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Singularities, Double Points,

Controlled Topology and Chain Duality

Andrew Ranicki
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Communicated by Joachim Cuntz

Abstract. A manifold is a Poincaré duality space without singular-
ities. McCrory obtained a homological criterion of a global nature for
deciding if a polyhedral Poincaré duality space is a homology mani-
fold, i.e. if the singularities are homologically inessential. A home-
omorphism of manifolds is a degree 1 map without double points.
In this paper combinatorially controlled topology and chain complex
methods are used to provide a homological criterion of a global na-
ture for deciding if a degree 1 map of polyhedral homology manifolds
has acyclic point inverses, i.e. if the double points are homologically
inessential.

1991 Mathematics Subject Classification: Primary 55N45, 57R67;
Secondary 55U35.
Keywords and Phrases: manifold, Poincaré space, singularity, con-
trolled topology, chain duality.

Introduction

A chain duality on an additive category A is an involution on the derived cate-
gory of finite chain complexes in A and chain homotopy classes of chain maps.
The precise definition will be recalled in §1. Chain duality was introduced in
Ranicki [29] in order to construct the algebraic surgery exact sequence of a
space X

· · · → Hn(X ; L •)
A→ Ln(Z[π1(X)])→ Sn(X)→ Hn−1(X ; L •)→ . . .

with L∗(Z[π1(X)]) the surgery obstruction groups of Wall [43], and A the
assembly map. Here, L • is the 1-connective simply-connected algebraic surgery
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2 Andrew Ranicki

spectrum of Z, and the generalized homology groups are the (1-connective) L-
theory of the X-controlled Z-module category A(Z, X) of Ranicki and Weiss
[34]

H∗(X ; L •) = L∗(A(Z, X)) .

The algebraic surgery exact sequence was used in [29, Chapter 17] to give alge-
braic formulations of the obstructions to the two basic questions of Browder-
Novikov-Sullivan-Wall surgery theory :

A1. Is an n-dimensional Poincaré duality space X homotopy equivalent to an
n-dimensional manifold?

A2. Is a homotopy equivalence f : M → N of n-dimensional manifolds ho-
motopic to a homeomorphism?

The following are the basic questions of Chapman-Ferry-Quinn controlled
topology :

B1. How close is an n-dimensional controlled Poincaré duality space X to
being an n-dimensional manifold?

B2. How close is a controlled homotopy equivalence f : M → N of n-
dimensional manifolds to being a homeomorphism?

Here is a very crude approximation to controlled topology. Given a topological
space X define an X-controlled space to be a space M equipped with a map
pM : M → X . A map of X-controlled spaces f : M → N is a map of the
underlying spaces such that there is defined a commutative diagram

M
f //

pM   A
AA

AA
AA

A N

pN~~}}
}}

}}
}

X

The map f is an X-controlled homology equivalence if the restrictions

f | : p−1
M (x)→ p−1

N (x) (x ∈ X)

induce isomorphisms

(f |)∗ : H∗(p
−1
M (x)) ∼= H∗(p

−1
N (x)) .

An n-dimensional X-controlled Poincaré space is an X-controlled space N with
Lefschetz duality isomorphisms

Hn−∗(N,N\p−1
N (x)) ∼= H∗(p

−1
N (x)) (x ∈ X) .
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Singularities and Controlled Topology 3

There are two extreme cases :

• If X = {pt.} then :

– an X-controlled homology equivalence f : M → N of X-controlled
spaces is just a homology equivalence, with

f∗ : H∗(M) ∼= H∗(N) ,

– an n-dimensional X-controlled Poincaré space N is just an n-
dimensional Poincaré space, with

Hn−∗(N) ∼= H∗(N) .

• If pN = 1 : N → N = X then :

– an N -controlled homology equivalence f : M → N of N -controlled
spaces is just a map with acyclic point inverses, with

(f |)∗ : H∗(f
−1(x)) ∼= H∗({x}) (x ∈ N) ,

– an n-dimensional N -controlled Poincaré space N is just an n-
dimensional homology manifold, with

Hn−∗(N,N\{x}) ∼= H∗({x}) (x ∈ N) .

In a more sophisticated exposition of controlled topology X would be a metric
space, and the condition pM = pNf in the definition of an X-controlled map
would be weakened to

d(pM (x), pNf(x)) < ǫ (x ∈M)

for some ǫ > 0. In principle, Quinn [24] characterized ANR homology mani-
folds X as metrically X-controlled Poincaré duality spaces. (See Ranicki and
Yamasaki [37] for a preliminary account of the metrically controlled L-theory
required for the details of the characterization).

The original development of controlled topology for metric spaces involved
quite complicated controlled algebra, starting with Connell and Hollingsworth
[5]. However, these questions will only be considered here in the combinatorial
context of compact polyhedra, homology manifolds and PL maps, for which
the controlled algebra is much easier :

C1. Is a polyhedral n-dimensional Poincaré duality space X an n-dimensional
homology manifold?

C2. Does a degree 1 PL map f : M → N of polyhedral n-dimensional homol-
ogy manifolds have acyclic point inverses?
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4 Andrew Ranicki

McCrory [17] obtained a homological obstruction for C1 (under slightly dif-
ferent hypotheses), which was interpreted in Ranicki [29, 8.5] in terms of the
chain duality on the X-controlled Z-module category A(Z, X). The obstruction
is the image in Hn(X × X\∆X) of the Poincaré dual in Hn(X × X) of the
diagonal class ∆∗[X ] ∈ Hn(X ×X). The obstruction vanishes if and only if X
is an n-dimensional homology manifold, if and only if the Z-module Poincaré
duality chain equivalence

[X ] ∩ − : ∆(X)n−∗ → ∆(X ′)

is an X-controlled chain equivalence.

The main results of this paper are the following homological obstructions for
C1 and C2.

Theorem A. An n-dimensional polyhedral Poincaré complex X is an n-dim-
ensional homology manifold if and only if there is defined a Lefschetz duality
isomorphism

Hn(X ×X,∆X) ∼= Hn(X ×X\∆X) ,

with

∆X = {(x, x) ∈ X ×X |x ∈ X}
the diagonal of X.

Theorem B. A simplicial map f : M → N of n-dimensional polyhedral homology
manifolds has acyclic point inverses if and only if it has degree 1

f∗[M ] = [N ] ∈ Hn(N)

and

Hn((f × f)−1∆N ,∆M ) = 0 ,

with

(f × f)−1∆N = {(x, y) ∈M ×M | f(x) = f(y) ∈ N}
the double point set of f .

Theorems A, B are proved in §§6,7 respectively, appearing as Theorem 6.13
and Corollary 7.5.

Here are the contents of the rest of the paper.

In §8 the obstructions of Theorems A, B are interpreted using bundles, specif-
ically the Spivak normal bundle of a Poincaré complex and the tangent topo-
logical block bundle of a homology manifold.

In §9 the obstructions of Theorems A, B are related to the ‘total surgery
obstruction’ s(X) ∈ Sn(X) of Ranicki [29] for the existence of a topological
manifold in the homotopy type of a Poincaré space.
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Singularities and Controlled Topology 5

In §10 chain duality is used to develop a combinatorial version of the controlled
surgery theory.

In §11 some standard results on intersections and self-intersections of manifolds
are interpreted in terms of the chain duality.

In §12 (resp. §13) the controlled topology point of view on Whitehead torsion
(resp. fibrations) is adapted to the combinatorially controlled chain homotopy
theory.

In §14 some standard results in high-dimensional knot theory are interpreted
in terms of the chain duality.

In this paper only oriented polyhedral Poincaré complexes and homology man-
ifolds will be considered, and orientation-preserving PL maps between them.

A preliminary version of some of the material in this paper appeared in Ranicki
[32].

I am grateful to Michael Weiss for valuable comments which helped improve
the exposition of the paper.

1. Chain duality

Let A be an additive category, and let B(A) be the additive category of finite
chain complexes in A and chain maps. A contravariant additive functor T :
A→ B (A) extends to T : B (A)→ B (A) by defining T (C) for a chain complex
C to be the total of a double complex, with

T (C)n =
∑

p+q=n

T (C−p)q .

Definition 1.1 (Ranicki [29, 1.1])
A chain duality (T, e) on A is a contravariant additive functor T : A → B (A),
together with a natural transformation e : T 2 → 1 such that for each object A
in A :

• e(T (A)) . T (e(A)) = 1 : T (A) → T (A) ,

• e(A) : T 2(A)→ A is a chain equivalence.

Chain duality has the following properties :

• The dual of an object A is a chain complex T (A).

• The dual of a chain complex C is a chain complex T (C).
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6 Andrew Ranicki

Example 1.2 (i) An involution (T, e) on an additive category A is a chain duality
such that T (A) is a 0-dimensional chain complex (= object) for each object A
in A, with e(A) : T 2(A)→ A an isomorphism.
(ii) An involution R → R; r 7→ r on a ring R determines the involution (T, e)
on the additive category A(R) of f.g. free left R-modules with :

• T (A) = HomR(A,R)

• R× T (A)→ T (A) ; (r, f) 7→ (x 7→ f(x)r)

• e(A)−1 : A→ T 2(A) ; x 7→ (f 7→ f(x)) .

2. Simplicially controlled algebra

Let X be a simplicial complex, and let R be a commutative ring.

Definition 2.1 (Ranicki and Weiss [34])
(i) An (R,X)-module is a finitely generated free R-module A with direct sum
decomposition

A =
∑

σ∈X
A(σ) ,

such that each A(σ) is a f.g. free R-module.
(ii) An (R,X)-module morphism f : A → B is an R-module morphism such
that for each σ ∈ X

f(A(σ)) ⊆
∑

τ≥σ
B(τ) .

Write the components of f as f(τ, σ) : A(σ)→ B(τ).

Let A(R) be the additive category of f.g. free R-modules, and let A(R,X)
be the additive category of (R,X)-modules. Regard the simplicial complex X
as the category with objects the simplexes σ ∈ X , and morphisms the face
inclusions σ ≤ τ . An (R,X)-module A =

∑
σ∈X

A(σ) determines a contravariant

functor

[A] : X → A(R) ; σ 7→ [A][σ] =
∑

τ≥σ
A(τ) .

The (R,X)-module category A(R,X) is thus a full subcategory of the category
of contravariant functors X → A(R).

Proposition 2.2 (Ranicki and Weiss [34, 2.9])
The following conditions on a chain map f : C → D of finite chain complexes
in A(R,X) are equivalent :
(i) f is a chain equivalence,
(ii) the R-module chain maps

f(σ, σ) : C(σ) → D(σ) (σ ∈ X)
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Singularities and Controlled Topology 7

are chain equivalences,
(iii) the R-module chain maps

[f ][σ] : [C][σ] → [D][σ] (σ ∈ X)

are chain equivalences.

3. Simplicially controlled topology

The barycentric subdivision X ′ of a simplicial complex X is the simplicial com-
plex with the same polyhedron

|X ′| = |X |

and one n-simplex σ̂0σ̂1 . . . σ̂n for each sequence of simplexes in X

σ0 < σ1 < · · · < σn .

The dual cell of a simplex σ ∈ X is the contractible subcomplex

D(σ,X) = {σ̂0σ̂1 . . . σ̂n |σ ≤ σ0} ⊆ X ′ ,

with boundary

∂D(σ,X) = {σ̂0σ̂1 . . . σ̂n |σ < σ0} ⊆ D(σ,X) .

Definition 3.1 (i) An X-controlled simplicial complex (M,pM ) is a finite sim-
plicial complex M with a simplicial map pM : M → X ′, the control map.
(ii) A map f : (M,pM ) → (N, pN ) of X-controlled simplicial complexes is a
simplicial map f : M → N such that pM = pNf : M → X ′.

In practice, (M,pM ) will be abbreviated to M .

Definition 3.2 The (R,X)-module chain complex ∆(M ;R) of an X-controlled
simplicial complex M is the R-coefficient simplicial chain complex of M with

∆(M ;R)(σ) = ∆(p−1
M D(σ,X), p−1

M ∂D(σ,X);R) .

and

[∆(M ;R)r][σ] =
∑

τ≥σ
∆(M ;R)(τ)r

= ∆(p−1
M D(σ,X);R)r (r ∈ Z, σ ∈ X) .

A map of X-controlled simplicial complexes f : M → N induces an (R,X)-
module chain map

f : ∆(M ;R)→ ∆(N ;R) .
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8 Andrew Ranicki

Definition 3.3 A map of X-controlled simplicial complexes f : M → N is an
X-controlled R-homology equivalence if the restrictions

f | : p−1
M D(σ,X)→ p−1

N D(σ,X) (σ ∈ X)

induce isomorphisms in R-homology

(f |)∗ : H∗(p
−1
M D(σ,X);R) ∼= H∗(p

−1
N D(σ,X);R) (σ ∈ X) .

Proposition 3.4 A map of X-controlled simplicial complexes f : M → N is an
X-controlled R-homology equivalence if and only if the induced (R,X)-module
chain map f : ∆(M ;R)→ ∆(N ;R) is a chain equivalence.

Proof Immediate from 2.2. ✷

Proposition 3.5 (i) If X = {pt.} an X-controlled map f : M → N is an
X-controlled R-homology equivalence if and only if f induces R-homology iso-
morphisms

f∗ : H∗(M ;R) ∼= H∗(N ;R) .

(ii) If X = N an X-controlled map f : M → N is an X-controlled R-homology
equivalence if and only if f has R-acyclic point inverses

H∗(f
−1(x);R) ∼= H∗({x};R) (x ∈ |X |) .

Proof (i) Immediate from 3.4, since a chain map of finite free R-module chain
complexes is a chain equivalence if and only if it induces isomorphisms in ho-
mology.
(ii) Immediate from 3.4, since every point x ∈ |X | is in the interior
D(σ,X)\∂D(σ,X) of a unique dual cell D(σ,X), and

H∗({x};R) ∼= H∗(D(σ,X);R) , H∗(f
−1(x);R) ∼= H∗(f

−1D(σ,X);R) .

✷

Here is another way in which (R,X)-module chain complexes arise :

Definition 3.6 (Ranicki [29, 4.2])
Let ∆−∗(X ;R) be the (R,X)-module chain complex defined by

∆−∗(X ;R) = HomR(∆(X ;R), R)−∗ ,

∆−∗(X ;R)r(σ) =

{
R if r = −|σ|
0 otherwise.

(r ∈ Z, σ ∈ X) .

As an R-module chain complex ∆−∗(X ;R) is just the R-coefficient simplicial
cochain complex of X regraded to be a chain complex.
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Singularities and Controlled Topology 9

4. The (R,X)-module chain duality

Proposition 4.1 (Ranicki [29, 5.1])
The additive category A(R,X) of (R,X)-modules has a chain duality (T, e)
with the dual of an (R,X)-module A the (R,X)-module chain complex

T (A) = HomR(Hom(R,X)(∆
−∗(X ;R), A), R)

with

• TA(σ) = [A][σ]|σ|−∗ ,

• T (A)r(σ) =





∑
τ≥σ

HomR(A(τ), R) if r = −|σ|

0 if r 6= −|σ| .

The chain duality is such that

T (C) ≃R Hom(R,X)(C,∆(X ′;R))−∗ ≃R HomR(C,R)−∗

for any finite (R,X)-module chain complex C.

Definition 4.2 Given an X-controlled simplicial complex M let

∆(M ;R)−∗ = T (∆(M ;R))

be the (R,X)-module chain complex dual to ∆(M ;R).

Note that there is defined an R-module chain equivalence

∆(M ;R)−∗ ≃R HomR(∆(M ;R), R)−∗ ,

with HomR(∆(M ;R), R)−∗ the simplicial R-coefficient cochain complex of M
regraded to be a chain complex, and note also that

∆(M ;R)−∗(σ)r = HomR(∆(p−1
M D(σ,X);R)−r+|σ|, R) (r ∈ Z, σ ∈ X) .

A map of X-controlled simplicial complexes f : M → N induces an (R,X)-
module chain map

f∗ : ∆(N ;R)−∗ → ∆(M ;R)−∗ .

The (R,X)-module chain complex ∆−∗(X ;R) of 3.6 and the (R,X)-module
chain complex ∆(X ;R)−∗ of 4.2 (with pM = 1 : M →M = X ′) are related by
the (R,X)-module chain equivalence

∆−∗(X ;R) ≃(R,X) ∆(X ;R)−∗

induced by the projections ∆(D(σ,X);R)→ R.

Documenta Mathematica 4 (1999) 1–59



10 Andrew Ranicki

5. Products

Definition 5.1 The product of X-controlled simplicial complexes M,N is the
pullback X-controlled simplicial complex

M ×X N = {(x, y) ∈M ×N | pM (x) = pN(y) ∈ X}

with control map

M ×X N → X ; (x, y) 7→ pM (x) = pN (y) .

(Strictly speaking, this only defines a polyhedron M ×X N).

Definition 5.2 The product of (R,X)-modules A,B is the (R,X)-module

A⊗(R,X) B =
∑

λ,µ∈X,λ∩µ6=∅
A(λ) ⊗R B(µ) ⊆ A⊗R B

with
(A⊗(R,X) B)(σ) =

∑

λ,µ∈X,λ∩µ=σ

A(λ) ⊗R B(µ) (σ ∈ X) .

Recall the following properties of the products in 5.1,5.2 from Ranicki [29,
Chapter 7]. (The product A⊗(R,X) B was denoted by A⊠R B in [29, 7.1]).

Proposition 5.3 (i) For any (R,X)-module chain complexes C,D

• C ⊗(R,X) ∆(X ′;R) ≃(R,X) C ,

• TC ⊗(R,X) D ≃R Hom(R,X)(C,D) .

(ii) For any X-controlled simplicial complexes M,N

• ∆(M ;R)⊗(R,X) ∆(N ;R) ≃(R,X) ∆(M ×X N ;R) ,

• ∆(M ;R)−∗ ⊗(R,X) ∆(N ;R)−∗

≃R HomR(∆(M ×N,M ×N\M ×X N ;R), R)−∗ ,

(iii) The Alexander-Whitney diagonal chain approximation of the barycentric
subdivision X ′ of X is an R-module chain map

∆ : ∆(X ′;R) → ∆(X ′;R)⊗R∆(X ′;R) ; (x̂0 . . . x̂n) 7→
n∑

i=0

(x̂0 . . . x̂i)⊗(x̂i . . . x̂n)

which is the composite of an (R,X)-module chain equivalence

∆(X ′;R) ≃(R,X) ∆(X ′;R)⊗(R,X) ∆(X ′;R)

and the inclusion

∆(X ′;R)⊗(R,X) ∆(X ′;R) ⊆ ∆(X ′;R)⊗R ∆(X ′;R) .
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Singularities and Controlled Topology 11

(iv) The homology classes [X ] ∈ Hn(X ;R) are in one-one correspondence with
the chain homotopy classes of (R,X)-module chain maps

[X ] ∩ − : ∆(X ;R)n−∗ → ∆(X ′;R) ,

with

H0(Hom(R,X)(∆(X ;R)n−∗,∆(X ′;R))) = Hn(∆(X ′;R)⊗(R,X) ∆(X ′;R))

= Hn(X ;R) .

Remark 5.4 An X-controlled simplicial complex M is an example of a CW
complex with a block system κ in the sense of Ranicki and Yamasaki [35]. The
product ∆(M)⊗(Z,X)∆(M) is chain equivalent to the chain complexDκ(∆(M))
of [35].

6. Homology manifolds and Poincaré complexes

Definition 6.1 An n-dimensional R-homology manifold is a finite simplicial com-
plex M such that

H∗(M,M\σ̂;R) =

{
R if ∗ = n

0 otherwise
(σ ∈M) .

Definition 6.2 An n-dimensional R-homology Poincaré complex is a finite sim-
plicial complex M with a homology class [M ] ∈ Hn(M ;R) such that the cap
products are R-module isomorphisms

[M ] ∩ − : Hn−∗(M ;R) ∼= H∗(M ;R) .

Similarly for an n-dimensional R-homology Poincaré pair (M,∂M), with [M ] ∈
Hn(M,∂M ;R) and

[M ] ∩ − : Hn−∗(M,∂M ;R) ∼= H∗(M ;R) .

Proposition 6.3 A finite simplicial complex M is an n-dimensional R-homology
manifold with fundamental class [M ] ∈ Hn(M ;R) if and only if each (D(σ,M),
∂D(σ,M)) (σ ∈M) is an (n− |σ|)-dimensional R-homology Poincaré pair

Hn−|σ|−∗(D(σ,M), ∂D(σ,M);R) ∼= H∗(D(σ,M);R)

with fundamental class [D(σ,M), ∂D(σ,M)] ∈ Hn−|σ|(D(σ,M), ∂D(σ,M);R)
the image of [M ] under the composition of |σ| codimension 1 boundary maps.

A Z-homology manifold will just be called a homology manifold, and similarly
for Poincaré complexes and pairs.
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Definition 6.4 An n-dimensional X-controlled R-homology Poincaré complexM
is an X-controlled simplicial complex with a homology class [M ] ∈ Hn(M ;R)
such that the cap product

[M ] ∩ − : ∆(M ;R)n−∗ → ∆(M ;R)

is an (R,X)-module chain equivalence.

Remark 6.5 An X-controlled simplicial complex M is an n-dimensional X-
controlled R-homology Poincaré complex if and only if each

p−1
M (D(σ,X), ∂D(σ,X)) ⊆M (σ ∈ X)

is an (n−|σ|)-dimensionalR-homology Poincaré pair. In terms of the polyhedra
|M |, |X | this condition can be expressed as follows : for every x ∈ |X | the
inverse image p−1

M (x) ⊆ |M | has a closed regular neighbourhood (U, ∂U) which
is an n-dimensional R-homology Poincaré pair.

By analogy with 3.5 :

Proposition 6.6 (i) If X = {pt.} an n-dimensional X-controlled R-homology
Poincaré complex M is the same as an n-dimensional R-homology Poincaré
complex.
(ii) If X = M an n-dimensional X-controlled R-homology Poincaré complex
M is the same as an n-dimensional R-homology manifold.

Theorem 6.7 (Poincaré duality) An n-dimensional R-homology manifold M is
an n-dimensional X-controlled R-homology Poincaré complex, with an (R,X)-
module chain equivalence

∆(M ;R)n−∗ ≃ ∆(M ;R)

with respect to any control map pM : M → X ′.
Proof An (R,M)-module chain equivalence

[M ] ∩ − : ∆(M ;R)n−∗ → ∆(M ;R)

can be regarded as an (R,X)-module chain equivalence, for any control map
pM : M → X ′. ✷

Corollary 6.8 (Poincaré-Lefschetz duality) An n-dimensional R-homology man-
ifold with boundary (M,∂M) is an n-dimensional X-controlled R-homology
Poincaré pair, with an (R,X)-module chain equivalence

∆(M ;R)n−∗ ≃ ∆(M,∂M ;R)

with respect to any control map pM : M → X ′.

Corollary 6.9 (Lefschetz duality) If M is an n-dimensional R-homology man-
ifold and L ⊆ M is any subcomplex, there is defined an (R,X)-module chain
equivalence

∆(M,M\L;R)n−∗ ≃ ∆(L;R)
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with respect to any control map pM : M → X ′. Similarly for an (R,X)-module
chain equivalence

∆(M,L;R)n−∗ ≃ ∆(M\L;R) .

Proof Let (U, ∂U) be a closed regular neighbourhood of L in M , an n-dimen-
sional R-homology manifold with boundary such that the inclusion L ⊂ U is a
homotopy equivalence. There are defined (R,X)-module chain equivalences

∆(M,M\L;R)n−∗ ≃ ∆(M, cl.(M\U);R)n−∗ (homotopy invariance)

≃ ∆(U, ∂U ;R)n−∗ (excision)

≃ ∆(U ;R) (Poincaré-Lefschetz duality)

≃ ∆(L;R) (homotopy invariance) .

✷

Definition 6.10 Let M be an X-controlled simplicial complex, with a homology
class [M ] ∈ Hn(M ;R). The X-controlled peripheral chain complex of M is the
algebraic mapping cone

C = C([M ] ∩ − : ∆(M ;R)n−∗ → ∆(M ′;R))∗+1

(with a dimension shift), a finite chain complex in A(R,X).

Proposition 6.11 The following conditions on an X-controlled simplicial com-
plex M with a homology class [M ] ∈ Hn(M ;R) and peripheral chain complex
C are equivalent :
(i) M is an n-dimensional X-controlled R-homology Poincaré complex,
(ii) C is chain contractible in A(R,X),
(iii) Hn−1(C ⊗(R,X) C) = 0,
(iv) each p−1(D(σ,X), ∂D(σ,X)) (σ ∈ X) is an (n − |σ|)-dimensional R-
homology Poincaré pair.
Proof (i) ⇐⇒ (ii) The chain map [M ] ∩ − : ∆(M ;R)n−∗ → ∆(M ′;R) is a
chain equivalence in A(R,X) if and only if the algebraic mapping cone is chain
contractible in A(R,X).
(ii) ⇐⇒ (iii) The (R,X)-module chain map

α = [M ] ∩ − : ∆(M ;R)n−∗ → ∆(M ′;R)

is chain homotopic to its chain dual, with a chain homotopy

β : α ≃ Tα : ∆(M ;R)n−∗ → ∆(M ′;R) .

Define a chain equivalence in A(R,X)

φX : Cn−1−∗ → C = C(α)∗+1

by

φX =

(
β 1
1 0

)
:

Cn−1−r=∆(M ;R)n−r ⊕∆(M ′;R)r+1 → Cr=∆(M ′;R)r+1 ⊕∆(M ;R)n−r .
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(See §9 for a more detailed discussion of the quadratic Poincaré structure on
C). The abelian group

Hn−1(C ⊗(R,X) C) = H0(Hom(R,X)(C
n−1−∗, C))

= H0(Hom(R,X)(C,C))

consists of the chain homotopy classes of chain maps C → C. This group is 0
if and only if C is chain contractible.
(ii) ⇐⇒ (iv) By 2.2 C is chain contractible if and only if each component
R-module chain complexes C(σ) (σ ∈ X) is chain contractible. Now

C(σ) ≃R C([p−1D(σ,X)] ∩ − :

∆(p−1(D(σ,X), ∂D(σ,X));R)n−|σ|−∗ → ∆(p−1D(σ,X);R))∗+1 ,

so that C(σ) ≃R 0 if and only if p−1(D(σ,X), ∂D(σ,X)) (σ ∈ X) is an (n−|σ|)-
dimensional R-homology Poincaré pair. ✷

Example 6.12 Let X = {pt.}. The following conditions on a simplicial complex
M with a homology class [M ] ∈ Hn(M ;R) and peripheral R-module chain
complex C are equivalent :
(i) M is an n-dimensional R-homology Poincaré complex with fundamental
class [M ],
(ii) H∗(C) = 0,
(iii) Hn−1(C ⊗R C) = 0.

In the following result X = M .

Theorem 6.13 The following conditions on an n-dimensional R-homology
Poincaré complex X are equivalent :
(i) X is an n-dimensional R-homology manifold,
(ii) the peripheral chain complex

C = C([X ] ∩ − : ∆(X ;R)n−∗ → ∆(X ′;R))∗+1

is (R,X)-module chain contractible,
(iii) Hn−1(C ⊗(R,X) C) = 0,
(iv) the cohomology class V ∈ Hn(X × X ;R) Poincaré dual to the homology
class ∆∗[X ] ∈ Hn(X ×X ;R) has image 0 ∈ Hn(X ×X\∆X ;R),
(v) the fundamental class [X ] ∈ Hn(X ;R) is such that

[X ] ∈ im(Hn(X ×X,X ×X\∆X ;R)→ Hn(X ;R)) ,

(vi) a particular R-module morphism

Hn(X ×X\∆X ;R)→ Hn(X ×X,∆X ;R)

(specified in the proof) is an isomorphism, namely the Lefschetz duality iso-
morphism.
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Proof (i) ⇐⇒ (ii) ⇐⇒ (iii) This is a special case of 6.11.
(i) ⇐⇒ (iv) There is defined an exact sequence

Hn(X ×X,X ×X\∆X ;R)→ Hn(X ×X ;R)→ Hn(X ×X\∆X ;R) .

Thus V has image 0 ∈ Hn(X×X\∆X ;R) if and only if there exists an element

U ∈ Hn(X ×X,X ×X\∆X ;R)

with image V . Now U is a chain homotopy class of (R,X)-module chain maps
∆(X ′;R)→ ∆(X ;R)n−∗, since

Hn(X ×X,X ×X\∆X ;R) = Hn(∆(X ;R)−∗ ⊗(R,X) ∆(X ;R)−∗)

= H0(Hom(R,X)(∆(X ′;R),∆(X ;R)n−∗)) .

U is a chain homotopy inverse of

φ = [X ] ∩ − : ∆(X ;R)n−∗ → ∆(X ′;R)

with

φU = 1 ∈ H0(Hom(R,X)(∆(X ′;R),∆(X ′;R))) = H0(X ;R) ,

φ = Tφ ∈ H0(Hom(R,X)(∆(X ;R)n−∗,∆(X ′;R))) ,

(TU)φ = (TU)(Tφ) = T (φU) = 1

∈ H0(Hom(R,X)(∆(X ′;R)n−∗,∆(X ;R)n−∗)) .

(iv)⇐⇒ (v)⇐⇒ (vi) Immediate from the commutative braid of exact sequences

Hn(X×X,X×X\∆X;R)

%%KK
KKK

KK

##
Hn(X×X ;R)

%%KK
KKK

KK

##
Hn(X×X,∆X ;R)

Hn(X ;R)

∆∗
99sssssss

%%KK
KKK

KK
Hn(X×X\∆X ;R)

99sssssss

%%KK
KKK

KK

Hn+1(X×X,∆X ;R)

0
99sssssss

0

;;
Hn−1(C ⊗(R,X) C)

99sssssss

;;
Hn+1(X×X,X×X\∆X;R)

on noting that X ×X is a 2n-dimensional R-homology Poincaré complex with
isomorphisms

[X ×X ] ∩ − : Hn(X ×X ;R) ∼= Hn(X ×X ;R)

and that the diagonal map

∆ : X → X ×X ; x 7→ (x, x)
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is split by the projection

p : X ×X → X ; (x, y) 7→ x ,

so that
H∗(X ×X ;R) = H∗(X ;R)⊕H∗(X ×X,∆X ;R) .

The classes

V ∈ Hn(X ×X,X ×X\∆X ;R) , φX ∈ Hn−1(C ⊗(R,X) C)

(with φX as in the proof of 6.11) are both images of the fundamental class
[X ] ∈ Hn(X ;R), so that they have the same image in Hn(X ×X\∆X ;R). ✷

Remark 6.14 The equivalence (i) ⇐⇒ (iv) in 6.13 in the case R = Z is a slight
generalization of the corresponding results of McCrory [17, Theorem 1] and
Ranicki [29, 8.5] for n-circuits and n-dimensional pseudomanifolds respectively.

Remark 6.15 A Poincaré complex X is a homology manifold precisely when the
dihomology spectral sequence of Zeeman [45] collapses. See McCrory [18] for a
geometric interpretation in terms of moving cocycles in X×X off the diagonal.

There is also a version of 6.13 for Poincaré pairs with manifold boundary. Here
is a special case :

Proposition 6.16 An n-dimensional R-homology Poincaré pair (X, ∂X) with
R-homology manifold boundary is an n-dimensional R-homology manifold with
boundary if and only if the cohomology class V ∈ Hn(X × X,X × ∂X ;R)
Poincaré-Lefschetz dual to the homology class ∆∗[X ] ∈ Hn(X×X, ∂X×X ;R)
(with [X ] ∈ Hn(X, ∂X ;R)) is the image of a class

U ∈ Hn(X ×X,X × ∂X ∪X ×X\∆X ;R) .

Remark 6.17 In general, a singularity does not arise as a non-manifold point of
a Poincaré complex, so 6.13 cannot be applied directly to obtain a homological
invariant of the singularity. However, for an isolated singular point of a complex
hypersurface it is possible to apply 6.16 to a related Poincaré pair with manifold
boundary. Given a polynomial function f : Cn+1 → C with an isolated critical
point z0 ∈ V = f−1(0) Milnor [20] relates the singularity of f at z0 to the
properties of the fibred knot

k : V ∩ Sǫ = S2n−1 ⊂ Sǫ = S2n+1

defined by intersecting V with

Sǫ = {z ∈ Cn+1 | ‖z − z0‖ = ǫ}
for a sufficiently small ǫ. (Only PL structures are considered here – the dif-
ferentiable structure on V ∩ Sǫ could of course be exotic). In §14 below there
will be associated to any fibred knot k : S2n−1 ⊂ S2n+1 a (2n+ 2)-dimensional
homology Poincaré pair (X, ∂X) with manifold boundary, which is a homology
manifold with boundary if k is unknotted; the obstruction to (X, ∂X) being
a homology manifold with boundary is related to homological invariants of k,
and hence to the nature of the singularity.
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7. Degree 1 maps and homology equivalences

This section investigates the extent to which a degree 1 map of n-dimensional
homology manifolds has acyclic point inverses. It is shown that this is the case
if and only if the n-dimensional homology of the double point set relative to
the diagonal is zero.

Definition 7.1 The double point set of a map f : M → N is the pullback (5.1)

M ×N M = (f × f)−1(∆N )

= {(x, y) ∈M ×M | f(x) = f(y) ∈ N} .

If f is a simplicial map then M ×N M is an N -controlled simplicial complex.

Given a map f : M → N define the maps

i : M →M ×N M ; x 7→ (x, x) ,

j : M ×N M → N ; (x, y) 7→ f(x) = f(y) ,

k : M ×N M →M ; (x, y) 7→ x .

