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Abstrat. Let P be the set of all probability measures on R possess-

ing moments of every order. Consider P as a semigroup with respet

to onvolution. After topologizing P in a natural way, we determine

all ontinuous homomorphisms of P into the unit irle and, as a

orollary, those into the real line. The latter are preisely the �nite

linear ombinations of umulants, and from these all the former are

obtained via multipliation by i and exponentiation.

We obtain as orollaries similar results for the probability mea-

sures with some or no moments �nite, and haraterizations of on-

stant multiples of umulants as aÆnely equivariant and onvolution-

additive funtionals. The \no moments"-ase yields a theorem of

Hal�asz. Otherwise our results appear to be new even when speialized

to yield haraterizations of the expetation or the variane.

Our basi tool is a re�nement of the onvolution quotient representa-

tion theorem for signed measures of Ruzsa & Sz�ekely.
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602 Lutz Mattner

1 Introdution, results, and easy proofs

1.1 Aim. Cumulants are ertain funtionals of probability measures. This

paper attempts to explain more preisely what they are by haraterizing them

through their most useful properties. For simpliity, only the one-dimensional

ase of probability measures on R is treated. There the most familiar exam-

ples of umulants are the expetation and the variane. Our results yield, in

partiular, new desriptions of the roles played by these latter two funtionals

in probability theory.

1.2 Guide. The de�nition of umulants is realled in Subsetion 1.4 below,

as formula (4). The useful properties of umulants, referred to above, are the

homomorphism property (5) and their transformation behaviour under aÆne

mappings, (14). The relation between umulants and moments is realled in

Subsetion 1.5.

Subsetion 1.6 introdues topologies on the domains of de�nition of the umu-

lants, with the aim of formulating regularity assumptions in our theorems and

orollaries. That some regularity assumptions are atually neessary, at least

in the results 1.8 { 1.12, is demonstrated in 1.20.

Theorem 1.8, haraterizing the ontinuous haraters of the semigroup

Prob

1

(R), is the main result of the present paper. Its natural forerunner

from the literature, namely the theorem of Hal�asz, is realled in 1.10 below as

a speial ase of Corollary 1.9.

Another orollary of Theorem 1.8, and perhaps the most interesting result

of this paper, is the haraterization of the �nite linear ombinations of u-

mulants as the ontinuous, R-valued, and onvolution-additive funtionals of

probability measures, stated in Theorem 1.11 and Corollary 1.12. Suh results

were onjetured by Kemperman (1972). By restriting the funtionals to be

[0;1[ -valued, we arrive at a haraterization of the variane in 1.14. [A related

result of Martin Diaz (1977) is disussed in 1.22.℄

Our next results, 1.17 and 1.18, are spezializations of 1.8 and 1.11 to sale

equivariant funtionals, the de�nition of whih being realled in 1.16.

As a further orollary, we obtain in 1.19 a haraterization of the expetation as

the only nontrivial ontinuous funtional homomorphi with respet to additive

and multipliative onvolutions.

Historial and etymologial remarks on umulants are given in Subsetion 1.21.

Subsetion 1.22 disusses some further referenes related to the present work.

Easy proofs are given immediately after the statement of a result in Setion

1. The only diÆult proof of this paper, needed for the \only if" part of our

main result 1.8, is the ontent of Setion 2. Its basi tehnial tool, re�ning

the onvolution quotient representation theorem for signed measures of Ruzsa

& Sz�ekely (1983, 1985, 1988), is supplied in Subsetion 2.5.
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What Are Cumulants ? 603

1.3 Some notation and onventions. The positive integers are denoted

by N, the nonnegative ones by N

0

.

If X is a set equipped with a �-algebra A, we let Prob(X ) denote the set

of all probability measures de�ned on A. The real line R is understood to

be equipped with its Borel �-algebra. The onvolution of P;Q 2 Prob(R) is

denoted by P �Q. We write Æ

a

for the Dira measure onentrated at a 2 R,

and Æ := Æ

0

for the one onentrated at zero. For the image measure of a

probability measure P under a measurable funtion f , we use the notation

f�P . We write supp P for the support [= minimal losed set of probability

one℄ of a P 2 Prob(R).

Prob(R) will mainly be onsidered as a semigroup with respet to onvolution.

Homomorphisms of a semigroup [below always a sub-semigroup of Prob(R)℄

into the multipliative group T of omplex numbers of absolute value one will

be alled haraters, homomorphisms into the additive group R will be alled

additive funtions.

1.4 Cumulants. We present below the usual introdution of umulants and

their most important properties. For P 2 Prob(R), let

b

P denote its Fourier

transform or harateristi funtion, de�ned by

b

P (t) :=

Z

e

itx

dP (x) (t 2 R): (1)

The most important reason for onsidering Fourier transforms of probability

measures is multipliativity with respet to onvolution:

(P �Q)b(t) =

b

P (t) �

b

Q(t) (P;Q 2 Prob(R); t 2 R): (2)

Let log denote the usual logarithm de�ned on, say, fz 2 C : jz � 1j < 1g. Let

P 2 Prob(R). Then

b

P is ontinuous with

b

P (0) = 1, so that log Æ

b

P is de�ned

in some P -dependent neighbourhood of zero. Now put

Prob

r

(R) :=

�

P 2 Prob(R) :

Z

jxj

r

dP (x) <1

�

(r 2 N

0

); (3)

and assume that r 2 N and P 2 Prob

r

(R). Then

b

P and thus log Æ

b

P is r times

ontinuously di�erentiable in the neighbourhood of zero introdued above, and

the number

�

r

(P ) := i

�r

�

D

r

log Æ

b

P

�

(0) (4)

is alled the rth umulant of P . [Readers wondering about this strange name

are referred to Subsetion 1.21.℄ It is easy to show that the umulants are real-

valued funtionals. Their most important property, whih obviously follows

from (2) and (4), is additivity with respet to onvolution:

�

r

(P �Q) = �

r

(P ) + �

r

(Q) (r 2 N; P;Q 2 Prob

r

(R)) : (5)
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604 Lutz Mattner

In other words: For eah r 2 N, (Prob

r

(R); �) is a semigroup on whih �

r

is an

additive funtion.

