-controlled simplicial complexes M;N is the

pullback X-controlled simplicial complex

M �

X

N = f(x; y) 2M �N j p

M

(x) = p

N

(y) 2 Xg

with control map

M �

X

N ! X ; (x; y) 7! p

M

(x) = p

N

(y) :

(Strictly speaking, this only de�nes a polyhedron M �

X

N).

De�nition 5.2 The product of (R;X)-modules A;B is the (R;X)-module

A


(R;X)

B =

X

�;�2X;�\�6=;

A(�) 


R

B(�) � A


R

B

with

(A


(R;X)

B)(�) =

X

�;�2X;�\�=�

A(�) 


R

B(�) (� 2 X) :

Recall the following properties of the products in 5.1,5.2 from Ranicki [29,

Chapter 7]. (The product A


(R;X)

B was denoted by A�

R

B in [29, 7.1]).

Proposition 5.3 (i) For any (R;X)-module chain complexes C;D

� C 


(R;X)

�(X

0

;R) '

(R;X)

C ,

� TC 


(R;X)

D '

R

Hom

(R;X)

(C;D) .

(ii) For any X-controlled simplicial complexes M;N

� �(M ;R)


(R;X)

�(N ;R) '

(R;X)

�(M �

X

N ;R) ,

� �(M ;R)

��




(R;X)

�(N ;R)

��

'

R

Hom

R

(�(M �N;M �NnM �

X

N ;R); R)

��

,

(iii) The Alexander-Whitney diagonal chain approximation of the barycentric

subdivision X

0

of X is an R-module chain map

� : �(X

0

;R) ! �(X

0

;R)


R

�(X

0

;R) ; (bx

0

: : : bx

n

) 7!

n

X

i=0

(bx

0

: : : bx

i

)
(bx

i

: : : bx

n

)

which is the composite of an (R;X)-module chain equivalence

�(X

0

;R) '

(R;X)

�(X

0

;R)


(R;X)

�(X

0

;R)

and the inclusion

�(X

0

;R)


(R;X)

�(X

0

;R) � �(X

0

;R)


R

�(X

0

;R) :
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Singularities and Controlled Topology 11

(iv) The homology classes [X ] 2 H

n

(X ;R) are in one-one correspondence with

the chain homotopy classes of (R;X)-module chain maps

[X ] \ � : �(X ;R)

n��

! �(X

0

;R) ;

with

H

0

(Hom

(R;X)

(�(X ;R)

n��

;�(X

0

;R))) = H

n

(�(X

0

;R)


(R;X)

�(X

0

;R))

= H

n

(X ;R) :

Remark 5.4 An X-controlled simplicial complex M is an example of a CW

complex with a block system � in the sense of Ranicki and Yamasaki [35]. The

product �(M)


(Z;X)

�(M) is chain equivalent to the chain complexD

�

(�(M))

of [35].

6. Homology manifolds and Poincar

�

e complexes

De�nition 6.1 An n-dimensional R-homology manifold is a �nite simplicial com-

plex M such that

H

�

(M;Mnb�;R) =

(

R if � = n

0 otherwise

(� 2M) :

De�nition 6.2 An n-dimensional R-homology Poincar�e complex is a �nite sim-

plicial complex M with a homology class [M ] 2 H

n

(M ;R) such that the cap

products are R-module isomorphisms

[M ] \ � : H

n��

(M ;R)

�

=

H

�

(M ;R) :

Similarly for an n-dimensional R-homology Poincar�e pair (M;@M), with [M ] 2

H

n

(M;@M ;R) and

[M ] \ � : H

n��

(M;@M ;R)

�

=

H

�

(M ;R) :

Proposition 6.3 A �nite simplicial complex M is an n-dimensional R-homology

manifold with fundamental class [M ] 2 H

n

(M ;R) if and only if each (D(�;M);

@D(�;M)) (� 2M) is an (n� j�j)-dimensional R-homology Poincar�e pair

H

n�j�j��

(D(�;M); @D(�;M);R)

�

=

H

�

(D(�;M);R)

with fundamental class [D(�;M); @D(�;M)] 2 H

n�j�j

(D(�;M); @D(�;M);R)

the image of [M ] under the composition of j�j codimension 1 boundary maps.

A Z-homology manifold will just be called a homology manifold, and similarly

for Poincar�e complexes and pairs.
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12 Andrew Ranicki

De�nition 6.4 An n-dimensional X-controlled R-homology Poincar�e complexM

is an X-controlled simplicial complex with a homology class [M ] 2 H

n

(M ;R)

such that the cap product

[M ] \ � : �(M ;R)

n��

! �(M ;R)

is an (R;X)-module chain equivalence.

Remark 6.5 An X-controlled simplicial complex M is an n-dimensional X-

controlled R-homology Poincar�e complex if and only if each

p

�1

M

(D(�;X); @D(�;X)) �M (� 2 X)

is an (n�j�j)-dimensional R-homology Poincar�e pair. In terms of the polyhedra

jM j, jX j this condition can be expressed as follows : for every x 2 jX j the

inverse image p

�1

M

(x) � jM j has a closed regular neighbourhood (U; @U) which

is an n-dimensional R-homology Poincar�e pair.

By analogy with 3.5 :

Proposition 6.6 (i) If X = fpt.g an n-dimensional X-controlled R-homology

Poincar�e complex M is the same as an n-dimensional R-homology Poincar�e

complex.

(ii) If X = M an n-dimensional X-controlled R-homology Poincar�e complex

M is the same as an n-dimensional R-homology manifold.

Theorem 6.7 (Poincar�e duality) An n-dimensional R-homology manifold M is

an n-dimensional X-controlled R-homology Poincar�e complex, with an (R;X)-

module chain equivalence

�(M ;R)

n��

' �(M ;R)

with respect to any control map p

M

:M ! X

0

.

Proof An (R;M)-module chain equivalence

[M ] \ � : �(M ;R)

n��

! �(M ;R)

can be regarded as an (R;X)-module chain equivalence, for any control map

p

M

:M ! X

0

. 2

Corollary 6.8 (Poincar�e-Lefschetz duality) An n-dimensional R-homology man-

ifold with boundary (M;@M) is an n-dimensional X-controlled R-homology

Poincar�e pair, with an (R;X)-module chain equivalence

�(M ;R)

n��

' �(M;@M ;R)

with respect to any control map p

M

:M ! X

0

.

Corollary 6.9 (Lefschetz duality) If M is an n-dimensional R-homology man-

ifold and L � M is any subcomplex, there is de�ned an (R;X)-module chain

equivalence

�(M;MnL;R)

n��

' �(L;R)
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with respect to any control map p

M

:M ! X

0

. Similarly for an (R;X)-module

chain equivalence

�(M;L;R)

n��

' �(MnL;R) :

Proof Let (U; @U) be a closed regular neighbourhood of L in M , an n-dimen-

sional R-homology manifold with boundary such that the inclusion L � U is a

homotopy equivalence. There are de�ned (R;X)-module chain equivalences

�(M;MnL;R)

n��

' �(M; cl:(MnU);R)

n��

(homotopy invariance)

' �(U; @U ;R)

n��

(excision)

' �(U ;R) (Poincar�e-Lefschetz duality)

' �(L;R) (homotopy invariance) :

2

De�nition 6.10 LetM be an X-controlled simplicial complex, with a homology

class [M ] 2 H

n

(M ;R). The X-controlled peripheral chain complex of M is the

algebraic mapping cone

C = C([M ] \ � : �(M ;R)

n��

! �(M

0

;R))

�+1

(with a dimension shift), a �nite chain complex in A (R;X).

Proposition 6.11 The following conditions on an X-controlled simplicial com-

plex M with a homology class [M ] 2 H

n

(M ;R) and peripheral chain complex

C are equivalent :

(i) M is an n-dimensional X-controlled R-homology Poincar�e complex,

(ii) C is chain contractible in A (R;X),

(iii) H

n�1

(C 


(R;X)

C) = 0,

(iv) each p

�1

(D(�;X); @D(�;X)) (� 2 X) is an (n � j�j)-dimensional R-

homology Poincar�e pair.

Proof (i) () (ii) The chain map [M ] \ � : �(M ;R)

n��

! �(M

0

;R) is a

chain equivalence in A (R;X) if and only if the algebraic mapping cone is chain

contractible in A (R;X).

(ii) () (iii) The (R;X)-module chain map

� = [M ] \ � : �(M ;R)

n��

! �(M

0

;R)

is chain homotopic to its chain dual, with a chain homotopy

� : � ' T� : �(M ;R)

n��

! �(M

0

;R) :

De�ne a chain equivalence in A (R;X)

�

X

: C

n�1��

! C = C(�)

�+1

by

�

X

=

�

� 1

1 0

�

:

C

n�1�r

=�(M ;R)

n�r

��(M

0

;R)

r+1

! C

r

=�(M

0

;R)

r+1

��(M ;R)

n�r

:
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14 Andrew Ranicki

(See x9 for a more detailed discussion of the quadratic Poincar�e structure on

C). The abelian group

H

n�1

(C 


(R;X)

C) = H

0

(Hom

(R;X)

(C

n�1��

; C))

= H

0

(Hom

(R;X)

(C;C))

consists of the chain homotopy classes of chain maps C ! C. This group is 0

if and only if C is chain contractible.

(ii) () (iv) By 2.2 C is chain contractible if and only if each component

R-module chain complexes C(�) (� 2 X) is chain contractible. Now

C(�) '

R

C([p

�1

D(�;X)] \ � :

�(p

�1

(D(�;X); @D(�;X));R)

n�j�j��

! �(p

�1

D(�;X);R))

�+1

;

so that C(�) '

R

0 if and only if p

�1

(D(�;X); @D(�;X)) (� 2 X) is an (n�j�j)-

dimensional R-homology Poincar�e pair. 2

Example 6.12 Let X = fpt:g. The following conditions on a simplicial complex

M with a homology class [M ] 2 H

n

(M ;R) and peripheral R-module chain

complex C are equivalent :

(i) M is an n-dimensional R-homology Poincar�e complex with fundamental

class [M ],

(ii) H

�

(C) = 0,

(iii) H

n�1

(C 


R

C) = 0.

In the following result X =M .

Theorem 6.13 The following conditions on an n-dimensional R-homology

Poincar�e complex X are equivalent :

(i) X is an n-dimensional R-homology manifold,

(ii) the peripheral chain complex

C = C([X ] \ � : �(X ;R)

n��

! �(X

0

;R))

�+1

is (R;X)-module chain contractible,

(iii) H

n�1

(C 


(R;X)

C) = 0,

(iv) the cohomology class V 2 H

n

(X � X ;R) Poincar�e dual to the homology

class �

�

[X ] 2 H

n

(X �X ;R) has image 0 2 H

n

(X �Xn�

X

;R),

(v) the fundamental class [X ] 2 H

n

(X ;R) is such that

[X ] 2 im(H

n

(X �X;X �Xn�

X

;R)! H

n

(X ;R)) ;

(vi) a particular R-module morphism

H

n

(X �Xn�

X

;R)! H

n

(X �X;�

X

;R)

(speci�ed in the proof) is an isomorphism, namely the Lefschetz duality iso-

morphism.
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Singularities and Controlled Topology 15

Proof (i) () (ii) () (iii) This is a special case of 6.11.

(i) () (iv) There is de�ned an exact sequence

H

n

(X �X;X �Xn�

X

;R)! H

n

(X �X ;R)! H

n

(X �Xn�

X

;R) :

Thus V has image 0 2 H

n

(X�Xn�

X

;R) if and only if there exists an element

U 2 H

n

(X �X;X �Xn�

X

;R)

with image V . Now U is a chain homotopy class of (R;X)-module chain maps

�(X

0

;R)! �(X ;R)

n��

, since

H

n

(X �X;X �Xn�

X

;R) = H

n

(�(X ;R)

��




(R;X)

�(X ;R)

��

)

= H

0

(Hom

(R;X)

(�(X

0

;R);�(X ;R)

n��

)) :

U is a chain homotopy inverse of

� = [X ] \ � : �(X ;R)

n��

! �(X

0

;R)

with

�U = 1 2 H

0

(Hom

(R;X)

(�(X

0

;R);�(X

0

;R))) = H

0

(X ;R) ;

� = T� 2 H

0

(Hom

(R;X)

(�(X ;R)

n��

;�(X

0

;R))) ;

(TU)� = (TU)(T�) = T (�U) = 1

2 H

0

(Hom

(R;X)

(�(X

0

;R)

n��

;�(X ;R)

n��

)) :

(iv)() (v)() (vi) Immediate from the commutative braid of exact sequences

H

n

(X�X;X�Xn�

X

;R)

%%

K

K

K

K

K

K

K

##

H

n

(X�X ;R)

%%

K

K

K

K

K

K

K

##

H

n

(X�X;�

X

;R)

H

n

(X ;R)

�

�

99

s

s

s

s

s

s

s

%%

K

K

K

K

K

K

K

H

n

(X�Xn�

X

;R)

99

s

s

s

s

s

s

s

%%

K

K

K

K

K

K

K

H

n+1

(X�X;�

X

;R)

0

99

s

s

s

s

s

s

s

0

;;

H

n�1

(C 


(R;X)

C)

99

s

s

s

s

s

s

s

;;

H

n+1

(X�X;X�Xn�

X

;R)

on noting that X �X is a 2n-dimensional R-homology Poincar�e complex with

isomorphisms

[X �X ] \ � : H

n

(X �X ;R)

�

=

H

n

(X �X ;R)

and that the diagonal map

� : X ! X �X ; x 7! (x; x)
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16 Andrew Ranicki

is split by the projection

p : X �X ! X ; (x; y) 7! x ;

so that

H

�

(X �X ;R) = H

�

(X ;R)�H

�

(X �X;�

X

;R) :

The classes

V 2 H

n

(X �X;X �Xn�

X

;R) ; �

X

2 H

n�1

(C 


(R;X)

C)

(with �

X

as in the proof of 6.11) are both images of the fundamental class

[X ] 2 H

n

(X ;R), so that they have the same image in H

n

(X �Xn�

X

;R). 2

Remark 6.14 The equivalence (i) () (iv) in 6.13 in the case R = Z is a slight

generalization of the corresponding results of McCrory [17, Theorem 1] and

Ranicki [29, 8.5] for n-circuits and n-dimensional pseudomanifolds respectively.

