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Abstrat. We study the versal unfolding of a vetor �eld of odi-

mension two, that has an algebraially double eigenvalue 0 in the

linearisation of the origin and is equivariant under a representation of

the symmetry group D

3

. A subshift of �nite type is enountered near

a lover of homolini orbits. The subshift enodes the itinerary along

the three di�erent homolini orbits. In this subshift all those symbol

sequenes are realized for whih onseutive symbols are di�erent. In

the parameter spae we also loate a transritial, three di�erent Hopf

and two global (homolini) bifurations.
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1 Introdution

A vetor �eld has a Takens-Bogdanov point, if there is a Jordan blok

�

0 1

0 0

�

in the linearisation of a steady state and if ertain nondegeneray onditions

are ful�lled. This odimension two degeneray with its unfolding is a key

to understand several phenomena in dynamial systems (see [17, 3℄ and text-

books like [13℄). Takens-Bogdanov points an also serve as a starting point

for the path following in two-parameter ows of global Hopf bifuration [6℄

and homolini orbits [7℄. One parameter families of homolini orbits are
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reated at Takens-Bogdanov points of two-parameter ows. Hene these bifur-

ation points play the same role for the reation of homolini orbits in two-

parameter ows as Hopf bifuration for periodi solutions in one-parameter

ows. Near homolini orbits several bifurations to other bounded solutions

may our. Thus Takens-Bogdanov points are important organizing enters for

the bifuration analysis of dynamial systems. Suppose the dynamial system

_x = f(x) has onstraints given by an equivariane under a symmetry group �,

i.e. f(x) = f(x); for  2 �. Then one often �nds ompliated bifuration

diagrams even at simple bifurations, [11℄.

Similarly at the Takens-Bogdanov point with D

3

symmetry the dynamis are

muh riher than in the non-symmetri ase. Appliations are given to systems

of three oupled osillators in a ring. The results ould be also applied to mode

interations for pattern formation in onvetion problems, where solutions with

D

3

symmetry exist [12℄. We will enounter a subshift of �nite type, whih is a

novel dynamial feature in a bifuration problem of dynamial systems de�ned

by a vetor �eld. Whereas in many bifurations one an enounter Smale

horseshoes giving rise to a full shift, the existene of a subshift of �nite type is

a rare phenomenon.

A subshift �(x

n

)

n2Z

= (x

n+1

)

n2Z

of �nite type on three symbols f1; 2; 3g is

de�ned on

X

A

= f(x

n

)

n2Z

jx

n

2 f1; 2; 3g; a

x

n

;x

n+1

= 1g

where A = (a

i;j

)

i;j2f1;2;3g

is a 3�3 matrix with entries 0 and 1. The topology of

X

A

is de�ned as the produt topology of the disrete set of symbols f1; 2; 3g. A

subshift of �nite type allows only those symbol sequenes, for whih onseutive

symbols x

n

; x

n+1

are ompatible with the transition matrix A. The symmetry

group D

3

will at on X

A

in the following manner

`ip': �((x

n

)

n2Z

) = (~�x

n

)

n2Z

with ~�1 = 1; ~�2 = 3; ~�3 = 2

`rotation': ((x

n

)

n2Z

) = (x

n

+ 1 mod 3)

n2Z

:

(1)

The bifuration analysis will be redued in setion 2 to the disussion of a

vetor �eld on R

4

�

=

C

2

, where D

3

ats as

`ip': �(v; w) = (�v; �w)

`rotation': (v; w) = (exp(i

2�

3

)v; exp(i

2�

3

)w):

(2)

A vetor �eld in normal form an be derived. Using additional parameters

(�

1

; �

2

) to unfold the singularity the normal form is generially given - up to

time reversal - by

_v = w (3)

_w = �

1

v + �

2

w + �v

2

� �v �w + [Ajvj

2

+Bjwj

2

+ C(v �w + �vw)℄v +Djvj

2

w:

A bifuration diagram desribing the omplete plane of unfolding parameters is

given in �gure 1. The main result of this paper is formulated in theorem 1. It

states the existene of a speial form of a horseshoe for an open set of parameter
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Figure 1: Bifuration diagram in parameter spae: transritial bifuration of

steady states (bold line), three kind of Hopf bifuration (dashed lines), two dif-

ferent homolini bifurations (dotted lines) and shift dynamis (shaded area).

values. Later we will rigorously de�ne three Poinar�e setions S

in

1

; S

in

2

; S

in

3

as

setions along three oexisting homolini orbits biasymptoti to the origin. P

will be the return map on S

in

1

[ S

in

2

[ S

in

3

.

Theorem 1 For 0 < �

2

+

6

7

�

1

small, �

1

> 0, there exists an invariant hyper-

boli Cantor set C � S

in

1

[ S

in

2

[ S

in

3

suh that the return map P : C ! C

indued by the ow of (3) is topologial onjugate to the irreduible subshift of

�nite type with transition matrix A =

0

�

0 1 1

1 0 1

1 1 0

1

A

. Here means topologial

onjugay that there exists an homeomorphism � : C ! X

A

suh that �P = ��

on C.

Furthermore P and � an be hosen to be D

3

-equivariant, when using the rep-

resentation (2) on C and (1) on X

A

. C is D

3

-invariant.

So in fat we have a D

3

-subshift of �nite type as de�ned in [8℄. Neither the

inomplete bifuration diagram in �gure 1 nor theorem 1 depend on the oeÆ-

ients A;B;C;D and other higher order terms. In the bifuration diagram the

lines will be bended to urves by a near-identity di�eomorphism. This is peu-

liar to the ase of D

3

symmetry. When the system has some other symmetry
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group like O(2) [4℄ or D

4

[1℄ many more parameters and several di�erent bifur-

ation diagrams have to be disussed. Thus our analysis an only be a �rst step

to a general analysis of D

n

equivariant Takens-Bogdanov singularities, where

one might hope to enounter the O(2) ase as a limit.

The rest of the paper is organized as follows. In setion 2 we give the Taylor

expansion near the origin of a generi vetor �eld equivariant under (2) at the

Takens-Bogdanov point, derive a normal form up to third order and unfold it.

We disuss the basi dynamial behavior in setion 3, i.e. we analyze steady

states, Hopf bifurations and the dynamis in invariant subspaes inluding

homolini orbits. The existene of the subshift will be proved in setion 4,

where we use a de�nition of a general horseshoe. In the last setion 5 we will

disuss some further numerial studies and appliations.

2 D

3

-equivariant vetor fields and normal forms

Before giving a Taylor expansion near the singularity we �rst use some repre-

sentation theory to justify the representation like in (2). There are in general

two possibilities that a representation spae of a ompat Lie group � admits a

non-diagonalizable �-equivariant linearisation A at the origin. Similar to hap-

ter XVI of [11℄ there must be a �-invariant subspae W , that is either of the

form V �V , where V is absolutely irreduible, or that is irreduible but not ab-

solutely irreduible. The seond ase is not possible for the Takens-Bogdanov

singularity. The linearisation A ontains the nilpotent matrix

�

0 1

0 0

�

. Sup-

pose W is irreduible but not absolutely irreduible, then A(W ) = 0 or A(W )

is isomorphi to W [11, Lemma XII.3.4℄. But if A

jW

ontains the nilpotent

Jordan blok then A :W ! A(W ) annot be an isomorphism. Hene A

jW

= 0

and this is in ontradition that the Jordan blok is non-zero. So we use a repre-

sentation of the form V �V . When hoosing for V the standard representation

of D

3

on C

�

=

R

2

we get the representation (2).