1.5 Examples, expression in terms of moments. The two most familiar

examples of umulants are the mean � and the variane �

2

, sine

�

1

(P ) = �(P ) :=

Z

x dP (x) (P 2 Prob

1

(R));

�

2

(P ) = �

2

(P ) :=

Z

(x� �(P ))

2

dP (x) (P 2 Prob

2

(R)):

These formulas are speial ases of the relation between umulants and the

moments

�

r

(P ) :=

R

x

r

dP (x) = i

�r

(D

n

b

P )(0) (r 2 N

0

; P 2 Prob

r

(R)):

One possibility of expressing this relation is to use the reursion

�

r+1

=

r

X

l=0

�

r

l

�

�

r�l

�

l+1

(r 2 N

0

); (6)

whih is easily proved using the Leibniz rule for the di�erentiation of a produt

and the representation of the moments as derivatives: For P 2 Prob

r+1

(R) put

' :=

b

P and  := log', in a neighbourhood of zero, and ompute D

r+1

' =

D

r

(' �D ) =

P

r

l=0

�

r

l

�

(D

r�l

') � (D

l+1

 ), evaluate the extreme left and right

hand sides at zero, and divide by i

r+1

, to arrive at (6). Sine the oeÆients

of �

r+1

and �

r+1

in (6) are both one, it follows by indution that

�

r

= �

r

+ polynomial without onstant term in �

1

; : : : ; �

r�1

(r 2 N); (7)

and that orresponding relations hold when � and � are interhanged. Various

expliit fomulas derived from these relations and some examples of atual om-

putations of umulants may be found in Chapter 3 of Kendall, Stuart & Ord

(1987). We merely note here two further examples, for onveniene rewritten

in terms of entered moments,

�

3

(P ) =

Z

(x� �(P ))

3

dP (x) (P 2 Prob

3

(R));

�

4

(P ) =

Z

(x� �(P ))

4

dP (x)� 3

�

�

2

(P )

�

2

(P 2 Prob

4

(R)):

As one might suspet on seeing these formulas, the variane �

2

is the only

nonnegative umulant. [This fat follows easily from 1.13 below, as an be seen

from the proof of 1.14.℄
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What Are Cumulants ? 605

1.6 Topologies on some subsets of Prob(R). One of our aims is to

show that every \reasonable" homomorphism from (Prob

r

(R); �) into (R;+)

is a linear ombination of umulants of order at most r. This is the ontent

of Corollary 1.12, where \reasonable" is spei�ed to mean \ontinuous". To

this end we introdue here on eah Prob

r

(R) a topology. In order to make

the ontinuity assumption in Corollary 1.12 weak, we have to hoose a strong

topology on Prob

r

(R). We take the one indued by the weighted total variation

metri d

r

de�ned by

d

r

(P;Q) :=

Z

(1 + jxj

r

) djP �Qj(x) (P;Q 2 Prob

r

(R)): (8)

We further onsider

Prob

1

(R) :=

\

r2N

0

Prob

r

(R);

whih is the largest set of probability measures on whih every umulant is

de�ned. We topologize Prob

1

(R) by the family of metris (d

r

: r 2 N

0

).

1.7 Lemma. a) Eah �

r

jProb

r

(R) is ontinuous with respet to d

r

.

b) Let r 2 N and  2 ℄0;1[. Then there exists a sequene (P

n

) in Prob

1

(R)

with

lim

n!1

d

r�1

(P

n

; Æ) = 0; (9)

lim

n!1

�

l

(P

n

) = 0 (l = 1; : : : ; r � 1); (10)

lim

n!1

�

r

(P

n

) = : (11)

Proof. a) The funtionals (�

l

: l = 1; : : : ; r) are obviously ontinuous with

respet to d

r

, and (7) shows in partiular that �

r

is a polynomial funtion of

them.

b) We may restrit attention to those n 2 N with n

�r

� 1 and put P

n

:=

(1 � n

�r

)Æ + n

�r

Æ

n

. Then P

n

2 Prob

1

(R), and d

r�1

(P

n

; Æ) =



n

yields

(9). By part a), (9) implies (10). Finally, (11) follows from �

l

(P

n

) = n

l�r

(l = 1; : : : ; r) and (7).

1.8 Theorem (ontinuous haraters of Prob

1

(R)). A funtion

�jProb

1

(R) is a ontinuous harater i�

�(P ) = exp(i

X

l2N



l

�

l

(P )) (P 2 Prob

1

(R)) (12)

holds for some �nitely supported sequene of real numbers (

l

: l 2 N). The

latter, if existent, is uniquely determined by �.
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606 Lutz Mattner

Proof. The proof of the \only if" part is the ontent of Setion 2. The \if"

part follows trivially from 1.7 a) and (5).

Finally suppose that we have (12) and an analogous representation of � in-

volving another �nitely supported sequene (~

l

: l 2 N). Then the sequene

(d

l

) := (

l

� ~

l

) yields an analogous representation of the onstant harater 1.

Suppose that not all d

l

vanish. Put r := min fl : d

l

6= 0g and apply 1.7 b) with

 := �=jd

r

j. Then 1 = exp(i

P

r

l=1

d

l

�

l

(P

n

)) ! exp(�i�) = �1 for n ! 1.

This ontradition shows that we must have d

l

= 0 for every l 2 N, as was to

be proved.

1.9 Corollary. Let r 2 N

0

. A funtion �jProb

r

(R) is a ontinuous har-

ater i� (12) holds with 

l

= 0 for l > r, and with Prob

r

(R) in plae of

Prob

1

(R).