There is defined a commutative diagram

M ×M f×f // N ×N

M ×N M
j //

OO

N

∆N

OO

M

∆M

CC����������������

i
::ttttttttt

f

44iiiiiiiiiiiiiiiiiiiiiii

It follows from ki = 1 : M →M that

H∗(M ×N M) = H∗(M)⊕H∗(M ×N M,∆M ) .

Definition 7.2 Let f : M → N be a map of X-controlled R-homology Poincaré
complexes, with dim(M) = m, dim(N) = n.
(i) The Umkehr of f is the (R,X)-module chain map

f ! : ∆(N ;R) ≃ ∆(N ;R)n−∗
f∗

−−−−→ ∆(M ;R)n−∗ ≃ ∆(M ;R)∗+m−n .

(ii) f has degree 1 if m = n and

f∗[M ] = [N ] ∈ Hn(N ;R) .

Proposition 7.3 (i) If f : M → N is a degree 1 map of n-dimensional X-
controlled R-homology Poincaré complexes the Umkehr (R,X)-module chain
map f ! : ∆(N ;R)→ ∆(M ;R) is such that

ff ! ≃ 1 : ∆(N ;R)→ ∆(N ;R)
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and there exists an (R,X)-module chain equivalence

∆(M ;R) ≃(R,X) ∆(N ;R)⊕∆(f !) .

(ii) If f : M → N is a degree 1 map of n-dimensional R-homology manifolds
then

Hn(∆(f !)⊗(R,N) ∆(f !)) = Hn(M ×N M,∆M ;R) .

Proof (i) Immediate from f∗[M ] = [N ] ∈ Hn(N ;R) and the naturality prop-
erties of the cap product.
(ii) Apply ∆(M)⊗(Z,N)− to the (Z, N)-module chain equivalence given by (i)

∆(M) ≃(Z,N) ∆(N)⊕∆(f !) ,

to obtain

∆(M)⊗(Z,N) ∆(M)

≃(Z,N) (∆(M)⊗(Z,N) ∆(N))⊕ (∆(M)⊗(Z,N) ∆(f !))

≃(Z,N) (∆(M)⊗(Z,N) ∆(N))⊕ (∆(N)⊗(Z,N) ∆(f !))⊕ (∆(f !)⊗(Z,N) ∆(f !))

≃(Z,N) ∆(M)⊕∆(f !)⊕ (∆(f !)⊗(Z,N) ∆(f !)) .

Since Hn(f !) = 0, it follows that

Hn(M ×N M) = Hn(∆(M)⊗(Z,N) ∆(M))

= Hn(M)⊕Hn(f !)⊕Hn(∆(f !)⊗(Z,N) ∆(f !))

= Hn(M)⊕Hn(∆(f !)⊗(Z,N) ∆(f !)) .

✷

Theorem 7.4 The following conditions on a degree 1 map f : M → N of n-
dimensional X-controlled R-homology Poincaré complexes are equivalent :

(i) f is an X-controlled R-homology equivalence (3.3),

(ii) f : ∆(M ;R)→ ∆(N ;R) is an (R,X)-module chain equivalence,

(iii) there exists an (R,X)-module chain homotopy

f !f ≃ 1 : ∆(M ;R)→ ∆(M ;R) ,

(iv) ∆∗[M ] = (f ! ⊗ f !)∆∗[N ] ∈ Hn(M ×X M ;R) ,

(v) (f ! ⊗ f !)∆∗[N ] = 0 ∈ Hn(M ×X M,∆M ;R) ,

(vi) (f × f)∗ : Hn(M ×X M ;R) ∼= Hn(N ×X N ;R) .
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Proof (i) ⇐⇒ (ii) This is a special case of 3.4.
(ii) ⇐⇒ (iii) Immediate from 7.3.
(iii) ⇐⇒ (iv) Immediate from the identifications

1 = ∆∗[M ] , f !f = (f ! ⊗ f !)∆∗[N ]

∈ H0(Hom(R,X)(∆(M ;R),∆(M ;R))) = Hn(M ×X M ;R) .

(iv) ⇐⇒ (v) Immediate from the identity

(f ! ⊗ f !)∆∗[N ] = ([M ], (f ! ⊗ f !)∆∗[N ]−∆∗[M ])

∈ Hn(M ×X M ;R) = Hn(M ;R)⊕Hn(M ×X M,∆M ;R) .

(ii) =⇒ (vi) If f : ∆(M ;R)→ ∆(N ;R) is an (R,X)-module chain equivalence
then so is

f ⊗ f : ∆(M ;R)⊗(R,X) ∆(M ;R)→ ∆(N ;R)⊗(R,X) ∆(N ;R) .

(vi) =⇒ (iv) It follows from ff ! ≃ 1 and

(f ⊗ f)∗∆∗[M ] = ∆∗[N ] ∈ Hn(N ×X N ;R)

that

∆∗[M ]− (f ! ⊗ f !)∆∗[N ]

∈ ker((f × f)∗ : Hn(M ×X M ;R)→ Hn(N ×X N ;R)) = {0} .

✷

Corollary 7.5 The following conditions on a degree 1 map f : M → N of n-
dimensional homology manifolds are equivalent :
(i) f has acyclic point inverses,
(ii) Hn(M ×N M,∆M ) = 0,
(iii) Hn(∆(f !)⊗(Z,N) ∆(f !)) = 0.
Proof (i) ⇐⇒ (ii) Apply 7.3 with R = Z, X = N , so that

M ×X M = M ×N M = (f × f)−1∆N , N ×X N = N ,

Hn(M ×X M) = Hn(M)⊕Hn(M ×N M,∆M ) .

Since f∗ : Hn(M) ∼= Hn(N), condition 7.4 (vi)

(f × f)∗ : Hn(M ×N M) ∼= Hn(N ×N N)

for f to be a (Z, N)-homology equivalence is equivalent to

Hn(M ×N M,∆M ) = 0 .

As in 3.5 (ii) a map f is a (Z, N)-homology equivalence if and only if it has
acyclic point inverses.
(ii) ⇐⇒ (iii) By 7.3 (ii) Hn(∆(f !)⊗(Z,N) ∆(f !)) = Hn(M ×N M,∆M ). ✷
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Remark 7.6 (i) A map f : M → N is injective if and only if

M ×N M = ∆M .

The condition of 7.5 (ii) is automatically satisfied for injective f .
(ii) A degree 1 map f : M → N of n-dimensional R-homology manifolds
is surjective by the following argument, which does not require M,N to be
polyhedra. If x ∈ N\f(M) then

Hn(M,M\f−1(x);R) = 0 , Hn(N,N\{x};R) = R ,

leading to a contradiction in the commutative diagram

Hn(M ;R) = R
∼=−−−−→ Hn(N ;R) = R

y ∼=
y

Hn(M,M\f−1(x);R) = 0
f∗−−−−→ Hn(N,N\{x};R) = R

(assuming M,N are connected).

Corollary 7.7 (i) A map f : M → N of n-dimensional R-homology Poincaré
complexes is an R-homology equivalence if and only if it is degree 1 and

∆∗[M ] = (f ! ⊗ f !)∆∗[N ] ∈ Hn(M ×M ;R) .

(ii) A map f : M → N of n-dimensional R-homology manifolds has R-acyclic
point inverses if and only if it is degree 1 and

∆∗[M ] = (f ! ⊗ f !)∆∗[N ] ∈ Hn(M ×N M ;R) .

Proof (i) Apply 7.4 with X = {pt.}.
(ii) Apply 7.4 with X = N . ✷

Definition 7.8 Given a map f : M → N of R-homology manifolds with
dim(M) = m, dim(N) = n let the Umkehr of the map

j : M ×N M → N ; (x, y) 7→ f(x) = f(y)

be the (R,N)-module chain map

j! : ∆(N ;R)→ ∆(M ×N M ;R)∗+2m−2n

given by the composite

j! : ∆(N ;R) ≃(R,N) ∆(N ×N,N ×N\∆N ;R)2n−∗

(f×f)∗−→ ∆(M ×M,M ×M\M ×N M ;R)2n−∗

≃(R,N) ∆(M ×N M ;R)∗+2m−2n .
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Proposition 7.9 The following conditions on a degree 1 map f : M → N of
n-dimensional R-homology manifolds are equivalent :
(i) f has R-acyclic point inverses,
(ii) there exists an (R,N)-module chain homotopy

i∗f
! ≃ j! : ∆(N ;R)→ ∆(M ×N M ;R) ,

(iii) there exists an (R,N)-module chain map g : ∆(N) → ∆(M) with an
(R,N)-module chain homotopy

i∗g ≃ j! : ∆(N ;R)→ ∆(M ×N M ;R) .

Proof (i) ⇐⇒ (ii) Identify

i∗f
! = ∆∗[M ] , j! = (f ! ⊗ f !)∆∗[N ]

∈ H0(Hom(R,N)(∆(N ;R),∆(M ×N M ;R))) = Hn(M ×N M ;R)

and apply the equivalence (i) ⇐⇒ (iv) of 7.4, with X = N .
(ii) =⇒ (iii) Take g = f !.
(iii) =⇒ (i) It follows from the exact sequence

H0(Hom(R,N)(∆(N ;R),∆(M ;R)))

i∗−→ H0(Hom(R,N)(∆(N ;R),∆(M ×N M ;R)))

−→ H0(Hom(R,N)(∆(N ;R),∆(M ×N M,∆M ;R)))

that such a g exists if and only if the (R,N)-module chain homotopy class

j! ∈ H0(Hom(R,N)(∆(N ;R),∆(M ×N M ;R)))

has 0 image in

H0(Hom(R,N)(∆(N ;R),∆(M ×N M,∆M ;R))) = Hn(M ×N M,∆M ;R) .

But this image is precisely the element (f !⊗ f !)∆∗[N ] ∈ Hn(M ×NM,∆M ;R)
of 7.4 (v) whose vanishing is (necessary and) sufficient for f to have R-acyclic
point inverses. ✷

8. Bundles

The results of §§6,7 will now be interpreted from the bundle point of view, aftre
a brief review of the various bundle theories involved.

Oriented spherical fibrations η over a space X

(Dk, Sk−1)→ (E(η), S(η))→ X
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are classified up to oriented fibre homotopy equivalence by the homotopy classes
of maps η : X → BG(k) to a classifying space BG(k). Every such fibration
has a Thom space

T (η) = E(η)/S(η)

and a Thom class
Uη ∈ H̃k(T (η)) .

See Rourke and Sanderson [38] for the theory of (oriented) PL k-block bundles,

with a classifying space BSP̃L(k). A codimension k embedding Mn ⊂ Nn+k

of PL manifolds has a normal PL k-block bundle νM⊂N : M → BPL(k).

See Martin and Maunder [15] for the theory of homology cobordism bundles,
with a classifying space BSH(k) and forgetful maps

BSP̃L(k)→ BSH(k) , BSH(k)→ BSG(k) .

A codimension k embedding Mn ⊂ Nn+k of homology manifolds (i.e. a PL
map which is an injection) has a normal homology cobordism Sk−1-bundle
νM⊂N : M → BSH(k).

See Rourke and Sanderson [39] for the theory of (oriented) topological k-block

bundles, with a classifying space BST̃OP (k) and forgetful maps

BSP̃L(k)→ BST̃OP (k) , BST̃OP (k)→ BSG(k) .

Galewski and Stern [7] proved that every homology cobordism Sk−1-bundle
has a canonical lift to a topological k-block bundle, so that there is defined a
commutative diagram of classifying spaces and forgetful maps

BSP̃L(k) //

��

BST̃OP (k)

��
BSH(k) //

88ppppppppppp
BSG(k) .

The diagonal embedding of an n-dimensional homology manifold M

∆ : M →M ×M ; x 7→ (x, x)

has a normal homology cobordism Sn−1-bundle, the tangent homology cobor-
dism Sn−1-bundle ([15, 5.3])

τM = ν∆ : M → BSH(n) ,

and hence a tangent topological n-block bundle τM : M → BST̃OP (n). The
Euler class of τM may be identified with the Euler characteristic of M , as
follows.
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The Euler characteristic of a finite simplicial complex X is

χ(X) =

∞∑

r=0

(−)rdimRHr(X ; R) ∈ Z .

Proposition 8.1 (i) For a connected n-dimensional Poincaré complex X

χ(X) = ∆∗(V ) ∈ Hn(X) = Z

with V ∈ Hn(X ×X) the Poincaré dual of ∆∗[X ] ∈ Hn(X ×X).
(ii) The obstruction to a degree 1 map f : M → N of connected n-dimensional
Poincaré complexes being a homology equivalence (7.7 (i))

∆∗[M ]− (f ! ⊗ f !)∆∗[N ] ∈ Hn(M ×M)

has image χ(M)− χ(N) ∈ Z under the composite

Hn(M ×M) ∼= Hn(M ×M)
∆∗
−→ Hn(M) = Z .

Proof (i) As for smooth manifolds (Milnor and Stasheff [21, 11.13]).
(ii) Immediate from (i). ✷

It is well known that χ(M) = χ(τM ) for a smooth manifold M ([21, 11.13]).
More generally :

Proposition 8.2 The Euler characteristic of a connected n-dimensional homology
manifold M is the Euler class of the tangent n-block bundle τM

χ(M) = χ(τM ) ∈ Hn(M) = Z .

Proof The homology tangent bundle of M (Spanier [40, p.294]) is the homology
fibration

(M,M\{∗})→ (M ×M,M ×M\∆M )→M

with
M →M ×M ; x 7→ (∗, x) ,

M ×M →M ; (x, y) 7→ x .

The tangent topological n-block bundle of M

(Dn, Sn−1)→ (E(τM ), S(τM ))→M

is related to the homology tangent bundle by a homotopy pushout diagram

S(τM ) //

��

M ×M\∆M

��
E(τM ) ≃M ∆ // M ×M .
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The Thom space, Thom class and Euler class of τM are such that

T (τM ) = E(τM )/S(τM ) = (M ×M)/(M ×M\∆M ) ,

UM ∈ H̃n(T (τM )) = Hn(M ×M,M ×M\∆M ) ,

e(τM ) = z∗(UM ) ∈ Hn(M) ,

with z : M → T (τM ) the zero section. Furthermore, there is defined a commu-
tative diagram

Hn(M ×M,M ×M\∆M )

∼=
��

i∗ // Hn(M ×M)

∆∗
��

H̃n(T (τM ))
z∗ // Hn(M)

with i : M ×M → (M ×M,M ×M\∆M ) the natural map. As before, let
V ∈ Hn(M ×M) be the Poincaré dual of ∆∗[M ] ∈ Hn(M ×M). The Thom

class UM ∈ H̃n(T (τM )) has image

i∗(UM ) = V ∈ Hn(M ×M) ,

and

e(τM ) = z∗(UM ) = ∆∗(i∗(UM )) = ∆∗(V ) = χ(M) ∈ Hn(M) = Z .

✷

Remark 8.3 Theorem 6.13 can be regarded as a converse of 8.2 :
A connected n-dimensional Poincaré complex X is an n-dimensional homology
manifold if and only if the Poincaré dual V ∈ Hn(X×X) of ∆∗[X ] ∈ Hn(X×
X) is the image of a Thom class U ∈ H̃n(T (τX)), in which case

χ(X) = e(τX) ∈ Hn(X) = Z .

McCrory [17] called such U a geometric Thom class for X .

Proposition 8.4 A degree 1 map f : M → N of n-dimensional R-homology
manifolds has acyclic point inverses if and only if the Thom classes

UM ∈ Hn(M ×M,M ×M\∆M ;R) , UN ∈ Hn(N ×N,N ×N\∆N ;R)

have the same image in Hn(M ×M,M ×M\M ×N M ;R)

c∗(UM ) = (f × f)∗(UN ) ∈ Hn(M ×M,M ×M\M ×N M ;R) ,

with c : (M ×M,M ×M\M ×N M) → (M ×M,M ×M\∆M ) the inclusion
of pairs.
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Proof This is just the cohomology version of 7.7 (ii), after Lefschetz duality
(6.8) identifications

UM = [M ] ∈ Hn(M ×M,M ×M\∆M ;R) = Hn(M ;R) ,

UN = [N ] ∈ Hn(N ×N,N ×N\∆N ;R) = Hn(N ;R) ,

Hn(M ×M,M ×M\M ×N M ;R) = Hn(M ×N M ;R) ,

noting that M ×M and N ×N are 2n-dimensional R-homology manifolds.
✷

Remark 8.5 Suppose that f : M → N is a degree 1 map of n-dimensional
homology manifolds which is covered by a stable map

b : τM ⊕ ǫ∞ → τN ⊕ ǫ∞

of the tangent block bundles. (For example, if M , N have trivial tangent block
bundles then any map f : M → N is covered by an unstable map b : τM → τN ).
In general, the diagram

H̃n(T (τN))

∼=

T (b)∗
// H̃n(T (τM ))

∼=

Hn(N ×N,N ×N\∆N )

(f × f)∗

!!D
DD

DD
DD

DD
DD

DD
DD

DD
Hn(M ×M,M ×M\∆M )

c∗

||yy
yy

yy
yy

yy
yy

yy
yy

yy

Hn(M ×M,M ×M\M ×N M)

is not commutative, with the obstruction in 8.4 non-zero :

c∗T (b)∗(UN )− (f × f)∗(UN ) = c∗(UM )− (f × f)∗(UN )

6= 0 ∈ Hn(M ×M,M ×M\M ×N M) .

In §9 below this difference will be expressed in terms of an N -controlled refine-
ment of the (symmetrization of the) quadratic structure used in Ranicki [27]
to obtain a chain level expression for the Wall surgery obstruction.

Proposition 8.6 Let f : M → N be a degree 1 map of n-dimensional R-homology
manifolds. If there exists an N -controlled map

a : (M ×M,M ×M\∆M )→ (N ×N,N ×N\∆N )
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such that the diagram

(M ×M,M ×M\M ×N M)

c

��~~
~~

~~
~~

~~
~~

~~
~~

f × f

��>
>>

>>
>>

>>
>>

>>
>>

>

(M ×M,M ×M\∆M )
a // (N ×N,N ×N\∆N )

is N -controlled homotopy commutative, then

(f × f)∗(UN ) = c∗(UM ) ∈ Hn(M ×M,M ×M\M ×N M ;R)

and f has acyclic point inverses. Moreover,

a∗(UN ) = UM ∈ Hn(M ×M,M ×M\∆M ;R) .

Proof Define the (R,N)-module chain map

g : ∆(N ;R) ≃(R,N)∆(N ×N,N ×N\∆N ;R)2n−∗

a∗−→ ∆(M ×M,M ×M\∆M ;R)2n−∗ ≃(R,N) ∆(M ;R)

such that

g[N ] = a∗(UN ) ∈ Hn(M) = Hn(M ×M,M ×M\∆M ) .

The N -controlled homotopy of pairs

ac ≃ f × f : (M ×M,M ×M\M ×N M)→ (N ×N,N ×N\∆N )

induces an (R,N)-module chain homotopy

ac ≃ f × f : ∆(M ×M,M ×M\M ×N M ;R) ≃(R,N) ∆(M ×N M ;R)2n−∗

→ ∆(N ×N,N ×N\∆N ;R) ≃(R,N) ∆(N ;R)2n−∗ .

The chain dual is an (R,N)-module chain homotopy

i∗g ≃ j! : ∆(N ;R)→ ∆(M ×N M ;R) ,

so that

i∗g[N ] = j![N ] = [M ×N M ] ∈ Hn(M ×N M ;R) ,

with dual the identity

c∗a∗(UN ) = (f × f)∗(UN ) ∈ Hn(M ×M,M ×M\M ×N M ;R) ,
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so that f has R-acyclic point inverses by 8.4, and

g ≃ f−1 ≃ f ! : ∆(N ;R)→ ∆(M ;R) ,

g[N ] = [M ] ∈ Hn(M ;R) ,

a∗(UN ) = UM ∈ Hn(M ×M,M ×M\∆M ;R) .

✷

Remark 8.7 A degree 1 map f : M → N of n-dimensional homology manifolds
which is covered by a map of the tangent n-block bundles b : τM → τN need
not be covered by a map of homology tangent bundles a as in 8.6.

9. The total surgery obstruction

The total surgery obstruction s(X) ∈ Sn(X) of Ranicki [29] is defined for
a finite simplicial complex X satisfying n-dimensional Poincaré duality with
respect to all coefficients – such Poincaré complexes are considered further
below. For n ≥ 5 the total surgery obstruction is s(X) = 0 if and only if
the polyhedron |X | is homotopy equivalent to a topological manifold (which
need not be triangulable). On the other hand, an n-dimensional homology
Poincaré complex X is a homology manifold if and only if an obstruction in
Hn(X ×X\∆X) (6.13) is 0. The obstruction of 6.13 will now be related to the
total surgery obstruction and its Z-homology analogue.

So far, only the homology H∗(X ;R) and cohomology H∗(X ;R) of a simplicial
complex X with coefficients in a commutative ring R have been considered. For
non-simply-connected X the homology H∗(X ; Λ) and cohomology H∗(X ; Λ)
and with coefficients in an R[π1(X)]-module Λ will also be considered.

Given a commutative ring R and a group π let the group ring R[π] have the
involution

R[π]→ R[π] ; a =
∑

g∈π
ngg 7→ a =

∑

g∈π
ngg
−1 (ng ∈ R) .

Use the involution to convert every left R[π]-moduleM into a rightR[π]-module
M t, with the same additive group and

M t ×R[π]→M t ; (x, a) 7→ a.x .

Define an involution (1.2) on the additive category A(R[π]) of f.g. free (left)
R[π]-modules

∗ : A(R[π])→ A(R[π]) ; A 7→ A∗ = HomR[π](A,R[π])

with
R[π]×A∗ → A∗ ; (a, f) 7→ (x 7→ f(x).a) .
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Definition 9.1 Given a connected simplicial complex X with universal cover X̃
and an R[π1(X)]-module Λ define the Λ-coefficient homology and cohomology
R-modules of X to be

H∗(X ; Λ) = H∗(Λ
t ⊗R[π1(X)] ∆(X̃ ;R)) ,

H∗(X ; Λ) = H∗(HomR[π1(X)](∆(X̃ ;R),Λ)) .

The Λ-coefficient homology and cohomology R-modules are related by a cap
product pairing

Hn(X ;R)⊗R Hm(X ; Λ)→ Hn−m(X ; Λ);x⊗ y 7→ x ∩ y .

For Λ = R[π1(X)] the Λ-coefficient homology and cohomology groups are
R[π1(X)]-modules

H∗(X ;R[π1(X)]) = H∗(∆(X̃ ;R)) = H∗(X̃;R) ,

H∗(X ;R[π1(X)]) = H−∗(HomR[π1(X)](∆(X̃ ;R), R[π1(X)]))

Definition 9.2 An n-dimensional universal R-homology Poincaré complex is a
finite connected simplicial complex X with a homology class [X ] ∈ Hn(X ;R)
such that the cap products are R[π1(X)]-module isomorphisms

[X ] ∩ − : Hn−∗(X ;R[π1(X)]) ∼= H∗(X ;R[π1(X)]) .

A universal Z-homology Poincaré complex will just be called a universal ho-
mology Poincaré complex.

Remark 9.3 (i) A universal homology Poincaré complex is just a Poincaré com-
plex in the sense of Wall [42].

(ii) If X is a universal R-homology Poincaré complex with universal cover X̃
then the R[π1(X)]-module chain map

[X ] ∩ − : ∆(X̃;R)n−∗ = HomR[π1(X)](∆(X̃ ;R), R[π1(X)])∗−n → ∆(X̃ ;R)

is a chain equivalence, and there are defined Poincaré duality isomorphisms

[X ] ∩ − : Hn−∗(X ; Λ) ∼= H∗(X ; Λ)

for any R[π1(X)]-module Λ.
(iii) A connected finite simplicial complex X with finite fundamental group
π1(X) is an n-dimensional universal R-homology Poincaré complex if and only

if the universal cover X̃ is an n-dimensional R-homology Poincaré complex in
the sense of 6.2.

Proposition 9.4 A connected n-dimensional R-homology manifold X is an n-
dimensional universal R-homology Poincaré complex.
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Proof The assembly functor of Ranicki and Weiss [34]

A : A(R,X)→ A(R[π1(X)]) ; A =
∑

σ∈X
A(σ) 7→ A(X̃) =

∑

σ̃∈X̃

A(pσ̃)

is defined for any connected simplicial complex X , with p : X̃ → X the uni-
versal covering projection. The assembly is a natural transformation of addi-
tive categories with chain duality ([29, 9.11]), so that the assembly of the n-
dimensional symmetric Poincaré complex (∆(X ′;R),∆[X ]) in A(R,X) is the

n-dimensional symmetric Poincaré complex (∆(X̃ ′;R),∆[X ]) in A(R[π1(X)]).
(This is just a formalization of the standard dual cell proof of Poincaré duality,
e.g. Wall [43, Thm. 2.1]). ✷

In particular, a homology manifold is a universal homology Poincaré complex.

Definition 9.5 (Quinn [22])
(i) An n-dimensional normal complex (X, νX , ρX) is a finite simplicial complex
X together with a normal structure

(νX : X → BSG(k) , ρX : Sn+k → T (νX)) (k large) .

The homology class

[X ] = UνX ∩ h(ρX) = [X ] ∈ Hn(X) (h = Hurewicz)

is the fundamental class of X .
(ii) A normal structure on an n-dimensional homology Poincaré complex X is
a normal structure (νX , ρX) realizing the fundamental class [X ] ∈ Hn(X).

Remark 9.6 (i) A finite simplicial complex X is an n-dimensional universal
homology Poincaré complex if and only if a regular neighbourhood (U, ∂U) of
an embedding X ⊂ Sn+k defines a fibration

(Dk, Sk−1)→ (U, ∂U)→ X

(Spivak [41], Wall [42], Ranicki [27]). A n-dimensional universal homology
Poincaré complex X has a canonical class of Spivak normal structures (νX :
X → BSG(k), ρX : Sn+k → T (νX)), namely those represented by such regular
neighbourhoods (U, ∂U) with

ρX : Sn+k → Sn+k/cl.(Sn+k\U) = U/∂U = T (νX) .

(ii) Browder [1] used Poincaré surgery on π1(X) to prove that every n-dimen-
sional homology Poincaré complex X admits normal structures (νX : X →
BSG(k), ρX : Sn+k → T (νX)), and that for any such structure νX ⊕ ǫ : X →
BSG(k+1) is the normal fibration of a Poincaré embedding X ⊂ Sn+k+1 with
complement T (νX) ∪ρX Dn+k+1.
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Definition 9.7 (Ranicki [29, 17.1])
The peripheral quadratic complex of an n-dimensional normal complex X is the
(n−1)-dimensional quadratic Poincaré complex (C,ψX) in A(Z, X) with C the
X-controlled peripheral chain complex (6.10)

C = C([X ] ∩− : ∆(X)n−∗ → ∆(X ′))∗+1

and

ψX ∈ QXn−1(C) = Hn−1(W ⊗Z[Σ2] (C ⊗(Z,X) C))

the X-controlled quadratic class obtained by the boundary construction of [29,
2.6].

Note that the normal complex X is a universal homology Poincaré complex if
and only if the peripheral chain complex C is A(Z[π1(X)])-contractible.

Remark 9.8 The X-controlled quadratic class ψX ∈ QXn−1(C) in 9.7 has sym-
metrization

(1 + T )ψX = φX ∈ Hn−1(C ⊗(Z,X) C)

the chain homotopy class of chain equivalences φX : Cn−1−∗ → C (6.11). In
fact, ψX is an X-controlled version of the quadratic class

ψ = ψF (UνX ) ∈ Qn−1(C) = Hn−1(W ⊗Z[Σ2] (C ⊗Z C))

obtained by evaluating the spectral quadratic construction of Ranicki [28, 7.3]

ψF : H̃k(T (νX))→ Qn−1(C)

on the Thom class UνX ∈ H̃k(T (νX)). Here, F : T (νX)∗ → Σ∞X+ is a stable
map inducing the chain map [X ] ∩ − : ∆(X)n−∗ → ∆(X ′), with T (νX)∗ the
spectrum S-dual of the Thom space T (νX). If X is homology Poincaré then
T (νX)∗ = Σ∞X+. If X is R-homology Poincaré ψ = 0 ∈ Qn−1(C) = 0, but in
general ψX 6= 0.

Refer to Ranicki [29, p.148] for the algebraic surgery exact sequence of a sim-
plicial complex X

· · · → Hn(X ; L •)
A→ Ln(Z[π1(X)])→ Sn(X)→ Hn−1(X ; L •)→ . . . ,

with A the assembly map. The generalized homology group

Hn(X ; L •) = Ln(A(Z, X))

is the cobordism group of 1-connective n-dimensional quadratic Poincaré com-
plexes (C,ψX) in A(Z, X), with C an n-dimensional chain complex in A(Z, X)
and

ψX ∈ QXn (C) = Hn(W ⊗Z[Σ2] (C ⊗(Z,X) C))
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such that

(1 + T )ψX ∈ Hn(C ⊗(Z,X) C) = H0(Hom(Z,X)(C
n−∗, C))

is a chain homotopy class of (Z, X)-module chain equivalences Cn−∗ → C.
Here, W is a free Z[Σ2]-module resolution of Z

W : · · · → Z[Σ2]
1−T−→ Z[Σ2]

1+T−→ Z[Σ2]
1−T−→ Z[Σ2]

and the generator T ∈ Σ2 acts on C ⊗(Z,X) C by signed transposition. The
quadratic L-group

Ln(Z[π1(X)]) = Ln(A(Z[π1(X)]))

is the cobordism group of n-dimensional quadratic Poincaré complexes (C,ψ)
over the group ring Z[π1(X)] with

ψ ∈ Qn(C) = Hn(W ⊗Z[Σ2] (C ⊗Z[π1(X)] C)) .

The structure group Sn(X) is the cobordism group of 1/2-connective
A(Z[π1(X)])-contractible (n− 1)-dimensional quadratic Poincaré complexes in
A(Z, X).

Definition 9.9 (Ranicki [29, 17.4])
The total surgery obstruction of an n-dimensional universal homology Poincaré
complex X is the cobordism class of the peripheral quadratic Poincaré complex
in A(Z, X)

s(X) = (C,ψX) ∈ Sn(X) .

Proposition 9.10 Let X be an n-dimensional universal Poincaré complex, with
peripheral complex (C,ψX).
(i) The following conditions are equivalent :

(a) X is an n-dimensional homology manifold,

(b) C is A(Z, X)-contractible,

(c) (1 + T )ψX = 0 ∈ Hn−1(C ⊗(Z,X) C).

(ii) The total surgery obstruction is such that s(X) = 0 if (and for n ≥ 5 only
if) the polyhedron |X | is homotopy equivalent to an n-dimensional topological
manifold. The image of the total surgery obstruction

t(X) = [s(X)] ∈ Hn−1(X ; L •)

is such that t(X) = 0 if and only if the Spivak normal fibration νX : X → BSG
admits a topological reduction ν̃X : X → BSTOP .
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Proof (i) (a) ⇐⇒ (b) The peripheral quadratic complex (C,ψX) is A(Z, X)-
contractible if and only if the peripheral chain complex C is A(Z, X)-
contractible, if and only if X is a homology manifold (6.11).
(b) ⇐⇒ (c) The map

Hn(X)→ Hn−1(C ⊗(Z,X) C)

in the braid used in the proof of Theorem 6.13 sends the fundamental class
[X ] ∈ Hn(X) to the homology class

(1 + T )ψX ∈ Hn−1(C ⊗(Z,X) C) ,

and C is A(Z, X)-contractible if and only if (1 + T )ψX = 0.
(ii) See [29, 17.4]. ✷

Remark 9.11 There is also an R-coefficient version, for any commutative ring
R. The R-coefficient peripheral complex (C,ψX) of an n-dimensional univer-
sal R-homology Poincaré complex X is the A(R[π1(X)])-contractible (n − 1)-
dimensional quadratic Poincaré complex in A(R,X) with

C = C([X ] ∩ − : ∆(X ;R)n−∗ → ∆(X ′;R))∗+1

The R-coefficient total surgery obstruction ([29, 26.1]) of X is the cobordism
class

s(X ;R) = (C,ψX) ∈ Sn(X ;R) ,

taking value in the R-coefficient structure group fitting into the R-coefficient
algebraic surgery exact sequence

· · · → Hn(X ; L •)
A→ Γn(R[π1(X)]→ R)→ Sn(X ;R)→ Hn−1(X ; L •)→ . . .

with Γ∗ the R-homology surgery obstruction groups of Cappell and Shaneson
[3]. The R-coefficient total surgery obstruction is such that s(X ;R) = 0 if
(and for n ≥ 5 only if) the polyhedron |X | is R-homology equivalent to an
n-dimensional topological manifold (Ranicki [29, 26.1]). See §14 below for the
application to knot theory, with R = Z.

10. Combinatorially controlled surgery theory

This section develops the combinatorial version of the topological controlled
surgery theory proposed by Quinn [23] and Ranicki and Yamasaki [37]. In
principle, it is possible to construct the topological theory using the combina-
torial version and the Čech nerves of open covers (cf. Quinn [25, 1.4]), but this
will not be done here.

A degree 1 map f : M → N of n-dimensional homology manifolds has acyclic
point inverses if and only if

∆∗[M ]− (f ! ⊗ f !)∆∗[N ] = 0 ∈ Hn(M ×N M)

Documenta Mathematica 4 (1999) 1–59



Singularities and Controlled Topology 33

by 7.7 (ii). For a normal map (f, b) : M → N this obstruction will now be
related to the chain level surgery obstruction. The Wall surgery obstruction
of (f, b) was expressed in Ranicki [27],[29] as the cobordism class of a kernel
n-dimensional quadratic Poincaré complex in A(Z[π1(N)])

σ∗(f, b) = (∆(f !), ψb) ∈ Ln(Z[π1(N)]) .