Remark 6.15 A Poincar�e complex X is a homology manifold precisely when the

dihomology spectral sequence of Zeeman [45] collapses. See McCrory [18] for a

geometric interpretation in terms of moving cocycles in X�X o� the diagonal.

There is also a version of 6.13 for Poincar�e pairs with manifold boundary. Here

is a special case :

Proposition 6.16 An n-dimensional R-homology Poincar�e pair (X; @X) with

R-homology manifold boundary is an n-dimensional R-homology manifold with

boundary if and only if the cohomology class V 2 H

n

(X � X;X � @X ;R)

Poincar�e-Lefschetz dual to the homology class �

�

[X ] 2 H

n

(X�X; @X�X ;R)

(with [X ] 2 H

n

(X; @X ;R)) is the image of a class

U 2 H

n

(X �X;X � @X [X �Xn�

X

;R) :

Remark 6.17 In general, a singularity does not arise as a non-manifold point of

a Poincar�e complex, so 6.13 cannot be applied directly to obtain a homological

invariant of the singularity. However, for an isolated singular point of a complex

hypersurface it is possible to apply 6.16 to a related Poincar�e pair with manifold

boundary. Given a polynomial function f : C

n+1

! C with an isolated critical

point z

0

2 V = f

�1

(0) Milnor [20] relates the singularity of f at z

0

to the

properties of the �bred knot

k : V \ S

�

= S

2n�1

� S

�

= S

2n+1

de�ned by intersecting V with

S

�

= fz 2 C

n+1

j kz � z

0

k = �g

for a su�ciently small �. (Only PL structures are considered here { the dif-

ferentiable structure on V \ S

�

could of course be exotic). In x14 below there

will be associated to any �bred knot k : S

2n�1

� S

2n+1

a (2n+2)-dimensional

homology Poincar�e pair (X; @X) with manifold boundary, which is a homology

manifold with boundary if k is unknotted; the obstruction to (X; @X) being

a homology manifold with boundary is related to homological invariants of k,

and hence to the nature of the singularity.
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Singularities and Controlled Topology 17

7. Degree 1 maps and homology equivalences

This section investigates the extent to which a degree 1 map of n-dimensional

homology manifolds has acyclic point inverses. It is shown that this is the case

if and only if the n-dimensional homology of the double point set relative to

the diagonal is zero.

De�nition 7.1 The double point set of a map f :M ! N is the pullback (5.1)

M �

N

M = (f � f)

�1

(�

N

)

= f(x; y) 2M �M j f(x) = f(y) 2 Ng :

If f is a simplicial map then M �

N

M is an N -controlled simplicial complex.

Given a map f :M ! N de�ne the maps

i :M !M �

N

M ; x 7! (x; x) ;

j :M �

N

M ! N ; (x; y) 7! f(x) = f(y) ;

k :M �

N

M !M ; (x; y) 7! x :

There is de�ned a commutative diagram

M �M

f�f

//

N �N

M �

N

M

j

//

OO

N

�

N

OO

M

�

M

CC

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

i

::

t

t

t

t

t

t

t

t

t

f

44

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

It follows from ki = 1 :M !M that

H

�

(M �

N

M) = H

�

(M)�H

�

(M �

N

M;�

M

) :

De�nition 7.2 Let f :M ! N be a map of X-controlled R-homology Poincar�e

complexes, with dim(M) = m, dim(N) = n.

(i) The Umkehr of f is the (R;X)-module chain map

f

!

: �(N ;R) ' �(N ;R)

n��

f

�

����! �(M ;R)

n��

' �(M ;R)

�+m�n

:

(ii) f has degree 1 if m = n and

f

�

[M ] = [N ] 2 H

n

(N ;R) :

Proposition 7.3 (i) If f : M ! N is a degree 1 map of n-dimensional X-

controlled R-homology Poincar�e complexes the Umkehr (R;X)-module chain

map f

!

: �(N ;R)! �(M ;R) is such that

ff

!

' 1 : �(N ;R)! �(N ;R)
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and there exists an (R;X)-module chain equivalence

�(M ;R) '

(R;X)

�(N ;R)��(f

!

) :

(ii) If f : M ! N is a degree 1 map of n-dimensional R-homology manifolds

then

H

n

(�(f

!

)


(R;N)

�(f

!

)) = H

n

(M �

N

M;�

M

;R) :

Proof (i) Immediate from f

�

[M ] = [N ] 2 H

n

(N ;R) and the naturality prop-

erties of the cap product.

(ii) Apply �(M)


(Z;N)

� to the (Z; N)-module chain equivalence given by (i)

�(M) '

(Z;N)

�(N)��(f

!

) ;

to obtain

�(M)


(Z;N)

�(M)

'

(Z;N)

(�(M)


(Z;N)

�(N))� (�(M)


(Z;N)

�(f

!

))

'

(Z;N)

(�(M)


(Z;N)

�(N))� (�(N)


(Z;N)

�(f

!

))� (�(f

!

)


(Z;N)

�(f

!

))

'

(Z;N)

�(M)��(f

!

)� (�(f

!

)


(Z;N)

�(f

!

)) :

Since H

n

(f

!

) = 0, it follows that

H

n

(M �

N

M) = H

n

(�(M)


(Z;N)

�(M))

= H

n

(M)�H

n

(f

!

)�H

n

(�(f

!

)


(Z;N)

�(f

!

))

= H

n

(M)�H

n

(�(f

!

)


(Z;N)

�(f

!

)) :

2

Theorem 7.4 The following conditions on a degree 1 map f : M ! N of n-

dimensional X-controlled R-homology Poincar�e complexes are equivalent :

(i) f is an X-controlled R-homology equivalence (3.3),

(ii) f : �(M ;R)! �(N ;R) is an (R;X)-module chain equivalence,

(iii) there exists an (R;X)-module chain homotopy

f

!

f ' 1 : �(M ;R)! �(M ;R) ;

(iv) �

�

[M ] = (f

!


 f

!

)�

�

[N ] 2 H

n

(M �

X

M ;R) ,

(v) (f

!


 f

!

)�

�

[N ] = 0 2 H

n

(M �

X

M;�

M

;R) ,

(vi) (f � f)

�

: H

n

(M �

X

M ;R)

�

=

H

n

(N �

X

N ;R) .
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Proof (i) () (ii) This is a special case of 3.4.

(ii) () (iii) Immediate from 7.3.

(iii) () (iv) Immediate from the identi�cations

1 = �

�

[M ] ; f

!

f = (f

!


 f

!

)�

�

[N ]

2 H

0

(Hom

(R;X)

(�(M ;R);�(M ;R))) = H

n

(M �

X

M ;R) :

(iv) () (v) Immediate from the identity

(f

!


 f

!

)�

�

[N ] = ([M ]; (f

!


 f

!

)�

�

[N ]��

�

[M ])

2 H

n

(M �

X

M ;R) = H

n

(M ;R)�H

n

(M �

X

M;�

M

;R) :

(ii) =) (vi) If f : �(M ;R)! �(N ;R) is an (R;X)-module chain equivalence

then so is

f 
 f : �(M ;R)


(R;X)

�(M ;R)! �(N ;R)


(R;X)

�(N ;R) :

(vi) =) (iv) It follows from ff

!

' 1 and

(f 
 f)

�

�

�

[M ] = �

�

[N ] 2 H

n

(N �

X

N ;R)

that

�

�

[M ]� (f

!


 f

!

)�

�

[N ]

2 ker((f � f)

�

: H

n

(M �

X

M ;R)! H

n

(N �

X

N ;R)) = f0g :

2

Corollary 7.5 The following conditions on a degree 1 map f : M ! N of n-

dimensional homology manifolds are equivalent :

(i) f has acyclic point inverses,

(ii) H

n

(M �

N

M;�

M

) = 0,

(iii) H

n

(�(f

!

)


(Z;N)

�(f

!

)) = 0.

Proof (i) () (ii) Apply 7.3 with R = Z, X = N , so that

M �

X

M = M �

N

M = (f � f)

�1

�

N

; N �

X

N = N ;

H

n

(M �

X

M) = H

n

(M)�H

n

(M �

N

M;�

M

) :

Since f

�

: H

n

(M)

�

=

H

n

(N), condition 7.4 (vi)

(f � f)

�

: H

n

(M �

N

M)

�

=

H

n

(N �

N

N)

for f to be a (Z; N)-homology equivalence is equivalent to

H

n

(M �

N

M;�

M

) = 0 :

As in 3.5 (ii) a map f is a (Z; N)-homology equivalence if and only if it has

acyclic point inverses.

(ii) () (iii) By 7.3 (ii) H

n

(�(f

!

)


(Z;N)

�(f

!

)) = H

n

(M �

N

M;�

M

). 2
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Remark 7.6 (i) A map f :M ! N is injective if and only if

M �

N

M = �

M

:

The condition of 7.5 (ii) is automatically satis�ed for injective f .

(ii) A degree 1 map f : M ! N of n-dimensional R-homology manifolds

is surjective by the following argument, which does not require M;N to be

polyhedra. If x 2 Nnf(M) then

H

n

(M;Mnf

�1

(x);R) = 0 ; H

n

(N;Nnfxg;R) = R ;

leading to a contradiction in the commutative diagram

H

n

(M ;R) = R

�

=

����! H

n

(N ;R) = R

?

?

y

�

=

?

?

y

H

n

(M;Mnf

�1

(x);R) = 0

f

�

����! H

n

(N;Nnfxg;R) = R

(assuming M;N are connected).

Corollary 7.7 (i) A map f : M ! N of n-dimensional R-homology Poincar�e

complexes is an R-homology equivalence if and only if it is degree 1 and

�

�

[M ] = (f

!


 f

!

)�

�

[N ] 2 H

n

(M �M ;R) :

(ii) A map f : M ! N of n-dimensional R-homology manifolds has R-acyclic

point inverses if and only if it is degree 1 and

�

�

[M ] = (f

!


 f

!

)�

�

[N ] 2 H

n

(M �

N

M ;R) :

Proof (i) Apply 7.4 with X = fpt.g.

(ii) Apply 7.4 with X = N . 2

De�nition 7.8 Given a map f : M ! N of R-homology manifolds with

dim(M) = m, dim(N) = n let the Umkehr of the map

j :M �

N

M ! N ; (x; y) 7! f(x) = f(y)

be the (R;N)-module chain map

j

!

: �(N ;R)! �(M �

N

M ;R)

�+2m�2n

given by the composite

j

!

: �(N ;R) '

(R;N)

�(N �N;N �Nn�

N

;R)

2n��

(f�f)

�

�! �(M �M;M �MnM �

N

M ;R)

2n��

'

(R;N)

�(M �

N

M ;R)

�+2m�2n

:
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Proposition 7.9 The following conditions on a degree 1 map f : M ! N of

n-dimensional R-homology manifolds are equivalent :

(i) f has R-acyclic point inverses,

(ii) there exists an (R;N)-module chain homotopy

i

�

f

!

' j

!

: �(N ;R)! �(M �

N

M ;R) ;

(iii) there exists an (R;N)-module chain map g : �(N) ! �(M) with an

(R;N)-module chain homotopy

i

�

g ' j

!

: �(N ;R)! �(M �

N

M ;R) :

Proof (i) () (ii) Identify

i

�

f

!

= �

�

[M ] ; j

!

= (f

!


 f

!

)�

�

[N ]

2 H

0

(Hom

(R;N)

(�(N ;R);�(M �

N

M ;R))) = H

n

(M �

N

M ;R)

and apply the equivalence (i) () (iv) of 7.4, with X = N .

(ii) =) (iii) Take g = f

!

.

(iii) =) (i) It follows from the exact sequence

H

0

(Hom

(R;N)

(�(N ;R);�(M ;R)))

i

�

�! H

0

(Hom

(R;N)

(�(N ;R);�(M �

N

M ;R)))

�! H

0

(Hom

(R;N)

(�(N ;R);�(M �

N

M;�

M

;R)))

that such a g exists if and only if the (R;N)-module chain homotopy class

j

!

2 H

0

(Hom

(R;N)

(�(N ;R);�(M �

N

M ;R)))

has 0 image in

H

0

(Hom

(R;N)

(�(N ;R);�(M �

N

M;�

M

;R))) = H

n

(M �

N

M;�

M

;R) :

But this image is precisely the element (f

!


f

!