Proof. Again, the \if" part follows from from 1.7 a) and (5). To prove \only

if": Let �jProb

r

(R) be a ontinuous harater. Then, by 1.8, its restrition

�jProb

1

(R) ful�ls (12) for some �nitely supported sequene (

l

). Assume

that 

l

6= 0 for some l > r. Put ~r := min fl 2 N : 

l

6= 0g. Choose (P

n

)

aording to 1.7 b) with ~r in plae of r and with  := �=j

~r

j. Then, sine

r < ~r, we have P

n

! Æ with respet to d

r

. On the other hand, we have

�(P

n

)! �1 6= 1 = �(Æ). This ontradition to the ontinuity of � shows that

we must have 

l

= 0 for l > r. It follows that the right hand side of (12)

is de�ned and ontinuous on Prob

r

(R). Sine Prob

1

(R) is obviously dense in

Prob

r

(R), this implies that (12) also holds with Prob

r

(R) in plae of Prob

1

(R).

1.10 Theorem of Hal

�

asz. The last orollary yields in partiular a theorem

of Hal�asz, presented on page 132 of Ruzsa & Sz�ekely (1988), whih reads:

1 is the only harater of Prob(R) ontinuous with respet to weak

onvergene.

In fat, the speial ase r = 0 of our Corollary 1.9 is slightly stronger, sine our

ontinuity assumption refers to a stronger topology on Prob(R).

1.11 Theorem (additive funtions on Prob

1

(R)). A funtion

�jProb

1

(R) ! R is ontinuous and additive i�

�(P ) =

X

l2N



l

�

l

(P ) (P 2 Prob

1

(R)) (13)

holds for some �nitely supported family of real numbers (

l

: l 2 N). The latter,

if existent, is uniquely determined by �.
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What Are Cumulants ? 607

Proof. The \if" part and the uniqueness of (

l

) follows via multipliation by

i and subsequent exponentiation from the orresponding statements in 1.8.

To prove the \only if" part, let �jProb

1

(R) ! R be ontinuous and additive.

Put

�(P ) := exp(i�(P )) (P 2 Prob

1

(R)):

Then � satis�es the hypothesis of Theorem 1.8, and hene an be represented

as in (12). This implies

�(P ) = �(P ) +

X

l



l

�

l

(P ) (P 2 Prob

1

(R));

where �jProb

1

(R) ! 2�Z. Sine � must be additive, �(Æ) = 0. Sine �

must be ontinuous and Prob

1

(R) is onvex, �(Prob

1

(R)) must be onneted.

[Here we have used the obvious fat that for P;Q 2 Prob

1

(R) the funtion

[0; 1℄ 3 t 7! tP + (1� t)Q 2 Prob

1

(R) is ontinuous.℄ Thus � = 0.

1.12 Corollary. Let r 2 N

0

. A funtion �jProb

r

(R) ! R is ontinuous

and additive i� (13) holds with 

l

= 0 for l > r and with Prob

r

(R) in plae of

Prob

1

(R).

Proof. Dedue 1.12 from 1.9, by arguing as in the proof of 1.11. Alternatively,

dedue 1.12 from 1.11 by arguing as in the proof of 1.9.

1.13 Lemma (umulants of Bernoulli distributions). For r 2 N, let

f

r

j[0; 1℄! R be de�ned by

f

r

(p) := �

r

((1� p)Æ

0

+ pÆ

1

) (p 2 [0; 1℄):

Then, for eah r, f

r

is a polynomial funtion of degree r with r simple zeros in

[0; 1℄.

Proof. It is known [for example, from Kendall, Stuart & Ord (1987), exerise

5.1℄ that

f

r+1

(p) = p � (1� p) � f

0

r

(p) (r 2 N; p 2 [0; 1℄);

where the prime denotes di�erentiation with respet to p. Sine f

1

(p) = p for

p 2 [0; 1℄, the laim follows by an indution argument, using Rolle's theorem

and the fat that f

0

r

has at most r � 1 zeros, ounting multipliity.

1.14 A haraterization of the variane. A funtion �jProb

1

(R) !

[0;1[ is ontinuous and additive i� � = �

2

for some  2 [0;1[.

Proof. The \if" laim is trivial. To prove \only if", we may by Theorem

1.11 start from the representation (13). Inserting there P = Æ

a

with a 2 R, we
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see that the assumption � � 0 fores 

1

= 0. Thus, exept for the trivial ase

� = 0, we have

�(P ) =

r

X

l=2



l

�

l

(P ) (P 2 Prob

1

(R))

for some r � 2 with 

r

6= 0. Suppose now that r � 3. Then we may, by

the lemma 1.13, hoose a Bernoulli distribution P

0

= (1 � p)Æ

0

+ pÆ

1

with



r

�

r

(P

0

) < 0. It follows that �(P ) < 0 for P := (x 7! ax)�P

0

with a > 0

suÆiently large, using (14) below. This ontradition proves our laim.

1.15 Affine equivariane of umulants. The seond most important

property of the umulants is their behaviour under aÆne transformations: For

r 2 N, P 2 Prob

r

(R) and a; b 2 R, we have

�

r

((x 7! ax+ b)�P ) =

�

a�

1

(P ) + b (r = 1);

a

r

�

r

(P ) (r � 2):

(14)

In partiular, eah umulant is aÆnely equivariant in the sense of the following

de�nition and, by a trivial speialization, also sale equivariant.

1.16 Definition (equivariane). a) Let X be a set and T be a set of

funtions from X into X . A funtion 'jX is alled equivariant, with respet to

T , if we have the impliation

x; y 2 X ; '(x) = '(y); T 2 T =) '(T (x)) = '(T (y)): (15)

b) For a; b 2 R de�ne T

a;b

jProb(R) ! Prob(R) by

T

a;b

(P ) := (x 7! ax+ b)�P (P 2 Prob(R))

and put T := fT

a;b

: a; b 2 Rg. Let P � Prob(R) satisfy the impliation P 2

P ; T 2 T =) T (P ) 2 P . Then a funtion 'jP is alled aÆnely equivariant if

it is equivariant with respet to T , in the sense of part a).

) We de�ne a funtion 'jP to be sale equivariant if it satis�es the de�nition

given in b) above, but with b = 0 and a > 0 in the de�nition of T .

