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Abstract. We develop and test a finite difference scheme for the
Vlasov-Manev Equation in one space and one velocity dimension. The
Manev correction to the Newtonian potential produces visible quali-
tative differences in the behaviour of stellar systems; the most notable
effect observed in this paper is a stabilisation of the separate identities
of two Maxwellian concentrations at different locations.
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1 Introduction

We are concerned with the numerical solution of the Vlasov equation with
a Manev-type correction to the potential in 1 + 1 (one space, one velocity)
dimensions. In the three-dimensional case, the Newtonian potential is changed
to the “Manev” potential

U(|x − y|) = − γ

|x − y| −
δ

|x − y|2 . (1)

The correction −δ/|x − y|2 was introduced by Manev in a series of papers
[7],[8],[9], [10] in the 1920s in an attempt to find a semiclassical approxima-
tion to the relativistic central force problem. For γ the universal gravitational
constant and δ = 3γ2/c2, where c is the speed of light, this correction gives a
qualitatively accurate prediction of the precession of the perihelion of Mercury.
Manev’s work was the main motivation for the recent paper [2], in which the
authors discuss the properties of the corresponding stellar dynamic equation.
Notably, it is shown that the Cauchy problem for this equation does not, in
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general, admit global solutions (the corresponding result for the classical stel-
lar dynamic equation holds only if the number of space dimensions is larger
than or equal to 4, see, e.g., [4]). This means that a stellar system driven by
Manev forces will typically develop features where the spatial density ρ loses
smoothness such that the Manev force term, i.e., the Riesz transform of ρ

E2[ρ](t, x) := −δ

∫

x − y

|x − y|4 ρ(t, y) dy

diverges. Possible reasons for this are the local formation of singularities in
ρ (“concentrations”) or in ∇xρ (e.g., “shock waves”). As it is well known
that such singularities do not occur in solutions of the classical stellar dynamic
equation (see [4]), the Manev correction may be of physical relevance in mod-
elling the evolution of large stellar systems like galaxies, globular clusters or
interstellar dust clouds.
We remark that an equation with γ = 0 and δ > 0 (referred to as the “pure”
Manev case in [2]) possesses an interesting “projective” invariance in addition
to the standard translation, scaling and Galilei invariances. Specifically, as
shown in [2], if f(t, x, v) is a solution of the pure Manev equation

∂tf + v · ∇xf + E2[ρ] · ∇vf = 0

and if for some a > 0, τ = t/(1 + at), y = x/(1 + at) and w = (1 + at)v − ax,
then

F (τ, y, w) := f(t, x, v)

solves

∂τF + w · ∇yF + E2[ρ̃] · ∇wF = 0

with ρ̃ =
∫

F dw. This “projective” invariance, described in the context of
the corresponding N-body problem by Bobylev and Ibragimov [1], may be
of significance (and use) in regions where ρ or ∇ρ are large and the Manev
correction dominates the Newtonian forces.
As also discussed in [2], Boltzmann collision terms are dimensionally of the
same order as the Manev force term and should therefore be included in a
proper model. However, the present study aims at the identification of effects
which can be attributed to the Manev correction alone; we therefore omit
Boltzmann collision terms and any other conceivable correction (such as, e.g.,
Smoluchowski type coagulation terms).
It is tempting to try a particle or particle-in-cell scheme for this equation, as
is common for the Vlasov-Poisson (VP) system. The most advanced scheme of
this type for VP is due to Greengard and Rokhlin [5]. We experimented with
particle schemes for the Vlasov-Manev equation and found that they performed
poorly due to the strong singularity of the Manev correction at very short range.
Specifically, particles could be accelerated to extreme velocities over one time
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step, an effect which can also happen for VP but which is rare enough to cause
no difficulties. It should also be an insignificant effect for the Vlasov-Manev
equation while the densities are smooth (this follows from the existence and
uniqueness proof shown in [6]), so a good numerical method should reflect this;
but particle methods do not. Of course, one could mollify the Manev potential
in order to avoid the difficulty, but unless the mollification parameter is chosen
with great care, this may obfuscate the effects of the Manev correction relative
to the Newtonian forces. It is for these reasons that we decided to avoid particle
methods altogether.

