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Abstrat. In ontrast to the usual Lipshitz seminorms assoiated to

ordinary metris on ompat spaes, we show by examples that Lipshitz

seminorms on possibly non-ommutative ompat spaes are usually not

determined by the restrition of the metri they de�ne on the state spae,

to the extreme points of the state spae. We haraterize the Lipshitz

norms whih are determined by their metri on the whole state spae as

being those whih are lower semiontinuous. We show that their domain

of Lipshitz elements an be enlarged so as to form a dual Banah spae,

whih generalizes the situation for ordinary Lipshitz seminorms. We

give a haraterization of the metris on state spaes whih ome from

Lipshitz seminorms. The natural (broader) setting for these results is

provided by the \funtion spaes" of Kadison. A variety of methods for

onstruting Lipshitz seminorms is indiated.

1991 Mathematis Subjet Classi�ation: Primary 46L87; Seondary

58B30, 60B10

In non-ommutative geometry (based on C

�

-algebras), the natural way to spe-

ify a metri is by means of a suitable \Lipshitz seminorm". This idea was �rst

suggested by Connes [C1℄ and developed further in [C2, C3℄. Connes pointed

out [C1, C2℄ that from a Lipshitz seminorm one obtains in a simple way an

ordinary metri on the state spae of the C

�

-algebra. This metri generalizes
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560 Mar A. Rieffel

the Monge{Kantorovih metri on probability measures [KA, Ra, RR℄. In this

artile we make more preise the relationship between metris on the state

spae and Lipshitz seminorms.

Let � be an ordinary metri on a ompat spae X . The Lipshitz seminorm,

L

�

, determined by � is de�ned on funtions f on X by

(0.1) L

�

(f) = supfjf(x)� f(y)j=�(x; y) : x 6= yg:

(This an take value +1.) It is known that one an reover � from L

�

by the

relationship

�(x; y) = supfjf(x)� f(y)j : L

�

(f) � 1g:

But a slight extension of this relationship de�nes a metri, ��, on the spae

S(X) of probability measures on X , by

(0.2) ��(�; �) = supfj�(f)� �(f)j : L

�

(f) � 1g:

This is the Monge{Kantorovih metri. The topology whih it de�nes on S(X)

oinides with the weak-� topology on S(X) oming from viewing it as the

state spae of the C

�

-algebra C(X). The extreme points of S(X) are identi�ed

with the points of X . On the extreme points, �� oinides with �. Thus the

relationship (0:1) an be viewed as saying that L

�

an be reovered just from

the restrition of its metri �� on S(X) to the set of extreme points of S(X).

Suppose now that A is a unital C

�

-algebra with state spae S(A), and let L

be a Lipshitz seminorm on A. (Preise de�nitions are given in Setion 2.)

Following Connes [C1, C2℄, we de�ne a metri, �, on S(A) by the evident

analogue of (0:2). We show by simple �nite dimensional examples determined

by Dira operators that L may well not be determined by the restrition of �

to the extreme points of S(A).

It is then natural to ask whether L is determined by � on all of S(A), by a

formula analogous to (0:1). One of our main theorems (Theorem 4:1) states

that the Lipshitz seminorms for whih this is true are exatly those whih are

lower semiontinuous in a suitable sense.

For ordinary ompat metri spaes (X; �) it is known that the spae of Lip-

shitz funtions with a norm oming from the Lipshitz seminorm is the dual

of a ertain other Banah spae. Another of our main theorems (Theorem 5:2)

states that the same is true in our non-ommutative setting, and we give a

natural desription of this predual. We also haraterize the metris on S(A)

whih ome from Lipshitz seminorms (Theorem 9:11).

We should make preise that we ultimately require that our Lipshitz semi-

norms be suh that the metri on S(A) whih they determine gives the weak-�

topology on S(A). An elementary haraterization of exatly when this hap-

pens was given in [Rf℄. (See also [P℄.) This property obviously holds for �nite-

dimensional C

�

-algebras. It is known to hold in many situations for ommuta-

tive C

�

-algebras, as well as for C

�

-algebras obtained by ombining ommutative

ones with �nite dimensional ones. But this property has not been veri�ed for
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many examples beyond those. However in [Rf℄ this property was veri�ed for

some interesting in�nite-dimensional non-ommutative examples, suh as the

non-ommutative tori, and I expet that eventually it will be found to hold in

a wide variety of situations.

Atually, we will see below that the natural setting for our study is the broader

one of order-unit spaes. The theory of these spaes was launhed by Kadison

in his memoir [K1℄. For this reason it is espeially appropriate to dediate this

artile to him. (In [K2℄ Kadison uses the terminology \funtion systems", but

we will follow [Al℄ in using the terminology \order-unit spae" as being a bit

more desriptive of these objets.)

On the other hand, most of the interesting onstrutions urrently in view

of Lipshitz seminorms on non-ommutative C

�

-algebras, suh as those from

Dira operators, or those in [Rf℄, also provide in a natural way seminorms on all

the matrix algebras over the algebras. Thus it is likely that \matrix Lipshitz

seminorms" in analogy with the matrix norms of [Ef℄ will eventually be of

importane. But I have not yet seen how to use them in a signi�ant way, and

so we do not deal with them here.

Let us mention here that a variety of metris on the state spaes of full matrix

algebras have been employed by the pratitioners of quantum mehanis. A

reent representative paper where many referenes an be found is [ZS℄. We will

later make a few omments relating some of these metris to the onsiderations

of the present paper.

The last three setions of this paper will be devoted to a disussion of the great

variety of ways in whih Lipshitz seminorms an arise, even for ommutative

algebras. We do disuss here some non-ommutative examples, but most of our

examples are ommutative. I hope in a later paper to disuss and apply some

other important lasses of non-ommutative examples. Some of the applia-

tions whih I have in mind will require extending the theory developed here to

quotients and sub-objets.

Finally, we should remark that while we give here onsiderable attention to

how Dira operators give metris on state spaes, Connes has shown [C2℄ that

Dira operators enode far more than just the metri information. In partiular

they give extensive homologial information. But we do not disuss this aspet

here.

I thank Nik Weaver for suggestions for improvement of the �rst version of this

artile, whih are aknowledged more spei�ally below.

1. Reolletions on order-unit spaes

We reall [Al℄ that an order-unit spae is a real partially-ordered vetor spae,

A, with a distinguished element e, the order unit, whih satis�es:

1) (Order unit property) For eah a 2 A there is an r 2 R suh that

a � re.

2) (Arhimedean property) If a 2 A and if a � re for all r 2 R

+

, then

a � 0.
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For any a 2 A we set

kak = inffr 2 R

+

: �re � a � reg:

We obtain in this way a norm on A. In turn, the order an be reovered from

the norm, beause 0 � a � e i� kak � 1 and ke� ak � 1. The primary soure

of examples onsists of the linear spaes of all self-adjoint elements in unital

C

�

-algebras, with the identity element serving as order unit. But any linear

spae of bounded self-adjoint operators on a Hilbert spae will be an order-unit

spae if it ontains the identity operator. We expet that this broader lass of

examples will be important for the appliations of metris on state spaes.

We will not assume that A is omplete for its norm. This is important for us

beause the domains of Lipshitz norms will be dense, but usually not losed,

in the ompletion. (The ompletion is always again an order-unit spae.) This

also aords with the de�nition in [Al℄.

By a state of an order-unit spae (A; e) we mean a ontinuous linear funtional,

�, onA suh that �(e) = 1 = k�k. States are automatially positive. We denote

the olletion of all the states of A, i.e. the state spae of A, by S(A). It is a

w

�

-ompat onvex subset of the Banah spae dual, A

0

, of A.

To eah a 2 A we get a funtion, â, on S(A) de�ned by â(�) = �(a). Then

â is an aÆne funtion on S(A) whih is ontinuous by the de�nition of the

w

�

-topology. The basi representation theorem of Kadison [K1, K2, K3℄ (see

Theorem II.1.8 of [Al℄) says that for any order-unit spae the representation

a ! â is an isometri order isomorphism of A onto a dense subspae of the

spae Af(S(A)) of all ontinuous aÆne funtions on S(A), equipped with the

supremem norm and the usual order on funtions (and with e learly arried to

the onstant funtion 1). In partiular, if A is omplete, then it is isomorphi

to all of Af(S(A)).

Thus we an view the order-unit spaes as exatly the dense subspaes on-

taining 1 inside Af(K), where K is any ompat onvex subset of a topologial

vetor spae. This provides an e�etive view from whih to see many of the

properties of order-unit spaes. Most of our theoretial disussion will be ar-

ried out in the setting of order-unit spaes and Af(K), though our examples will

usually involve spei� C

�

-algebras. We let C(K) denote the real C

�

-algebra

of all ontinuous funtions on K, in whih Af(K) sits as a losed subspae.

It will be important for us to work on the quotient vetor spae

~

A = A=(Re).

We let k k

�

denote the quotient norm on

~

A from k k. This quotient norm

is easily desribed. For a 2 A set

max(a) = inffr : a � reg

min(a) = supfr : re � ag;

so that kak = (max(a)) _ (�min(a)). Then it is easily seen that

k~ak

�

= (max(a)�min(a))=2:
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2. The radius of the state spae

Let A be an order-unit spae. Sine the term \Lipshitz seminorm" has some-

what wide but impreise usage, we will not use this term for our main objets

of preise study (whih we will de�ne in Setion 5). Almost the minimal re-

quirement for a Lipshitz seminorm is that its null-spae be exatly the salar

multiples of the order unit. We will use the term \Lipshitz seminorm" in this

general sense. We emphasize that a Lipshitz seminorm will usually not be

ontinuous for k k.

Let L be a Lipshitz seminorm on A. For �; � 2 S(A) we an de�ne a metri,

�

L

, on S(A) by

�

L

(�; �) = supfj�(a)� �(a)j : L(a) � 1g

(whih may be +1). Then �

L

determines a topology on S(A). Eventually

we want to require that this topology agrees with the weak-� topology. Sine

S(A) is weak-� ompat, �

L

must then give S(A) �nite diameter. We examine

this latter aspet here, in part to establish further notation.

It is atually more onvenient for us to work with \radius" (half the diameter),

sine this will avoid fators of 2 in various plaes. We would like to use the

properties of order-unit spaes to express the radius in terms of L in a somewhat

more preise way than was impliit in [Rf℄ in its more general ontext. The

following onsiderations [Al℄ will also be used extensively later.

As in [Rf℄ and in the previous setion, we denote the quotient vetor spae

A=(Re) by

~

A, with its quotient norm k k

�

. But in addition to this norm, the

quotient seminorm

~

L from L is also a norm on

~

A, sine L takes value 0 only

on Re.

The dual Banah spae to

~

A for k k

�

is just A

0

0

, the subspae of A

0

onsisting

of those � 2 A

0

suh that �(e) = 0. We denote the norm on A

0

dual to k k

still by k k. The dual norm on A

0

0

is just the restrition of k k to A

0

0

. If

we view A as a dense subspae of Af(K) � C(K), then by the Hahn{Banah

theorem � extends (not uniquely) to C(K) with same norm. There we an take

the Jordan deomposition into disjoint non-negative measures. Note that for

positive measures their norm on C(K) equals their norm on A, sine e 2 A.

Thus we �nd �; � � 0 suh that � = � � � and k�k = k�k + k�k. But

0 = �(e) = �(e) � �(e) = k�k � k�k. Consequently k�k = k�k = k�k=2. Thus

if k�k � 2 we have k�k = k�k � 1. If k�k < 2 set t = k�k < 1, and resale �

and � so that they are in S(A). Then

� = t�� t� = �� (t� + (1� t)�):

Now (t� + (1 � t)�) is no longer disjoint from �, but we have obtained the

following lemma, whih will be used in a number of plaes.

2.1 Lemma. The ball D

2

of radius 2 about 0 in A

0

0

oinides with f� � � :

�; � 2 S(A)g.

Notie that if there is an a 2 A suh that L(a) = 0 but a =2 Re, then from this

lemma we an �nd �; � 2 S(A) suh that (���)(a) 6= 0, so that �

L

(�; �) = +1.
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Thus our standing assumption that there is no suh a serves to redue the

possibility of having in�nite distanes. But it does not eliminate this possibility,

as seen by the example of the algebra of smooth (or Lipshitz) funtions of

ompat support on the real line, with onstant funtions adjoined, and with

the usual Lipshitz seminorm.