The quadratic class ψb will be refined to an N -controlled version ψb,N , with
symmetrization

(1 + T )ψb,N = ∆∗[M ]− (f ! ⊗ f !)∆∗[N ] ∈ Hn(M ×N M) .

Galewski and Stern [7], [8, 1.7] proved that the Spivak normal fibration
νM : M → BSG of a homology manifold M has a canonical topological bundle
reduction νM : M → BSTOP , namely the canonical topological bundle reduc-
tion of the normal homology cobordism bundle νM : M → BSH , and that in
fact for dim(M) ≥ 5 there exists a polyhedral topological manifold MTOP with
a map MTOP →M with contractible point inverses.

Definition 10.1 A normal map (f, b) : M → N from an n-dimensional homology
manifold M to an n-dimensional Poincaré complex N is a degree 1 map f :
M → N with a map of (stable) topological bundles b : νM → η over f .

The surgery obstruction σ∗(f, b) ∈ Ln(Z[π1(N)]) of a normal map (f, b) : M →
N is defined by Maunder [16] following Wall [43]. The surgery obstruction is
shown in [16] to be such that σ∗(f, b) = 0 if (and for n ≥ 5 only if) (f, b) is
normal bordant to a homotopy equivalence. The surgery obstruction can also
be defined using the chain complex method of Ranicki [26], [27].

Definition 10.2 The N -controlled quadratic structure of a normal map (f, b) :
M → N of n-dimensional homology manifolds is the element

ψb,N = ψF,N [N ] ∈ QNn (∆(M)) = Hn(EΣ2 ×Σ2 (M ×N M))

with ψF,N : H∗(N) → QN∗ (∆(M)) the N -controlled version of the quadratic
construction of [27, Chapter 1]

ψF : H∗(N)→ Q∗(∆(M)) = H∗(EΣ2 ×Σ2 (M ×M)) .

Here, b : νM → η is a stable bundle map over f from the stable normal bundle
νM of M , η is a bundle over N , EΣ2 is a contractible space with a free Σ2-
action, the generator T ∈ Σ2 acts on M ×N M by transposition

T : M ×N M → M ×N M ; (x, y) 7→ (y, x)

and F : Σ∞N+ → Σ∞M+ is a geometric Umkehr map (= the S-dual of
T (b) : Σ∞T (νM )→ Σ∞T (η)) inducing f ! on the chain level.
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As usual, write W = ∆(EΣ2), so that

Qn(∆(M)) = Hn(W ⊗Z[Σ2] (∆(M)⊗Z ∆(M))) ,

QNn (∆(M)) = Hn(W ⊗Z[Σ2] (∆(M)⊗(Z,N) ∆(M))) .

Remark 10.3 As defined in [27] the quadratic construction ψF only gives an
element ψb = ψF [N ] ∈ Qn(∆(M)). There are two ways of checking that there
is a lift of ψb to an N -controlled element ψb,N ∈ QNn (∆(M)) :

• Note that the natural chain level transformation in [27, Chapter 1]

ψF : ∆(N)→W ⊗Z[Σ2] (∆(M)⊗Z ∆(M))

factors through

ψF,N : ∆(N)→W ⊗Z[Σ2] (∆(M)⊗(Z,N) ∆(M))

exactly as for the Alexander-Whitney diagonal chain approximation (5.3
(iii)), so that

ψF : Hn(N)
ψF,N−→ QNn (∆(M)) −→ Qn(∆(M)) .

• Note that (f, b) determines an algebraic normal map in A(Z, N) in the
sense of [29, 2.16], with a corresponding quadratic class ψb,N .

An n-dimensional homology manifold M determines an n-dimensional symmet-
ric Poincaré complex in A(Z, N)

σ∗N (M) = (∆(M),∆∗[M ] ∈ QnN (∆(M)))

for any simplicial map M → N . Here, the Q-group is defined by

QnN (∆(M)) = Hn(HomZ[Σ2](W,∆(M)⊗(Z,N) ∆(M))) ,

and ∆∗ : Hn(M)→ QnN (∆(M)) is induced by the Alexander-Whitney diagonal
chain approximation. (Note that ∆∗ is an isomorphism for 1 : M → N =
M). The fundamental L•(Z)-homology class of M (Ranicki [29, 16.16]) is the
cobordism class

[M ]L = σ∗M (M) ∈ Ln(A(Z,M)) = Hn(M ; L•(Z)) .

For a degree 1 map f : M → N the algebraic mapping cone of the Umkehr
chain map f ! : ∆(N)→ ∆(M) is a (Z, N)-module chain complex

∆(f !) = C(f ! : ∆(N)→ ∆(M)) .

Let e : ∆(M) → ∆(f !) be the inclusion. The kernel n-dimensional symmetric
Poincaré complex in A(Z, N)

σ∗N (f) = (∆(f !), (e⊗ e)∆∗[M ])
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is such that up to homotopy equivalence

σ∗N (M) = σ∗N (N)⊕ σ∗N (f) ,

with cobordism class the difference of the fundamental L•(Z)-homology classes

σ∗N (f) = f∗[M ]L − [N ]L ∈ Hn(N ; L•(Z)) .

Definition 10.4 (Ranicki [29, 18.3])
The normal invariant of a normal map (f, b) : M → N of n-dimensional
homology manifolds is the cobordism class

[f, b]L = (∆(f !), (e⊗ e)ψb,N )

∈ Ln(A(Z, N)) = Hn(N ; L •) = [N,G/TOP ] .

The normal invariant of 10.4 is a (mild) generalization of the traditional normal
invariant in surgery theory, and has the following properties :

• [f, b]L ∈ Hn(N ; L •) is a normal bordism invariant, such that [f, b]L = 0
if f has acyclic point inverses.

• For a normal map of polyhedral topological manifolds [f, b]L = 0 if (and
for n ≥ 5 only if) (f, b) is normal bordant to a homeomorphism.

• The assembly of [f, b]L in the Wall surgery group is the surgery obstruc-
tion of (f, b)

A[f, b]L = σ∗(f, b) ∈ Ln(Z[π1(N)]) .

• The image of σ∗(f, b) in the homology surgery Γ-group of Cappell and
Shaneson [3]

AH [f, b]L = σH∗ (f, b) ∈ Γn(Z[π1(N)]→ Z)

is such that σH∗ (f, b) = 0 if (and for n ≥ 5 only if) (f, b) is normal bordant
to a homology equivalence.

For PL manifolds these are direct applications of the surgery obstruction theory
of Wall [43]. In the general case, apply the extension of the theory to polyhedral
homology manifolds due to Maunder [16], or else combine with the result of
Galewski and Stern [7], [8, 1.7] that every polyhedral homology manifold can
be resolved by a polyhedral topological manifold and the TOP version of Wall’s
theory.

Proposition 10.5 The N -controlled quadratic class ψb,N of a normal map
(f, b) : M → N of n-dimensional homology manifolds determines a kernel
n-dimensional quadratic Poincaré complex in A(Z, N)

σN∗ (f, b) = (∆(f !), (e⊗ e)ψb,N )
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with cobordism class the normal invariant of (f, b)

[f, b]L = σN∗ (f, b) ∈ Ln(A(Z, N)) = Hn(N ; L•) .

The Poincaré duality chain equivalence of the symmetrization

(1 + T )σN∗ (f, b) = σ∗N (f)

is such that up to chain homotopy

(1 + T )(e⊗ e)ψb,N = (e⊗ e)∆∗[M ] : ∆(f !)n−∗ → ∆(f !) ,

which is the obstruction to f having acyclic point inverses (7.7 (ii))

(1 + T )(e⊗ e)ψb,N = ∆∗[M ]− (f ! ⊗ f !)∆∗[N ]

∈ Hn(∆(f !)⊗(Z,N) ∆(f !)) = Hn(M ×N M,∆M ) (7.3 (ii)) .

Proof The identity

(1 + T )ψb,N = ∆∗[M ]− (f ! ⊗ f !)∆∗[N ] ∈ Hn(M ×N M)

is just the N -controlled analogue of the standard property of the quadratic
construction ([27])

(1 + T )ψb = ∆∗[M ]− (f ! ⊗ f !)∆∗[N ] ∈ Hn(M ×M) .

✷

Remark 10.6 The quadratic class ψb,N ∈ QNn (∆(M)) can be defined for any
degree 1 map f : M → N of n-dimensional universal Poincaré complexes with a
map b : νM → νN of the Spivak normal fibrations, with all the properties of ψb,N
in 10.2 except that the n-dimensional quadratic complex (∆(f !), (e ⊗ e)ψb,N )
in A(Z, N) will only be Poincaré in A(Z[π1(N)]).

A homotopy equivalence f : M → N of n-dimensional homology manifolds can
be regarded as a normal map (f, b) : M → N with b : νM → (f−1)∗νM .

Definition 10.7 (Ranicki [29, 18.3])
The structure invariant of a homotopy equivalence f : M → N of n-dimensional
homology manifolds is the cobordism class

s(f) = (∆(f !), ψb,N ) ∈ Sn+1(N)

with image the normal invariant [f, b]L ∈ Hn(N ; L •).

Proposition 10.8 (Ranicki [29, 18.3])
The structure invariant of a homotopy equivalence f : M → N of polyhedral
n-dimensional topological manifolds is such that s(f) = 0 ∈ Sn(N) if (and for
n ≥ 5 only if) f is h-cobordant to a homeomorphism.
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In §13 below there will be obtained controlled versions of 10.7 and 10.8.

There is also a simple version of the structure invariant, which is defined for
a simple homotopy equivalence f : M → N of n-dimensional homology mani-
folds, taking value in the relative group Ssn(N) in the exact sequence

· · · → Hn(N ; L •)
A→ Lsn(Z[π1(N)])→ Ssn(N)→ Hn−1(N ; L •)→ . . . .

Remark 10.9 The simple homotopy theory version of surgery theory allows an
application of the s-cobordism theorem, to obtain :
The simple structure invariant of a simple homotopy equivalence f : M → N of
polyhedral n-dimensional topological manifolds is such that s(f) = 0 ∈ Ssn(N)
if (and for n ≥ 5 only if) f is homotopic to a homeomorphism.

Proposition 10.10 (i) A map f : M → N of simplicial complexes with acyclic
point inverses is simple, with τ(f) = 0 ∈ Wh(π1(N)).
(ii) A homotopy equivalence f : M → N of n-dimensional homology man-
ifolds with acyclic point inverses is simple, with simple structure invariant
s(f) = 0 ∈ Ssn(N).
(iii) For n ≥ 5 a homotopy equivalence f : M → N of n-dimensional polyhedral
topological manifolds with acyclic point inverses is homotopic to a homeomor-
phism.
Proof (i) As in the proof of 9.4 use the assembly functor of Ranicki and Weiss
[34]

A : A(Z, N)→ A(Z[π1(N)]) ; A =
∑

σ∈N
A(σ) 7→ A(Ñ) =

∑

σ̃∈Ñ

A(pσ̃)

with p : Ñ → N the universal covering projection. A choice of basis for each
of the f.g. free Z-modules A(σ) (σ ∈ N) determines a basis for the assembly

f.g. free Z[π1(N)]-module A(Ñ ), uniquely up to multiplication by the group
elements g ∈ π1(N). Thus if C is a based (Z, N)-module chain complex such

that C(Ñ) is contractible there is a well-defined Whitehead torsion

τ(C(Ñ )) ∈Wh(π1(N)) .

For any simplicial map f : M → N there is defined a based (Z, N)-module
chain complex

C = C(f : ∆(M)→ ∆(N))

with

C(σ) =

C(f | : ∆(f−1D(σ,N), f−1∂D(σ,N))→ ∆(D(σ,N), ∂D(σ,N))) (σ ∈ N) .

The assembly of C is the based f.g. free Z[π1(N)]-module chain complex

C(Ñ) = C(f̃ : ∆(M̃)→ ∆(Ñ ))
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with M̃ = f∗Ñ the pullback cover of M . If f̃ is a Z[π1(N)]-module chain
equivalence (e.g. if f is a homotopy equivalence) the torsion of f is defined by

τ(f) = τ(C(Ñ )) ∈Wh(π1(N)) .

If f has acyclic point inverses each C(σ) is contractible, and f̃ is a Z[π1(N)]-
module chain equivalence, with the torsion of f such that

τ(f) = τ(C(Ñ )) ∈ im(Wh({1})→Wh(π1(N))) = {0} ,
so that τ(f) = 0. (This uses Wh({1}) = 0, exactly as in the proof of the
combinatorial invariance of Whitehead torsion in Milnor [19]).
(ii) The simple structure invariant s(f) is the cobordism class of the simple
Z[π1(N)]-contractible n-dimensional quadratic Poincaré complex (∆(f !), ψb,N )
in A(Z, N) with

f ! = f−1 : ∆(N)→ ∆(M) .

By (i) ∆(f !) is simple (Z, N)-contractible, and so represents 0 in the simple
structure group.
(iii) By (ii) f is a simple homotopy equivalence with zero simple structure
invariant, so that 10.9 applies. ✷

Remark 10.11 Let n ≥ 5.
(i) A map f : M → N of n-dimensional PL manifolds with acyclic point
inverses is homotopic through maps with acyclic point inverses to a PL home-
omorphism if and only if the Cohen-Sato-Sullivan obstruction

cH(f) ∈ H3(N ; θH3 )

is 0, with θH3 the Kervaire-Milnor cobordism group of oriented 3-dimensional
PL homology spheres (Ranicki [31, pp.26–28]). The obstruction is 0 if f has
contractible point inverses. The obstruction is the homotopy class of the map

cH(f) : N → H/PL ≃ K(θH3 , 3)

classifying the difference between the PL reductions of the normal homology
cobordism bundles of M and N . The combination of the Kirby-Siebenmann
result

TOP/PL ≃ K(Z2, 3)

with the work of Galewski and Stern [7] shows that the various classifying
spaces are related by a commutative braid of fibration sequences

K(θH3 , 3)
α
##G

GG
GG

G

  
BPL

##G
GGGGGG

  
BTOP

κ
##G

GG
GG

GG

!!
K(ker(α), 5)

K(Z2, 3)

;;wwwwwww

δ
##G

GGG
GG

BH

;;wwwwwww

cH

##G
GG

GG
GG

K(Z2, 4)

δ
;;wwwwww

K(ker(α), 4)

;;wwwwwww

==
K(θH3 , 4)

α
;;wwwwww
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with α : θH3 → Z2 the Rochlin map ([31, p.26]).
(ii) A homeomorphism f : M → N of n-dimensional PL manifolds is homotopic
to a PL homeomorphism if and only if the Casson-Sullivan obstruction

κ(f) = α(cH(f)) ∈ H3(N ; Z2)

is 0 ([31, p.14]). The obstruction is the homotopy class of the map

κ(f) : N → TOP/PL ≃ K(Z2, 3)

classifying the difference between the PL reductions of the normal topological
block bundles of M and N .
(iii) A homeomorphism f : M → N of n-dimensional PL manifolds is homo-
topic to a simplicial map with acyclic point inverses if and only if the Galewski-
Matumoto-Stern obstruction

δκ(f) ∈ H4(N ; ker(α))

is 0 ([31, p.28]).
(iv) Galewski and Stern [8] proved that an n-dimensional topological manifold
N is polyhedral (i.e. can be triangulated by a polyhedron) if and only if the
element

δκ(νN ) ∈ H5(N ; ker(α))

is 0. In particular, this obstruction is 0 for the topological manifold N = MTOP

resolving a (polyhedral) homology manifold M given by Galewski and Stern
[7], so that MTOP can be taken to be polyhedral.

11. Intersections and self-intersections

The chain complex methods of this paper will now be applied to obtained
a combinatorially controlled homology version of the intersection theory of
homology submanifolds.

Definition 11.1 Given maps of X-controlled R-homology Poincaré complexes

f1 : M1 → N , f2 : M2 → N

with

dim(M1) = m1 , dim(M2) = m2 , dim(N) = n

define the X-controlled intersection class

[M1 ×X M2] ∈ Hm1+m2−n(M1 ×X M2;R)
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to be the chain homotopy class of the (R,X)-module chain map

∆(M1;R)m1−∗ ≃ ∆(M1;R)
f1−→ ∆(N ;R) ≃ ∆(N ;R)n−∗

(f2)
∗

−→ ∆(M2;R)n−∗ ≃ ∆(M2;R)∗+m2−n ,

using the identifications

Hm1+m2−n(M1 ×X M2;R)

= Hm1+m2−n(∆(M1;R)⊗(R,X) ∆(M2;R))

= H0(Hom(R,X)(∆(M1;R)m1−∗,∆(M2;R)∗+m2−n)) .

In terms of the Umkehr (R,X)-module chain maps (7.1)

f !
1 : ∆(N ;R) ≃ ∆(N ;R)n−∗

(f1)∗−→ ∆(M1;R)n−∗ ≃ ∆(M1;R)∗+m1−n ,

f !
2 : ∆(N ;R) ≃ ∆(N ;R)n−∗

(f2)∗−→ ∆(M2;R)n−∗ ≃ ∆(M2;R)∗+m2−n

the X-controlled intersection class is given by the evaluation on the fundamen-
tal class [N ] ∈ Hn(N) of the composite

Hn(N ;R)
∆→ Hn(N ×X N ;R)

f !
1⊗f !

2−→ Hm1+m2−n(M1 ×X M2;R) ,

that is

[M1 ×N M2] = (f !
1 ⊗ f !

2)∆[N ] ∈ Hm1+m2−n(M1 ×X M2;R) .

For the remainder of §11 R = Z, X = N , i.e. only homology manifolds will be
considered.

Definition 11.2 Embeddings of homology manifolds

f1 : (M1)m1 → Nn , f2 : (M2)m2 → Nn

are transverse if

• the intersection M1 ∩ M2 is an (m1 + m2 − n)-dimensional homology
manifold,

• the product embedding f1 × f2 : M1 × M2 → N × N has a normal
homology cobordism bundle

νf1×f2 : M1 ×M2 → BSH(2n−m1 −m2)

whose restriction to M1 ∩M2 (viewed as a submanifold of M1×M2) is a
normal homology cobordism bundle for M1 ∩M2 ⊂ N .

Documenta Mathematica 4 (1999) 1–59



Singularities and Controlled Topology 41

(Compare with the notion of homology manifold transversality considered by
Galewski and Stern [7, Chapter 3].)

Proposition 11.3 The N -controlled intersection class of transversely intersecting
embeddings of homology manifolds f1 : (M1)m1 → Nn, f2 : (M2)m2 → Nn is
the fundamental class of the (m1 +m2−n)-dimensional homology submanifold

M1 ×N M2 = M1 ∩M2 ⊂ N ,

that is
[M1 ×N M2] = [M1 ∩M2] ∈ Hm1+m2−n(M1 ×N M2) .

Proof The normal homology cobordism bundle

ν = νM1∩M2⊂N : M1 ∩M2 → BSH(2n−m1 −m2)

is such that there are defined isomorphisms

H∗(N,N\(M1 ∩M2)) ∼= H∗(N, cl.(N\E(ν)))
∼= H∗(E(ν), S(ν))
∼= H∗+m1+m2−2n(M1 ∩M2) .

The identity [M1 ×N M2] = [M1 ∩M2] follows from the evaluation of [N ] ∈
Hn(N) in the commutative diagram

Hn(N)

��

∼= // Hn(N ×N N)

f !
1 ⊗ f !

2

��
Hn(N,N\(M1 ∩M2))

∼= // Hm1+m2−n(M1 ×N M2) .

✷

Given a map f : M → N define the maps

i : M →M ×N M ; x 7→ (x, x) ,

j : M ×N M → N ; (x, y) 7→ f(x) = f(y) ,

k : M ×N N →M ; (x, y) 7→ x

(as in §7) such that

ji = f : M → N , ki = 1 : M →M .

The induced maps
i∗ : H∗(M)→ H∗(M ×N M)

are split injections, with

H∗(M ×N M) = H∗(M)⊕H∗(M ×N M,∆M ) .
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If M,N are homology manifolds with dim(M) = m, dim(N) = n the Umkehr
(Z, N)-module chain maps

f ! : ∆(N)→ ∆(M)∗+m−n , j! : ∆(N)→ ∆(M ×N M)∗+2m−2n

are defined as in 7.1,7.8.

Proposition 11.4 Let f : Mm → Nn be a map of homology manifolds.
(i) The N -controlled intersection class of f with itself

[M ×N M ] = j![N ] ∈ H2m−n(M ×N M)

is such that [M ×N M ] = 0 ∈ H2m−n(M ×N M,∆M ) if and only if

[M ×N M ] ∈ im(i∗ : H2m−n(M)→ H2m−n(M ×N M)) .

(ii) If f is an embedding then

[M ×N M ] = [M ] ∩ e(νf ) ∈ H2m−n(M ×N M) = H2m−n(M) ,

with e(νf ) ∈ Hn−m(M) the Euler class of the normal homology cobordism
bundle νf : M → BSH(n−m).
Proof (i) Immediate from the definition of [M ×N M ], and the (split) exact
sequence

0→ H2m−n(M)
i∗−→ H2m−n(M ×N M)→ H2m−n(M ×N M,∆M )→ 0 .

(ii) For an embedding f

i = 1 : M →M ×N M = M ,

j = f : M ×N M = M → N .

It follows from the commutative diagram

Hn(N)
∆N //

∼=
((RRRRRRRRRRRRR

j!

��

Hn(N×N)

f ! ⊗ f !

��

∼=
wwooooooooooo

Hn(N×N,N×N\∆N)

(f×f)∗

��

// Hn(N×N)

(f×f)∗

��
Hn(M×M,M×M\∆M)
∼=

vvlllllllllllll
// Hn(M×M)

∼=
''OOOOOOOOOOO

H2m−n(M)
∆M // H2m−n(M×M)

that

∆M [M ×N M ] = ∆M j
![N ] = (f ! ⊗ f !)∆N [N ] ∈ H2m−n(M ×M) .
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The Pontrjagin-Thom collapse map

F : N+ → N/cl.(N\E(νf )) = E(νf )/S(νf ) = T (νf)

induces the Umkehr Z-module chain map

F = f ! : ∆(N) = ∆̃(N+)→ ∆̃(T (νf )) ≃ ∆(M)∗+m−n .

It follows from the commutative diagram

Hn(N)
F = f !

//

∆N

��

H̃n(T (νf )) ∼= Hm(M)

∆T (νf )

��

− ∩ e(νf )

**VVVVVVVVVVVVVVVVVV

H2m−n(M)

∆M

tthhhhhhhhhhhhhhhhhh

Hn(N×N)
f ! ⊗ f !

// H̃n(T (νf ) ∧ T (νf)) ∼= H2m−n(M ×M)

that

(f ! ⊗ f !)∆N [N ] = ∆M (f ![N ] ∩ e(νf ))

= ∆M ([M ] ∩ e(νf )) ∈ H2m−n(M ×M) .

Thus

∆M [M ×N M ] = (f ! ⊗ f !)∆N [N ]

= ∆M ([M ] ∩ e(νf )) ∈ H2m−n(M ×M) .

Now ∆M : H2m−n(M)→ H2m−n(M ×M) is a (split) injection, so that

[M ×N M ] = [M ] ∩ e(νf ) ∈ H2m−n(M) .

✷

Remark 11.5 (i) If f : Mm → Nn is a map of homology manifolds with an
N -controlled map

a : (M ×M,M ×M\∆M )→ (N ×N,N ×N\∆N )

such that the diagram

(M ×M,M ×M\M ×N M)

c

��~~
~~

~~
~~

~~
~~

~~
~~

f × f

��>
>>

>>
>>

>>
>>

>>
>>

>

(M ×M,M ×M\∆M )
a // (N ×N,N ×N\∆N )
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is N -controlled homotopy commutative then

[M ×N M ] ∈ im(i∗ : H2m−n(M)→ H2m−n(M ×N M)) ,

where c is the inclusion. (For m = n this is essentially the same as 8.6.)
The property ac ≃ f × f is related to the necessary and sufficient condition
obtained by Haefliger [10] for a map f : Mm → Nn of differentiable manifolds
in the stable range 2n ≥ 3(m + 1) to be homotopic to an embedding, namely
that f × f : M × M → N × N be Σ2-equivariantly homotopic to a map
h : M ×M → N ×N with h−1(∆N ) = ∆M , so that h defines a map of pairs

h : (M ×M,M ×M\∆M )→ (N ×N,N ×N\∆N) .

The action of Σ2 is by transposition (x, y) 7→ (y, x). See 11.11 below for a more
detailed discussion of the case n = 2m.
(ii) The identity of 11.4 (ii) for an embedding f : Mm → Nn can also be proved
geometrically, whenever there exists an isotopic embedding f ′ : M ′ = M → N
such that :

• M,M ′ ⊂ N intersect transversely in a (2m − n)-dimensional homology
submanifold M ∩M ′ ⊂ N ,

• [M ∩M ′] ∈ H2m−n(M) is Poincaré dual to e(νf ) ∈ Hn−m(M),

• [M ×N M ] = [M ∩M ′] ∈ H2m−n(M).

Applying 11.3, it follows that

[M ×N M ] = [M ∩M ′]
= [M ] ∩ e(νf ) ∈ H2m−n(M ×N M) = H2m−n(M) .

(iii) Let f : M → X be a degree 1 map of n-dimensional manifolds, which is
covered by a stable bundle map

b : τM ⊕ ǫ∞ → τX ⊕ ǫ∞ .

The induced stable map of Thom spaces

T (b) : T (τM ⊕ ǫ∞) = Σ∞T (τM )→ T (τX ⊕ ǫ∞) = Σ∞T (τX)

sends the Thom class of τX to the Thom class of τM

T (b)∗ : H̃n(T (τX))→ H̃n(T (τM )) ; UX → UM

The images of the Thom classes UM , UX under the maps

inclusion∗ : H̃n(T (τM )) ∼= Hn(M ×M,M ×M\∆M )

→ Hn(M ×M,M ×M\(f × f)−1∆X) ,

f × f∗ : Hn(X ×X,X ×X\∆X)→ Hn(M ×M,M ×M\(f × f)−1∆X)
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are not the same (in general), since the diagram I in

H̃n(T (τM ))

∼=

I

H̃n(T (τX))

∼=

T (b)∗
oo

Hn(M ×M,M ×M\∆M )

((QQQQQQQQQQQQQ

��

Hn(X ×X,X ×X\∆X)

vvmmmmmmmmmmmm

��

Hn(M ×M,M ×M\(f × f)−1∆X)

vvmmmmmmmmmmmmm

((QQQQQQQQQQQQ

Hn(M ×M) Hn(X ×X)
(f × f)∗

oo

does not commute. However, it does commute in the unstable case b : τM → τX ,
with a commutative diagram

(M ×M,M ×M\∆M )
b //

��

(X ×X,X ×X\∆X)

��
M

f // X

Definition 11.6 The homotopy double point set P (f) of a map f : M → N is
the homotopy pullback in the diagram

P (f) //

��

M

f

��
M

f // N

Thus P (f) is the space of triples (x, y, ω) with x, y ∈ M and ω : [0, 1] → N a
path such that

ω(0) = f(x) , ω(1) = f(y) ∈ N .

The space P (f) is a homotopy model for the actual double point set M ×NM ,
and there is an evident inclusion

M ×N M → P (f) ; (x, y) 7→ (x, y, ω)

with ω(t) = f(x) = f(y) ∈ N (0 ≤ t ≤ 1).

Proposition 11.7 If f : Mm → Nn is a map of homology manifolds the image
of [M ×N M ] ∈ H2m−n(M ×N M,∆M ) in H2m−n(P (f),∆M ) is a homotopy
invariant of f , which is 0 if f is homotopic to an embedding.
Proof Immediate from 11.4. ✷
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Remark 11.8 See Hatcher and Quinn [11] for the systematic use of homotopy
pullbacks to define intersection invariants of submanifolds.

Next, consider an immersion of an m-dimensional homology manifold in an
n-dimensional homology manifold

f : Mm → Nn

with m < n. Let νf : M → BSH(n − m) classify the normal homology
cobordism bundle, so that there is defined a fibration

(Dn−m, Sn−m−1)→ (E(νf ), S(νf ))→M

and the Thom space is given by

T (νf) = E(νf )/S(νf) .

For sufficiently large k there exists a map g : M → int(Dk) such that

f × g : M → N ×Dk ; x 7→ (f(x), g(x))

is an embedding with normal homology cobordism bundle

νf×g = νf ⊕ ǫk : M → BSH(n−m+ k) .

The corresponding Pontrjagin-Thom collapse map

F : ΣkN+ = N ×Dk/N × Sk−1 → T (νf ⊕ ǫk) = ΣkT (νf )

induces the Umkehr (Z, N)-module chain map

f ! : ∆(N) ≃ ∆(N)n−∗
f∗
−→ ∆(M)n−∗ ≃ ∆(M)∗+m−n ≃ ∆̃(T (νf )) .

Let
νf ×N νf : M ×N M → BSH(2(n−m))

be the homology cobordism bundle defined by the restriction of the product

νf × νf : M ×M → BSH(2(n−m))

to M ×N M ⊆M ×M , with Thom space

T (νf ×N νf ) = E(νf ×N νf )/S(νf ×N νf )

= E(νf )×N E(νf )/(E(νf )×N S(νf ) ∪ S(νf )×N E(νf )) .

Definition 11.9 The N -controlled self-intersection class of an immersion of ho-
mology manifolds f : Mm → Nn is the N -controlled version of the homology
class of Ranicki [27, pp.279-282]

µN (f) = − ψF,N [N ]

∈ H̃n(EΣ2 ⋉Σ2 T (νf ×N νf ))

= H2m−n(EΣ2 ×Σ2 (M ×N M); Z(−)n−m

)

= H2m−n(WZ(−)n−m ⊗Z[Σ2] (∆(M)⊗(Z,N) ∆(M)))
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with ψF,N (9.2) the N -controlled version of the quadratic construction ψF of
[27, Chapter 1] applied to a geometric Umkehr map F : ΣkN+ → ΣkT (νf ) (k

large) inducing f ! on the chain level. Here, Z(−)n−m

refers to Z twisted by the
orientation character of the extended power homology cobordism bundle

e2(νf ) : EΣ2 ×Σ2 (M ×N M)→ BH(2(n−m))

with

E(e2(νf )) = EΣ2 ×Σ2 (E(νf )×N E(νf )) ,

S(e2(νf )) = EΣ2 ×Σ2 (E(νf )×N S(νf ) ∪ S(νf )×N E(νf )) ,

T (e2(νf )) = E(e2(νf ))/S(e2(νf )) = EΣ2 ⋉Σ2 T (νf ×N νf ) ,

and WZ(−)n−m

is a free Z[Σ2]-resolution of Z(−)n−m

.

Proposition 11.10 (i) The N -controlled self-intersection class has symmetriza-
tion

(1 + T )µN (f) = [M ×N M ]− i∗(e(νf ) ∩ [M ])

∈ H̃n(T (νf ×N νf )) = H2m−n(M ×N M) ,

with
[M ×N M ] = (f ! ⊗ f !)∆N [N ] ∈ H2m−n(M ×N M) .

(ii) The image of µN (f) in

H2m−n(EΣ2 ×Σ2 (M ×N M), EΣ2 ×Σ2 ∆M ; Z(−)n−m

)

= H lf
2m−n(EΣ2 ×Σ2 (M ×N M\∆M ); Z(−)n−m

)

= H lf
2m−n((M ×N M\∆M )/Σ2; Z(−)n−m

)

is a Z(−)n−m

-twisted fundamental class for the stratified set of unordered double
points1

(M×NM\∆M )/Σ2 = {(x, y) ∈M×M |x 6= y, f(x) = f(y)}/{(x, y) ∼ (y, x)} .

(iii) If f : M → N is an embedding then it is possible to chose k = 0, F :
N+ → T (νf ) and µN (f) = 0.

(iv) The image of µN (f) in H lf
2m−n((M ×M\∆M )/Σ2; Z(−)n−m

) is a regular
homotopy invariant of f , which is 0 if f is regular homotopic to an embedding.
Proof These are the N -controlled versions of standard properties of the self-
intersection form µ of Chapter 5 of Wall [43]. ✷

Let f : Mm → Nn be a map of connected homology manifolds with n = 2m,
such that f∗ : π1(M)→ π1(N) is trivial. Write π1(N) = π, and let g : N → Bπ

1The unordered double point set of an immersion of manifolds f : Mm
→ Nn is an open

(2m − n)-dimensional manifold in the metastable range 3m < 2n, when there are no triple
points.
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be the classifying map for the universal cover Ñ = g∗Eπ of N . A choice
of null-homotopy gf ≃ {∗} : M → Bπ determines a homotopy equivalence
P (gf) ≃ π×M ×M , with P (gf) the homotopy double point set (11.6), as well

as a lift f̃ : M → Ñ of f : M → N . The N -controlled intersection class (11.1)
is an element

[M ×N M ] ∈ H0(M ×N M)

with image the intersection class of Wall [43, 5.2]

λ(f, f) ∈ H0(P (gf)) = Z[π] ,

which is a homotopy invariant of f . The following result was first obtained in
the differentiable category.

Proposition 11.11 (Haefliger [10])
The reduced intersection class of a map f : Mm → N2m

λ̃(f, f) = [λ(f, f)] ∈ H0(P (gf),∆M ) = Z[π]/Z

is such that λ̃(f, f) = 0 if (and for m ≥ 3 only if) f is homotopic to an
embedding.

