# On a Conjecture of Izhboldin on Similarity of Quadratic Forms 

Detley W. Hoffmann ${ }^{1}$<br>Received: January 4, 1999<br>Communicated by Ulf Rehmann


#### Abstract

In his paper Motivic equivalence of quadratic forms, Izhboldin modifies a conjecture of Lam and asks whether two quadratic forms, each of which isomorphic to the product of an Albert form and a $k$-fold Pfister form, are similar provided they are equivalent modulo $I^{k+3}$. We relate this conjecture to another conjecture on the dimensions of anisotropic forms in $I^{k+3}$. As a consequence, we obtain that Izhboldin's conjecture is true for $k \leq 1$.


1991 Mathematics Subject Classification: Primary 11E81; Secondary 11E04.
Keywords and Phrases: Quadratic form, Pfister form, Albert form, similarity of quadratic forms.

In what follows, we will adhere to the same terminology and notations used in Izhboldin's article [I] mentioned in the abstract. In particular, if two quadratic forms $\phi$ and $\psi$ are similar, we will write $\phi \sim \psi$.
Let $F$ be a field of characteristic $\neq 2$. Recall that an Albert form $\alpha$ over $F$ is a 6 -dimensional quadratic form over $F$ with signed discriminant $1 \in F^{*} / F^{* 2}$ (i.e. $\left.\alpha \in I^{2} F\right)$, and an $n$-fold Pfister form over $F$ is a form of type $\left\langle\left\langle a_{1}, \cdots, a_{n}\right\rangle\right\rangle:=$ $\left\langle 1,-a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1,-a_{n}\right\rangle, a_{i} \in F^{*}$. In his paper [I], Izhboldin states the following conjecture:

Conjecture 1 (Cf. Conjecture 5.1 in [I].) Let $q_{1}$ and $q_{2}$ be Albert forms over $F$ and let $\pi_{1}$ and $\pi_{2}$ be two $k$-fold Pfister forms over $F(k \geq 0)$ such that $q_{i} \otimes \pi_{i}$, $i=1,2$ is anisotropic and $q_{1} \otimes \pi_{1} \equiv q_{2} \otimes \pi_{2} \bmod I^{k+3} F$. Then $q_{1} \otimes \pi_{1} \sim q_{2} \otimes \pi_{2}$.

[^0]In fact, this conjecture is a special case of a question asked by Lam [L, (6.6)]. Lam's original question was as follows. Suppose $\sigma_{i}, \rho_{i} \in P_{n} F, i=1,2$, and let $\phi_{i}=\left(\sigma_{i} \perp-\rho_{i}\right)_{\text {an }}$ be the anisotropic part of $\sigma_{i} \perp-\rho_{i}$. If $\phi_{1} \equiv \phi_{2} \bmod I^{n+1} F$, does it then follow that $\phi_{1} \sim \phi_{2}$ ? By a result of Elman and Lam [EL, Theorem 4.5], it is known that $\operatorname{dim} \phi_{i} \in\left\{2^{n+1}-2^{m}, 1 \leq m \leq n+1\right\}$, and that if $\operatorname{dim} \phi_{i}=2^{n+1}-2^{m}$, then $\rho_{i}$ and $\sigma_{i}$ are $(m-1)$-linked, i.e. there exists an ( $m-1$ )-fold Pfister form which divides both $\rho_{i}$ and $\sigma_{i}$. It is an easy exercise to show that Lam's question has a positive answer if $\operatorname{dim} \phi_{1}$ (or $\operatorname{dim} \phi_{2}$ ) equals 0 of $2^{n}$ (i.e. $m=n+1$ or $m=n$ ). In [I, Section 4], Izhboldin constructs counterexamples with $\operatorname{dim} \phi_{1}$ (or $\operatorname{dim} \phi_{2}$ ) equal to $2^{n+1}-2^{m}$ with $1 \leq m \leq n-2$. The only remaining case $m=n-1$ boils down to Conjecture 1 above. It turns out that this conjecture would have a positive answer if another wellknown conjecture on quadratic forms were true, this other conjecture being

Conjecture 2 Let $n \geq 2$ and let $q$ be an anisotropic form in $I^{n} F$. If $\operatorname{dim} q>$ $2^{n}$ then $\operatorname{dim} q \geq 2^{n}+2^{n-1}$.

Proposition 1 Conjecture 2 for $n=k+3$ implies Conjecture 1 for $k$.
It was shown in [H2] that Conjecture 2 holds for $n \leq 4$. As a consequence, we have