The main objective of this paper is therefore the construction and testing of a
difference scheme for the Vlasov-Manev (VM) equation in one-dimensional ge-
ometry; effective generalisation for multidimensional cases is planned for future
work.

Our paper is organised as follows. In Section 2, we describe the VM equation
and summarise its properties. In Section 3, a difference scheme for VM is
derived, and its properties are formulated and proved. Section 4 contains a few
informative numerical examples.

2 The Vlasov-Manev equation and its properties

The one-dimensional Vlasov-Manev equation is associated with the potential

U(|x − y|) = −γ|x − y| − δ ln |x − y|.

This potential arises from (1) by assuming homogeneity of the stellar system
in the y− and z− directions, and the Vlasov-Manev equation can be written
in the form

ft + v fx + E fv = 0, (2)

where f = f(t, x, v) : R+×Rx×Rv → R+ is a non-negative distribution density
function, t ≥ 0 is the time variable, x is the space variable and v is the velocity
variable. The force function E = E(t, x) is defined as follows:

E(t, x) = −γ

∫

Ry

x − y

|x − y|ρ(t, y)dy − δ

∫

Ry

x − y

|x − y|2 ρ(t, y)dy, (3)

ρ(t, x) =

∫

Rv

f(t, x, v)dv.

or E = −∇U , with

U(t, x) = −γ

∫

|x − y|ρ(t, y) dy − δ

∫

ln |x − y|ρ(t, y) dy.
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Here, ρ denotes the spatial density. The non-negative constants γ and δ are
given, and typically γ >> δ. The equation (2) is complemented with the initial
condition

f(0, x, v) = f0(x, v) ≥ 0. (4)

We summarise the main properties of this equation.

1. Conservation of non-negativity

if f0(x, v) ≥ 0, then for t > 0 f(t, x, v) ≥ 0.

2. Conservation of mass

m(t) =

∫

Rx

∫

Rv

f(t, x, v)dvdx = m(0) =

∫

Rx

∫

Rv

f0(x, v)dvdx.

3. The continuity equation reads

ρt(t, x) + jx(t, x) = 0, (5)

j(t, x) =

∫

Rv

v f(t, x, v)dv.

4. Conservation of energy

e(t) =
1

2

∫

Rv

∫

Rx

v2f(t, x, v)dxdv

− 1

2

∫

Rx

∫

Ry

(γ|x − y| + δ ln |x − y|)ρ(t, x)ρ(t, y)dxdy = e(0).

5. Second derivative of the moment of inertia

d2

dt2

∫

Rx

x2ρ(t, x)dx = 2

∫

Rx

∫

Rv

v2f(t, x, v) dv dx

− γ

∫

Rx

∫

Ry

|x − y|ρ(t, x)ρ(t, y)dy dx − δ m2(0).
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In the three-dimensional case and for γ = 0, the last identity is

d2

dt2

∫

x2ρ(t, x) dx = 4e(0),

and this can be used to show non-global existence (for γ = 0) whenever the ini-
tial energy is negative. This argument is not applicable in the one-dimensional
case under consideration; it may well be that solutions in this situation always
exist globally.

3 A difference scheme

We begin our numerical study of the initial value problem (2),(4) with the
discretisation of the physical and velocity spaces. First, we restrict the whole
space Rx × Rv to a rectangle

QL = {(x, v) ∈ Rx × Rv, −Lx ≤ x ≤ Lx, −Lv ≤ v ≤ Lv} ,

and assume that f(t, x, v) has its support with respect to x and v in the box
QL. We can then compute the force field by integrating over QL alone; later,
we shall act as if f is extended periodically in x and v.
The next step is the discretisation of the rectangle QL using the nodes

(xi, vj) = (−Lx + i hx,−Lv + j hv), (i, j) ∈ Qn

hx =
2Lx

nx
, nx ∈ N, and nx is even,

hv =
2Lv

nv
, nv ∈ N, and nv is even,

Qn = {(i, j) ∈ Z
2, 0 ≤ i ≤ nx, 0 ≤ j ≤ nv}.