Now assume that f : Mm → N2m is an immersion, so that the double point
set M ×N M is the disjoint union of ∆M and a finite set M ×N M\∆M . The
N -controlled self-intersection class (11.9)

µN (f) ∈ H0(EΣ2 ×Σ2 (M ×N M); Z(−)m

)

has image the self-intersection form of [43, 5.2]

µ(f) =
∑

(x,y)∈(M×NM\∆M )/Σ2

w(x, y)g(x, y)

∈ H0(EΣ2 ×Σ2 P (gf); Z(−)m

) = Z[π]/{a− (−)ma}

where

• a 7→ a is the involution on the fundamental group ring Z[π] defined (as
in §9) by

Z[π]→ Z[π] ; a =
∑

g∈π
ngg 7→ a =

∑

g∈π
ngg
−1 ,

• g(x, y) ∈ π is the fundamental group element determined for each non-
trivial ordered double point (x, y) ∈M ×N M\∆N by

f̃(x) = g(x, y)f̃(y) ∈ Ñ ,

• w(x, y) = ±1 according to the matching up of the orientations of M and
N at f(x) = f(y) ∈ N .
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The symmetrization of µ(f) is such that

µ(f) + (−)mµ(f) = λ(f, f)− χ(νf ) ∈ Z[π] ,

a special case of 11.10 (i), with χ(νf ) ∈ Z ⊆ Z[π].

Proposition 11.12 (Wall [43, 5.2])
The self-intersection form of an immersion f : Mm → N2m

µ(f) ∈ Z[π]/{a− (−)ma}

is a regular homotopy invariant such that µ(f) = 0 if (and for m ≥ 3) if f is
regular homotopic to an embedding.

In fact, the reduced self-intersection form

µ̃(f) ∈ Z[π]/(Z + {a− (−)ma})

is a homotopy invariant of f . The condition m ≥ 3 in 11.12 is necessary for the
application of the Whitney trick to remove pairs of double points, with µ(f) = 0
being just the algebraic condition for the double points to appear in potentially
cancelling pairs. The result of 11.12 for an immersion f : Sm → N2m is of
course essential for even-dimensional surgery obstruction theory.

12. Whitehead torsion

It is a commonplace of controlled topology that the Whitehead torsion of an X-
controlled homotopy equivalence of X-controlled complexes has zero image in
Wh(π1(X)). See for example the controlled K-theory proof in Ranicki and Ya-
masaki [36] of Chapman’s theorem on the topological invariance of Whitehead
torsion.

Proposition 12.1 If f : M → N is a homotopy equivalence of simplicial com-
plexes which is also an X-controlled homology equivalence then the Whitehead
torsion of f is such that

τ(f) ∈ ker((pN )∗ : Wh(π1(N))→Wh(π1(X))) .

Proof Work as in 9.10 (i) : the algebraic mapping cone of the (Z, X)-module
chain equivalence f : ∆(M)→ ∆(N)

C = C(f : ∆(M)→ ∆(N))

is a based contractible finite chain complex in A(Z, X), with assembly the based
contractible finite chain complex in A(Z[π1(X)])

C(X̃) = C(f̃ : ∆(M̃)→ ∆(Ñ))
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with 0 torsion in Wh(π1(X)). The image of τ(f) ∈ Wh(π1(N)) in Wh(π1(X))
is thus

(pN )∗τ(f) = τ(C(X̃)) = 0 ∈ Wh(π1(X)) .

✷

Definition 12.2 An X-controlled h-cobordism (W ;M,N) of homology manifolds
is an h-cobordism together with a simplicial map pW : W → X ′ such that the
inclusions M →W , N →W are X-controlled homology equivalences.

Proposition 12.3 The Whitehead torsion of an X-controlled h-cobordism
(W ;M,N) of homology manifolds is such that

τ(W ;M,N) ∈ ker((pW )∗ : Wh(π1(W ))→Wh(π1(X))) .

Proof By definition

τ(W ;M,N) = τ(M →W ) ∈Wh(π1(W )) .

Apply 12.2 to the X-controlled homotopy equivalence M →W . ✷

Corollary 12.4 If π1(W ) ∼= π1(X) an N -controlled h-cobordism (W ;M,N) of
homology manifolds is an s-cobordism, with

τ(W ;M,N) = 0 ∈Wh(π1(W )) .

Proof Immediate from 12.3, since in this case pW : W → X = N is a homotopy
equivalence. ✷

In principle, it would be possible to investigate X-controlled versions of the
classical h- and s-cobordism theorems of high-dimensional manifold theory,
taking the controlled h-cobordism theorem of Quinn [23] as a model.

13. Homology fibrations

It is a theme of controlled topology that if F → E → B is a fibre bundle of
manifolds and f : M → E is a homotopy equivalence of manifolds then M is
the total space of a fibre bundle F →M → B if and only if f is a B-controlled
homotopy equivalence. For example, see Chapman [4]. (All niceties to do with
fibre bundles, block bundles, approximate fibrations etc. are being ignored
here!). An analogous result will now be obtained in the combinatorial context
of this paper.

Definition 13.1 A B-controlled R-homology fibration E is a B-controlled sim-
plicial complex E such that the inclusions

p−1
E D(τ, B)→ p−1

E D(σ,B) (σ ≤ τ ∈ B)

are R-homology equivalences, i.e. induce isomorphisms

H∗(p
−1
E D(τ, B);R) ∼= H∗(p

−1
E D(σ,B);R) .
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The R-module chain homotopy type of ∆(p−1
E D(σ,B);R) is the chain fibre of

E. (It is assumed here that B is connected, so that the chain fibre is well-
defined.)

Remark 13.2 An (R,B)-module chain complex C is homogeneous if the inclu-
sions define R-module chain equivalences

[C][σ]
≃−→ [C][τ ] (τ ≤ σ ∈ B)

(Ranicki and Weiss [34, 4.5], Ranicki [29, p.110]). A B-controlled simplicial
complex E is a B-controlled R-homology fibration if and only if the (R,B)-
module chain complex ∆(E;R) is homogeneous.

Example 13.3 Let E be a B-controlled simplicial complex.
(i) The control map pE : E → B′ has R-acyclic point inverses if and only if E
is a B-controlled R-homology fibration with R-acyclic chain fibre.
(ii) The control map pE : E → B′ is a quasifibration in the sense of Dold and
Thom [6] with fibre F = p−1

E (∗) if and only if the inclusions

p−1
E D(τ, B)→ p−1

E D(σ,B) (σ ≤ τ ∈ B)

are homotopy equivalences, in which case E is a B-controlled R-homology
fibration with chain fibre ∆(F ;R).

Definition 13.4 A d-dimensional B-controlled R-homology Poincaré fibration E
is a B-controlled R-homology fibration such that each p−1

E D(σ,B) (σ ∈ B) is
a d-dimensional R-homology Poincaré complex, with each inclusion

p−1
E D(τ, B)→ p−1

E D(σ,B) (σ ≤ τ ∈ B)

an R-homology equivalence such that the induced isomorphism

Hd(p
−1
E D(τ, B);R) ∼= Hd(p

−1
E D(σ,B);R)

sends [p−1
E D(τ, B)] to [p−1

E D(σ,B)].

The chain fibre C of a d-dimensional B-controlled R-homology Poincaré fibra-
tion E is a d-dimensional symmetric Poincaré complex over R. (See Ranicki
[26] for the theory of symmetric Poincaré complexes.)

Proposition 13.5 Let B be an n-dimensional R-homology manifold B, and let
E be a d-dimensional B-controlled R-homology Poincaré fibration, with chain
fibre C.
(i) E is an (n+ d)-dimensional B-controlled R-homology Poincaré complex.
(ii) E ×B E is an (n + 2d)-dimensional B-controlled R-homology Poincaré
fibration with chain fibre the 2d-dimensional symmetric Poincaré complex C⊗R
C over R. In particular, E ×B E is an (n + 2d)-dimensional B-controlled R-
homology Poincaré complex.
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Proof (i) Use the algebraic Poincaré cycle theory of Ranicki [29], involving the
symmetric L-spectrum L•(R) with homotopy groups the symmetric L-groups
of R

π∗(L
•(R)) = L∗(R) .

The L •(R)-homology group Hm(B; L •(R)) is the cobordism group of m-
dimensional symmetric Poincaré cycles in A(R,B), and the cap product

∩ : Hn(B; L •(R))⊗H−d(B; L •(R))→ Hn+d(B; L •(R))

is defined using the ring spectrum structure of L •(R). The R-coefficient ho-
mology class

[E] = [B]⊗ [F ] ∈ Hn+d(E;R) = Hn(B;R)⊗R Hd(F ;R)

determines an (n+ d)-dimensional symmetric cycle [E]L = (∆(E;R),∆[E]) in
A(R,B) which is Poincaré if and only if E is an (n+d)-dimensionalB-controlled
R-homology Poincaré complex, in which case [E]L ∈ Hn+d(E; L •(R)) is a fun-
damental L •(R)-homology class. The cap product (on the algebraic Poincaré
cycle level) of the fundamental L •(R)-homology class of [29, 16.16]

[B]L ∈ Hn(B; L •(R))

and the L •(R)-cohomology class

[C, pE ]L ∈ H−d(B; L •(R))

of Lück and Ranicki [14, Appendix] identifies

[E]L = [B]L ∩ [C, pE ]L ∈ Hn+d(B; L •(R)) ,

so that [E]L is a Poincaré cycle, as required.
(ii) For anyB-controlledR-homology fibrationE with chain fibre C the product
E×BE is a B-controlled R-homology fibration with chain fibre C⊗RC. Thus if
E is a d-dimensionalB-controlledR-homology Poincaré fibration then E×BE is
a 2d-dimensional B-controlled R-homology Poincaré fibration, and (i) applies.
✷

Remark 13.6 The result of 13.5 (i) is a combinatorial version of the result of
Buoncristiano, Rourke and Sanderson [2, p.21] that the total space of a mock
bundle is a manifold, and of the result of Gottlieb [9] (announced by Quinn [22])
that the total space of a fibration F → E → B with base B an n-dimensional
Poincaré complex and fibre F a d-dimensional Poincaré complex is an (n+ d)-
dimensional Poincaré complex E.

Remark 13.7 Let E be a (d+1)-dimensional homology manifold with a simplicial
map pE : E → S1 such that the induced infinite cyclic cover of E

E = (pE)∗R
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is finitely dominated. Let ζ : E → E be a generating covering translation, with
mapping torus

T (ζ) = E × [0, 1]/{(x, 0) = (ζ(x), 1) |x ∈ E} .

The fibering obstruction of E

Φ(E) = τ(T (ζ)→ E) ∈Wh(π1(E))

is such that Φ(E) = 0 if (and for d ≥ 5 only if) pE : E → S1 is homotopic to
the projection of a d-dimensional S1-controlled homology Poincaré fibration.
For an actual manifold E this is the original fibering obstruction of Farrell and
Siebenmann, and the S1-controlled homology Poincaré fibration can be taken
to be an actual fibre bundle over S1. See Ranicki [30],[33] and Hughes and
Ranicki [12] for more recent accounts of the fibering obstruction over S1.

Theorem 13.8 Let B be an n-dimensional R-homology manifold, and let E be
a d-dimensional B-controlled R-homology Poincaré fibration with chain fibre
C, so that E is an (n + d)-dimensional B-controlled R-homology Poincaré
complex (13.5 (i)). If M is an (n + d)-dimensional B-controlled R-homology
Poincaré complex and f : M → E is a degree 1 B-controlled map, the following
conditions are equivalent :

(i) M is a B-controlled R-homology fibration with chain fibre C,

(ii) f is a B-controlled R-homology equivalence,

(iii) (f × f)∗ : Hn+d(M ×B M ;R) ∼= Hn+d(E ×B E;R).

Proof (i) ⇐⇒ (ii) A map f : M → E of B-controlled simplicial complexes is a
B-controlled R-homology equivalence if and only if the restrictions

f | : p−1
M D(σ,B)→ p−1

E D(σ,B) (σ ∈ B)

are R-homology equivalences.
(ii) ⇐⇒ (iii) This is a special case of 7.3. ✷

Remark 13.9 Corollary 7.5 is the special case of 13.8 with R = Z, B = E,
C = R, d = 0 (cf. 13.3 (i)).

14. Knot theory

The results of §§7,13 are now illustrated by showing how they apply to high-
dimensional knot theory. No actual new results are obtained in knot theory,
however; known results are restated in terms of the chain theory developed in
this paper.

The algebraic theory of surgery was used in Ranicki [28, 7.8], [33] to obtain a
chain complex treatment of the algebraic invariants of high-dimensional knot

Documenta Mathematica 4 (1999) 1–59



54 Andrew Ranicki

theory, using the following construction. Let k : Sn ⊂ Sn+2 (n ≥ 1) be a
locally flat n-knot, with closed regular neighbourhood

(U, ∂U) = (Sn ×D2, Sn × S1) ⊂ Sn+2 .

The knot complement

(T, ∂T ) = (cl.(Sn+2\U), ∂U)

is an (n + 2)-dimensional manifold with boundary, such that the generator
1 ∈ H1(T ) = Hn(U) = Z is realized by a normal map

(f, b) : (T, ∂T )→ (Dn+1 × S1, Sn × S1)

with f : T → Dn+1×S1 a Z-homology equivalence, and f | = 1 : ∂T → Sn×S1.
Define an (n + 3)-dimensional Z-homology Poincaré pair (X, ∂X) with X the
mapping cylinder of f , and the boundary ∂X = T ∪∂ Dn+1 × S1 an (n + 2)-
dimensional manifold. The peripheral complex of (X, ∂X) is a Z-contractible
(n+ 2)-dimensional quadratic Poincaré complex (C,ψX) in A(Z, X), with

C = C([X ] ∩ − : ∆(X, ∂X)n+3−∗ → ∆(X))∗+1 .

The cobordism class

s∂(X ; Z) = (C,ψX ) ∈ Sn+3(X ; Z)

is the rel ∂ total homology surgery obstruction (9.11), such that s∂(X ; Z) = 0
if (and for n ≥ 5 only if) (X, ∂X) is homology equivalent rel ∂ to an (n + 2)-
dimensional topological manifold with boundary. The projection X → S1 is a
homotopy equivalence, so that

Sn+3(X ; Z) = Sn+3(S1; Z)

= Γn+3

( Z[z, z−1] −−−−→ Z[z, z−1]
y

y

Z[z, z−1] −−−−→ Z

)

The induced functor A(Z, X)→ A(Z, S1) sends the peripheral complex (C,ψX )
to the kernel Z-contractible (n+ 2)-dimensional quadratic Poincaré complex of
(f, b) in A(Z, S1)

σS
1

∗ (f, b) = (∆(f ! : ∆(Dn+1 × S1)→ ∆(T )), ψb) .

The assembly functor A : A(Z, S1) → A(Z[z, z−1]) sends σS
1

∗ (f, b) to the Z-
contractible (n+ 2)-dimensional quadratic Poincaré complex in A(Z[z, z−1])

AσS
1

∗ (f, b) = (∆(f ! : ∆(Dn+1 × R)→ ∆(T )), Aψb) ,
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with T = f∗(Dn+1 × R) the canonical infinite cyclic cover of T . The total
homology surgery obstruction

s∂(X ; Z) = AσS
1

∗ (f, b) ∈ Sn+3(S1; Z)

is a cobordism invariant of k. For n ≥ 3 it is in fact the cobordism class of k,
with Sn+3(S1; Z) = Cn the n-dimensional knot cobordism group (Ranicki [28,
p.836]).

The chain homotopy type of σS
1

∗ (f, b) in A(Z, S1) is not an isotopy invariant
of the n-knot k, since it depends on the choice of the map f : T → Dn+1 × S1

within its homotopy class. Working as in the proof of 7.3 (ii) it follows from
the (Z, S1)-module chain equivalences

∆(T ) ≃(Z,S1) ∆(f !)⊕∆(S1) ,

∆(f !)n+2−∗ ≃(Z,S1) ∆(f !)

that there is defined a Z-module chain equivalence

∆(T )⊗(Z,S1) ∆(T ) ≃Z (∆(f !)⊗(Z,S1) ∆(f !))⊕∆(f !)⊕∆(f !)⊕∆(S1) ,

and that

Hn+2(T ×S1 T ) = Hn+2(∆(T )⊗(Z,S1) ∆(T ))

= Hn+2(∆(f !)⊗(Z,S1) ∆(f !))

= H0(Hom(Z,S1)(∆(f !),∆(f !))) .

The following conditions are equivalent :

(a) Hn+2(T ×S1 T ) = 0,

(b) σS
1

∗ (f, b) is chain equivalent to 0 in A(Z, S1),

(c) f : T → Dn+1 × S1 is an S1-controlled homology equivalence.

In view of 13.8 it is possible to choose f to satisfy these conditions if and only
if T is an S1-controlled homology fibration – see further below for fibred knots.

The chain homotopy type of AσS
1

∗ (f, b) in A(Z[z, z−1]) is an isotopy invariant
of k, since it only depends on the homotopy class of f : T → Dn+1 × S1 . Let
ζ : T → T be a generating covering translation of the infinite cyclic cover T of
T . The quotient of T × T by the diagonal Z-action

T ×Z T = (T × T )/{(x, y) ≃ (ζx, ζy)}
is such that

Hn+2(T ×Z T ) = Hn+2(∆(T )⊗Z[z,z−1] ∆(T ))

= Hn+2(A∆(f !)⊗Z[z,z−1] A∆(f !))

The following conditions are equivalent :
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(d) Hn+2(T ×Z T ) = 0,

(e) AσS
1

∗ (f, b) is chain equivalent to 0 in A(Z[z, z−1]),

(f) f : T → Dn+1 × S1 is homotopic to an S1-controlled homology equiva-
lence.

See Ranicki [28, 7.8] for the relationship between AσS
1

∗ (f, b), the Seifert form,
the Alexander polynomials and the Blanchfield pairing of k. If k is simple
(i.e. Hr(T ) = 0 for 1 ≤ r ≤ (n − 1)/2) and n ≥ 3 the chain homotopy type

of AσS
1

∗ (f, b) is the complete isotopy invariant, by the classification results of
Trotter, Levine and Kearton, and the conditions (d),(e),(f) are equivalent to k
being unknotted, i.e. isotopic to the trivial n-knot k0 : Sn ⊂ Sn+2.

Now suppose that k : Sn ⊂ Sn+2 is a fibred n-knot, i.e. that the knot comple-
ment T fibres over S1 (cf. Remark 13.7 above). For example, the link of an
isolated singular point of a complex hypersurface f−1(0) ⊂ Cm (f : Cm → C)
is a fibred (2m− 3)-knot

S2m−3 = S2m−1 ∩ f−1(0) ⊂ S2m−1 ⊂ Cm ,

by Milnor [20] (cf. Remark 6.17 above). Let Fn+1 ⊂ Sn+2 be a Seifert surface
for k, with ∂F = k(Sn), and let h : F → F be the monodromy. The knot
complement

(T, ∂T ) = (T (h), Sn × S1)

is the total space of a fibre bundle

(Fn+1, Sn)→ (T, ∂T )→ S1 ,

and f : T → Dn+1 × S1 may be chosen to be a map of fibre bundles over S1.
The infinite cyclic cover of T is such that

ζ : T = F × R→ T ; (x, t)→ (h(x), t + 1)

and

T ×S1 T = T (h× h : F × F → F × F )

is homotopy equivalent to

T ×Z T = T (h× h)× R .

Thus

H∗(T ×S1 T ) = H∗(T ×Z T )

and in the fibred case

(a)⇐⇒ (b)⇐⇒ (c)⇐⇒ (d)⇐⇒ (e)⇐⇒ (f) .
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15. Other categories

Weiss [44] constructed a chain duality on the additive category of X-controlled
Z-modules, for any ∆-set X . Hutt [13] constructed a chain duality on the
additive category of sheaves of Z-modules over any space X . In principle, all
the results in this paper can therefore be generalized to these categories.
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Abstract. In his paper Motivic equivalence of quadratic forms, Izh-
boldin modifies a conjecture of Lam and asks whether two quadratic
forms, each of which isomorphic to the product of an Albert form and
a k-fold Pfister form, are similar provided they are equivalent modulo
Ik+3. We relate this conjecture to another conjecture on the dimen-
sions of anisotropic forms in Ik+3. As a consequence, we obtain that
Izhboldin’s conjecture is true for k ≤ 1.
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In what follows, we will adhere to the same terminology and notations used in
Izhboldin’s article [I] mentioned in the abstract. In particular, if two quadratic
forms φ and ψ are similar, we will write φ ∼ ψ.
Let F be a field of characteristic 6= 2. Recall that an Albert form α over F is a
6-dimensional quadratic form over F with signed discriminant 1 ∈ F ∗/F ∗2 (i.e.
α ∈ I2F ), and an n-fold Pfister form over F is a form of type 〈〈a1, · · · , an〉〉 :=
〈1,−a1〉⊗· · ·⊗〈1,−an〉, ai ∈ F ∗. In his paper [I], Izhboldin states the following
conjecture :

Conjecture 1 (Cf. Conjecture 5.1 in [I].) Let q1 and q2 be Albert forms over
F and let π1 and π2 be two k-fold Pfister forms over F (k ≥ 0) such that qi⊗πi,
i = 1, 2 is anisotropic and q1⊗π1 ≡ q2⊗π2 mod Ik+3F . Then q1⊗π1 ∼ q2⊗π2.

1This research has been carried out in the framework of TMR Network ERB FMRX
CT-97-0107 “Algebraic K-Theory, Linear Algebraic Groups and Related Structures.”

Documenta Mathematica 4 (1999) 61–64



62 D. W. Hoffmann

In fact, this conjecture is a special case of a question asked by Lam [L, (6.6)].
Lam’s original question was as follows. Suppose σi, ρi ∈ PnF , i = 1, 2, and let
φi = (σi ⊥ −ρi)an be the anisotropic part of σi ⊥ −ρi. If φ1 ≡ φ2 mod In+1F ,
does it then follow that φ1 ∼ φ2 ? By a result of Elman and Lam [EL, Theorem
4.5], it is known that dimφi ∈ {2n+1 − 2m, 1 ≤ m ≤ n + 1}, and that if
dimφi = 2n+1 − 2m, then ρi and σi are (m − 1)-linked, i.e. there exists an
(m − 1)-fold Pfister form which divides both ρi and σi. It is an easy exercise
to show that Lam’s question has a positive answer if dimφ1 (or dimφ2) equals
0 of 2n (i.e. m = n + 1 or m = n). In [I, Section 4], Izhboldin constructs
counterexamples with dimφ1 (or dimφ2) equal to 2n+1−2m with 1 ≤ m ≤ n−2.
The only remaining case m = n− 1 boils down to Conjecture 1 above.
It turns out that this conjecture would have a positive answer if another well-
known conjecture on quadratic forms were true, this other conjecture being

Conjecture 2 Let n ≥ 2 and let q be an anisotropic form in InF . If dim q >
2n then dim q ≥ 2n + 2n−1.

Proposition 1 Conjecture 2 for n = k + 3 implies Conjecture 1 for k.

It was shown in [H 2] that Conjecture 2 holds for n ≤ 4. As a consequence, we
have

Corollary Conjecture 1 holds for k ≤ 1.

Note that for k = 0 this is essentially Jacobson’s theorem saying that two
Albert forms are similar if and only if their associated biquaternion algebras
are isomorphic (see [MS] for a quadratic form-theoretic proof of Jacobson’s
theorem).

Proof of Proposition 1. Suppose that Conjecture 2 holds for k + 3. Let q1 and
q2 be Albert forms over F and let π1 and π2 be two k-fold Pfister forms over
F (k ≥ 0) such that q1 ⊗ π1 ≡ q2 ⊗ π2 mod Ik+3F and such that qi ⊗ πi is
anisotropic for i = 1, 2.
First, we note that we may assume π1 = π2 (cf. the remarks following Conjec-
ture 5.1 in [I]). We denote this k-fold Pfister form by π. Since qi ⊗ π ∈ Ik+2F ,
we can scale qi (and thus qi⊗π) without changing the equivalence mod Ik+3F ,
and we may thus assume that qi ∼= 〈1〉 ⊥ q′i, dim q′i = 5 for i = 1, 2. This yields
q′1 ⊗ π ≡ q′2 ⊗ π mod Ik+3F .
In particular, π ⊗ (q′1 ⊥ −q′2) is a form of dimension 2k(23 + 2) = 2k+3 + 2k+1

in Ik+3F . By Conjecture 2, π ⊗ (q′1 ⊥ −q′2) is isotropic. In particular, there
exists x ∈ F ∗ such that x is represented by both π ⊗ q′1 and π ⊗ q′2. Using
the multiplicativity of Pfister forms (cf. [EL, Theorem 1.4]), there exist 4-
dimensional forms q′′i , i = 1, 2, such that π ⊗ q′i ∼= π ⊗ (〈x〉 ⊥ q′′i ).
From this, it follows readily that π ⊗ q′′1 ≡ π ⊗ q′′2 mod Ik+3F . Note that
dim(π⊗ q′′i ) = 2k+2, so that π⊗ q′′1 and π⊗ q′′2 are (anisotropic) half-neighbors.
As a consequence, π ⊗ q′′1 becomes isotropic over the function field of π ⊗ q′′2
(see, e.g., [H 3, Corollary 2.6] or [I, Lemma 3.3]). By [H 1, Theorem 1.4], this
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implies that π ⊗ q′′1 and π ⊗ q′′2 are similar, so that there exists some y ∈ F ∗
such that π ⊗ q′′1 ∼= yπ ⊗ q′′2 . Thus, we obtain

π ⊗ q1 ≡ π ⊗ 〈1, x〉 ⊥ π ⊗ q′′1 modIk+3F
≡ π ⊗ q2 modIk+3F
≡ yπ ⊗ q2 modIk+3F
≡ yπ ⊗ 〈1, x〉 ⊥ yπ ⊗ q′′2 modIk+3F
≡ yπ ⊗ 〈1, x〉 ⊥ π ⊗ q′′1 modIk+3F

and hence π⊗〈1, x〉 ≡ yπ⊗〈1, x〉 mod Ik+3F . Now dim(π⊗〈1, x〉) = 2k+1, and
the Arason-Pfister Hauptsatz therefore implies that π ⊗ 〈1, x〉 ∼= yπ ⊗ 〈1, x〉.
We conclude that

π ⊗ q1 ∼= π ⊗ 〈1, x〉 ⊥ π ⊗ q′′1∼= yπ ⊗ 〈1, x〉 ⊥ yπ ⊗ q′′2∼= yπ ⊗ q2 .

Note that we didn’t really make use of the fact that q1 and q2 are Albert
forms. However, it is not difficult to show that if π is a k-fold Pfister form and
q = q′ ⊥ 〈a〉 ∈ IF such that π ⊗ q ∈ Ik+2F , then if one chooses b ∈ F ∗ such
that q̃ = q′ ⊥ 〈b〉 ∈ I2F , one has π⊗ q ∼= π⊗ q̃. So what is essential is the fact
that π ⊗ qi is in Ik+2F , in which case we may as well assume by what we just
mentioned that qi is an Albert form.
In the proof of Conjecture 2 for n = 4 in [H 2], one makes use of a certain prop-
erty PD2. It turns out that this property can be used to establish Conjecture
1 for k = 1 without invoking Conjecture 2 for n = 4. Let us recall the general
definition of property PDn.

Definition Let n be an integer ≥ 1. The field F is said to have the Pfister
decomposition property for Pfister forms of fold ≤ n, PDn for short, if for
each m (1 ≤ m ≤ n), for each anisotropic π ∈ Pm−1F , for each r ∈ Ḟ , and
each anisotropic ϕ ∈ πWF , there exist forms σ and τ over F such that for
ρ := π ⊗ 〈〈r〉〉 one has ϕ ∼= π ⊗ σ ⊥ ρ⊗ τ and (ϕF (ρ))an ∼= (π ⊗ σ)F (ρ).

Proposition 2 Suppose that F has PDn for some n ≥ 1. Then Conjecture 1
holds for k = n− 1.

Proof. Suppose that F has PDn for n = k + 1. As in the previous proof, we
may assume that we are in the situation where π ⊗ q1 ≡ π ⊗ q2 mod Ik+3F
with Albert forms qi, i = 1, 2, a k-fold Pfister form π and with π ⊗ qi being
anisotropic for i = 1, 2. After scaling, we may assume that q1 ∼= 〈1,−r〉 ⊥ q′1
for some r ∈ F ∗. It follows that π ⊗ q1 contains the subform ρ = π ⊗ 〈〈r〉〉.
In particular, π ⊗ q1 becomes isotropic over the function field F (ρ), and thus
π⊗q2 also becomes isotropic over F (ρ) (cf. [I, Theorem 4.3]). Property PDk+1

then implies that π⊗q2 contains a subform similar to ρ, and since we may scale
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π ⊗ q2 ∈ Ik+2F without changing the equivalence modIk+3F , we may assume
that π ⊗ q2 ∼= π ⊗ (〈1,−r〉 ⊥ q′2) for some 4-dimensional form q′2.
It follows that π ⊗ q′1 ≡ π ⊗ q′2 mod Ik+3F . As in the proof of Proposition 1,
this implies that π⊗ q′1 and π⊗ q′2 are similar, and thus that π⊗ q1 and π⊗ q2
are also similar.

It was proved by Rost that each field has property PD2 (see [H 2, Lemma 2.6]).
Again, we can conclude that Conjecture 1 holds for k ≤ 1, this time by invoking
PD2.
In the case n ≥ 3, we do not know whether PDn holds for all fields nor whether
PDn for a field F implies that Conjecture 2 holds for F for n+2 (or vice versa).
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Abstract. For an algebraic, normal-crossings degeneration over a
local field the local monodromy operator and its powers naturally
define Galois equivariant classes in the ℓ-adic (middle dimensional)
cohomology groups of some precise strata of the special fiber of a
normal-crossings model associated to the fiber product degeneration.
The paper addresses the question whether these classes are algebraic.
It is shown that the answer is positive for any degeneration whose
special fiber has (locally) at worst triple points singularities. These
algebraic cycles are responsible for and they explain geometrically the
presence of poles of local Euler L-factors at integers on the left of the
left-central point.
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Introduction

Let X be a proper and smooth variety over a local field K and let X be a regular
model of X defined over the ring of integers OK of K. When X is smooth over
OK , the Tate conjecture equates the ℓ–adic Chow groups of algebraic cycles on
the geometric special fiber Xk̄ of X → Spec(OK) with the Galois invariants in
H2∗(XK̄ ,Qℓ(∗)). One of the results proved in [2] (cf. Corollary 3.6) shows that
the Tate conjecture for smooth and proper varieties over finite fields together
with the monodromy–weight conjecture imply a generalization of the above
result in the case of semistable reduction. Namely, let ℘ ∈ Spec(OK) be a

1 Partially supported by the NSF grant DMS-9701302
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prime over which the special fiber X ×Spec(k(℘)) = Y is a reduced divisor with
normal crossings in X (i.e. semistable fiber). Then, assuming the above two
conjectures, the ℓ–adic groups of algebraic cycles modulo rational equivalence
on the r–fold intersections of components of Y (r ≥ 1) are related with Galois
invariant classes on the Tate twists H2∗−(r−1)(XK̄ ,Qℓ(∗ − (r − 1))).
An interesting case is when one replaces X by X ×K X , so that Galois in-
variant cycles may be identified with Galois equivariant maps H∗(XK̄ ,Qℓ)→
H∗(XK̄ ,Qℓ(·)). Examples of such maps are the powers N i of the logarithm
of the local monodromy around ℘. The operators N i : H∗(XK̄ ,Qℓ) →
H∗(XK̄ ,Qℓ(−i)) determine classes [N i] ∈ H2d((X × X)K̄ ,Qℓ(d − i)) (d =
dim XK̄) invariant under the decomposition group. In this paper we study in
detail the structure of [N i] when the special fiber Y of X has at worst triple
points as singularities. That is, we exhibit the corresponding algebraic cycles
on the (normal crossings) special fiber T = ∪iTi of a resolution Z of X ×OK X .

Denote by Ñ = 1⊗N + N ⊗ 1 the monodromy on the product, and let F be
the geometric Frobenius. Then the classes [N i] naturally determine elements in

Ker(Ñ)∩H2d((X×X)K̄ ,Qℓ(d−i))F=1. Assuming the monodromy–weight con-
jecture on the product (i.e. the monodromy filtration L

·
on H∗((X×X)K̄ ,Qℓ)

coincides–up to a shift–with the filtration by the weights of the Frobenius
cf. [16]) and the semisimplicity of the action of the Frobenius on the inertia
invariants, the following identifications hold

(0.1) Ker(Ñ) ∩H2d((X ×X)K̄ ,Qℓ(d− i))F=1

≃
(

(grL2(d−i)H
2d(T,Qℓ))(d− i)

)F=1

≃
[
Ker(ρ(2(i+1)) :H2(d−i)(T̃ (2i+1),Qℓ)(d−i)→H2(d−i)(T̃ (2(i+1)),Qℓ)(d−i))

Image ρ(2i+1)

]F=1

.