1.17 Theorem (equivariant ontinuous haraters of Prob

1

(R)).

A funtion �jProb

1

(R) is a sale equivariant ontinuous harater i�

�(P ) = exp(i�

r

(P )) (P 2 Prob

1

(R)) (16)

for some r 2 N and some  2 R.

Proof. The \if" part is trivial. To prove \only if": De�ne S

a

(P ) := (x 7!

ax)�P for P 2 Prob(R) and a 2 ℄0;1[. For � 2 ℄0;1[, let P

�

denote the

Poisson distribution with expetation �. Then

�

l

(S

a

(P

�

)) = a

l

� (l 2 N; a; � 2 ℄0;1[): (17)
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Now let �jProb

1

(R) be a sale equivariant ontinuous harater. Applying

1.8, we get (12) for some �nitely supported sequene (

l

: l 2 N), and we have

to show that there is at most one l 2 N with 

l

6= 0. Using (17), (12) yields in

partiular

�(S

a

(P

�

)) = exp(i�p(a)) (a; � 2 ℄0;1[) (18)

where p is the polynomial funtion de�ned by

p(a) :=

X

l2N



l

a

l

(a 2 C ):

Now assume, to get a ontradition, that there are at least two l 2 N with



l

6= 0. Then for arbitrary a

1

; a

2

2 ℄0;1[ with a

1

6= a

2

and arbitrary �

1

; �

2

6= 0,

there exists a number b 2 ℄0;1[ with

�

1

p(ba

1

)� �

2

p(ba

2

) =2 2�Z: (19)

[Proof: Assume without loss of generality that a

1

< a

2

. If our laim is false,

then the rational funtion C 3 z 7! R(z) := p(a

1

z)=p(a

2

z) is onstant. But by

our assumption on p, % := sup fjzj : z 2 C ; p(z) = 0g > 0. In view of 0 < a

1

<

a

2

, it is obvious that R has a zero, namely on the irle fjzj = %=a

1

g. Hene

R � 0 and thus p � 0, a ontradition.℄

Now hoose spei�ally a

1

; a

2

2 ℄0;1[ with a

1

6= a

2

in suh a way that p(a

1

) �

p(a

2

) > 0. Choose �

1

; �

2

2 ℄0;1[ with

�

1

p(a

1

) = �

2

p(a

2

); (20)

hoose b as in (19), and put Q

k

:= S

a

k

(P

�

k

) for k = 1; 2. Then (18) and (20)

yield �(Q

1

) = �(Q

2

), whereas (18) also yields �(S

b

(Q

k

)) = �(S

ba

k

(P

�

k

)) =

exp(i�

k

p(ba

k

)) for k = 1; 2, so that (19) implies �(S

b

(Q

1

)) 6= �(S

b

(Q

2

)), in

ontradition to the sale equivariane of �.

1.18 Theorem (sale equivariant additive funtions on Prob

1

(R)).

A funtion �jProb

1

(R) ! R is ontinuous, additive, and sale equivariant, i�

there exist r 2 N and  2 R suh that � = �

r

.

Proof. Proeed as in the proof of the \only if" part of Theorem 1.11, but use

equivariane of � and 1.17 in plae of 1.8.

1.19 A haraterization of the expetation. Notation: In this sub-

setion only, we write P �Q for the usual onvolution P �Q of P;Q 2 Prob(R),

and P �Q for the multipliative onvolution of P;Q 2 Prob(R), that is, the

distribution of X � Y with X;Y being independent random variables with dis-

tributions P;Q.
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Theorem. Let �jProb

1

(R) ! R be ontinuous. Then we have both

�(P �Q) = �(P ) + �(Q); (21)

�(P �Q) = �(P ) � �(Q) (22)

for P;Q 2 Prob

1

(R), i� either � = �

1

or � = 0.

Proof. The \if" part is obvious. So assume that � is ontinuous and satis�es

(21) and (22). By applying (22) to Q = Æ

a

, for every a 2 ℄0;1[, we see that

� is sale equivariant. Hene (21) and Corollary 1.18 yield � = �

r

for some

 2 R and some r 2 N. Choose P 2 Prob

1

(R) with �

r

(P ) 6= 0, for example P

= Poisson distribution with parameter 1. Insert this P and Q = Æ

1

into (22),

use � = �

r

, and divide by �

r

(P ). The result is  = 

2

�

r

(Æ

1

). If r � 2, then

�

r

(Æ

1

) = 0, hene  = 0 and thus � = 0. If r = 1, then �

r

(Æ

1

) = 1, hene either

again  = 0 and � = 0, or  = 1 and thus � = �

1

.

1.20 \Counterexamples". Examples a) and b) below show that the on-

tinuity assumptions in 1.8 { 1.12 an not be omitted without substitute. Both

a) and b) should be regarded as pathologial. On the other hand, the examples

in ) show that not only 1.8 { 1.12, but also 1.14 and, using (23), also 1.17 and

1.18 reeive non-pathologial ounterexamples if the ontinuity assumption is

dropped and if the domain of de�nition of the funtionals is taken to be to

small. Conerning 1.8 { 1.12, we may also refer to example d), suggested to

me by I.Z. Ruzsa, where the domain of de�nition of � ould be thought of as

being not muh smaller than Prob

1

(R).

a) By the axiom of hoie, there exists a disontinuous additive funtion

f jR ! R. Now �(P ) := f(�(P )) de�nes a disontinuous additive funtion

�jProb

1

(R) ! R.

b) [Ruzsa & Sz�ekely (1988), pp. 122-123, 2.3 and 2.4℄ onstrut, using the axiom

of hoie, a homomorphism � from (Prob(R); �) into (R;+) whih extends the

expetation �

1

de�ned on the subsemigroup Prob

1

(R). They also show that

eah suh � assumes negative values for some P with support in [0;1[. It

follows that the � onstruted is a disontinuous additive funtion from Prob(R)

into R.

