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Abstrat. A at omplex vetor bundle (E;D) on a ompat Rie-

mannian manifold (X; g) is stable (resp. polystable) in the sense of

Corlette [C℄ if it has no D-invariant subbundle (resp. if it is the D-

invariant diret sum of stable subbundles). It has been shown in [C℄

that the polystability of (E;D) in this sense is equivalent to the exis-

tene of a so-alled harmoni metri in E. In this paper we onsider

at omplex vetor bundles on ompat Hermitian manifolds (X; g).

We propose new notions of g-(poly-)stability of suh bundles, and of g-

Einstein metris in them; these notions oinide with (poly-)stability

and harmoniity in the sense of Corlette if g is a K�ahler metri, but

are di�erent in general. Our main result is that the g-polystability

in our sense is equivalent to the existene of a g-Hermitian-Einstein

metri. Our notion of a g-Einstein metri in a at bundle is moti-

vated by a orrespondene between at bundles and Higgs bundles

over ompat surfaes, analogous to the orrespondene in the ase of

K�ahler manifolds [S1℄, [S2℄, [S3℄.

1991 Mathematis Subjet Classi�ation: 53C07

1 Introdution.

Let X be an n-dimensional ompat omplex manifold. If X admits a K�ahler

metri g, then it is known by work of in partiular Simpson [S1℄,[S2℄,[S3℄ that

there exists an anonial identi�ation of the moduli spae of polystable (or
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semisimple) at bundles on X with the moduli spae of g-polystable Higgs-

bundles with vanishing Chern lasses on X . This identi�ation has been used

in showing that ertain groups are not fundamental groups of ompat K�ahler

manifolds. The onstrution uses the existene of anonial metris, alled

g-harmoni in the ase of at bundles, and g-Einstein in the ase of Higgs

bundles.

For at bundles, the equivalene of semisimpliity and the existene of a g-

harmoni metri holds on ompat Riemannian manifolds [C℄. Furthermore,

the equivalene of g-polystability and the existene of a g-Einstein metris for

Higgs bundles should generalize to the ase of Hermitian manifolds as in the

ase of holomorphi vetor bundles, using Gauduhon metris. Nevertheless,

an identi�ation as above annot be expeted for general ompat Hermitian

manifolds, sine it should imply restritions on the fundamental group, but

every �nitely presented group is the fundamental group of a 3-dimensional

ompat omplex manifold by a theorem of Taubes [T℄.

In the ase of ompat omplex surfaes, however, things are di�erent. We show

that for an integrable Higgs bundle (E; d

00

) with vanishing real Chern numbers

and of g-degree 0 with g-Einstein metri h on a ompat omplex surfae X

with Hermitian metri g, there is an anonially assoiated at onnetion D

in E, again of g-degree 0, suh that h is what we all a g-Einstein metri for

(E;D), and that the onverse is also true. Furthermore, this orrespondene

preserves isomorphism types and hene desends to a bijetion between moduli

spaes.

The notion of a g-Einstein metri in a at bundle makes sense in higher di-

mension, too, is equivalent to g-harmoniity in the ase of a K�ahler metri, but

di�erent in general, and we show that the existene of suh a metri in a at

bundle (E;D) is equivalent to the g-polystability of this bundle in the sense

that E is the diret sum of D-invariant g-stable at subbundles. Here we all a

at bundle (E;D) g-stable if every D-invariant subbundle has g-slope larger(!)

than the g-slope of (E;D). g-stability of a at bundle is equivalent to its sta-

bility (in the sense of Corlette) in the K�ahler ase, but a weaker ondition in

general: A stable bundle is always g-stable, but the tangent bundles of ertain

Inoue surfaes are examples of g-stable bundles whih are not stable.

We expet that for a non-K�ahler surfae with Hermitian metri g, there is a

natural bijetion between the moduli spae of g-polystable Higgs bundles, with

vanishing Chern numbers and g-degree, and the moduli spae of g-polystable

at bundles with vanishing g-degree. In the last setion we onsider the speial

ase of line bundles on surfaes. Here the stability is trivial, and the existene

of Einstein metris is easy to show, so we get indeed the expeted natural

bijetion between moduli spaes of line bundles of degree 0. We further show

how this an be extended (in a non-natural way) to the moduli spaes of line

bundles of arbitrary degree; this extension argument works in fat for bundles

of arbitrary rank one the orrespondene for degree 0 has been established.
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2 Preliminaries.

Let X be a ompat n-dimensional omplex manifold, and E �! X a di�er-

entiable C

r

-vetor bundle on X . We �x the following

Notations:

A

p

(X) (resp. A

p;q

(X)) is the spae of di�erentiable p-forms (forms of type

(p; q)) on X .

A

p

(E), A

p;q

(E) are the spaes of di�erential forms with values in E.

A(E) is the spae of linear onnetions D in E. For a onnetion D 2 A(E)

we write D = D

0

+D

00

; where D

0

is of type (1,0) and D

00

of type (0,1).

A(E; h) � A(E) is the subspae of h-unitary onnetions d in E, where h is a

Hermitian metri in E. We write d = � +

�

�; where � is of type (1,0) and

�

� of

type (0,1).

A

f

(E) := f D 2 A(E) j D

2

= 0 g is the subset of at onnetions.

�

A(E) is the spae of semionnetions

�

� of type (0,1) in E (i.e.

�

� is the (0,1)-

part of some D 2 A(E) ).

H(E) := f

�

� 2

�

A(E) j

�

�

2

= 0 g is the subset of integrable semionnetions or

holomorphi strutures in E.

A

00

(E) :=

�

A(E) �A

1;0

(EndE) = f d

00

=

�

� + � j

�

� 2

�

A(E); � 2 A

1;0

(EndE) g

is the spae of Higgs operators in E.

H

00

(E) := f d

00

2 A

00

(E) j (d

00

)

2

= 0 g is the subset of integrable Higgs operators.

Often the same symbol is used for a onnetion, semionnetion, Higgs operator

et. in E and the indued operator in EndE.

Two onnetions D

1

; D

2

2 A(E) are isomorphi, D

1

�

=

D

2

; if there exists a

di�erentiable automorphism f of E suh that fÆD

1

= D

2

Æf; whih is equivalent

to D(f) = 0; where D is the onnetion in EndE indued by D

1

and D

2

, i.e.

D(f) = D

2

Æ f � f Æ D

1

: In the same way the isomorphy of semionnetions

resp. Higgs operators is de�ned.

If a Hermitian metri h in E is given, then a supersript

�

means adjoint with

respet to h.

For D = D

0

+ D

00

there are unique semionnetions Æ

0

h

,Æ

00

h

of type (1,0), (0,1)

respetively suh that D

0

+ Æ

00

h

and Æ

0

h

+D

00

are h-unitary onnetions. De�ne

Æ

h

:= Æ

0

h

+ Æ

00

h

; then d

h

:=

1

2

(D + Æ

h

) is h-unitary, and �

h

:= D � d

h

=

1

2

(D � Æ

h

) is a h-selfadjoint 1-form with values in EndE. Let d

h

= �

h

+

�

�

h

be the deomposition in the parts of type (1,0) and (0,1), and let �

h

be the

(1; 0)-part of �

h

; then it holds

D = d

h

+�

h

= �

h

+

�

�

h

+ �

h

+ �

�

h

:
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The map

I

h

: A(E) �! A

00

(E); I

h

(D) := d

00

h

:=

�

�

h

+ �

h

2 A

00

(E)

is bijetive; the inverse is given as follows. For d

00

=

�

� + � 2 A

00

(E) let �

h

be

the unique semionnetion of type (1; 0) suh that the onnetion d

h

:= �

h

+

�

�

is h-unitary, and de�ne � := � + �

�

: Then

I

�1

h

(d

00

) = D

h

:= d

h

+� 2 A(E):

Remark 2.1 i) In general, if D

1

; D

2

2 A(E) are isomorphi, then I

h

(D

1

)

and I

h

(D

2

) are not isomorphi, and vie versa.

ii) D

h

= d

h

+�+�

�

is not h-unitary unless � = 0; but the onnetions d

h

��+�

�

and d

h

+ � � �

�

are.

iii) Any metri h

0

in E is of the form h

0

= f � h ; i.e. h

0

(s; t) = h(f(s); t);

where f is a h-selfadjoint and positive de�nite. For a onnetion D it is easy

to show that the operator Æ

h�f

assoiated to D and f � h is given by Æ

h�f

=

f

�1

Æ Æ

h

Æ f = Æ

h

+ f

�1

Æ Æ

h

(f); so it holds

d

00

f �h

= d

00

h

+

1

2

f

�1

Æ Æ

00

h

(f)� f

�1

Æ Æ

0

h

(f)

= d

00

h

+

1

2

f

�1

Æ

�

�

h

(f)�

1

2

f

�1

Æ �

�

h

(f)�

1

2

f

�1

Æ �

h

(f) +

1

2

f

�1

Æ �

h

(f):

Conversely, for a given Higgs operator d

00

one veri�es

D

f �h

= D

h

+ f

�1

Æ �

h

(f) + f

�1

Æ �(f):

In partiular, if f is onstant then the two maps I

h

and I

f �h

oinide.