Furthermore, we introduce the index set Q̃n as a subset of all vectors in Qn

excluding those which have the form (0, j) or (i, 0).
Let τ > 0 be the time discretisation parameter, and tk = k τ, k = 0, 1, . . . . The
function f(tk, x, v) will now be represented by a vector fk ∈ R

n, n = nx nv

with components

fk
l = fk

i,j ≈ f(tk, xi, vj), (i, j) ∈ Q̃n. (6)

Here, l denotes the global index of the vector f0, given by

l = (j − 1)nx + i, l = 1, . . . , n.
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Note that (6) defines the vector fk for all (i, j) ∈ Qn by the assumed periodic
extension of f .
It is also convenient to use the matrix form of the unknown function:

F k ∈ R
nx×nv .

The numerical density ρk
i ≈ ρ(tk, xi) can be computed using the midpoint

integration rule

ρk
i = hv

nv
∑

j=1

fk
i,j, i = 1, . . . , nx,

ρk
0 = ρk

nx
, k = 0, 1, . . . ,

or in the matrix form

ρk = hvF
kenv

, (7)

where ρk ∈ R
nx and env

= (1, . . . , 1)T ∈ R
nv .

The total mass of the system is

mk = hx

nx
∑

i=1

ρk
i

and can be computed as follows:

mk = hx

(

ρk, enx

)

= hx hv

(

fk, en

)

= hx hv

(

F kenv
, enx

)

. (8)

The next and most involved step is the numerical computation of the force due
to (3). We take advantage of the fact that it is sufficient to integrate over one
spatial period in (3), because what is really done is treat the case where the
support of ρ stays inside such a period.
Using the notation

P (x − y) = −γ
x − y

|x − y| − δ
x − y

|x − y|2

and the piecewise representation of the density ρ we compute

E(tk, xi) ≈ Ek
i =

nx
∑

j=1

ρk
j Gij , (9)

Ek = Gρk, Ek ∈ R
nx , G ∈ R

nx×nx . (10)
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The elements of the matrix G are defined by

Gij =

∫ xj+hx/2

xj−hx/2

P (xi − y)dy. (11)

Direct computation of the force via (9) will require O(n2
x) arithmetical opera-

tions in each time step and is therefore an “expensive” step. The combination
of the special form of the matrix G and uniform discretisation leads to a special,
Toeplitz form of the matrix G.

Lemma 1 The matrix G defined in (11) is a skew-symmetric Toeplitz matrix.

Proof:
A matrix G is Toeplitz if

Gi+1,j+1 = Gij , i, j = 1, . . . , nx − 1.

The analytical integration in (11) leads to

Gij = γ hx − δ ln
j − i − 1/2

j − i + 1/2
, j > i.

For j < i we get

Gij = −Gji

because of (11).

The matrix G is therefore uniquely defined by its first row. The element
G11 is a strongly singular integral which should be considered as a Cauchy
integral

G11 = lim
ε→0

(

∫ x1−ε

x1−hx/2

P (x1 − y)dy +

∫ x1+hx/2

x1+ε

P (x1 − y)dy

)

.

Using the substitution y = −y′ + 2x1 in the second integral and the obvious
property

P (x − y) = −P (y − x)

we obtain
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∫ x1+hx/2

x1+ε

P (x1 − y)dy = −
∫ x1−hx/2

x1−ε

P (x1 + y′ − 2x1)dy′

=

∫ x1−ε

x1−hx/2

P (y′ − x1)dy′

= −
∫ x1−ε

x1−hx/2

P (x1 − y′)dy′,

and therefore

G11 = 0.