) On the semigroup

Prob



(R) := fP 2 Prob(R) : supp P ompatg � Prob

1

(R)

we obtain an additive and nonnegative funtional, normalized here as to satisfy

additionally ondition ii) from 1.22 below, by eah of the following de�nitions:

�(P ) :=

1

2

� (max supp P �min supp P ) (P 2 Prob



(R)); (23)

�(P ) :=

log

b

P (i) + log

b

P (�i)

2 log os i

(P 2 Prob



(R)): (24)
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[In (24), we use of ourse the de�nition (1) with C in plae of R.℄

d) Consider the semigroup

P :=

n

P 2 Prob

1

(R) :

b

P holomorphi near zero

o

� Prob

1

(R):

Let (a

l

: l 2 N) be any sequene of real numbers satisfying a

l

= O("

l

), for every

" > 0. Then

�(P ) :=

1

X

l=1

a

l

l!

�

l

(P ) (P 2 P) (25)

de�nes an additive funtion on P . [To see that the series in (25) always on-

verges, observe that log Æ

b

P is now holomorphi in some P -dependent neigh-

bourhood of zero, so that its Taylor series

P

1

l=1

�

l

(P ) � (iz)

l

=l! onverges for

jzj suÆiently small.℄

1.21 Some early history and etymology. Cumulants were apparently

�rst introdued by T.N. Thiele [1838-1910℄ under the name of \half-invariants".

Hald (1981) desribes, on pages 7-10, Thiele's ontributions and their insuÆ-

ient aknowledgement by K. Pearson and R.A. Fisher. Aording to Hald,

umulants are �rst de�ned in the book Thiele (1889). [This I did not hek.

Hald's formula (4.1), laimed to be Thiele's de�nition, is, up to an obvious

misprint, the now well-known reursion (6), determining �

r+1

as a polynomial

in the moments �

l

.℄ In a later and more aessible version of his book, Thiele

(1903) essentially gives de�nition (4). Hald (1998) ontains a muh more om-

prehensive early history of umulants.

Later authors, suh as Craig (1931) and Wishart (1929), refer to the umu-

lants as \semi-invariants of Thiele", while Fisher (1929-30), on page 200 of his

paper, simply alls them \semi-invariants", without bothering to name Thiele.

But Wishart and Fisher, who obviously new about eah others work before

publiation, prefer to use the new term \umulative moment funtions" in-

stead. The reason for adopting this term is hinted at in Fisher's paper: On

page 199, he gives an interesting although perhaps not quite preise de�ni-

tion of rather general \moment funtions" of populations, roughly speaking

by polynomial estimability, whih seems at any rate to be intended to inlude

polynomial funtions of �nitely many ordinary moments, and hene in parti-

ular umulants. On page 202, Fisher then refers to a \umulative property"

of the logarithm of the Laplae transform whih, expressed in terms of the

umulants, is just ondition (5). Thus the the adjetive \umulative" refers,

in this ontext, to a homomorphism ondition. In partiular, it is not used

to distinguish a onept related to probability measures from a orresponding

onept related to probability densities, as would often be the ase in the older

statistial literature.
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Finally, \umulative moment funtion" was abbreviated to "umulant" by

Fisher & Wishart (1931-32) and Fisher (1932), with Hotelling (1933) laim-

ing to have suggested this name, whih quikly beame the standard one in the

english language literature. The �rst publiation having the word \umulant"

in its title seems to be the paper by Cornish & Fisher (1937), who repeat the

de�nition, but already Haldane (1937), page 136, uses \umulants" without

de�nition or referene.

Readers generally interested in the history of probabilisti or statistial terms

are referred to David (1995, 1998) as a useful starting point.

1.22 Related work not disussed above. The following papers have

some relation with the present one.

Craig (1931) states on page 160 a forerunner of our Corollary 1.18. Where we

assume mere ontinuity of �, Craig assumes in partiular that � is a polynomial

funtion of some �nite number of moments �

l

. His treatment is not quite

rigorous: For example, no domain of de�nition of � is spei�ed, his onlusion

is � = �

r

for some r [instead of the orret onlusion � = �

r

for some r and

℄, and a proof is o�ered only for the ase where � is a polynomial funtion of

�

1

; : : : ; �

4

.

Savage (1971) haraterizes moments and more general expetations of expo-

nential polynomials as funtionals � satisfying, on the one hand, onditions like

�(P �Q) = T (�(P ); �(Q)) with T unspei�ed and, on the other hand, having

a representation �(P ) =

R

f dP with f unspei�ed. His �rst assumption is

more liberal than our homomorphism assumptions, but his seond assumption

is rather restritive, exluding for example every umulant �

r

with r � 2. Thus

the work of Savage is inomparable to the present one.

Martin Diaz (1977), Teorema 4, states a haraterization of the vari-

ane whih may be formulated as follows. We temporarily put P :=

fP 2 Prob(R) : supp P �niteg.

Theorem (Martin Diaz) Let �jP ! [0;1[ and assume:

i) For every n 2 N, the map

R

n

�

(

p 2 ℄0; 1℄

n

:

n

X

i=1

p

i

= 1

)

3 (x; p) 7! �(

n

X

i=1

p

i

Æ

x

i

)

is partially ontinuous in the two variables x and p.

ii) �(Æ

1

) = 0, �(

1

2

(Æ

�1

+ Æ

1

)) = 1.

iii) If we put �(X) := �(P ) for every random variable X with distribution

P 2 P, then

�(

n

X

i=1

X

i

) =

n

X

i=1

�(X

i

)
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whenever the X

i

are pairwise independent random variables, on a om-

mon probability spae, with distributions belonging to P.

Then � = �

2

.

We observe that the word \pairwise" renders the third assumption rather on-

�ning. But without this word, a ounterexample would be obtained by re-

striting to P either � from (23) or (24). These examples may be regarded

as negative solutions to the problem stated in Martin Diaz (1977) on page 96,

while our result 1.14 may be regarded as a kind of positive solution.