Definition 2.2 i) G

h

:= (d

00

h

)

2

is alled the pseudourvature of D with respet

to h.

ii) F

h

:= D

2

h

is alled the urvature of d

00

with respet to h.

Remark 2.3 i) Obviously it holds: I

h

(D) is an integrable Higgs operator if

and only if G

h

= 0; and I

�1

h

(d

00

) is a at onnetion if and only if F

h

= 0:

ii) For i = 1; 2; let E

i

be a di�erentiable omplex vetor bundle on X with Her-

mitian metri h

i

and onnetion D

i

. Let h be the indued metri and D the

indued onnetion in Hom(E

1

; E

2

). Denote by G

i;h

resp. G

h

the pseudourva-

ture of D

i

resp. D with respet to h

i

resp. h. Then for f 2 A

0

(Hom(E

1

; E

2

))

it holds G

h

(f) = G

2;h

Æ f � f ÆG

1;h

:

Similarly, the urvature F

h

of the Higgs operator indued in Hom(E

1

; E

2

) by

Higgs operators d

00

i

in the E

i

is given by F

h

(f) = F

2;h

Æ f � f Æ F

1;h

:

iii) If D is a onnetion, then D

2

is the urvature of d

00

h

with respet to h, and

if d

00

is a Higgs operator, then (d

00

)

2

is the pseudourvature of D

h

with respet

to h. This trivially follows from the bijetivity of I

h

.
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Lemma 2.4 i) For D 2 A(E) let D = d

h

+ �

h

= �

h

+

�

�

h

+ �

h

+ �

�

h

be

the deomposition indued by h as above. If D is at, then it holds Æ

2

h

= 0,

d

h

(�

h

) = 0; i.e. �

h

(�

h

) =

�

�

h

(�

�

h

) = �

h

(�

�

h

) +

�

�

h

(�

h

) = 0; and furthermore

d

2

h

= ��

h

^�

h

:

ii) For d

00

=

�

� + � 2 A

00

(E) let �

h

, d

h

and D

h

be as above, and write d

0

h

:=

�

h

+ �

�

:

If d

00

is integrable, then it holds (d

0

h

)

2

= 0 ; i.e. �

2

h

= �

h

(�

�

) = �

�

^ �

�

= 0 ;

d

2

h

= [�

h

;

�

�℄; and hene F

h

= d

2

h

+ [�; �

�

℄ + �

h

(�) +

�

�(�

�

):

Proof: i) For D = D

0

+D

00

2 A

f

(E) it holds

0 = ��h(s; t)

= h((D

0

)

2

(s); t) � h(D

0

(s); Æ

00

h

(t)) + h(D

0

(s); Æ

00

h

(t)) + h(s; (Æ

00

h

)

2

(t))

= h(s; (Æ

00

h

)

2

(t))

for all s; t 2 A

0

(E); i.e. (Æ

00

h

)

2

= 0: Similarly one sees (Æ

0

h

)

2

= 0 = Æ

0

h

Æ

00

h

+ Æ

00

h

Æ

0

h

;

yielding Æ

2

h

= 0: We onlude

d

h

(�

h

) =

1

4

[D + Æ

h

; D � Æ

h

℄ = 0;

and

0 = D

2

= (d

h

+�

h

)

2

= d

2

h

+ d

h

(�

h

) + �

h

^�

h

= d

2

h

+�

h

^�

h

:

ii) For d

00

=

�

� + � 2 H

00

(E) and d

h

= �

h

+

�

� it is well known that �

2

h

= 0; and

hene d

2

h

= [�

h

;

�

�℄: Furthermore, for all s; t 2 A

0

(E) it holds

h(�

h

(�

�

)(s); t)

= h(�

h

Æ �

�

(s); t) + h(�

�

Æ �

h

(s); t)

= �h(�

�

(s); t) + h(�

�

(s);

�

�(t))� h(�

h

(s); �(t))

= �h(s; �(t)) + h(s; � Æ

�

�(t)) � h(�

h

(s); �(t))

= h(�

h

(s); �(t)) + h(s;

�

� Æ �(t)) + h(s; � Æ

�

�(t))� h(�

h

(s); �(t))

= h(s;

�

�(�)(t)) = 0;

and

h(�

�

^ �

�

(s); t) = �h(s; � ^ �(t)) = 0;

this shows �

h

(�

�

) = 0 = �

�

^ �

�

:

Now let g be a Hermitian metri in X , and denote by !

g

the assoiated (1; 1)-

form on X , by �

g

the ontration by !

g

, and by �

g

the assoiated Hodge-�-

operator.

Reall that in the onformal lass of g there exists a Gauduhon metri ~g, i.e.

a metri satisfying

�

��(!

n�1

~g

) = 0; ~g is unique up to a onstant positive fator

if n � 2 ([G℄ p. 502, [LT℄ Theorem 1.2.4).
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There is a natural way to de�ne a map

deg

g

: H(E) �! R;

alled g-degree, with the following properties (see [LT℄ setions 1.3 and 1.4):

- If g is a Gauduhon metri, and

�

� 2 H(E) is a holomorphi struture, then

deg

g

(

�

�) is given as follows: Choose any Hermitian metri h in E, and let d

be the Chern onnetion in (E; �) indued by h, i.e. the unique h-unitary

onnetion in E with (0; 1)-part

�

�. Then

deg

g

(

�

�) :=

i

2�

Z

X

tr(d

2

) ^ !

n�1

g

=

i

2n�

Z

X

tr�

g

d

2

� !

n

g

=

i

2n�

Z

X

tr�

g

[

�

�; �℄ � !

n

g

:

- If g is arbitrary, then there is a unique Gauduhon metri ~g in the onformal

lass of g suh that deg

g

= deg

~g

:

The g-slope of

�

� is

�

g

(

�

�) :=

deg

g

(

�

�)

r

;

where r is the rank of E.

If D = D

0

+ D

00

is a at onnetion, then it holds (D

00

)

2

= 0; so D

00

is a

holomorphi struture. We de�ne the g-degree and g-slope of D as

deg

g

(D) := deg

g

(D

00

); �

g

(D) := �

g

(D

00

):

Similarly, for an integrable Higgs operator d

00

=

�

� + � it holds

�

�

2

= 0; and we

de�ne

deg

g

(d

00

) := deg

g

(

�

�); �

g

(d

00

) := �

g

(

�

�):

Observe that in all three ases the g-degrees (resp. slopes) of isomorphi oper-

ators are the same.

Remark 2.5 Suppose that g is a K�ahler metri, i.e. d(!

g

) = 0: Then the g-

degree is a topologial invariant of the bundle E, ompletely determined by the

�rst real Chern lass 

1

(E)

R

2 H

2

(X;R): In partiular, sine all real Chern

lasses of a at bundle vanish, it holds deg

g

(D) = 0 for every at onnetion

D in E. On the other hand, if e.g. X is a surfae admitting no K�ahler metri

and g is Gauduhon, then every real number is the g-degree of a at line bundle

on X ([LT℄ Proposition 1.3.13).

Lemma 2.6 If g is a Gauduhon metri, then for any metri h in E it holds:

i) If D is a at onnetion, then

deg

g

(D) = �

i

n�

Z

X

tr�

g

G

h

� !

n

g

;
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where G

h

is the pseudourvature of d

00

with respet to h.

ii) If d

00

is an integrable Higgs operator, then

deg

g

(d

00

) =

i

2n�

Z

X

tr�

g

F

h

� !

n

g

;

where F

h

is the urvature of d

00

with respet to h.

Proof: i) Observe that �

g

G

h

= �

g

�

�

h

(�

h

) : The Chern onnetion in (E;D

00

)

indued by h is D

00

+ �

h

� �

h

= D � 2�

h

; and it holds

tr�

g

(D � 2�

h

)

2

= �2tr�

g

((

�

� + �

�

)(�) = �2tr�

g

(G

h

+ [�; �

�

℄) = �2tr�

g

(G

h

);

so the laim follows by integration.

ii) Lemma 2.4 implies tr�

g

F

h

= tr�

g

d

2

h

; again the laim follows by integration.

3 Einstein metris and stability for flat bundles.

We �x a Hermitian metri g in X ; the assoiated volume form is vol

g

:=

1

n!

!

n

g

;

and the g-volume of X is Vol

g

(X) :=

R

X

vol

g

:We further �x a Hermitian metri

h in E, and denote by j: j the pointwise norm on forms with values in E (and

assoiated bundles) de�ned by h and g.