Remark 1 The multiplication of a Toeplitz matrix with a vector can be realised
efficiently using the following well known trick. The matrix G can be considered
as a left-upper block of the circulant matrix G̃ of the dimension m which is a
power of two:

G̃ =

(

G G12

G21 G22

)

,

The matrix G̃ has the following additional property

G̃i,m = G̃i+1,1, i = 1, . . . , m − 1

and its first row is defined as

(G11, . . . , G1,nx
, 0, . . . , 0,−Gnx,1,−Gnx−1,1, . . . ,−G2,1) ∈ R

1×m. (12)

The dimension m of the matrix G̃ is the next power of two for the number
2 nx−1 and the number of zeros in (12) is equal to m−2nx +1. It is obviously
true that 2 nx − 1 < m < 4 nx − 4.
Each circulant matrix C of the dimension m can be represented as

C = m−1Fm Λ F ∗

m,

where Fm denotes the matrix of the Discrete Fourier Transform (DFT) of the
dimension m. The diagonal matrix Λ contains the eigenvalues of C and can be
computed as

Λ = diag(λ1, . . . , λm) = diag(FmCT e1), (13)

e.g. as the DFT of the first row of the matrix C.
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The computation of the force due to (10) therefore reduces to one DFT in a
preparatory step for the computation of the eigenvalues of the matrix G̃ using
(13) (the matrix G̃ remains fixed during the time steps), and then to two DFTs
and one multiplication of the diagonal matrix n−1

x Λ with a vector. If m is a
power of two then the computation of the force only requires O(nx log2(nx))
arithmetical operations using the Fast Fourier Transform (FFT) [3],[13] and is
therefore much “cheaper” than the computation of the density via (7) which
requires O(n) = O(nx nv) arithmetical operations. The number of arithmetical
operations for the multiplication

G̃ρ̃k =

(

G G12

G21 G22

)(

ρk

0

)

=

(

Gρk

G21 ρk

)

(14)

is then of the same order O(nx log2(nx)).

Remark 2 In a two- (d = 2) or three-dimensional case (d = 3) we will obtain
a circulant-block matrix [12]. Such matrices can again be efficiently multi-
plied with a vector using the FFT. The amount of arithmetical work would be
O(nd

x log2(nx)) in this case.

The next step in the numerical procedure we are describing is the discretisation
of the equation (2) using a semi-implicit difference scheme. At the given time
level k we compute the density ρk via (7) and the force Ek via (10) or (14),
and then we use the following “upwind” approximation for the derivatives in
(2):

ft(tk, xi, vj) ≈ fk
t,ij =

fk+1

ij − fk
ij

τ
, (15)

v fx(tk, xi, vj) ≈ vj fk+1

x,ij =











vj

fk+1

ij − fk+1

i−1,j

hx
, vj ≥ 0

vj
fk+1

i+1,j − fk+1

ij

hx
, vj < 0

, (16)

E fv(tk, xi, vj) ≈ Ek
i fk+1

v,ij =











Ek
i

fk+1

ij − fk+1

i,j−1

hv
, Ek

i ≥ 0

Ek
i

fk+1

i,j+1 − fk+1

ij

hv
, Ek

i < 0

. (17)

The resulting difference scheme can now be written in the form

fk
t,ij + vj fk+1

x,ij + Ek
i fk+1

v,ij = 0, i, j ∈ Q̃n, k = 0, 1, . . . . (18)

The initial values f0
ij = f0(xi, vj) are given. After multiplication by τ , (18) is

a system of linear equations which can be written in the matrix form
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Ak fk+1 = fk, Ak ∈ R
n×n, fk, fk+1 ∈ R

n, n = nx nv.

The elements of the matrix Ak using the global numbering with l = nx(j−1)+i
are of the form

(Ak)ll = 1 +
τ

hx
|vj | +

τ

hv
|Ek

i |, (19)

(Ak)l,l−1
=

{

− τ
hx

|vj | , vj ≥ 0

0 , vj < 0
, (20)

(Ak)l,l+1
=

{

0 , vj ≥ 0
− τ

hx
|vj | , vj < 0 , (21)

(Ak)l,l−nx
=

{

− τ
hv

|Ek
i | , Ek

i ≥ 0

0 , Ek
i < 0

, (22)

(Ak)l,l+nx
=

{

0 , Ek
i ≥ 0

− τ
hv

|Ek
i | , Ek

i < 0 , (23)

l = 1, . . . , n .

All other elements of the matrix Ak are equal to zero, i.e. the matrix Ak is
extremely sparse. Exactly three elements of each row of this matrix are unequal
to zero. In a d−dimensional case this number would be 2d + 1.