Good (1979) speulates about the existene of a useful notion of \frational

umulants", perhaps to be de�ned via frational di�erentiation of log Æ

b

P in

analogy to (4). Suh a de�nition, if possible, should lead to an additive funtion

on Prob

1

(R), and Theorem 1.11 ould be taken as an indiation that it will

not lead to anything new and useful.

Heyer (1981) reviews, among other topis, axiomati approahes to expetation

and varianes for probability measures on ompat groups, referring to earlier

publiations of himself and of Maksimov, in partiular Maksimov (1980). Al-

though somewhat similar in spirit to the present paper, there is no overlap in

the results obtained.

Charaterizations of the variane not referring to the semigroup struture of

Prob(R) have been provided by Bomsdorf (1974), by Gil Alvarez (1983), and

by Kagan & Shepp (1998). The former two are somewhat similar to the har-

aterization of the Shannon entropy by Fadeev's axioms, as presented in R�enyi

(1970), page 548.

2 The main proof

2.1 Further notation and onventions. The proof of the \only if" part

of Theorem 1.8, given in 2.8 below, is prepared by the introdution of an

auxiliary topologial vetor spae H in 2.2 and the identi�ation of its dual H

0

in 2.3. We will use some tools from funtional and Fourier analysis as explained

in Rudin (1991). In partiular, we assume as known the spaes C

1

(R), D(R),

D

0

(R) with their usual topologies. We depart from the onventions of Rudin

(1991) in that here a topologial vetor spae is not neessarily assumed to be

Hausdor�.

We let U denote the set of all open symmetri neighbourhoods of 0 2 R. For

U 2 U , a funtion hjU ! C is alled hermitean if

h(t) = h(�t) (t 2 U):

2.2 The spae H of germs of hermitean C

1

funtions vanishing at

zero. We onsider

X := fh 2 C

1

(R) : h hermitean; h(0) = 0g
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as a topologial vetor spae over R, with the topology inherited from the usual

topology of C

1

(R). We further onsider the vetor subspae

N := fh 2 X : 9U 2 U with hjU = 0g

of X , and form the quotient topologial vetor spae

H := X=N:

For h 2 X , we write [h℄ for the equivalene lass H 2 H with h 2 H . It

easy to see, though for our purposes unneessary to hek, that N is not

losed, so that H is not Hausdor�. Sine C

1

(R) is metrizable, H is pseudo-

metrizable, and a sequene (H

j

: j 2 N) onverges to 0 2 H i� there exist

h

j

2 H

j

with h

j

! 0 2 X . [Proof: The disussion in Setions 1.40, 1.41

of Rudin (1991) applies with obvious hanges, neessitated by the nonlosed-

ness of our N . In partiular, if d is some tranlation-invariant metri for X ,

the formula %([h

1

℄; [h

2

℄) := inf fd(h

1

� h

2

; g) : g 2 Ng de�nes a translation-

invariant pseudo-metri % for H. And if ([h

j

℄) : j 2 N) is a sequene in H with

lim %([h

j

℄; [0℄) = 0, we may hoose g

j

2 N with d(h

j

; g

j

) � 2%([h

j

℄; [0℄) + j

�1

,

yielding

~

h

j

:= h

j

� g

j

2 [h

j

℄ with

~

h

j

! 0.℄

The value at zero of the derivatives D

l

H(0) of a H 2 H, ouring below, is

de�ned in the obvious way.

2.3 The dual H

0

of H. A funtion �jH is an R-valued, ontinuous, and R-

linear funtional i� there exists an n 2 N

0

and a �nite sequene of real numbers

(

l

: 1 � l � n) suh that

�(H) =

n

X

l=1



l

� i

�l

(D

l

H)(0) (H 2 H): (26)

Proof. The \if" laim is obviously true. To prove \only if": Let �jH ! R

be ontinuous and R-linear. De�ne SjD(R) ! R by

S(') := �([

1

2

�

'� '(0) +

�

'� '(0)

�

℄) (' 2 D(R));

where

�

 (t) :=  (�t). It is obvious that S is well-de�ned and R-valued, as well

as ontinuous and R-linear. It follows that the funtional T jD(R) ! C de�ned

by

T (') := S(')� iS(i') (' 2 D(R))

is ontinuous and C -linear, that is, a distribution 2 D

0

(R). It is easily heked

that T has support ontained in f0g. Hene, by Rudin (1991), Theorem 6.24

d) and Theorem 6.25, there is an n 2 N

0

and a sequene of omplex numbers

(b

l

: 0 � l � n) suh that

T (') =

n

X

l=0

b

l

�

�

D

l

'

�

(0) (' 2 D(R)):
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Sine S = Re T , we get for H = [h℄ 2 H, using the hermitean property of h

and h(0) = 0,

�(H) = S(h)

= Re T (h)

=

n

X

l=1

Re (b

l

�

�

D

l

h

�

(0))

=

n

X

l=1

Re (b

l

i

l

) � i

�l

�

D

l

h

�

(0);

and thus (26) with 

l

= Re (b

l

i

l

).

2.4 Convergene in Prob

1

(R). Let P be an element of and (P

j

) be a net

in Prob

1

(R). Then limP

j

= P , in the topology of Prob

1

(R), i� limP

j

= P

with respet to total variation distane and

lim

j

Z

x

l

dP

j

(x) =

Z

x

l

dP (x) (l 2 N): (27)

Proof. Let �rst w be any nonnegative measurable funtion on a measurable

spae X . Let P;Q 2 Prob(X ) with

R

w d(P +Q) <1, and �x a > 0. Then

Z

w djP �Qj �

Z

w � (w � a) djP �Qj+

Z

w � (w > a) d(P +Q)

=

Z

w � (w � a) djP �Qj+ 2

Z

w � (w > a) dP

+

Z

w d(Q� P )�

Z

w � (w � a) d(Q� P )

� 2

Z

w � (w � a) djP �Qj+ 2

Z

w � (w > a) dP

+

Z

w dQ�

Z

w dP:

Now let (P

j

) be a net in Prob(X ) with

R

w dP

j

<1 for every j. The preeding

inequality shows that lim

R

w djP � P

j

j = 0 if both lim

R

1 djP � P

j

j = 0 and

lim

R

w dP

j

�

R

w dP . Applied to X = R and w(x) = 1 + x

2n

, for eah n 2 N,

the \if" part follows. The \only if" part is trivial.