Let D 2 A

f

(E) be a at onnetion in E, and write D = d+� = �+

�

�+�+�

�

as in setion 1. Let d

00

h

= I

h

(D) =

�

� + � 2 A

00

(E) be the Higgs operator

assoiated to D, and G

h

= (d

00

h

)

2

its pseudourvature. From �

g

G

h

= �

g

�

�

h

(�

h

)

and Lemma 2.4 we dedue

(i�

g

G

h

)

�

= �i�

g

((

�

�(�))

�

) = �i�

g

�(�

�

) = i�

g

�

�(�) = i�

g

G

h

;

so i�

g

G

h

is selfadjoint with respet to h.

Remark 3.1 It also holds i�

g

G

h

=

i

2

�

g

(

�

�(�) � �(�)) ; whih in the ase of

a K�ahler metri g equals

1

2

d

�

(�), where d

�

is the L

2

-adjoint of d = � +

�

�:

Definition 3.2 h is alled a g-Einstein metri in (E;D) if i�

g

G

h

=  � id

E

with a real onstant , whih is alled the Einstein onstant.

Lemma 3.3 Let h be a g-Einstein metri in (E;D), and ~g = ' � g onformally

equivalent to g. Then there exists a ~g-Einstein metri

~

h in (E;D) whih is

onformally equivalent to h.

Proof: ~g = ' � g implies �

~g

=

1

'

� �

g

: From Remark 2.1 iii) it follows

that for f 2 C

1

(X;R) it holds G

e

f

�h

= G

h

�

1

4

�

��(f) � id

E

: Hene the ondi-

tion i�

g

G

h

=  � id

E

implies i�

~g

G

e

f

�h

= (



'

�

1

4

P (f)) � id

E

; where P := i�

~g

�

��:

Sine C

1

(X;R) = imP � R ([LT℄ Corollary 2.9), there exists an f suh that



'

�

1

4

P (f) is onstant.
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Lemma 3.4 If i�

g

G

h

=  � id

E

with  2 R; then it holds:

i)  = �

�

(n�1)!�Vol

g

(X)

� �

g

(D) if g is Gauduhon.

ii) deg

g

(D) = 0 if and only if  = 0:

Proof: i) is an immediate onsequene of Lemma 2.6.

ii) If g is Gauduhon, then this follows from i). If g is arbitrary, then let ~g = ' � g

be the Gauduhon metri in its onformal lass suh that deg

g

= deg

~g

: Now

we have

i�

g

G

h

= 0() i�

~g

G

h

= 0() deg

~g

(D) = 0() deg

g

(D) = 0:

Remark 3.5 i) If two at onnetions D

1

,D

2

are isomorphi via the automor-

phism f of E, i.e. if D

2

Æ f � f ÆD

1

= 0; and if h is a g-Einstein metri in

(E;D

1

), then f

�

h is a g-Einstein metri in (E;D

2

) with the same Einstein

onstant.

ii) By Remark 2.3, a neessary ondition for d

00

h

= I

h

(D) to be an integrable

Higgs operator is that h is a g-Einstein metri for D with Einstein onstant

 = 0; so in partiular deg

g

(D) = 0: On the other hand it holds d

2

= �� ^ �

(Lemma 2.4), and, if d

00

h

is integrable, � ^ � = 0 implying �

�

^ �

�

= 0 : This

gives tr(d

2

) = �tr[�; �

�

℄ = 0; whih implies deg

g

(d

00

h

) = 0:

iii) For omplex vetor bundles on ompat Riemannian manifolds (X; g),

Corlette de�nes a g-harmoni metri for a at onnetion by the ondition

d

�

(�) = 0 ([C℄). If X is omplex and g is a K�ahler metri, then the g-degree

of any at onnetion vanishes, so in this ontext g-harmoni is the same as

g-Einstein (see Remarks 2.5 and 3.1), but in general the two notions are dif-

ferent.

Now we prove a useful Vanishing Theorem.

Proposition 3.6 Let D be a at onnetion in E, and h a g-Einstein metri

in (E;D) with Einstein onstant .

If  > 0; then the only setion s 2 A

0

(E) with D(s) = 0 is s = 0:

If  = 0; then for every setion s 2 A

0

(E) with D(s) = 0 it holds

�

�(s) = �(s) =

0 and �(s) = �

�

(s) = 0; so in partiular d

00

h

(s) = 0 :

Proof: D(s) = 0 is equivalent to

�(s) = ��(s);

�

�(s) = ��

�

(s); (1)

this implies

�

��h(s; s) = �h(

�

� Æ �(s); s)� h(�(s); �(s)) + h(

�

�(s);

�

�(s))�h(s; � Æ �

�

(s)): (2)

The assumption that h is g-Einstein means i�

g

�

�(�) = i�

g

G

h

=  � id

E

; whih is

equivalent to i�

g

�(�

�

) = ��id

E

sine (i�

g

�

�(�))

�

= �i�

g

(

�

�(�)

�

) = �i�

g

�(�

�

);

these relations an be rewritten as

i�

g

�

� Æ � = �i�

g

� Æ

�

� +  � id

E

; i�

g

� Æ �

�

= �i�

g

�

�

Æ � �  � id

E

: (3)
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Using (1) and (3) we get

i�

g

h(

�

� Æ �(s); s) = �i�

g

h(� Æ

�

�(s); s) +  � jsj

2

= i�

g

h(

�

�(s); �

�

(s)) +  � jsj

2

= �i�

g

h(

�

�(s);

�

�(s)) +  � jsj

2

= j

�

�(s)j

2

+  � jsj

2

;

and similarly

i�

g

h(s; � Æ �

�

(s)) = j�(s)j

2

+  � jsj

2

;

so (2) implies

i�

g

�

��h(s; s) = �2

�

j

�

�(s)j

2

+ j�(s)j

2

+  � jsj

2

�

:

Sine the image of the operator i�

g

�

�� on real funtions ontains no non-zero

funtions of onstant sign ([LT℄ Lemma 7.2.7), this gives s = 0 in the ase

 > 0; and if  = 0 we get

�

�(s) = �(s) = 0; implying �(s) = �

�

(s) = 0 beause

of (1).

The following orollary will be used later in the ontext of moduli spaes.

Corollary 3.7 For i = 1; 2 let D

i

2 A

f

(E) be a at onnetion, h

i

a g-

Einstein metri in (E;D

i

), and d

00

i

:= I

h

i

(D

i

) 2 A

00

(E) the assoiated Higgs

operator. If D

1

and D

2

are isomorphi via the automorphism f of E, then d

00

1

and d

00

2

are isomorphi via f , too.

Proof: Let h be the metri in EndE = E

�


 E indued by the dual metri

of h

1

in E

�

and h

2

in E, and D the onnetion in EndE de�ned by D(f) =

D

2

Æ f � f ÆD

1

for all f 2 A

0

(EndE): Then D is at of g-degree 0 sine D

1

and D

2

are at of equal degree, and h is a g-Einstein metri in (EndE;D)

with Einstein onstant  = 0 (ompare Remark 2.3). Furthermore, the Higgs

operator d

00

in EndE de�ned by d

00

(f) = d

00

2

Æ f � f Æ d

00

1

equals I

h

(D). Hene

Proposition 3.6 implies that an automorphism f of E with D(f) = 0 also

satis�es d

00

(f) = 0:

If F � E is a D-invariant subbundle of E, then it is obvious that atness of D

implies atness of Dj

F

, and hene the following de�nition makes sense.

Definition 3.8 A at onnetion D in E is alled g-(semi)stable i� for ev-

ery proper D-invariant subbundle 0 6= F � E it holds �

g

(Dj

F

) > �

g

(D)

(�

g

(Dj

F

) � �

g

(D)). D is alled g-polystable i� E = E

1

� E

2

� : : : � E

k

is a

diret sum of D-invariant and g-stable subbundles E

i

with �

g

(Dj

E

i

) = �

g

(D)

for i = 1; 2; : : : ; k:

Remark 3.9 i) Let D be a at onnetion in E, and 0 6= F � E a proper

D-invariant subbundle. Then g-stability of D implies �

g

(Dj

F

) > �

g

(D) and

hene the g-instability of the holomorphi struture D

00

in E (in the sense of

e.g. [LT℄) sine F is a D

00

-holomorphi subbundle of E.

ii) Suppose that g is a K�ahler metri; then deg

g

(D) = 0 for every at onne-

tion D (Remark 2.5). Hene a at onnetion D in E is
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- always g-semistable,

- g-stable if and only if E has no proper non-trivial D-invariant subbundle,

- g-polystable if E is a diret sum of D-invariant g-stable subbundles.

This means that g-(poly-)stability on a K�ahler manifold oinides with (poly-

)stability in the sense of Corlette [C℄.

iii) It is obvious that stability in the sense of Corlette always implies g-stability,

but at the end of this setion we will give an example of a g-stable bundle whih

is not stable in the sense of Corlette.

Definition 3.10 A at onnetion D in E is simple if the only D-parallel

endomorphisms f , i.e. those with D

End

(f) = D Æ f � f Æ D = 0; are the

homotheties f = a � id

E

; a 2 C :

Let D be a at onnetion in E, 0 6= F � E a D-invariant subbundle, and Q :=

E

Æ

F

the quotient with natural projetion � : E �! Q: Then D indues a at

onnetion D

Q

in Q suh that D

Q

Æ� = �ÆD: In partiular, F is a holomorphi

subbundle of (E;D

00

), and D

00

Q

is the indued holomorphi struture in Q.