Proposition 2 (i) The ring of all D

3

-invariant germs ating on C�C as

in (2) is generated by

s

1

= v�v; s

2

= w �w; s

3

= v �w + �vw and

t

j

= v

j

w

3�j

+ �v

j

�w

3�j

, j 2 f0; : : : ; 3g

(ii) The module of D

3

-equivariant smooth mappings of C � C ! C � C is

generated by

g

0

=

�

v

0

�

; g

1

=

�

0

v

�

; g

2

=

�

w

0

�

; g

3

=

�

0

w

�

and

f

j

=

�

�v

j

�w

2�j

0

�

; h

j

=

�

0

�v

j

�w

2�j

�

, j 2 f0; 1; 2g;
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i.e. all D

3

-equivariant smooth germs of mappings h : R

4

! R

4

an be

written in the form h(v; �v; w; �w) = p

0

g

0

+ p

1

g

1

+ p

2

g

2

+ p

3

g

3

+ q

0

f

0

+

q

1

f

1

+ q

2

f

2

+ r

0

h

0

+ r

1

h

1

+ r

2

h

2

where p

0

; : : : ; p

3

; q

0

; q

1

; q

2

; r

0

; r

1

; r

2

are

smooth funtion germs of s

1

; s

2

; s

3

; t

0

; : : : ; t

3

.

Proof: For polynomials the ompleteness of the generators an be heked by

lengthy by-hand alulations or by omputer algebra, see [9℄. These are then by

Po�enaru's theorem also the generators of the module of germs of mappings.2

Then a general D

3

-Takens-Bogdanov point has the following Taylor expansion

up to third order with real oeÆients a

1

; b

1

; : : ::

_v = w + a

1

�v

2

+ b

1

�v �w + 

1

�w

2

+ v(d

1

v�v + e

1

w �w + f

1

(v �w + �vw))

+ w(g

1

v�v + h

1

w �w + i

1

(v �w + �vw))

_w = a

2

�v

2

+ b

2

�v �w + 

2

�w

2

+ v(d

2

v�v + e

2

w �w + f

2

(v �w + �vw))

+ w(g

2

v�v + h

2

w �w + i

2

(v �w + �vw)):

(4)

First we try to remove as many seond order terms as possible, therefore we

hoose a general near-identity D

3

-equivariant oordinate hange.

v = v

0

+ �

1

�v

2

+ �

1

�v �w + 

1

�w

2

w = w

0

+ �

2

�v

2

+ �

2

�v �w + 

2

�w

2

We rewrite (4) in the new oordinates and this yields to

_

v

0

= w

0

+ (a

1

+ �

2

)�v

02

+ (b

1

+ �

2

� 2�

1

)�v

0

�w

0

+ (

1

+ 

2

� �

1

) �w

02

+ v

0

(

~

d

1

v

0

�v

0

+ ~e

1

w

0

�w

0

+

~

f

1

(v

0

�w

0

+ �v

0

w

0

))

+ w

0

(~g

1

v

0

�v

0

+

~

h

1

w

0

�w

0

+

~

i

1

(v

0

�w

0

+ �v

0

w

0

))

_

w

0

= a

2

�v

02

+ (b

2

� 2�

2

)�v

0

�w

0

+ (

2

� �

2

) �w

02

+ v

0

(

~

d

2

v

0

�v

0

+ ~e

2

w

0

�w

0

+

~

f

2

(v

0

�w

0

+ �v

0

w

0

))

+ w

0

(~g

2

v

0

�v

0

+

~

h

2

w

0

�w

0

+

~

i

2

(v

0

�w

0

+ �v

0

w

0

))

(5)

where the~terms depend on the original term, a

i

; b

i

; 

i

and �

i

; �

i

; 

i

for i = 1; 2.

By hoosing

�

1

=

1

2

(b

1

+ 

2

); �

2

= �a

1

; �

1

= 0; �

2

= 

2

; 

1

= 0; 

2

= �

1

we an remove all seond order terms in the �rst omponent and �w

02

in the

seond omponent in (5). All the third order terms are O(2)-equivariant. Thus

we an use exatly the same oordinate hange as Dangelmayr and Knobloh

[4℄ (after removing the seond order terms) without a�eting the lower order

terms to get the following simpli�ed system:

_v = w

_w = E�v

2

+ F �v �w +

�

Ajvj

2

+Bjwj

2

+ C(v �w + �vw)

�

v +Djvj

2

w;
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where E = a

2

; F = b

2

+ 2a

1

; A =

~

d

2

; B =

~

d

2

� ~g

1

+

~

f

1

� 2

~

i

2

; C =

~

d

1

+

~

f

2

and D =

~

d

1

+ ~g

2

. We use an unfolding to desribe the behavior of generi

families of vetor �elds near the singular point. Even if there is not a general

method to unfold the whole vetor �eld, the linear part an be unfolded by

�

0 0

�

1

�

2

�

suh that all nearby linear parts an be reahed up to onjugation

[2℄. After saling v; w; t and possibly a time-reversal we an set generially

E = 1; F = �1, if the transformed seond order terms are nonzero. Then we

get the normal form as in equation (3):

_v = w

_w = �

1

v + �

2

w + �v

2

� �v �w + [Ajvj

2

+Bjwj

2

+ C(v �w + �vw)℄v +Djvj

2

w:

3 Bifurations

Standard omputations show some symmetry breaking bifurations. Here es-

peially the behavior inside the ow-invariant �xed point spae Fix(�) =

f(v; w)j�(v; w) = (v; w)g = f(v; w)jv; w 2 Rg will be onsidered. The same

dynamis an be enountered in the rotated spaes Fix(�) and 

2

Fix(�). The

bifuration inside these planes is a Takens-Bogdanov bifuration, in whih the

origin remains a singular point. This was analyzed by Hirshberg and Knobloh

[14℄.

In general ubi and quinti terms annot be negleted in Hopf bifuration with

D

3

symmetry. But in our situation the higher order terms are not important as

long �

1

; �

2

are small enough. To see this we have to perform the normal form

alulations inluding these terms. The terms involving e.g. A;B;C;D are all

of higher order in �

1

; �

2

and hene an be negleted in a small neighborhood

of 0 in the �

1

; �

2

plane. For illustration we onsider a Hopf bifuration of the

origin at �

2

= 0; �

1

< 0 inside Fix(�). After alulating a normal form for Hopf

bifuration like in [13℄ the diretion of branhing is determined by the sign of

the term a = �

1

8j�

1

j

+

2C+D

8

. So the higher order terms an be negleted inside

a neighborhood of (0; 0) in parameter spae (�

1

; �

2

). Similar results hold for

the other bifurations too. We suppress therefore the dependene on these

terms. They only bend some lines in the bifuration diagram to urves by a

near-identity di�eomorphism. See also �gure 1.