2.5 Quotients of harateristi funtions. Let

' 2 � := f' 2 D(R) : '(0) = 1; ' hermiteang:

a) There exist P;Q 2 Prob

1

(R) with

'

b

Q =

b

P : (28)
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b) Let ('

j

) be a net in � with lim'

j

= ' in the D(R)-topology. Then we may

hoose P

j

; Q

j

2 Prob

1

(R) with '

j

b

Q

j

=

b

P

j

and

limP

j

= P; limQ

j

= Q in Prob

1

(R): (29)

Remark. As said before in 1.2, this basi tool of the present paper is a

re�nement of a theorem of Ruzsa & Sz�ekely. In partiular, most of the following

proof of part a) is as in Ruzsa & Sz�ekely (1988), pages 126-127.

Proof. We will alulate in

M

1

(R) := set of all bounded omplex measures on R;

whih is well known to be a Banah algebra, with onvolution � as multiplia-

tion and norm k � k de�ned by

k�k :=

Z

1 dj�j (� 2M

1

(R)); (30)

j�j := total variation measure of �:

For a � 2M

1

(R), its Fourier transform is the ontinuous funtion b� de�ned by

b�(t) :=

Z

e

itx

d�(x) (t 2 R):

We assume as known properties of the Fourier transform as explained, for ex-

ample, in Chapter 7 of Rudin (1991). All elements of M

1

(R) atually ouring

below will in fat belong to

M

1

1

(R) :=

�

� 2M

1

(R) :

Z

jxj

l

dj�j(x) <1 (l 2 N

0

)

�

:

For � 2M

1

1

(R), we have b� 2 C

1

(R).

a) We have ' = b� with � 2M

1

1

(R), � real, �(R) = 1. [Apply Theorem 7.7 of

Rudin (1991).℄

Choose �; � 2 [0;1[ and R 2 Prob

1

(R) with

k(�� Æ) �Rk = � < � (31)

and

R

�2

� �R: (32)

[For example, if R is any entered normal distribution, then (32) is true with

� = 2

�1=2

, and for R suÆiently at (31) is true as well. Alternatively, we may

take � = 2

�1

and for R a suÆiently at uniform distribution on an interval

[�a; a℄.℄
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Put

S := �

�1

j(�� Æ) �Rj; (33)

Q := (1�

�

�

)R

�2

�

1

X

k=0

S

�k

; (34)

P := � �Q: (35)

Sine S is a sub-probability measure with kSk = S(R) = �=� < 1, the series

in (34) is onvergent in M

1

(R), and Q 2 Prob(R). Also P (R) = 1 and, easily

veri�ed,

(1�

�

�

)

�1

P = � �R

�2

�

1

X

k=0

S

�k

= R

�2

+R

�2

� (�� Æ + S) �

1

X

k=0

S

�k

;

where, using (32) and (33),

R

�2

� (�� Æ + S) � R � (R � (�� Æ) + �S)

� 0:

Hene P � 0 and thus P 2 Prob(R).

By 0 � S � �

�1

(j�j+Æ)�R, S 2M

1

1

(R). Hene

b

S 2 C

1

(R). Sine (34) shows

that

b

Q(t) = (1�

�

�

) � (

b

R(t))

2

� (1�

b

S(t))

�1

(t 2 R); (36)

and sine also

b

R 2 C

1

(R), it follows that

b

Q 2 C

1

(R). Sine (35) implies

(28),

b

P is C

1

as well, at least in some neighbourhood of zero. Sine P;Q are

probability measures, it follows that P;Q 2 Prob

1

(R). [Compare, for example,

Feller (1971), page 528, problem 15.℄

b) We ontinue to use the notation of the above proof of part a). Let, addi-

tionally, �

j

denote the element of M

1

1

(R) with '

j

= b�

j

, and

�

j

:= k(�

j

� Æ) �Rk:

By Theorem 7.7 of Rudin (1991), we have lim�

j

= � in the Shwartz spae

S(R). It follows that

lim�

j

= � with respet to the norms k � k

k

(k 2 N

0

); (37)

where

k�k

k

:=

Z

(1 + jxj

k

) dj�j(x) (k 2 N

0

; � 2M

1

1

(R)):
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The partiular ase k = 0 implies lim�

j

= � with respet to the norm k � k

from (30), hene lim�

j

= �. We may and do assume that �

j

< � in what

follows. Put S

j

:= �

�1

j(�

j

� Æ) � Rj, Q

j

:= (1� (�

j

=�))R

�2

�

P

1

k=0

S

�k

j

, and

P

j

= �

j

�Q

j

. Then Q

j

; P

j

2 Prob

1

(R) with '

j

b

Q

j

=

b

P

j

, and what remains to

be shown is (29).

By (37),

limS

j

= S with respet to the norms k � k

k

(k 2 N

0

): (38)

Using (38) and the de�nition of Q

j

; P

j

, we get limQ

j

= Q and limP

j

= P with

respet to k �k. From (38) we also get lim

b

S

j

=

b

S in C

1

(R). Sine we have (36)

with �

j

replaing �,

b

Q

j

replaing

b

Q, and

b

S

j

replaing

b

S, we may onlude that

lim

b

Q

j

=

b

Q in C

1

(R). By '

j

b

P

j

=

b

Q

j

, we dedue lim

b

P

j

jU =

b

P jU in C

1

(U),

for some neighbourhood U of zero. Hene we have in partiular (27) and the

orresponding statement for (Q

j

), so that we reah (29) via 2.4.