Here T̃ (j) denotes the normalization of the j–fold intersection on the closed
fiber T . These isomorphisms show that the classes [N i] have representatives
in the cohomology groups of some precise strata of T . Moreover, the Tate
conjecture and the semisimplicity of the action of the Frobenius on the smooth
schemes T̃ (j) would imply that these classes are algebraic. We refer to § 1,
(1.6) for the description of the restriction maps ρ in (0.1).
To better understand the geometry related to the desingulatization process
Z → X×OKX , and to avoid at first, some technical complications connected to
the theory of the nearby cycles in mixed characteristic, we start by investigating
this problem in equal characteristic zero (i.e. for semistable degenerations over
a disk). There, one can take full advantage of many geometric results based
on the theory of the mixed Hodge structures. Under the assumption of the
monodromy–weight conjecture and using some techniques of [16], our results

generalize to mixed characteristic. The cycles we exhibit on T̃ (2i+1) explain
geometrically the presence of poles on specific local factors of the L–function
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related to the fiber product X × X . In fact, theorem 6.2 equates, under the
assumption of the semisimplicity of the action of the Frobenius F on the inertia
invariants H∗((X × X)K̄ ,Qℓ)

I , the rank of any of the groups in (0.1) with
ords=d−i det(Id − FN(℘)−s|H2d((X × X)K̄ ,Qℓ)

I). Here, N(℘) denotes the
number of elements of the finite field k(℘).
A study of the local geometry of the normal–crossings special fiber T shows
that [N i] are represented by certain natural “diagonal cycles” on T̃ (2i+1) to-
gether with a cycle supported on the exceptional part of the stratum that
arises because the classes [N i] must belong to the kernel of the restriction map
ρ(2(i+1)) (cf. (0.1)). This result is obtained via the introduction of a generalized
correspondence diagram for the map

N i : H∗(Y, grLr+iRΨ(QX ))→ H∗(Y, (grLr−iRΨ(QX ))(−i)).(0.2)

This morphism describes the monodromy action on the E1–term of the spectral
sequence of weights for the filtered complex of the nearby cycles (RΨ(QX ), L

·
)

(cf. § 2, (2.1)). For i > 0, the classes [N i] do not describe an algebraic cor-
respondence in the classical sense. In fact, the algebraic cycles representing
them are only supported on higher strata of the special fiber T (i.e. on T̃ (2i+1))
and they do not naturally determine classes in the cohomology of T . This is a
consequence of the fact that for i > 0, the cocycle [N i] does not have weight
zero in the ℓ–adic cohomology of the fiber product (X×X)K̄ , as one can easily
check from (0.1). Nonetheless, we expect that each of these classes supplies a
refined information on the degeneration. Namely, we conjecture that the geo-
metric description that we obtain up to triple points can be generalized to any
kind of semistable singularity via a thorough combinatoric study of the toric
singularities of the special fiber of the fiber product resolution Z.
The correspondence diagram related to the map (0.2) is built up from the
hypercohomology of the Steenbrink filtered resolution (A•X , L·

) of RΨ(QX ). In
§ 3 we establish the necessary functoriality properties of the Steenbrink complex
and its L

·
–filtration. A difficult point in the description of the correspondence

diagram is related to the definition of a product structure on the E1–terms of
the spectral sequence of weights. Example 3.1 points out a problem related
to a canonical definition of a product structure for (A•X , L·

) in the filtered
category. It comes out that the monodromy filtration L

·
is not multiplicative

on the level of the filtered complexes. A partial product, canonical only on the
E2 = E∞-terms is provided in the Appendix. This suffices for purposes of our
paper.
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1. Notations and techniques from mixed Hodge theory

In this paragraph we introduce the main notations and recall some results on
the mixed Hodge theory of a degeneration.
We denote by X a connected, smooth, complex analytic manifold and we let
S be the unit disk. We write f : X → S for a proper, surjective morphism and
we let Y = f−1(0) be its special fiber. We assume that f is smooth at every
point of X∗ = X r Y and that the special fiber Y is an algebraic divisor with
normal–crossings. The local description of f near a closed point y ∈ Y is given
by:

f(z1, . . . , zm) = ze11 · · · zek

k

for k ≤ m = dimX and {z1, . . . , zm} a local coordinate system on a neighbor-
hood of y in X centered at y and ei ∈ Z, ei ≥ 1. The fibers of f have then
dimension d = m− 1.
A normal–crossings divisor as above is said to have semistable reduction (strict
normal–crossings) if one has: ei = 1 ∀i, in the local description of f .
We fix a parameter t ∈ S. For t 6= 0, let f−1(t) = Xt be the fiber at t. Because
the restriction of f at S∗ = S r {0} is a C∞, locally trivial fiber bundle, the
positive generator of π1(S∗, t) ≃ Z induces an automorphism Tt of H∗(Xt,Z),
called the local monodromy. We will always suppose throughout the paper
that Tt is unipotent. This assumption, together with the local monodromy
theorem (cf. [7], Theorem 2.1.2), implies that (Tt − 1)i+1 = 0, on Hi(Xt,Z).
The unipotency condition of the local monodromy is for example verified when
g.c.d.(ei, i ∈ [1, k]) = 1, ∀y ∈ Y (cf. op.cit. ). Under these conditions, the
logarithm of the local monodromy is defined to be the finite sum:

Nt := log Tt = (Tt − 1)− 1

2
(Tt − 1)2 +

1

3
(Tt − 1)3 − · · ·

It is known (cf. [5]) that the automorphisms Tt of Hi(Xt,C) (t ∈ S∗), are the
fibers of an automorphism T of the fiber bundle Rif∗(Ω•X/S(log Y )) over S,

whose fiber at 0 is described as T0 = exp(−2πiN0). By definition, the endomor-
phism N0 is the residue at 0 of the Gauss-Manin connection ∇ on the “canon-
ical prolongation” Rif∗(Ω•X/S(log Y )) of the locally free sheaf Rif∗(Ω•X∗/S∗).

Because of the definition of T0, it makes sense to think of a nilpotent map
N := − 1

2πi log T as the monodromy operator on the degeneration f : X → S.
Via the canonical isomorphism (cf. [11], Thm. 2.18)(t ∈ S):

Rif∗(Ω
•
X/S(log Y ))⊗OS k(t)

≃→ Hi(Xt,Ω
•
X/S(log Y )⊗OX OXt)
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where k(t) is the residue field of OS at t, we can see the map N0 as
an endomorphism of the hypercohomology of the relative de Rham com-
plex Ω•X/S(log Y ) ⊗OX OY . This complex represents in the derived cat-

egory D+(Y,C) of the abelian category of sheaves of C–vector spaces on
Y , the complex of the nearby cycles RΨ(C). Namely, there exists a non-
canonical quasi-isomorphism (i.e. depending on the choice of the parame-
ter t on S) Ω•X/S(log Y ) ⊗OX OY ≃ RΨ(CX̃∗) := i−1Rk∗CX̃∗ (cf. [11],

§ 2). This isomorphism, composed with the canonical map Ω•X/S(log Y ) ⊗OX

OY → Ω•X/S(log Y )⊗OX OY red (Y red = reduced, induced structure scheme on

Y ), induces a quasi-isomorphism (i−1Rk∗CX̃∗)un ≃ Ω•X/S(log Y ) ⊗OX OY red

(cf. op.cit. § 4). Here, we denote by (i−1Rk∗CX̃∗)un the maximal subobject of
i−1Rk∗CX̃∗ on which π1(S∗) acts with unipotent automorphisms. We refer to
the following commutative diagram for the description of the maps:

X̃∗
k−−−−→ X

i←−−−− Y
y

yf
y

S̃∗
p−−−−→ S ←−−−− {0}.

The space S̃∗ = {u ∈ C |Im u > 0} is the upper half plane, the map p : S̃∗ → S

p(u) = exp(2πiu) = t, makes S̃∗ in a universal covering of S∗ and X̃∗ is the

pullback X ×S S̃∗ of X along p. The morphism k is the natural projection. It
factorizes through X∗ by means of the injection j : X∗ → X . Finally, i is the
closed embedding.
Steenbrink, Guillen and Navarro Aznar and Masaiko Saito (cf. [11], [6], [12])
defined a mixed Hodge structure on the hypercohomology of the unipotent
factor of the complex of the nearby cycles H∗(X,Ω•X/S(log Y ) ⊗OX OY red).

This is frequently referred as the limiting mixed Hodge structure.
We will assume from now on that f is projective. Then, the weight filtration on
the limiting mixed Hodge structure is the one induced by the nilpotent endo-
morphism N , namely by the logarithm of the unipotent Picard-Lefschetz trans-
formation T that is already defined at the Q-level. This filtration, which one
usually refers to as the monodromy–weight filtration L

·
, is defined inductively.

On the limiting cohomology Hi(X̃∗,Q), it is increasing and has lenght at most
2i. By the local monodromy theorem N i+1 = 0, hence one sets L0 = Im N i

and L2i−1 = Ker N i. The monodromy filtration L
·

becomes a convolution
product of the kernel and the image filtration relative to the endomorphism N .
These filtrations are defined as

Kl H
i(X̃∗,Q) := Ker N l+1, Ij Hi(X̃∗,Q) := Im N j

and their convolution is

L = K ∗ I, Lk :=
∑

l−j=k
Kl ∩ Ij .(1.1)
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It is a very interesting fact that there is no explicit construction of the
monodromy-weight filtration L

·
on Ω•X/S(log Y )⊗OX OY itself. The filtration

L
·

is defined on a complex A•C which is a resolution of Ω•X/S(log Y )⊗OX OY red .

More precisely, the complex Ω•X/S(log Y )⊗OX OY red is isomorphic, in the de-

rived category D+(Y,C), to the complex A•C of OX–modules supported on
Y . The complex A•C is the simple complex associated to the double complex
(p, q ≥ 0):

Ap,qC := Ωp+q+1
X (log Y )/WqΩ

p+q+1
X (log Y )

where W∗Ω•X(log Y ) is the weight filtration by the order of log-poles
(cf. [3], § 3). The differentials on it are defined as follows

d′ : Ap,qC → Ap+1,q
C , d′(ω) = dω

is induced by the differentiation on the complex Ω•X(log Y ) and

d′′ : Ap,qC → Ap,q+1
C , d′′(ω) = θ ∧ ω

where θ := f∗(dtt ) =
∑k
i=1 ei

dzi

zi
is the form defining the quasi-isomorphism we

mentioned before (cf. [11], § 4)

Ω•X/S(log Y )⊗OX OY red
∧ θ→ A•C.

The total differential on A•C is d = d′+d′′. The weight filtration W∗Ω•X(log Y )
induces a corresponding filtration on A•C (r ∈ Z):

WrA
p,q
X,C =: Wr+q+1Ωp+q+1

X (log Y )/WqΩ
p+q+1
X (log Y ).(1.2)

The filtration that WrA
•
C induces on H∗(Y,A•C) ≃ H∗(X̃∗,C) is the kernel

filtration K (cf. (1.1))

KrH
∗(X̃∗,C) =WrH

∗(Y,A•C) =: Im

(
H∗(Y,WrA

•
C)→H∗(Y,A•C)

)
= Ker N r+1.

The monodromy-weight filtration is then defined as

LrA
p,q := W2q+r+1Ωp+q+1

X (log Y )/WqΩ
p+q+1
X (log Y ).

Via Poincaré residues, the related graded pieces have the following description

grLr A
•
C ≃

⊕

k≥max(0,−r)
(a2k+r+1)∗Ω

•
Ỹ (2k+r+1) [−r − 2k].(1.3)

Here, we have denoted by Ỹ (m) the disjoint union of all intersections Yi1 ∩ . . .∩
Yim for 1 ≤ i1 < . . . < im ≤ n (Y = Y1∪ . . .∪Yn). We write (am)∗ : Ỹ (m) → X
for the natural projection.
The monodromy operator N is induced by an endomorphism ν̃ of A•C which is
defined as (−1)p+q+1 times the natural projection

ν : Ap,qC → Ap−1,q+1
C .
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The endomorphism ν̃ is characterized by its behavior on the L-filtration,
namely

ν̃(LrA
•
C) ⊂ Lr−2A

•
C

and the induced map

ν̃r : grLr A
•
C → grL−rA

•
C(1.4)

is an isomorphism for all r ≥ 0. The complex A•C contains the subcomplex
W0A

•
C = Ker(ν̃) that is known to be a resolution of CY . The filtration L

and the Hodge filtration F on A•C induce resp. the kernel and F filtration on
W0A

•
C. The resulting mixed Hodge structure on H∗(Y,C) is the canonical

one. Similarly, the homology H∗(Y,C) (i.e. H∗Y (X,C)) with its mixed Hodge
structure is calculated by the hypercohomology of the complex Coker(ν̃).
Because of the description given in (1.3), the spectral sequence of hyperco-
homology of the filtered complex (A•C, L) (frequently referred as the weight
spectral sequence of RΨ(C)) has the E1 term given by

E−r,n+r
1 =

⊕

k≥max(0,−r)
Hn−r−2k(Ỹ (2k+r+1),C)

d1 =
∑

k

((−1)r+kd′1 + (−1)k−rd′′1 ).
(1.5)

The explicit definition of the differentials, in the strict normal–crossings case
(i.e. semistable degeneration), is the following:

d′1 = ρ(r+2k+2) =
r+2k+2∑

u=1

(−1)u−1ρ(r+2k+2)
u

d′′1 = −γ(r+2k+1) =

r+2k+1∑

u=1

(−1)uγ(r+2k+1)
u

(1.6)

where

ρ(r+2k+2)
u = (δ(r+2k+2)

u )∗ : Hn−r−2k(Ỹ (2k+r+1),C)→ Hn−r−2k(Ỹ (2k+r+2),C)

γ(r+2k+1)
u = (δ(r+2k+1)

u )! : Hn−r−2k(Ỹ (2k+r+1),C)→ Hn−r−2k+2(Ỹ (2k+r),C)

are the restrictions, resp. the Gysin maps, induced by the inclusions (u, t ∈ Z)

δ(t)u : Yi1 ∩ · · · ∩ Yit → Yi1 ∩ · · · ∩ (Yiu)ˆ∩ · · · ∩ Yit .
In the general normal–crossings case (i.e. fibrations locally described by
f(z1, . . . , zm) = ze11 · · · zek

k , ei ≥ 1), the definition of d′1 has to take into ac-

count multiplicity factors ±eij before each map (δ
(t)
j )∗. The map d′1 is infact

induced from a “wedging” operation with the form θ =
∑k
i=1 ei

dzi

zi
(cf. last

page). The definition of d′′1 is analogous to the one given in the strict normal–
crossings case.
Notice that the weight spectral sequence (1.5) is built up from a filtered double
complex. This property distinguishes this weight spectral sequence from others
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as e.g. the spectral sequence of weights which defines the mixed Hodge structure
on a quasi–projective smooth complex variety (cf. [3]).
The complex A•C is the complex part of a cohomological mixed Hodge complex
A•Q whose definition is less explicit than A•C and for which we refer to [7]. This

rational complex induces on H ·(X̃∗,Q) a rational mixed Hodge structure. The
rational representative of the above spectral sequence (1.5) is

E−r,n+r
1 =

⊕

k≥max(0,−r)
Hn−r−2k(Ỹ (2k+r+1),Q)(−r − k).(1.7)

The index in the round brackets outside the cohomology refers to the Tate twist.
Both these spectral sequences degenerate at E2 = E∞ and they converge to
Hn(X̃∗,C) and Hn(X̃∗,Q) respectively.
For curves (i.e. d = 1), the degeneration of the weight spectral sequence pro-
vides the exact sequences

0→ E−1,2
2 → H0(Ỹ (2),Q)(−1)

d−1,2
1→ H2(Ỹ (1),Q)→ H2(X̃∗,Q)→ 0

and

0→ H0(X̃∗,Q)→ H0(Ỹ (1),Q)
d0,0
1→ H0(Ỹ (2),Q)

α→ H1(X̃∗,Q).(1.8)

The differentials d−1,2
1 and d0,0

1 are defined as in (1.6) and the map α in (1.8)
is the edge map in the spectral sequence. We also have a non canonical decom-
position

H1(X̃∗,Q) = H1(Ỹ (1),Q)⊕ E−1,2
2 ⊕ E1,0

2 .

with E1,0
2 = Im(α).

Steenbrink proved that the L–filtration induced on the abutment of the spectral
sequence of the nearby cycles is the Picard-Lefschetz filtration, hence it is
uniquely described by the following properties

N(Ln+rH
n(X̃∗,Q)) ⊂ (Ln+r−2H

n(X̃∗,Q))(−1)

and

N r : grLn+rH
n(X̃∗,Q)

≃→ (grLn−rH
n(X̃∗,Q))(−r)

for r > 0. In the rest of the paper we will refer to it as the monodromy filtration.

2. The monodromy operator as algebraic cocycle

We keep the notations introduced in the last paragraph. As n varies in [0, 2d]
(d = dimension of the fiber of f : X → S) and i ≥ 0, the power maps

N i : Hn(X̃∗,Q)→ Hn(X̃∗,Q)(−i)
induced by the endomorphismN : Rnf∗(Ω•X/S(log Y ))→ Rnf∗(Ω•X/S(log Y )),

define elements

N i ∈ Hom(H ·(X̃∗,Q), H ·(X̃∗,Q)(−i))
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which are invariant for the action of the local monodromy group π1. They can
be naturally identified with

N i∈
⊕

n≥0

[
H2d−n(X̃∗,Q)(d) ⊗Hn(X̃∗,Q)(−i)

]π1

=

[
H2d(X̃∗ × X̃∗,Q)(d−i)

]π1

.

The space X̃∗×S X̃∗ is the generic fiber of the product degeneration X×SX →
S. After a suitable sequence of blow-ups along Sing(Y × Y ) ⊃ Sing(X ×S X):

Z → · · · → X ×S X → S

we obtain a normal–crossings degeneration h : Z → S with Z non singular and
whose generic fiber is still X̃∗×X̃∗. Its special fiber T = h−1(0) = T1∪· · ·∪TN
has normal crossings singularities. The local description of h along T looks like:

h(w1, . . . , w2m) = we11 · · ·wer
r

for {w1, . . . , w2m} a set of local parameters on Z and e1, . . . , er non-negative
integers.
The semistable reduction theorem (cf. [9]) assures that modulo extensions of the
basis S and up to a suitable sequence of blow-ups and down along subvarieties of
the special fiber T , we may eventually obtain from h a semistable degeneration
W → S with W0 = W01 ∪ . . . ∪W0M as special fiber.
Because of the assumption of the unipotency of the local monodromy on
H∗(Xt,C) (cf. § 1), the local monodromy σ of h will be also unipotent. We then

call Ñ = log (σ). By the Künneth decomposition it results: Ñ = 1⊗N+N⊗1
and we have:

N i ∈
(
H2d(X̃∗ × X̃∗,Q(d− i))

)π1

= Ker(Ñ) ∩H2d(X̃∗ × X̃∗,Q(d− i)).

Let consider the monodromy filtration L
·

relative to the degeneration h. We
denote by HomMH(Q(0), V ) (Hom(Q, V ) shortly) the subgroup of Hodge cy-
cles of pure weight (0, 0) of a bifiltered Q–vector space V : (V, L, F ), endowed
with the corresponding mixed Hodge structure. Then, we have the following

Proposition 2.1. For i ≥ 1

N i ∈ HomMH

(
Q(0),Ker(Ñ) ∩H2d(X̃∗ × X̃∗,Q(d− i))

)
⊆

⊆ HomMH

(
Q(0),Ker(Ñ) ∩ (grL2(d−i)H

2d(X̃∗ × X̃∗,Q))(d− i)
)
≃

≃ HomMH

(
Q(0), (grL2(d−i)H

2d(T,Q))(d− i)
)
≃ Hom(Q, A),

A :=
Ker(ρ2(i+1) : H2(d−i)(T̃ (2i+1),Q)(d− i)→ H2(d−i)(T̃ (2(i+1)),Q)(d− i))

Image ρ(2i+1)
.
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Here ρ is the restriction map on cohomology and by T̃ (j) we mean the disjoint
union of all ordered j–fold intersections of the components of T (cf. §1).

Proof. The identification of N i with a Hodge cycle is a consequence of N
being a morphism in the category of Hodge structures. The first inclusion
derives from the well known facts that Ker(Ñ) has monodromic weight at
most zero and that its Hodge cycles are included (Hom being a functor left
exact on the second place) in the corresponding ones for the graded piece

(grL2(d−i)H
2d(X̃∗×X̃∗,Q))(d−i) of Ker(Ñ)∩⊕j(gr

L
j H

2d(X̃∗×X̃∗,Q))(d−i).
The second isomorphism comes from the local invariant cycle theorem, namely
from the following exact sequence of pure Hodge structures (cf. [2], lemma 3.3
and corollary 3.4)

0→ grL2(d−i)H
2d(T,Q)→ grL2(d−i)H

2d(X̃∗ × X̃∗,Q)

N
։ grL2(d−i−1)H

2d(X̃∗ × X̃∗,Q)(−1)

Finally, the last isomorphism is a consequence of the description of the graded
piece (grL2(d−i)H

2d(T,Q))(d− i) as sub–Hodge structure of (grL2(d−i)H
2d(X̃∗×

X̃∗,Q))(d− i) (cf. op.cit. lemma 3.3).

Proposition 2.1 shows how the operators N i can be detected by classes [N i]
in the cohomology of a fixed stratum of the special fiber T . Equivalently, we
can say that N i determine classes [N i] ∈ H2d(T, (grL−2iRΨh(Q))(d− i)) in the

(E
2i,2(d−i)
1 )(d− i)-term of the spectral sequence of weights for the degeneration

h. Here we write grL−2iRΨh(Q) for grL−2iA
•
W,Q.

The goal of this paper is to identify the class [N i] with an algebraic cocycle
related to the degeneration f : X → S. In all those cases that we will consider
in the paper, this identification is obtained via a “correspondence-type” map
(i ≥ 0)

N i : H∗(Y, grLr A
•
X,Q)→ H∗(Y, (grLr−2iA

•
X,Q)(−i)) = H∗(Y, grLr (A•X,Q(−i)))

which makes the following diagram commute

H∗(T, grLr A
•
Z,Q)

[Ni] ·−−−−→

E
−r+2i,∗+r+2(d−i)
1

‖

H2d+∗(T, (grLr−2iA
•
Z,Q)(d− i))

(p1)∗
x

y(p2)∗

H∗(Y, grLr A
•
X,Q)

‖

E−r,∗+r1

Ni

−−−−→ H∗(Y, grLr (A•X,Q(−i)))

‖

E−r+2i,∗+r−2i
1

(2.1)
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The projections p1, p2 : X̃∗ × X̃∗ → X̃∗ on the first and second factor, deter-
mine pullbacks and pushforwards on the hypercohomology as we shall describe
in § 3.
From the theory we will explain in the next paragraphs and in the Appendix
it will follow that N i has the expected shape. Namely, it is zero when N i = 0
and it is the identity when N i induces an isomorphism on E−r,∗+r2 . Also, it
will result that p∗1, (p2)∗ and [N i] · all commute with the differential on E1.
That will imply an induced commutative diagram on E2.
For i = 0, i.e. when the correspondence map is the identity, proposition 2.1 can
be slightly generalized, using the theory developed in [2] (cf. lemma 3.3 and
corollary 3.4) and in [1] so that the identity operator is seen as an element in

HomMH

(
Q,

Ker(ρ(2) : H2d(T̃ (1),Q)(d)→ H2d(T̃ (2),Q)(d))

Im (−i∗ · i∗ : H2(d−1)(T (1),Q)(d− 1)→ H2d(T̃ (1),Q)(d)

)
≃

≃ HomMH

(
Q,

Im(i∗ : H2d(T,Q)(d)→ H2d(T̃ (1),Q)(d))

Im (−i∗ · i∗ : H2(d−1)(T (1),Q)(d− 1)→ H2d(T̃ (1),Q)(d)

)
.

Here the map i∗ (resp. i∗) represents the pullback (resp. pushforward) relative
to the embedding T (1) → T . Proposition 2.1 shows this class as a Hodge cocycle
in H2d(X̃∗ × X̃∗,Q(d)). That agrees with the classical theory of algebraic
correspondences describing the identity map via an algebraic correspondence
with the cycle diagonal. Namely, the identity is determined by the diagonal
∆X̃∗ ⊂ X̃∗ × X̃∗ seen as specialization of the cycle diagonal on X × X on the

fiber product X̃∗ × X̃∗. (cf. [8]).
The cases described in the next paragraphs will also supply some evidence for
our expectation that [N i] can be always described by an algebraic (motivic)
cocycle. Finally, notice that the calculation on the E1 involves the cohomology
of individual components of the strata and it is therefore in some sense local,
whereas E2 introduces relations among components of strata, so that any cal-
culation on it becomes of global nature. That is the reason why the description
of the monodromy cycle is carried out mainly at a local level in this paper.

3. Functoriality of the Steenbrink complex and remarks on
products

Let g : Z → X be a morphism between two connected, complex analytic
manifolds over a disk S. Let f : X → S and h : Z → S be the degeneration
maps. Let assume that both Z and X are smooth over C and they have
algebraic special fibers f−1(0) = Y and h−1(0) = T with normal crossings. We
have the following commutative diagram

T −→ Y
↓ i′ ↓ i
Z

g−→ X
hց ւ f

S .
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Locally on the special fibers, f and h have the following description

f(z1, . . . , zm) = ze11 · · · zek

k ; h(w1, . . . , wM ) = w
e′1
1 · · ·w

e′K
K

for {z1, . . . , zm} and {w1, . . . , wM} local parameters resp. on X and Z, 1 ≤
k ≤ m, 1 ≤ K ≤M and e1, . . . , ek; e′1, . . . , e

′
K integers.

Because g−1(Y ) = T , at any point y ∈ g(T ) ⊂ Y (y = g(t), for some t ∈ T )
where the local description of Y is ze11 · · · zek

k = 0, the pullback sections g∗(zij )
(∀ 1 ≤ ij ≤ k) define divisors on Z supported on T (not necessarily reduced or
irreducible).

Let order the components of Y as Y = Y1 ∪ . . .∪ Yk and let denote by Ỹ (r) the
disjoint union of all intersections Yi1 ∩ . . .∩Yir for 1 ≤ i1 < · · · < ir ≤ k. There

is a local system ǫ of rank one on Ỹ (r) of standard orientations of r elements
(cf. [3]). The canonical morphism

g∗Ω•X(log Y )→ Ω•Z(log T )

is a map of bifiltered complexes with respect to the weight and the Hodge
filtrations on X and Z resp. (cf. op.cit. ). In particular it induces the following
map of bicomplexes of sheaves supported on the special fibers (r ≥ 0)

g∗(WrA
•
X,C)→ WrA

•
Z,C

where A•C is the Steenbrink complex which represents in the derived category
the maximal subobject of the complex of nearby cycles where the action of the
monodromy is unipotent (cf. § 1). WrA

•
C is the induced weight filtration on

A•C (cf. (1.2)). Because the weight filtration on the complex A•C is induced by
the weight filtration on the de Rham complex with log-poles, g induces a map
in the derived category

g∗(WrRΨf(QX))→WrRΨh(QZ).

Notice that g∗(
dzij

zij
) ∈ W1Ω1

Z(log T ), i.e. pullbacks preserve poles. Hence, we

deduce the functoriality of the monodromy filtration

g∗(LrA
•
X,C)→ LrA

•
Z,C.

Because g−1 is an exact functor, g determines on the graded pieces a pullback
map

g∗ : grLr A
•
X,C → grLr A

•
Z,C

where

grLr A
•
Z,C ≃

⊕

k≥max(0,−r)
(a2k+r+1)∗Ω

•
T̃ (2k+r+1)(ǫ

2k+r+1)[−r − 2k].

The functor g−1 is also compatible with both differentials d′ and d′′ on A•C.
Hence, g∗ induces a morphism of bifiltered mixed Hodge complexes (F · =
Hodge filtration cf. [3])

g∗ : (A•X,C, L, F )→ (A•Z,C, L, F )
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which in turn induces a map between the spectral sequences of weights

g∗ : E−r,q+r1 (X) = Hq(Y, grLr A
•
X)→ Hq(T, grLr A

•
Z) = E−r,q+r1 (Z).

On the rational level this morphism between spectral sequences is described by
a direct sum of maps as

g∗ : Hq−r−2k(Ỹ (2k+r+1),Q)(−r − k)→ Hq−r−2k(T̃ (2k+r+1),Q)(−r − k).

(3.1)

Both spectral sequences degenerate at E2 = E∞. Keeping track of the mul-
tiplicities and the signs for these pullbacks can be rather hard. Let suppose

that locally the defining equations for Y and T are t =
∏
i z
ei

i and t =
∏
j w

e′j
j

respectively, and we are given strata YI = Yi1 ∩ . . . ∩ Yip (i1 < . . . < ip) and
YJ = Yj1 ∩ . . . ∩ Yjp . Then the computation of the multiplicities involved in
g∗ : H∗(YI ,Q)→ H∗(TJ ,Q) essentially amounts to determine the coefficients

of
dwj1

wj1
∧ . . . ∧ dwjp

wjp
in g∗(

dzj1

zj1
∧ . . . ∧ dzjp

zjp
). This technique will be frequently

used in the paper.
As an example, we describe the map (3.1) when f : X → S is a degeneration
of curves with normal crossings singularities on its special fiber Y and Z is the
blow-up of X at a closed point P ∈ Y . Let g : Z → X be the blowing up map.
If P is a regular point in the special fiber, the number of components of the
special fiber T of Z will simply increase by one (the exceptional divisor E) and

the remaining components are the same as for Y . Hence g∗ : H0(Ỹ (1),C) →
H0(T̃ (1),C) is simply the map g∗(1Yi) = 1Ti + 1E on the components.
Let suppose instead that P is singular. Since the description of g∗ is local
around each closed point, we may assume that the degeneration f is given, in
a neighborhood of P , by the equation ze11 z

e2
2 = t, being t a chosen parameter

on the disk S and e1, e2 positive integers. Let assume that e1 ≤ e2. Then,
locally around P : Ỹ (1) = Y1

∐
Y2. Set-theoretically one has Yi = {zi = 0}

(i = 1, 2) and Ỹ (2) = Y1 ∩ Y2 = {P}. Then, T̃ (1) = T1

∐
T2

∐
T3 where T1 and

T2 are the strict transforms of the two components Yi, while T3 represents the
exceptional divisor. We implicitly have fixed the standard orientation on Ỹ (r)

(e.g. Ỹ (2) = Y1 ∩ Y2 = Y12). On T̃ (r), we choose the orientation for which the
exceptional component T3 is always considered as the last one.
There are only three graded complexes grL∗A

•
C non zero both on X and Z. On

X they have the following description

grL−1A
•
X,C ≃ (a2)∗Ω

•
Ỹ (2) [−1]

grL0 A
•
X,C ≃ (a1)∗Ω

•
Ỹ (1)

and via the isomorphism (1.4) one has:

ν̃ : grL1 A
•
X,C

≃→ grL−1A
•
X,C.

Hence E1,q−1
1 = Hq(Y, grL−1A

•
X,C) = 0 unless q = 1, in which case we get

g∗ : H0(Ỹ (2),C)→ H0(T̃ (2),C).
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To understand the description of this map, one has to look at the local geometry
of the blow-up at P . It is quite easy to check that Z is covered by two open
sets, say Z = U ∪V . To make the notations easier, let call t1 = z1

z2
and t2 = z2

z1
.

On U , described by te22 = t

z
e1+e2
1

, one has coordinates {t2, z1}, T red
2 = {t2 = 0}

and T red
3 = {z1 = 0}. On V , described by te11 = t

z
e1+e2
2

, one has coordinates

{t1, z2}, T red
1 = {t1 = 0} and T red

3 = {z2 = 0}. Then T̃ (2) = T13

∐
T23, here

we denote Tij = Ti ∩ Tj .
On U we have g∗(dz1z1 ∧

dz2
dz2

) = dz1
dz1
∧ dt2

t2
, whereas on V one gets g∗(dz1z1 ∧

dz2
dz2

) = dt1
dt1
∧ dz2

z2
. Hence, keeping in account the fixed orientation among the

components of T , the description of the pullback g∗(1Ỹ (2)) = g∗(1Y12) is given
by

g∗(1Y12) = 1T13 − 1T23 .

The presence of a negative sign is due to the change of orientation. This
description defines the above map g∗ on H0. Similarly, we find that

g∗ : H0(Ỹ (1),C)→ H0(T̃ (1),C)

is given by g∗(1Y1) = 1T1 + 1T3 and g∗(1Y2) = 1T2 + 1T3 . The description of g∗

on the terms H1 goes in parallel.
Let now consider the proper map that g induces on the closed fibers. For
simplicity of notations we call it g : T → Y . Let d = (dim T − dim Y ). The
above arguments have shown that g induces a pullback map g∗ between the
cohomologies of the strata: cf. (3.1). Since each stratum is a smooth projective
complex variety (not connected), we can use the Poicaré duality to associate
to each pullback in (3.1) that contributes to the definition of the map g∗ its
dual so that we naturally obtain a dual pushforward on the E1–terms of the
spectral sequence of weights that is described by a direct sum of maps as

(3.2) g! : Hq−r−2(k−d)(T̃ (2k+r+1),Q)(−r − k + d)

→ Hq−r−2k(Ỹ (2k+r+1),Q)(−r − k).

On each stratum g! is defined by the following formula

(
1

2π
√
−1

)d−2k−r
∫

Ỹ (2k+r+1)

g!(α) ∪ β = (
1

2π
√
−1

)2d−2k−r
∫

T̃ (2k+r+1)

α ∪ g∗(β)

where
∫

denotes the morphism trace described by the cap–product with the
fundamental class of each component of the stratum, for any chosen cou-
ple of elements α ∈ Hq+2(2d−2k−r)(T̃ (2k+r+1),Q(2d − 2k − r)) and β ∈
H−q(Ỹ (2k+r+1),Q), q ∈ Z, q ≥ 0.
Notice that although we have a notion of bifiltered pullback

g∗ : (A•X , L, F )→ (A•Z , L, F )

this does not imply a canonical definition of a product structure on A•C obtained
via pullback along the diagonal map ∆ : X → X ×S X . In fact, the property
of f : X → S to have normal crossings reduction is not preserved by the
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product map f × f : X ×S X → S. The space X ×S X is in general not even
smooth over C! Finally, we remark that although the monodromy filtration
is not multiplicative on the level of the filtered complexes (A•C, L) (the simple
example shown below will motivate this claim), it becomes multiplicative on
the limiting cohomology with its mixed Hodge structure.