� The only stable feature is the origin for �

1

; �

2

< 0.

� For �

1

= 0 there is a transritial bifuration of seondary steady state

N

1

= (��

1

; 0) and the rotated points N

2

= N

1

, N

3

= 

2

N

1

eah with

isotropy Z

2

.

� For �

2

= 0; �

1

< 0 the spetrum of the origin is purely imaginary and the

system undergoes a D

3

-Hopf bifuration [11℄, where three di�erent types

of periodi solutions appear (isotropy type

~

Z

3

for �

2

< 0; solutions of
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isotropy type

~

Z

2

and inside Fix(�) of isotropy type Z

2

both for �

2

> 0;

all these solutions are of saddle type).

� For �

2

= �

1

< 0 N

1

; N

2

; N

3

undergo Hopf bifurations, where the imag-

inary eigenvalues have eigenvetors outside the invariant subspaes and

the solutions have isotropy

~

Z

2

.

� For 0 > �

2

= ��

1

N

1

; N

2

; N

3

undergo Hopf bifurations inside the in-

variant subspaes, i.e. the periodi orbit have isotropy Z

2

.

� For some urve with �

2

� �

6

7

�

1

; �

1

> 0 there exists an orbit inside Fix(�)

homolini to 0, see [14℄.

� Similar there are orbits homolini to N

1

; N

2

; N

3

for �

2

� �

1

7

�

1

; �

1

< 0.

For the homolini orbits we have even nearly expliit expressions. Saling the

equation (3)

� = �t; v = �

2

x;w = �

3

y; �

1

= �

2

�

1

; �

2

= �

2

�

2

:

and _=

d

d�

give

_x = y (6)

_y = �

1

x+ �x

2

+ �(�

2

y � �x�y) +O(�

2

):

Letting � = 0 the system has an expliit homolini orbit for �

1

> 0 inside

Fix(�):

q

0

(t) =

�

x

q

(t)

y

q

(t)

�

=

0

�

�

3�

1

2

�

1� tanh

2

�

p

�

1

2

t

��

3�

1

2

p

�

1

seh

2

�

p

�

1

2

t

�

tanh

�

p

�

1

2

t

�

1

A

:

Using the Melnikov method, see e.g. Gukenheimer and Holmes [13℄, we an

then ompute parameter values for whih the homolini orbit persists for � > 0

to get the above results.

By symmetry there are homolini orbits biasymptoti to the origin inside

the other two invariant �xed point spaes Fix(�) and 

2

Fix(�) for the same

parameter values too. So there exists a `lover' like struture of homolini

orbits, see �gure 2.

4 General Horseshoes and Proof of Theorem 1

In this setion we prove the existene of the subshift of �nite type near the lover

of homolini orbits. We will ompute a Poinar�e map near the homolini

orbits with varying unfolding parameters �

1

and �

2

. For eah of the three

homolini orbits we de�ne an `in' and an `out' setion, alled S

in

i

and S

out

i

(�gure 3). The return map P : S

in

1

[ S

in

2

[ S

in

3

! S

in

1

[ S

in

2

[ S

in

3

is disussed

by dividing it into loal parts near the steady state, whih an be desribed by
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1

2

3

Figure 2: A sketh of the lover of homolini orbits. The three orbits lie all

in di�erent planes, whih interset only in the origin.

S
in v

Sout
1

1 1

v3

Figure 3: The setions S

out

1

and S

in

1

at the homolini orbit projeted to Fix(�).

its linearisation (lemma 4) and global parts along the homolini orbit. This

tehnique an also be used to analyze several other homolini bifurations, see

for example the textbook [10℄.

Before we give the tehnial details of the analysis of P , we desribe the ge-

ometri idea: The setions S

in

i

and S

out

i

are ubes in R

3

. We identify those

regions in S

out

i

, whih have a preimage in some S

in

i

under the loal maps (see

�gure 4). Similarly we ompute the regions in S

in

i

, whih are mapped by the

loal maps to some S

out

i

(see �gure 5). The global map P will map the ube

in �gure 4 to the ube in �gure 5.

For appropriately hosen parameters (�

1

; �

2

) the slabs marked `2' and `3' in

�gure 4 will interset the slabs `2' and `3' in �gure 5. We an then show

that there is a Smale horseshoe in three dimensions in the upper half of the

ube. But beause of the symmetry we have three opies of these ubes and

the possible itineraries inside the invariant set are more ompliated. In the

�gures 4 and 5 the setions of the homolini orbit marked `1' in �gure 2 are

shown. The trajetories of points in the regions `2' and `3' in �gure 4 were in

the setions S

in

2

and S

in

3

before. In the same way the slabs `2' and `3' in �gure

5 are those regions, where the forward orbit will reah the setion S

out

2

and
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1

3

2

a
a

a2
4

3

Figure 4: The setion S

out

1

with the images of S

in

1

, S

in

2

and S

in

3

. The line in

the middle is the setion with Fix(�).

S

out

3

next. Hene the itineraries, desribed in the �gures 4 and 5, have �rst a

symbol `2' or `3' then the symbol `1', beause they are now at the homolini

orbit with symbol `1', and then proeed with `2' or `3'. At the other setions

there is the same behavior after following one along the homolini loop: The

trajetories of points inside the invariant set will lead to another setion and

hene to another symbol. Therefore the subshift desribed in theorem 1 an

be realized, but no other in�nite symbol sequenes.

To rigorously prove the existene of the subshift, we desribe briey the notion

of a general horseshoe in R

3

following Katok and Hasselblatt [15℄. First we

explain the meaning of `full intersetion'. Then using one onditions we give

preise meaning to `horizontal expansion' and `vertial ontration'. We prove

a tehnial lemma to justify the omplete linearisation near the steady state

before omputing the loal and global maps.

We will onsider a retangle � = D

1

�D

2

� R�R

2

= R

3

where D

1

and D

2

are diss. The projetions on the omponents are denoted by �

1

(\horizontal")

and �

2

(\vertial"). Let � � U � R

3

be a retangle and f : U ! R

3

be a

di�eomorphism. Then we all a onneted omponent S

0

= fS � � \ f� full,

if

1. �

2

(S) = D

2

,

2. for all z 2 S; �

1

jf(S\(D

1

��

2

(z)))

is a bijetion onto D

1

.

The �rst ondition implies that S reahes ompletely along the vertial diretion

and seond one that the image of every horizontal �ber in S meets � and
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1

3 2

a

a
a

2
4

1

Figure 5: The setion S

in

1

where the preimages of S

out

1

, S

out

2

and S

out

3

are the

dotted slabs.

traverses it ompletely.