2.2 Proposition. With notation as earlier, the following onditions are equiv-

alent for an r 2 R

+

:

1) For all �; � 2 S(A) we have �

L

(�; �) � 2r.

2) For all a 2 A we have k~ak

�

� rL

�

(~a).

Proof. Suppose that ondition 1 holds. Let a 2 A and � 2 D

2

. Then by the

lemma � = �� � for some �; � 2 S(A). Thus

j�(a)j = j(�� �)(a)j � L(a)�

L

(�; �) � L(a)2r:

Sine �(e) = 0, thus inequality holds whenever a is replaed by a+se for s 2 R.

Thus ondition 2 holds.

Conversely, suppose that ondition 2 holds. Then for any �; � 2 S(A) and

a 2 A with L(a) � 1 we have

j�(a)� �(a)j = j(�� �)(a)j � 2k~ak

�

� 2r:

Thus �

L

(�; �) � 2r as desired. �

Of ourse, we all the smallest r for whih the onditions of this proposition

hold the radius of S(A).

We aution that just beause a metri spae has radius r, it does not follow

that there is a ball of radius r whih ontains it, as an be seen by onsidering

equilateral triangles in the plane. We remark that just beause �

L

gives S(A)

�nite radius, it does not follow that �

L

gives the weak-� topology. Perhaps the

simplest example arises when A is in�nite dimensional and L(a) = k~ak

�

.

3. Lower semiontinuity for Lipshitz seminorms

Let L be any Lipshitz seminorm on an order-unit spae A. (We will not at

�rst require that it give S(A) �nite diameter.) We would like to show that L

and �

L

ontain the same information, and more spei�ally that we an reover

L from �

L

as being the usual Lipshitz seminorm for �

L

. By this we mean the

following. Let � be any metri on S(A), possibly taking value +1. De�ne L

�

on C(S(A)) by

(3.1) L

�

(f) = supfjf(�)� f(�)j=�(�; �) : � 6= �g;

where this may take value +1. Let Lip

�

= ff : L

�

(f) < 1g. We an

restrit L

�

to Af(S(A)). In general, few elements of Af(S(A)) will be in Lip

�

.

However, on viewing the elements of A as elements of Af(S(A)), we have:
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3.2 Lemma. Let L be a Lipshitz seminorm on A with orresponding metri

�

L

on S(A). Then A � Lip

�

L

, and on A we have L

�

L

� L , in the sense that

L

�

L

(a) � L(a) for all a 2 A.

Proof. For �; � 2 S(A) and a 2 A we have

jâ(�)� â(�)j = j�(a)� �(a)j � L(a)�

L

(�; �):

�

For later use we remark that if L and M are Lipshitz seminorms on A and if

M � L, then �

M

� �

L

in the evident sense.

We would like to reover L on A from �

L

by means of formula (3:1). However,

the seminorms de�ned by (3:1) have an important ontinuity property:

3.3 Definition. Let A be a normed vetor spae, and let L be a seminorm on

A, exept that we permit it to take value +1. Then L is lower semiontinuous

if for any sequene fa

n

g in A whih onverges in norm to a 2 A we have

L(a) � lim inffL(a

n

)g. Equivalently, for one, hene every, t 2 R with t > 0,

the set

L

t

= fa 2 A : L(a) � tg

is norm-losed in A.

3.4 Proposition. Let A be an order-unit spae, and let � be any metri on

S(A), possibly taking value +1. De�ne L

�

on C(S(A)) by formula (3:1).

Then L

�

is lower semiontinuous. Consequently, the restrition of L

�

to any

subspae of C(S(A)), suh as A or Af(S(A)), will be lower semiontinuous.

Proof. When we view L

�

as a funtion of f , the formula (3:1) says that L

�

is

the pointwise supremum of a olletion of funtions (labeled by pairs �; � with

� 6= �) whih are learly ontinuous on C(S(A)) for the supremum norm. But

the pointwise supremum of ontinuous funtions is lower semiontinuous. �

3.5 Example. Here is an example of a Lipshitz seminorm L whose metri

an be seen to give S(A) the weak-� topology, but whih is not lower semion-

tinuous. Let I = [�1; 1℄, and let A = C

1

(I), the algebra of funtions whih

have ontinuous �rst derivatives on I . De�ne L on A by

L(f) = kf

0

k

1

+ jf

0

(0)j:

For eah n let g

n

be the funtion de�ned by g

n

(t) = njtj for jtj � 1=n, and

g

n

(t) = 1 elsewhere. Let f

n

(t) =

R

t

�1

g

n

(s)ds. Then the sequene ff

n

g on-

verges uniformly to the funtion f given by f(t) = t + 1. But L(f

n

) = 1 for

eah n, whereas L(f) = 2.

A substantial supply of examples of lower semiontinuous seminorms an be

obtained from the W

�

-derivations of Weaver [W2, W3℄. These derivations will

in general have large null spaes, and the seminorms from them need not give

the weak-� topology on the state spae. But many of the spei� examples of

W

�

-derivations whih Weaver onsiders do in fat give the weak-� topology. In

terms of Weaver's terminology, whih we do not review here, we have:
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3.6 Proposition. Let M be a von Neumann algebra and let E be a normal

dual operator M-bimodule. Let Æ : M ! E be a W

�

-derivation, and denote

the domain of Æ by L, so that L is an ultra-weakly dense unital �-subalgebra

of M . De�ne a seminorm, L, on L by L(a) = kÆ(a)k

E

. Then L is lower

semiontinuous, and L

1

= fa 2 L : L(a) � 1g is norm-losed in M itself.

Proof. Let fa

n

g be a sequene in L whih onverges in norm to b 2M . To show

that L is lower semiontinuous, it suÆes to onsider the ase in whih fa

n

g is

ontained in L

1

. Then the set f(a

n

; Æ(a

n

))g is a bounded subset of the graph

of Æ for the norm maxfk k

M

; k k

E

g. Sine the graph of a W

�

-derivation is

required to be ultra-weakly losed, and sine bounded ultraweakly losed sub-

sets are ompat for the ultra-weak topology, there is a subnet whih onverges

ultra-weakly to an element (; Æ()) of the graph of Æ. Then neessarily  = b,

so that b 2 L, and Æ(b) is in the ultra-weak losure of fÆ(a

n

)g. Consequently

L(b) = kÆ(b)k � 1. �

Beause of the importane of Dira operators, it is appropriate to verify lower

semiontinuity for the Lipshitz seminorms whih they determine. This is lose

to a speial ase of Proposition 3:6, but does not require any kind of omplete-

ness, nor an algebra struture on A.

3.7 Proposition. Let A be a linear subspae of bounded self-adjoint operators

on a Hilbert spae H, ontaining the identity operator. Let D be an essentially

self-adjoint operator on H whose domain, D(D), is arried into itself by eah

element of A. Assume that [D; a℄ is a bounded operator on D(D) for eah

a 2 A (so that [D; a℄ extends uniquely to a bounded operator on H). De�ne L

on A by L(a) = k[D; a℄k. Then L is lower semiontinuous.

Proof. Let fa

n

g be a sequene in A whih onverges in norm to a 2 A. Suppose

that there is a onstant, k, suh that L(a

n

) � k for all n. For any �; � 2 D(D)

with k�k = 1 = k�k we have

h[D; a℄�; �i = ha�;D�i � hD�; a�i = limh[D; a

n

℄�; �i:

But jh[D; a

n

℄�; �ij � k for eah n, and so k[D; a℄k � k. �

We remark that the Lipshitz seminorms onstruted in [Rf℄ by means of ations

of ompat groups are easily seen to be lower semiontinuous.

4. Reovering L from �

L

In this setion we show that a lower semiontinuous Lipshitz seminorm L

an be reovered from its metri �

L

. But before showing this we would like

to emphasize the following point. Let (X; �) be an ordinary ompat metri

spae, with A the algebra of its Lipshitz funtions, with Lipshitz seminorm

L. Then S(A) onsists of the probability measures on X , and the points of X

orrespond exatly to the extreme points of S(A). The restrition of �

L

to the

extreme points is exatly �. Thus when one says that one an reover L from

Doumenta Mathematia 4 (1999) 559{600



Metris on State Spaes 567

the metri �, one is saying that one an reover L from the restrition of �

L

on

S(A) to the extreme points of S(A). However, for the more general situation

whih we are onsidering, it will be false in general that we an reover L from

the restrition of �

L

to the extreme points of S(A). Simple expliit examples

will be given in Setion 7.

One of the main theorems of this paper is:

4.1 Theorem. Let L be a lower semiontinuous Lipshitz seminorm on an

order-unit spae A, and let �

L

denote the orresponding metri on S(A), pos-

sibly taking value +1. Let L

�

L

be de�ned by formula (3:1), but restrited to

A � Af(S(A)). Then

L

�

L

= L:

Theorem 4.1 is an immediate onsequene of the following theorem, sine we

saw that lower semiontinuity oinides with L

1

being norm losed.

4.2 Theorem. Let L be any Lipshitz seminorm on an order-unit spae A,

and let �

L

denote the orresponding metri on S(A). Let L

�

L

be de�ned by

formula (3:1), but restrited to A � Af(S(A)). Then fa 2 A : L

�

L

(a) � 1g

oinides with the norm losure,

�

L

1

, of L

1

in A. In partiular, L

�

L

is the

largest lower semiontinuous seminorm smaller than L, and �

L

�

L

= �

L

.

Proof. (An idea leading to this proof, whih is simpler than my original proof,

was suggested to me by Nik Weaver.) On A

0

we de�ne the seminorm, L

0

, dual

to L, by

L

0

(�) = supfj�(a)j : L(a) � 1g:

Note that L

0

takes value +1 on any � for whih �(e) 6= 0, and very possibly

on some elements of A

0

0

as well. But at any rate we have the following key

relationship:

4.3 Lemma. For �; � 2 S(A) we have �

L

(�; �) = L

0

(�� �).

Proof.

L

0

(�� �) = supfj(�� �)(a)j : L(a) � 1g

= supfj�(a)� �(a)j : L(a) � 1g = �

L

(�; �):

�

Beause L

1

is already onvex and balaned, the bipolar theorem [Cw℄ says

that

�

L

1

is exatly the bipolar of L

1

. Thus we just need to show that fa 2

A : L

�

L

(a) � 1g is the bipolar of L

1

. Now it is lear that the unit L

0

-ball

in A

0

is exatly the polar [Cw℄ of L

1

. This provides the last of the following

equivalenes. Let a 2 A. Then:

L

�

L

(a) � 1 exatly if j�(a)� �(a)j � �

L

(�; �) for all �; � 2 S(A) ,

exatly if j�(a)j � L

0

(�) for all � 2 D

2

(by Lemma 4.3 and Lemma 2.1),

exatly if j�(a)j � 1 for all � 2 A

0

with L

0

(�) � 1,
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exatly if a is in the prepolar of f� : L

0

(�) � 1g (by de�nition [Cw℄),

exatly if a is in the bipolar of L

1

.

It is lear that L

�

L

is lower semiontinuous, that it is the largest suh seminorm

smaller than L, and that it gives the same metri. �

Note in partiular that if L gives S(A) �nite diameter, or the weak-� topology,

then so does L

�

L

.

We remark that a sort of dual version of Theorem 4:1 an be found later in

Theorem 9:7.

We have the following related onsiderations. Suppose again that L is a Lip-

shitz seminorm on an order-unit spae A. Let

�

A denote the ompletion of

A for k k, and let

�

L

1

denote now the losure of L

1

in

�

A rather than just in

A. Let

�

L denote the orresponding \Minkowski funtional" on

�

A obtained by

setting, for b 2

�

A,

�

L(b) = inffr 2 R

+

: b 2 r

�

L

1

g:

Sine there may be no suh r, we must allow the value +1. With this under-

standing,

�

L will be a seminorm on

�

A. It is easily seen that

�

L(b) � 1 exatly if

b 2

�

L

1

, and that

�

L is lower semiontinuous beause

�

L

1

is losed.

Up to this point we did not require lower semiontinuity of L. It's import is

given by:

4.4 Proposition. Let L be a lower semiontinuous Lipshitz seminorm on an

order-unit spae A. Let

�

L on

�

A be de�ned as above. Then

�

L is an extension

of L, that is, for a 2 A we have

�

L(a) = L(a). Furthermore, �

�

L

= �

L

.