Example 3.1.

Let f : P1
S → S be a P1-fibration over a disk S. We blow a closed point

P ∈ P1
0 = Y in the fiber P1

0 over the origin {0}. The resulting map h : Z → S
has a normal crossings special fiber h−1(0) = T = T1 ∪ T2, where T1 is the
strict transform of Y and T2 is the exceptional component (i.e. P1). The
intersection Q = T1 ∩ T2 = T12 is transverse. Locally around Q, h has the
following description

h(z1, z2) = z1z2.

Consider the subcomplex W0(A•Z,C) of A•Z,C filtered by the monodromy filtra-

tion L induced on it by the one on A•Z,C (cf. § 1, (1.2)). Its hypercohomology

computes H∗(T,C) and it can be determined in terms of the homology of the
complex

{C• : H ·(T̃ (1),C)
d→ H ·(T̃ (2),C)} =

{C• : H ·(T1,C)⊕H ·(T2,C)
d→ H ·(T12,C)}

where C• sits in degrees zero and one. The differential d on C• is of “Čech type”
i.e. it is an alternate sum of pullback maps as defined in (1.6). A product in
the filtered derived category (A•Z,C, L) if any exists, should induce a product
on C•. The tensor product C• ⊗ C• is a complex sitting in degrees zero, one
and two and it has the following description

{C•⊗C• :
⊕

i,j∈[1,2]

(H ·(Ti,C)⊗H ·(Tj ,C))
d⊗d→

2⊕

i=1

{(H ·(Ti,C)⊗H ·(T12,C))⊕

⊕ (H ·(T12,C)⊗H ·(Ti,C))} d⊗d→ (H ·(T12,C)⊗H ·(T12,C))}.

However, there is no way to define canonically the product

µ : C• ⊗ C• → C•.

In fact, let’s look for a possible description of it in each degree. In degree zero
a product should satisfy

H ·(T1,C)⊗H ·(T1,C) 7→ H ·(T1,C),

H ·(T2,C)⊗H ·(T2,C) 7→ H ·(T2,C),

H ·(Ti,C)⊗H ·(Tj,C) 7→ 0, i, j = 1, 2.
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In degree one, one could start by setting

H ·(T1,C)⊗H ·(T12,C) 7→ H ·(T12,C),

H ·(T12,C)⊗H ·(T2,C) 7→ H ·(T12,C),

H ·(T2,C)⊗H ·(T12,C) 7→ 0,

H ·(T12,C)⊗H ·(T1,C) 7→ 0.

Notice however, that this definition is not at all canonical, as one could alter-
natively set

H ·(T2,C)⊗H ·(T12,C) 7→ H ·(T12,C),

H ·(T12,C)⊗H ·(T1,C) 7→ H ·(T12,C),

H ·(T1,C)⊗H ·(T12,C) 7→ 0,

H ·(T12,C)⊗H ·(T2,C) 7→ 0.

Finally, in degree two one would have

H ·(T12,C)⊗H ·(T12,C) 7→ H ·(T12,C)

4. Semistable degenerations with double points

This section is mainly devoted to the determination of [N ] for one–dimensional
semistable fibrations with at worst double points as singularities. The descrip-
tion of [N ] is obtained via the introduction of the algebraic correspondence-type
square on the cohomology groups of the special fiber as described in (2.1). A
one–dimensional double point degeneration is the simplest example of a nor-
mal crossings fibration. The generalization of these results to double points
semistable degenerations of arbitrary dimension is done at the end of this para-
graph where we also report as an example of application of these results the
case of a Lefschetz pencil.
We keep the same notations as in § 3, in particular we denote by f : X → S
a semistable fibration of fiber dimension one. Its special fiber is denoted by Y .
By definition, locally around a double point P ∈ Y the description of f looks
like

f(z1, z2) = z1z2

for {z1, z2} local parameters on X at P . For one dimensional fiberings, the only

group where the local monodromy may act non trivially is grL2H
1(X̃∗,Q), in

which case the identity map on the E1-terms of the weight spectral sequence
(1.5)

E−1,2
1 = H0(Ỹ (2),Q)(−1)

Id→ H0(Ỹ (2),Q)(−1) = E1,0
1 (−1)

determines an isomorphism of rational Hodge structures of weight two on the
related graded groups E2 = E∞. This isomorphism is induced by the action of

Documenta Mathematica 4 (1999) 65–108



Local Monodromy 81

the local monodromy N around the origin:

N : grL2H
1(X̃∗,Q)

≃→ (grL0H
1(X̃∗,Q))(−1)

It is a well known consequence of the Clemens-Schmid exact sequence (consid-
ered as a sequence of mixed Hodge structures) that (cf. [9])

grL2H
1(X̃∗,Q) 6= 0 ⇔

⇔ Ker(ρ(2) : H1(Ỹ (1),Q)→ H1(Ỹ (2),Q)) 6= 0 ⇔ h1(|Γ|) 6= 0

where h1(|Γ|) is the dimension of the first rational cohomology group of the
geometric realization of the dual graph of Y . It follows from proposition 2.1
that [N ] ∈ H2(T, (grL−2A

•
Z,Q)) = H0(T̃ (3),Q) determines a Hodge class

(4.1) [N ] ∈ HomMH(Q(0), grL0H
2(T,Q)) ≃

≃ HomMH

(
Q(0),

H0(T̃ (3),Q)

Image(ρ(3) : H0(T̃ (2),Q)→ H0(T̃ (3),Q))

)
.

Here T is the special fiber of a normal–crossings degeneration h : Z → S.
The variety Z is a smooth threefold over C obtained via resolution of the
singularities of X ×S X . Notice that no more than three components of T
intersect at the same closed point since dimZ = 3.
We shall determine the Hodge cycle [N ] ∈ E2,0

1 (Z) = H0(T̃ (3),Q) by means of
a “correspondence type” map

N : H∗(Y, grLr A
•
X,Q)→ H∗(Y, (grLr−2A

•
X,Q)(−1)) = H∗(Y, grLr (A•X,Q(−1)))

as we explained in (2.1). From the proof it will easily follow that the map N is
zero for ∗ 6= 1 and is the identity for ∗ = 1 = r. On the E2-level it will induce
(for ∗ = 1 = r) a commutative diagram

grL2H
1(X̃∗ × X̃∗,Q)

[N ] ·−−−−→ grL2H
3(X̃∗ × X̃∗,Q) = E1,2

2

(p1)∗
x

y(p2)∗

E−1,2
2 = grL2H

1(X̃∗,Q)
N−−−−→ (grL0H

1(X̃∗,Q))(−1) = (E1,0
2 )(−1)

The pullback p∗1 and pushforward (p2)∗ are defined as in § 3. The above di-
agram will determine uniquely both [N ] ∈ HomMH(Q(0), grL0H

2(T,Q)) and
the product [N ] ·.
The following result defines the geometry of the model Z and the special fiber
T after resolving the singularities of X ×S X and Y × Y .

Lemma 4.1. Let z1z2 = w1w2 be a local description of X ×S X around the
point (P, P ), with P ∈ Y = Y1 ∪ Y2 a double point of f and {w1, w2} a second
set of regular parameters on X at P . After a blow-up of X ×S X with center
at the origin (z1, z2, w1, w2), the resulting degeneration h : Z → S is normal–
crossings. Its special fiber T is the union of five irreducible components: T =
∪5
i=1Ti. We number them so that the first four are the strict transforms of the

irreducible components Yi×Yj of Y ×Y , namely T1 = (Y1×Y1)˜, T2 = (Y1×Y2)˜,
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T3 = (Y2 × Y1)˜, T4 = (Y2 × Y2)˜. The last one T5 represents the exceptional

divisor of the blow-up. We have T̃ (1) =
∐
i Ti. The scheme Z is covered by

four affine charts Uj. On each of them there are three non empty components

Tk. The scheme T̃ (3) is the disjoint union of four zero dimensional schemes
(closed points): T125 ∈ U2, T135 ∈ U4, T245 ∈ U3 and T345 ∈ U1, each of whose
supports projects isomorphically onto the diagonal ∆12 : Y12 → Y12 × Y12.

Proof. The local description of X×SX around (P, P ) is given by the equations
z1z2 = w1w2 and z1z2 = t, for t ∈ S a fixed parameter on the disk. We
choose the standard orientation of the sets {z1, z2} and {w1, w2} and we write
w′i1 = wi

z1
, w′i2 = wi

z2
, wij = wi

wj
, z′i1 = zi

w1
, z′i2 = zi

w2
and zij = zi

zj
, for i, j = 1, 2.

After a single blow-up of X ×S X at the origin (z1, z2, w1, w2), the resulting
model Z is non singular as one can see by looking at the first of the following
tables which describes Z on each of the four charts Uj who cover it. In the
second table, we have collected for each Uj , the description of the non empty

divisors Tk ∈ T (1) there. We use the pullbacks p∗1(dz1z1 ∧
dz2
z2

) and p∗2(dw1

w1
∧ dw2

w2
)

to define in the third table the pullbacks p∗i (1Y12) ∈ H0(T̃ (2),Q).

Open sets Loc. coordinates and relations

U1 {w′11
, w′21

, z1}, w′11
w′21

= z21

U2 {w′12
, w′22

, z2}, w′12
w′22

= z12

U3 {z′11
, z′21

, w1}, z′11
z′21

= w21

U4 {z′12
, z′22

, w2}, z′12
z′22

= w12

Open sets Divisors

U1 T3 = {w′11
= 0}, T4 = {w′21

= 0}, T5 = {z1 = 0}

U2 T1 = {w′12
= 0}, T2 = {w′22

= 0}, T5 = {z2 = 0}

U3 T2 = {z′11
= 0}, T4 = {z′21

= 0}, T5 = {w1 = 0}

U4 T1 = {z′12
= 0}, T3 = {z′22

= 0}, T5 = {w2 = 0}
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Open sets p∗1(1Y12) p∗2(1Y12)

U1 −1T35 − 1T45 −1T45 + 1T35 + 1T34

U2 1T15 + 1T25 −1T25 + 1T15 + 1T12

U3 −1T45 + 1T25 + 1T24 −1T25 − 1T45

U4 −1T35 + 1T15 + 1T13 1T15 + 1T35

The global description of the pullbacks p∗1(1Y12) and p∗2(1Y12) is

p∗1(1Y12) = (1T15 + 1T25 − 1T35 − 1T45) + 1T13 + 1T24

p∗2(1Y12) = (1T15 − 1T25 + 1T35 − 1T45) + 1T12 + 1T34 .

Finally, notice that each Uj is isomorphic to A3 and in each of them one has
three non empty components Tk.

The following result holds

Theorem 4.2. Let f : X → S be the semistable degeneration of curves as de-
scribed above. Then, the following description of [N ] ∈ H0(T̃ (3),Q) (cf. (4.1))
holds:

[N ] = a1251T125 + a1351T135 + a2451T245 + a3451T345

where the (rational) numbers a’s are subject to the following requirement:

−2a125 + 2a135 − 2a245 + 2a345 = 1.

The induced class [N ] in grL0H
2(T,Q) (i.e. modulo boundary relations via the

restriction map ρ(3) cf. (1.6)) determines a unique zero–cycle.

Proof. We determine [N ] as a cocycle making the following square commute

grL2H
1(X̃∗ × X̃∗,Q)

[N ] ·−−−−→ grL2H
3(X̃∗ × X̃∗,Q) = E1,2

2

(p1)∗
x

y(p2)∗

E−1,2
2 = grL2H

1(X̃∗,Q)
N−−−−→ (grL0H

1(X̃∗,Q))(−1) = (E1,0
2 )(−1)

(4.2)

In terms of cohomologies of strata, we have to describe explicitly a representa-
tive of [N ] in E2,0

1 (Z) that satisfies the commutativity of

H0(T̃ (2),Q)(−1)
[N ] ·−−−−→ H2(T̃ (2),Q)

p∗1

x
y(p2)∗

E−1,2
1 = H0(Ỹ (2),Q)(−1) H0(Ỹ (2),Q)(−1) = E1,0

1 (−1).

(4.3)

With the notations used in lemma 4.1 the description of [N ] is given by

[N ] = a1251T125 + a1351T135 + a2451T245 + a3451T345 .
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For the standard choice of the orientations of {z1, z2} and {w1, w2} and the
numbering of the Ti’s defined in lemma 4.1, the local description of the pull-
backs p∗i (1Y12) for i = 1, 2 is given in the third table of the above lemma.
Following the definition described in the Appendix (cf. (7.6)), the product
[N ] · p∗1(1Y12(−1)) is then the following

[N ] · p∗1(1Y12(−1)) =(4.4)

= [N ] · (1T15(−1) + 1T15(−1)− 1T35(−1)− 1T45(−1))

= a125(g1(1T125 · 1T15(−1))− g2(1T125 · 1T25(−1)))

+ a135(g1(1T135 · 1T15(−1)) + g3(1T135 · 1T35(−1)))

+ a245(g2(1T245 · 1T25(−1)) + g4(1T245 · 1T45(−1)))

+ a345(−g3(1T345 · 1T35(−1)) + g4(1T345 · 1T45(−1)))

= a125(1T25 − 1T15) + a135(1T35 + 1T15)

+ a245(1T45 + 1T25) + a345(−1T45 + 1T35).

The maps g1, g2, g3 and g4 are the pushforwards as introduced in the Appendix.
The following formula illustrates the product 1Tijk

·∑l,m 1Tlm
(−1) following

the definition of it given in the Appendix:

1Tijk
·
∑

l,m

1Tlm
(−1) = 1Tijk

· (1Tik
(−1) + 1Tjk

(−1))

= gi(1Tijk
· 1Tik

(−1))− gj(1Tijk
· 1Tjk

(−1)) = gi(1Tijk
)− gj(1Tijk

)

∈ Image
(⊕

t

gt : H0(T̃ (3),Q)(−1)→ H2(T̃ (2),Q)
)
.

In (4.4), we have denoted, for simplicity of notations, the difference gi(1Tijk
)−

gj(1Tijk
) with 1Tjk

− 1Tik
. The map gi represents the pushforward on cycles

deduced from the embedding gi : Tijk → Tjk. The definition of gj is similar.
Therefore, via the local definition of the pushforward (p2)∗ along the affine
charts (cf. §3 and third table in lemma 4.1), we obtain:

(p2)∗([N ] · p∗1(1Y12(−1))) = (−2a125 + 2a135 − 2a245 + 2a345)1Y12(−1).

The commutativity of (4.3) and hence of (4.2) is then equivalent to the re-
quirement

−2a125 + 2a135 − 2a245 + 2a345 = 1.

Hence, the operator [N ] is determined as a cocycle in H0(T̃ (3),Q) by the setting

[N ] = a1251T125 + a1351T135 + a2451T245 + a3451T345 ;

− 2a125 + 2a135 − 2a245 + 2a345 = 1.
(4.5)

Up to boundary relations by means of the restriction map ρ(3) which connects
the elements 1T125 with 1T245 and 1T135 with 1T345 , (4.5) determines a unique

zero–cycle in the quotient E2,0
2 (Z) (cf. (4.1)). Of course, if N = 0, this class

may be trivial.
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Remark 4.3.

The description of [N ] ∈ E2,0
1 (Z) as well as the relation among the coefficients

aijk in (4.5) is not unique in E1. In fact, it depends on the choice of the
desingularization process, as well as on the ordering of the components Tk ∈
T̃ (1). For example, for the ordering of Tk for which T1 represents in each
chart the exceptional divisor of the blow-up (T2 = (Y1 × Y1)˜, T3 = (Y1 × Y2)˜,
T4 = (Y2 × Y1)˜, T5 = (Y2 × Y2)˜), the setting (4.5) becomes

[N ] = a1231T123 + a1241T124 + a1351T135 + a1451T145 ;

− a123 + a124 − a135 + a145 = 1.

If instead we choose to desingularize X ×S X via a blowing-up along z1 =
w1 = 0 and we set the order among the Tk’s so that the exceptional divisor
is represented in each chart by the last component (i.e. T1 = (Y1 × Y2)˜, T2 =
(Y2 × Y1)˜, T3 = (Y2 × Y2)˜, T4 = (Y1 × Y1)˜,), then we would get

[N ] = a1341T134 + a2341T234 ;

− a134 + a234 = 1.

It is a consequence of the uniqueness of the product structure on the correspond-
ing E2–terms that all these different settings determine a unique description of
[N ] ∈ E2,0

2 (Z).
In what it follows we support some evidence for our belief that the description
of [N ] for a double points degeneration of higher fiber dimension (i.e. locally
described by f(z1, . . . , zn) = zizj , cf. below) is deducible from the case worked
out for curves. As already remarked, the description of [N ] in the cohomology
of the strata of the special fiber of the fiber product resolution is of local
nature, i.e. it can be described locally around each double point. For a higher
dimensional double points degeneration [N ] should be again described in terms
of a “diagonal” cocycle whose support projects isomorphically onto the diagonal
∆12 ∈ Y12 × Y12 as it was shown in theorem 4.2. In general, that “diagonal”
cocycle would be formally locally a bundle over the corresponding diagonal
cocycle which comes up for a degeneration of curves. This is a consequence of
the local description of the degeneration map around a double point. We give
now some details for these ideas.
Let f : X → S be a semistable degeneration with double points of fiber dimen-
sion d over the disk S. Then, locally in a neighborhood of a double point P on
Y , f has the following description

f(z1, . . . , zn) = zizj

for {z1, . . . , zn} a set of regular parameters on X at P and suitable in-
dices i < j in I = {1, . . . , n}. Let Y = Y1 ∪ Y2 be the local descrip-
tion of Y in a neighborhood of P ∈ Y1 ∩ Y2 = Y12. Locally around P ,
{z1, . . . , ẑi, . . . , ẑj, . . . , zn} are free parameters for this description. Hence,

the special fiber is locally around the point, formally isomorphic to Ad−1 × Ŷ
with Ŷ = Ŷ1 ∪ Ŷ2 of dimension 1. In a formal neighborhood of P , Y
is defined by Spec

(
C{{z1, . . . , ẑi, . . . , ẑj, . . . zn}}[zi, zj]/zizj

)
. The model X
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is formally locally isomorphic to Ad−1 × X̂, with X̂ of fiber dimension 1
and special fiber Ŷ . The formal description of X ×S X is similar, namely
X ×S X ≃ Ad−1 ×Ad−1 × (X̂ ×S X̂). Keeping the same notations introduced

before, we get a formal local description of the stratum T̃ (3) (containing the

cocycle [N ]) as Ad−1×Ad−1× ˆ̃T
(3)

, with ˆ̃T
(3)

collection of points. [N ] is a cycle

(of dimension d− 1) in T̃ (3) formally, locally described by ∆Ad−1 × ˆ̃T
(3)

. This
scheme is isomorphic to the formal completion of the diagonal ∆Y12 ⊂ Y12×Y12,

i.e. ∆̂Y12 ≃ Ad−1 × Ŷ12, (dim Ŷ12 = 0).
In this way, the description of [N ] would be deduced from a formal local de-

scription of the Lefschetz pencil of fiber dimension one f : X̂ → C{{t}}. Hence,
one would get a formal local class representative of N as a bundle over the di-
agonal cocycle which describes [N ] in theorem 4.2. What said so far supports
evidence for the following

Conjecture 4.4. Let f : X → S be a semistable double points degeneration of
fiber dimension d. Then, the local monodromy operator is described by a unique
algebraic cocycle of codimension d-1 in the stratum T̃ (3) (dim T̃ (3) = 2(d− 1))
i.e.

[N ] ∈ CHd−1(T̃ (3))

Image
(
ρ(3) : CHd−1(T̃ (2))→ CHd−1(T̃ (3))

) .

The formal local description of [N ] is given by the algebraic cycle ∆Ad−1× ˆ̃T
(3)

.

Notice that for a double point degeneration of fiber dimension d > 1, [N ] may
represent the monodromy map acting non trivially on different graded pieces
of the limiting cohomology. However, they are all of type grLq+1H

q(X̃∗,Q) =

E−1,q+1
2 (X) for q ∈ [0, d]. In fact, for double point degenerations we have

always N = 0 on grLq H
q(X̃∗,Q), and H∗(Y, grLi A

•
X,C) = 0 for i 6= −1, 0, 1

because no more than two components of Y intersect simultaneusly at the same
closed point.
As an example of application of these results we consider the case of a Lefschetz
pencil of fiber dimension at least three. The description of [N ] is the same to
the one just described for a degeneration with double points. We will only show
how to reduce in this case the study of [N ] to the previous one. A Lefschetz
pencil of fiber dimension greater than one is not even normal-crossings because
the special fiber is irreducible and singular. We will only consider the case of
odd fiber dimension since Lefschetz pencils of even fiber dimension have trivial
monodromy always.
Let f ′ : X → S be such a pencil and let n = 2m + 1 be the dimension of its
fiber. Locally, in a neighborhood of the singular point of the special fiber Y,
the pencil f ′ is described by

f ′(z0, . . . , zn) =

m∑

ν=0

zνzν+1+m
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where as usual {z0, . . . , zn} represents a set of regular parameters on X . It is
clear from the definition that the special fiber Y is irreducible and singular at
the origin (z0, . . . , zn). However, after a single blow-up at that point we get a
normal-crossings degeneration f : X → S with special fiber locally described
by Y = Y1 ∪ Y2. The component Y1 is the exceptional divisor of the blow-up,
a projective space of dimension n which intersects the strict transform Y2 of Y
along a quadric hypersurface Y12 of dimension 2m. The component Y1 appears
with multiplicity e1 = 2 whereas Y2 is reduced (i.e. e2 = 1). Let h : X → X
be the blow-up map. It is a (proper) map of S-schemes, therefore it induces a
morphism

g∗RΨf ′(QX )→ RΨf(QX)

of complexes of nearby cycles. This morphism induces in turn a homomorphism
between the corresponding hypercohomologies

g∗ : Hi(Y,RΨf ′(Q))→ Hi(Y,RΨf (Q))

In order to work with the resolution A•Q of RΨf (Q) which carries the mon-

odromy filtration, we have to consider Y with its reduced structure (the ex-
ceptional divisor has multiplicity e1 = 2 as algebraic cycle on X). Because
g.c.d.(e1, e2) = 1 ∀y ∈ Y the action of the local monodromy on the complex of
sheaves RΨf(Y,Q) is unipotent (cf. § 1). That implies that the monodromy
operator acts unipotently on cohomology.
Because f ′ is a Lefschetz pencil of fiber dimension n, the only group where N
acts non trivially is Hn(X̃∗,Q). Also, [N ] determines an element in (H2n(X̃∗×
X̃∗,Q(n− 1)))π1 and because the generic fibers of f ′ and f are the same, we
may as well consider [N ] ∈ H2n(Y × Y,RΨf(Q))π1 .
The map f is locally described by z2

i q(z0, . . . , ẑi, . . . , zn) = t for some i ∈
[0, n], t being a local parameter on S and q(z0, . . . , ẑi, . . . , zn) an irreducible
quadratic polynomial. Via the extension of the basis S′ → S τ 7→

√
t, the

degeneration f is deformed to wizi = τ , with wi = τ
zi

and w2
i = h. It is clear

that this procedure does not affect the special fibers (i.e. the reduced closed
fibers are the same). Hence, after a possible normalization of the resulting
model, we obtain a double point semistable degeneration h : Z → S. Let
T = T1 ∪ T2 be its special fiber. Then [N ] can be seen as a Hodge cycle in

H2n(T ×T,RΨh(Q))π1 = Ker(Ñ)∩H2n(X̃∗× X̃∗,Q), for Ñ = 1⊗N+N ⊗1.
The geometric description of [N ] is then the same as the one we have shown
before. The class [N ] represents the monodromy operator acting non trivially

only on grLn+1H
n(X̃∗,Q).

5. Semistable degenerations with triple points

A semistable degeneration with triple points is the first case where both the
operators N and N2 may be non trivial. In this paragraph we will mainly
consider a triple point degeneration of surfaces. The description of [N ] and
[N2] for higher dimensional triple points degenerations can be deduced from
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the one for surfaces using the same kind of arguments described in the last
paragraph for double points degenerations of higher fiber dimension.
Let f : X → S be a surfaces degeneration with reduced normal crossings and
with triple points on its special fiber Y . We keep the basic notations as in the
previous sections. Then, locally around a triple point P ∈ Y we may assume
that f has the following description:

f(z1, z2, z3) = z1z2z3.

As usual, {z1, z2, z3} is a regular set of parameters on X at P . Globally on
X , the special fiber can be the union of more than three components i.e. Y =
Y1 ∪ . . . ∪ YN , but at most three of them intersect at the same closed point.
The Clemens–Schmid exact sequence of mixed Hodge structures describes the
behavior of the operators N and N2 in terms of some invariants on the special
fiber. Namely

Lemma 5.1. (Monodromy criteria) Let f : X → S be a semistable degeneration
of surfaces, then

N = 0 on H1(X̃∗,Q)⇔ h1(|Γ|) = 0

N = 0 on H2(X̃∗,Q)⇔ h2(|Γ|) = 0 and ρ(2) : H1(Ỹ (1),Q) ։ H1(Ỹ (2),Q)

N2 = 0 on H2(X̃∗,Q)⇔ h2(|Γ|) = 0.

Here hi(|Γ|) denotes the dimension of the ith-cohomology group of the geometric
realization of the dual graph of Y .

Proof. cf. [9].

A degeneration of K-3 surfaces with special fiber made by rational surfaces
intersecting along a cycle of rational curves, is an example for which both N
and N2 are non zero (cf. [9]).

Let us suppose that at least one of the groups grL2H
1(X̃∗, Q) and

grL3H
2(X̃∗,Q) is non zero (for the above example it is well known that

grL2H
1(X̃∗,Q) = 0, as H1(X̃∗,Q) = 0). The map N acts on them as an

isomorphism of pure Hodge structures

N : grL2H
1(X̃∗, Q)

≃→ (grL0H
1(X̃∗,Q))(−1)

N : grL3H
2(X̃∗,Q)

≃→ (grL1 H
2(X̃∗,Q))(−1).

The only group where N2 behaves as an isomorphism is grL4H
2(X̃∗,Q). The

map N2 is defined by the composition

grL4H
2(X̃∗,Q)

N→ (grL2 H
2(X̃∗,Q))(−1)

N→ (grL0 H
2(X̃∗,Q))(−2).

The sequence is not exact in the middle. The map N on the left is injective and
the one on the right surjects (grL2H

2(X̃∗,Q))(−1) onto (grL0H
2(X̃∗,Q))(−2).

Its kernel, in term of the spectral sequence of weights is
(
Im(H2(Y, grW1 Ω•+1

X (log Y ))⊗Q→ H2(Y,A•X,Q))
)
(−1) ≃
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≃ Ker(ρ(2) : H2(Ỹ (1),Q)(−1)→ H2(Ỹ (2),Q)(−1))

Im(γ(2) : H0(Ỹ (2),Q)(−2)→ H2(Ỹ (1),Q)(−1))
.

We first consider N and its related class [N ]. Both grL2H
1(X̃∗,Q) and

grL3H
2(X̃∗,Q) are described in terms of cohomology classes on Ỹ (2) (cf. (1.7)).

The study of the correspondence-diagram (2.1) is similar for them. Namely,
once one has found an algebraic cycle representing [N ], it certainly makes both
the correspondence diagrams commute. For degenerations of surfaces it follows
from proposition 2.1 that

[N ] ∈ (grL2H
4(T,Q))(1) ≃ Ker(ρ(4) : H2(T̃ (3),Q)(1)→ H2(T̃ (4),Q)(1))

Im(ρ(3) : H2(T̃ (2),Q)(1)→ H2(T̃ (3),Q)(1))

(5.1)

where h : Z → S is a normal crossings degeneration with special fiber T and
generic fiber X̃∗ × X̃∗ obtained via resolution of the singularities of X ×S X .
Similarly, one has

[N2] ∈ grL0H4(T,Q) ≃ H0(T̃ (5),Q)

Im(ρ(5) : H0(T̃ (4),Q)→ H0(T̃ (5),Q))
.(5.2)

Both [N ] and [N2] have the further property to be Hodge cycles in the co-
homologies of the corresponding strata. The following lemma determines the
geometry of the model Z and the special fiber T after resolving the singularities
of X ×S X and Y × Y .

Lemma 5.2. Let z1z2z3 = w1w2w3 be a local description of X ×S X around
the point (P, P ), being P ∈ Y = ∪3

i=1Yi a triple point of f and {w1, w2, w3}
a second set of regular parameters on X at P . After three blows-up of X ×S
X with centers at zi = 0 = wi (i = 1, 2, 3) the resulting degeneration h :
Z → S is normal–crossings. Its special fiber T is the union of nine irreducible
components: T = ∪9

i=1Ti. We number them so that the first six are the strict
transforms of the irreducible components Yi × Yj of Y × Y : T1 = (Y1 × Y2)˜,
T2 = (Y1×Y3)˜, T3 = (Y2×Y1)˜, T4 = (Y2×Y3)˜, T5 = (Y3×Y1)˜, T6 = (Y3×Y2)˜.
The last three components are the exceptional divisors of the three blows-up:
T7 = (Y1 × Y1)˜, T8 = (Y2 × Y2)˜, T9 = (Y3 × Y3)˜ . We have T̃ (1) =

∐
i Ti.

The scheme Z is covered by eight affine charts, on each of them there are
at most five non empty components Ti. Among the components Tijk whose

disjoint union defines the scheme T̃ (3), T178 and T378 contain resp. the curves
“diagonal” δ̃12 and δ12 whose supports project isomorphically onto the diagonal
∆12 : Y12 → Y12×Y12. Similarly, T279 and T579 contain resp. δ̃13 and δ13 whose
support projects isomorphically onto ∆13 : Y13 → Y13 × Y13. Finally, T489 and
T689 contain δ̃23 and δ23 whose support is isomorphic to ∆23. The exceptional
surface T789–intersection of the three exceptional divisors of h–is isomorphic to
the blow-up Bl of P1 ×P1 at the points {(0, 1)× (1, 0)} and {(1, 0)× (0, 1)}.
Finally, the scheme T̃ (5) is the disjoint union of six irreducible components
(points). They are: T12789, T16789, T24789, T34789, T35789, T56789. Their support
maps isomorphically onto the (point) diagonal ∆123 : Y123 → Y123 × Y123.
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Proof. The local description of X ×S X at (P, P ) is given by the equations
z1z2z3 = w1w2w3 and z1z2z3 = t, for t ∈ S a fixed parameter on the disk. We
choose the standard orientation of the sets {z1, z2, z3} and {w1, w2, w3} and we
write w′i = wi

zi
, z′i = zi

wi
for i = 1, 2, 3. After three blows-up of X ×S X along

the subvarieties zi = 0 = wi, the resulting model Z is non singular as one can
see by looking at the first of the following tables which describes Z on each
of the eight charts Uj who cover it. In the second table, we have collected for

each Uj , the description of the non empty divisors Tk ∈ T (1) there and the third

table shows the “diagonal” curves δ and δ̃ defined in each chart. The remaining

charts describe the pullbacks p∗1(dzi

zi
∧ dzj

zj
), p∗2(dwi

wi
∧ dwj

wj
), p∗1(dz1z1 ∧

dz2
z2
∧ dz3

z3
)

and p∗2(dw1

w1
∧ dw2

w2
∧ dw3

w3
) in terms of the related descriptions by cocycles classes

in the corresponding cohomologies.

Open sets Loc. coordinates and relations

U1 {w′1, w′2, w′3, z1, z2, z3}, w′1w′2w′3 = 1

U2 {w′1, w′2, z1, z2, w3}, w′1w′2 = z′3

U3 {w′1, w′3, z1, z3, w2}, w′1w′3 = z′2

U4 {z′2, z′3, z1, w2, w3}, z′2z′3 = w′1

U5 {w′2, w′3, z2, z3, w1}, w′2w′3 = z′1

U6 {z′1, z′3, z2, w1, w3}, z′1z′3 = w′2

U7 {z′1, z′2, z3, w1, w2}, z′1z′2 = w′3

U8 {z′1, z′2, z′3, w1, w2, w3}, z′1z′2z′3 = 1
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Open sets Divisors

U1 T7 = {z1 = 0}, T8 = {z2 = 0}, T9 = {z3 = 0}

U2 T5 = {w′1 = 0}, T6 = {w′2 = 0}, T7 = {z1 = 0},
T8 = {z2 = 0}, T9 = {w3 = 0}

U3 T3 = {w′1 = 0}, T4 = {w′3 = 0}, T7 = {z1 = 0},
T8 = {w2 = 0}, T9 = {z3 = 0}

U4 T3 = {z′2 = 0}, T5 = {z′3 = 0}, T7 = {z1 = 0},
T8 = {w2 = 0}, T9 = {w3 = 0}

U5 T1 = {w′2 = 0}, T2 = {w′3 = 0}, T7 = {w1 = 0},
T8 = {z2 = 0}, T9 = {z3 = 0}

U6 T1 = {z′1 = 0}, T6 = {z′3 = 0}, T7 = {w1 = 0},
T8 = {z2 = 0}, T9 = {w3 = 0}

U7 T2 = {z′1 = 0}, T4 = {z′2 = 0}, T7 = {w1 = 0},
T8 = {w2 = 0}, T9 = {z3 = 0}

U8 T7 = {w1 = 0}, T8 = {w2 = 0}, T9 = {w3 = 0}
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Open sets “Diagonal” curves

U1 none

U2 δ13 = {w′1 = z1 = w3 = 0, w′2 = 1} ⊂ T579, δ13 ∩ T8 6= ∅
δ23 = {w′2 = z2 = w3 = 0, w′1 = 1} ⊂ T689, δ23 ∩ T7 6= ∅

U3 δ12 = {w′1 = z1 = w2 = 0, w′3 = 1} ⊂ T378, δ12 ∩ T9 6= ∅
δ̃23 = {w′3 = z3 = w2 = 0, w′1 = 1} ⊂ T489, δ̃23 ∩ T7 6= ∅

U4 δ12 = {z′2 = z1 = w2 = 0, z′3 = 1} ⊂ T378, δ12 ∩ T9 6= ∅
δ13 = {z′3 = z1 = w3 = 0, z′2 = 1} ⊂ T579, δ13 ∩ T8 6= ∅

U5 δ̃12 = {w′2 = z2 = w1 = 0, w′3 = 1} ⊂ T178, δ̃12 ∩ T9 6= ∅
δ̃13 = {w′3 = z3 = w1 = 0, w′2 = 1} ⊂ T279, δ̃13 ∩ T8 6= ∅

U6 δ̃12 = {z′1 = z2 = w1 = 0, z′3 = 1} ⊂ T178, δ̃12 ∩ T9 6= ∅
δ23 = {z′3 = z2 = w3 = 0, z′1 = 1} ⊂ T689, δ̃23 ∩ T7 6= ∅

U7 δ̃13 = {z′1 = z3 = w1 = 0, z′2 = 1} ⊂ T279, δ̃13 ∩ T8 6= ∅
δ̃23 = {z′2 = z3 = w2 = 0, z′1 = 1} ⊂ T489, δ̃23 ∩ T7 6= ∅

U8 none

Denote by vYij a class in H∗(Yij ,C) and by vTlk
a class in H∗(T̃ (2),C). Then

we have

Open sets p∗1(vY12) p∗2(vY12)

U1 vT78 vT78

U2 vT78 vT56 + vT58 − vT67 + vT78

U3 −vT37 − vT47 + vT78 vT38 + vT78

U4 −vT37 + vT78 vT78 + vT38 + vT58

U5 vT18 + vT28 + vT78 vT78 − vT17

U6 vT18 + vT78 vT78 − vT17 − vT67

U7 vT24 + vT28 − vT47 + vT78 vT78

U8 vT78 vT78

Documenta Mathematica 4 (1999) 65–108



Local Monodromy 93

Hence, the global description of the pullbacks p∗1(vY12) and p∗2(vY12 ) are

p∗1(vY12 ) = (vT18 + vT28 − vT37 − vT47 + vT78) + vT24

p∗2(vY12 ) = (−vT17 + vT38 + vT58 − vT67 + vT78 ) + vT56 .