)�

�

[N ] 2 H

n

(M �

N

M;�

M

;R)

of 7.4 (v) whose vanishing is (necessary and) su�cient for f to have R-acyclic

point inverses. 2

8. Bundles

The results of xx6,7 will now be interpreted from the bundle point of view, aftre

a brief review of the various bundle theories involved.

Oriented spherical �brations � over a space X

(D

k

; S

k�1

)! (E(�); S(�)) ! X
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are classi�ed up to oriented �bre homotopy equivalence by the homotopy classes

of maps � : X ! BG(k) to a classifying space BG(k). Every such �bration

has a Thom space

T (�) = E(�)=S(�)

and a Thom class

U

�

2

e

H

k

(T (�)) :

See Rourke and Sanderson [38] for the theory of (oriented) PL k-block bundles,

with a classifying space BS

g

PL(k). A codimension k embedding M

n

� N

n+k

of PL manifolds has a normal PL k-block bundle �

M�N

:M ! BPL(k).

See Martin and Maunder [15] for the theory of homology cobordism bundles,

with a classifying space BSH(k) and forgetful maps

BS

g

PL(k)! BSH(k) ; BSH(k)! BSG(k) :

A codimension k embedding M

n

� N

n+k

of homology manifolds (i.e. a PL

map which is an injection) has a normal homology cobordism S

k�1

-bundle

�

M�N

:M ! BSH(k).

See Rourke and Sanderson [39] for the theory of (oriented) topological k-block

bundles, with a classifying space BS

]

TOP (k) and forgetful maps

BS

g

PL(k)! BS

]

TOP (k) ; BS

]

TOP (k)! BSG(k) :

Galewski and Stern [7] proved that every homology cobordism S

k�1

-bundle

has a canonical lift to a topological k-block bundle, so that there is de�ned a

commutative diagram of classifying spaces and forgetful maps

BS

g

PL(k)

//

��

BS

]

TOP (k)

��

BSH(k)

//

88

p

p

p

p

p

p

p

p

p

p

p

BSG(k) :

The diagonal embedding of an n-dimensional homology manifold M

� :M !M �M ; x 7! (x; x)

has a normal homology cobordism S

n�1

-bundle, the tangent homology cobor-

dism S

n�1

-bundle ([15, 5.3])

�

M

= �

�

:M ! BSH(n) ;

and hence a tangent topological n-block bundle �

M

: M ! BS

]

TOP (n). The

Euler class of �

M

may be identi�ed with the Euler characteristic of M , as

follows.
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The Euler characteristic of a �nite simplicial complex X is

�(X) =

1

X

r=0

(�)

r

dim

R

H

r

(X ;R) 2 Z :

Proposition 8.1 (i) For a connected n-dimensional Poincar�e complex X

�(X) = �

�

(V ) 2 H

n

(X) = Z

with V 2 H

n

(X �X) the Poincar�e dual of �

�

[X ] 2 H

n

(X �X).

(ii) The obstruction to a degree 1 map f :M ! N of connected n-dimensional

Poincar�e complexes being a homology equivalence (7.7 (i))

�

�

[M ]� (f

!


 f

!

)�

�

[N ] 2 H

n

(M �M)

has image �(M)� �(N) 2 Z under the composite

H

n

(M �M)

�

=

H

n

(M �M)

�

�

�! H

n

(M) = Z :

Proof (i) As for smooth manifolds (Milnor and Stashe� [21, 11.13]).

(ii) Immediate from (i). 2

It is well known that �(M) = �(�

M

) for a smooth manifold M ([21, 11.13]).

More generally :

Proposition 8.2 The Euler characteristic of a connected n-dimensional homology

manifold M is the Euler class of the tangent n-block bundle �

M

�(M) = �(�

M

) 2 H

n

(M) = Z :

Proof The homology tangent bundle ofM (Spanier [40, p.294]) is the homology

�bration

(M;Mnf�g)! (M �M;M �Mn�

M

)!M

with

M !M �M ; x 7! (�; x) ;

M �M !M ; (x; y) 7! x :

The tangent topological n-block bundle of M

(D

n

; S

n�1

)! (E(�

M

); S(�

M

))!M

is related to the homology tangent bundle by a homotopy pushout diagram

S(�

M

)

//

��

M �Mn�

M

��

E(�

M

) 'M

�

//

M �M :
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The Thom space, Thom class and Euler class of �

M

are such that

T (�

M

) = E(�

M

)=S(�

M

) = (M �M)=(M �Mn�

M

) ;

U

M

2

e

H

n

(T (�

M

)) = H

n

(M �M;M �Mn�

M

) ;

e(�

M

) = z

�

(U

M

) 2 H

n

(M) ;

with z :M ! T (�

M

) the zero section. Furthermore, there is de�ned a commu-

tative diagram

H

n

(M �M;M �Mn�

M

)

�

=

��

i

�

//

H

n

(M �M)

�

�

��

e

H

n

(T (�

M

))

z

�

//

H

n

(M)

with i : M �M ! (M �M;M �Mn�

M

) the natural map. As before, let

V 2 H

n

(M �M) be the Poincar�e dual of �

�

[M ] 2 H

n

(M �M). The Thom

class U

M

2

e

H

n

(T (�

M

)) has image

i

�

(U

M

) = V 2 H

n

(M �M) ;

and

e(�

M

) = z

�

(U

M

) = �

�

(i

�

(U

M

)) = �

�

(V ) = �(M) 2 H

n

(M) = Z :

2

Remark 8.3 Theorem 6.13 can be regarded as a converse of 8.2 :

A connected n-dimensional Poincar�e complex X is an n-dimensional homology

manifold if and only if the Poincar�e dual V 2 H

n

(X�X) of �

�

[X ] 2 H

n

(X�

X) is the image of a Thom class U 2

e

H

n

(T (�

X

)), in which case

�(X) = e(�

X

) 2 H

n

(X) = Z :

McCrory [17] called such U a geometric Thom class for X .

Proposition 8.4 A degree 1 map f : M ! N of n-dimensional R-homology

manifolds has acyclic point inverses if and only if the Thom classes

U

M

2 H

n

(M �M;M �Mn�

M

;R) ; U

N

2 H

n

(N �N;N �Nn�

N

;R)

have the same image in H

n

(M �M;M �MnM �

N

M ;R)

c

�

(U

M

) = (f � f)

�

(U

N

) 2 H

n

(M �M;M �MnM �

N

M ;R) ;

with c : (M �M;M �MnM �

N

M) ! (M �M;M �Mn�

M

) the inclusion

of pairs.
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Proof This is just the cohomology version of 7.7 (ii), after Lefschetz duality

(6.8) identi�cations

U

M

= [M ] 2 H

n

(M �M;M �Mn�

M

;R) = H

n

(M ;R) ;

U

N

= [N ] 2 H

n

(N �N;N �Nn�

N

;R) = H

n

(N ;R) ;

H

n

(M �M;M �MnM �

N

M ;R) = H

n

(M �

N

M ;R) ;

noting that M �M and N �N are 2n-dimensional R-homology manifolds.

2

Remark 8.5 Suppose that f : M ! N is a degree 1 map of n-dimensional

homology manifolds which is covered by a stable map

b : �

M

� �

1

! �

N

� �

1

of the tangent block bundles. (For example, ifM , N have trivial tangent block

bundles then any map f :M ! N is covered by an unstable map b : �

M

! �

N

).

In general, the diagram

e

H

n

(T (�

N

))

�

=

T (b)

�

//

e

H

n

(T (�

M

))

�

=

H

n

(N �N;N �Nn�

N

)

(f � f)

�

!!

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

H

n

(M �M;M �Mn�

M

)

c

�

||y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

H

n

(M �M;M �MnM �

N

M)

is not commutative, with the obstruction in 8.4 non-zero :

c

�

T (b)

�

(U

N

)� (f � f)

�

(U

N

) = c

�

(U

M

)� (f � f)

�

(U

N

)

6= 0 2 H

n

(M �M;M �MnM �

N

M) :

In x9 below this di�erence will be expressed in terms of an N -controlled re�ne-

ment of the (symmetrization of the) quadratic structure used in Ranicki [27]

to obtain a chain level expression for the Wall surgery obstruction.

Proposition 8.6 Let f :M ! N be a degree 1 map of n-dimensional R-homology

manifolds. If there exists an N-controlled map

a : (M �M;M �Mn�

M

)! (N �N;N �Nn�

N

)
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such that the diagram

(M �M;M �MnM �

N

M)

c

��~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

f � f

��

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

(M �M;M �Mn�

M

)

a

//

(N �N;N �Nn�

N

)

is N-controlled homotopy commutative, then

(f � f)

�

(U

N

) = c

�

(U

M

) 2 H

n

(M �M;M �MnM �

N

M ;R)

and f has acyclic point inverses. Moreover,

a

�

(U

N

) = U

M

2 H

n

(M �M;M �Mn�

M

;R) :

Proof De�ne the (R;N)-module chain map

g : �(N ;R) '

(R;N)

�(N �N;N �Nn�

N

;R)

2n��

a

�

�! �(M �M;M �Mn�

M

;R)

2n��

'

(R;N)

�(M ;R)

such that

g[N ] = a

�

(U

N

) 2 H

n

(M) = H

n

(M �M;M �Mn�

M

) :

The N -controlled homotopy of pairs

ac ' f � f : (M �M;M �MnM �

N

M)! (N �N;N �Nn�

N

)

induces an (R;N)-module chain homotopy

ac ' f � f : �(M �M;M �MnM �

N

M ;R) '

(R;N)

�(M �

N

M ;R)

2n��

! �(N �N;N �Nn�

N

;R) '

(R;N)

�(N ;R)

2n��

:

The chain dual is an (R;N)-module chain homotopy

i

�

g ' j

!

: �(N ;R)! �(M �

N

M ;R) ;

so that

i

�

g[N ] = j

!

[N ] = [M �

N

M ] 2 H

n

(M �

N

M ;R) ;

with dual the identity

c

�

a

�

(U

N

) = (f � f)

�

(U

N

) 2 H

n

(M �M;M �MnM �

N

M ;R) ;
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so that f has R-acyclic point inverses by 8.4, and

g ' f

�1

' f

!

: �(N ;R)! �(M ;R) ;

g[N ] = [M ] 2 H

n

(M ;R) ;

a

�

(U

N

) = U

M

2 H

n

(M �M;M �Mn�

M

;R) :

2

Remark 8.7 A degree 1 map f :M ! N of n-dimensional homology manifolds

which is covered by a map of the tangent n-block bundles b : �

M

! �

N

need

not be covered by a map of homology tangent bundles a as in 8.6.

9. The total surgery obstruction

The total surgery obstruction s(X) 2 S

n

(X) of Ranicki [29] is de�ned for

a �nite simplicial complex X satisfying n-dimensional Poincar�e duality with

respect to all coe�cients { such Poincar�e complexes are considered further

below. For n � 5 the total surgery obstruction is s(X) = 0 if and only if

the polyhedron jX j is homotopy equivalent to a topological manifold (which

need not be triangulable). On the other hand, an n-dimensional homology

Poincar�e complex X is a homology manifold if and only if an obstruction in

H

n

(X �Xn�

X

) (6.13) is 0. The obstruction of 6.13 will now be related to the

total surgery obstruction and its Z-homology analogue.

So far, only the homology H

�

(X ;R) and cohomology H

�

(X ;R) of a simplicial

complex X with coe�cients in a commutative ring R have been considered. For

non-simply-connected X the homology H

�

(X ; �) and cohomology H

�

(X ; �)

and with coe�cients in an R[�

1

(X)]-module � will also be considered.

Given a commutative ring R and a group � let the group ring R[�] have the

involution

R[�]! R[�] ; a =

X

g2�

n

g

g 7! a =

X

g2�

n

g

g

�1

(n

g

2 R) :

Use the involution to convert every left R[�]-moduleM into a rightR[�]-module

M

t

, with the same additive group and

M

t

�R[�]!M

t

; (x; a) 7! a:x :

De�ne an involution (1.2) on the additive category A (R[�]) of f.g. free (left)

R[�]-modules

� : A (R[�]) ! A (R[�]) ; A 7! A

�

= Hom

R[�]

(A;R[�])

with

R[�]�A

�

! A

�

; (a; f) 7! (x 7! f(x):a) :
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De�nition 9.1 Given a connected simplicial complex X with universal cover

e

X

and an R[�

1

(X)]-module � de�ne the �-coe�cient homology and cohomology

R-modules of X to be

H

�

(X ; �) = H

�

(�

t




R[�

1

(X)]

�(

e

X ;R)) ;

H

�

(X ; �) = H

�

(Hom

R[�

1

(X)]

(�(

e

X ;R);�)) :

The �-coe�cient homology and cohomology R-modules are related by a cap

product pairing

H

n

(X ;R)


R

H

m

(X ; �)! H

n�m

(X ; �);x
 y 7! x \ y :

For � = R[�

1

(X)] the �-coe�cient homology and cohomology groups are

R[�

1

(X)]-modules

H

�

(X ;R[�

1

(X)]) = H

�

(�(

e

X ;R)) = H

�

(

e

X;R) ;

H

�

(X ;R[�

1

(X)]) = H

��

(Hom

R[�

1

(X)]

(�(

e

X ;R); R[�

1

(X)]))

De�nition 9.2 An n-dimensional universal R-homology Poincar�e complex is a

�nite connected simplicial complex X with a homology class [X ] 2 H

n

(X ;R)

such that the cap products are R[�

1

(X)]-module isomorphisms

[X ] \ � : H

n��

(X ;R[�

1

(X)])

�

=

H

�

(X ;R[�

1

(X)]) :

A universal Z-homology Poincar�e complex will just be called a universal ho-

mology Poincar�e complex.