Corollary Conjecture 1 holds for $k \leq 1$.
Note that for $k=0$ this is essentially Jacobson's theorem saying that two Albert forms are similar if and only if their associated biquaternion algebras are isomorphic (see [MS] for a quadratic form-theoretic proof of Jacobson's theorem).
Proof of Proposition 1. Suppose that Conjecture 2 holds for $k+3$. Let $q_{1}$ and $q_{2}$ be Albert forms over $F$ and let $\pi_{1}$ and $\pi_{2}$ be two $k$-fold Pfister forms over $F(k \geq 0)$ such that $q_{1} \otimes \pi_{1} \equiv q_{2} \otimes \pi_{2} \bmod I^{k+3} F$ and such that $q_{i} \otimes \pi_{i}$ is anisotropic for $i=1,2$.
First, we note that we may assume $\pi_{1}=\pi_{2}$ (cf. the remarks following Conjecture 5.1 in $[\mathrm{I}]$ ). We denote this $k$-fold Pfister form by $\pi$. Since $q_{i} \otimes \pi \in I^{k+2} F$, we can scale $q_{i}$ (and thus $q_{i} \otimes \pi$ ) without changing the equivalence $\bmod I^{k+3} F$, and we may thus assume that $q_{i} \cong\langle 1\rangle \perp q_{i}^{\prime}$, $\operatorname{dim} q_{i}^{\prime}=5$ for $i=1,2$. This yields $q_{1}^{\prime} \otimes \pi \equiv q_{2}^{\prime} \otimes \pi \bmod I^{k+3} F$.
In particular, $\pi \otimes\left(q_{1}^{\prime} \perp-q_{2}^{\prime}\right)$ is a form of dimension $2^{k}\left(2^{3}+2\right)=2^{k+3}+2^{k+1}$ in $I^{k+3} F$. By Conjecture $2, \pi \otimes\left(q_{1}^{\prime} \perp-q_{2}^{\prime}\right)$ is isotropic. In particular, there exists $x \in F^{*}$ such that $x$ is represented by both $\pi \otimes q_{1}^{\prime}$ and $\pi \otimes q_{2}^{\prime}$. Using the multiplicativity of Pfister forms (cf. [EL, Theorem 1.4]), there exist 4dimensional forms $q_{i}^{\prime \prime}, i=1,2$, such that $\pi \otimes q_{i}^{\prime} \cong \pi \otimes\left(\langle x\rangle \perp q_{i}^{\prime \prime}\right)$.
From this, it follows readily that $\pi \otimes q_{1}^{\prime \prime} \equiv \pi \otimes q_{2}^{\prime \prime} \bmod I^{k+3} F$. Note that $\operatorname{dim}\left(\pi \otimes q_{i}^{\prime \prime}\right)=2^{k+2}$, so that $\pi \otimes q_{1}^{\prime \prime}$ and $\pi \otimes q_{2}^{\prime \prime}$ are (anisotropic) half-neighbors. As a consequence, $\pi \otimes q_{1}^{\prime \prime}$ becomes isotropic over the function field of $\pi \otimes q_{2}^{\prime \prime}$ (see, e.g., [H 3, Corollary 2.6] or [I, Lemma 3.3]). By [H 1, Theorem 1.4], this
implies that $\pi \otimes q_{1}^{\prime \prime}$ and $\pi \otimes q_{2}^{\prime \prime}$ are similar, so that there exists some $y \in F^{*}$ such that $\pi \otimes q_{1}^{\prime \prime} \cong y \pi \otimes q_{2}^{\prime \prime}$. Thus, we obtain

$$
\begin{array}{rlr}
\pi \otimes q_{1} & \equiv \pi \otimes\langle 1, x\rangle \perp \pi \otimes q_{1}^{\prime \prime} & \bmod I^{k+3} F \\
& \equiv \pi \otimes q_{2} & \bmod I^{k+3} F \\
& \equiv y \pi \otimes q_{2} & \bmod I^{k+3} F \\
& \equiv y \pi \otimes\langle 1, x\rangle \perp y \pi \otimes q_{2}^{\prime \prime} & \bmod I^{k+3} F \\
& \equiv y \pi \otimes\langle 1, x\rangle \perp \pi \otimes q_{1}^{\prime \prime} & \bmod I^{k+3} F
\end{array}
$$

and hence $\pi \otimes\langle 1, x\rangle \equiv y \pi \otimes\langle 1, x\rangle \bmod I^{k+3} F$. Now $\operatorname{dim}(\pi \otimes\langle 1, x\rangle)=2^{k+1}$, and the Arason-Pfister Hauptsatz therefore implies that $\pi \otimes\langle 1, x\rangle \cong y \pi \otimes\langle 1, x\rangle$. We conclude that

$$
\begin{aligned}
\pi \otimes q_{1} & \cong \pi \otimes\langle 1, x\rangle \perp \pi \otimes q_{1}^{\prime \prime} \\
& \cong y \pi \otimes\langle 1, x\rangle \perp y \pi \otimes q_{2}^{\prime \prime} \\
& \cong y \pi \otimes q_{2}
\end{aligned}
$$

Note that we didn't really make use of the fact that $q_{1}$ and $q_{2}$ are Albert forms. However, it is not difficult to show that if $\pi$ is a $k$-fold Pfister form and $q=q^{\prime} \perp\langle a\rangle \in I F$ such that $\pi \otimes q \in I^{k+2} F$, then if one chooses $b \in F^{*}$ such that $\tilde{q}=q^{\prime} \perp\langle b\rangle \in I^{2} F$, one has $\pi \otimes q \cong \pi \otimes \tilde{q}$. So what is essential is the fact that $\pi \otimes q_{i}$ is in $I^{k+2} F$, in which case we may as well assume by what we just mentioned that $q_{i}$ is an Albert form.
In the proof of Conjecture 2 for $n=4$ in [H2], one makes use of a certain property $P D_{2}$. It turns out that this property can be used to establish Conjecture 1 for $k=1$ without invoking Conjecture 2 for $n=4$. Let us recall the general definition of property $P D_{n}$.