Proof. Suppose that a 2 A and L(a) = 1. Then a 2 L

1

�

�

L

1

and so learly

�

L(a) � 1. Conversely, if

�

L(a) � 1, then a 2

�

L

1

. Thus there is a sequene

fa

n

g in L

1

whih onverges to a, with L(a

n

) � 1 for every n. From the lower

semiontinuity of L it follows that L(a) � 1. Finally, for �; � 2 S(A) we have

�

�

L

(�; �) = supfj�(a)��(a)j : a 2

�

L

1

g = supfj�(a)��(a)j : a 2 L

1

g = �

L

(�; �):

�

Note in partiular that if L gives S(A) �nite diameter, or the weak-� topology,

then so does

�

L. However, in general

�

L need not be a Lipshitz seminorm. For

example, let A be the algebra of real polynomials viewed as funtions on the

interval [0; 2℄, and let L be the usual Lipshitz seminorm but de�ned using only

points in [0; 1℄.

4.5 Definition. We will all

�

L the losure of L. We will say that a Lipshitz

seminorm is losed if L =

�

L (on the subspae where

�

L is �nite), or equivalently,

if L

1

is omplete for the metri from k k.

Then Proposition 4.4 says that for most purposes we an assume that L is

losed if onvenient.
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Suppose now that L is a Lipshitz seminorm on A whih is losed. On A we

an de�ne a new norm, jk kj, by

jkakj = kak+ L(a):

It is easily veri�ed that A is omplete for this new norm. Suppose that A is a

�-algebra and k k is a C

�

-norm (this an be weakened). Suppose further that

L is a losed Lipshitz seminorm on A whih satis�es the Leibniz inequality.

Then the new norm is a normed-algebra norm, and so A beomes a Banah

algebra for the new norm. In Setions 10 and 11 we will indiate many examples

of Lipshitz seminorms satisfying the Leibniz inequality. This provides a rih

lass of examples of Banah algebras whih merit study (even in the ases when

they are ommutative) along the lines onsidered in [BCD, J, W1℄.

5. The pre-dual of (

~

A;

~

L)

It has been shown in an inreasing variety of situations that the spae of Lip-

shitz funtions with a suitable Lipshitz norm is isometrially isomorphi to

the dual of some Banah spae. Some of the history of this phenomenon is

skethed in the notes at the end of hapter 2 of [W1℄, or more briey in [W2℄.

Within the non-ommutative setting, Weaver shows in Proposition 2 of [W2℄

that the domains of W

�

-derivations (as de�ned there) are dual spaes. How-

ever, his W

�

-derivations an have large null spaes, and they need not give

the weak-� topology on S(A). Nevertheless, Weaver's approah applies to the

non-ommutative tori, and gives them the same spae of Lipshitz elements as

the approah of the present paper (when ombined with [Rf℄). In fat, Weaver

shows in [W3℄ that for the non-ommutative tori one an also de�ne Lip

�

, and

that Lip

�

is atually the seond dual of lip

�

when � < 1.

To show within our setting that the spae of Lipshitz elements is the dual of a

Banah spae, we need to assume that �

L

gives the weak-� topology on S(A).

As before, let L

1

= fa : L(a) � 1g. From theorem 1:8 of [Rf℄ we know that

�

L

will give the weak-� topology on S(A) exatly if the image of L

1

in

~

A is

totally bounded for k k

�

. Equivalently, by theorem 1:9 of [Rf℄, L must give

S(A) �nite radius, and for one, hene all, t 2 R with t > 0, the set

B

t

= fa : L(a) � 1 and kak � tg

must be totally bounded in A for k k. We remark that this implies that if

fa

n

g is a sequene (or net) in A onverging pointwise on S(A) to a 2 A, and

if there is a onstant k suh that ka

n

k � k and L(a

n

) � k for all n, then a

n

onverges to a in norm. This is beause fa

n

g is ontained in kB

1

whose losure

in the ompletion

�

A of A is ompat. Let b be any norm limit point of fa

n

g in

�

A. Then a subsequene of fa

n

g onverges in norm to b. But it still onverges

pointwise on S(A) to a. Consequently b = a, and a is the only norm limit point

of fa

n

g.

We now have in view all the requirements on Lipshitz seminorms whih we

need for our present purposes. So we now de�ne what we expet is the orret

way to speify metris on ompat non-ommutative spaes:
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5.1 Definition. Let A be an order-unit spae. By a Lip-norm on A we mean

a seminorm, L, on A (taking �nite values) with the following properties:

1) For a 2 A we have L(a) = 0 if and only if a 2 Re.

2) L is lower semiontinuous.

3) fa 2 A : L(a) � 1g has image in

~

A whih is totally bounded for k k

�

.

We remark that it is easily heked that the losure (De�nition 4.5) of a Lip-

norm is again a Lip-norm.

Within the present setting the fat that the spae of Lipshitz elements is a

dual Banah spae takes the following form (whih requires the Lip-norm to be

losed).

5.2 Theorem. Let A be an order-unit spae, and let L be a Lip-norm on A

whih is losed. Let K = f~a 2

~

A :

~

L(~a) � 1g, so that K is a ompat (onvex)

set for k k

�

. Then (

~

A;

~

L) is naturally isometrially isomorphi to the dual

Banah spae of Af

0

(K), the Banah spae of ontinuous aÆne funtions on

K whih take value 0 at 0 2

~

A, with the supremum norm.

Proof. Let L

1

and B

t

be as de�ned as above. Beause L is losed, the totally

bounded sets B

t

are omplete for k k, and so are ompat. From the �nite

radius onsiderations of Setion 2 the image of L

1

in

~

A will oinide with the

image of B

t

for suÆiently large t. Hene the image of L

1

in

~

A is ompat for

k k

�

, not just totally bounded. But the image of L

1

is exatly K as de�ned

in the statement of the theorem.

We an now argue as in the proof of proposition 1 of [W4℄. We inlude the

argument here in a form spei� to our partiular situation.

Let V = Af

0

(K), as de�ned in the statement of the theorem. Then from lemma

4:1 of [K3℄ eah element of V extends to a linear funtional (not neessarily

ontinuous for k k

�

) on

~

A. But we still view V as equipped with the uniform

norm k k

1

from C(K), for whih V is omplete. Then for any f 2 V we have

kfk

1

= supff(~a) : ~a 2 Kg = supff(~a) :

~

L(~a) � 1g:

Consequently k k

1

is just the dual norm to the norm

~

L on

~

A. But V will

usually be muh smaller than the entire dual Banah spae of (

~

A;

~

L) beause

of the requirement that if f 2 V then f is ontinuous on K.

We let V

0

denote the dual Banah spae to V . We have the evident mapping

� from

~

A to V

0

de�ned by �(~a)(f) = f(~a). Use of the Hahn{Banah theorem

shows that Af

0

(K) separates the points of K, and from this we see that � is

injetive. Furthermore j�(~a)(f)j = jf(~a)j � kfk

1

~

L(~a), and so k�k � 1 for

the norm

~

L on

~

A. In partiular, �(K) � (V

0

)

1

, the unit ball of V

0

. From

the de�nitions of � and V we see immediately that � is ontinuous from K

to (V

0

)

1

with its weak-� topology from V . Sine K is ompat, �(K) must be

ompat for the weak-� topology. If �(K) were not all of (V

0

)

1

, there would

be a '

0

2 (V

0

)

1

and a weak-� ontinuous linear funtional separating '

0

from
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�(K). But every weak-� linear funtional omes from V . Thus there would be

an f 2 V suh that

f(~a) � 1 < '

0

(f)

for every ~a 2 K. But the �rst inequality means that kfk

1

� 1, and so the

seond inequality means that k'

0

k > 1, ontraditing the assumption that

'

0

2 (V

0

)

1

. Thus �(K) = (V

0

)

1

. Consequently � is an isometri isomorphism

of (

~

A;

~

L) with V

0

. �

We remark that, if desired, we an make A itself into the dual of a Banah

spae, in a non-anonial way, as follows. Let r be the radius of (A; L), and let

� be any �xed state of A. De�ne an atual norm, L

�

, on A by

L

�

(a) = maxfj�(a)j=r; L(a)g:

Let

~

L

�

be the quotient of L

�

on

~

A. It is lear that

~

L

�

�

~

L. But for any given

a 2 A we an �nd � 2 R suh that ka��k � r

~

L(~a), by the de�nition of radius.

Then

j�(a� �)j � ka� �k � r

~

L(~a);

while L(a� �) =

~

L(~a). Consequently

~

L

�

(~a) �

~

L(~a), so that, in fat,

~

L

�

=

~

L.

Thus (A; L

�

) has (

~

A;

~

L) as quotient spae. The quotient map splits by the

isometri map ~a 7! a��(a). Sine (

~

A;

~

L) is isometrially isomorphi to a dual

Banah spae, it follows easily that (A; L

�

) is also.

See also setion 2 of [H℄, whih gives a slightly di�erent approah beause the

norm on Lip

�

is slightly di�erent from that impliit here.

Let K and V = Af

0

(K) be as in the statement of Theorem 5:2. As in Setion 2,

the dual of (

~

A; k k

�

) is A

0

0

. By the �nite diameter ondition and Proposition

2:2 eah � 2 A

0

0

de�nes a ontinuous linear funtional on (

~

A;

~

L). Eah suh

funtional is learly ontinuous on K for its topology from k k

�

. Thus eah

� 2 A

0

0

de�nes an element of V , and so we obtain a linear map from A

0

0

into

V . From Theorem 5:2 the norm k k

1

on V from C(K) oinides with the

dual norm L

0

from (

~

A;

~

L). We have the following addition to Theorem 5.2.

5.3 Proposition. The image of A

0

0

in Af

0

(K) is dense in Af

0

(K) for its

norm k k

1

= L

0

.

Proof. Let ' be any ontinuous linear funtional on V whih is 0 on the image

of A

0

0

. From Theorem 5:2 every ontinuous linear funtional on V omes from

an element of

~

A. If ~a is the element of

~

A orresponding to ', we then have

�(~a) = 0 for all � 2 A

0

0

, whih implies that ~a = 0 so that ' � 0. It follows

from the Hahn{Banah theorem that the image of A

0

0

is norm dense in V . �

6. Extreme points

Let L be a Lipshitz seminorm on an order-unit spae A, and let �

L

be the

orresponding metri on S(A). Let E denote the set of extreme points of S(A).
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Then E need not be a losed subset of S(A), but S(A) is the losed onvex

hull of E by the Krein{Milman theorem. Of ourse �

L

restrits to a metri

on E. We will give expliit examples in the next setion to show that even

when L is a Lip-norm the restrition of �

L

to E does not determine �

L

or L.

Nevertheless, we an try to use the restrition of �

L

to de�ne a new Lipshitz

seminorm, L

e

, on A, by

L

e

(a) = supfj"(a)� �(a)j=�

L

("; �) : "; � 2 E; " 6= �g:

6.1 Proposition. With the above de�nition, L

e

is a lower semiontinuous

Lipshitz seminorm on A, and it is the smallest suh on A whose metri on

S(A) agrees on E with that of L. If L is a Lip-norm then so is L

e

.

Proof. From Theorem 4.2 it is lear that we an assume that L is lower semi-

ontinuous. From Theorem 4:1 we know that any lower semiontinuous Lip-

shitz seminorm, say L

1

, is reovered from its metri by a supremum as above,

but ranging over all of S(A) rather than just over E. Thus if the metri for

L

1

agrees with �

L

on E, we must have L

e

� L

1

. By using the argument in

the proof of Proposition 3:4 it is easily seen that L

e

is lower semiontinuous.

Suppose that L

e

(a) = 0 for some a 2 A. Reall that D

2

= f� 2 A

0

0

: k�k � 2g.

6.2 Lemma. The onvex hull of f"� � : "; � 2 E; " 6= �g is dense in D

2

for

the weak-� topology.

Proof. From Lemma 2:1 we know that any element of D

2

an be expressed

as � � � for �; � 2 S(A). By the Krein{Milman theorem eah of �; � an be

approximated arbitrary losely in the weak-� topology by onvex ombinations

from E, say

P

�

j

"

j

and

P

�

k

�

k

. But the di�erene of suh ombinations an

be expressed as

X

(�

j

�

k

)("

j

� �

k

):

�

From this lemma it is lear that if L

e

(a) = 0 then L(a) = 0, and thus a 2 Re.

Also, it is easy to see that �

L

e

agrees with �

L

on E.

Finally, we must show that if L is a Lip-norm then the image of K

0

= fa :

L

e

(a) � 1g in

~

A is totally bounded for k k

�

. Notie that this image is larger

than that for L, so we an not immediately apply the orresponding fat for L.