Remark 9.3 (i) A universal homology Poincar�e complex is just a Poincar�e com-

plex in the sense of Wall [42].

(ii) If X is a universal R-homology Poincar�e complex with universal cover

e

X

then the R[�

1

(X)]-module chain map

[X ] \ � : �(

e

X;R)

n��

= Hom

R[�

1

(X)]

(�(

e

X ;R); R[�

1

(X)])

��n

! �(

e

X ;R)

is a chain equivalence, and there are de�ned Poincar�e duality isomorphisms

[X ] \ � : H

n��

(X ; �)

�

=

H

�

(X ; �)

for any R[�

1

(X)]-module �.

(iii) A connected �nite simplicial complex X with �nite fundamental group

�

1

(X) is an n-dimensional universal R-homology Poincar�e complex if and only

if the universal cover

e

X is an n-dimensional R-homology Poincar�e complex in

the sense of 6.2.

Proposition 9.4 A connected n-dimensional R-homology manifold X is an n-

dimensional universal R-homology Poincar�e complex.
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Proof The assembly functor of Ranicki and Weiss [34]

A : A (R;X) ! A (R[�

1

(X)]) ; A =

X

�2X

A(�) 7! A(

e

X) =

X

e�2

e

X

A(pe�)

is de�ned for any connected simplicial complex X , with p :

e

X ! X the uni-

versal covering projection. The assembly is a natural transformation of addi-

tive categories with chain duality ([29, 9.11]), so that the assembly of the n-

dimensional symmetric Poincar�e complex (�(X

0

;R);�[X ]) in A (R;X) is the

n-dimensional symmetric Poincar�e complex (�(

e

X

0

;R);�[X ]) in A (R[�

1

(X)]).

(This is just a formalization of the standard dual cell proof of Poincar�e duality,

e.g. Wall [43, Thm. 2.1]). 2

In particular, a homology manifold is a universal homology Poincar�e complex.

De�nition 9.5 (Quinn [22])

(i) An n-dimensional normal complex (X; �

X

; �

X

) is a �nite simplicial complex

X together with a normal structure

(�

X

: X ! BSG(k) ; �

X

: S

n+k

! T (�

X

)) (k large) :

The homology class

[X ] = U

�

X

\ h(�

X

) = [X ] 2 H

n

(X) (h = Hurewicz)

is the fundamental class of X .

(ii) A normal structure on an n-dimensional homology Poincar�e complex X is

a normal structure (�

X

; �

X

) realizing the fundamental class [X ] 2 H

n

(X).

Remark 9.6 (i) A �nite simplicial complex X is an n-dimensional universal

homology Poincar�e complex if and only if a regular neighbourhood (U; @U) of

an embedding X � S

n+k

de�nes a �bration

(D

k

; S

k�1

)! (U; @U)! X

(Spivak [41], Wall [42], Ranicki [27]). A n-dimensional universal homology

Poincar�e complex X has a canonical class of Spivak normal structures (�

X

:

X ! BSG(k); �

X

: S

n+k

! T (�

X

)), namely those represented by such regular

neighbourhoods (U; @U) with

�

X

: S

n+k

! S

n+k

=cl:(S

n+k

nU) = U=@U = T (�

X

) :

(ii) Browder [1] used Poincar�e surgery on �

1

(X) to prove that every n-dimen-

sional homology Poincar�e complex X admits normal structures (�

X

: X !

BSG(k); �

X

: S

n+k

! T (�

X

)), and that for any such structure �

X

� � : X !

BSG(k+1) is the normal �bration of a Poincar�e embedding X � S

n+k+1

with

complement T (�

X

) [

�

X

D

n+k+1

.
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De�nition 9.7 (Ranicki [29, 17.1])

The peripheral quadratic complex of an n-dimensional normal complex X is the

(n�1)-dimensional quadratic Poincar�e complex (C; 

X

) in A (Z; X) with C the

X-controlled peripheral chain complex (6.10)

C = C([X ] \ � : �(X)

n��

! �(X

0

))

�+1

and

 

X

2 Q

X

n�1

(C) = H

n�1

(W 


Z[�

2

]

(C 


(Z;X)

C))

the X-controlled quadratic class obtained by the boundary construction of [29,

2.6].

Note that the normal complex X is a universal homology Poincar�e complex if

and only if the peripheral chain complex C is A (Z[�

1

(X)])-contractible.

Remark 9.8 The X-controlled quadratic class  

X

2 Q

X

n�1

(C) in 9.7 has sym-

metrization

(1 + T ) 

X

= �

X

2 H

n�1

(C 


(Z;X)

C)

the chain homotopy class of chain equivalences �

X

: C

n�1��

! C (6.11). In

fact,  

X

is an X-controlled version of the quadratic class

 =  

F

(U

�

X

) 2 Q

n�1

(C) = H

n�1

(W 


Z[�

2

]

(C 


Z

C))

obtained by evaluating the spectral quadratic construction of Ranicki [28, 7.3]

 

F

:

e

H

k

(T (�

X

))! Q

n�1

(C)

on the Thom class U

�

X

2

e

H

k

(T (�

X

)). Here, F : T (�

X

)

�

! �

1

X

+

is a stable

map inducing the chain map [X ] \ � : �(X)

n��

! �(X

0

), with T (�

X

)

�

the

spectrum S-dual of the Thom space T (�

X

). If X is homology Poincar�e then

T (�

X

)

�

= �

1

X

+

. If X is R-homology Poincar�e  = 0 2 Q

n�1

(C) = 0, but in

general  

X

6= 0.

Refer to Ranicki [29, p.148] for the algebraic surgery exact sequence of a sim-

plicial complex X

� � � ! H

n

(X ;L

�

)

A

! L

n

(Z[�

1

(X)])! S

n

(X)! H

n�1

(X ;L

�

)! : : : ;

with A the assembly map. The generalized homology group

H

n

(X ;L

�

) = L

n

(A (Z; X))

is the cobordism group of 1-connective n-dimensional quadratic Poincar�e com-

plexes (C; 

X

) in A (Z; X), with C an n-dimensional chain complex in A (Z; X)

and

 

X

2 Q

X

n

(C) = H

n

(W 


Z[�

2

]

(C 


(Z;X)

C))
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such that

(1 + T ) 

X

2 H

n

(C 


(Z;X)

C) = H

0

(Hom

(Z;X)

(C

n��

; C))

is a chain homotopy class of (Z; X)-module chain equivalences C

n��

! C.

Here, W is a free Z[�

2

]-module resolution of Z

W : � � � ! Z[�

2

]

1�T

�! Z[�

2

]

1+T

�! Z[�

2

]

1�T

�! Z[�

2

]

and the generator T 2 �

2

acts on C 


(Z;X)

C by signed transposition. The

quadratic L-group

L

n

(Z[�

1

(X)]) = L

n

(A (Z[�

1

(X)]))

is the cobordism group of n-dimensional quadratic Poincar�e complexes (C; )

over the group ring Z[�

1

(X)] with

 2 Q

n

(C) = H

n

(W 


Z[�

2

]

(C 


Z[�

1

(X)]

C)) :

The structure group S

n

(X) is the cobordism group of 1=2-connective

A (Z[�

1

(X)])-contractible (n� 1)-dimensional quadratic Poincar�e complexes in

A (Z; X).

De�nition 9.9 (Ranicki [29, 17.4])

The total surgery obstruction of an n-dimensional universal homology Poincar�e

complex X is the cobordism class of the peripheral quadratic Poincar�e complex

in A (Z; X)

s(X) = (C; 

X

) 2 S

n

(X) :

Proposition 9.10 Let X be an n-dimensional universal Poincar�e complex, with

peripheral complex (C; 

X

).

(i) The following conditions are equivalent :

(a) X is an n-dimensional homology manifold,

(b) C is A (Z; X)-contractible,

(c) (1 + T ) 

X

= 0 2 H

n�1

(C 


(Z;X)

C).

(ii) The total surgery obstruction is such that s(X) = 0 if (and for n � 5 only

if) the polyhedron jX j is homotopy equivalent to an n-dimensional topological

manifold. The image of the total surgery obstruction

t(X) = [s(X)] 2 H

n�1

(X ;L

�

)

is such that t(X) = 0 if and only if the Spivak normal �bration �

X

: X ! BSG

admits a topological reduction e�

X

: X ! BSTOP .
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Proof (i) (a) () (b) The peripheral quadratic complex (C; 

X

) is A (Z; X)-

contractible if and only if the peripheral chain complex C is A (Z; X)-

contractible, if and only if X is a homology manifold (6.11).

(b) () (c) The map

H

n

(X)! H

n�1

(C 


(Z;X)

C)

in the braid used in the proof of Theorem 6.13 sends the fundamental class

[X ] 2 H

n

(X) to the homology class

(1 + T ) 

X

2 H

n�1

(C 


(Z;X)

C) ;

and C is A (Z; X)-contractible if and only if (1 + T ) 

X

= 0.

(ii) See [29, 17.4]. 2

Remark 9.11 There is also an R-coe�cient version, for any commutative ring

R. The R-coe�cient peripheral complex (C; 

X

) of an n-dimensional univer-

sal R-homology Poincar�e complex X is the A (R[�

1

(X)])-contractible (n � 1)-

dimensional quadratic Poincar�e complex in A (R;X) with

C = C([X ] \ � : �(X ;R)

n��

! �(X

0

;R))

�+1

The R-coe�cient total surgery obstruction ([29, 26.1]) of X is the cobordism

class

s(X ;R) = (C; 

X

) 2 S

n

(X ;R) ;

taking value in the R-coe�cient structure group �tting into the R-coe�cient

algebraic surgery exact sequence

� � � ! H

n

(X ;L

�

)

A

! �

n

(R[�

1

(X)]! R)! S

n

(X ;R)! H

n�1

(X ;L

�

)! : : :

with �

�

the R-homology surgery obstruction groups of Cappell and Shaneson

[3]. The R-coe�cient total surgery obstruction is such that s(X ;R) = 0 if

(and for n � 5 only if) the polyhedron jX j is R-homology equivalent to an

n-dimensional topological manifold (Ranicki [29, 26.1]). See x14 below for the

application to knot theory, with R = Z.

10. Combinatorially controlled surgery theory

This section develops the combinatorial version of the topological controlled

surgery theory proposed by Quinn [23] and Ranicki and Yamasaki [37]. In

principle, it is possible to construct the topological theory using the combina-

torial version and the

�

Cech nerves of open covers (cf. Quinn [25, 1.4]), but this

will not be done here.

A degree 1 map f : M ! N of n-dimensional homology manifolds has acyclic

point inverses if and only if

�

�

[M ]� (f

!


 f

!

)�

�

[N ] = 0 2 H

n

(M �

N

M)
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by 7.7 (ii). For a normal map (f; b) : M ! N this obstruction will now be

related to the chain level surgery obstruction. The Wall surgery obstruction

of (f; b) was expressed in Ranicki [27],[29] as the cobordism class of a kernel

n-dimensional quadratic Poincar�e complex in A (Z[�

1

(N)])

�

�

(f; b) = (�(f

!

);  

b

) 2 L

n

(Z[�

1

(N)]) :

The quadratic class  

b

will be re�ned to an N -controlled version  

b;N

, with

symmetrization

(1 + T ) 

b;N

= �

�

[M ]� (f

!


 f

!

)�

�

[N ] 2 H

n

(M �

N

M) :

Galewski and Stern [7], [8, 1.7] proved that the Spivak normal �bration

�

M

:M ! BSG of a homology manifold M has a canonical topological bundle

reduction �

M

:M ! BSTOP , namely the canonical topological bundle reduc-

tion of the normal homology cobordism bundle �

M

: M ! BSH , and that in

fact for dim(M) � 5 there exists a polyhedral topological manifoldM

TOP

with

a map M

TOP

!M with contractible point inverses.

De�nition 10.1 A normal map (f; b) :M ! N from an n-dimensional homology

manifold M to an n-dimensional Poincar�e complex N is a degree 1 map f :

M ! N with a map of (stable) topological bundles b : �

M

! � over f .

The surgery obstruction �

�

(f; b) 2 L

n

(Z[�

1

(N)]) of a normal map (f; b) :M !

N is de�ned by Maunder [16] following Wall [43]. The surgery obstruction is

shown in [16] to be such that �

�

(f; b) = 0 if (and for n � 5 only if) (f; b) is

normal bordant to a homotopy equivalence. The surgery obstruction can also

be de�ned using the chain complex method of Ranicki [26], [27].