Next we introdue one onditions. A horizontal s-one H

s

x

is de�ned by H

s

x

=

f(u; v) 2 T

x

R

3

jkvk � skukg, similarly a vertial s-one V

s

x

by V

s

x

= f(u; v) 2

T

x

R

3

jkuk � skvkg at x 2 R

3

for some s. A map f preserves a family H

x

of horizontal ones for x 2 U � R

3

, if Df

x

(H

x

) � int(H

f(x)

) [ f0g. It is

alled expanding on a horizontal one family H

x

, if kDf

x

�k � �k�k for � 2 H

x

and some �xed � > 1. We want to express a ontration property in the

vertial diretion, thus we onsider f

�1

on vertial one families. It preserves

the vertial one family V

x

, if Df

�1

x

(V

f(x)

) � int(V

x

) [ f0g and f

�1

expands

them, if kDf

�1

x

�k � �

�1

k�k for � 2 V

f(x)

and some uniform � < 1. Then the

appropriate generalization of a Smale horseshoe in higher spae dimensions is

given by

Definition 3 [15℄ Let � � U � R

3

be a retangle and f : U ! R

3

be a

di�eomorphism. � \ f(�) is alled a horseshoe if it ontains at least two full

omponents �

1

and �

2

suh that for �

0

= �

1

[ �

2

the following onditions

hold:

1. �

2

(�

0

) � int(D

2

) and �

1

(f

�1

(�

0

)) � int(D

1

),

2. D(f

jf

�1

(�

0

)

) preserves and expands a horizontal one family on f

�1

(�

0

),

3. D(f

�1

j�

0

) preserves and expands a vertial one family on �

0

.

To ompute the return map P we will �rst prove that we an ompletely lin-

earize the loal maps.
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Lemma 4 Suppose that the distint eigenvalues of the linearisation A at 0

�

1;2

=

�

2

2

�

q

�

2

2

4

+ �

1

are not in resonane, i.e. �

i

� (k�

1

+ l�

2

) 6= 0 for

k; l 2 N; k + l > 1. Then there exists a D

3

-equivariant smooth di�eomorphism

H onjugating the ow �

t

of (3) and exp(At) on some neighborhood U of the

origin: H�

t

= exp(At)H.

Proof: We onsider �rst the time-one-map �

1

, again the linear part is diago-

nal with eigenvalues e

�

1

; e

�

2

. For these the non-resonane onditions for maps

exp�

i

6= exp(k�

1

) � exp(l�

2

) for k; l 2 N; k + l > 1 hold. The non-resonane

onditions imply that we an formally remove all terms of algebrai order by

a near-identity oordinate hange. This is possible even in a D

3

-equivariant

setting [11℄. So we still have to remove at terms and disuss onvergene. To

remove these at terms we use a version of Sternberg's theorem [15, theorem

6.6.7℄. The assumptions are ful�lled: The linear part is diagonal and the nor-

mal form whih an be ahieved by the above oordinate hange is a onvergent

power series, sine it is only linear. The theorem then gives the existene of a

smooth di�eomorphism onjugating �

1

and its normal form. Thus there exists

a smooth di�eomorphism H

1

linearizing �

1

in a neighborhood of the origin.

Furthermore the onstrution in [15℄ an be hosen to preserveD

3

-equivariane,

when we use invariant ut-o� funtions. Then the D

3

-equivariant di�eomor-

phism H =

R

1

0

exp(�At)H

1

�

t

dt is the needed onjugay for the entire ow on

some neighborhood U of 0. This an be seen when using exp(�A)H

1

�

1

= H

1

exp(�As)H�

s

=

R

1

0

exp(�A(t+ s))H

1

�

t+s

dt =

R

s+1

s

exp(�Au)H

1

�

u

du

= H �

R

s

0

exp(�Au)H

1

�

u

du+

R

s+1

1

exp(�Au)H

1

�

u

du

= H �

R

s

0

exp(�A(u+ 1))H

1

�

u+1

du+

R

s+1

1

exp(�Au)H

1

�

u

du

= H2

Now we an ompute the map P . After the oordinate hange of the lemma the

loal maps are given by a linear ow. Then the stable and unstable manifolds

oinide with the stable and unstable eigenspaes. To arry out the analysis

we use again the saled oordinates x = x

1

+ ix

2

; y = y

1

+ iy

2

2 C for some

� > 0 small. We know the homolini orbits expliitly by setion 3 up to

perturbations of order O(�). While negleting terms of order O(�

2

) the system

in C

2

is given by equation (6).

Loal maps: To ompute the loal maps we use a basis of eigenvetors of the

linearized system: For the eigenvalue �

1

=

��

2

2

+

q

�

2

�

2

2

4

+ �

1

> 0 we hoose

v

1

; v

2

and for the eigenvalue �

2

=

��

2

2

�

q

�

2

�

2

2

4

+ �

1

< 0 the vetors v

3

; v

4

. The

original basis of R

4

�

=

C

2

is given by (x

1

; y

1

; x

2

; y

2

).

v

1

= (1 + �

2

1

)

�

1

2

(1; �

1

; 0; 0)

T

; v

2

= (1 + �

2

1

)

�

1

2

(0; 0; 1; �

1

)

T

;

v

3

= (1 + �

2

2

)

�

1

2

(1; �

2

; 0; 0)

T

; v

4

= (1 + �

2

2

)

�

1

2

(0; 0; 1; �

2

)

T

:

A vetor a 2 R

4

is then denoted as a = a

1

v

1

+ a

2

v

2

+ a

3

v

3

+ a

4

v

4

. The
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eigenvetors v

1

and v

3

span Fix(�). The setion S

out

1

is then de�ned by

a

1

= � and maxfja

2

j; ja

3

j; ja

4

jg < Æ

with  small and 0 < Æ �  suh that the setion is ompletely inside U , where

the ow is linearized. S

in

1

is given by

a

3

= � and maxfja

1

j; ja

2

j; ja

4

jg < Æ:

We will also use rotated oordinate systems with basis vetors v

0

l

= v

l

and

v

00

l

= 

2

v

l

with oeÆients a

0

l

; a

00

l

. Thus we an de�ne the setions of the rotated

homolini orbits.

S

out

2

: a

0

1

= �;maxfja

0

2

j; ja

0

3

j; ja

0

4

jg < Æ

S

out

3

: a

00

1

= �;maxfja

00

2

j; ja

00

3

j; ja

00

4

jg < Æ

S

in

2

: a

0

3

= �;maxfja

0

1

j; ja

0

2

j; ja

0

4

jg < Æ

S

in

3

: a

00

3

= �;maxfja

00

1

j; ja

00

2

j; ja

00

4

jg < Æ

First we ompute P

lo

l

; l 2 f1; 2; 3g. The ow of the linear system is given by

�

t

(a) = a

1

v

1

e

�

1

t

+ a

2

v

2

e

�

1

t

+ a

3

v

3

e

�

2

t

+ a

4

v

4

e

�

2

t

; (7)

similarly in the primed versions for the rotated oordinate systems. Starting

at a vetor a 2 S

in

1

[ S

in

2

[ S

in

3

with P

lo

l

(a) 2 S

out

1

(i.e. espeially a

1

< 0),

the time t = (ln



ja

1

j

)=�

1

is needed to reah the S

out

1

setion. Then P

lo

l

(a

1

v

1

+

a

2

v

2

+ a

3

v

3

+ a

4

v

4

)

= (�v

1

+ a

2

�

�

�

�



a

1

�

�

�

�

v

2

+ a

3

�

�

�

a

1



�

�

�

j�

2

j

�

1

v

3

+ a

4

�

�

�

a

1



�

�

�

j�

2

j

�

1

v

4

) (8)

with

j�

2

j

�

1

= 1 +

18

49

�

2

�

1

+

6

7

�

q

9

49

�

2

�

2

1

+ �

1

+O(�

3

).

