On a Conjecture of Izhboldin on Similarity of Quadratic Forms

DETLEV W. HOFFMANN¹

Received: January 4, 1999

Communicated by Ulf Rehmann

ABSTRACT. In his paper Motivic equivalence of quadratic forms, Izhboldin modifies a conjecture of Lam and asks whether two quadratic forms, each of which isomorphic to the product of an Albert form and a k-fold Pfister form, are similar provided they are equivalent modulo I^{k+3} . We relate this conjecture to another conjecture on the dimensions of anisotropic forms in I^{k+3} . As a consequence, we obtain that Izhboldin's conjecture is true for k < 1.

1991 Mathematics Subject Classification: Primary 11E81; Secondary 11E04.

Keywords and Phrases: Quadratic form, Pfister form, Albert form, similarity of quadratic forms.

In what follows, we will adhere to the same terminology and notations used in Izhboldin's article [I] mentioned in the abstract. In particular, if two quadratic forms ϕ and ψ are similar, we will write $\phi \sim \psi$.

Let F be a field of characteristic $\neq 2$. Recall that an Albert form α over F is a 6-dimensional quadratic form over F with signed discriminant $1 \in F^*/F^{*2}$ (i.e. $\alpha \in I^2F$), and an *n*-fold Pfister form over F is a form of type $\langle\!\langle a_1, \dots, a_n \rangle\!\rangle := \langle 1, -a_1 \rangle \otimes \dots \otimes \langle 1, -a_n \rangle$, $a_i \in F^*$. In his paper [I], Izhboldin states the following conjecture:

CONJECTURE 1 (Cf. Conjecture 5.1 in [I].) Let q_1 and q_2 be Albert forms over F and let π_1 and π_2 be two k-fold Pfister forms over F ($k \ge 0$) such that $q_i \otimes \pi_i$, i = 1, 2 is anisotropic and $q_1 \otimes \pi_1 \equiv q_2 \otimes \pi_2$ mod $I^{k+3}F$. Then $q_1 \otimes \pi_1 \sim q_2 \otimes \pi_2$.

¹This research has been carried out in the framework of TMR Network ERB FMRX CT-97-0107 "Algebraic K-Theory, Linear Algebraic Groups and Related Structures."

D. W. HOFFMANN

In fact, this conjecture is a special case of a question asked by Lam [L, (6.6)]. Lam's original question was as follows. Suppose σ_i , $\rho_i \in P_n F$, i = 1, 2, and let $\phi_i = (\sigma_i \perp -\rho_i)_{\text{an}}$ be the anisotropic part of $\sigma_i \perp -\rho_i$. If $\phi_1 \equiv \phi_2 \mod I^{n+1}F$, does it then follow that $\phi_1 \sim \phi_2$? By a result of Elman and Lam [EL, Theorem 4.5], it is known that $\dim \phi_i \in \{2^{n+1} - 2^m, 1 \leq m \leq n+1\}$, and that if $\dim \phi_i = 2^{n+1} - 2^m$, then ρ_i and σ_i are (m-1)-linked, i.e. there exists an (m-1)-fold Pfister form which divides both ρ_i and σ_i . It is an easy exercise to show that Lam's question has a positive answer if $\dim \phi_1$ (or $\dim \phi_2$) equals 0 of 2^n (i.e. m = n + 1 or m = n). In [I, Section 4], Izhboldin constructs counterexamples with $\dim \phi_1$ (or $\dim \phi_2$) equal to $2^{n+1} - 2^m$ with $1 \leq m \leq n-2$. The only remaining case m = n - 1 boils down to Conjecture 1 above.

It turns out that this conjecture would have a positive answer if another wellknown conjecture on quadratic forms were true, this other conjecture being

CONJECTURE 2 Let $n \ge 2$ and let q be an anisotropic form in $I^n F$. If dim $q > 2^n$ then dim $q \ge 2^n + 2^{n-1}$.

PROPOSITION 1 Conjecture 2 for n = k + 3 implies Conjecture 1 for k.

It was shown in [H 2] that Conjecture 2 holds for $n \leq 4$. As a consequence, we have

COROLLARY Conjecture 1 holds for $k \leq 1$.

Note that for k = 0 this is essentially Jacobson's theorem saying that two Albert forms are similar if and only if their associated biquaternion algebras are isomorphic (see [MS] for a quadratic form-theoretic proof of Jacobson's theorem).