De�nition 10.2 The N-controlled quadratic structure of a normal map (f; b) :

M ! N of n-dimensional homology manifolds is the element

 

b;N

=  

F;N

[N ] 2 Q

N

n

(�(M)) = H

n

(E�

2

�

�

2

(M �

N

M))

with  

F;N

: H

�

(N) ! Q

N

�

(�(M)) the N -controlled version of the quadratic

construction of [27, Chapter 1]

 

F

: H

�

(N)! Q

�

(�(M)) = H

�

(E�

2

�

�

2

(M �M)) :

Here, b : �

M

! � is a stable bundle map over f from the stable normal bundle

�

M

of M , � is a bundle over N , E�

2

is a contractible space with a free �

2

-

action, the generator T 2 �

2

acts on M �

N

M by transposition

T :M �

N

M ! M �

N

M ; (x; y) 7! (y; x)

and F : �

1

N

+

! �

1

M

+

is a geometric Umkehr map (= the S-dual of

T (b) : �

1

T (�

M

)! �

1

T (�)) inducing f

!

on the chain level.
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As usual, write W = �(E�

2

), so that

Q

n

(�(M)) = H

n

(W 


Z[�

2

]

(�(M)


Z

�(M))) ;

Q

N

n

(�(M)) = H

n

(W 


Z[�

2

]

(�(M)


(Z;N)

�(M))) :

Remark 10.3 As de�ned in [27] the quadratic construction  

F

only gives an

element  

b

=  

F

[N ] 2 Q

n

(�(M)). There are two ways of checking that there

is a lift of  

b

to an N -controlled element  

b;N

2 Q

N

n

(�(M)) :

� Note that the natural chain level transformation in [27, Chapter 1]

 

F

: �(N)!W 


Z[�

2

]

(�(M)


Z

�(M))

factors through

 

F;N

: �(N)!W 


Z[�

2

]

(�(M)


(Z;N)

�(M))

exactly as for the Alexander-Whitney diagonal chain approximation (5.3

(iii)), so that

 

F

: H

n

(N)

 

F;N

�! Q

N

n

(�(M)) �! Q

n

(�(M)) :

� Note that (f; b) determines an algebraic normal map in A (Z; N) in the

sense of [29, 2.16], with a corresponding quadratic class  

b;N

.

An n-dimensional homology manifoldM determines an n-dimensional symmet-

ric Poincar�e complex in A (Z; N)

�

�

N

(M) = (�(M);�

�

[M ] 2 Q

n

N

(�(M)))

for any simplicial map M ! N . Here, the Q-group is de�ned by

Q

n

N

(�(M)) = H

n

(Hom

Z[�

2

]

(W;�(M)


(Z;N)

�(M))) ;

and �

�

: H

n

(M)! Q

n

N

(�(M)) is induced by the Alexander-Whitney diagonal

chain approximation. (Note that �

�

is an isomorphism for 1 : M ! N =

M). The fundamental L

�

(Z)-homology class of M (Ranicki [29, 16.16]) is the

cobordism class

[M ]

L

= �

�

M

(M) 2 L

n

(A (Z;M)) = H

n

(M ;L

�

(Z)) :

For a degree 1 map f : M ! N the algebraic mapping cone of the Umkehr

chain map f

!

: �(N)! �(M) is a (Z; N)-module chain complex

�(f

!

) = C(f

!

: �(N)! �(M)) :

Let e : �(M) ! �(f

!

) be the inclusion. The kernel n-dimensional symmetric

Poincar�e complex in A (Z; N)

�

�

N

(f) = (�(f

!

); (e
 e)�

�

[M ])
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is such that up to homotopy equivalence

�

�

N

(M) = �

�

N

(N)� �

�

N

(f) ;

with cobordism class the di�erence of the fundamental L

�

(Z)-homology classes

�

�

N

(f) = f

�

[M ]

L

� [N ]

L

2 H

n

(N ;L

�

(Z)) :

De�nition 10.4 (Ranicki [29, 18.3])

The normal invariant of a normal map (f; b) : M ! N of n-dimensional

homology manifolds is the cobordism class

[f; b]

L

= (�(f

!

); (e
 e) 

b;N

)

2 L

n

(A (Z; N)) = H

n

(N ;L

�

) = [N;G=TOP ] :

The normal invariant of 10.4 is a (mild) generalization of the traditional normal

invariant in surgery theory, and has the following properties :

� [f; b]

L

2 H

n

(N ;L

�

) is a normal bordism invariant, such that [f; b]

L

= 0

if f has acyclic point inverses.

� For a normal map of polyhedral topological manifolds [f; b]

L

= 0 if (and

for n � 5 only if) (f; b) is normal bordant to a homeomorphism.

� The assembly of [f; b]

L

in the Wall surgery group is the surgery obstruc-

tion of (f; b)

A[f; b]

L

= �

�

(f; b) 2 L

n

(Z[�

1

(N)]) :

� The image of �

�

(f; b) in the homology surgery �-group of Cappell and

Shaneson [3]

A

H

[f; b]

L

= �

H

�

(f; b) 2 �

n

(Z[�

1

(N)]! Z)

is such that �

H

�

(f; b) = 0 if (and for n � 5 only if) (f; b) is normal bordant

to a homology equivalence.

For PLmanifolds these are direct applications of the surgery obstruction theory

of Wall [43]. In the general case, apply the extension of the theory to polyhedral

homology manifolds due to Maunder [16], or else combine with the result of

Galewski and Stern [7], [8, 1.7] that every polyhedral homology manifold can

be resolved by a polyhedral topological manifold and the TOP version of Wall's

theory.

Proposition 10.5 The N-controlled quadratic class  

b;N

of a normal map

(f; b) : M ! N of n-dimensional homology manifolds determines a kernel

n-dimensional quadratic Poincar�e complex in A (Z; N)

�

N

�

(f; b) = (�(f

!

); (e
 e) 

b;N

)
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with cobordism class the normal invariant of (f; b)

[f; b]

L

= �

N

�

(f; b) 2 L

n

(A (Z; N)) = H

n

(N ;L

�

) :

The Poincar�e duality chain equivalence of the symmetrization

(1 + T )�

N

�

(f; b) = �

�

N

(f)

is such that up to chain homotopy

(1 + T )(e
 e) 

b;N

= (e
 e)�

�

[M ] : �(f

!

)

n��

! �(f

!

) ;

which is the obstruction to f having acyclic point inverses (7.7 (ii))

(1 + T )(e
 e) 

b;N

= �

�

[M ]� (f

!


 f

!

)�

�

[N ]

2 H

n

(�(f

!

)


(Z;N)

�(f

!

)) = H

n

(M �

N

M;�

M

) (7.3 (ii)) :

Proof The identity

(1 + T ) 

b;N

= �

�

[M ]� (f

!


 f

!

)�

�

[N ] 2 H

n

(M �

N

M)

is just the N -controlled analogue of the standard property of the quadratic

construction ([27])

(1 + T ) 

b

= �

�

[M ]� (f

!


 f

!

)�

�

[N ] 2 H

n

(M �M) :

2

Remark 10.6 The quadratic class  

b;N

2 Q

N

n

(�(M)) can be de�ned for any

degree 1 map f :M ! N of n-dimensional universal Poincar�e complexes with a

map b : �

M

! �

N

of the Spivak normal �brations, with all the properties of  

b;N

in 10.2 except that the n-dimensional quadratic complex (�(f

!

); (e 
 e) 

b;N

)

in A (Z; N) will only be Poincar�e in A (Z[�

1

(N)]).

A homotopy equivalence f :M ! N of n-dimensional homology manifolds can

be regarded as a normal map (f; b) :M ! N with b : �

M

! (f

�1

)

�

�

M

.

De�nition 10.7 (Ranicki [29, 18.3])

The structure invariant of a homotopy equivalence f :M ! N of n-dimensional

homology manifolds is the cobordism class

s(f) = (�(f

!

);  

b;N

) 2 S

n+1

(N)

with image the normal invariant [f; b]

L

2 H

n

(N ;L

�

).

Proposition 10.8 (Ranicki [29, 18.3])

The structure invariant of a homotopy equivalence f : M ! N of polyhedral

n-dimensional topological manifolds is such that s(f) = 0 2 S

n

(N) if (and for

n � 5 only if) f is h-cobordant to a homeomorphism.
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In x13 below there will be obtained controlled versions of 10.7 and 10.8.

There is also a simple version of the structure invariant, which is de�ned for

a simple homotopy equivalence f : M ! N of n-dimensional homology mani-

folds, taking value in the relative group S

s

n

(N) in the exact sequence

� � � ! H

n

(N ;L

�

)

A

! L

s

n

(Z[�

1

(N)])! S

s

n

(N)! H

n�1

(N ;L

�

)! : : : :

Remark 10.9 The simple homotopy theory version of surgery theory allows an

application of the s-cobordism theorem, to obtain :

The simple structure invariant of a simple homotopy equivalence f :M ! N of

polyhedral n-dimensional topological manifolds is such that s(f) = 0 2 S

s

n

(N)

if (and for n � 5 only if) f is homotopic to a homeomorphism.

Proposition 10.10 (i) A map f : M ! N of simplicial complexes with acyclic

point inverses is simple, with �(f) = 0 2 Wh(�

1

(N)).

(ii) A homotopy equivalence f : M ! N of n-dimensional homology man-

ifolds with acyclic point inverses is simple, with simple structure invariant

s(f) = 0 2 S

s

n

(N).

(iii) For n � 5 a homotopy equivalence f :M ! N of n-dimensional polyhedral

topological manifolds with acyclic point inverses is homotopic to a homeomor-

phism.

Proof (i) As in the proof of 9.4 use the assembly functor of Ranicki and Weiss

[34]

A : A (Z; N)! A (Z[�

1

(N)]) ; A =

X

�2N

A(�) 7! A(

e

N) =

X

e�2

e

N

A(pe�)

with p :

e

N ! N the universal covering projection. A choice of basis for each

of the f.g. free Z-modules A(�) (� 2 N) determines a basis for the assembly

f.g. free Z[�

1

(N)]-module A(

e

N ), uniquely up to multiplication by the group

elements g 2 �

1

(N). Thus if C is a based (Z; N)-module chain complex such

that C(

e

N) is contractible there is a well-de�ned Whitehead torsion

�(C(

e

N )) 2Wh(�

1

(N)) :

For any simplicial map f : M ! N there is de�ned a based (Z; N)-module

chain complex

C = C(f : �(M)! �(N))

with

C(�) =

C(f j : �(f

�1

D(�;N); f

�1

@D(�;N))! �(D(�;N); @D(�;N))) (� 2 N) :

The assembly of C is the based f.g. free Z[�

1

(N)]-module chain complex

C(

e

N) = C(

e

f : �(

f

M)! �(

e

N ))
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with

f

M = f

�

e

N the pullback cover of M . If

e

f is a Z[�

1

(N)]-module chain

equivalence (e.g. if f is a homotopy equivalence) the torsion of f is de�ned by

�(f) = �(C(

e

N )) 2Wh(�

1

(N)) :

If f has acyclic point inverses each C(�) is contractible, and

e

f is a Z[�

1

(N)]-

module chain equivalence, with the torsion of f such that

�(f) = �(C(

e

N )) 2 im(Wh(f1g)!Wh(�

1

(N))) = f0g ;

so that �(f) = 0. (This uses Wh(f1g) = 0, exactly as in the proof of the

combinatorial invariance of Whitehead torsion in Milnor [19]).

(ii) The simple structure invariant s(f) is the cobordism class of the simple

Z[�

1

(N)]-contractible n-dimensional quadratic Poincar�e complex (�(f

!

);  

b;N

)

in A (Z; N) with

f

!

= f

�1

: �(N)! �(M) :

By (i) �(f

!

) is simple (Z; N)-contractible, and so represents 0 in the simple

structure group.

(iii) By (ii) f is a simple homotopy equivalence with zero simple structure

invariant, so that 10.9 applies. 2

Remark 10.11 Let n � 5.

(i) A map f : M ! N of n-dimensional PL manifolds with acyclic point

inverses is homotopic through maps with acyclic point inverses to a PL home-

omorphism if and only if the Cohen-Sato-Sullivan obstruction

c

H

(f) 2 H

3

(N ; �

H

3

)

is 0, with �

H

3

the Kervaire-Milnor cobordism group of oriented 3-dimensional

PL homology spheres (Ranicki [31, pp.26{28]). The obstruction is 0 if f has

contractible point inverses. The obstruction is the homotopy class of the map

c

H

(f) : N ! H=PL ' K(�

H

3

; 3)

classifying the di�erence between the PL reductions of the normal homology

cobordism bundles of M and N . The combination of the Kirby-Siebenmann

result

TOP=PL ' K(Z

2

; 3)

with the work of Galewski and Stern [7] shows that the various classifying

spaces are related by a commutative braid of �bration sequences

K(�

H

3

; 3)

�

##

G

G

G

G

G

G

  

BPL

##

G

G

G

G

G

G

G

  

BTOP

�

##

G

G

G

G

G

G

G

!!

K(ker(�); 5)

K(Z

2

; 3)

;;

w

w

w

w

w

w

w

�

##

G

G

G

G

G

G

BH

;;

w

w

w

w

w

w

w

c

H

##

G

G

G

G

G

G

G

K(Z

2

; 4)

�

;;

w

w

w

w

w

w

K(ker(�); 4)

;;

w

w

w

w

w

w

w

==

K(�

H

3

; 4)

�

;;

w

w

w

w

w

w
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with � : �

H

3

! Z

2

the Rochlin map ([31, p.26]).

(ii) A homeomorphism f :M ! N of n-dimensional PLmanifolds is homotopic

to a PL homeomorphism if and only if the Casson-Sullivan obstruction

�(f) = �(c

H

(f)) 2 H

3

(N ;Z

2

)

is 0 ([31, p.14]). The obstruction is the homotopy class of the map

�(f) : N ! TOP=PL ' K(Z

2

; 3)

classifying the di�erence between the PL reductions of the normal topological

block bundles of M and N .