Sine the g-degree of a at onnetion D by de�nition equals the g-degree

of the assoiated holomorphi struture D

00

, it follow deg

g

(D) = deg

g

(D

1

) +

deg

g

(D

Q

): Hene as in the ase of holomorphi bundles one veri�es (ompare

[K℄ Chapter V)

Proposition 3.11 i) A at onnetion D in E is g-(semi)stable if and only

if for every D-invariant proper subbundle 0 6= F � E with quotient Q =

E

Æ

F

it holds �

g

(D

Q

) < �

g

(D) (resp. �

g

(D

Q

) � �

g

(D).)

ii) Let (E

1

; D

1

) and (E

2

; D

2

) be g-stable at bundles over X with �

g

(D

1

) =

�

g

(D

2

): If f 2 A

0

(Hom(E

1

; E

2

)) satis�es D

2

Æ f = f ÆD

1

; then either f = 0

or f is an isomorphism.

iii) A g-stable at onnetion D in E is simple.

Next we prove the �rst half of the main result of this setion.

Proposition 3.12 Let D be a at onnetion in E, and h a g-Einstein metri

in (E;D) with Einstein onstant ; then D is g-semistable. If D is not g-stable,

then D is g-polystable; more preisely, E = E

1

�E

2

�: : :�E

k

is a h-orthogonal

diret sum of D-invariant g-stable subbundles suh that �

g

(Dj

E

i

) = �

g

(D) for

i = 1; 2; : : : ; k: Furthermore, hj

E

i

is a g-Einstein metri in (E

i

; Dj

E

i

) with

Einstein onstant  for all i, and the diret sum is invariant with respet to the

Higgs operator d

00

h

= I

h

(D):

Proof: First we onsider the ase when g is a Gauduhon metri. Let 0 6=

F � E be a D-invariant proper subbundle of rank s; then E = F �F

?

; where

F

?

is the h-orthogonal omplement of F . With respet to this deomposition,

we write operators as 2� 2 matries, so D has the form

D =

�

D

1

A

0 D

2

�

;
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where D

1

= Dj

F

and D

2

is a at onnetion in F

?

. We use notations as in

setion 2; it is easy to see that the operator Æ assoiated to D by h has the

form

Æ =

�

Æ

1

0

A

�

Æ

2

�

;

where the Æ

i

are the operators assoiated to the D

i

by h. Similarly it holds

�

� =

1

2

(D

00

+ Æ

00

) =

1

2

�

D

00

1

+ Æ

00

1

A

00

A

0

�

D

00

2

+ Æ

00

2

�

=

�

�

�

1

1

2

A

00

1

2

A

0

�

�

�

2

�

;

and

� =

1

2

(D

0

� Æ

0

) =

�

D

0

1

� Æ

0

1

A

0

�A

00

�

D

0

2

� Æ

0

2

�

=

�

�

1

1

2

A

0

�

1

2

A

00

�

�

2

�

;

where A

0

resp. A

00

is the part of A of type (1; 0) resp. (0; 1). This implies

�

�(�) = [

�

�; �℄

=

�

�

�

1

(�

1

) +

1

4

(A

0

^ A

0

�

�A

00

^A

00

�

) �

�

�

�

2

(�

2

) +

1

4

(A

0

�

^ A

0

�A

00

�

^ A

00

)

�

;

hene

 � id

E

= i�

g

G

h

=

�

i�

g

G

1;h

+

i

4

�

g

(A

0

^ A

0

�

�A

00

^ A

00

�

) �

� i�

g

G

2;h

+

i

4

�

g

(A

0

�

^ A

0

�A

00

�

^ A

00

)

�

;(4)

and thus

s = tr(i�

g

G

1;h

+

i

4

�

g

(A

0

^ A

0

�

�A

00

^A

00

�

)) = itr�

g

G

1;h

+

1

4

jAj

2

:

Using Lemma 2.6 and Lemma 3.4 we onlude

�

g

(D

1

) = �

i

sn�

Z

X

tr�

g

G

1;h

� !

n

g

� �

(n� 1)!

�

Vol

g

(X) = �

g

(D); (5)

this prove that D is g-semistable.

If D is not g-stable, then there exists a subbundle F as above suh that equality

holds in (5), whih implies A = 0: This means not only that F

?

is D-invariant,

too, with Dj

F

?
= D

2

, but also that

i�

g

G

1;h

=  � id

F

; i�

g

G

2;h

=  � id

F

?

by (4). Hene the restrition of h to F resp. F

?

is g-Einstein for D

1

resp.

D

2

, and it holds �

g

(D

1

) = �

g

(D) = �

g

(D

2

) by Lemma 3.4. Furthermore, the

D-invariane of F means that the inlusion i : F ,! E is parallel with respet

to the at onnetion in Hom(F;E) indued by D

1

and D. Using Remark 2.3
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and Proposition 3.6 as in the proof of Corollary 3.7, we onlude that i is

also parallel with respet to the assoiated Higgs operator, i.e. that F is d

00

h

-

invariant; the same argument works for F

?

. If D

1

and D

2

are stable, then we

are done; otherwise the proof is �nished by indution on the rank.

Now let g be arbitrary, let ~g be the Gauduhon metri in its onformal lass

with deg

g

= deg

~g

; and let

~

h be a ~g-Einstein metri in the onformal lass of

h, whih exists by Lemma 3.3; then the theorem holds for ~g and

~

h. Sine g

and ~g de�ne the same degree and slope, and hene stability, it follows that D

is ~g-semistable. If D is not g-stable, then there exists a D-invariant proper

subbundle F as above with �

~g

(D

1

) = �

g

(D

1

) = �

g

(D) = �

~g

(D): Note that the

h-orthogonal omplement F

?

of F is also the

~

h-orthogonal omplement, sine

h and

~

h are onformally equivalent. Hene, using ~g and

~

h we onlude as above

that D =

�

D

1

0

0 D

2

�

with respet the deomposition E = F � F

?

; now we

an proeed as in the Gauduhon ase.

Another onsequene of Proposition 3.6 is

Proposition 3.13 Let D be a simple at onnetion in E. If a g-Einstein

metri in (E;D) exists, then it is unique up to a positive salar.

Proof: Let h

1

,h

2

be g-Einstein metris in (E;D), and  2 R the Einstein

onstant. There are di�erentiable automorphisms f and k of E, selfadjoint

with respet to both h

1

and h

2

, suh that f = k

2

and h

2

(s; t) = h

1

(f(s); t) =

h

1

(k(s); k(t)) for all s; t 2 A

0

(E): Sine D is simple it suÆes to showD(f) = 0:

We de�ne a new at onnetion

~

D := k ÆD Æ k

�1

: In what follows, operators

Æ, d, � et. with a subsript i are assoiated to D by the metri h

i

, without a

subsript they are assoiated to

~

D by h

1

. One veri�es

Æ

2

= f

�1

Æ Æ

1

Æ f; Æ = k

�1

Æ Æ

1

Æ k = k Æ Æ

2

Æ k

�1

;

implying

d =

1

2

(

~

D + Æ) = k Æ d

2

Æ k

�1

;� =

1

2

(

~

D � Æ) = k Æ�

2

Æ k

�1

and hene

i�

g

G

h

1

= i�

g

�

�(�) = ik Æ �

g

�

�

2

(�

2

) Æ k

�1

= ik Æ �

g

G

2;h

2

Æ k

�1

=  � id

E

;

so h

1

is a g-Einstein metri in (E;

~

D). It follows that h

1

indues a g-Einstein

metri with Einstein onstant 0 for the at onnetion

~

D

End

(:) = :ÆD�

~

DÆ : in

EndE. By de�nition it holds

~

D

End

(k) = 0; so Proposition 3.6 implies

~

d

End

(k) =

0: Sine

~

Æ

End

= 2

~

d

End

�

~

D

End

; it follows

0 =

~

Æ

End

(k) = k Æ Æ

1

� Æ Æ k = k Æ Æ

1

� k

�1

Æ Æ

1

Æ k

2

= k

�1

Æ (f Æ Æ

1

� Æ

1

Æ f) ;
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implying Æ

1;End

(f) = 0; where Æ

1;End

is the operator on EndE indued by D

and h

1

. But this is equivalent to Æ

0

1;End

(f) = 0 and Æ

00

1;End

(f) = 0 ; and taking

adjoints with respet to h

1

we get

0 = (Æ

0

1;End

(f))

�

= D

00

End

(f); 0 = (Æ

00

1;End

(f))

�

= D

0

End

(f);

i.e. D

End

(f) = 0:

Let (E;D), (

~

E;

~

D) be at bundles with g-Einstein metris h,

~

h. Let E =

k

L

i=1

E

i

and

~

E =

l

L

i=1

~

E

i

be the orthogonal, invariant splittings given by Proposi-

tion 3.12. We write D

i

:= Dj

E

i

;

~

D

i

:=

~

Dj

~

E

i

; h

i

:= hj

E

i

;

~

h

i

:=

~

hj

~

E

i

: Using

Propositions 3.11 and 3.13 one veri�es

Corollary 3.14 If there exists an isomorphism f 2 A

0

(Hom(E;

~

E)) satisfy-

ing f Æ D =

~

D Æ f; then it holds k = l; and, after renumbering of the sum-

mands if neessary, there are isomorphisms f

i

2 A

0

(Hom(E

i

;

~

E

i

)) suh that

f

i

ÆD

i

=

~

D

i

Æ f and f

�

(h

i

) =

~

h

i

:

The following result is the onverse of Proposition 3.12.