To understand the geometry of the loal maps we ompute how the preimage of

the `out'-setions S

out

l

; l 2 f1; 2; 3g intersets the `in'-setions S

in

l

; l 2 f1; 2; 3g

and how the images of S

in

l

interset the `out'-setions S

out

l

. We start with the

preimage of S

out

1

interseted with S

in

1

S

in

1;1

= S

in

1

\ P

lo

1

�1

(S

out

1

)

= f(a

1

; a

2

; a

3

; a

4

)ja

3

= �;maxfja

1

j; ja

2

j; ja

4

jg < Æg

\ f(a

1

; a

2

; a

3

; a

4

)ja

1

< 0;maxfja

2

j

�

�

�

�



a

1

�

�

�

�

; ja

3

j

�

�

�

a

1



�

�

�

j�

2

j

�

1

; ja

4

j

�

�

�

a

1



�

�

�

j�

2

j

�

1

g < Æg

= f(a

1

; a

2

; a

3

; a

4

)j � Æ < a

1

< 0; ja

2

j < Æ

�

�

�

a

1



�

�

�

; a

3

= �; ja

4

j < Æg:

This is the slab with label `1' in�gure 5. Then the image of S

in

1

inside S

out

1

is

given by S

out

1

\ P

lo

1

(S

in

1

) = P

lo

1

(S

in

1;1

)

= f(a

1

; a

2

; a

3

; a

4

)ja

1

= �; ja

2

j < Æ;�Æ

j�

2

j

�

1

< a

3

< 0; ja

4

j <

Æ



ja

3

jg:
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This set is the slab with label `1' in �gure 4. To determine the images

P

lo

2

(S

in

2

) \ S

out

1

and P

lo

3

(S

in

3

) \ S

out

1

we have just to rotate a part of the

oordinate system. Inside the stable eigenspae (v

3

; v

4

) is hanged to (v

0

3

; v

0

4

)

and (v

00

3

; v

00

4

) respetively. Equation (7) holds for eah eigenspae independently.

Thus the restritions are essentially the same as for S

out

1

\ P

lo

1

(S

in

1

) just with

a

0

3

; a

0

4

and a

00

3

; a

00

4

instead of a

3

; a

4

. Hene the slab S

out

1

\P

lo

1

(S

in

1

) has just to be

rotated by 2�=3 and 4�=3 inside the (v

3

; v

4

) plane to get S

out

1

\ P

lo

2

(S

in

2

) and

S

out

1

\ P

lo

3

(S

in

3

). A sketh of setion S

out

1

with the images of S

in

l

; l 2 f1; 2; 3g

is given in �gure 4.

Next we will ompute the preimage of S

out

2

and S

out

3

under P

lo

1

to get the

struture of S

in

1

. When we use a rotated oordinate system (v

0

1

; v

0

2

) instead of

(v

1

; v

2

) inside the unstable eigenspae, the time t = (ln



ja

0

1

j

)=�

1

is needed to

reah S

out

2

. This yields to

P

lo

1

(a

0

1

v

0

1

+ a

0

2

v

0

2

� v

3

+ a

4

v

4

)

= (�v

0

1

+ a

0

2

�

�

�

�



a

0

1

�

�

�

�

v

0

2

� 

�

�

�

�

a

0

1



�

�

�

�

j�

2

j

�

1

v

3

+ a

4

�

�

�

�

a

0

1



�

�

�

�

j�

2

j

�

1

v

4

):

So the preimage of S

out

2

under P

lo

1

is just S

in

1;1

rotated by 2�=3 inside the

unstable eigenspae. And �nally for the preimage of S

out

3

the oordinate system

has to be rotated by 4�=3 in the unstable eigenspae. The setion S

in

1

with the

preimages of S

out

l

; l 2 f1; 2; 3g is drawn in �gure 5.

Global maps: Next we approximate P

glo

l

: S

out

l

! S

in

l

by an Taylor ex-

pansion using the linearisation along the homolini orbit. This approxima-

tion is valid by a general perturbation argument for hyperboli sets, when

we hoose the size of the ubes Æ small enough. We get a onstant term

of the global map when onsidering the splitting of the homolini orbit.

The point (�; 0; 0; 0) 2 S

out

1

is inside Fix(�), hene it will be mapped to

S

in

1

\ Fix(�). Thus the onstant term is the distane of the stable and unsta-

ble manifolds inside Fix(�). Using [13, Eq.(4.5.11)℄ this distane is given by

d(�

2

; �) =

�M(�

2

)

kf(q)k

+ O(�

2

), with Melnikov funtional M(�

2

) and vetor �eld f

on Fix(�). For our system this is d(�

2

) = �

4

5

p

�

1

(�

2

+

6

7

�

1

).

In (x

1

; y

1

; x

2

; y

2

) oordinates the linearisation along the homolini solution for

� > 0 is given by B = D

(x;y)

f

j(x(t);y(t))

=

0

B

B

�

0 1 0 0

�

1

+ 2x

1

(t)� �y

1

(t) �(�

2

� x

1

(t)) 0 0

0 0 0 1

0 0 �

1

� 2x

1

(t) + �y

1

(t) �(�

2

+ x

1

(t))

1

C

C

A

;

(9)

where x

1

(t); y

1

(t) are the non-zero omponents of the homolini orbit. This

means that we have to solve the non-autonomous linear di�erential equation

_

� = B�. We use the blok diagonal struture of the matrix. The �rst blok

desribes the behavior inside the invariant subspae Fix(�) and the seond

blok the orthogonal omplement Fix(�)

?

.
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In the �rst blok we are interested in the initial values �

0

= a

3

v

3

inside S

out

1

.

One solution of the variational equation inside Fix(�) is given by _q

0

(t) for

� = 0. Letting q

0

(0) 2 S

out

1

and q

0

(T ) 2 S

in

1

, then kq

0

(0)k = kq

0

(T )k by

symmetry. The vetors �

0

; _q

0

(0) restrited to Fix(�) are a fundamental system.

The Wronskian W of this system is onstant by Liouville's theorem:

_

W =

trae(B

jFix(�)

)W = 0 . Therefore, as _q

0

(0) = kv

1

and _q

0

(T ) = kv

3

, the

projetion of �

0

(T ) onto v

1

is a

3

. By smooth dependene on parameters this

yields to P

glo

1

(a

3

v

3

) = (1 +O(�))a

3

v

1

.

In the seond blok we onsider initial values �

1

= a

2

v

2

and �

2

= a

4

v

4

. First

assume that � = 0. As (�

1

� 2x

1

(t)) > �

1

> 0 and �

(1)

1

(0); �

(2)

1

(0) > 0 hold, the

two omponents �

(1)

1

(t) and �

(2)

1

(t) are inreasing. The global map also expands

this vetor for � > 0 by the smooth dependene on the parameter � for �nite

time. Hene in linear approximation we get P

glo

1

(a

2

v

2

) = a

2

(�

1

v

2

+�

2

v

4

) with

�

2

1

+ �

2

2

� 1. Furthermore

�

1

� 0:9j�

2

j (10)

holds beause the oeÆients of the solution are positive in the x

2

; y

2

oordi-

nates. Applying Liouville's theorem again for � = 0, the seond initial vetor

is mapped to P

glo

1

(a

4

v

4

) = a

4

(�

1

v

2

+�

2

v

4

) with �

1

�

2

��

2

�

1

= 1. Again � > 0

will give perturbations of type 1 + O(�), whih we will suppress by still using

the same notation.