Remark 3 If the indices in (15)-(17) or in (20)-(24) are not from the set Q̃n

then we always assume the periodic property (e.g. fk+1

nx+1,j ≡ fk+1

1,j etc.).

The main properties of the difference scheme (18) correspond to the properties
of the matrices Ak, k = 0, . . . .

Lemma 2 The matrix Ak has the following properties

1. Ak is a regular M-matrix,

2. Ak en = en, AT
k en = en,

3. ‖A−1

k ‖2 = 1.

Here ‖A−1

k ‖2 denotes the spectral norm of the matrix A−1

k , i.e. its biggest
singular value.

Documenta Mathematica 4 (1999) 179–201



Difference Scheme for the Vlasov-Manev System 189

Proof:

1. The elements of the matrix Ak fulfil

(Ak)ll > 0, (Ak)lm ≤ 0, l 6= m,
n
∑

m=1

(Ak)lm = 1, l = 1, . . . , n. (24)

By (24), the matrix Ak is strongly diagonal-dominant and therefore a
regular M−matrix.

2. The first property is given trivially in (24). This means that the vector
en is an eigenvector of the matrix Ak and corresponds to the eigenvalue
one. The matrix AT

k has the same eigenvector and the same eigenvalue
because

(

AT
k en

)

l
=

n
∑

m=1

(Ak)ml =

= (Ak)ll + (Ak)l+1,l + (Ak)l−1,l + (Ak)l−nx,l + (Ak)l+nx,l .

Using the representations (l + 1, l) = (l + 1, (l + 1) − 1) and (l − 1, l) =
(l − 1, (l − 1) + 1), the property l ± 1 = (nx − 1)j + (i ± 1) and (20),(21)
we obtain

(Ak)l+1,l + (Ak)l−1,l = − τ

hx
|vj |.

By analogy

(Ak)l−nx,l + (Ak)l+nx,l = − τ

hv
|Ek

i |.

Together with (19) we obtain the required result.

3. The matrix A−1

k is element-wise non-negative, because it is the inverse
of the M−matrix. The spectral norm of the matrix A−1

k is equal to
its largest singular value or to the square root of the largest eigenvalue
of the matrix A−T

k A−1

k . This matrix only has non-negative elements
(as a product of two element-wise non-negative matrices) and the real
eigenvector en only has positive components. Then the corresponding
eigenvalue (Perron-Frobenius theorem) is the largest Perron-eigenvalue
of this matrix. In our case this eigenvalue is equal to one, because of the
properties in 2. Hence the spectral norm of the matrix A−1

k is equal to
one.
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More details concerning M−matrices can be found in [11].
The above lemma enables us to prove some important properties of the differ-
ence scheme

1. Initial step
f0

ij = f0(xi, vj),
2. Time step for k = 0, 1, . . .
2.1 ρk = hv F k env

,
2.2 Ek = Gρk,
2.3 Akfk+1 = fk.

(25)

Corollary 1 The solution of the difference scheme (25) exists for all k =
0, 1 . . . .

Proof: This property follows directly from the regularity of the matrix Ak for
all k = 0, 1 . . . .

Corollary 2 If the initial function f0(x, v) is non-negative then the vectors
fk remain component-wise non-negative for all k = 0, 1, . . . .

Proof:
The initial vector f0 is component-wise non-negative because of its definition
in step 1 of (25). If fk, k = 0, 1, . . . is component-wise non-negative, then we
obtain from Step 2.3 of (25)

fk+1 = A−1

k fk.

The matrix A−1

k is component-wise non-negative because it is inverse of an
M-matrix. The proof is then completed by induction.

Corollary 3 The difference scheme (25) conserves mass.

Proof:
The mass of the system can be computed for k = 1, 2, . . . corresponding to
formula (8)

mk = hxhv(fk, en) = hxhv(Ak−1f
k−1, en)

= hxhv(fk−1, AT
k−1en) = hxhv(f

k−1, en) = mk−1 = . . . = m0.