Proposition 3.15 Let (E;D) a g-stable at bundle over X. Then there exists

a g-Einstein metri for (E;D).

Sketh of proof: The proof is very similar to the one for the existene of a

g-Hermitian Einstein metri in a g-stable holomorphi vetor bundle as given

in Chapter 3 of [LT℄. Therefore we will be brief, leaving it to the reader to �ll

in the neessary details.

First observe that by Lemma 3.3 we may assume that g is a Gauduhon metri.

For any metri h in E it holds

G

h

=

�

�

h

(�

h

) =

1

4

[D

00

+ Æ

00

h

; D

0

� Æ

0

h

℄ = �

1

4

[D

00

; Æ

0

h

℄ +

1

4

[D

0

; Æ

00

h

℄

sine D

2

= Æ

2

h

= 0: Observe that [D

00

; Æ

0

h

℄ resp. [D

0

; Æ

00

h

℄ is the urvature of the

h-unitary onnetion D

00

+ Æ

0

h

resp. D

0

+ Æ

00

h

.

Fix a metri h

0

in E, and let Æ = Æ

0

+Æ

00

; d = �+

�

�; � = �+�

�

be the operators

assoiated toD = D

0

+D

00

and h

0

as in setion 2. Consider for an h

0

-selfadjoint

positive de�nite endomorphism f of E and " 2 [0; 1℄ the di�erential equation

L

"

(f) := K

0

�

i

4

�

g

D

00

(f

�1

Æ Æ

0

(f))+

i

4

�

g

D

0

(f

�1

Æ Æ

00

(f))� " � log(f) = 0; (6)

where K

0

:= i�

g

�

�(�) �  � id

E

= �

i

4

�

g

([D

00

; Æ

0

℄ � [D

0

; Æ

00

℄) �  � id

E

; and  is

the onstant assoiated to a possible g-Einstein metri for (E;D). The metri

f � h

0

; de�ned by f � h

0

(s; t) := h

0

(f(s); t) for setions s; t in E, is g-Einstein if

and only if L

0

(f) = 0:
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The term T

1

:= i�

g

D

00

(f

�1

Æ Æ

0

(f)) (assoiated to the unitary onnetion

d

1

:= Æ

0

+ D

00

) in equation (6) is of preisely the same type as the term

T

0

:= i�

g

�

�(f

�1

Æ �

0

(f)) (assoiated to the unitary onnetion d

0

= �

0

+

�

� )

in equation (��) on page 62 in [LT℄, and the term T

2

:= �i�

g

D

0

(f

�1

Æ Æ

00

(f))

(assoiated to the unitary onnetion d

2

:= D

0

+ Æ

00

) is almost of this type;

e.g. the trae of all three terms equals i�

g

�

��(tr(log f), and the symbols of the

di�erential operators

d

df

^

T

i

, where

^

T

i

(f) := f Æ T

i

(f); are equal, too. Therefore

most of the arguments in [LT℄ an easily be adapted to show �rst that for a

simple at onnetion D equation (6) has solutions f

"

for all " 2 (0; 1℄; whih

satisfy det f

"

� 1; and whih onverge to a solution f of L

0

(f) = 0 if the

L

2

-norms of the f

"

are uniformly bounded. (There are two plaes where one

has to argue in a slightly di�erent way: In the proof of the analogue of [LT℄

Lemma 3.3.1, one uses the Laplaian �

D

= D

�

ÆD instead of �

�

�

, and in the

proof of the analogue of [LT℄ Proposition 3.3.5 the sum �

d

1

+�

d

2

of the two

Laplaians assoiated to d

1

and d

2

instead of just one.)

Then, under the assumptions that rkE � 2 and that the L

2

-norms of the f

"

are unbounded, one shows that for suitable "

i

�! 0; �("

i

) �! 0; the limit

� := id

E

� lim

��!0

�

lim

i�!1

�("

i

) � f

"

i

�

�

exists weakly in L

2

1

, and satis�es in L

1

� = �

�

= �

2

and

(id

E

� �) ÆD(�) = 0: (7)

This implies (id

E

��)ÆD

00

(�) = 0; so � de�nes a weakly holomorphi subbundle

F of the holomorphi bundle (E;D

00

) by a theorem of Uhlenbek and Yau (see

[UY℄, [LT℄ Theorem 3.4.3). F is a oherent subsheaf of (E;D

00

), a holomorphi

subbundle outside an analyti subset S � X of odimension at least 2, and �

is smooth on X n S. Therefore (7) implies that Fj

XnS

is in fat a D-invariant

subbundle of Ej

XnS

, whih extends to a D-invariant subbundle F of E by the

Lemma below. Again using arguments as is [LT℄, one �nally shows that F

violates the stability ondition for (E;D).

Lemma 3.16 Let X be a di�erentiable manifold, E a di�erentiable vetor bun-

dle over X, and D a at onnetion in E. Let S � X be a subset suh that

X nS is open and dense in X, and with the following property: For every point

x 2 S and every open neighborhood U of x in X there exists an open neighbor-

hood x 2 U

0

� U suh that U

0

n S is path-onneted.

Then every D-invariant subbundle F of Ej

XnS

extends to a D-invariant sub-

bundle F of E.

Proof: For every x 2 S hoose an open neighborhood x 2 U � X suh that

U nS is path onneted and (Ej

U

; D)

�

=

(U � V; d); where V is a vetor spae

and d the trivial at onnetion. Sine F is D-invariant and U n S is path

onneted, it holds

(Fj

UnS

; D)

�

=

((U n S)�W;d);
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where W � V is a onstant subspae. De�ne F over U by F j

U

:

�

=

U �W ;

then the topologial ondition on S implies that this is well de�ned on S, and

hene gives a D-invariant extension F of F over X .

The following main result of this setion is a diret onsequene of Proposi-

tions 3.12 and 3.15.

Theorem 3.17 A at onnetion D in E admits a g-Einstein metri if and

only if it is g-polystable.

As for stable vetor bundles and Hermitian-Einstein metris, the gauge theo-

reti interpretation of our results is as follows. The group

G

C

:= A

0

(GL(E))

of di�erentiable automorphisms of E ats on A(E) by D � f = f

�1

ÆD Æ f; so

A(E)

Æ

G

C

is the moduli spae of isomorphism lasses of onnetions in E. Observe that

atness, simpliity and g-stability are preserved under this ation. Fix a metri

h in E; then it holds:

Corollary 3.18 The following two statements for a at onnetion D are

equivalent:

i) D is g-stable.

ii) D is simple, and there is a onnetion D

0

in the G

C

-orbit through D suh

that h is g-Einstein for D

0

.

The essential uniqueness of a g-Einstein metri (Proposition 3.13) implies that

the onnetion D

0

in ii) is unique up to the ation of the subgroup

G := A

0

(U(E; h)) � G

C

of h-unitary automorphisms. This means that the moduli spae

M

st

f

(E) =

f D 2 A

f

(E) j D is g � stable g

Æ

G

C

of isomorphism lasses of g-stable at onnetions in E oinides with the

quotient

f D 2 A

f

(E) j D is simple and h is g � Einstein for D g

Æ

G

:

Example: We now give the promised example of a at bundle whih is g-

stable, but not stable in the sense of Corlette.
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An Inoue surfae of type S

�

N

is the quotient of H �C by an aÆne transformation

group G generated by

g

0

(w; z) := (�w;�z + t);

g

i

(w; z) := (w + a

i

; z + b

i

w + 

i

); i = 1; 2;

g

3

(w; z) := (w; z + 

3

);

with ertain onstants �; a

i

; b

i

; 

3

2 R; 

1

; 

2

2 C (see [P℄ p. 160). Sine the

seond Betti number of S

�

N

vanishes, the degree map

deg

g

: Pi(S

�

N

) �! R

assoiated to a Gauduhon metri g is, up to a positive fator, independent

of the hosen metri g. In partiular, all Hermitian metris g de�ne the same

notion of g-stability ([LT℄ Remark 1.4.4 iii)).