Full Map: We now onsider only those points whih are mapped under the

loal maps from S

in

1

[ S

in

2

[ S

in

3

to S

out

1

. When we use (v

1

; v

2

; v

3

; v

4

) as a

oordinate system for all three `in'-setions then the omposed mapping is

given by

P

glo

1

Æ P

lo

l

: S

in

l

! S

in

1

; l 2 f1; 2; 3g

0

B

B

�

a

1

a

2

a

3

a

4

1

C

C

A

7!

0

B

B

B

B

�

4�

5

p

�

1

(

6

7

�

1

+ �

2

) + (1 +O(�))a

3

�

�

a

1



�

�

1+

6

7

�

p

�

1

�

1

a

2

j



a

1

j+ �

1

a

4

�

�

a

1



�

�

1+

6

7

�

p

�

1

�

�

2

a

2

j



a

1

j+ �

2

a

4

�

�

a

1



�

�

1+

6

7

�

p

�

1

1

C

C

C

C

A

(11)

Now we an use this to determine the return map P : S

in

1

[ S

in

2

[ S

in

3

!

S

in

1

[S

in

2

[S

in

3

, where it is de�ned. Beause of the symmetry the maps P

glo

2

ÆP

lo

l

and P

glo

3

Æ P

lo

l

are related to (11) by simple rotations of whole R

4

. When

hanging to the rotated oordinates, the maps P

glo

2

Æ P

lo

l

and P

glo

3

Æ P

lo

l

are

given by equation (11) with a

i

replaed by a

0

i

and a

00

i

. Therefore it is enough to

onsider a redued map

~

P just as a map from one setion S

in

to itself. We just

have to hange the original labels `1', `2' and `3' in the S

in

2

and S

in

3

setions.

We will use a labeling relative to our position and all our position `1', the next

homolini orbit in the diretion of the rotation is alled `2' and the other one

`3'.

Proof of theorem 1: The existene of a horseshoe for this redued map

~

P will be shown. Analyzing the impliations for the full map will prove the
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theorem. The onditions of de�nition 3 will be heked for the map:

~

P : S

in

! S

in

0

�

a

1

a

2

a

4

1

A

7!

0

B

B

�

4�

5

p

�

1

(

6

7

�

1

+ �

2

) + (1 +O(�))ja

1

j

�

�

a

1



�

�

6

7

�

p

�

1

�

1

a

2

j



a

1

j+ �

1

a

4

�

�

a

1



�

�

1+

6

7

�

p

�

1

�

2

a

2

j



a

1

j+ �

2

a

4

�

�

a

1



�

�

1+

6

7

�

p

�

1

1

C

C

A

: (12)

The horizontal diretion is �

1

v

2

+ �

2

v

4

and the vertial diretions are v

1

and

v

4

. Using these as a new basis with oeÆients �

1

; �

2

and �

3

we de�ne � as

the produt of diss with radii 2Æ in �

1

for D

1

and Æ in (�

2

; �

3

) for D

2

with

the further restrition

Æ

6

< �

2

<

Æ

3

. This means we hoose a oordinate system

suh that we an ignore any rotation of �gure 4 under the global mapping to

�gure 5, even if j�

2

j is not small. This an be done, beause we estimated

�

1

� 0:9j�

2

j in (10). We just have to hange the labels from a

2

to �

1

, a

1

to �

2

and a

4

to �

3

. As above we denote the rotated oordinates by �

0

i

and �

00

i

. The

retangle is given in �gure 6. We hoose the distane of splitting d =

Æ

6

. The

two full omponents �

1

and �

2

, whih have to be ontained in �\

~

P (�), are

the two top dotted slabs in �gure 6.

We onsider the preimages of these two slabs under the original return map

P , i.e. we are interested in the preimages of �

1

;�

2

� S

in

1

under P

glo

1

Æ P

lo

2;3

.

Then we get (P

glo

1

Æ P

lo

2

)

�1

(�

1

) =

~

�

1

= f(�

1

; �

2

; �

0

3

) 2  ��j0 < ��

2

< 2Æ; j�

1

j � Æ

�

�

�

�

�

2

�

1

�

�

�

�

g � � � S

in

2

and similarly (P

glo

1

Æ P

lo

3

)

�1

(�

2

) =

~

�

2

= f(�

1

; �

2

; �

00

3

) 2 

2

��j0 < ��

2

< 2Æ; j�

1

j � Æ

�

�

�

�

�

2

�

1

�

�

�

�

g � 

2

� � S

in

3

:

As we identi�ed the three setions in this analysis of

~

P , we deal with �

1

and

�

2

, whih are ontained in the slabs with labels 2 and 3 in �gure 6. The further

restritions are due to the possible additional expanding of the global map, i.e.

the slabs are de�ned by

�

1

= 

�1

~

�

1

= f(�

00

1

; �

00

2

; �

3

) 2 �j0 < ��

00

2

< 2Æ; j�

00

1

j � Æ

�

�

�

�

�

00

2

�

1

�

�

�

�

g: (13)

�

2

= 

�2

~

�

2

= f(�

0

1

; �

0

2

; �

3

) 2 �j0 < ��

0

2

< 2Æ; j�

0

1

j � Æ

�

�

�

�

�

0

2

�

1

�

�

�

�

g; (14)

After relabeling we have �

1

=

~

P (�

1

) and �

2

=

~

P (�

2

): The slab �

1

is mapped

by P

lo

1

to S

out

3

and then by P

glo

3

, beause of our relabeling it will be the

slab oming from S

out

2

, hene it is the dotted slab with label 2 and therefore

�

1

=

~

P (�

1

). In the same manner we get �

2

=

~

P (�

2

).
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D2

ζ3

ζ2

∆rectangle

1

2

3

D

ζ1

1

d

1

3

2

Γ Γ

∆

∆2

1

1 2

Figure 6: The setion S

in

with retangle � = D

1

�D

2

inluding �

1;2

=

~

P (�

1;2

)

So we an now hek the onditions in the de�nition of the horseshoe. The two

omponents �

1

= P (�

1

) and �

2

= P (�

2

) are full: �

2

(�

i

) = D

2

for i = 1; 2,

beause we an hoose �

3

freely and �

0

2

< 0 (respetive �

00

2

) freely with j�

0

1

j

(respetive �

00

1

) small inside �, i.e. we get all wanted �

2

> 0 in the de�nition

of �

i

. For all � 2 �

i

the restrition �

1

jf(�

i

\(D

1

��

2

(�)))

is a bijetion onto D

1

.