(iii) A homeomorphism f : M ! N of n-dimensional PL manifolds is homo-

topic to a simplicial map with acyclic point inverses if and only if the Galewski-

Matumoto-Stern obstruction

��(f) 2 H

4

(N ; ker(�))

is 0 ([31, p.28]).

(iv) Galewski and Stern [8] proved that an n-dimensional topological manifold

N is polyhedral (i.e. can be triangulated by a polyhedron) if and only if the

element

��(�

N

) 2 H

5

(N ; ker(�))

is 0. In particular, this obstruction is 0 for the topological manifold N =M

TOP

resolving a (polyhedral) homology manifold M given by Galewski and Stern

[7], so that M

TOP

can be taken to be polyhedral.

11. Intersections and self-intersections

The chain complex methods of this paper will now be applied to obtained

a combinatorially controlled homology version of the intersection theory of

homology submanifolds.

De�nition 11.1 Given maps of X-controlled R-homology Poincar�e complexes

f

1

:M

1

! N ; f

2

:M

2

! N

with

dim(M

1

) = m

1

; dim(M

2

) = m

2

; dim(N) = n

de�ne the X-controlled intersection class

[M

1

�

X

M

2

] 2 H

m

1

+m

2

�n

(M

1

�

X

M

2

;R)
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to be the chain homotopy class of the (R;X)-module chain map

�(M

1

;R)

m

1

��

' �(M

1

;R)

f

1

�! �(N ;R) ' �(N ;R)

n��

(f

2

)

�

�! �(M

2

;R)

n��

' �(M

2

;R)

�+m

2

�n

;

using the identi�cations

H

m

1

+m

2

�n

(M

1

�

X

M

2

;R)

= H

m

1

+m

2

�n

(�(M

1

;R)


(R;X)

�(M

2

;R))

= H

0

(Hom

(R;X)

(�(M

1

;R)

m

1

��

;�(M

2

;R)

�+m

2

�n

)) :

In terms of the Umkehr (R;X)-module chain maps (7.1)

f

!

1

: �(N ;R) ' �(N ;R)

n��

(f

1

)

�

�! �(M

1

;R)

n��

' �(M

1

;R)

�+m

1

�n

;

f

!

2

: �(N ;R) ' �(N ;R)

n��

(f

2

)

�

�! �(M

2

;R)

n��

' �(M

2

;R)

�+m

2

�n

the X-controlled intersection class is given by the evaluation on the fundamen-

tal class [N ] 2 H

n

(N) of the composite

H

n

(N ;R)

�

! H

n

(N �

X

N ;R)

f

!

1


f

!

2

�! H

m

1

+m

2

�n

(M

1

�

X

M

2

;R) ;

that is

[M

1

�

N

M

2

] = (f

!

1


 f

!

2

)�[N ] 2 H

m

1

+m

2

�n

(M

1

�

X

M

2

;R) :

For the remainder of x11 R = Z, X = N , i.e. only homology manifolds will be

considered.

De�nition 11.2 Embeddings of homology manifolds

f

1

: (M

1

)

m

1

! N

n

; f

2

: (M

2

)

m

2

! N

n

are transverse if

� the intersection M

1

\ M

2

is an (m

1

+ m

2

� n)-dimensional homology

manifold,

� the product embedding f

1

� f

2

: M

1

� M

2

! N � N has a normal

homology cobordism bundle

�

f

1

�f

2

: M

1

�M

2

! BSH(2n�m

1

�m

2

)

whose restriction to M

1

\M

2

(viewed as a submanifold of M

1

�M

2

) is a

normal homology cobordism bundle for M

1

\M

2

� N .
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(Compare with the notion of homology manifold transversality considered by

Galewski and Stern [7, Chapter 3].)

Proposition 11.3 The N-controlled intersection class of transversely intersecting

embeddings of homology manifolds f

1

: (M

1

)

m

1

! N

n

, f

2

: (M

2

)

m

2

! N

n

is

the fundamental class of the (m

1

+m

2

�n)-dimensional homology submanifold

M

1

�

N

M

2

= M

1

\M

2

� N ;

that is

[M

1

�

N

M

2

] = [M

1

\M

2

] 2 H

m

1

+m

2

�n

(M

1

�

N

M

2

) :

Proof The normal homology cobordism bundle

� = �

M

1

\M

2

�N

:M

1

\M

2

! BSH(2n�m

1

�m

2

)

is such that there are de�ned isomorphisms

H

�

(N;Nn(M

1

\M

2

))

�

=

H

�

(N; cl:(NnE(�)))

�

=

H

�

(E(�); S(�))

�

=

H

�+m

1

+m

2

�2n

(M

1

\M

2

) :

The identity [M

1

�

N

M

2

] = [M

1

\M

2

] follows from the evaluation of [N ] 2

H

n

(N) in the commutative diagram

H

n

(N)

��

�

=

//

H

n

(N �

N

N)

f

!

1


 f

!

2

��

H

n

(N;Nn(M

1

\M

2

))

�

=

//

H

m

1

+m

2

�n

(M

1

�

N

M

2

) :

2

Given a map f :M ! N de�ne the maps

i :M !M �

N

M ; x 7! (x; x) ;

j :M �

N

M ! N ; (x; y) 7! f(x) = f(y) ;

k :M �

N

N !M ; (x; y) 7! x

(as in x7) such that

ji = f :M ! N ; ki = 1 :M !M :

The induced maps

i

�

: H

�

(M)! H

�

(M �

N

M)

are split injections, with

H

�

(M �

N

M) = H

�

(M)�H

�

(M �

N

M;�

M

) :
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If M;N are homology manifolds with dim(M) = m, dim(N) = n the Umkehr

(Z; N)-module chain maps

f

!

: �(N)! �(M)

�+m�n

; j

!

: �(N)! �(M �

N

M)

�+2m�2n

are de�ned as in 7.1,7.8.

Proposition 11.4 Let f :M

m

! N

n

be a map of homology manifolds.

(i) The N-controlled intersection class of f with itself

[M �

N

M ] = j

!

[N ] 2 H

2m�n

(M �

N

M)

is such that [M �

N

M ] = 0 2 H

2m�n

(M �

N

M;�

M

) if and only if

[M �

N

M ] 2 im(i

�

: H

2m�n

(M)! H

2m�n

(M �

N

M)) :

(ii) If f is an embedding then

[M �

N

M ] = [M ] \ e(�

f

) 2 H

2m�n

(M �

N

M) = H

2m�n

(M) ;

with e(�

f

) 2 H

n�m

(M) the Euler class of the normal homology cobordism

bundle �

f

:M ! BSH(n�m).

Proof (i) Immediate from the de�nition of [M �

N

M ], and the (split) exact

sequence

0! H

2m�n

(M)

i

�

�! H

2m�n

(M �

N

M)! H

2m�n

(M �

N

M;�

M

)! 0 :

(ii) For an embedding f

i = 1 :M !M �

N

M = M ;

j = f :M �

N

M = M ! N :

It follows from the commutative diagram

H

n

(N)

�

N

//

�

=

((

R

R

R

R

R

R

R

R

R

R

R

R

R

j

!

��

H

n

(N�N)

f

!


 f

!

��

�

=

wwo

o

o

o

o

o

o

o

o

o

o

H

n

(N�N;N�Nn�

N

)

(f�f)

�

��

//

H

n

(N�N)

(f�f)

�

��

H

n

(M�M;M�Mn�

M

)

�

=

vv
l

l

l

l

l

l

l

l

l

l

l

l

l

//

H

n

(M�M)

�

=

''

O

O

O

O

O

O

O

O

O

O

O

H

2m�n

(M)

�

M

//

H

2m�n

(M�M)

that

�

M

[M �

N

M ] = �

M

j

!

[N ] = (f

!


 f

!

)�

N

[N ] 2 H

2m�n

(M �M) :
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The Pontrjagin-Thom collapse map

F : N

+

! N=cl:(NnE(�

f

)) = E(�

f

)=S(�

f

) = T (�

f

)

induces the Umkehr Z-module chain map

F = f

!

: �(N) =

e

�(N

+

)!

e

�(T (�

f

)) ' �(M)

�+m�n

:

It follows from the commutative diagram

H

n

(N)

F = f

!

//

�

N

��

e

H

n

(T (�

f

))

�

=

H

m

(M)

�

T (�

f

)

��

� \ e(�

f

)

**

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

H

2m�n

(M)

�

M

tth

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

H

n

(N�N)

f

!


 f

!

//

e

H

n

(T (�

f

) ^ T (�

f

))

�

=

H

2m�n

(M �M)

that

(f

!


 f

!

)�

N

[N ] = �

M

(f

!

[N ] \ e(�

f

))

= �

M

([M ] \ e(�

f

)) 2 H

2m�n

(M �M) :

Thus

�

M

[M �

N

M ] = (f

!


 f

!

)�

N

[N ]

= �

M

([M ] \ e(�

f

)) 2 H

2m�n

(M �M) :

Now �

M

: H

2m�n

(M)! H

2m�n

(M �M) is a (split) injection, so that

[M �

N

M ] = [M ] \ e(�

f

) 2 H

2m�n

(M) :

2

Remark 11.5 (i) If f : M

m

! N

n

is a map of homology manifolds with an

N -controlled map

a : (M �M;M �Mn�

M

)! (N �N;N �Nn�

N

)

such that the diagram

(M �M;M �MnM �

N

M)

c

��~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

f � f

��

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

(M �M;M �Mn�

M

)

a

//

(N �N;N �Nn�

N

)
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is N -controlled homotopy commutative then

[M �

N

M ] 2 im(i

�

: H

2m�n

(M)! H

2m�n

(M �

N

M)) ;

where c is the inclusion. (For m = n this is essentially the same as 8.6.)

The property ac ' f � f is related to the necessary and su�cient condition

obtained by Haeiger [10] for a map f :M

m

! N

n

of di�erentiable manifolds

in the stable range 2n � 3(m + 1) to be homotopic to an embedding, namely

that f � f : M � M ! N � N be �

2

-equivariantly homotopic to a map

h :M �M ! N �N with h

�1

(�

N

) = �

M

, so that h de�nes a map of pairs

h : (M �M;M �Mn�

M

)! (N �N;N �Nn�

N

) :

The action of �

2

is by transposition (x; y) 7! (y; x). See 11.11 below for a more

detailed discussion of the case n = 2m.

(ii) The identity of 11.4 (ii) for an embedding f :M

m

! N

n

can also be proved

geometrically, whenever there exists an isotopic embedding f

0

:M

0

=M ! N

such that :

� M;M

0

� N intersect transversely in a (2m � n)-dimensional homology

submanifold M \M

0

� N ,

� [M \M

0

] 2 H

2m�n

(M) is Poincar�e dual to e(�

f

) 2 H

n�m

(M),

� [M �

N

M ] = [M \M

0

] 2 H

2m�n

(M).

Applying 11.3, it follows that

[M �

N

M ] = [M \M

0

]

= [M ] \ e(�

f

) 2 H

2m�n

(M �

N

M) = H

2m�n

(M) :

(iii) Let f : M ! X be a degree 1 map of n-dimensional manifolds, which is

covered by a stable bundle map

b : �

M

� �

1

! �

X

� �

1

:

The induced stable map of Thom spaces

T (b) : T (�

M

� �

1

) = �

1

T (�

M

)! T (�

X

� �

1

) = �

1

T (�

X

)

sends the Thom class of �

X

to the Thom class of �

M

T (b)

�

:

e

H

n

(T (�

X

))!

e

H

n

(T (�

M

)) ; U

X

! U

M

The images of the Thom classes U

M

, U

X

under the maps

inclusion

�

:

e

H

n

(T (�

M

))

�

=

H

n

(M �M;M �Mn�

M

)

! H

n

(M �M;M �Mn(f � f)

�1

�

X

) ;

f � f

�

: H

n

(X �X;X �Xn�

X

)! H

n

(M �M;M �Mn(f � f)

�1

�

X

)
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are not the same (in general), since the diagram I in

e

H

n

(T (�

M

))

�

=

I

e

H

n

(T (�

X

))

�

=

T (b)

�

oo

H

n

(M �M;M �Mn�

M

)

((

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

��

H

n

(X �X;X �Xn�

X

)

vvm

m

m

m

m

m

m

m

m

m

m

m

��

H

n

(M �M;M �Mn(f � f)

�1

�

X

)

vvm

m

m

m

m

m

m

m

m

m

m

m

m

((

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

H

n

(M �M) H

n

(X �X)

(f � f)

�

oo

does not commute. However, it does commute in the unstable case b : �

M

! �

X

,

with a commutative diagram

(M �M;M �Mn�

M

)

b

//

��

(X �X;X �Xn�

X

)

��

M

f

//

X

De�nition 11.6 The homotopy double point set P (f) of a map f : M ! N is

the homotopy pullback in the diagram

P (f)

//

��

M

f

��

M

f

//

N

Thus P (f) is the space of triples (x; y; !) with x; y 2 M and ! : [0; 1] ! N a

path such that

!(0) = f(x) ; !(1) = f(y) 2 N :

The space P (f) is a homotopy model for the actual double point setM �

N

M ,

and there is an evident inclusion

M �

N

M ! P (f) ; (x; y) 7! (x; y; !)

with !(t) = f(x) = f(y) 2 N (0 � t � 1).