2.6 Lemma. Let �jProb

1

(R) be a harater, not neessarily ontinuous. If

P

1

; P

2

; Q

1

; Q

2

2 Prob

1

(R), and if there exists an U 2 U with

b

P

1

(t)

b

Q

2

(t) =

b

P

2

(t)

b

Q

1

(t) (t 2 U);

then

�(P

1

)

�(Q

1

)

=

�(P

2

)

�(Q

2

)

: (39)

Proof. There exists an R 2 Prob

1

(R) with supp

b

R � U . Thus

b

P

1

b

Q

2

b

R =

b

P

2

b

Q

1

b

R everywhere, so that we suessively get

P

1

�Q

2

�R = P

2

�Q

1

�R;

�(P

1

)�(Q

2

)�(R) = �(P

2

)�(Q

1

)�(R);

and hene (39).

2.7 From � to a linear funtional �. Let �jProb

1

(R) be a ontinuous

harater. Then there exists a � 2 H

0

with

�(P ) = exp(i�(log Æ[

b

P ℄)) (P 2 Prob

1

(R)): (40)

Here log Æ[

b

P ℄ of ourse denotes the element ofH ontaining the funtions h 2 X

satisfying

h(t) = log

b

P (t) (t 2 U)

for some U 2 U with U �

n

t 2 R : j

b

P (t)� 1j < 1

o

.
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Proof. Follows from Steps 1-5 below.

Step 1: Constrution of a funtion X jH. Let H 2 H. Then we may

de�ne X(H) 2 T by the onstrution leading to (42) below, and this de�nition

is independent of the hoies of h, U , !, P , Q made along the way.

Proof. Choose h 2 H . De�ne  2 C

1

(R) by

 (t) := exp(h(t)) (t 2 R): (41)

Choose U 2 U with ompat losure and hoose ! 2 D(R) real and symmetri

with !jU = 1. De�ne ' 2 D(R) by

'(t) := ! �  :

Then ' is hermitean with '(0) = 1, and hene satis�es the assumptions of 2.5.

So we may hoose P;Q 2 Prob

1

(R) satisfying (28), and put

X(H) :=

�(P )

�(Q)

: (42)

To show that this de�nition is independent of the hoies made along the

way, onsider two hoies (h

i

; U

i

; !

i

; P

i

; Q

i

), for i 2 f1; 2g, yielding two val-

ues X

i

(H). There exists a V 2 U with '

1

jV = '

2

jV . Hene (28) applied to

'

i

; P

i

; Q

i

implies

b

P

1

=

b

Q

1

=

b

P

2

=

b

Q

2

on U := V \ ft : '

1

(t) 6= 0g, so that Lemma

2.6 yields X

1

(H) = X

2

(H).

Step 2: The relation between X and �. For P 2 Prob

1

(R),

�(P ) = X(log Æ[

b

P ℄):

Proof. Changing notation, let P

1

2 Prob

1

(R). Put H := log Æ[

b

P

1

℄. Referring

to Step 1 and its notation, let us denote one hoie for the omputation of

X(H) by (h; U; !; P

2

; Q

2

), with ( ; ') aordingly de�ned. Then ' =

b

P

1

in

some

~

U 2 U . With Q

1

:= Æ it follows that

b

P

1

b

Q

2

=

b

P

2

b

Q

1

in

~

U . Hene (42),

Lemma 2.6, and �(Æ) = 1, suessively yield

X(H) =

�(P

2

)

�(Q

2

)

=

�(P

1

)

�(Q

1

)

= �(P

1

):

Step 3: The funtion X jH ! T de�ned in Step 1 is a harater, with respet

to addition in H.

Proof. We have to prove that

X(H

1

+H

2

) = X(H

1

) �X(H

2

) (H

1

; H

2

2 H):
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So let H

1

; H

2

2 H. Choose (U

i

; h

i

; V

i

; !

i

; P

i

; Q

i

) and de�ne ( 

i

; '

i

) as in Step

1 to alulate X(H

i

) for i 2 f1; 2g. Then we may use the hoie

(h

1

+ h

2

; U

1

\ U

2

; !

1

� !

2

; P

1

� P

2

; Q

1

�Q

2

);

leading to  =  

1

�  

2

and ' = '

1

� '

2

, to ompute X(H

1

+H

2

). The result is

X(H

1

+H

2

) = �(P

1

� P

2

) � (�(Q

1

�Q

2

))

�1

= �(P

1

) � �(P

2

) � (�(Q

1

) � �(Q

2

))

�1

= X(H

1

) �X(H

2

):

Step 4: Continuity. X is ontinuous.

Proof. Sine H is pseudometrizable, it suÆes to onsider any given onver-

gent sequene (H

j

: j 2 N), with limH

j

= H . There exist h 2 H , h

j

2 H

j

,

suh that

limh

j

= h in C

1

(R):

Starting from the present h, hoose and de�ne, respetively,  , U , and ! as in

Step 1 around equation (41). Analogously, de�ne  

j

and then '

j

, using the

same U and ! as for  , '. Then lim'

j

= ' in D(R). Now apply part b) of

2.5 to hoose P;Q; P

j

; Q

j

with the properties stated there. Then, using Step 1

and the ontinuity of �,

X(H

j

) =

�(P

j

)

�(Q

j

)

!

�(P )

�(Q)

= X(H):

Step 5: There exists a � 2 H

0

with X = exp Æ(i�).

Proof. This is always true whenever H is a topologial R-vetorspae with

dual H

0

, and X jH a ontinuous harater, with respet to the additive group

of H. See setion (23.32.a) on page 370 of Hewitt & Ross (1979) for a proof

assuming, and using, that H is additionally Hausdor�. For the general ase,

needed here, apply the speial ase to the Hausdor� quotient spae of H, ob-

tained by identifying points h

1

; h

2

2 H i� h

2

�h

1

belongs to the losure of f0g.

2.8 Proof of the \only if" part of Theorem 1.8. Let �jProb

1

(R) be

a ontinuous harater. Then there exists a linear funtional � as in 2.7. By

2.3, � has a representation as in (26). Inserting this representation into (40)

and applying the de�nition (4) yields (12).
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