The trivial at onnetion d on H � C indues a at onnetion D in the

tangent bundle E := T

S

�

N

: A D-invariant sub-line bundle of E is in partiular

a holomorphi subbundle, so it de�nes a holomorphi foliation of S

�

N

. A-

ording to [B℄ Th�eor�eme 2, there is preisely one suh foliation, namely the

one indued by the G-invariant vertial foliation (i.e. with leaves fwg � C ) of

H � C . The orresponding trivial line bundle L

0

on H � C is d-invariant, so

it desends to a unique D-invariant subbundle L of E; this shows that E is

not stable in the sense of Corlette. Observe that L has fators of automorphy

�(g

i

) = �1; i = 0; 1; 2; 3; so the standard at metri in L

0

de�nes a metri h

in L suh that the assoiated Chern onnetion in (L;D

00

j

L

) is at; this implies

�

g

(Dj

L

) = deg

g

(Dj

L

) = 0: On the other hand, the g-degree, and hene the g-

slope, of E is negative by [P℄ Proposition 4.7; this implies the g-stability of E

sine L is the only D-invariant proper subbundle of E.

4 Einstein metris and stability for Higgs bundles.

Again we �x Hermitian metris g in X and h in E.

Let d

00

=

�

� + � 2 A

00

i

(E) be an integrable Higgs operator,

D

h

= I

�1

h

(d

00

) = d+� = � +

�

� + � + �

�

2 A(E)

the onnetion assoiated to d

00

as in setion 2, and F

h

= D

2

h

its urvature.

Definition 4.1 h is alled a g-Einstein metri in (E; d

00

) if and only if

K

h

:= i�

g

F

h

=  � id

E

with a real onstant , the Einstein onstant.

Lemma 4.2 Let h be a g-Einstein metri in (E; d

00

), and ~g = ' � g onformally

equivalent to g. Then there exists a ~g-Einstein metri

~

h in (E; d

00

) whih is

onformally equivalent to h.
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Proof: From Remark 2.1 iii) it follows that for f 2 C

1

(X;R) it holds

F

e

f

�h

= F

h

+

�

��(f) � id

E

: Using this, the proof is analogous to that of Lem-

ma 3.3.

Notie that sine d

00

is integrable it holds (ompare Lemma 2.4)

K

h

= i�

g

(d

2

+ [�; �

�

℄) = i�

g

([�;

�

�℄ + [�; �

�

℄)

where d = � +

�

�: An immediate onsequene of Lemma 2.6 and Lemma 4.2 is

(ompare the proof of Lemma 3.4)

Lemma 4.3 If i�

g

F

h

=  � id

E

with  2 R; then it holds:

i)  =

2�

(n�1)!�Vol

g

(X)

� �

g

(d

00

) if g is Gauduhon.

ii) deg

g

(d

00

) = 0 if and only if  = 0:

Remark 4.4 (ompare Remark 3.5)

i) If two integrable Higgs operators d

00

1

,d

00

2

are isomorphi via the automorphism

f of E, i.e. if d

00

2

Æ f � f Æ d

00

1

= 0; and if h is a g-Einstein metri in (E; d

00

1

),

then f

�

h is a g-Einstein metri in (E; d

00

2

), and the assoiated Einstein onstants

are equal.

ii) By Remark 2.3, a neessary ondition for D

h

= I

h

(d

00

) to be a at onnetion

is h to be Einstein with Einstein onstant  = 0; so in partiular deg

g

(d

00

) = 0:

On the other hand, the Chern onnetion in (E;D

00

h

) is ���+

�

�+�

�

, so the g-

degree of D

h

is obtained by integrating tr�

g

[

�

�+�

�

; ���℄ whih equals tr�

g

[

�

�; �℄

sine d

00

is integrable (Lemma 2.4 ii)). If D

h

is at, we furthermore have

d

2

= �� ^� (Lemma 2.4 i)), implying tr[

�

�; �℄ = 0 and hene deg

g

(D

h

) = 0:

In analogy with the ase of Hermitian-Einstein metris in holomorphi vetor

bundles, the following vanishing theorem holds.

Proposition 4.5 Let h be a g-Einstein metri in (E; d

00

) with Einstein on-

stant .

If  < 0; then the only setion s 2 A

0

(E) with d

00

(s) = 0 is s = 0:

If  = 0; then for every setion s 2 A

0

(E) with d

00

(s) = 0 it holds D

h

(s) = 0:

Proof: For s 2 A

0

(E); d

00

(s) = 0 is equivalent to

�

�(s) = 0 = �(s): This im-

plies

 � jsj

2

=  � h(s; s) = h(K

h

(s); s) = i�

g

�

h(

�

��(s); s) + h(�

�

(s); �

�

(s))

�

: (8)

We have

i�

g

�

��h(s; s) = i�

g

�

h(

�

��(s); s)� h(�(s); �(s))

�

sine

�

�(s) = 0; and using (8) we get

i�

g

�

��h(s; s) =  � jsj

2

� j�(s)j

2

� j�

�

(s)j

2

:

Now the laim follows as in the proof of Proposition 3.6.

The proof of the following orollary is analogous to that of Corollary 3.7.
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Corollary 4.6 For i = 1; 2 let d

00

i

2 A

00

i

(E) be an integrable Higgs operators,

h

i

a g-Einstein metri in (E; d

00

i

), and D

i

:= I

�1

h

i

(d

00

i

) 2 A(E) the assoiated

onnetion. If d

00

1

and d

00

2

are isomorphi via the automorphism f of E, then

D

1

and D

2

are isomorphi via f , too.

Let d

00

=

�

� + � be an integrable Higgs operator in E. A oherent subsheaf F

of the holomorphi bundle (E;

�

�) is alled a Higgs-subsheaf of (E; d

00

) i� it is

d

00

-invariant. For the de�nition of the g-degree and g-slope of a oherent sheaf

see [LT℄.

Definition 4.7 An integrable Higgs operator d

00

in E is alled g-(semi)stable

i� for every oherent Higgs-subsheaf F of (E; d

00

) with 0 < rkF < rkE it holds

�

g

(F) < �

g

(E) ( �

g

(F) � �

g

(E) ). d

00

is alled g-polystable i� E is a diret

sum E = E

1

�E

2

� : : :�E

k

of d

00

-invariant and g-stable subbundles E

i

with

�

g

(d

00

j

E

i

= �

g

(d

00

) for i = 1; 2; : : : ; k:

Definition 4.8 An integrable Higgs operator d

00

in E is alled simple i� for

every f 2 A

0

(EndE) with d

00

Æ f = f Æ d

00

it holds f = a � id

E

with a 2 C :

As in the ase of stable vetor bundles or at onnetions, (semi)-stability an

equivalently be de�ned using quotients of E; again it follows

Lemma 4.9 i) A g-stable integrable Higgs operator in E is simple.

ii) Let d

00

1

, d

00

2

be g-stable integrable Higgs operators in bundles E

1

, E

2

on X

suh that �

g

(d

00

1

) = �

g

(d

00

2

) : If f 2 A

0

(Hom(E

1

; E

2

)) satis�es d

00

2

Æ f = f Æ d

00

1

;

then either f = 0 or f is an isomorphism.

Furthermore, using arguments similar to those in the proof of Proposition 3.13,

we get the following onsequene of Proposition 4.5.

Proposition 4.10 Let d

00

be a simple integrable Higgs operator in E. If a

g-Einstein metri in (E; d

00

) exists, then it is unique up to a positive salar.

The proof of the next result is a straightforward generalization of that in

the K�ahler ase [S2℄ (just as for the proof of the orresponding statement for

Hermite-Einstein metris in vetor bundles, see [LT℄).

Proposition 4.11 Let d

00

be an integrable Higgs operator in E, and h

a g-Einstein metri in (E; d

00

) with Einstein onstant ; then d

00

is g-

semistable. If d

00

is not g-stable, then d

00

is g-polystable; more preisely,

E = E

1

�E

2

� : : :�E

k

is an h-orthogonal diret sum of d

00

-invariant and g-

stable subbundles suh that �

g

(d

00

j

E

i

) = �

g

(d

00

) for i = 1; 2; : : : ; k : Further-

more, hj

E

i

is a g-Einstein metri in (E

i

; d

00

j

E

i

) with Einstein onstant  for all

i, and the diret sum is invariant with respet to the onnetion D

h

= I

�1

h

(d

00

):
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Let d

00

,

~

d

00

be integrable Higgs operators in bundles E,

~

E with g-Einstein met-

ris h,

~

h. Let E =

k

L

i=1

E

i

and

~

E =

l

L

i=1

~

E

i

be the orthogonal, invariant split-

tings given by Proposition 4.11. We write d

00

i

:= d

00

j

E

i

;

~

d

00

i

:=

~

d

00

j

~

E

i

; h

i

:= hj

E

i

;

~

h

i

:=

~

hj

~

E

i

:

As in the previous setion (but now using Lemma 4.9 and Proposition 4.10) we

dedue

Corollary 4.12 Suppose that there exists an isomorphism

f 2 A

0

(Hom(E;

~

E)) satisfying f Æ d

00

=

~

d

00

Æ f: Then it holds k = l; and,

after renumbering of the summands if neessary, there are isomorphisms

f

i

2 A

0

(Hom(E

i

;

~

E

i

)) suh that f

i

Æ d

00

i

=

~

d

00

i

Æ f and f

�

(h

i

) =

~

h

i

:

Remark 4.13 We expet that the existene of a g-Einstein metri for a g-

stable Higgs operator d

00

an be proved by solving (again using the ontinuity

method as in [LT℄) the di�erential equation

K

h

+ i�

g

d

00

(f

�1

Æ d

0

(f)) =  � id

E

for a positive de�nite and h-selfadjoint endomorphism f of E, where h is a

suitable �xed metri in E.