Proposition 11.7 If f : M

m

! N

n

is a map of homology manifolds the image

of [M �

N

M ] 2 H

2m�n

(M �

N

M;�

M

) in H

2m�n

(P (f);�

M

) is a homotopy

invariant of f , which is 0 if f is homotopic to an embedding.

Proof Immediate from 11.4. 2
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Remark 11.8 See Hatcher and Quinn [11] for the systematic use of homotopy

pullbacks to de�ne intersection invariants of submanifolds.

Next, consider an immersion of an m-dimensional homology manifold in an

n-dimensional homology manifold

f :M

m

! N

n

with m < n. Let �

f

: M ! BSH(n � m) classify the normal homology

cobordism bundle, so that there is de�ned a �bration

(D

n�m

; S

n�m�1

)! (E(�

f

); S(�

f

))!M

and the Thom space is given by

T (�

f

) = E(�

f

)=S(�

f

) :

For su�ciently large k there exists a map g :M ! int(D

k

) such that

f � g :M ! N �D

k

; x 7! (f(x); g(x))

is an embedding with normal homology cobordism bundle

�

f�g

= �

f

� �

k

:M ! BSH(n�m+ k) :

The corresponding Pontrjagin-Thom collapse map

F : �

k

N

+

= N �D

k

=N � S

k�1

! T (�

f

� �

k

) = �

k

T (�

f

)

induces the Umkehr (Z; N)-module chain map

f

!

: �(N) ' �(N)

n��

f

�

�! �(M)

n��

' �(M)

�+m�n

'

e

�(T (�

f

)) :

Let

�

f

�

N

�

f

:M �

N

M ! BSH(2(n�m))

be the homology cobordism bundle de�ned by the restriction of the product

�

f

� �

f

:M �M ! BSH(2(n�m))

to M �

N

M �M �M , with Thom space

T (�

f

�

N

�

f

) = E(�

f

�

N

�

f

)=S(�

f

�

N

�

f

)

= E(�

f

)�

N

E(�

f

)=(E(�

f

)�

N

S(�

f

) [ S(�

f

)�

N

E(�

f

)) :

De�nition 11.9 The N-controlled self-intersection class of an immersion of ho-

mology manifolds f : M

m

! N

n

is the N -controlled version of the homology

class of Ranicki [27, pp.279-282]

�

N

(f) = �  

F;N

[N ]

2

e

H

n

(E�

2

n

�

2

T (�

f

�

N

�

f

))

= H

2m�n

(E�

2

�

�

2

(M �

N

M);Z

(�)

n�m

)

= H

2m�n

(WZ

(�)

n�m




Z[�

2

]

(�(M)


(Z;N)

�(M)))
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with  

F;N

(9.2) the N -controlled version of the quadratic construction  

F

of

[27, Chapter 1] applied to a geometric Umkehr map F : �

k

N

+

! �

k

T (�

f

) (k

large) inducing f

!

on the chain level. Here, Z

(�)

n�m

refers to Z twisted by the

orientation character of the extended power homology cobordism bundle

e

2

(�

f

) : E�

2

�

�

2

(M �

N

M)! BH(2(n�m))

with

E(e

2

(�

f

)) = E�

2

�

�

2

(E(�

f

)�

N

E(�

f

)) ;

S(e

2

(�

f

)) = E�

2

�

�

2

(E(�

f

)�

N

S(�

f

) [ S(�

f

)�

N

E(�

f

)) ;

T (e

2

(�

f

)) = E(e

2

(�

f

))=S(e

2

(�

f

)) = E�

2

n

�

2

T (�

f

�

N

�

f

) ;

and WZ

(�)

n�m

is a free Z[�

2

]-resolution of Z

(�)

n�m

.

Proposition 11.10 (i) The N-controlled self-intersection class has symmetriza-

tion

(1 + T )�

N

(f) = [M �

N

M ]� i

�

(e(�

f

) \ [M ])

2

e

H

n

(T (�

f

�

N

�

f

)) = H

2m�n

(M �

N

M) ;

with

[M �

N

M ] = (f

!


 f

!

)�

N

[N ] 2 H

2m�n

(M �

N

M) :

(ii) The image of �

N

(f) in

H

2m�n

(E�

2

�

�

2

(M �

N

M); E�

2

�

�

2

�

M

;Z

(�)

n�m

)

= H

lf

2m�n

(E�

2

�

�

2

(M �

N

Mn�

M

);Z

(�)

n�m

)

= H

lf

2m�n

((M �

N

Mn�

M

)=�

2

;Z

(�)

n�m

)

is a Z

(�)

n�m

-twisted fundamental class for the strati�ed set of unordered double

points

1

(M�

N

Mn�

M

)=�

2

= f(x; y) 2M�M jx 6= y; f(x) = f(y)g=f(x; y) � (y; x)g :

(iii) If f : M ! N is an embedding then it is possible to chose k = 0, F :

N

+

! T (�

f

) and �

N

(f) = 0.

(iv) The image of �

N

(f) in H

lf

2m�n

((M �Mn�

M

)=�

2

;Z

(�)

n�m

) is a regular

homotopy invariant of f , which is 0 if f is regular homotopic to an embedding.

Proof These are the N -controlled versions of standard properties of the self-

intersection form � of Chapter 5 of Wall [43]. 2

Let f : M

m

! N

n

be a map of connected homology manifolds with n = 2m,

such that f

�

: �

1

(M)! �

1

(N) is trivial. Write �

1

(N) = �, and let g : N ! B�

1

The unordered double point set of an immersion of manifolds f :M

m

! N

n

is an open

(2m � n)-dimensional manifold in the metastable range 3m < 2n, when there are no triple

points.
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be the classifying map for the universal cover

e

N = g

�

E� of N . A choice

of null-homotopy gf ' f�g : M ! B� determines a homotopy equivalence

P (gf) ' ��M�M , with P (gf) the homotopy double point set (11.6), as well

as a lift

e

f :M !

e

N of f :M ! N . The N -controlled intersection class (11.1)

is an element

[M �

N

M ] 2 H

0

(M �

N

M)

with image the intersection class of Wall [43, 5.2]

�(f; f) 2 H

0

(P (gf)) = Z[�] ;

which is a homotopy invariant of f . The following result was �rst obtained in

the di�erentiable category.

Proposition 11.11 (Haeiger [10])

The reduced intersection class of a map f :M

m

! N

2m

e

�(f; f) = [�(f; f)] 2 H

0

(P (gf);�

M

) = Z[�]=Z

is such that

e

�(f; f) = 0 if (and for m � 3 only if) f is homotopic to an

embedding.

Now assume that f : M

m

! N

2m

is an immersion, so that the double point

set M �

N

M is the disjoint union of �

M

and a �nite set M �

N

Mn�

M

. The

N -controlled self-intersection class (11.9)

�

N

(f) 2 H

0

(E�

2

�

�

2

(M �

N

M);Z

(�)

m

)

has image the self-intersection form of [43, 5.2]

�(f) =

X

(x;y)2(M�

N

Mn�

M

)=�

2

w(x; y)g(x; y)

2 H

0

(E�

2

�

�

2

P (gf);Z

(�)

m

) = Z[�]=fa� (�)

m

ag

where

� a 7! a is the involution on the fundamental group ring Z[�] de�ned (as

in x9) by

Z[�]! Z[�] ; a =

X

g2�

n

g

g 7! a =

X

g2�

n

g

g

�1

;

� g(x; y) 2 � is the fundamental group element determined for each non-

trivial ordered double point (x; y) 2M �

N

Mn�

N

by

e

f(x) = g(x; y)

e

f(y) 2

e

N ;

� w(x; y) = �1 according to the matching up of the orientations of M and

N at f(x) = f(y) 2 N .
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The symmetrization of �(f) is such that

�(f) + (�)

m

�(f) = �(f; f)� �(�

f

) 2 Z[�] ;

a special case of 11.10 (i), with �(�

f

) 2 Z� Z[�].

Proposition 11.12 (Wall [43, 5.2])

The self-intersection form of an immersion f :M

m

! N

2m

�(f) 2 Z[�]=fa� (�)

m

ag

is a regular homotopy invariant such that �(f) = 0 if (and for m � 3) if f is

regular homotopic to an embedding.

In fact, the reduced self-intersection form

e�(f) 2 Z[�]=(Z+ fa� (�)

m

ag)

is a homotopy invariant of f . The condition m � 3 in 11.12 is necessary for the

application of the Whitney trick to remove pairs of double points, with �(f) = 0

being just the algebraic condition for the double points to appear in potentially

cancelling pairs. The result of 11.12 for an immersion f : S

m

! N

2m

is of

course essential for even-dimensional surgery obstruction theory.

12. Whitehead torsion

It is a commonplace of controlled topology that the Whitehead torsion of an X-

controlled homotopy equivalence of X-controlled complexes has zero image in

Wh(�

1

(X)). See for example the controlled K-theory proof in Ranicki and Ya-

masaki [36] of Chapman's theorem on the topological invariance of Whitehead

torsion.

Proposition 12.1 If f : M ! N is a homotopy equivalence of simplicial com-

plexes which is also an X-controlled homology equivalence then the Whitehead

torsion of f is such that

�(f) 2 ker((p

N

)

�

:Wh(�

1

(N))!Wh(�

1

(X))) :

Proof Work as in 9.10 (i) : the algebraic mapping cone of the (Z; X)-module

chain equivalence f : �(M)! �(N)

C = C(f : �(M)! �(N))

is a based contractible �nite chain complex in A (Z; X), with assembly the based

contractible �nite chain complex in A (Z[�

1

(X)])

C(

e

X) = C(

e

f : �(

f

M)! �(

e

N))
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with 0 torsion in Wh(�

1

(X)). The image of �(f) 2 Wh(�

1

(N)) in Wh(�

1

(X))

is thus

(p

N

)

�

�(f) = �(C(

e

X)) = 0 2 Wh(�

1

(X)) :

2

De�nition 12.2 An X-controlled h-cobordism (W ;M;N) of homology manifolds

is an h-cobordism together with a simplicial map p

W

: W ! X

0

such that the

inclusions M !W , N !W are X-controlled homology equivalences.

Proposition 12.3 The Whitehead torsion of an X-controlled h-cobordism

(W ;M;N) of homology manifolds is such that

�(W ;M;N) 2 ker((p

W

)

�

:Wh(�

1

(W ))!Wh(�

1

(X))) :

Proof By de�nition

�(W ;M;N) = �(M !W ) 2Wh(�

1

(W )) :

Apply 12.2 to the X-controlled homotopy equivalence M !W . 2

Corollary 12.4 If �

1

(W )

�

=

�

1

(X) an N-controlled h-cobordism (W ;M;N) of

homology manifolds is an s-cobordism, with

�(W ;M;N) = 0 2Wh(�

1

(W )) :

Proof Immediate from 12.3, since in this case p

W

:W ! X = N is a homotopy

equivalence. 2

In principle, it would be possible to investigate X-controlled versions of the

classical h- and s-cobordism theorems of high-dimensional manifold theory,

taking the controlled h-cobordism theorem of Quinn [23] as a model.

13. Homology fibrations

It is a theme of controlled topology that if F ! E ! B is a �bre bundle of

manifolds and f : M ! E is a homotopy equivalence of manifolds then M is

the total space of a �bre bundle F !M ! B if and only if f is a B-controlled

homotopy equivalence. For example, see Chapman [4]. (All niceties to do with

�bre bundles, block bundles, approximate �brations etc. are being ignored

here!). An analogous result will now be obtained in the combinatorial context

of this paper.

De�nition 13.1 A B-controlled R-homology �bration E is a B-controlled sim-

plicial complex E such that the inclusions

p

�1

E

D(�; B)! p

�1

E

D(�;B) (� � � 2 B)

are R-homology equivalences, i.e. induce isomorphisms

H

�

(p

�1

E

D(�; B);R)

�

=

H

�

(p

�1

E

D(�;B);R) :
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The R-module chain homotopy type of �(p

�1

E

D(�;B);R) is the chain �bre of

E. (It is assumed here that B is connected, so that the chain �bre is well-

de�ned.)

Remark 13.2 An (R;B)-module chain complex C is homogeneous if the inclu-

sions de�ne R-module chain equivalences

[C][�]

'

�! [C][� ] (� � � 2 B)

(Ranicki and Weiss [34, 4.5], Ranicki [29, p.110]). A B-controlled simplicial

complex E is a B-controlled R-homology �bration if and only if the (R;B)-

module chain complex �(E;R) is homogeneous.

Example 13.3 Let E be a B-controlled simplicial complex.

(i) The control map p

E

: E ! B

0

has R-acyclic point inverses if and only if E

is a B-controlled R-homology �bration with R-acyclic chain �bre.

(ii) The control map p

E

: E ! B

0

is a quasi�bration in the sense of Dold and

Thom [6] with �bre F = p

�1

E

(�) if and only if the inclusions

p

�1

E

D(�; B)! p

�1

E

D(�;B) (� � � 2 B)

are homotopy equivalences, in which case E is a B-controlled R-homology

�bration with chain �bre �(F ;R).

De�nition 13.4 A d-dimensional B-controlled R-homology Poincar�e �bration E

is a B-controlled R-homology �bration such that each p

�1

E

D(�;B) (� 2 B) is

a d-dimensional R-homology Poincar�e complex, with each inclusion

p

�1

E

D(�; B)! p

�1

E

D(�;B) (� � � 2 B)

an R-homology equivalence such that the induced isomorphism

H

d

(p

�1

E

D(�; B);R)

�

=

H

d

(p

�1

E

D(�;B);R)

sends [p

�1

E

D(�; B)] to [p

�1

E

D(�;B)].