Open sets p∗1(vY13) p∗2(vY13)

U1 vT79 vT79

U2 −vT57 − vT67 + vT79 vT79 + vT59

U3 vT79 vT79 − vT47 + vT39 + vT34

U4 −vT57 + vT79 vT79 + vT39 + vT59

U5 vT19 + vT29 + vT79 vT79 − vT27

U6 vT16 + vT19 − vT67 + vT79 vT79

U7 vT29 + vT79 vT79 − vT27 − vT47

U8 vT79 vT79

Hence we have the global descriptions

p∗1(vY13 ) = (vT19 + vT29 − vT57 − vT67 + vT79) + vT16

p∗2(vY13 ) = (−vT27 + vT39 − vT47 + vT59 + vT79 ) + vT34 .

Open sets p∗1(vY23) p∗2(vY23)

U1 vT89 vT89

U2 −vT58 − vT68 + vT89 vT89 + vT69

U3 vT39 + vT49 + vT89 vT89 − vT48

U4 vT35 + vT39 − vT58 + vT89 vT89

U5 vT89 vT89 − vT28 + vT19 + vT12

U6 −vT68 + vT89 vT89 + vT19 + vT69

U7 vT49 + vT89 vT89 − vT28 − vT48

U8 vT89 vT89
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Finally we have

p∗1(vY23) = (vT39 + vT49 − vT58 − vT68 + vT89) + vT35

p∗2(vY23) = (vT19 − vT28 − vT48 + vT69 + vT89) + vT12 .

Using the above tables we deduce the following

Open sets p∗1(1Y123) p∗2(1Y123)

U1 1T789 1T789

U1 1T578 + 1T678 + 1T789 1T569 + 1T589 − 1T679 + 1T789

U3 −1T379 − 1T479 + 1T789 −1T348 + 1T389 + 1T478 + 1T789

U4 1T357 − 1T379 + 1T578 + vT789 1T389 + 1T589 + 1T789

U5 1T189 + 1T289 + 1T789 1T127 − 1T179 + 1T278 + vT789

U6 −1T168 + 1T189 + 1T678 + 1T789 −1T179 − 1T679 + vT789

U7 1T249 + 1T289 − 1T479 + 1T789 1T278 + 1T478 − vT789

U8 1T789 1T789

We then obtain

p∗1(1Y123) = (1T189 + 1T249 + 1T289 − 1T379 − 1T479 + 1T789)

− 1T168 + 1T357 + 1T578 + 1T678

p∗2(1Y123) = (−1T179 + 1T389 + 1T569 + 1T589 − 1T679 + 1T789)

+ 1T127 + 1T278 − 1T348 + 1T478 .

Notice that with the exception of U1 and U8 that are open sets in A5 on which
only the exceptional components T7, T8 and T9 are non empty, all the remaining
charts Uj are isomorphic to A5 and in each of them one has five components
Tk non empty.
On U3 ∩ U4 the surface T378 contains the curve δ12, and on U5 ∩ U6, T178

contains the curve δ̃12. The curves δ12 and δ̃12 are different: i.e. T1 = ∅ on
U3 and U4, but their supports map isomorphically onto the same diagonal
∆12 : Y12 → Y12 × Y12.
Similarly, U2 ∩ U4 contains δ13 whose support maps isomorphically onto ∆13,
whereas U5 ∩ U7 contains δ̃13, whose support maps still isomorphically onto
∆13: δ13 ∩ δ̃13 = ∅.
Finally, δ23 ⊂ U2 ∩ U6, δ23 ≃ ∆23, while δ̃23 ⊂ U3 ∩ U7, δ̃23 ≃ ∆23 and
δ23 ∩ δ̃23 = ∅.
The blow-up Z1 of X×SX at z1 = 0 = w1 is the strict transform of X×SX in
the blow-up of A6 along the corresponding linear subvariety. Let (z̃1, w̃1) be a
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couple of homogeneus coordinates. The exceptional divisor, say E
(1)
1 , is locally

a P1
(z̃1,w̃1)

–bundle over {z1 = 0 = w1}. Then, the intersectionE
(1)
1 ∩Z1 is locally

defined on E
(1)
1 by z2z3z̃1−w2w3w̃1 = 0. The blow E

(2)
1 of P1×{z1 = 0 = w1}

on P1 × {z1 = z2 = w1 = w2 = 0} defines the strict transform of E
(1)
1 after

the second blow-up along {z2 = w2}. Said E
(2)
2 the exceptional divisor of the

second blow-up and (z̃2, w̃2) another couple of homogeneus coordinates, one

has E
(2)
1 ∩E

(2)
2 = P1

(z̃1,w̃1)
×P1

(z̃2,w̃2)
×{z1 = z2 = w1 = w2 = 0}. Finally, after

the third blowing at {z3 = 0 = w3} the three exceptional divisors E
(3)
1 , E

(3)
2

and E
(3)
3 will intersect the strict transform Z of X ×S X along the exceptional

surface T789. This surface is described by the equation z̃1z̃2z̃3− w̃1w̃2w̃3 = 0 in

E
(3)
1 ∩E

(3)
2 ∩E

(3)
3 = P1

(z̃1,w̃1)
×P1

(z̃2,w̃2)
×P1

(z̃3,w̃3)
×{z1 = z2 = z3 = w1 = w2 =

w3 = 0} = (P1)3, (z̃3, w̃3) being a third couple of homogeneus coordinates. Let
consider the projection T789 → P1

(z̃2,w̃2)
×P1

(z̃3,w̃3)
. The fiber of this map over a

given point in the base (P1)2 is defined by a linear equation as αz1− βw1 = 0.
If either α or β (or both) is not zero, then this fiber is reduced to a single
point, so the projection map is locally an isomorphism. On the other hand,
α = 0 = β happens over the two points (1, 0)× (0, 1) and (0, 1)× (1, 0), where
the fiber is a P1. Since T789 is non singular, these two copies of P1 are Cartier
divisors, so by the universal property of blow-ups the map factors through the
blow-up Bl of (P1)2 at the two points (i.e. T789 → Bl → (P1)2). It is easy to
see from this description that T789 ≃ Bl.
It is straighforward to verify from the second table the description of T̃ (5) on
each chart Uj and the statement concerning its support.

The following result generalizes the description of [N ] given in theorem 4.2 for
double points degenerations.

Theorem 5.3. Let f : X → S be a semistable degeneration of surfaces as
we have considered above. With the same notations as in lemma 5.2, let π :
Bl → P1×P1 be the morphism definying the blow-up of P1×P1 at the points
{(0, 1)× (1, 0)} and {(1, 0)× (0, 1)}, being Bl ≃ T789. Let F1 = π∗({pt} ×P1)
and F2 = π∗(P1 × {pt}) be the two fundamental fibers and let E1 and E2 be
the two exceptional divisors of π. The following description of [N ] ∈ Ker ρ(4)

(cf. (5.1)) holds:

[N ] = a178δ̃12 + a279δ̃13 + a378δ12 + a489δ̃23 + a579δ13 + a689δ23 + Γ.

The 1-cycle Γ ⊂ Bl and the (rational) numbers a’s are subject to the following
requirements:

Γ = xF1 + yF2 + zE1 + wE2, with w = z − 1, x, y, z, w ∈ Q

a178 − a378 = a279 − a579 = a489 − a689 = 1
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and the relations among them are given by the following set of equalities

a178 = −w, a279 = −(y + w), a378 = −z,
a489 = x+ z, a579 = −(y + z), a689 = x+ w.

Furthermore, for those degenerations with N2 6= 0, the class [N2] ∈ E0,4
1 (Z) =

H0(T̃ (5),Q) (cf. (5.2)) can be exhibited as:

[N2] = b12789T12789 + b16789T16789 + b24789T24789

+ b34789T34789 + b35789T35789 + b56789T56789.

The (rational) numbers b’s must satisfy the following equation:

−b12789 + b16789 − b24789 + b34789 − b35789 − b56789 = 1.

Hence, the induced classes of [N ] in grL2H
4(T,Q)(1) and of [N2] in

grL0H
4(T,Q) (i.e. modulo boundary relations via the restriction maps ρ(3) and

ρ(5) cf. (1.6)) determine algebraic cocycles of dimension one and zero respec-
tively.

Proof. We will determine [N ] as a cocycle making the following square commute
(i.e. this is the one one has to study for a degeneration of K-3 surfaces of the
type mentioned above)

grL3H
2(X̃∗ × X̃∗,Q)

[N ] ·−−−−→ grL5H
6(X̃∗ × X̃∗,Q)(1) = (E1,5

2 )(1)

(p1)
∗
x

y(p2)∗

E−1,3
2 = grL3H

2(X̃∗,Q)
N−−−−→ (grL1H

2(X̃∗,Q))(−1) = (E1,1
2 )(−1)

Note that besides the commutativity of the square, one has to impose another
condition on [N ] in order for it to represent the operator N . That arises from

(5.1). Namely, the representative of N in (E2,2
1 )(1) = H2(T̃ (3),Q)(1) must

belong to the kernel of the related restriction map ρ(4). This condition was
automatically satisfied for double point degenerations since T (4) = ∅ always in
that case. We will explicitly describe a representative [N ] of N in (E2,2

1 )(1)
that satisfies the commutativity of the following square

H1(T̃ (2),Q)(−1)
[N ] ·−−−−→ H5(T̃ (2),Q)(1)

p∗1

x
y(p2)∗

H1(Ỹ (2),Q)(−1) H1(Ỹ (2),Q)(−1).

(5.3)

With the notations introduced in lemma 5.2 we first remark that the cocycles
[δij ] = (∆ij)∗(1Yij ) (i, j = 1, 2, 3, i 6= j), ∆ij : Yij → Yij × Yij being the
diagonal embedding, evidently satisfy the cohomological equality

(p2)∗(∆∗(1Yij ) · (p1)∗(v)) = (p2)∗(∆∗∆
∗p∗1(v)) = (p2)∗(∆∗(v)) = v

for 1Yij ∈ H0(Yij ,Q) and any element v ∈ H1(Ỹ (2),Q)(−1). However, since a

simple linear combination as a178δ̃12 + a279δ̃13 + a378δ12 + a489δ̃23 + a579δ13 +
a689δ23 (the coefficients a’s are integers) does not satisfy the requirement of
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being in the kernel of the restriction map ρ(4) (cf. (5.1) and (1.6)), we have
to add to the above “diagonal” definition a 1-cocycle Γ ⊂ T789, so that the
completed linear combination defines an element in (E2,2

2 )(1) representing N .
Notice that since the exceptional surface T789 projects down via p2, onto the
triple point P , this modification by Γ does not spoil the commutativity of (5.3),
once we have checked it for the partial representative of [N ] given in terms of
the above diagonals.
The 1-cycle Γ will be described as a combination of the generators
F1, F2, E1, E2 of the Neron-Severi group NS(T789). First of all, let consider

the six curves Tk789 for k = 1, . . . , 6. They are elements of T̃ (4). We describe
them using the generators of NS(T789). Because π(T1789) = {(0, 1) × (1, 0)},
T1789 = E2. Similarly, we have T3789 = E1, as π(T3789) = {(1, 0)× (0, 1)}. The
remaining four curves are described using the projection formula. For example,
we know that π(T2789) = (0, 1)×P1 and that π∗((0, 1)×P1) = F1 = E2+T2789.
Hence we have T2789 = F1 − E2. With a similar procedure we obtain
T4789 = F2 − E1, T5789 = F1 − E1 and T6789 = F2 − E2. The geometry of
the intersections among the generators of NS(T789) is well known, namely
E1 · E2 = E1 · F2 = E1 · F1 = E2 · F1 = E2 · F2 = F1 · F1 = F2 · F2 = 0,
E1 · E1 = −1 = E2 ·E2 and F1 · F2 = 1.
Let Γ = xF1 +yF2 +zE1 +wE2 be an element of NS(T789), with x, y, z, w ∈ Q.
Then, we must solve

[N ] = a178δ̃12 + a279δ̃13 + a378δ12 + a489δ̃23 + a579δ13 + a689δ23 + Γ

for Γ subject to the condition that [N ] is in ker ρ(4), for ρ(4) =
∑4
u=1(−1)u−1ρ

(4)
u

(cf. (1.6)). For example we have ρ(4)(a178δ̃12) = −a178(δ̃12 · T9), while

ρ(4)(a279δ̃13) = a279(δ̃13 · T8). Following these rules we obtain the system

a178 = Γ · T1789 = −w, a279 = −Γ · T2789 = −(y + w)

a378 = Γ · T3789 = −z, a489 = Γ · T4789 = x+ z

a579 = −Γ · T5789 = −(y + z), a689 = Γ · T6789 = x+ w.

(5.4)

For the standard choice of the orientations of {z1, z2, z3} and {w1, w2, w3} and
the numbering of the Ti’s setted in lemma 5.2, the local description of the

pullbacks dzi

zi
∧ dzj

zj
and dwi

wi
∧ dwj

wj
(i 6= j, i, j = 1, 2, 3) in terms of cohomol-

ogy classes vTij and vTijk
, is given following the tables shown in the proof of

lemma 5.2.
Let vij ∈ H1(Ỹ (2),Q)(−1), then via the multiplicative rule described in the
Appendix (cf. the similar calculation done in the proof of theorem 4.2) we
obtain

[N ] · p∗1(v12 + v13 + v23) =

= [N ] · (vT18 + vT78 + vT29 + vT79 + vT49 + vT89) =

= a178g1(δ̃12 · vT18)− a378g7(δ12 · vT78 ) + a279g2(δ̃13 · vT29)− a579g7(δ13 · vT79)+

+a489(g4(δ̃23 · vT49)− a689(g8(δ23 · vT89) =

= a178v78(1)− a378v38(1) + a279v79(1)− a579v59(1) + a489v89(1)− a689v69(1)
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where gj are the pushforward maps defined in the Appendix. Applying the
map (p2)∗ we have

(p2)∗([N ] · p∗1(v12 + v13 + v23))

= (a178 − a378)v12 + (a279 − a579)v13 + (a489 − a689)v23.

The commutativity of the diagram (5.3) is then equivalent to the requirement

a178 − a378 = a279 − a579 = a489 − a689 = 1(5.5)

The linear system (5.4) may be then read as z − w = 1. Therefore, any curve
Γ = xF1 + yF2 + zE1 +wE2 satisfying the condition z −w = 1 can be used in
the description of [N ] ∈ (E2,2

1 )(1).
The description of [N2] is similar. For instance, from proposition 2.1 we have

[N2] ∈ grL0H4(T,Q) ≃ H0(T̃ (5),Q)

Im(ρ(5) : H0(T̃ (4),Q)→ H0(T̃ (5),Q))

Via the procedure described in (2.1), [N2] is then determined in terms of the
commutativity of the following square

grL4H
2(X̃∗ × X̃∗,Q)

[N2] ·−−−−→ grL4H
6(X̃∗ × X̃∗,Q) = E2,4

2

(p1)
∗
x

y(p2)∗

E−2,4
2 = grL4H

2(X̃∗,Q)
N2

−−−−→ (grL0H
2(X̃∗,Q))(−2) = (E2,0

2 )(−2).

The related E1 description is

H0(T̃ (3),Q)(−2)
[N2] ·−−−−→ H4(T̃ (3),Q)

p∗1

x
y(p2)∗

H0(Ỹ (3),Q)(−2) H0(Ỹ (3),Q)(−2).

The scheme T̃ (5) is the disjoint union of the zero dimensional schemes T12789,
T16789, T35789 and T56789. Their support map all isomorphically onto the di-
agonal ∆123 : Y123 → Y123 × Y123. With a similar procedure as the one used
above to describe [N ], we write

[N2] = b12789T12789 + b16789T16789 + b24789T24789

+ b34789T34789 + b35789T35789 + b56789T56789

for some integers b’s. Imposing the commutativity of the above diagram, by
means of the description of the pullbacks p∗1(1Y123) and p∗2(1Y123) as shown in
the last table appearing in the proof of lemma 5.2, we finally get the condition

−b12789 + b16789 − b24789 + b34789 − b35789 − b56789 = 1.

It is straightforward to verify that both [N ] and [N2] make diagrams like (2.1)
commute, for any choice of the indices ∗ and r.
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Remark 5.4.

It is easy to verify that the description of [N ] and [N2] given in theo-
rem 5.3 holds also for a normal–crossings degeneration (not semistable) like
f(z1, . . . , zn) = z2

i zj, i, j ∈ [1, n], i 6= j. This applies in particular to the case
of normal–crossings degenerations of curves with triple points as described
above. The desingularization process of the threefold X ×S X is obtained via
two blow-ups along zi = 0 = wi and zj = 0 = wj by analogy to what we
have done in Remark 4.3. For the description of [N ] we also refer to the same
Remark.

6. An arithmetic interpretation of the monodromy operator in
mixed characteristic

The calculations on the geometric description of [N i] that we have done in
the previous sections only involve the (local) geometry of the special fiber of a
degeneration. Hence they equally hold in mixed characteristic also, i.e. for a
degeneration f : X → Spec(Λ) = S, where Λ is a Henselian discrete valuation
ring with η and v as its generic and closed points respectively. In analogy
with the classical case, the model X is assumed to be proper and the map
f is supposed to be flat, smooth over the generic point η and with a normal–
crossings special fiber Y defined over the finite field k(v) of characteristic p > 0.
Locally, for the étale topology X is S-isomorphic to S[x1, . . . , xn]/(xe11 · · ·xek

k −
π), where π is a uniformizing parameter in Λ and ei ∈ Z, ∀i = 1, . . . , k. For
simplicity, we also assume that Λ is a finite extension of Zℓ or Qℓ, where l 6= p
is a prime number.
The complex of nearby cycles is then defined as RΨ(Λ) := ī−1Rj̄∗Λ. Here
i : Y → X (resp. j : Xη → X ) is the natural closed (resp. open) embedding
that one “extends” to the algebraic closure k(v̄) of k(v) (resp. a separable
closure k(η̄) of k(η)). Assume that the multiplicities ei are prime to ℓ and
g.c.d.(ei, p) = 1. Then, the wild inertia acts trivially on RΨ(Λ) and the theory
exposed in [16] shows that the nearby cycle complex has an abstract description
in the derived category D+(Y,Λ[Zℓ(1)]) of the abelian category of complexes of
sheaves of Λ[Zℓ(1)]–modules on Y , by a complex A•X ,Λ, supported on Y . A•X ,Λ
can be interpreted as the analogue of the Steenbrink resolution in the classical
case. Therefore, the related study of it goes in parallel with the classical one
in equal characteristic zero. We refer to op.cit. and [7] (e.g. Théorème 3.2) for
further detail.
The power maps (n ∈ [0, 2d], i ≥ 0, d = dim Xη) N i : Hn(Xη̄,Λ) →
Hn(Xη̄,Λ)(−i) define elements

N i ∈
⊕

n≥0

[
H2d−n(Xη̄,Λ)(d)⊗Hn(Xη̄,Λ)(−i)

]G
=

[
H2d(Xη̄ ×Xη̄,Λ)(d− i)

]G

invariant for the action of the Galois group G = Gal(η̄/η) on the cohomology of
the product Xη̄×Xη̄. Assume that f : X → S has at worst triple points. Then,
the singularities of both X ×S X and Y × Y can be resolved locally around

Documenta Mathematica 4 (1999) 65–108



100 Caterina Consani

each singular point by a sequence of at most three blows-up, as we described in
details in §§ 2,4,5. The resulting degeneration h : Z → S is normal–crossings
with special fiber T = T1∪ . . .∪TN . Let Xη̄×Xη̄ = Zη̄ be its geometric generic

fiber. Denote by Ñ = 1 ⊗ N + N ⊗ 1 the logarithm of the local monodromy
on the product degeneration h. Then, the analogue of proposition 2.1 is the
following

Proposition 6.1. Assume the monodromy-weight conjecture on H∗(Zη̄,Λ)
and the semisimplicity of the Frobenius on the inertia invariants. Then

N i ∈
[
Ker(Ñ) ∩H2d(Zη̄,Λ(d− i))

]F=1

≃
[
Ker(Ñ) ∩ (grL2(d−i)H

2d(Zη̄,Λ))(d − i)
]F=1

≃
(
(grL2(d−i)H

2d(T,Λ))(d− i)
)F=1

≃
[
Ker(ρ(2(i+1) : H2(d−i)(T̃ (2i+1),Λ)(d−i)→ H2(d−i)(T̃ (2(i+1)),Λ)(d−i))

Image ρ

]F=1

where F is the geometric Frobenius.

The following result shows the relation of proposition 6.1 with the arithmetic
of the degeneration h

Theorem 6.2. Assume the monodromy-weight conjecture on Zη̄ and the
semisimplicity of the action of the frobenius F on H∗(Zη̄,Λ)I . Then, for i > 0
and d = dim Xη̄

ord
s=d−i

det(Id− FN(v)−s|H2d(Zη̄,Λ)I) =

rk

[
Ker(ρ2(i+1) :H2(d−i)(T̃ (2i+1),Λ)(d−i)→ H2(d−i)(T̃ (2(i+1)),Λ)(d−i))

Image ρ

]F=1

.

N(v) is the number of elements of the finite residue field k(v).

Proof. cf. [2], theorem 3.5.

This result explains geometrically the pole of the local factor at v of the L-
function L(H2d(Zη̄,Qℓ), s) at the points s = d − 1 and s = d − 2, with the
presence of the “diagonal” cycles representing the monodromy powers on the
strata of T as we previously described.

7. Appendix (by Spencer Bloch)

Our objective in this appendix is to define a multiplication between the to-
tal complex of E1-terms of the Steenbrink spectral sequence and the graded
complex

H∗(Y (•)), ρ = restriction(7.1)
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which is the E1 complex converging to the cohomology of the special fiber
Y . We order the components Y = Y1 ∪ . . . ∪ YN and write ai0,...,im ∈
H∗(Yi0,...,im ,Q). The E1-terms of the Steenbrink spectral sequence can be
arrayed in a triangular diagram (compare [7], (2.3.8.1)) where each • denotes
some H∗(Y (m),Q(n)).

•
↑ տ
• ← •
↑ տ ↑ տ
• ← • ← •
... �wt0

... �wt1

...
. . .

• ← • ← • ← •

(7.2)

Here the horizontal arrows are Gysin maps and the vertical arrows are re-
striction maps. The diagonal arrows are (upto twist) the maps N which, on
the level of E1 are either the identity or 0. The Steenbrink E1-terms, i.e. the
H∗(Y, grLr RΨ(Q)), are direct sums of terms on a NE-SW diagonal, with weight
r meeting the ”x-axis” at x = r. The complex H∗(Y (•)) is embedded as the left
hand column, and the resulting multiplication on it is the usual (associative)
product

ai0,...,im ⊗ bj0,...,jn 7→
{

0 im 6= j0

(a · b)i0,...,im,j1,...,nn im = j0
(7.3)

The bottom row is a quotient complex calculating the homology of the closed
fiber H∗(Y ) (with appropriate twist). Our multiplication induces an action of
the left hand column on the bottom row, which we will show induces the cap
product ([14], p. 254)

Hq(Y )⊗Hn(Y )→ Hn−q(Y ).(7.4)

This module structure, unifying and extending the classical cocycle calculations
for cup and cap product, is of independent interest. Quite possibly it can
be extended to a product on the whole E1-complex, but the daunting sign
calculations involved have prevented us from working it out.
We will apply this construction to calculate the product

[N i] · : H∗(T, grLr A
•
Z,Q)→ H∗+2d(T, grLr−2iA

•
Z,Q(d− i))(7.5)

from (2.1).
We return to the situation in section 2. In particular, Z → X ×S X is a
resolution, and T ⊂ Z is the special fiber, which we assume is a normal crossings
divisor. We write E1(Z) for the Steenbrink spectral sequence associated to the
degeneration Z/S.

Lemma 7.1. There exists a class [N i] in E1(Z) satisfying
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1. d1[N i] = 0, and the induced class in E2 is the i-th power of the mon-
odromy operator

N i ∈ grL2(d−i)H
2d(X̃∗ × X̃∗,Q(d− i))

2. N([N i]) = 0, i.e. in the diagram (7.2), [N i] lies in the left hand vertical
column.

Proof. We see from proposition (2.1) that the class of N i is killed by N in
E2(Z). Let M denote the map on E1 which is inverse to N insofar as possible,
i.e. M maps down and to the right in diagram (7.2). M is zero on the bottom
line. Let x ∈ E1 represent N i in E2. Then Nx = d1y. (Here d1 = d′ + d′′ is
the total differential.) Since N commutes with d′ and d′′, and Nx has no term
on the bottom row, it follows that [N i] := x − d1My is supported on the left
hand column, i.e. killed by N .

Here is some notation. The special fiber will be Y =
⋃
Yi, with 0 ≤ i ≤ N .

Write H∗(Y ) for cohomology in some fixed constant ring like Z or C.

I = {i0, . . . , im}; J = {j0, . . . , jn} (strictly ordered); YI =
⋂

ik∈I
Yik

We will say the pair I, J is admissible if

∃p such that im = max(I) = jp and {j0, . . . , jp} ⊂ I.
In this case, write j0 = ib0 , . . . , jp−1 = ibp−1 . Define

a(I, J) := b0 + . . .+ bp−1 +mp.

With I, J admissible as above, write

J ′ = {j0, . . . , jp}; J ′′ = {jp, . . . , jn}; J = J ′ ∪ J ′′; J ′ ∩ J ′′ = {jp} = {im}
Write

I ′ = J ′; I ′′ = (I − J ′) ∪ {im}; I = I ′ ∪ I ′′; {im} = I ′ ∩ I ′′

Let K = I ′′ ∪ J ′′, and define

θ(I, J) : Hα(YI)⊗Hβ(YJ )→ Hα+β+2p(YK)(7.6)

θ(I, J)(x ⊗ y) := (−1)a(I,J)gj0 ◦ · · · gjp−1(x · y).(7.7)

Here x · y ∈ Hα+β(YI∪J), the gj are Gysin maps, and

gj0 ◦ · · · gjp−1 : H∗(YI∪J )→ H∗+2p(YI′′∪J′′).

If the pair I, J is not admissible, define θ(I, J) = 0. Define for I as above and
0 ≤ k ≤ N

σ(I, k) := #{i ∈ I | i < k}
For k /∈ I we have the restriction restk : H∗(YI)→ H∗(YI∪{k}). Define

d′ :=
∑

k/∈I
(−1)σ(I,k)restk : H∗(YI)→

⊕

k/∈I
H∗(YI∪{k})
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Similarly, for k ∈ I we have the Gysin gk : H∗(YI)→ H∗+2(YI−{k}). We define

d′′ =
∑

k∈I
(−1)σ(I,k)gk : H∗(YI)→

⊕

k∈I
H∗+2(YI−{k}).

Theorem 7.2. With notation as above (I, J not necessarily admissible) the
following diagram is commutative:

H∗(YI)⊗H∗(YJ )
θ(I,J)−−−−→ H∗(YK)

yd′⊗1+(−1)m1⊗(d′+d′′)

yd′+d′′

⊕
Ĩ,J̃

H∗(YĨ)⊗H∗(YJ̃ )
θ(Ĩ,J̃)−−−−→ ⊕

K̃=Ĩ′′∪J̃′′
H∗(YK̃)

Remark 7.3.

A priori the theorem does not suffice to determine the desired mapping

H∗(Y •)⊗ E1 → E1 a⊗ b 7→ a ∗ b

because a given H∗(YK) occurs many times in the diagram (2.1) (at every point
along a NW pointing diagonal). However, if we add the condition that the
weights (SW-NE diagonals in (7.2)) should be added, the mapping is defined.
It has the property that

a ∗Nb = N(a ∗ b)
In particular, there is an induced action on E1/NE1 which we identify with the
bottom row in (7.2). This simple complex calculates H∗(Y ), and the product
coincides with the cap product. To see this, one notes that the product is
correct for two elements in weight 0, and that if each H∗(YI) is replaced by Z,
the acyclic model theorem ([14], p. 165) can be applied.

proof of theorem. The proof consists of many separate cases. In each case we
will check the sign carefully (this is the delicate part) and omit checking that
the maps coincide set-theoretically (which is straightforward).
case: im /∈ J .
In this case, the pair I, J is not admissible, so θ(I, J) = 0. We must show

⊕̃
I,J̃

θ(Ĩ , J̃) ◦ (d′ ⊗ 1 + (−1)m1⊗ (d′ + d′′)) = 0.(7.8)

We may ignore non-admissible Ĩ , J̃ . The only way admissible Ĩ , J̃ can occur in
this situation is if for some p ≥ 0 we have jp−1 < im < jp and {j0, . . . , jp−1} ⊂
I. (If a subscript for j doesn’t fall in {0, . . . , n}, ignore it, i.e. take j−1 =
−∞, jn+1 = +∞.) Assume these conditions hold. Then the pair I ∪ {jp}, J
is admissible and occurs in the image of d′ ⊗ 1. Also the pair I, J ∪ {im}
is admissible and occurs in the image of (−1)m(1 ⊗ d′). We must show these
two contributions cancel. Suppose j0 = ib0 , . . . , jp−1 = ibp−1 . Then the sign

Documenta Mathematica 4 (1999) 65–108



104 Caterina Consani

condition we need to verify is

σ(I, jp) + b0 + · · ·+ bp−1 + p(m+ 1) ≡
1 +m+ σ(J, im) + b0 + · · ·+ bp−1 + pm mod (2)

This is correct because σ(I, jp) = m+ 1 and σ(J, im) = p.
case: im = jp ∈ J, {j0, . . . , jp−1} 6⊂ J .
This is the other case where I, J is not admissible, so θ(I, J) = 0. To get

admissible Ĩ , J̃ we must have

∃k, 0 ≤ k ≤ p− 1 such that jk /∈ I, {j0, . . . , ĵk, . . . , jp−1} ⊂ I.
Assume this. Then the pairs (I∪{jk}, J) and (I, J−{kk}) are admissible. The
first occurs in θ(I∪{jk}, J)◦(d′⊗1) and the second in (−1)mθ(I, J−{jk})◦1⊗d′′.
The necessary sign condition for cancellation is

σ(I, jk) + a(I ∪ {jk}, J)
?≡ m+ 1 + k + a(I, J − {jk}) mod (2).

To check this sign condition write jr = ibr for 0 ≤ r ≤ p− 1, r 6= k. Then

a(I, J − {jk}) = b0 + · · ·+ bk−1 + bk+1 + · · ·+ bp−1 + (p− 1)m

a(I ∪ {jk}, J) = b0 + · · ·+ bk−1 + σ(I, jk) + (bk+1 + 1) +

+ · · ·+ (bp−1 + 1) + p(m+ 1).

This yields the necessary congruence.
For the rest of the proof we assume I, J is admissible. We examine the various
terms in (7.8) and show they occur with the same signs in (d′ + d′′) ◦ θ(I, J).