Corollary 4 The difference scheme (25) is stable in the discrete maximum
norm with respect to the initial data.
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Proof: The discrete maximum norm of fk, k = 0, 1, . . . is defined as

‖fk‖∞ = max
l

|fk
l | = max

l
fk

l = fk
l∗

because the components of the vector fk are non-negative. Here we have used
the global numbering l = nx(j − 1) + i of the components of fk. Using

(Ak−1)l∗l∗ > 0, (Ak−1)ij ≤ 0, i 6= j

in the time step k = 1, 2, . . . we obtain the following estimate for the index l∗

‖fk‖∞ = fk
l∗ = ((Ak−1)l∗l∗ + (Ak−1)l∗l∗−1

+ (Ak−1)l∗l∗+1 + (Ak−1)l∗l∗−nx
+ (Ak−1)l∗l∗+nx

) fk
l∗

≤ (Ak−1)l∗l∗f
k
l∗ + (Ak−1)l∗l∗−1f

k
l∗−1

+ (Ak−1)l∗l∗+1f
k
l∗+1 + (Ak−1)l∗l∗−nx

fk
l∗−nx

+ (Ak−1)l∗l∗+nx
fk

l∗+nx
=

+ (Ak−1f
k)l∗ = fk−1

l∗ ≤ ‖fk−1‖∞ ≤ . . . ≤ ‖f0‖∞.

Corollary 5 The difference scheme (25) is stable in the discrete L2−norm
with respect to the initial data.

Proof: The discrete L2−norm of fk, k = 0, 1, . . . is defined as

‖fk‖2
2 = hxhv(f

k, fk).

Using this definition and property 3 in Lemma 2 we obtain for k = 1, . . .

‖fk‖2 = ‖A−1

k−1
fk−1‖2 ≤ ‖A−1

k−1
‖2‖fk−1‖2 = ‖fk−1‖2 ≤ . . . ≤ ‖f0‖2.

Corollary 6 If the sequence {fk} converges then it converges to the constant

lim
k→∞

fk =
m0

4LxLv
en

Proof: If the sequence {fk} converges to f∞ then this vector fulfils

A∞f∞ = f∞,
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where A∞ denotes the limit of the sequence of matrices {Ak}. Since the matrix
A∞ is still a regular M−matrix, its eigenvalue 1 is simple. It means that only
a constant vector f∞ = αen can fulfil the equation (26). The constant α can
be obtained using the conservation of mass

m0 = hxhv(f
∞, en) = hxhvα(en, en) = α(hxnx)(hvnv) = α(4LxLv).

Next, we obtain the discrete form of the continuity equation (5). We will use
the following notations

v = (v1, . . . , vnv
)T ∈ R

nv − vector of the velocities,
Dv = diag(v) ∈ R

nv×nv − corresponding diagonal matrix,
D+

v = diag(0.5(|v| + v)) ∈ R
nv×nv − positive part of Dv,

D−

v = diag(0.5(|v| − v)) ∈ R
nv×nv − negative part of Dv,

w = (v2
1 , . . . , v2

nv
)T ∈ R

nv − vector of squares of the velocities,
Ek = (Ek

1 , . . . , Ek
nx

)T ∈ R
nx − vector of the forces, (∗)

DE = diag(Ek) ∈ R
nx×nx − corresponding diagonal matrix,

D+

E = diag(0.5(|Ek| + Ek)) ∈ R
nx×nx − positive part of Dx,

D−

E = diag(0.5(|Ek| − Ek)) ∈ R
nx×nx − negative part of Dv,

Jm = circ(0, 1, 0, . . . , 0) ∈ R
m×m − circulant matrix of the dimension m,

ρk = hv F k env
∈ R

nx − density,
jk = hv F k v ∈ R

nx − numerical flux.

Using (∗) we rewrite the difference scheme (18) in the matrix form

F k+1 − F k

τ
+

1

hx

(

(Inx
− Jnx

)F k+1D−

v + (Inx
− JT

nx
)F k+1D+

v

)

+
1

hv

(

D−

EF k+1(Inv
− JT

nv
) + D+

EF k+1(Inv
− Jnv

)
)

= 0,

k = 0, 1, . . . .