Let

�

E denote the losure of E in S(A). It is lear that the supremum de�ning

L

e

ould just as well be taken over

�

E, and so L

e

on A is just the Lipshitz

norm for the metri �

L

restrited to

�

E. Thus K

0

an be viewed as ontained

in ff 2 C(

�

E) : L

e

(f) � 1g, and the latter has totally bounded image in

C(

�

E)=Re sine it onsists of Lipshitz funtions for a metri and

�

E is ompat.

Thus K

0

has totally bounded image in C(

�

E)=Re. But the restrition map

from Af(S(A)) to C(

�

E) is isometri for k k

1

sine

�

E ontains the extreme

points. (See Theorem II.1.8 of [Al℄. We are dealing here with Kadison's smallest

separating representation.) It follows easily that K

0

has totally bounded image

in

~

A as needed. �
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We remark that if F is any subset of S(A) whih ontains E, then we an use

F instead of E to de�ne a Lip-norm L

F

just as we de�ned L

e

above. Then we

will have

L

e

� L

F

� L

in the evident sense, with reverse inequalities for the orresponding metris.

Suppose that A is a dense �-subalgebra of a C

�

-algebra,

�

A, and that L is a Lip-

norm on A, with orresponding metri �

L

on S(A). As above let E denote the

set of extreme points of S(A). Assume �rst that A is ommutative. Then E is

ompat and

�

A

�

=

C(E). Assume that L = L

e

. Then L is the usual Lipshitz

norm oming from the metri on the ompat set E obtained by restriting �

L

to E. But in this ase we know that L must then satisfy the Leibniz rule

L(ab) � L(a)kbk+ kakL(b):

It is thus natural to ask the general question:

6.3 Question. What onditions on a Lip-norm L on a general unital C

�

-

algebra imply that L satis�es the Leibniz rule?

In the next setion we will see examples of Lip-norms whih do not satisfy

L = L

e

and yet satisfy the Leibniz rule.

7. Dira operators and ordinary finite spaes

Connes has shown [C1, C2, C3℄ that for a ompat Riemannian (spin) man-

ifold all the metri information is ontained in the Dira operator. This led

him to suggest that for \non-ommutative spaes", metris should be spei�ed

by some analogue of Dira operators. We explore here some aspets of this

suggestion for �nite-dimensional ommutative C

�

-algebras, i.e. ordinary �nite

spaes. This will larify some of the onsiderations of the previous setions.

Here and throughout all the rest of this paper, when we say that an operator D

is a \ Dira" operator, this is not meant to indiate any partiular properties

of D, but rather is meant to indiate how D is employed, namely to de�ne a

Lipshitz seminorm.

Let X be a �nite set, and let A = C(X). In order to remain fully in the setting

of the previous setions we take C(X) to onsist only of real-valued funtions.

But in the present ommutative situation this is not so important beause,

unlike the non-ommutative ase, if one does not know the algebra struture,

the norm for omplex-valued funtions is still given by a simple formula in

terms of the norm for real-valued funtions. (See e.g. lemma 14 of [W2℄.)

Consequently we will be a bit areless here about this distintion.

We will suppose that A has been faithfully represented on a �nite-dimensional

omplex Hilbert spae H. We suppose given on H an operator D (the \Dira"

operator). It is usual to take D to be self-adjoint. But we �nd it slightly more

onvenient to take D to be skew-adjoint. The two hoies are related by a
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multipliation by i, and give the same metri results. Following Connes, we

de�ne a seminorm, L, on A by

L(a) = k[D; a℄k;

where [ ; ℄ denotes the usual ommutator of operators, and the norm is the

operator norm. We want L to be a Lip-norm. Thus we require that if [D; a℄ = 0

then a 2 C I . Beause we are in a �nite-dimensional setting, L is ontinuous

for k k

1

, and indeed is a Lip-norm on A.

From L we obtain a metri, �

L

, on the spae S(A) of probability measures on

X , as well as on its set of extreme points, whih is identi�ed with X itself. We

now give a very simple example to show that �

L

on S(A) need not agree with

the metri obtained from �

L

on X .

7.1 Example. Consider a three-dimensional ommutative C

�

-algebra, A, rep-

resented faithfully on a three-dimensional Hilbert spae. Thus we an identify

A with the algebra of diagonal matries in the full matrix algebra M

3

= M

3

(C ).

We will onsider Dira operators of a speial form whih failitates alulation,

namely matries D in M

3

(C ) of the form

D =

0

�

0 0 �

0 0 �

�� �� 0

1

A

where � > 0 and � > 0. We will also restrit to those f 2 A whih are real,

and denote the three values (or diagonal entries) of f by (f

1

; f

2

; f

3

). Beause

D is skew-symmetri, [D; f ℄ is a real symmetri matrix, whose eigenvalues thus

are real. In fat, we have

[D; f ℄ =

0

�

0 0 �(f

3

� f

1

)

0 0 �(f

3

� f

2

)

�(f

3

� f

1

) �(f

3

� f

2

) 0

1

A

:

Beause of this speial form, the eigenvalues are easily alulated, and one �nds

that

L(f) = k[D; f ℄k = (�

2

(f

3

� f

1

)

2

+ �

2

(f

3

� f

2

)

2

)

1=2

:

It is lear from this that if L(f) = 0 then f is a onstant funtion. Thus L

de�nes a Lip-norm on A.

We now proeed to alulate the orresponding metri on S(A). We �rst al-

ulate the dual norm, L

0

, on A

0

0

, the dual spae of

~

A, with notation as in the

previous setions. We identify A

0

0

with real diagonal matries of trae 0, paired

with A via the trae. For � 2 A

0

0

we denote its omponents by � = (�

1

; �

2

; �

3

).

Of ourse

L

0

(�) = supfjhf; �ij : L(f) � 1g:

Now both jhf; �ij and L(f) are unhanged if we add a onstant funtion to

f . Thus for the supremum de�ning L

0

(�) we an assume that f

3

= 0 always.
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Furthermore, we know that �

3

= �(�

1

+�

2

). Thus we need only deal with the

�rst two omponents of f and �. We do this without hanging notation. Then

we see that

L

0

(�) = supfjf

1

�

1

+ f

2

�

2

j : �

2

f

2

1

+ �

2

f

2

2

� 1g:

But this is just the norm of a funtional on a suitable Hilbert spae. Spei�ally,

let l

2

(w) be the Hilbert spae of funtions on a 2-point spae with weight

funtion w given by (�

2

; �

2

). Then

f

1

�

1

+ f

2

�

2

= f

1

(�

1

=�

2

)�

2

+ f

2

(�

2

=�

2

)�

2

;

and in this form the norm of the funtional is the length of the vetor in l

2

(w)

de�ning it. This gives

L

0

(�) = ((�

1

=�

2

)

2

�

2

+ (�

2

=�

2

)

2

�

2

)

1=2

= (�

2

1

=�

2

+ �

2

2

=�

2

)

1=2

:

We now apply this to obtain the metri on S(A). If �; � 2 S(A), then for the

evident notation

�

L

(�; �) = L

0

(�� �) = ((�

1

� �

1

)

2

=�

2

+ (�

2

� �

2

)

2

=�

2

)

1=2

:

Let X denote the maximal ideal spae of A. We identify its 3 points with the

3 extreme points of S(A), and label them, orresponding to the oordinates in

A, by Æ

1

; Æ

2

; Æ

3

. Then from the above formula for �

L

we �nd that the metri

on X is given by:

�

L

(Æ

1

; Æ

2

) = (1=�

2

+ 1=�

2

)

1=2

�

L

(Æ

1

; Æ

3

) = 1=�

�

L

(Æ

2

; Æ

3

) = 1=�:

De�ne  by �

L

(Æ

1

; Æ

2

) = 1=. Let L

e

denote the ordinary Lipshitz norm on A

oming from this metri on X . Then

L

e

(f) = maxfjf

1

� f

2

j; jf

1

� f

3

j�; jf

2

� f

3

j�g:

Clearly L

e

is quite di�erent from L. From Theorem 4:1 we know that the

metris on S(A) will thus be quite di�erent, even though they agree on the

extreme points. This is, of ourse, also easily seen by diret alulations.

We now make some observations in preparation for the next setion. It is well-

known [W1, W2℄ that the Lipshitz seminorms L = L

�

from ordinary metris

on a metri spae X have a nie relation to the lattie struture of (real-valued)

C(X), namely

L(f _ g) � L(f) _ L(g):

Doumenta Mathematia 4 (1999) 559{600



576 Mar A. Rieffel

We remark that for the L of the above example this inequality fails. For

instane, with notation as above, let f = (1; 0; 0) and g = (0; 1; 0), so that

f _ g = (1; 1; 0). Then we see that

L(f) = �; L(g) = �; while L(f _ g) = (�

2

+ �

2

)

1=2

:

(This is related to the ounterexample following theorem 16 of [W2℄.)

However, it is not diÆult to hek that the above L does satisfy the weaker

inequality

L(f _ 0) � L(f):

In fat, one an prove that this holds for any hoie of skew-adjoint D for the

above A. To �nd a ounterexample for this weaker inequality one must take

A to be 4-dimensional. I have not found a systemati way of onstruting

a ounterexample there, but some examination of what is needed, followed

by some experimentation with MATLAB yields the following (and related)

example:

D =

0

B

�

0 4 �1 0

�4 0 2 �2

1 �2 0 �4

0 2 4 0

1

C

A

and f = (4; 2; 0;�1).

We remark that ordinary Lipshitz norms on ompat metri spaes an all be

easily obtained by means of Dira operators. I pointed this out in a leture in

1993, and the details are indiated after the proof of proposition 8 of [W2℄. See

also the disussion for graphs whih we will give toward the end of Setion 11.

8. A haraterization of ordinary Lipshitz seminorms

Let X be a ompat spae, let � be a metri on X (giving the topology of X),

and let L denote the orresponding ordinary Lip-norm on C(X) (permitted to

take value +1). As just mentioned in the last setion, it is well-known [W1,

W2℄ and easy to prove that L relates niely to the lattie struture of C(X) by

means of the inequality

L(f _ g) � L(f) _ L(g):

In Weaver's more general setting of domains of W

�

-derivations he proves this

inequality for W

�

-derivations of Abelian struture. (See lemma 12 of [W2℄.)

We show here that the above inequality exatly haraterizes the Lip-norms

whih are the ordinary Lipshitz seminorms oming from ordinary metris on

X .

We remark that we never assume here that our Lip-norms satisfy the Leibniz

inequality for the algebra struture, namely

L(fg) � L(f)kgk+ kfkL(g):
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But ordinary Lipshitz seminorms do satisfy this inequality. Thus one onse-

quene of this setion is that the above lattie inequality implies the Leibniz

inequality. On the other hand, the Lip-norm from any \Dira" operator will

satisfy the Leibniz inequality, but an easily fail to satisfy the lattie inequality,

as we saw by examples in the previous setion. Thus the lattie inequality is

muh stronger than the Leibniz inequality.

However we should point out that for Dira operators on ompat spin Rie-

mannian manifolds, in spite of their being de�ned by means of various partial

derivatives and spinors, the orresponding Lip-norms do satisfy the lattie in-

equality. This is beause Connes shows [C1, C2, C3℄ that the Lip-norms whih

those Dira operators de�ne oinide with the ordinary Lip-norms for the or-

dinary metris on the manifolds determined by the Riemannian metris.

Reall that for us C(X) onsists of real-valued funtions.

8.1 Theorem. Let X be a ompat spae, let A be a dense subspae of C(X)

ontaining the onstant funtions, and let L be a Lip-norm on A. Let

�

L denote

the losure of L, viewed as de�ned on all of C(X) as in the disussion before

Proposition 4:4, and thus permitted to take value +1. Then the following

onditions are equivalent:

1. The Lip-norm L is the restrition to A of the usual Lipshitz seminorm

orresponding to a metri on X (namely the metri �

L

).

2. For every f; g 2 C(X) we have

�

L(f _ g) �

�

L(f) _

�

L(g):

The following lemma is somewhat parallel to lemma 13 of [W2℄. For later use

we state it in slightly greater generality than needed immediately.