When we vary �

1

for any given z = (a

1

; �

1

�

1

; �

2

�

1

+ a

4

) 2 �

i

then P is aÆne

linear (see (12)) and the projetion �

1

to the �

1

omponent is injetive, whih

is the a

2

omponent in P . It is also surjetive onto D

1

, beause the restritions

on a

2

inside �

i

((14) and (13)) were given suh that the maximal modulus of

the a

2

omponent is Æ in the image.

Next we hek the �rst ondition in de�nition 3. �

2

(�

0

) � int(D

2

) holds

beause of the ontration in the a

1

= �

2

and �

3

omponent when hoosing

6

7

�

1

+ �

2

small enough. The �

3

omponent is given by

�

�

�

�

�

(�

1

�

3

� �

2

�

1

)

�

�

�

�

�

2



�

�

�

�

1+

6

7

�

p

�

1

�

�

�

�

�

� Æ:

The other ondition �

1

(P

�1

�

0

) � int(D

1

) also holds, beause j�

1

j � j�

00

1

j=2 +

Doumenta Mathematia 4 (1999) 463{485



Takens-Bogdanov Point with D

3

Symmetry 479

p

3j�

00

2

j=2 and �

0

1

; �

0

2

and �

00

1

; �

00

2

are small enough by the de�nition of �

1

and �

2

(see (14),(13)).

Finally we have to hek the one onditions, for whih we need the lineari-

sations of

~

P and

~

P

�1

. Suppressing all fators 1 + O(�) these are given in the

original (a

1

; a

2

; a

4

) oordinates by D

~

P

x

(a

1

; a

2

; a

4

) =

0

B

B

�

�

�

�

a

1



�

�

6

7

�

p

�

1

0 0

�

1

a

2



a

2

1

� �

1

a

4

�

�

a

1



�

�

6

7

�

p

�

1

�

1

�

�

�



a

1

�

�

�

�

�

�

a

1



�

�

1+

6

7

�

p

�

1

�

2

a

2



a

2

1

� �

2

a

4

�

�

a

1



�

�

6

7

�

p

�

1

�

2

�

�

�



a

1

�

�

�

�

2

�

�

a

1



�

�

1+

6

7

�

p

�

1

1

C

C

A

(15)

and if (a

1

; a

2

; a

4

) =

~

P

�1

(z) then D

~

P

�1

x

(z) = (D

~

P

x

(a

1

; a

2

; a

4

))

�1

is

0

B

B

B

B

�

�

�

�

�



a

1

�

�

�

6

7

�

p

�

1

0 0

�

a

2

a

1

�

�

�



a

1

�

�

�

1�

6

7

�

p

�

1

a

2

�

2

�

�

a

1



�

�

��

�

�

a

1



�

�

�a

4

�

�

�



a

1

�

�

�

1+

6

7

�

p

�

1

��

2

�

�

�



a

1

�

�

�

1+

6

7

�

p

�

1

�

�

�

�



a

1

�

�

�

1+

6

7

�

p

�

1

1

C

C

C

C

A

: (16)

Changing to the new � oordinates, we an easily hek the one onditions:

The matrix D

~

P (�

2

; �

1

; �

3

) is given by

0

B

B

B

�

�

�

�

�

�

2



�

�

�

6

7

�

p

�

1

0 0

�

1

�

1



�

2

2

�(�

1

�

3

��

2

�

1

)

�

1

�

1

�

�

�

2



�

�

6

7

�

p

�

1

�

1

�

�



�

2

�

�

+

�

2

�

1

�

�

�

2



�

�

1+

6

7

�

p

�

1 �

1

�

1

�

�

�

2



�

�

1+

6

7

�

p

�

1

�(�

1

�

3

��

2

�

1

)

�

�

�

2



�

�

6

7

�

p

�

1

�

2

�

�

�

2



�

�

1+

6

7

�

p

�

1

�

�

�

2



�

�

1+

6

7

�

p

�

1

1

C

C

C

A

(17)

and D

~

P

�1

by

0

B

B

B

�

�

�

�

�



�

2

�

�

�

6

7

�

p

�

1

0 0

�

�

�

�



�

2

�

�

�

6

7

�

p

�

1

�

1

�

2

�

2

1

�

�

�

�

2

�

1

�

�

�

�

�

1

�

1

�

�

�

�

2



�

�

�

(

�

2

�

1



��

1

(�

1

�

3

��

2

�

1

))

�

�



�

2

�

�

1+

6

7

�

p

�

1

��

2

�

�



�

2

�

�

1+

6

7

�

p

�

1

�

2

1

�

�



�

2

�

�

1+

6

7

�

p

�

1

+�

1

�

2

�

�

�

2



�

�

1

C

C

C

A

:

(18)

Now it is straightforward to see, that the term �

1

�

�

�



�

2

�

�

�

is the largest entry in

the matrix (17). Then it preserves horizontal ones with onstant e.g. s =

0:3 and expands them with expansion rate � = �

1



2Æ

> 1. Similar we see,

that �

2

1

�

�

�



�

2

�

�

�

1+

6

7

�

p

�

1

is the leading term of the last two lines in (18). Hene it

preserves vertial ones with onstants s = 0:3 and expands them with onstant

�

�1

for � = 2

Æ



6

7

�

p

�

1

< 1.

By Katok and Hasselblatt [15, p.274℄ we have the existene of an invariant

hyperboli Cantor set for the redued map

~

P , suh that the dynamis are
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topologial onjugate to the shift on two symbols for this redued map. Then

for the omplete return map P there exists the shift of �nite type with the

transition matrix of the theorem: if an orbit is near the loop l in the present,

then as the shift is on the symbols 2 and 3 the next loop in the itinerary has

to be l + 1 mod 3 or l + 2 mod 3. Similarly the previous one was l + 1 mod 3

or l + 2 mod 3. Thus possible sequenes (x

n

)

n2Z

have the form x

n

6= x

n+1

.

The realization of all these sequenes are guaranteed by the existene of the full

shift on two symbols for

~

P . Proposition 6.5.3 in [15℄ gives then even persistene

under small C

1

perturbations i.e. for an open set in parameter spae. Hene we

an inlude higher order terms. This also veri�es the linear approximation of

the global maps, for whih all equivariant higher order terms an be negleted.

It remains to hek the symmetry properties of C, P and � . The setions S

in

k

are related by symmetry: S

in

2

= S

in

1

and S

in

3

= 

2

S

in

1

. Furthermore S

in

1

is

�-invariant and S

in

3

= �S

in

2

. Then P

lo

is equivariant, beause the linearizing

di�eomorphism isD

3

-equivariant. The global part is equivariant under rotation

 by onstrution. It is equivariant under � by the following argument:

�

�1

P

glo

�x = �

�1

�

t(�x)

(�x) = �

t(�x)

(x)

P

glo

x = �

t(x)

(x)

As the times t(�x) and t(x) are both lose to the time needed of the homolini

orbits from the `out' setion to the `in' setion, we get t(�x) � t(x). As

�

t(x)

(x);�

t(�x)

(x) 2 S

in

k

for the same k, we get t(x) = t(�x). Hene P

glo

and

P are equivariant. Then C = \

1

n=�1

P

n

([

i=1;2;3

S

in

i

) is D

3

invariant, beause

P

n

is equivariant and [

i=1;2;3

S

in

i

is invariant. If x 2 C and x = P

n

(a

n

) with

a

n

2 S

in

x

n

, then �(x) = (x

n

)

n2Z

and the equivariane of � an be easily heked

using the representations (2) and (1). 2

5 Disussion

In this setion we give a more omplete bifuration diagram of the Takens-

Bogdanov point with D

3

-symmetry, using numerial studies of the normal form

equations. Then we will desribe an appliation to oupled osillators.