If we multiply this matrix with the vector hvenv
then we obtain using

(Inv
− Jnv

)env
= (Inv

− JT
nv

)env
= 0,

D−

v env
= v−,

D+
v env

= v+

the following equation

ρk+1 − ρk

τ
+

hv

hx

(

(Inx
− Jnx

)F k+1v− + (Inx
− JT

nx
)F k+1v+

)

,
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ρk+1 − ρk

τ
+

hv

hx

(

0.5(Inx
− Jnx

)F k+1(|v| − v) + 0.5(Inx
− JT

nx
)F k+1(|v| + v)

)

,

ρk+1 − ρk

τ
+

1

2hx
(Jnx

− JT
nx

)jk+1 +
1

2
hxhv

1

h2
x

(2Inx
− Jnx

− JT
nx

)F k+1|v| = 0

or

ρk+1 − ρk

τ
+

1

2hx
(Jnx

− JT
nx

)jk+1 = −1

2
hxhv

1

h2
x

(2Inx
− Jnx

− JT
nx

)F k+1|v|.

The short form of this equation is

ρk
t + jẋ = −1

2
hx(hvF

k+1|v|)xx, (26)

where yx denotes the central difference and yxx the second difference of the
grid function y. The equation (26) corresponds to the continuous equation
(5). While the left hand side of (26) is a possible correct approximation of the
derivatives in (5), the right hand side forms an artificial viscosity of our scheme.
Because of this term which is of the order O(hx) we are not able to obtain the
conservation of the energy of the scheme directly. However, our numerical tests
show that the variation of the energy in one time step is small.

4 Numerical examples

In this section we calculate some examples using our difference scheme. The
initial distribution f0(x, v) is given by

f0(x, v) =
1

2π
√

TxTv

(

exp

(

− (x − x0)
2

2Tx

)

+ exp

(

− (x + x0)
2

2Tx

))

exp

(

− v2

2Tv

)

,

where Tx, Tv and x0 are some positive parameters. In Figures 1,2 we present
the time evolution of the density and of the force in the time interval (0, 1.4) for
the following setting of parameters: γ = 4, δ = 0, Tx = 2, Tv = 0.05, x0 = 4
and nx = 60, nv = 90, i.e. for the pure Vlasov case. The time interval (0, 1.4)
is sufficient to show the main numerical effects.
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Figure 1: The density profiles for γ = 4, δ = 0
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Figure 2: The force profiles for γ = 4, δ = 0
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Figure 3: The solution and its iso-lines for γ = 4, δ = 0
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We observe a very clear unification of the two particle “clouds” in space and no
remarkable concentration of mass during the time evolution. Figure 3 shows
the function f(t, x, v) and its iso-lines for the time t = 1.4.
In the second test we consider the pure Manev case with the same initial
distribution and the same parameter of discretisation.
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Figure 4: The density profiles for γ = 0, δ = 4
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Figure 5: The force profiles for γ = 0, δ = 4
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Figure 6: The solution and its iso-lines for γ = 0, δ = 4
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There is a very clear difference in the behaviour of the two examples. The pure
Manev case leads to a significant concentration of the mass in the two “clouds”,
and during the evolution they remain separated. Figure 6 shows the function
f(t, x, v) and its iso-lines for the time t = 1.4.
Finally, we consider the mixed case γ = 2, δ = 2 in order to illustrate the
influence of the two effects: unification and concentration. The results are
presented in Figures 7,8,9.
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Figure 7: The density profiles for γ = 2, δ = 2
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Figure 8: The force profiles for γ = 2, δ = 2
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Figure 9: The solution and its iso-lines for γ = 2, δ = 2
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5 Conclusions

Our calculations suggest that the Manev correction will have a “stabilising”
effect on isolated one-dimensional matter concentrations; this effect counteracts
the tendency of the long-range Newtonian potential to accumulate all matter
in one location; while this is only an isolated phenomenon which is observed
here as a consequence of the Manev correction, we believe it to be evidence
that truly interesting effects may occur in the more relevant three-dimensional
case. Numerical experiments to this end are planned.
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