8.2 Lemma. Let A be a dense subspae of C(X) ontaining the onstant fun-

tions, and losed under the �nite lattie operations (i.e. if f; g 2 A then

f _ g 2 A). Let L be a Lip-norm on A whih satis�es the inequality

L(f _ g) � L(f) _ L(g)

for all f; g 2 A. Let

�

L be the losure of L, de�ned on all of C(X), permitted to

take value +1. Let F be a bounded subset of A for whih there is a onstant,

k, suh that L(f) � k for all f 2 F . Let g = supff 2 Fg. Then g 2 C(X)

and

�

L(g) � k.

Proof. Let fg

�

g be the net of suprema of �nite subsets of F . Then fg

�

g is

ontained in A, and onverges up to f pointwise. By the hypothesis on L we

have L(g

�

) � k for all �. Thus we have

jg

�

(x)� g

�

(y)j � k�

L

(x; y)

for all � and all x; y 2 X ; that is, fg

�

g is equiontinuous. We an thus apply

the Asoli theorem [Ru℄ to onlude that the net fg

�

g has a subnet whih
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onverges uniformly. But the limit of this subnet must be g, and so g must

be ontinuous. Furthermore, from the lower semiontinuity of

�

L we must have

�

L(g) � k. �

Proof of Theorem 8.1. As indiated above, it is basially well-known, and not

hard to verify, that ondition 1 implies ondition 2. Suppose onversely that

ondition 2 holds. For any x 2 X let �

x

L

be the ontinuous funtion on X

de�ned by �

x

L

(y) = �

L

(x; y). Set S

x

= ff 2 A : f(x) = 0; L(f) � 1g. Sine

L(f) is unhanged when a onstant funtion is added to f , or when f is replaed

by �f , the de�nition of �

L

an be rewritten as

�

x

L

(y) = supff(y) : f 2 S

x

g:

This means that �

x

L

= supS

x

. But S

x

is a bounded set in A by the �nite

radius onsiderations. Thus we an apply the above lemma to onlude that

�

L(�

x

L

) � 1. Suppose that

�

L(�

x

L

) =  < 1. Then

�

L((1=)�

x

L

) = 1, and so from

the de�nition of �

L

we obtain

(1=)j�

x

L

(x)� �

x

L

(y)j � �

L

(x; y);

for all y 2 X , that is,

�

L

(x; y) � �

L

(x; y)

for all y 2 X , whih is impossible (unless X has only one point, whih we now

do not permit). Thus

�

L(�

x

L

) = 1.

Muh as in Setion 6, let L

e

denote the ordinary Lip-norm on C(X) (permitting

value +1) orresponding to the restrition of �

L

as metri on X . (Reall that

X is identi�ed with the extreme points of S(A).) As seen in Proposition 6:1,

L

e

�

�

L. We now show that L

e

=

�

L beause of the inequality in the hypotheses

of our theorem (and its extension in Lemma 8:2). Let f 2 C(X), and suppose

that L

e

(f) � 1. Thus

jf(x)� f(y)j � �

L

(x; y)

for all x; y 2 X . In partiular

f(x)� �

L

(x; y) � f(y):

For eah x 2 X de�ne h

x

2 C(X) by

h

x

(y) = f(x)� �

L

(x; y):

Then the above inequality says that h

x

� f for eah x. But it is lear that

h

x

(x) = f(x). Thus f = supfh

x

: x 2 Xg. Then from the onsiderations of

the previous paragraph we see that

�

L(h

x

) = 1 for all x. Thus by Lemma 8:2

we have

�

L(f) � 1. It follows that

�

L = L

e

as desired. �
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8.3 Corollary. Let X be a ompat spae, and let A be a dense subspae

of C(X) whih ontains the onstant funtions and is losed under the �nite

lattie operations. Let L be a Lip-norm on A, and suppose that

L(f _ g) � L(f) _ L(g)

for all f; g 2 A. Then L is the restrition to A of the ordinary Lip-norm on

C(X) orresponding to the metri �

L

on X.

Proof. Let f; g 2 C(X). Then from Lemma 8:2 we see immediately that

�

L(f _ g) �

�

L(f) _

�

L(g):

We an thus apply Theorem 8:1 to obtain the desired onlusion. �

One way of viewing Theorem 8:1 is that it haraterizes the Lip-norms on

ommutative C

�

-algebras whih ome from the orresponding metri on the

extreme points of S(A). It would be interesting to have a orresponding hara-

terization for non-ommutative C

�

-algebras, and for general order-unit spaes.

9. Lip-norms from metris on S(A)

It is natural to ask whih metris on S(A) arise from Lip-norms on A. We

obtain here a haraterization of suh metris. Many of the steps work for

arbitrary onvex sets, and so at �rst we will work in that setting. Thus we let

V be any vetor spae over R, and we let K be any onvex set in V whih spans

V . Muh as above, let D

2

= K�K. Note that not only is D

2

onvex, but it is

also balaned, in the sense that if � 2 D

2

and if t 2 [�1; 1℄, then t� 2 D

2

. To

see this, note that if � 2 D

2

then learly �� 2 D

2

, so we only need onsider

t � 0. But

t(�� �) = �� (t� + (1� t)�);

whih is in D

2

by the onvexity of K. Let V

0

= RD

2

. Then V

0

is a vetor

subspae of V . In the setting where K = S(A) we know that V

0

is a proper

subspae of V . Let M be a norm on V

0

. Then we an de�ne a metri, �, on

K by �(�; �) = M(�� �). We want to haraterize the metris whih arise in

this way.

The most natural property to expet is that � be onvex (in eah variable),

that is:

9.1 Definition. We say that a metri � on K is onvex if for every �; �

1

; �

2

2

K and t 2 [0; 1℄ we have

�(�; t�

1

+ (1� t)�

2

) � t�(�; �

1

) + (1� t)�(�; �

2

):

The metris oming from norms on V

0

are onvex beause

�� (t�

1

+ (1� t)�

2

) = t(�� �

1

) + (1� t)(�� �

2

):

Doumenta Mathematia 4 (1999) 559{600



580 Mar A. Rieffel

Given a metri � on K, our strategy will be to try to use � to de�ne a norm,

M , on V

0

by �rst de�ning it on D

2

. Spei�ally, for � 2 D

2

we would like to

set

M(�) = �(�; �)

for � = � � � with �; � 2 K. But we need to know that this is well-de�ned.

That is, we need to know that if �; �; �

0

; �

0

2 K and if � � � = �

0

� �

0

, then

�(�; �) = �(�

0

; �

0

). This an be rewritten in terms of midpoints so as to appear

a bit loser to onsiderations of onvexity, namely, that if

(9:2) (� + �

0

)=2 = (�

0

+ �)=2

then �(�; �) = �(�

0

; �

0

). This learly holds for the metris oming from norms.

One �nds an attrative geometrial interpretation when one draws a piture of

this relation.

9.3 Definition. We say that a metri � on K is midpoint-balaned if whenever

equation (9:2) above holds, it follows that �(�; �) = �(�

0

; �

0

).

Let us now assume that � is midpoint-balaned. Then M on D

2

is well-de�ned

as above. We wish to extend it to a norm on V

0

. For this to be possible we

�rst must have the property that if t 2 R, jtj � 1, and if � 2 D

2

, then M(t�) =

jtjM(�). Now from the de�nition of M it is lear that M(��) = M(�). Thus

it suÆes to treat the ase in whih t � 0. If � = �� �, then

t� = t(�� �) = �� (t� + (1� t)�);

so that by the de�nition of M we have M(t�) = �(�; t� + (1 � t)�). From

onvexity, �(�; t�+(1� t)�) � t�(�; �). But also t� = (t�+(1� t)�)��, whih

gives a similar inequality. Then from the triangle inequality and onvexity we

have

�(�; �) � �(�; t� + (1� t)�) + �(t� + (1� t)�; �)

� t�(�; �) + (1� t)�(�; �) = �(�; �):

Thus the inequalities must be equalities, and we obtain:

9.4 Lemma. Let � be a metri on K whih is onvex and midpoint balaned.

De�ne M on D

2

as above using �. Then for any �; � 2 S(A) and t 2 [0; 1℄ we

have

�(�; t� + (1� t)�) = t�(�; �);

and for any � 2 D

2

and t 2 [�1; 1℄ we have

M(t�) = jtjM(�):

Next, we need that M is subadditive on D

2

. This means that if �; �

0

2 D

2

and

if �+�

0

2 D

2

, then M(�+�

0

) �M(�)+M(�). Let � = ���, �

0

= �

0

��

0

. Then
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�+�

0

= (�+�

0

)� (�+�

0

). Assuming that � is onvex and midpoint-balaned,

we obtain from Lemma 9:4 that

M(� + �

0

) = 2M((� + �

0

)=2):

Now (� + �

0

)=2 = (� + �

0

)=2� (� + �

0

)=2, and (� + �

0

)=2; (� + �

0

)=2 2 S(A).

Thus

M((� + �

0

)=2) = �((� + �

0

)=2; (� + �

0

)=2);

and we see that what we need is:

9.5 Definition. We say that a metri � on K is midpoint onave if for any

�; �; �

0

; �

0

2 K we have

�((� + �

0

)=2; (� + �

0

)=2) � (1=2)(�(�; �) + �(�

0

; �

0

)):

Again one �nds an attrative geometrial interpretation when one draws a

piture of this inequality. From the disussion above we now know that:

9.6 Lemma. Let � be a metri on K whih is onvex, midpoint balaned, and

midpoint onave. De�ne M on K as above. If �; �

0

2 D

2

and if � + �

0

2 D

2

,

then

M(� + �

0

) �M(�) + M(�

0

):

9.7 Theorem. Let � be a metri on the onvex subset K of V , and let V

0

=

RD

2

= R(K � K). Then there is a norm, M , on V

0

suh that �(�; �) =

M(� � �) for all �; � 2 K, if and only if � is onvex, midpoint balaned, and

midpoint onave. The norm M is unique.

Proof. The uniqueness is lear sine V

0

= R(K �K). We have seen above that

the onditions on � are neessary. We now show that they are suÆient. We

let M be de�ned on D

2

= K �K as above. For any � 2 V

0

there is a t > 0

suh that t� 2 D

2

. We want to extend M to V

0

by setting

M(�) = t

�1

M(t�):

From Lemma 9:4 it is easily seen that M is well-de�ned, and furthermore that

M(s�) = jsjM(�) for all s 2 R and � 2 V

0

. The subadditivity of M then

follows easily from Lemma 9.6. �

We now want to apply the above ideas to S(A) for an order-unit spae A. Note

that the V

0

of just above is then the A

0

0

of earlier. We will need the following

theorem, whih does not involve the above ideas.
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9.8 Theorem. Let A be an order-unit spae, and let M be a norm on A

0

0

.

De�ne a metri, �, on S(A) by

�(�; �) = M(�� �):

If the �-topology oinides with the weak-� topology on S(A), then

M = (L

�

)

0

on A

0

0

.

Proof. Sine Lip

�

is a subspae of C(S(A)), we an setA

L

= (Lip

�

)\Af(S(A)).

Note that A

L

need not be ontained in A unless A is omplete. Initially it is

not lear how big A

L

is. Parallel to our earlier notation, let V denote the

normed spae A

0

0

with norm M . Note that V need not be omplete. Let V

0

denote the Banah spae dual of V , with dual norm M

0

. Fix any �

0

2 S(A).

For any ' 2 V

0

de�ne a funtion, �('), on S(A) by

�(')(�) = '(�� �

0

):

Then for �; � 2 S(A) we have

j�(')(�) � �(')(�)j = j'(�� �)j �M

0

(')M(�� �) = M

0

(')�(�; �):

Thus �(') 2 Lip

�

and L

�

(�(')) �M

0

('). In partiular, �(') is ontinuous on

S(A) sine � gives the weak-� topology. Furthermore it is easily seen that �(')

is aÆne on S(A). Thus �(') 2 A

L

. Consequently � is a norm-non-inreasing

linear map from (V

0

;M

0

) to (A

L

; L

�

). Let ~� denote � omposed with the map

from A

L

to

~

A

L

. Then it is easily seen that ~� does not depend on the hoie of

�

0

. We now need:

9.9 Lemma. Let

�

A = Af(S(A)), the ompletion of A for k k, so that A

L

�

�

A. Then A

L

is dense in

�

A.

Proof. Sine Re � A

L

, it suÆes to show that

~

A

L

is dense in

�

A

�

. Let � 2

D

2

� A

0

0

= (

�

A

�

)

0

. Suppose that �(A

L

) = 0. Let � = �� � with �; � 2 S(A).