Definition Let $n$ be an integer $\geq 1$. The field $F$ is said to have the Pfister decomposition property for Pfister forms of fold $\leq n, P D_{n}$ for short, if for each $m(1 \leq m \leq n)$, for each anisotropic $\pi \in P_{m-1} F$, for each $r \in \dot{F}$, and each anisotropic $\varphi \in \pi W F$, there exist forms $\sigma$ and $\tau$ over $F$ such that for $\rho:=\pi \otimes\langle\langle r\rangle\rangle$ one has $\varphi \cong \pi \otimes \sigma \perp \rho \otimes \tau$ and $\left(\varphi_{F(\rho)}\right)_{\text {an }} \cong(\pi \otimes \sigma)_{F(\rho)}$.

Proposition 2 Suppose that $F$ has $P D_{n}$ for some $n \geq 1$. Then Conjecture 1 holds for $k=n-1$.

Proof. Suppose that $F$ has $P D_{n}$ for $n=k+1$. As in the previous proof, we may assume that we are in the situation where $\pi \otimes q_{1} \equiv \pi \otimes q_{2} \bmod I^{k+3} F$ with Albert forms $q_{i}, i=1,2$, a $k$-fold Pfister form $\pi$ and with $\pi \otimes q_{i}$ being anisotropic for $i=1,2$. After scaling, we may assume that $q_{1} \cong\langle 1,-r\rangle \perp q_{1}^{\prime}$ for some $r \in F^{*}$. It follows that $\pi \otimes q_{1}$ contains the subform $\rho=\pi \otimes\langle\langle r\rangle\rangle$.
In particular, $\pi \otimes q_{1}$ becomes isotropic over the function field $F(\rho)$, and thus $\pi \otimes q_{2}$ also becomes isotropic over $F(\rho)$ (cf. [I, Theorem 4.3]). Property $P D_{k+1}$ then implies that $\pi \otimes q_{2}$ contains a subform similar to $\rho$, and since we may scale
$\pi \otimes q_{2} \in I^{k+2} F$ without changing the equivalence $\bmod I^{k+3} F$, we may assume that $\pi \otimes q_{2} \cong \pi \otimes\left(\langle 1,-r\rangle \perp q_{2}^{\prime}\right)$ for some 4-dimensional form $q_{2}^{\prime}$.
It follows that $\pi \otimes q_{1}^{\prime} \equiv \pi \otimes q_{2}^{\prime} \bmod I^{k+3} F$. As in the proof of Proposition 1, this implies that $\pi \otimes q_{1}^{\prime}$ and $\pi \otimes q_{2}^{\prime}$ are similar, and thus that $\pi \otimes q_{1}$ and $\pi \otimes q_{2}$ are also similar.

It was proved by Rost that each field has property $P D_{2}$ (see [H 2, Lemma 2.6]). Again, we can conclude that Conjecture 1 holds for $k \leq 1$, this time by invoking $P D_{2}$.
In the case $n \geq 3$, we do not know whether $P D_{n}$ holds for all fields nor whether $P D_{n}$ for a field $F$ implies that Conjecture 2 holds for $F$ for $n+2$ (or vice versa).

## References

[EL] Elman, R.; Lam, T.Y.: Pfister forms and K-theory of fields. J. Algebra 23 (1972), 181-213.
[H 1] Hoffmann, D.W.: On quadratic forms of height 2 and a theorem of Wadsworth. Trans. Amer. Math. Soc. 348 (1996), 3267-3281.
[H 2] Hoffmann, D.W.: On the dimensions of anisotropic quadratic forms in $I^{4}$. Invent. Math. 131 (1998), 185-198.
[H3] Hoffmann, D.W.: Similarity of quadratic forms and half-neighbors. J. Algebra 204 (1998), 255-280.
[I] Izhboldin, O.T.: Motivic equivalence of quadratic forms. Doc. Math. J. DMV 3 (1998), 341-351.
[L] Lam, T.Y.: Fields of u-invariant 6 after A. Merkurjev. Israel Math. Conf. Proc. Vol. 1: Ring Theory 1989 (in honor of S.A. Amitsur) (ed. L. Rowen). pp.12-31. Jerusalem: Weizmann Science Press 1989.
[MS] Mammone, P.; Shapiro, D.B.: The Albert quadratic form for an algebra of degree four. Proc. Amer. Math. Soc. 105 (1989), 525-530.

Detlev W. Hoffmann
Équipe de Mathématiques
UMR 6623 du CNRS
Université de Franche-Comté 16, route de Gray 25030 Besançon Cedex, France detlev@math.univ-fcomte.fr


[^0]:    ${ }^{1}$ This research has been carried out in the framework of TMR Network ERB FMRX CT-97-0107 "Algebraic K-Theory, Linear Algebraic Groups and Related Structures."