A major drawbak in all further numerial studies is that there are not any

stable dynami features exept the origin for some parameter values (�

1

; �

2

<

0). Therefore all diret simulations will not give muh insight. Some onjetures

about the periodi solutions reated at Hopf bifurations are possible using the

path-following program AUTO [5℄.

The dynamis are fully understood in the invariant plane Fix(�) by [14℄, see

also [16℄. There are two branhes of periodi orbits starting from the D

3

-Hopf

bifuration of 0 and the Hopf of N

1

at �

2

= ��

1

; �

1

> 0. These branhes do

not undergo any folds and end at the homolini orbit. The global behavior

of the other branhes of periodi solutions are analyzed using AUTO. These

branhes of periodi solutions outside Fix(�) seem to break down at the lover
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1

2

3

Figure 7: A periodi orbit with sequene 1213 of isotropy type

~

Z

2

of the branh

oming from the D

3

-Hopf. Parameter values are near the existene of the ho-

molini lover. A projetion on the v plane is shown, the rosses denote steady

states. The trajetory of periodi orbit was approximated by integrating the

di�erential equation starting at points, whih desribed the periodi solution

for AUTO.

struture of homolini orbits. Probably they are some of the periodi orbits

of the subshift:

� The periodi solutions with isotropy type

~

Z

2

oming from the D

3

-Hopf

bifuration have period 4 reated by the sequenes 1213, 2321 and 3132,

see �gure7.

� The solutions oming from the Hopf bifuration ofN

1;2;3

at �

2

= �

1

; �

1

<

0 seem to have period 2, see �gure 8.

� Even if the author ould not pik up the

~

Z

3

periodi solutions starting

at the D

3

-Hopf bifuration for path-following with AUTO. We might

onjeture that this branh also ends at the homolini lover. They are

probably of period 3 with sequenes 123 and 132.

Doumenta Mathematia 4 (1999) 463{485



482 Karsten Matthies

2

3

Figure 8: A periodi solution with sequene 23 with isotropy type

~

Z

2

on the

branh oming from the Hopf bifuration of N

1

.

The entire horseshoe does persist for some parameter by a general perturbation

argument for hyperboli sets. It remains an open question how long for example

the other periodi orbits reated by the horseshoe persist. This will probably

involve even more ompliated bifurations.

We will onsider an appliation to three oupled osillators following Fiedler

[6℄. The system is given by

_x

i

= f(x

i

) +D(x

i�1

+ x

i+1

� 2x

i

) (mod 3); i = 1; 2; 3; (19)

where x

i

2 R

k

and D = diag(d

1

; : : : ; d

k

). This system is equivariant under

permutations of x

1

; x

2

and x

3

. The symmetry group is isomorphi to D

3

. If

we have a homogeneous solution, it will stay homogeneous under the evolution

of time. We hange to (x; y; z) oordinates where

x = x

1

+ x

2

+ x

3

; y = x

1

� x

2

; z = x

2

� x

3

:
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In the new oordinate system we then have:

_x = f(

x+ z + 2y

3

) + f(

x+ z � y

3

) + f(

x� y � 2z

3

)

_y = f(

x+ z + 2y

3

)� f(

x+ z � y

3

)� 3Dy

_z = f(

x+ z � y

3

)� f(

x� y � 2z

3

)� 3Dz (20)

We onsider the homogeneous equilibrium (x

0

; x

0

; x

0

) with linearisation

f

0

(x

0

) = A. In the new oordinates the equilibrium is (3x

0

; 0; 0). Its Jao-

bian in the entire system is given by the blok diagonal matrix diag(A;A �

3D;A� 3D).

We hoose k = 2 and for f the dynamis of the Brusselator as an easy example.

It gives some insight into the possible behavior of hemial osillator. So f =

(f

1

; f

2

) is given by f

1

(�

1

; �

2

) = a� (b+1)�

1

+ �

2

1

�

2

; f

2

(�

1

; �

2

) = b�

1

� �

2

1

�

2

with

a; b > 0, the equilibrium is x

0

= (a;

b

a

) and A =

�

b� 1 a

2

�b �a

2

�

. We hoose

D =

1

3

�

�

1

0

0 �

2

�

: Then A� 3D has a double eigenvalues 0 if

det(A� 3D) = �

1

�

2

+ �

1

a

2

� �

2

(b� 1) + a

2

= 0

trae(A� 3D) = b� 1� a

2

� �

1

� �

2

= 0

The solution is given by (�

1

; �

2

) = (b � 1 � a

p

b;�a

2

+ a

p

b), the di�usion

onstants �

1

; �

2

are positive and therefore somehow realisti for a <

b�1

p

b

. So

this D

3

-equivariant system has a Takens-Bogdanov point sine there is a double

zero eigenvalue and A�3D 6= 0. We apply our bifuration analysis for Takens-

Bogdanov points with D

3

-symmetry to this problem. It will be valid on a

four-dimensional enter manifold whih is tangent to the subspae spanned by

y and z.

As trae(A) > trae(A � 3D) = 0 holds for �

1

+ �

2

> 0, the matrix A has at

least one eigenvalue with positive real part. Hene all dynamial features will be

unstable if we onsider the entire system. We ould stabilize the system when

using negative di�usion rates. But still all branhing solutions have unstable

diretions due to the Takens-Bogdanov point making them inaessible for

diret numerial simulation.

The origin will still orrespond to the homogeneous solution even after the

needed oordinate hanges. Then an interpretation of a D

3

-Hopf bifuration in

a ring of three oupled osillators is given in [11, XVII.4℄. The three di�erent

types of periodi solutions give di�erent waveforms, phase shifts and resonanes

for the three ells. We furthermore expet near the bifuration point the exis-

tene of inhomogeneous steady state solutions with two ells being in the same

state. The periodi solutions oming from the Hopf bifurations of these �xed

points osillate around these inhomogeneous steady states. In the �rst type

two ells are in phase and in the other type two ells have a phase shift of

Doumenta Mathematia 4 (1999) 463{485



484 Karsten Matthies

�. The periodi solutions ollapse at the homolini orbits, sine by moving

in parameter spae parts of the periodi orbits reah a state very lose to the

homogeneous equilibrium. For these parameter values the system is already

`haoti' beause of the existene of shift dynamis. When the solution follows

one of the loops of the `lover' struture it has nearly a Z

2

symmetry, i.e. two

ells have nearly the same state. Hene within the shift dynamis we have

arbitrary hanges of two out of three ells being nearly in phase. The struture

of our subshift fores the system to hange to another pair of ells being in

phase after some time. Beause of the unstable diretions of the hyperboli

struture this behavior is only observable as a transient motion to in�nity or

to some stable solutions far away from the Takens-Bogdanov point.
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