Proof of Proposition 1. Suppose that Conjecture 2 holds for k + 3. Let q_1 and q_2 be Albert forms over F and let π_1 and π_2 be two k-fold Pfister forms over F ($k \ge 0$) such that $q_1 \otimes \pi_1 \equiv q_2 \otimes \pi_2 \mod I^{k+3}F$ and such that $q_i \otimes \pi_i$ is anisotropic for i = 1, 2.

First, we note that we may assume $\pi_1 = \pi_2$ (cf. the remarks following Conjecture 5.1 in [I]). We denote this k-fold Pfister form by π . Since $q_i \otimes \pi \in I^{k+2}F$, we can scale q_i (and thus $q_i \otimes \pi$) without changing the equivalence mod $I^{k+3}F$, and we may thus assume that $q_i \cong \langle 1 \rangle \perp q'_i$, dim $q'_i = 5$ for i = 1, 2. This yields $q'_1 \otimes \pi \equiv q'_2 \otimes \pi \mod I^{k+3}F$.

In particular, $\pi \otimes (q'_1 \perp -q'_2)$ is a form of dimension $2^k (2^3 + 2) = 2^{k+3} + 2^{k+1}$ in $I^{k+3}F$. By Conjecture 2, $\pi \otimes (q'_1 \perp -q'_2)$ is isotropic. In particular, there exists $x \in F^*$ such that x is represented by both $\pi \otimes q'_1$ and $\pi \otimes q'_2$. Using the multiplicativity of Pfister forms (cf. [EL, Theorem 1.4]), there exist 4dimensional forms q''_i , i = 1, 2, such that $\pi \otimes q'_i \cong \pi \otimes (\langle x \rangle \perp q''_i)$.

From this, it follows readily that $\pi \otimes q_1'' \equiv \pi \otimes q_2''$ mod $I^{k+3}F$. Note that $\dim(\pi \otimes q_i'') = 2^{k+2}$, so that $\pi \otimes q_1''$ and $\pi \otimes q_2''$ are (anisotropic) half-neighbors. As a consequence, $\pi \otimes q_1''$ becomes isotropic over the function field of $\pi \otimes q_2''$ (see, e.g., [H 3, Corollary 2.6] or [I, Lemma 3.3]). By [H 1, Theorem 1.4], this

DOCUMENTA MATHEMATICA 4 (1999) 61-64

implies that $\pi \otimes q_1''$ and $\pi \otimes q_2''$ are similar, so that there exists some $y \in F^*$ such that $\pi \otimes q_1'' \cong y\pi \otimes q_2''$. Thus, we obtain

$\pi\otimes q_1$	\equiv	$\pi\otimes \langle 1,x angle \perp \pi\otimes q_1''$	$\operatorname{mod} I^{k+3}F$
	Ξ	$\pi\otimes q_2$	$\operatorname{mod} I^{k+3}F$
	\equiv	$y\pi\otimes q_2$	$\operatorname{mod} I^{k+3}F$
	≡	$y\pi\otimes \langle 1,x angle \perp y\pi\otimes q_2''$	$\operatorname{mod} I^{k+3}F$
	Ξ	$y\pi\otimes\langle 1,x angle\perp\pi\otimes q_1''$	$\operatorname{mod} I^{k+3}F$

and hence $\pi \otimes \langle 1, x \rangle \equiv y \pi \otimes \langle 1, x \rangle \mod I^{k+3}F$. Now $\dim(\pi \otimes \langle 1, x \rangle) = 2^{k+1}$, and the Arason-Pfister Hauptsatz therefore implies that $\pi \otimes \langle 1, x \rangle \cong y \pi \otimes \langle 1, x \rangle$. We conclude that

$$\begin{aligned} \pi \otimes q_1 &\cong & \pi \otimes \langle 1, x \rangle \perp \pi \otimes q_1'' \\ &\cong & y\pi \otimes \langle 1, x \rangle \perp y\pi \otimes q_2'' \\ &\cong & y\pi \otimes q_2 . \end{aligned}$$

Note that we didn't really make use of the fact that q_1 and q_2 are Albert forms. However, it is not difficult to show that if π is a k-fold Pfister form and $q = q' \perp \langle a \rangle \in IF$ such that $\pi \otimes q \in I^{k+2}F$, then if one chooses $b \in F^*$ such that $\tilde{q} = q' \perp \langle b \rangle \in I^2F$, one has $\pi \otimes q \cong \pi \otimes \tilde{q}$. So what is essential is the fact that $\pi \otimes q_i$ is in $I^{k+2}F$, in which case we may as well assume by what we just mentioned that q_i is an Albert form.

In the proof of Conjecture 2 for n = 4 in [H 2], one makes use of a certain property PD_2 . It turns out that this property can be used to establish Conjecture 1 for k = 1 without invoking Conjecture 2 for n = 4. Let us recall the general definition of property PD_n .