For any ' 2 V

0

we have �(') 2 A

L

, so

0 = �(�(')) = �(�(')) � �(�(')) = '(�� �

0

)� '(� � �

0

) = '(�):

Sine this is true for all ' 2 V

0

, it follows that � = 0. Sine D

2

spans A

0

0

,

an appliation of the Hahn{Banah theorem now shows that A

L

is dense on

�

A. �

Now let f 2 A

L

. We seek to de�ne a linear funtional, �(f), on A

0

0

related to

the � in the proof of Theorem 5:2. We �rst try to de�ne � on D

2

by

�(f)(�) = f(�)� f(�);
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where � = � � � for �; � 2 S(A). But we need to show that �(f) is well-

de�ned. We argue muh as we did before De�nition 9:3. If also � = �

1

� �

1

for

�

1

; �

1

2 S(A), then (� + �

1

)=2 = (�

1

+ �)=2. But these are elements of S(A)

and so

f((� + �

1

)=2) = f((�

1

+ �)=2):

But from the fat that f is aÆne it now follows that

f(�)� f(�) = f(�

1

)� f(�

1

):

Thus �(f) is well-de�ned on D

2

. We now need to know that �(f) is \linear" on

D

2

. The proof that �(f)(t�) = t�(f)(�) for t 2 [�1; 1℄ is similar to the proof of

Lemma 9:4. The proof that �(f)(� + �

1

) = �(f)(�) + �(f)(�

1

) if � + �

1

2 D

2

is similar to the argument just before De�nition 9:5. The proof that �(f) then

extends to a linear funtional on A

0

0

is similar to the arguments in the proof

of Theorem 9:7. For � = �� � with �; � 2 S(A) we have

j�(f)(�)j = jf(�)� f(�)j � L

�

(f)�(�; �) = L

�

(f)M(�� �) = L

�

(f)M(�):

It follows that �(f) 2 V

0

and M

0

(�(f)) � L

�

(f). Thus � is a norm-non-

inreasing linear map from (A

L

; L

�

) to (V

0

;M

0

). Note that the onstant fun-

tions are in the kernel of �, so that � determines a norm-non-inreasing linear

map from (

~

A

L

;

~

L

�

) to (V

0

;M

0

). But for f 2 A

L

we have

�(�(f))(�) = �(f)(�� �

0

) = f(�)� f(�

0

):

Consequently ~� (~�(

~

f)) =

~

f . Similarly, for ' 2 V

0

and � = �� � we have

~�(~� ('))(�) = �(')(�) � �(')(�) = '(� � �

0

)� '(� � �

0

) = '(�);

so that ~�(~� (')) = '. Thus ~� and ~� are inverses of eah other. Sine they are

norm-non-inreasing, we obtain:

9.10 Lemma. The map ~� is an isometri isomorphism of (V

0

;M

0

) onto

(A

L

; L

�

), with inverse ~�.

We an now omplete the proof of Theorem 9:8. Sine A

L

is dense in

�

A by

Lemma 9:9, for any � 2 V

0

we have

(L

�

)

0

(�) = supf�(~� (')) : L

�

(~� (')) � 1g = supf'(�) : M

0

(') � 1g = M(�):

�

Putting together the various piees of this setion, we obtain:

9.11 Theorem. Let A be an order-unit spae, and let � be a metri on S(A)

whih gives the weak-� topology. Then � omes from a Lip-norm L on A via

the relation

�(�; �) = L

0

(�� �)

if and only if � is onvex, midpoint balaned, and midpoint onvex.

Nik Weaver has suggested to me the following alternative treatment of the

material of this setion. Let V , K, and V

0

be as at the beginning of this

setion.
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9.12 Definition. We say that a metri � on K is linear if for every �; � 2 K,

every v 2 V

0

, and every t 2 R

+

suh that � + tv and � + v are in K we have

�(�; � + tv) = t�(�; � + v):

It is easily seen that if � omes from a norm on V

0

then � is linear. Conversely,

if � is linear, de�ne a norm, M , on V

0

by

M(v) = �(�; � + tv)=t

for any � 2 K and any t 2 R

+

suh that � + tv 2 K. One heks that M is

well-de�ned and is indeed a norm. Furthermore, � omes from M .

Weaver also points out that if V is a loally onvex topologial vetor spae

and if K is ompat, then for a suitable de�nition of � being ompatible with

the topology, one an show that when � is linear and ompatible, then K

is isometrially isomorphi to S(Af(K)) when the latter is given the metri

oming from the Lipshitz seminorm on Af(K) oming from �.

It is not lear that examples will ome up where it is atually useful to apply

the onsiderations of this setion in order to obtain Lip-norms. Until suh

examples arise, it will not be lear whether my version or Weaver's will be the

more useful.

10. Musings on metris

Sine the theory in the previous setions worked for order-unit spaes, whih

need not be algebras, the Leibniz inequality played no signi�ant role there.

Indeed, even when one has an algebra, I have not seen how to make e�etive

use of the Leibniz inequality. Nevertheless, most onstrutions of Lipshitz

seminorms whih I have seen in the literature seem to provide ones whih do

satisfy the Leibniz inequality. We will briey explore here a variety of suh

onstrutions, and the relationships between them. Our interest will be on

seeing general patterns, and we will not try to deal arefully with the many

tehnial issues whih arise. Thus we will be less preise than in the previous

setions.

A very natural way to look for Lipshitz seminorms, losely related to Weaver's

W

�

-derivations [W2℄, goes as follows. Let A be a unital algebra and let (
; d)

be a �rst-order di�erential alulus for A. Thus 
 (whih is also often denoted




1

) is an A-A-bimodule, and d is an 
-valued derivation on A, that is, a linear

map from A into 
 whih satis�es the Leibniz identity

d(ab) = (da)b + a(db):

We do not require that the range of d generates 
. Suppose now that A is in

fat a normed algebra, and that we have a bimodule norm, N , on 
 (for the

norm k k on A), that is, a norm suh that

N(a!b) � kakN(!)kbk
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for a; b 2 A and ! 2 
. De�ne a seminorm L on 
 by

L(a) = N(da):

It is easily seen that L satis�es the Leibniz inequality. Sine d1 = 0, we have

L(1) = 0. Of ourse, without further hypotheses the null-spae of L may be

muh bigger. (We should mention that not all seminorms satisfying the Leibniz

inequality an be onstruted in this way|see the disussion in [BC℄.)

There is a universal �rst-order di�erential alulus for any unital algebra A

[Ar, C2℄. We approah this in a way whih emphasizes more than usual those

di�erential aluli whih are inner, sine at least oneptually that is what

Dira operators give, as we will see shortly. We form the algebrai tensor

produt




u

1

= A
A;

with bimodule struture de�ned as usual by a(b
 )d = ab
 d. We de�ne d

by

da = 1
 a� a
 1:

10.1 Definition. A �rst-order alulus (
; d) is inner if there is a !

0

2 


suh that

da = !

0

a� a!

0

:

Then the alulus (


u

1

; d) de�ned above is inner, with !

0

= 1 
 1. Note that

here !

0

may not be in the sub-bimodule generated by the range of d. This is

an indiation of why we do not require this generation property. It is simple

to verify:

10.2 Proposition. The inner �rst-order alulus (


u

1

; d; 1 
 1) is univer-

sal among inner �rst-order di�erential aluli over A, in the sense that if

(


0

; d

0

; !

0

0

) is any other inner �rst-order di�erential alulus, then there is a bi-

module homomorphism � : 


u

1

! 


0

suh that �(da) = d

0

a and �(1
 1) = !

0

0

.

In partiular,

�(a
 b) = a!

0

0

b

for a; b 2 A. If 


0

is generated by !

0

0

as bimodule, then � is surjetive, so that




0

is a quotient of 


u

1

.

10.3 Proposition. Any �rst-order di�erential alulus is ontained in an in-

ner �rst-order alulus.

Proof. Let (
; d) be a �rst-order alulus. Set

�


 = 
 � A as left A-module,

set

�

da = da� 0, and set �!

0

= 0� 1. We must extend the right ation of A on


 to a right ation on

�


 suh that

�

da = �!

0

a � a�!

0

. Thus it is lear that we

must set (0� 1)a = �!

0

a = da� 0 + a�!

0

= da� a, and so

(!; b)a = (!a + bda; ba):

It is simple to hek that this gives the desired struture. �
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Now let 


u

denote the sub-bimodule of 


u

1

generated by the range of d, and so

spanned by elements of the form

adb = a
 b� ab
 1:

Let (


0

; d

0

) be a �rst-order di�erential alulus whih is not inner. Expand it

to an inner alulus by the onstrution of the previous proposition, and then

restrit � of that proposition to 


u

. It is lear from the onstrution that �

will arry 


u

into 


0

, where 


0

is viewed as a sub-bimodule of its expansion.

We obtain in this way:

10.4 Proposition. The alulus (


u

; d) is universal among all �rst-order dif-

ferential aluli over A, in the sense that if (


0

; d

0

) is any other �rst-order

di�erential alulus, then there is a bimodule homomorphism � : 


u

! 
 suh

that �(da) = d

0

a. If 


0

is generated by the range of d

0

as bimodule, then � is

surjetive, so that 


0

is a quotient of 


u

.

We notie that if (
; d) is any �rst-order di�erential alulus and ifN is any sub-

bimodule of 
, then we obtain a alulus (
=N ; d

0

) where d

0

is the omposition

of d with the anonial projetion of 
 onto 
=N . However, unlike the universal

alulus, there may now be many more elements a for whih da = 0 beyond

the salar multiples of 1.

Let us examine briey what the above looks like when A = C(X) for a ompat

spae X . Then 


u

1

(= A 
A) is naturally viewed as a dense sub-bimodule, in

fat subalgebra, of C(X �X). The bimodule ations are, of ourse,

(fF )(x; y) = f(x)F (x; y); (Ff)(x; y) = F (x; y)f(y);

and !

0

= 1
 1 is the onstant funtion 1, so that d is given by

(df)(x; y) = f(y)� f(x):

Then 


u

is spanned by the fdg, where

(fdg)(x; y) = f(x)(g(y)� g(x)):

Thus the elements of 


u

take value 0 on the diagonal, �, of X � X , and

onsequently 


u

� C

1

(X�Xr�). In fat it is easy to see that 


u

is a dense

subalgebra of C

1

(X �X r�).

Let � be an ordinary metri on X (giving the topology of X). View � as

a stritly positive funtion on X � X r �, and let  = �

�1

. Then  is a

ontinuous funtion on X �X r�, but  is unbounded if X is not �nite. Let

C(X �Xr�) denote the algebra of ontinuous possibly-unbounded funtions

on X�X r�. Then C(X �X r�) an be viewed as the algebra of operators

aÆliated with the C

�

-algebra C

1

(X�Xr�) in the sense studied by Baaj [Ba℄

and Woronowiz [Wo℄. In an evident way C(X �X r�) is an A-A-bimodule,

ontaining .
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There are now two routes whih we an take. One is to onsider the inner-

derivation, d



, de�ned by . Thus

(d



f)(x; y) = (x; y)f(y)� f(x)(x; y) = (f(y)� f(x))=�(x; y):

Then we an onsider bimodule norms, possibly taking value +1, on C(X �

X r �), as a way to obtain Lipshitz norms on A. The other route is to use

 (or �) to diretly de�ne norms on C

1

(X �X r �). For the �rst route the

most obvious norm is the supremum norm, whih leads to the usual de�nition

of the Lipshitz seminorm for a metri spae.

However, we hoose to explore further the seond route. (But most of what

we �nd will have a fairly evident reinterpretation in terms of the �rst route.)

There is a large variety of ways to obtain bimodule norms on C

1

(X�Xr�).

The one whih gives the usual de�nition of the Lipshitz seminorm for a metri

is learly

N(F ) = kFk

1

;

permitted to take value +1. But here are some others. Let m be any positive

(�nite) measure on X , and assume that m �m restrited to X � X r � has

as support all of X �X r �. Then one an onsider all of the L

p

-norms for

m�m. If one wants to put  (or �) expliitly into the piture, one an onsider

the measure (m �m), although this just represents the hoie of a di�erent

measure. Note that if f is an ordinary Lipshitz funtion for �, then df is

a bounded funtion on X � X r �, so that kdfk

p;m�m

is �nite. Thus the

subalgebra of elements of A for whih this Lipshitz seminorm is �nite is dense

in A.

To explore further possibilities, let us for simpliity assume that X is �nite.

Then 


u

1

= C(X�X) an be viewed as the algebra of all matries whose entries

are indexed by elements of X �X . The left and right ations of A on 


u

1

an

be viewed as oming from embedding A as the diagonal matries and using

left and right matrix multipliation. Then !