5 Surfaes.

In this setion we onsider the speial ase n = 2; i.e. where X is a ompat

omplex surfae; again we �x a Hermitian metri g in X . In this ase, the real

Chern numbers 

2

1

(E); 

2

(E) 2 H

4

(X;R)

�

=

R an be alulated by integrating

the orresponding Chern forms of any onnetion in E, independently of the

hosen metri g. In partiular, if E admits a at onnetion, then these Chern

numbers vanish.

Proposition 5.1 Suppose that D 2 A

f

(E) is a at onnetion of g-degree 0,

and that h is a g-Einstein metri in (E;D). Then it holds G

h

= 0: In partiular,

the Higgs operator d

00

h

assoiated to D and h is integrable with deg

g

(d

00

h

) = 0;

and h is a g-Einstein metri for (E; d

00

h

).

Proof: (see [S2℄) For � > 0 we de�ne a new onnetion B

�

:= d+

1

�

� + ��

�

;

and F

�

:= B

2

�

: Observe that n = 2 implies F

2

�

=

1

�

2

r

4

�

; where r

�

= d

00

h

+ �d

0

:

The vanishing of the Chern numbers of E implies

R

X

trF

2

�

= 0; and hene

R

X

trr

4

�

= 0 for all � > 0: Taking the limit �! 0 it follows

Z

X

trG

2

h

= 0: (9)

Doumenta Mathematia 4 (1999) 487{512



506 M. L

�

ubke

Write G

h

= G

1;1

+G

2

; where G

1;1

is the omponent of the 2-form G

h

of type

(1; 1). Then it holds

�

g

G

1;1

= �G

1;1

; �

g

G

2

= G

2

; (10)

the �rst equation is a onsequene of �

g

G

h

= 0; whih follows from the assump-

tion and Lemma 3.4. On the other hand, it holds G

h

=

�

�

2

+

�

�(�) + � ^ �; so

Lemma 2.4 implies

G

1;1

=

�

�(�) = �(�

�

)

�

= �

�

�(�)

�

= �G

�

1;1

; (11)

and

G

2

=

�

�

2

+ � ^ � = ��

�

^ �

�

� � ^ � = (� ^ � + �

�

^ �

�

)

�

= G

�

2

: (12)

(11) and (12) ombined with (10) give �

g

G

�

h

= G

h

; so from (9) it follows

0 =

Z

X

trG

2

h

=

Z

X

tr(G

h

^ �

g

G

�

h

) =

Z

X

jG

h

j

2

vol

g

;

implying (d

00

h

)

2

= G

h

= 0: Hene d

00

h

is integrable, deg

g

(d

00

h

) vanishes (Re-

mark 3.5), and h is g-Einstein for (E; d

00

)h) beause the urvature of d

00

h

with

respet to h equals D

2

= 0:

Proposition 5.2 Suppose that 

2

1

(E) = 

2

(E) = 0; that d

00

is an integrable

Higgs operator of g-degree 0, and that h is a g-Einstein metri in (E; d

00

).

Then it holds F

h

= 0: In partiular, the onnetion D

h

assoiated to d

00

and h

is at with deg

g

(D

h

) = 0; and h is a g-Einstein metri for (E;D

h

).

Proof: De�ne F

1;1

:= d

2

+ [�; �

�

℄; F

2

:= �(�) +

�

�(�

�

); then F

h

= F

1;1

+ F

2

:

Observe that F

1;1

is of type (1,1) beause d is a unitary onnetion in

the holomorphi bundle (E;

�

�). Sine deg

g

(d

00

) = 0; Lemma 4.3 implies

0 = �

g

F

h

= �

g

F

1;1

; hene it holds �

g

F

1;1

= �F

1;1

and �

g

F

2

= F

2

: On the

other hand, it is easy to see that F

�

1;1

= �F

1;1

and F

�

2

= F

2

: Combining these

relations we get �

g

F

�

h

= F

h

: Sine 

2

1

(E) resp. 

2

(E) are obtained by integrating

�

1

4�

2

(trF

h

)

2

resp. �

1

8�

2

((trF

h

)

2

� tr(F

2

h

)), we get

0 =

Z

X

tr(F

2

h

) =

Z

X

tr(F

h

^ �

g

F

�

h

) = kF

h

k

2

;

implying D

2

h

= F

h

= 0: Hene D

h

is at, deg

g

(D

h

) vanishes (Remark 4.4), and

h is g-Einstein for (E;D

h

) beause the pseudourvature of D

h

with respet to

h equals (d

00

)

2

= 0:

Remark 5.3 The above proposition implies in partiular the following: Sup-

pose that 

2

1

(E) = 

2

(E) = 0; if there exists an integrable Higgs operator d

00

in

E with g-degree 0 admitting a g-Einstein metri, then the real Chern lass



1

(E)

R

2 H

2

(X;R) vanishes, beause there is a at onnetion in E.
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We de�ne A

f

(E)

0

g

to be the spae of D 2 A

f

(E) of g-degree 0 suh that there

exists a g-Einstein metri in (E;D), and A

00

i

(E)

0

g

to be the spae of d

00

2 A

00

i

(E)

of g-degree 0 suh that there exists a g-Einstein metri in (E; d

00

). By Re-

mark 3.5 and Remark 4.4, the two moduli sets

M

f

(E)

0

g

:=

A

f

(E)

0

g

Æ

isomorphy of onnetions

and

M

00

(E)

0

g

:=

A

00

i

(E)

0

g

Æ

isomorphy of Higgs operators

are well de�ned. The main result of this setion is

Theorem 5.4 There is a natural bijetion

I :M

f

(E)

0

g

�!M

00

(E)

0

g

:

Proof: First observe that we may assume that the real Chern lasses of E

vanish, sine otherwise both spaes are empty (see Remark 5.3).

Let D be a at onnetion in E with g-degree 0, and h a g-Einstein metri

in (E;D). By Proposition 5.1, the assoiated Higgs operator d

00

h

= I

h

(D) is

integrable with g-degree 0, and h is a g-Einstein metri in (E; d

00

h

). We will

show that the map I de�ned by I([D℄) := [d

00

h

℄ is well de�ned and bijetive.

Suppose that D;

~

D 2 A

f

(E)

0

g

are isomorphi via the automorphism f of E;

then f

�

h is g-Einstein in (E;

~

D) (Remark 3.5), the Higgs-operator

~

d

00

assoi-

ated to

~

D and f

�

h is isomorphi to d

00

via f (Corollary 3.7), and f

�

h is a

g-Einstein metri in (E;

~

d

00

) (Remark 4.4). To prove that I is well de�ned

it thus suÆes to show that two di�erent g-Einstein metris h;

~

h for a �xed

D 2 A

f

(E)

0

g

produe isomorphi Higgs operators d

00

h

; d

00

~

h

. For this onsider the

D-invariant and h- resp.

~

h-orthogonal splittings E =

k

L

i=1

E

i

resp. E =

l

L

i=1

~

E

i

assoiated to h resp.

~

h by Proposition 3.12. Aording to Corollary 3.14 (with

E =

~

E; D =

~

D; f = id

E

) it holds k = l; and we may assume that there are

isomorphisms f

i

: (E

i

; D

i

; h

i

) �! (

~

E

i

;

~

D

i

;

~

h

i

) of at bundles of g-degree 0 with

g-Einstein metris, where D

i

:= Dj

E

i

;

~

D

i

:= Dj

~

E

i

; h

i

:= hj

E

i

;

~

h

i

:=

~

hj

~

E

i

: This

means in partiular that the Higgs operator d

00

i

in E

i

assoiated to D

i

and h

i

is isomorphi via f

i

to the Higgs operator

~

d

00

i

in

~

E

i

assoiated to

~

D

i

and

~

h

i

.

Hene d

00

h

= d

00

1

� : : : d

00

k

is isomorphi to d

00

~

h

=

~

d

00

1

� : : :�

~

d

00

k

via the isomorphism

f := f

1

� : : :� f

k

:

In the same way, but using Proposition 5.2 and the results of setion 4, one

shows that there is a well de�ned map from M

00

(E)

0

g

to M

f

(E)

0

g

, assoiating

to the lass of an integrable Higgs operator d

00

with g-Einstein metri h the

lass of the onnetion D

h

= I

�1

h

(d

00

); this obviously is an inverse of I .
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6 Line bundles on non-K

�

ahler surfaes.