The chain �bre C of a d-dimensional B-controlled R-homology Poincar�e �bra-

tion E is a d-dimensional symmetric Poincar�e complex over R. (See Ranicki

[26] for the theory of symmetric Poincar�e complexes.)

Proposition 13.5 Let B be an n-dimensional R-homology manifold B, and let

E be a d-dimensional B-controlled R-homology Poincar�e �bration, with chain

�bre C.

(i) E is an (n+ d)-dimensional B-controlled R-homology Poincar�e complex.

(ii) E �

B

E is an (n + 2d)-dimensional B-controlled R-homology Poincar�e

�bration with chain �bre the 2d-dimensional symmetric Poincar�e complex C


R

C over R. In particular, E �

B

E is an (n + 2d)-dimensional B-controlled R-

homology Poincar�e complex.
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Proof (i) Use the algebraic Poincar�e cycle theory of Ranicki [29], involving the

symmetric L-spectrum L

�

(R) with homotopy groups the symmetric L-groups

of R

�

�

(L

�

(R)) = L

�

(R) :

The L

�

(R)-homology group H

m

(B;L

�

(R)) is the cobordism group of m-

dimensional symmetric Poincar�e cycles in A (R;B), and the cap product

\ : H

n

(B;L

�

(R))
H

�d

(B;L

�

(R))! H

n+d

(B;L

�

(R))

is de�ned using the ring spectrum structure of L

�

(R). The R-coe�cient ho-

mology class

[E] = [B]
 [F ] 2 H

n+d

(E;R) = H

n

(B;R)


R

H

d

(F ;R)

determines an (n+ d)-dimensional symmetric cycle [E]

L

= (�(E;R);�[E]) in

A (R;B) which is Poincar�e if and only if E is an (n+d)-dimensionalB-controlled

R-homology Poincar�e complex, in which case [E]

L

2 H

n+d

(E;L

�

(R)) is a fun-

damental L

�

(R)-homology class. The cap product (on the algebraic Poincar�e

cycle level) of the fundamental L

�

(R)-homology class of [29, 16.16]

[B]

L

2 H

n

(B;L

�

(R))

and the L

�

(R)-cohomology class

[C; p

E

]

L

2 H

�d

(B;L

�

(R))

of L�uck and Ranicki [14, Appendix] identi�es

[E]

L

= [B]

L

\ [C; p

E

]

L

2 H

n+d

(B;L

�

(R)) ;

so that [E]

L

is a Poincar�e cycle, as required.

(ii) For anyB-controlledR-homology �brationE with chain �bre C the product

E�

B

E is a B-controlled R-homology �bration with chain �bre C


R

C. Thus if

E is a d-dimensionalB-controlledR-homology Poincar�e �bration then E�

B

E is

a 2d-dimensional B-controlled R-homology Poincar�e �bration, and (i) applies.

2

Remark 13.6 The result of 13.5 (i) is a combinatorial version of the result of

Buoncristiano, Rourke and Sanderson [2, p.21] that the total space of a mock

bundle is a manifold, and of the result of Gottlieb [9] (announced by Quinn [22])

that the total space of a �bration F ! E ! B with base B an n-dimensional

Poincar�e complex and �bre F a d-dimensional Poincar�e complex is an (n+ d)-

dimensional Poincar�e complex E.

Remark 13.7 Let E be a (d+1)-dimensional homology manifold with a simplicial

map p

E

: E ! S

1

such that the induced in�nite cyclic cover of E

E = (p

E

)

�

R
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is �nitely dominated. Let � : E ! E be a generating covering translation, with

mapping torus

T (�) = E � [0; 1]=f(x; 0) = (�(x); 1) jx 2 Eg :

The �bering obstruction of E

�(E) = �(T (�)! E) 2Wh(�

1

(E))

is such that �(E) = 0 if (and for d � 5 only if) p

E

: E ! S

1

is homotopic to

the projection of a d-dimensional S

1

-controlled homology Poincar�e �bration.

For an actual manifold E this is the original �bering obstruction of Farrell and

Siebenmann, and the S

1

-controlled homology Poincar�e �bration can be taken

to be an actual �bre bundle over S

1

. See Ranicki [30],[33] and Hughes and

Ranicki [12] for more recent accounts of the �bering obstruction over S

1

.

Theorem 13.8 Let B be an n-dimensional R-homology manifold, and let E be

a d-dimensional B-controlled R-homology Poincar�e �bration with chain �bre

C, so that E is an (n + d)-dimensional B-controlled R-homology Poincar�e

complex (13.5 (i)). If M is an (n + d)-dimensional B-controlled R-homology

Poincar�e complex and f :M ! E is a degree 1 B-controlled map, the following

conditions are equivalent :

(i) M is a B-controlled R-homology �bration with chain �bre C,

(ii) f is a B-controlled R-homology equivalence,

(iii) (f � f)

�

: H

n+d

(M �

B

M ;R)

�

=

H

n+d

(E �

B

E;R).

Proof (i) () (ii) A map f :M ! E of B-controlled simplicial complexes is a

B-controlled R-homology equivalence if and only if the restrictions

f j : p

�1

M

D(�;B)! p

�1

E

D(�;B) (� 2 B)

are R-homology equivalences.

(ii) () (iii) This is a special case of 7.3. 2

Remark 13.9 Corollary 7.5 is the special case of 13.8 with R = Z, B = E,

C = R, d = 0 (cf. 13.3 (i)).

14. Knot theory

The results of xx7,13 are now illustrated by showing how they apply to high-

dimensional knot theory. No actual new results are obtained in knot theory,

however; known results are restated in terms of the chain theory developed in

this paper.

The algebraic theory of surgery was used in Ranicki [28, 7.8], [33] to obtain a

chain complex treatment of the algebraic invariants of high-dimensional knot
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theory, using the following construction. Let k : S

n

� S

n+2

(n � 1) be a

locally at n-knot, with closed regular neighbourhood

(U; @U) = (S

n

�D

2

; S

n

� S

1

) � S

n+2

:

The knot complement

(T; @T ) = (cl:(S

n+2

nU); @U)

is an (n + 2)-dimensional manifold with boundary, such that the generator

1 2 H

1

(T ) = H

n

(U) = Z is realized by a normal map

(f; b) : (T; @T )! (D

n+1

� S

1

; S

n

� S

1

)

with f : T ! D

n+1

�S

1

a Z-homology equivalence, and f j = 1 : @T ! S

n

�S

1

.

De�ne an (n + 3)-dimensional Z-homology Poincar�e pair (X; @X) with X the

mapping cylinder of f , and the boundary @X = T [

@

D

n+1

� S

1

an (n + 2)-

dimensional manifold. The peripheral complex of (X; @X) is a Z-contractible

(n+ 2)-dimensional quadratic Poincar�e complex (C; 

X

) in A (Z; X), with

C = C([X ] \ � : �(X; @X)

n+3��

! �(X))

�+1

:

The cobordism class

s

@

(X ;Z) = (C; 

X

) 2 S

n+3

(X ;Z)

is the rel @ total homology surgery obstruction (9.11), such that s

@

(X ;Z) = 0

if (and for n � 5 only if) (X; @X) is homology equivalent rel @ to an (n + 2)-

dimensional topological manifold with boundary. The projection X ! S

1

is a

homotopy equivalence, so that

S

n+3

(X ;Z) = S

n+3

(S

1

;Z)

= �

n+3

�

Z[z; z

�1

] ����! Z[z; z

�1

]

?

?

y

?

?

y

Z[z; z

�1

] ����! Z

�

The induced functor A (Z; X)! A (Z; S

1

) sends the peripheral complex (C; 

X

)

to the kernel Z-contractible (n+2)-dimensional quadratic Poincar�e complex of

(f; b) in A (Z; S

1

)

�

S

1

�

(f; b) = (�(f

!

: �(D

n+1

� S

1

)! �(T ));  

b

) :

The assembly functor A : A (Z; S

1

) ! A (Z[z; z

�1

]) sends �

S

1

�

(f; b) to the Z-

contractible (n+ 2)-dimensional quadratic Poincar�e complex in A (Z[z; z

�1

])

A�

S

1

�

(f; b) = (�(f

!

: �(D

n+1

� R) ! �(T )); A 

b

) ;
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with T = f

�

(D

n+1

� R) the canonical in�nite cyclic cover of T . The total

homology surgery obstruction

s

@

(X ;Z) = A�

S

1

�

(f; b) 2 S

n+3

(S

1

;Z)

is a cobordism invariant of k. For n � 3 it is in fact the cobordism class of k,

with S

n+3

(S

1

;Z) = C

n

the n-dimensional knot cobordism group (Ranicki [28,

p.836]).

The chain homotopy type of �

S

1

�

(f; b) in A (Z; S

1

) is not an isotopy invariant

of the n-knot k, since it depends on the choice of the map f : T ! D

n+1

� S

1

within its homotopy class. Working as in the proof of 7.3 (ii) it follows from

the (Z; S

1

)-module chain equivalences

�(T ) '

(Z;S

1

)

�(f

!

)��(S

1

) ;

�(f

!

)

n+2��

'

(Z;S

1

)

�(f

!

)

that there is de�ned a Z-module chain equivalence

�(T )


(Z;S

1

)

�(T ) '

Z

(�(f

!

)


(Z;S

1

)

�(f

!

))��(f

!

)��(f

!

)��(S

1

) ;

and that

H

n+2

(T �

S

1

T ) = H

n+2

(�(T )


(Z;S

1

)

�(T ))

= H

n+2

(�(f

!

)


(Z;S

1

)

�(f

!

))

= H

0

(Hom

(Z;S

1

)

(�(f

!

);�(f

!

))) :

The following conditions are equivalent :

(a) H

n+2

(T �

S

1
T ) = 0,

(b) �

S

1

�

(f; b) is chain equivalent to 0 in A (Z; S

1

),

(c) f : T ! D

n+1

� S

1

is an S

1

-controlled homology equivalence.

In view of 13.8 it is possible to choose f to satisfy these conditions if and only

if T is an S

1

-controlled homology �bration { see further below for �bred knots.

The chain homotopy type of A�

S

1

�

(f; b) in A (Z[z; z

�1

]) is an isotopy invariant

of k, since it only depends on the homotopy class of f : T ! D

n+1

� S

1

. Let

� : T ! T be a generating covering translation of the in�nite cyclic cover T of

T . The quotient of T � T by the diagonal Z-action

T �

Z

T = (T � T )=f(x; y) ' (�x; �y)g

is such that

H

n+2

(T �

Z

T ) = H

n+2

(�(T )


Z[z;z

�1

]

�(T ))

= H

n+2

(A�(f

!

)


Z[z;z

�1

]

A�(f

!

))

The following conditions are equivalent :
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(d) H

n+2

(T �

Z

T ) = 0,

(e) A�

S

1

�

(f; b) is chain equivalent to 0 in A (Z[z; z

�1

]),

(f) f : T ! D

n+1

� S

1

is homotopic to an S

1

-controlled homology equiva-

lence.

See Ranicki [28, 7.8] for the relationship between A�

S

1

�

(f; b), the Seifert form,

the Alexander polynomials and the Blanch�eld pairing of k. If k is simple

(i.e. H

r

(T ) = 0 for 1 � r � (n � 1)=2) and n � 3 the chain homotopy type

of A�

S

1

�

(f; b) is the complete isotopy invariant, by the classi�cation results of

Trotter, Levine and Kearton, and the conditions (d),(e),(f) are equivalent to k

being unknotted, i.e. isotopic to the trivial n-knot k

0

: S

n

� S

n+2

.

Now suppose that k : S

n

� S

n+2

is a �bred n-knot, i.e. that the knot comple-

ment T �bres over S

1

(cf. Remark 13.7 above). For example, the link of an

isolated singular point of a complex hypersurface f

�1

(0) � C

m

(f : C

m

! C )

is a �bred (2m� 3)-knot

S

2m�3

= S

2m�1

\ f

�1

(0) � S

2m�1

� C

m

;

by Milnor [20] (cf. Remark 6.17 above). Let F

n+1

� S

n+2

be a Seifert surface

for k, with @F = k(S

n

), and let h : F ! F be the monodromy. The knot

complement

(T; @T ) = (T (h); S

n

� S

1

)

is the total space of a �bre bundle

(F

n+1

; S

n

)! (T; @T )! S

1

;

and f : T ! D

n+1

� S

1

may be chosen to be a map of �bre bundles over S

1

.

The in�nite cyclic cover of T is such that

� : T = F � R ! T ; (x; t)! (h(x); t + 1)

and

T �

S

1

T = T (h� h : F � F ! F � F )

is homotopy equivalent to

T �

Z

T = T (h� h)� R :

Thus

H

�

(T �

S

1

T ) = H

�

(T �

Z

T )

and in the �bred case

(a)() (b)() (c)() (d)() (e)() (f) :
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15. Other categories

Weiss [44] constructed a chain duality on the additive category of X-controlled

Z-modules, for any �-set X . Hutt [13] constructed a chain duality on the

additive category of sheaves of Z-modules over any space X . In principle, all

the results in this paper can therefore be generalized to these categories.
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