0

is the matrix with a 1 in eah

entry. On A we keep the supremum norm, but on the matrix algebra 


u

1

we an

onsider any A-A-bimodule norm. Let B denote 


u

1

viewed as matrix algebra,

and equipped with the usual C

�

-algebra norm. View 


u

1

as a B-B-bimodule in

the evident way. Then we an onsider B-B-bimodule norms on 


u

1

. Any suh

will in partiular be an A-A-bimodule norm. But there has been extensive

study of the possible B-B-bimodule norms on 


u

1

. They are ommonly alled

\symmetri norms", and among the best known are the Shatten p-norms,

whih inlude the Hilbert{Shmidt norm and the trae norm. These have,

of ourse, also been extensively studied for operators on in�nite dimensional

Hilbert spaes, and play a fundamental role in Connes' theory of integration

on non-ommutative spaes. (See [C2℄ Chapter IV and its Appendix D. A

nie treatment of the �nite ase an be found in [Bh℄.) From every symmetri

norm we obtain a Lip-norm on A (sine A is �nite-dimensional). This does

not exhaust the possibilities, as there is no neessity to restrit to symmetri

norms in order to get A-A-bimodule norms.
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All of the above disussion has been for the universal di�erential alulus. We

get many more possibilities by using other di�erential aluli. We ontinue

to onentrate on the ase of A = C(X) with X ompat. Now sub-A-A-

bimodules of C(X �X), when losed in the supremum norm, will be ideals of

C(X�X), and the quotient an be identi�ed with C(W ) for some losed subset

W of X � X . We an restrit df to W . But some ondition must be plaed

on W if we want to ensure that df j

W

= 0 only if f is a onstant funtion. For

this purpose it is onvenient to assume, to begin with, that W ontains the

diagonal � and is symmetri about �, that is, if (x; y) 2 W then (y; x) 2 W .

Given x 2 X we de�ne the W -neighborhood of x to be the (losed) set of those

y 2 X suh that (x; y) 2 W . By the W -omponent of x we mean the smallest

losed subset of X whih ontains the W -neighborhood of eah of its points.

If df j

W

= 0, then f is onstant on the W -omponent of eah point. Thus a

suÆient ondition under whih df j

W

= 0 will imply that f is onstant, is that

the W -omponent of eah point is all of X . If X is a �nite set, then W r� an

be viewed as onsisting of the direted edges for a graph whose verties are the

points of X . Then the above ondition beomes the ondition that this graph

is onneted in the usual sense. If X is not disrete, it is usual to require that

W is a neighborhood of �. Then eah W -neighborhood of a point will be an

ordinary (losed) neighborhood, and so the W -omponent of eah point will

be both losed and open. In partiular, if X is onneted it will be true that

df j

W

= 0 implies that f is onstant.

We remark that if W is a neighborhood of � and is symmetri about �, and

if we set 
 = C(W ), then the �rst order alulus (
; d) obtained as above

is the typial degree-one piee of the omplexes (


�

W

; d) used in de�ning the

Alexander{Spanier ohomology of X . The higher-degree piees are de�ned

similarly but in terms of X

n

for various n. The Alexander{Spanier ohomology

is then obtained by taking a limit of the homology of these omplexes as W

shrinks to �. Essentially this view an be seen in lemma 1:1 of [CM℄, where

smooth funtions on a manifold are used, and in Setion 1 of [MW℄, where

ontinuous funtions are used.

Suppose now that 
 = C(W ) as above, but assume now for simpliity that

W and � are disjoint (with W no longer required losed). Let d be de�ned

by df = df j

W

, and assume that if df = 0 then f is a salar multiple of 1. To

obtain a Lipshitz seminorm on A we again just need to put a bimodule norm

on 
. The method whih is losest to the usual Lipshitz norm is to speify a

nowhere zero funtion  on W and set

L(f) = kdfk

1

(on W , allowing value +1). In this ontext however, if we set � = 

�1

, it no

longer makes muh sense to ask that the triangle inequality hold for �. About

the most that is reasonable is to ask that �, hene , be positive, and that

(x; y) = (y; x) for (x; y) 2 W , x 6= y. This is a situation whih has been

widely studied. Entire books [Ra, RR℄ have been written about the problem
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of �nding the orresponding distane between two probability measure on X ,

often under the heading of \the mass transportation problem". The funtion

� is then often alled a \ost funtion". We should larify that when � is not

a metri we are dealing here with mass transportation \with transshipment

permitted" [RR℄, not the original Monge{Kantorovih [KA℄ mass transporta-

tion problem, whih does not permit transshipment, and may well not yield a

metri. When transshipment is permitted and � is not a metri on X , the or-

responding metri on S(X) is alled the Kantorovih{Rubenstein metri [KR1,

KR2℄. For a fasinating survey of some reent developments onerning the

original Monge{Kantorovih problem see [Ev℄.

When X is a �nite set and W is viewed as speifying edges for a graph whih has

X as set of verties, the ost funtion � is naturally interpreted as assigning

lengths to the edges (though we will see a quite di�erent interpretation in

Setion 12). Then the metri on X oming from L

�

is the usual path-length

distane on the graph. There has been muh study of how to ompute this

path-length distane eÆiently for large graphs. We remark that if one prefers

to have � de�ned on all of X �X one an simply set it equal to +1 on any

(x; y), x 6= y, whih is not an edge.

We remark that in the ontext of ost funtions on ompat sets there may well

be no non-onstant funtions for whih the Lipshitz seminorm is �nite. As

one example let X be the unit interval [0; 1℄, and set �(x; y) = jx�yj

2

. This is,

in e�et, beause we permit transshipment | the original Monge{Kantorovih

problem is quite interesting for this partiular ost funtion, as shown in [Ev℄.

It is just that the minimal ost of moving one probability measure diretly to

another does not then give a metri on probability measures, beause it may

be less ostly to use two or more moves.

There is a variety of other bimodule norms, suh as L

p

-norms, whih one an

use for various di�erential aluli, and these give a wide variety of metris on

probability measures [Ra℄. A partiularly deep appliation of suh norms, for

the ase of graphs, and involving expliitly Connes ideas of non-ommutative

metris, appears in [Da℄. (I thank Nik Weaver for bringing this paper to my

attention.)

Let us now disuss briey the ase in whih we have A = M

n

, a full matrix

algebra. As mentioned muh earlier, one natural Lip-norm on A is just L =

k k

�

. Now A

0

an be identi�ed by means of the normalized trae, � , with A

itself, but equipped with the trae-norm. Then A

0

0

, as in our earlier notation,

onsists of the matries with trae 0. Of ourse, S(A) is identi�ed with the

positive matries of normalized trae 1. With this identi�ation, we have

�

L

(�; �) = trae(j�� �j):

This is exatly one of the metris listed (with referenes) in the introdution

to [ZS℄. Another one listed there uses the Hilbert{Shmidt norm instead of the

trae norm. Listed also is a variety of other metris on S(M

n

) whih have

appeared in various appliations. But I have not heked whether they ome
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from Lip-norms. There has also been muh study of the di�erential geometry of

S(M

n

) for a variety of Riemannian metris, espeially the \monotone metris",

whih are losely related to operator monotone funtions. Two very reent

artiles whih ontain many referenes to previous work on this topi are [Di,

S℄. But the emphasis of most of this work is not on the ordinary metri whih a

Riemannian metri indues on S(M

n

), but rather on the di�erential geometri

aspets. There is also study of the volume form whih is indued, and on

assoiated probabilisti aspets. For reent related study going in the diretion

of non-ommutative entropy see [LR℄.

11. Dira operators and differential aluli

We ontinue our omments of the previous setion, but here we fous on how

Dira operators �t into the piture. Let A be a unital �-algebra equipped with

a C

�

-norm (perhaps not omplete), and let � be a faithful representation of A,

that is, an isometri �-homomorphism of A into the algebra B(H) of bounded

operators on a Hilbert spae H. Let D be an essentially self-adjoint, possibly

unbounded, operator on H, and assume that �(a) arries the domain of D into

itself for eah a 2 A, and that on this domain [D; �(a)℄ is a bounded operator,

and so extends uniquely to a bounded operator on H. Then, following Connes,

we set

L(a) = k[D; �(a)℄k:

As we did earlier, it is natural to require that [D; �(a)℄ = 0 only when a is a

salar multiple of 1. Many important examples of this situation are now known.

But in general it seems diÆult to asertain whether the orresponding metri

on states gives the weak-� topology, though this has been shown for ertain

examples in [Rf℄. See also [W2, W3, W5℄, where the sets B

t

de�ned at the

beginning of Setion 3 are shown to be totally bounded, in fat ompat, for

various examples. We do not deal with this question here, but rather try to

relate the bimodule piture to the Dira piture. One diretion is apparent.

We view B(H) as an A-A-bimodule by setting

aTb = �(a)T�(b):

Then, although D is only aÆliated with B(H), oneptually we use the inner

derivation whih D de�nes, so that

da = D�(a)� �(a)D = [D; �(a)℄:

(This, of ourse, is the starting point for Connes' non-ommutative di�erential

alulus [C2℄.) We then note that the operator norm on B(H) is an A-A-

bimodule norm, and so upon setting

L(a) = k[D; �(a)℄k

we obtain a Lipshitz norm, whih we showed to be lower semiontinuous in

Proposition 3:8.
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But suppose we are given instead some �rst order di�erential alulus (
; d)

and a bimodule norm on 
 so that we obtain the orresponding Lipshitz norm

L. Can we also obtain L from a Dira operator? For this to be possible we

must have L(a

�

) = L(a), and L must be lower semiontinuous. As mentioned

earlier, L must also �t into a family of \matrix Lipshitz seminorms". These

onditions are probably not enough in general, though I have not tried to �nd

a ounterexample. But the following super�ial omments help to give some

perspetive. (In most of the onsiderations whih follow the algebra struture

on A is only used in order to get the Leibniz inequality. Thus muh of what

follows atually works for order-unit spaes.)

We saw in Proposition 10:3 that we an extend (
; d) to obtain an inner �rst-

order alulus. In analogy with this idea, suppose that we an realize 
 as

a subspae of B(H) for some Hilbert spae H, in suh a way that the norm

on 
 is the operator norm, and the bimodule struture is given by two �-

representations, �

1

and �

2

, of A on H, so that

a!b = �

1

(a)!�

2

(b)

for a; b 2 A and ! 2 
. Suppose further that there is a possibly-unbounded

essentially self-adjoint operator, D

0

, on H, suh that �

1

(a) and �

2

(a) arry the

domain of D

0

into itself, and suh that

da = D

0

�

2

(a)� �

1

(a)D

0

;

whih in partiular must be a bounded operator. Set L(a) = kdak. This is not

exatly the Dira operator setting, but it is not diÆult to onvert it into that

setting. To arrange matters so that we have only one representation, we let

� = �

1

� �

2

on H�H and set

D

1

=

�

0 D

0

0 0

�

:

Then we �nd that

L(a) = k[D

1

; �(a)℄k:

But of ourse D

1

is not self-adjoint. We �x this in the traditional way by again

doubling the Hilbert spae, with representation � � � of A, and setting

D =

�

0 D

�

1

D

1

0

�

:

The orresponding Lipshitz norm is L(a)_L(a

�

), but from the self-adjointness

of D one an hek that we atually get bak L.

Anyway, we are left with

11.1 Question. For an order-unit spae A, or a �-algebra A with C

�

-norm,

how does one haraterize those Lip-norms on A whih ome from the Dira

operator onstrution?
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Even for �nite-dimensional ommutative C

�

-algebras it is not lear to me what

the answer is.

As mentioned earlier, a Dira operator also gives seminorms on all of the matrix

algebras over A, so that one an speak of this family as a \matrix Lipshitz

norm", in the spirit of [Ef℄. Thus a related problem is to haraterize these

strutures.