Isomorphism lasses of at omplex line bundles (L;D) on a manifold X are

parametrized by H

1

(X; C

�

). On the other hand, an integrable Higgs operator

d

00

=

�

� + � in a omplex line bundle L onsists of a holomorphi struture

�

� in

L and a holomorphi 1-form � on X (the ondition � ^ � = 0 now is trivial).

Furthermore, two integrable Higgs operators d

00

1

and d

00

2

in L are isomorphi if

and only if the two holomorphi line bundles (L;

�

�

1

) and (L;

�

�

2

) are isomorphi

and �

1

= �

2

: Hene, the spae parametrizing isomorphism lasses of integrable

Higgs operators is H

1

(X;O

�

)�H

0

(X;


1

(X)) = Pi(X)�H

1;0

(X): In parti-

ular, the moduli sets M

f

(L)

0

g

and M

00

(L)

0

g

de�ned in the previous setion are

subsets of H

1

(X; C

�

) resp. Pi(X)�H

1;0

(X).

Lemma 6.1 Let L be a omplex line bundle on X, and g a Hermitian metri

in X. Then every at onnetion in L and every integrable Higgs operator in

L admits a g-Einstein metri.

Proof: Let h

0

be �xed metri in L, then every metri is of the form

h

f

= e

f

� h

0

with f 2 C

1

(X;R): Let D be a at onnetion in L; then h

f

is a g-Einstein metri for D if and only if it is a solution of the equation

i�

g

G

h

0

�

i

2

�

g

�

��(f) =  with a real onstant . Suh a solution exists by [LT℄

Corollary 7.2.9. A similar argument works for integrable Higgs operators.

From now on let X be a surfae, and g a �xed Hermitian metri in X . Then

the map deg

g

: Pi(X) �! R is a morphism of Lie groups ([LT℄ Proposition

1.3.7; reall that deg

g

= deg

~g

for some Gauduhon metri ~g). We de�ne

H

1

(X; C

�

)

f

:= f [(L;D)℄ 2 H

1

(X; C

�

) j deg

g

(D) = 0 g;

Pi(X)

T

:= f [(L;

�

�)℄ 2 Pi(X) j 

1

(L)

R

= 0 g;

and

Pi(X)

f

:= ker(deg

g

j

Pi(X)

T
):

Observe that Pi(X)

f

an be identi�ed with the set of isomorphism lasses of

line bundles admitting a at unitary onnetion ([LT℄ Proposition 1.3.13).

Theorem 5.4 and Lemma 6.1 imply

Proposition 6.2 There is a natural bijetion

I

1

: H

1

(X; C

�

)

f

�! Pi(X)

f

�H

1;0

(X):

If X admits a K�ahler metri, i.e. if the �rst Betti number of b

1

(X) is even,

then deg

g

is a topologial invariant for every metri g ([LT℄ Corollary 1.3.12 i)).

Hene in this ase it holds H

1

(X; C

�

)

f

= H

1

(X; C

�

) and Pi(X)

f

= Pi(X)

T

;

and I

1

is the natural bijetion from the moduli spae of isomorphism lasses of

at line bundles to the moduli spae of integrable Higgs operators in line bun-

dles with vanishing �rst real Chern lass, whih (e.g. by the work of Simpson)

already is known to exist for a K�ahler metri g.
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So let us assume that b

1

(X) is odd. Then deg

g

j

Pi

0

(X)

: Pi

0

(X) �! R is

surjetive, and it holds

Pi(X)

T
Æ

Pi(X)

f

�

=

Pi

0

(X)

Æ

Pi

0

(X)

f

�

=

R

([LT℄ Corollary 1.3.12 and Proposition 1.3.13). We will show that I

1

extends

to a (non-natural) bijetion from H

1

(X; C

�

) to Pi(X)

T

�H

1;0

(X) in this ase,

too.

Lemma 6.3 There is a bijetion i : Pi(X)

T

�! Pi(X)

f

� R suh that the

diagram

Pi(X)

T

deg

g

���! R

i # k

Pi(X)

f

� R

proj:

����! R

ommutes.

Proof: deg

g

j

Pi

0

(X)

is surjetive, so we an hoose L

1

:= [(L

1

;

�

�

1

)℄ 2 Pi

0

(X)

with deg

g

(L

1

) = deg

g

(

�

�

1

) = 1; and a lass � 2 H

1

(X;O) suh that L

1

= �(�)

where � : H

1

(X;O) �! Pi

0

(X) is the natural surjetion. For � 2 R de�ne

L

�

:= �(� � �);

then deg

g

(L

�

) = � sine deg

g

Æ� : H

1

(X;O) �! R is linear. Now de�ne i by

i(L) := (L 
 L

� deg

g

(L)

; deg

g

(L));

then it is obvious that the inverse of i is given by (L; �) 7! L 
 L

�

; and that

the diagram above ommutes.

In the proof of a similar statement for H

1

(X; C

�

) we will use

Lemma 6.4 The natural map

l

1

: H

1

(X; C

�

) �! Pi(X)

T

; l

1

([(L;D)℄) := [(L;D

00

)℄:

is surjetive, i.e. a holomorphi struture

�

� in a di�erentiable line bundle L on

X is the (0,1)-part of a at onnetion if and only if the real �rst Chern lass



1

(L)

R

vanishes.

Proof: Pi(X)

f

is naturally identi�ed with H

1

(X;U(1)), suh that the inlu-

sion Pi(X)

f

,! Pi(X) beomes the injetion k

1

: H

1

(X;U(1)) ,! H

1

(X;O

�

)

([LT℄ p. 38). Observe that k

1

is the omposition of the natural map

H

1

(X;U(1)) �! H

1

(X; C

�

) and l

1

, so it holds

Pi(X)

f

= im(k

1

) � im(l

1

):
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Eah omponent of Pi(X)

T

ontains a omponent of Pi(X)

f

([LT℄ Remark

1.3.10), hene for eah omponent

Pi



(X) := f [(L;

�

�)℄ 2 Pi(X) j 

1

(L)

Z

=  g � Pi(X)

T

there exists a lass [(L



; D



)℄ 2 H

1

(X; C

�

) suh that l

1

([(L



; D



)℄) 2 Pi



(X):

De�ne H

1

(X; C

�

)

0

:= f [(L;D)℄ 2 H

1

(X; C

�

) j 

1

(L)

Z

= 0 g: The ommuta-

tive diagram with exat rows

0 �! Z �! C

exp

���! C

�

�! 0

k # #

0 �! Z �! O

exp

���! O

�

�! 0

indues the ommutative diagram

H

1

(X; C ) �! H

1

(X; C

�

)

0

h

1

# # l

1

H

1

(X;O) �! Pi

0

(X)

with surjetive horizontal arrows. Sine X is a surfae, the left vertial arrow

h

1

is also surjetive ([BPV℄ p. 117), hene l

1

maps H

1

(X; C

�

)

0

surjetively

onto Pi

0

(X). Now it is easy to see that every element of Pi



(X) � Pi(X)

T

is of the form l

1

([(L




 L;D




D)℄) for some [(L;D)℄ 2 H

1

(X; C

�

)

0

:

Lemma 6.5 There is a bijetion j : H

1

(X; C

�

) �! H

1

(X; C

�

)

f

� R suh that

the diagram

H

1

(X; C

�

)

deg

0

g

���! R

j # k

H

1

(X; C

�

)

f

� R

proj:

����! R

ommutes, where deg

0

g

:= deg

g

Æl

1

is the map assoiated to the g-degree of at

onnetions.

Proof: Choose L

1

2 Pi

0

(X); � 2 H

1

(X;O) as in the proof of Lemma 6.3,

and a lass � 2 H

1

(X; C ) with h

1

(�) = �: Let �

0

: H

1

(X; C ) �! H

1

(X; C

�

)

be the map indued by exp : C �! C

�

; and de�ne L

0

1

:= �

0

(�) 2 H

1

(X; C

�

):

Sine the diagram

H

1

(X; C )

�

0

��! H

1

(X; C

�

)

h

1

# # l

1

H

1

(X;O) �! Pi(X)

T
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ommutes, it holds deg

0

g

(L

0

1

) = 1: The rest of the proof is as for Lemma 6.3.

We onlude

Theorem 6.6 The omposition

�

I : H

1

(X; C

�

)

j

�! H

1

(X; C

�

)

f

� R

I

1

�id

R

�����! H

1;0

(X)� Pi(X)

f

� R

id

H

1;0

(X)

�i

�1

����������! H

1;0

(X)� Pi(X)

T

is a bijetive extension of the map I

1

, and preserves the g-degree.

We �nish with the obvious remark that the map l

1

: H

1

(X; C

�

) �! Pi(X)

T

in general does not oinide with the omposition of

�

I and projetion onto

Pi(X)

T

.
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