DEFINITION Let *n* be an integer ≥ 1 . The field *F* is said to have the Pfister decomposition property for Pfister forms of fold $\leq n$, PD_n for short, if for each m $(1 \leq m \leq n)$, for each anisotropic $\pi \in P_{m-1}F$, for each $r \in \dot{F}$, and each anisotropic $\varphi \in \pi WF$, there exist forms σ and τ over *F* such that for $\rho := \pi \otimes \langle \langle r \rangle \rangle$ one has $\varphi \cong \pi \otimes \sigma \perp \rho \otimes \tau$ and $(\varphi_{F(\rho)})_{an} \cong (\pi \otimes \sigma)_{F(\rho)}$.

PROPOSITION 2 Suppose that F has PD_n for some $n \ge 1$. Then Conjecture 1 holds for k = n - 1.

Proof. Suppose that F has PD_n for n = k + 1. As in the previous proof, we may assume that we are in the situation where $\pi \otimes q_1 \equiv \pi \otimes q_2 \mod I^{k+3}F$ with Albert forms q_i , i = 1, 2, a k-fold Pfister form π and with $\pi \otimes q_i$ being anisotropic for i = 1, 2. After scaling, we may assume that $q_1 \cong \langle 1, -r \rangle \perp q'_1$ for some $r \in F^*$. It follows that $\pi \otimes q_1$ contains the subform $\rho = \pi \otimes \langle \langle r \rangle \rangle$. In particular, $\pi \otimes q_1$ becomes isotropic over the function field $F(\rho)$, and thus

In particular, $\pi \otimes q_1$ becomes isotropic over the function field $F(\rho)$, and thus $\pi \otimes q_2$ also becomes isotropic over $F(\rho)$ (cf. [I, Theorem 4.3]). Property PD_{k+1} then implies that $\pi \otimes q_2$ contains a subform similar to ρ , and since we may scale

Documenta Mathematica 4 (1999) 61-64

 $\pi \otimes q_2 \in I^{k+2}F$ without changing the equivalence mod $I^{k+3}F$, we may assume

that $\pi \otimes q_2 \cong \pi \otimes (\langle 1, -r \rangle \perp q'_2)$ for some 4-dimensional form q'_2 . It follows that $\pi \otimes q'_1 \equiv \pi \otimes q'_2 \mod I^{k+3}F$. As in the proof of Proposition 1, this implies that $\pi \otimes q'_1$ and $\pi \otimes q'_2$ are similar, and thus that $\pi \otimes q_1$ and $\pi \otimes q_2$ are also similar.

It was proved by Rost that each field has property PD_2 (see [H2, Lemma 2.6]). Again, we can conclude that Conjecture 1 holds for $k \leq 1$, this time by invoking PD_2 .

In the case n > 3, we do not know whether PD_n holds for all fields nor whether PD_n for a field F implies that Conjecture 2 holds for F for n+2 (or vice versa).

References

- ELMAN, R.; LAM, T.Y.: Pfister forms and K-theory of fields. J. Alge-[EL]bra 23 (1972), 181–213.
- [H 1] HOFFMANN, D.W.: On quadratic forms of height 2 and a theorem of Wadsworth. Trans. Amer. Math. Soc. 348 (1996), 3267-3281.
- HOFFMANN, D.W.: On the dimensions of anisotropic quadratic forms [H 2]in I^4 . Invent. Math. 131 (1998), 185–198.
- [H 3]HOFFMANN, D.W.: Similarity of quadratic forms and half-neighbors. J. Algebra 204 (1998), 255–280.
- [I]IZHBOLDIN, O.T.: Motivic equivalence of quadratic forms. Doc. Math. J. DMV 3 (1998), 341–351.
- [L]LAM, T.Y.: Fields of u-invariant 6 after A. Merkurjev. Israel Math. Conf. Proc. Vol. 1: Ring Theory 1989 (in honor of S.A. Amitsur) (ed. L. Rowen). pp.12–31. Jerusalem: Weizmann Science Press 1989.
- MAMMONE, P.; SHAPIRO, D.B.: The Albert quadratic form for an [MS] algebra of degree four. Proc. Amer. Math. Soc. 105 (1989), 525–530.

Detlev W. Hoffmann Équipe de Mathématiques UMR 6623 du CNRS Université de Franche-Comté 16, route de Gray 25030 Besançon Cedex, France detlev@math.univ-fcomte.fr

DOCUMENTA MATHEMATICA 4 (1999) 61-64