Of ourse a given metri on S(A) may ome from several fairly di�erent Dira

operators. For example, suppose that we have a ompat spae X , and a losed

neighborhood W of the diagonal � of X � X , together with a ost funtion

� on W , just as in the previous setion. As disussed there, we an use �

together with the �rst-order alulus determined by W to de�ne a Lipshitz

norm on C(X). (Further hypotheses are needed for it to be a Lip-norm on

a dense subalgebra of C(X).) Then by the proedure disussed earlier in the

present setion we an pass to a Dira operator. But that proedure enlarged

the Hilbert spae beause a �rst-order di�erential alulus usually involves two

representations rather than one. We will now show that there is an alternative

method whih does not enlarge the Hilbert spae. This is a mild generalization

of my leture omments for metri spaes mentioned earlier, whose details

are indiated on page 274 of [W2℄. As earlier, let m be a measure on X of

full support, and onsider m � m on W r �. Form the Hilbert spae H =

L

2

(W r�;m�m). We onsider only the representation � of A = C(X) on H

de�ned by

(�

f

�)(x; y) = f(x)�(x; y):

(This is, of ourse, essentially the left ation on the bimodule for W .) De�ne

an operator, F , on H by the ip

(F�)(x; y) = �(y; x):

Beause we are using a produt measure, the operator F is self-adjoint and

unitary. De�ne an (unbounded) positive operator, P , on H by

(P�)(x; y) = �(x; y)=�(x; y):

Beause we assume that �(x; y) = �(y; x) for all (x; y) 2 W , the operators F

and P ommute. We de�ne the Dira operator by

D = PF;

so that F is the phase of D and P = jDj. Informal alulation shows that for

any f 2 C(X) we have

([D; �

f

℄�)(x; y) = ((f(y)� f(x))=�(x; y))�(y; x);

so that

L(f) = k[D; �

f

℄k = supfjf(y)� f(x)j=�(x; y) : (x; y) 2Wg:
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Of ourse, further hypotheses must be plaed on � in order for this to give a

Lip-norm. But the right-hand side of the above equality is the usual de�nition

of a Lipshitz norm in this situation, espeially in ontexts suh as graph theory.

It will oinide with what one obtains in the orresponding bimodule approah.

Notie that the resulting distane between two points x; y 2 X an easily be

stritly smaller than �(x; y) (if (x; y) happens to be in W ).

For an interesting alternative (but losely related) method of obtaining the

usual distane on a graph (inluding in�nite graphs) from a ost funtion,

by means of Dira operators, see theorem 7:2 of [Da℄. Furthermore, in [Da℄

other very interesting and quite di�erent Dira operators assoiated to ost

funtions on graphs are disussed in some detail, and used to obtain improved

estimates for heat kernels on graphs. They an be desribed in terms of �rst-

order di�erential aluli and Laplae operators along muh the same lines as we

used in Setion 10. Muh of this is expliit in [Da℄, and we will not elaborate

on it here.

We should mention here that very interesting examples of Dira operators as-

soiated with non-ommutative variants of sub-Riemannian manifolds appear

in the seond example following axiom 4

0

of [C3℄, and in [W5℄.

12. Resistane distane

We onlude with an appealing lass of examples whih do not �t into the

previous framework of di�erential aluli, and for whih the Lip-norm does

not satisfy the Leibniz identity. These examples ome from graphs with \ost

funtions" on the edges, but now the graph is interpreted as an eletrial iruit

with resistanes on the edges, whose values are given by the ost funtion.

These examples have been extensively studied [DS, Kl, KlR, KZ℄, but I have

not seen earlier mention of the orresponding metri on probability measures

whih we will de�ne here. It is not lear to me whether this metri is more

than a uriosity.

All of the disussion here an be arried out for in�nite graphs, along the lines

disussed extensively in [DS℄, but for simpliity we only disuss �nite graphs

here. The examples also have a �ne alternative interpretation in terms of

random walks [DS℄. Our term \resistane distane" is taken from the title of

[KlR℄.

The set-up, as indiated above, is a �nite graph with set X of verties, together

with stritly positive real numbers r

xy

= r

yx

assigned to eah (undireted)

edge. We interpret these numbers as resistanes. We assume throughout that

the graph is onneted. Given x; y 2 X , x 6= y, we an imagine putting a

voltage di�erene aross x and y, adjusted so that one unit of urrent ows

in at x and out at y. Then Ohm's law says that the \e�etive resistane" is

equal to the required voltage di�erene. We denote this e�etive resistane by

�(x; y). It is, in fat, a metri on X . The only referene I know for this is [KlR,

K, KZ℄, but my friends in probability theory tell me that within the ontext of

random walks rather than resistanes this is well-known, even if no referene

omes to mind.
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Suppose now that � and � are general probability measures on X . Although it

does not seem so intuitively obvious, we will see shortly that we an establish

voltages on the points of X suh that unit total urrent ows into the iruit,

with the amount owing in at eah point x given by �

x

, while unit total urrent

ows out of the iruit, with the amount at eah point given by � (with the

evident interpretation when the supports of � and � are not disjoint). For the

analysis of this situation it is useful to de�ne a funtion, , on the edges, by



xy

= 1=r

xy

. This is ommonly alled the \ondutane". It is onvenient to

extend  to all of X�X by setting 

xy

= 0 if (x; y) is not an edge (or if y = x).

Let f 2 C(X), interpreted as voltages applied to the points of X . We let df be

de�ned as earlier for the universal alulus (or for the alulus orresponding

to the edges). We let rf denote the resulting ow inside the iruit. By Ohm's

law the ow (before eletrons were disovered) from x to y is given by

(rf)(x; y) = (f(x) � f(y))

xy

= �(df);

where by (df) we mean the pointwise produt of funtions. Note that rf is a

funtion on direted edges, with

(rf)(x; y) = �(rf)(y; x)

(and value 0 if (x; y) is not an edge).

Suppose now that ! is any funtion on direted edges suh that !(x; y) =

�!(y; x). We interpret !(x; y) as giving the magnitude of a urrent from x to

y. (To be more realisti we should require 0 irulation, but we will have no

need to impose this requirement.) To sustain this urrent, we will in general

have to insert (or extrat) urrent at various verties. We let div(!)(x) denote

the urrent whih must be inserted at x. By Kirhho�'s laws we have

div(!)(x) =

X

y

!(x; y):

Note that beause !(x; y) = �!(y; x), we will have

X

x

div(!)(x) = 0;

whih aords with the fat that the total amount of urrent inserted must be

0.

Suppose now that f 2 C(X) and that we set ! = rf . We see from above that

the urrents whih must be inserted to sustain the voltages given by f must be

div(rf);

whih we denote by �f . To aord with our earlier notation, we let A

0

0

denote

the signed measures, �, on X for whih h1; �i = 0. The disussion of the

previous paragraph an be interpreted as saying that �f 2 A

0

0

.
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Suppose now that we are given � 2 A

0

0

. Can we �nd f suh that �f = �?

Note that sine �1 = 0, we know that f will not be unique, but rather that,

as usual with potential funtions, we an expet f to be unique only up to

a onstant funtion. To proeed further we must more arefully analyze the

operator � in the traditional way [DS, K℄. For f 2 C(X) we have

(�f)(x) =

X

y

(rf)(x; y)

=

X

y

(f(x)� f(y))

xy

= f(x)

X

y



xy

�

X

y

f(y)

xy

:

Let D denote the diagonal matrix with diagonal entries

D

xx

=

X

y



xy

:

If we view f as a olumn vetor, we see that

�f = (D � C)f:

From the Peron{Frobenius theorem and the fat that our graph is onneted,

it follows that the kernel of � onsists exatly of the onstant funtions. If we

permit ourselves to onfuse vetor spaes a bit, we see that � is self-adjoint

with respet to the standard inner-produt on olumn vetors. Thus it arries

the orthogonal omplement, H, of the onstant funtions into itself, and it is

invertible on H. Consequently, for every � 2 A

0

0

we an �nd a unique f 2 H

suh that �f = �. We will write this as f = �

�1

�, where we view � as

restrited to H so that it is invertible there.

Suppose now that x and y are �xed points of X , and that � = Æ

x

� Æ

y

, where

Æ

x

denotes the Æ-measure at x. Thus we are inserting one unit of urrent at x

and extrating it at y. Let f = �

�1

�. Aording to our earlier omments, the

e�etive resistane from x to y, �(x; y), is given by f(x)� f(y) = (�

�1

�)(x)�

(�

�1

�)(y). It is now easy to see why � is a metri, along the lines given in

[KlR℄. If z is any other point of X , let

g = �

�1

(Æ

x

� Æ

z

); h = �

�1

(Æ

z

� Æ

y

):

Clearly f = g + h, so

�(x; y) = g(x)� g(y) + h(x)� h(y):

But simple onsiderations show that g must take its maximum and minimum

values at x and z, so that

g(x)� g(y) � g(x)� g(z) = �(x; z):

Doumenta Mathematia 4 (1999) 559{600



596 Mar A. Rieffel

Similarly h(x) � h(y) � �(x; z). The triangle inequality for � follows.

But we are interested more generally in the e�etive resistane between � and

� where � and � are arbitrary probability measures, and it is not even lear

how this should be de�ned. (It does not seem natural just to use the Monge{

Kantorovih metri from �.) In view of our earlier onsiderations we should

form � = �� �, and so we need an appropriate norm on A

0

0

, and this should

be the dual norm of a Lip-norm, say L, on C(X), probably de�ned by means

of a norm on 


u

. The dual norm, L

0

, should be suh that if � = Æ

x

� Æ

y

,

then L

0

(�) = (�

�1

�)(x)� (�

�1

�)(y). But as remarked above, �

�1

� takes its

maximum and minimum values at x and y. Thus a norm whih will meet this

requirement is

L

0

(�) = 2k�

�1

�k

�

1

;

where k k

�

1

is as de�ned in Setion 1. To �nd L on C(X) we use the self-

adjointness of � to alulate, for g 2 C(X) and any � 2 A

0

0

,

hg; �i = hg;��

�1

�i = h�g;�

�1

�i:

The supremum over � suh that 2k�

�1

�k

�

1

� 1 is the same as the supremum

of

h(1=2)�g; hi

over h suh that k

~

hk

�

1

� 1. But we saw earlier that this gives just the restrition

to A

0

0

of the dual norm for k k

1

on C(X), whih is the L

1

-norm. Thus we

see that we must set

L(g) = (1=2)k�gk

1

= (1=2)

X

x

j(�g)(x)j

= (1=2)

X

x

�

�

�

�

�

X

y

(g(x)� g(y))

xy

�

�

�

�

�

= (1=2)

X

x

�

�

�

�

�

X

y

dg(x; y)

xy

�

�

�

�

�

:

This is ertainly rather di�erent from the usual Lip-norms for metris on �nite

sets. The above expression suggests that we de�ne a seminorm, N , on 


u

by

N(!) = (1=2)

X

x

�

�

�

�

�

X

y

!(x; y)

xy

�

�

�

�

�

;

so that we have

L(g) = N(dg):

Reversal of the earlier alulation shows that the dual norm is the L

0

onsidered

above, so that we obtain the desired �(�; �). However N will not usually be a

bimodule norm, so that we are not fully in the ontext of the previous setions,

and L need not satisfy the Leibniz inequality.

I must admit that I see no partiularly natural interpretation for L(g), nor for

�(�; �), even if we all the latter \e�etive resistane". If g were interpreted as
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giving voltages on X , then L(g) would be half the sum of the absolute values of

the urrents inserted or extrated from the iruit, and thus exatly the sum of

the urrents inserted into the iruit (disregarding the urrents extrated). But

I do not see why it is natural to give g suh an interpretation as voltages. If one

goes bak to the e�etive resistane between two points, then it is easily seen

that this is equal to the energy dissipated by the iruit when one unit of urrent

is inserted. This suggests using the dissipated energy in the more general ase

of arbitrary probability measures � and �. But the energy dissipated along

any edge varies as the square of the urrent, and one an see by examples

that this auses the triangle inequality to fail. One does obtain a metri if

one uses the square-root of the dissipated energy, but this does not give the

orret value for the e�etive resistane between two points. These possibilities

are not far from the Lipshitz norm used right after lemma 4:1 of [Da℄ to

de�ne the metri denoted there by d

3

. This Lipshitz norm an be interpreted

as the supremum over the points x of X of the square roots of the energy

dissipations in all the edges beginning at x. Perhaps the disussion of Dirihlet

spaes given in setion 6 of [W6℄, or the \twisted bimodule struture" and

orresponding di�erential disussed beginning on page 149 of [Me℄ in onnetion

with Hudson's treatment of disrete ows and stohasti di�erential equations,

ould be used to shed more light on this. Or perhaps some of the stopping

rules or mixing times onsidered for Markov hains, as disussed in [LW℄, are

relevant.

Finally, we remark that it would be interesting to study resistane distane in

the ontinuous ase, for example for thin plates of resistane metal of various

shapes.
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