We first consider terms coming from d′ ⊗ 1, so the target is labelled by Ĩ =
I ∪ {k}, J̃ = J .
case: k < im = jp. In this case, since jp = min J ′′ and k /∈ I ⊃ J ′, we have

k /∈ J . The pair Ĩ = I ∪ {k}, J is admissible with Ĩ ′′ = I ′′ ∪ {k} and the same

decomposition J = J ′∪J ′′. Let K̃ = Ĩ ′′∪J ′′ = K∪{k}. Since k < jp = min J ′′,
we have

σ(K, k) = σ(I ′′, k) = σ(I, k)− σ(J ′, k)

What we must show, therefore, is that

a(I, J)− a(Ĩ , J) ≡ σ(J ′, k) mod (2)

Write

Ĩ = {ĩ0, . . . , ĩm+1}; j0 = ĩb̃0 , . . . , jp−1 = ĩb̃p−1
;

a(Ĩ , J) = b̃0 + · · ·+ b̃p−1 + (m+ 1)p

I = {i0, . . . , im}; jr = ibr , 0 ≤ r ≤ p− 1

a(I, J) = b0 + · · ·+ bp−1 +mp

where

b̃ℓ =

{
bℓ ibℓ

< k

bℓ + 1 ibℓ
> k
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Thus

a(Ĩ , J)− a(I, J) = p−#{j ∈ J ′ − {jp} | j > k} =

#{j ∈ J ′ | j < k} = σ(J ′, k).

This is the desired congruence.
We continue to consider the contribution of d′ ⊗ 1 with I, J admissible.
case: k > im, k 6= jp+1.

In this case I ∪ {k}, J is not admissible so θ(Ĩ , J) = 0.
case: k = jp+1.

Here Ĩ := I ∪ {k}, J̃ := J is admissible with

J̃ ′ = {j0, . . . , jp+1} = J ′ ∪ {k} = J ′ ∪ {jp+1}
J̃ ′′ = {jp+1, . . . , jn} = J ′′ − {jp}; K̃ = Ĩ ′′ ∪ J̃ ′′ = K − {jp}

Note in this case k > im so σ(I, k) = m+1. The claim is here that the diagram

H∗(YI)⊗H∗(YJ)
θ(I,J)−−−−→ H∗(YK)

y(−1)m+1rest.⊗1

y(−1)σ(K,jp)Gysinjp

H∗(YĨ)⊗H∗(YJ)
θ(Ĩ,J)−−−−→ H∗(YK̃)

commutes. Note that the right hand vertical arrow (with the sign) is part of
1⊗ d′′. To verify the signs we need

a(I, J) + σ(K, jp) ≡ m+ 1 + a(Ĩ , J).

Since K = I ′′ ∪ J ′′ and k = max(I ′′) = min(J ′′) it is clear that

σ(K, jp) = #I ′′ − 1 = m− p.
Also jp = im so with the usual notation jr = ibr we get

a(Ĩ , J) = b0 + · · ·+ bp−1 +m+ (m+ 1)(p+ 1).

Now the desired congruence becomes

b0 + · · ·+ bp−1 + pm+m− p ≡ b0 + · · ·+ bp−1 +m+ (m+ 1)(p+ 1) +m+ 1

This is correct.
We now consider terms occurring in (−1)m(1 ⊗ d′) on the left of the diagram
in the statement of the theorem. We assume given k /∈ J .
case: k > jp.

Note in this case k /∈ I. Taking J̃ = J ∪{k}, K̃ = K∪{k}, I claim the diagram
below is commutative:

H∗(YI)⊗H∗(YJ )
θ(I,J)−−−−→ H∗(YK)

y(−1)m+σ(J,k)1⊗rest

y(−1)σ(K,k)rest

H∗(YI)⊗H∗(YJ̃ )
θ(I,J̃)−−−−→ H∗(KK̃)
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(In other words, the contribution in this case is to d′ on the right.) Set

J̃ = J ′ ∪ J̃ ′′; J̃ ′′ = J ′′ ∪ {k}; K = I ′′ ∪ J ′′.
We have

a(I, J) = a(I, J̃)

σ(J, k) = σ(J ′′, k) + p+ 1

σ(K, k) = σ(J ′′, k) + #I ′′ = σ(J ′′, k) +m+ 1− p
It follows that

m+ σ(J, k) + a(I, J̃) ≡ σ(K, k) + a(I, J) mod (2)

which is the desired sign relation in this case.
case: k < jp, k /∈ I.
In this case, the pair I, J ∪ {k} is not admissible, so the contribution is zero.
case: k < jp, k ∈ I.

In this case the pair I, J̃ is admissible with

J̃ := J ∪ {k} = J̃ ′ ∪ J ′′; J̃ ′ = J ′ ∪ {k}
I = Ĩ = J̃ ′ ∪ Ĩ ′′; Ĩ ′′ = I ′′ − {k}; K̃ = K − {k} = Ĩ ′′ ∪ J ′′

The term in question contributes to d′′ on the right, and the diagram which
commutes is:

H∗(YI)⊗H∗(YJ)
θ(I,J)−−−−→ H∗(YK)

y(−1)m+σ(J,k)rest

y(−1)σ(K,k)Gysink

H∗(YI)⊗H∗(YJ̃)
θ(I,J̃)−−−−→ H∗(YK̃)

The signs will be correct if

a(I, J) + σ(K, k) ≡ m+ σ(J, k) + θ(I, J̃) mod (2)

Write J̃ = {j̃0, . . . , j̃m+1} and j̃r = ib̃r
, r ≤ p. The desired congruence reads

b0 + · · ·+ bp−1 + mp+ σ(K, k)
?≡ m+ σ(J, k) + b̃0 + · · ·+ b̃p + (p+ 1)m

We have

b̃ℓ =





bℓ ℓ < σ(J ′, k)

σ(I, k) ℓ = σ(J ′, k)

bℓ−1 ℓ > σ(J ′, k)

The condition becomes

σ(K, k)
?≡ σ(J, k) + σ(I, k) = σ(J ′, k) + σ(J ′, k) + σ(I ′′, k),

which is true.
Finally we consider terms coming from (−1)m(1⊗ d′′) in the lefthand vertical
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arrow in the diagram of the theorem. In what follows j ∈ J .
case: j ∈ J ′′, j 6= jp. Define

J̃ = J − {j}; K = I ′′ ∪ J ′′; K̃ = K − {j} = I ′′ ∪ J̃ ′′.
The diagram which commutes is:

H∗(YI)⊗H∗(YJ)
θ(I,J)−−−−→ H∗(YK)

y1⊗(−1)m+σ(J,j)Gysinj

y(−1)σ(K,j)Gysinj

H∗(YI)⊗H∗(YJ̃)
θ(I,J̃)−−−−→ H∗(YK̃)

The sign condition to be checked is

m+ σ(J, j) + a(I, J̃)
?≡ a(I, J) + σ(K, j) mod (2).

Our conditions imply j > jp so a(I, J) = a(I, J̃). Also,

#I ′′ + #J ′ = m+ 2 ≡ m mod (2),

so

σ(K, j) = #I ′′ + σ(J ′′, j)− 1 ≡ m+ #J ′ + σ(J ′′, j)− 1

σ(J, j) = σ(J ′, j) + σ(J ′′, j)− 1 = #J ′ − 1 + σ(J ′′, j).

This is the desired condition.
case: j = jp.
In this case, I, J − {j} is not admissible, so we get no contribution.
case: j ∈ J, j < jp.
In this case, j ∈ J ′, j 6= jp. Set

J̃ = J − {j}; J̃ ′ = J ′ − {j}; J̃ ′′ = J ′′

Ĩ = I; Ĩ ′′ = I ′′ ∪ {j}; I = Ĩ = J̃ ′ ∪ Ĩ ′′

K = I ′′ ∪ J ′′; K̃ = Ĩ ′′ ∪ J̃ ′′ = K − {j}.
The sign condition to show we gat a contribution to d′′ on the right is

a(I, J) + σ(K, j)
?≡ m+ σ(J, j) + a(Ĩ , J̃) mod (2).

Writing j = jℓ = ibℓ
the condition becomes

b0 + · · ·+ bp−1 +mp+ σ(K, j)
?≡

b0 + · · ·+ b̂ℓ + bℓ+1 + · · ·+ bp−1 +m(p− 1) +m+ σ(J, j)

This is true because

bℓ = σ(I, j) = σ(I ′′, j) + σ(J ′, j)

σ(K, j) = σ(I ′′, j); σ(J, j) = σ(J ′, j).

The proof is completed by checking that all the terms on the right in the theo-
rem (i.e. in d′+ d′′) are accounted for precisely once in the above enumeration
of cases.
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Abstract. Stationary solutions of higher order KdV equations play
an important role for the study of the KdV equation itself. They give
rise to the coefficients of the associated Lax pair (P,L) for which P
and L have an algebraic relationship (and are therefore called algebro-
geometric). This paper gives a sufficient condition for rational and
simply periodic functions which are bounded at infinity to be algebro-
geometric as those potentials of L for which Ly = zy has only mero-
morphic solutions. It also gives a new elementary proof that this is
a necessary condition for any meromorphic function to be algebro-
geometric.

1991 Mathematics Subject Classification: 35Q53, 34A20, 58F07
Keywords and Phrases: KdV equation, algebro-geometric solutions of
integrable systems, meromorphic solutions of linear differential equa-
tions

1 Introduction

The collection of equations of the form

qt = [P,L]

where L = ∂2/∂x2 + q and (P,L) is a Lax pair2 is called the KdV hierarchy.
Stationary solutions of equations in the KdV hierarchy are given as [P,L] = 0

1Based upon work supported by the US National Science Foundation under Grant No.
DMS-9401816

2That is, P is a monic odd-order differential expression whose coefficients are polynomials
in q and its x-derivatives in such a way that the commutator [P,L] is a multiplication operator,
see Lax [13].
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and are, according to a theorem of Burchnall and Chaundy [2], [3], related to
a hyperelliptic curve. For this reason they are often called algebro-geometric
potentials of L. In the case of continuous, real-valued, periodic potentials q
Novikov [15] and Dubrovin [4] established the fact that q is algebro-geometric
if and only if the spectrum of the associated L2(R)-operator has a finite-band
structure. Recently F. Gesztesy and myself [7] discovered that an elliptic po-
tential is algebro-geometric if and only if, for every z ∈ C, every solution of
the equation Ly = y′′ + qy = zy is a meromorphic function of the independent
variable. Our proof relied on a classical theorem of Picard [16], [17], [18] which
states that a linear ordinary homogeneous differential equation with elliptic
coefficients has always a solution which is elliptic of the second kind provided
every solution of the equation is meromorphic. Note that in Picard’s theorem
the independent variable is considered to be a complex variable.
By extending this result to the AKNS hierarchy (cf. [8]) we proved that the
connection between the algebro-geometric property and the existence of only
meromorphic solutions is not restricted to the KdV case. For a review of these
and related matters see [9].
The goal of this paper is to show with the aid of theorems of Halphen [10] and
Floquet [6] that this characterization of elliptic algebro-geometric potentials
may be carried over to the case of rational and simply periodic potentials. This
covers the case of the famous N -soliton solutions of the KdV equation, which,
when viewed as depending on a complex variable, are exponentially decaying
along the real axis but are periodic with a purely imaginary period. Specifically,
after giving a formal definition for the term “algebro-geometric” in Definition
1, necessary and sufficient conditions for a potential to be algebro-geometric
will be provided in Theorems 1 and 2, respectively.

Definition 1. Let L be the differential expression L = d2/dx2 + q. A mero-
morphic function q : C → C∞ will be called algebro-geometric (or an algebro-
geometric potential of L) if there exists an ordinary differential expression P
of odd order which commutes with L.

Note that by Theorem 6.10 of Segal and Wilson [19] any algebro-geometric
potential which is smooth in some real interval may be extended to a mero-
morphic function on C. The restriction to meromorphic functions in Definition
1 is made to provide a concise statement.

Theorem 1. If q is an algebro-geometric potential then the following two state-
ments hold:

1. Any pole of q is a regular singular point of the differential equation y′′ +
qy = zy. The principal part of the Laurent expansion of q near x0 is given
by −k(k+1)/(x−x0)2 for a suitable positive integer k. In particular, the
residue of q at x0 is equal to zero.

2. For all z ∈ C all solutions of y′′ + qy = zy are meromorphic functions of
the independent variable.
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We prove this theorem in Section 4.
At this point it should be noted that, in the case when the curve associated
with q is nondegenerate, the above result follows also from a theorem of Its and
Matveev [12] published in 1975. In fact, Its and Matveev showed that, under
the given circumstances, the potential q and a fundamental system of solutions
of y′′ + qy = zy may be expressed in terms of Riemann’s theta-function. From
these expressions one can read off immediately the conclusions of Theorem 1.
In 1985 Segal and Wilson [19] looked at this type of questions from a very
different perspective. They study the Gelfand-Dickey hierarchy (which contains
the KdV hierarchy as a special case) employing loop group techniques. Instead
of Riemann’s theta-function they use an object called τ -function which is also
an entire function of its arguments and this implies the validity of Theorem 1.
In justification of offering yet another proof of Theorem 1 let me remark that it
will be completely elementary using only the well-known recursion formalism
of the KdV-hierarchy.
We turn now our attention from necessary conditions for the algebro-geometric
property to sufficient conditions. In Section 5 the following theorem will be
proven.

Theorem 2. Suppose that the function q satisfies one of the following three
conditions:

• q is rational and bounded near infinity,

• q is simply periodic with period p and there exists a positive number R
such that q is bounded in {x : | Im(x/p)| ≥ R}, or

• q is elliptic.

Furthermore assume that, for infinitely many values of z ∈ C, every solution
of the differential equation Ly = y′′ + qy = zy is meromorphic. Then q is an
algebro-geometric potential of L.

Note that, when q is elliptic, this result was proven in [7]. However, the proof
given below will be new and much shorter than the one in [7].
In Section 2 the KdV hierarchy is formally introduced and some of its most im-
portant properties are collected. In Section 3 Frobenius’ method of establishing
series solutions of linear differential equations is used to prove two crucial lem-
mas. Section 4 is devoted to the proof of Theorem 1 while Section 5 furnishes
the proof of Theorem 2.

2 The KdV hierarchy

Suppose q is a solution of some equation in the KdV hierarchy, i.e., there exists
a positive integer g and a monic differential expression P̃ of order 2g + 1 such
that qt = [P̃ , L] where L = ∂2/∂x2 + q. Since L commutes with its own powers
we may add a polynomial K(L) whose degree is at most g to P̃ and still have a
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monic differential expression of order 2g + 1 whose commutator with L equals
qt. It is well known that among all these expressions one can be written as

P =

g∑

j=0

[
−1

2
f ′g−j(x) + fg−j(x)

d

dx

]
Lj

where f0 = 1 and, for n ≥ 1, the fn can be expressed as polynomials in q and
its x-derivatives which obey the recursion relation

f ′n+1(x) =
1

4
f ′′′n (x) + q(x)f ′n(x) +

1

2
q′(x)fn(x). (1)

In fact, since [P,L] = f ′g+1, the equation satisfied by q is qt = f ′g+1. The
condition that q be a stationary solution of some equation in the KdV hierarchy
is therefore equivalent to the existence of an integer g such that

f ′g+1(x) =
1

4
f ′′′g (x) + q(x)f ′g(x) +

1

2
q′(x)fg(x) = 0. (2)

Defining

Fg(z, x) =

g∑

j=0

fg−j(x)zj

and

R2g+1(z) = (z − q(x))Fg(z, x)2 − 1

2
F ′′g (z, x)Fg(z, x) +

1

4
F ′g(z, x)2

one can show that in this case R2g+1 does not depend on x and that

P 2 = R2g+1(L)

which defines the hyperelliptic curve mentioned in the introduction. Since it is
also true that [P,L] = 0 if P and L satisfy the relationship P 2 = R2g+1(L) one
has the following result which is a special case of a theorem of Burchnall and
Chaundy [2], [3].

Theorem 3. Let L = d2/dx2 + q and suppose P is a monic differential ex-
pression of order 2g + 1. Then L and P are commutative if and only if there
exist polynomials R and K of degree 2g + 1 and k ≤ g, respectively, such that
(P +K(L))2 = R(L).

We need subsequently the following theorem which establishes a sufficient con-
dition for the potential q to be algebro-geometric.

Theorem 4. Let y1(z, ·) and y2(z, ·) be two solutions of Ly = y′′ + qy = zy
which are linearly independent for all but at most countable many values of z.
Define

g(z, x) = y1(z, x)y2(z, x).
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If

g(z, x) =
F (z, x)

γ(z)
,

where γ is independent of x and F (z, x) is a polynomial as a function of z and
meromorphic as a function of x, then q is algebro-geometric.

Proof. A straightforward calculation3 shows that the function g(z, ·) satisfies
the differential equation

4(z − q(x))g2 − 2gg′′ + g′2 = W (y1, y2)(z)2 (3)

where W (y1, y2) is the Wronskian determinant of y1 and y2 and where primes
denote derivatives with respect to x. Hence

(z − q(x))F (z, x)2 − 1

2
F (z, x)F ′′(z, x) +

1

4
F ′(z, x)2 = γ(z)W (y1, y2)(z)2. (4)

As a function of z the left hand side is a polynomial of degree 2g + 1 with
leading coefficient 4f0(x)2 when F (·, x) is of degree g and has leading coefficient
f0(x). Since the right hand side does not depend on x we conclude that f0(x)
is constant and we may assume without loss of generality that f0(x) = 1.
Equation (4) implies also that q is meromorphic. Therefore we may differentiate
(4) with respect to x. Assuming that

F (z, x) =

g∑

n=0

fn(x)zg−n

and dropping a common factor −2F (z, x) we obtain

g−1∑

n=0

f ′n+1(x)zg−n =

g∑

n=0

(
1

4
f ′′′n (x) +

1

2
q′(x)fn(x) + qf ′n(x)

)
zg−n

since f ′0 = 0. This shows that the coefficients fn satisfy the recursion relation
(1) and that fg satisfies (2). Hence, by the preceding considerations, q is
algebro-geometric.

3 Frobenius’ Method

In this section we prove two results concerning the structure of solutions of the
differential equation y′′ + qy = zy. The first of these results is obtained from
applying Frobenius’ method of solving an ordinary linear differential equation
by a power series to our particular case. A more general account can be found,
for instance, in Ince [11], Chapter XVI. The proof of this standard result is only
provided to facilitate references to it. The second result draws some further

3Apparently this observation was first made by Appell [1] in 1880.
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conclusions in the presence of a spectral parameter and for the case when all
solutions are meromorphic for infinitely many values of this spectral parameter.
Suppose x0 is a regular singular point of the equation y′′ + qy = 0. Then q is
meromorphic in a vicinity of x0 and has, at worst, a second order pole there.
Suppose

q(x) =

∞∑

j=0

qj(x− x0)j−2.

Then the indicial equation of the singularity is r(r − 1) + q0 = 0. The roots of
this equation are called indices and since their sum must be equal to one we
may denote them by −k and k + 1 where without loss of generality Re(−k) ≤
Re(k + 1). Note that q0 = −k(k + 1). Now introduce the series

w(σ, x) =
∞∑

j=0

cj(σ)(x − x0)σ+j .

Then

w′′ + qw =
∞∑

j=0

{
(j + σ)(j + σ − 1)cj + q0cj +

j−1∑

m=0

qj−mcm

}
(x− x0)j+σ−2.

Define
f0(ℓ) = ℓ(ℓ− 1) + q0 = (ℓ+ k)(ℓ − k − 1)

and, recursively for j ≥ 1,

cj(σ) =
−∑j−1

m=0 qj−mcm(σ)

f0(σ + j)
(5)

assuming that f0(σ + j) 6= 0 for j ≥ 1. Then

w′′ + qw = c0(σ)f0(σ)(x − x0)σ−2.

Suppose first that −k and k + 1 do not differ by an integer. Then f0(σ) = 0
but f0(σ + j) 6= 0 for j ≥ 1 and either choice of σ among the values −k and
k+1. Hence, choosing c0 = 1, we find that w(−k, ·) and w(k+1, ·) are linearly
independent solutions of y′′ + qy = 0.
Next suppose that 2k + 1 is a nonnegative integer. Then w(k + 1, ·) is again a
solution of y′′ + qy = 0 but w(−k, ·) becomes undefined since the requirement
that f0(σ + j) 6= 0 is not satisfied for σ = −k and j = 2k + 1. To obtain a

second solution we choose c0 =
∏2k+1
j=1 f0(σ+ j). One shows then by induction

that c0, ..., c2k are polynomials with simple zeros at σ = −k while c2k+1 is a
polynomial which may or may not have a zero at −k. Finally, c2k+2, c2k+3, ...
are rational functions in σ which are analytic at −k. Now consider

v(σ, x) =
∂w

∂σ
(σ, x) =

∞∑

j=0

(
∂cj
∂σ

+ cj log(x− x0)

)
(x− x0)σ+j .
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Since differentiation with respect to σ commutes with d2/dx2 + q(x) we obtain
that

v′′ + qv =

(
∂(c0f0)

∂σ
+ c0f0 log(x − x0)

)
(x− x0)σ−2.

Since c0f0 =
∏2k+1
j=0 f0(σ + j) has a double zero at σ = −k we obtain that

v(−k, ·) is a solution of y′′+ qy = 0 which is easily seen to be independent from
w(k + 1, ·). We may write

v(−k, x) = h1(x) log(x− x0) + h2(x)

where

h1(x) =

∞∑

j=2k+1

cj(−k)(x− x0)j−k and h2(z, x) =

∞∑

j=0

∂cj
∂σ

(−k)(x− x0)j−k.

(6)

We collect these results for the particular case, when k is a positive integer in
the following

Lemma 5. Suppose q is meromorphic near x0 with principal part

−k(k + 1)/(x− x0)2 + q1/(x− x0)

where k is a positive integer. Then the differential equation y′′ + qy = zy
has a solution w which is analytic at x0 and a solution v defined by v(x) =
h1(x) log(x− x0) + h2(x) where h1 is analytic at x0 and h2 is meromorphic at
x0.

This lemma and its proof are the main ingredients of the following one.

Lemma 6. Let Z be the set of all values of z ∈ C such that y′′ + qy = zy has
only meromorphic solutions. The following statements hold:

1. If Z is not empty then q is meromorphic and any pole of q is of the second
order at most.

2. Z is either a finite set or equal to C.

3. If Z = C and if x0 is a pole of q then the principal part of the Laurent
expansion of q about x0 is given by −k(k+ 1)(x− x0)−2 for some k ∈ N,
in particular, resx0 q = 0.

Proof. The fact that q = (y′′ − zy)/y shows that q is meromorphic and has at
most a double pole at any of its singular points even if y′′ + qy = zy has only
one meromorphic solution for one value of z. This proves the first claim.
Hence, if Z 6= ∅, a pole x0 of q is a regular singular point of y′′ + qy = zy and

q(x) =

∞∑

j=0

qj(x− x0)j−2
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in a vicinity of x0. The indices associated with x0, which are given as the roots
of r(r − 1) + q0 = 0 and hence are independent of z, must be distinct integers
whose sum equals one. We denote them by −k and k+1 where k > 0 and note
that q0 = −k(k + 1).
Note that replacing q by q− z amounts to replacing q2 by q2− z in the Laurent
expansion of q turning the recursion relation (5) into

cj(σ, z) =
−∑j−1

m=0(qj−m − zδj−m,2)cm(σ, z)

f0(σ + j)
(7)

where c0 =
∏2k+1
j=1 f0(j + σ). The equation y′′ + (q − z)y = 0 has a solution

v(z, x) = h1(z, x) log(x−x0)+h2(z, x) which is meromorphic at x0 if and only if
h1(z, ·) = 0. Recall that c1(−k, z) = ... = c2k(−k, z) = 0. Using this fact in the
recursion relation (7) shows that the coefficients cj(−k, z) are zero for all j if and
only if c2k+1(−k, z) = 0. Hence, because of (6), we have h1(z, ·) = 0 if and only
if c2k+1(−k, z) = 0. The recursion relation (7) also implies immediately that
the coefficients cj are polynomials in their second variable. Hence c2k+1(−k, ·)
has either finitely many zeros or else it is identically equal to zero. Therefore,
if c2k+1(−k, ·) 6= 0 for any singular point of the equation then Z is finite.
However, if c2k+1(−k, ·) = 0 for all singular points of the equation then Z = C.
This proves the second claim.
To prove the third claim we need more detailed information about the leading
coefficient of the polynomial c2k+1(−k, ·). We will show below that, if q1 =
resx0 q 6= 0, then c2k+1(−k, ·) is a polynomial of degree k thus forcing Z to be
a finite set and proving the last claim.
Suppose now that q1 6= 0. Since c2k+1(·, z) has a removable singularity at −k
we may determine c2k+1(−k, z) by computing limσ→−k c2k+1(σ, z) for σ < −k.
Note that c0(σ, z) = γ0(σ) and c1(σ, z) = −q1γ1(σ) where

−γ0(σ) = −
2k+1∏

j=1

f0(σ + j) and γ1(σ) =

2k+1∏

j=2

f0(σ + j).

The functions −γ0 and γ1 are positive in (−k − 1,−k) and have simple zeros
at −k. Assume that j ≤ k and that c2j−2(σ, z) and c2j−1(σ, z) are polynomials
in z of degree j − 1 and that

c2j−2(σ, z) = γ2j−2(σ)zj−1 +O(zj−2),

c2j−1(σ, z) = −q1γ2j−1(σ)zj−1 +O(zj−2)

where (−1)jγ2j−2 and (−1)j−1γ2j−1 are positive in (−k − 1,−k) and have
simple zeros at −k. Then, using the recursion relation (7), we obtain that
c2j(σ, z) and c2j+1(σ, z) are polynomials in z of degree j and that, in particular,

c2j(σ, z) =
zc2j−2

f0(σ + 2j)
+O(zj−1) =

γ2j−2

f0(σ + 2j)
zj +O(zj−1),

c2j+1(σ, z) =
zc2j−1 − q1c2j
f0(σ + 2j + 1)

+O(zj−1) = −q1
γ2j−1 + γ2j

f0(σ + 2j + 1)
zj +O(zj−1).
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Letting γ2j = γ2j−2/f0(σ + 2j) and γ2j+1 = (γ2j−1 + γ2j)/f0(σ + 2j + 1) we
find that (−1)j+1γ2j and (−1)jγ2j+1 are positive in (−k− 1,−k) and that γ2j

has a simple zero at −k. If j < k then γ2j+1 has a simple zero at −k, too,
since γ2j−1 and γ2j have the same sign in (−k − 1,−k). However, if j = k
then both the numerator and the denominator in (γ2k−1 + γ2k)/f0(σ+ 2k+ 1)
have a simple zero at −k proving that γ2k+1(−k) is different from zero. This,
however, shows that c2k+1(−k, ·) is a polynomial of degree k which has at most
k distinct zeros. However, c2k+1(−k, ·) must be zero for any value of z since
Z = C. This contradiction proves our assumption q1 6= 0 wrong.

4 Necessary Conditions

In this section we will prove Theorem 1 which gives conditions which must be
satisfied for any algebro-geometric potential. We start with

Theorem 7. If q is algebro-geometric then any of its poles is a regular singular
point of the differential equation Ly = y′′ + qy = zy. Moreover, when x0 is a
pole of q then the coefficient of (x− x0)−2 in the Laurent expansion of q about
x0 is equal to −k(k + 1) for some positive integer k.

Proof. We show first that any pole of q is a regular singular point of y′′+ qy =
zy, i.e., that its order is at most equal to two. Hence assume this were not
the case. That is, suppose that x0 which, without loss of generality, may be
assumed to be equal to zero is a pole of q of order k ≥ 3. Then q has a Laurent
expansion q = αx−k + ... where α 6= 0. Consider the recursion relation (1).
One shows by induction that the order of the pole x0 = 0 of f ′′′n is smaller than
that of qf ′n + q′fn/2 and that therefore

f ′n(x) = −nkαnx−nk−1
n∏

j=1

2j − 1

2j
+O(x−nk).

If q were algebro-geometric there would have to be an n such that f ′n = 0. This
contradiction shows that the order of the pole x0 is at most two and that x0 is
a regular singular point of y′′ + qy = zy.

Next assume that x0 = 0 is a pole of order one, i.e., q = αx−1 + O(1) with
α 6= 0. We prove, again by induction, that

f ′n(x) = −1

2
αx−2n

n−1∏

j=1

j(j + 1/2) +O(x−2n+1)

using that the order of the pole x0 = 0 of f ′′′n is larger than that of qf ′n+q′fn/2.
Hence, for no n is f ′n ever zero showing that x0 must not be a first order pole
if q is algebro-geometric.
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Finally, suppose that q = αx−2 + ... for some α different from any number in
{−k(k + 1) : k ∈ N}. Then another induction shows that

f ′n(x) = −2n




n∏

j=1

2j − 1

2j
(α+ j(j − 1))


x−2n−1 +O(x−2n).

Again f ′n 6= 0 for all n ∈ N contrary to the hypothesis.

Theorem 8. If q is algebro-geometric then every solution of Ly = y′′+qy = zy
is meromorphic for every z ∈ C.

Proof. Since q is algebro-geometric there exists a differential expression P of
the form

P =

g∑

j=0

[
−1

2
f ′g−j(x) + fg−j(x)

d

dx

]
Lj

for which [P,L] = 0 and P 2 = R2g+1(L). In contradiction to what we want
to prove assume that there exists a point z0 such that y′′ + qy = z0y has a
solution which is not meromorphic.
Let Z be the set of all values of z ∈ C such that y′′ + qy = zy has only mero-
morphic solutions. By Lemma 6 the set Z is closed and hence its complement
is open. Therefore and because the zeros of R2g+1 are isolated there is no harm
in assuming that R2g+1(z0) 6= 0.
Next denote the two-dimensional space of solutions of Ly = z0y by W (z0).
The restriction of P to the space W (z0) maps back into W (z0) since P and L
commute. Note that

P |W (z0) = Fg(z0, x)
d

dx
− 1

2
F ′g(z0, x).

Introduce the basis {y1, y2} of W (z0) which is defined by y
(ℓ−1)
j (x0) = δj,ℓ. In

this basis the restriction of P to W (z0) is represented by the matrix

M =
1

2

( −F ′g(z0, x0) 2Fg(z0, x0)
2(z0 − q(x0))Fg(z0, x0)− F ′′g (z0, x0) F ′g(z0, x0)

)
.

Note that trM = 0 and detM = −R2g+1(z0) regardless of x0. Therefore M

has distinct eigenvalues ±w0 = ±
√
R2g+1(z0). The associated eigenfunctions

ψ± satisfy Pψ± = ±w0ψ and Lψ± = z0ψ±. Define ϕ± = ψ′±/ψ± and note
that

±w0 =
Pψ±
ψ±

= Fgϕ± −
1

2
F ′g.

Hence

ϕ± =
±2w0 + F ′g

2Fg
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are meromorphic functions on C. Not both of the solutions ψ± can be mero-
morphic since they are linearly independent. Suppose ψ+ is not meromorphic.
Then, by Lemma 5, there is a constant γ such that ψ+ (or an appropriate
multiple) is given as

ψ+(x) = h1(x) log(x− x0) + h2(x) + γw(x) (8)

where h1, h2, and w are functions which are meromorphic at x0. Hence

(x − x0)(ϕ+h1 − h′1) log(x− x0)

= h1 + (x − x0)(h′2 + γw′)− (x− x0)(h2 + γw)ϕ+

is meromorphic at x0 and we conclude that ϕ+h1 − h′1 = 0. This implies that
h1 = cψ+ for some constant c. If c 6= 0 we obtain from (8)

log(x− x0) =

(
1

c
h1(x) − h2(x)− γw(x)

)
h1(x)−1

which is impossible since the right hand side is meromorphic at x0. Therefore
c = 0, i.e., h1 vanishes identically and ψ+ is meromorphic at x0 contrary to
our assumption.

We are now ready for the

Proof of Theorem 1. Theorem 7 proves that a pole of q is a regular singular
point with principal part −k(k+1)/(x−x0)2+q1/(x−x0) for a suitable positive
integer k and complex number q1. Theorem 8 proves not only that all solutions
of y′′ + qy = zy are meromorphic for all z ∈ C but also that the hypotheses of
Lemma 6 are satisfied. This in turn shows then that q1 = 0.

5 Sufficient Conditions

In this section we will prove Theorem 2. As mentioned in the introduction the
proofs rely on classical theorems by Halphen, Floquet, and Picard concerning
the linear differential equation

q0y
(n) + q1y

(n−1) + ...+ qny = 0. (9)

While Floquet’s theorem is well known (see e.g. Eastham [5] or Magnus and
Winkler [14]) it is appropriate to repeat the theorems of Halphen and Picard.
Halphen’s theorem is concerned with the rational case. A proof is given by Ince
[11] and this proof can be used to state the following version which is different
from Ince’s version.

Theorem 9. Let the coefficients q0, ..., qn in (9) be polynomials such that
deg qj ≤ deg q0 = s for j = 1, ..., n. For j = 0, ..., n let Aj be the coeffi-
cient of xs in qj and let λ be a zero of A0λ

n + A1λ
n−1 + ... + An. If the

differential equation (9) has only meromorphic solutions then it has a solution
R(x) exp(λx) where R is a rational function.
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Picard’s theorem is concerned with the elliptic case. It may also be found in
[11].

Theorem 10. Assume that the coefficients q0, ..., qn in (9) are elliptic with
common fundamental periods 2ω1 and 2ω2 and let ρ1 be a Floquet multiplier
with respect to the period 2ω1. If the differential equation (9) has only mero-
morphic solutions then it has a solution which is elliptic of the second kind and
satisfies y(x+ 2ω1) = ρ1y(x).

5.1 Rational potentials

Suppose that q is rational and bounded at infinity. Let z0 = limx→∞ q(x).
From Lemma 6 we know that y′′+ qy = zy has only meromorphic solutions for
any value of z and from Halphen’s theorem (Theorem 9) we obtain, for z 6= z0,
that there are linearly independent solutions

y±(z, x) = R±(z, x) exp(±√z − z0x)

where R±(z, ·) are rational functions. Also from Lemma 6 we obtain that

q = z0 −
m∑

j=1

sj(sj + 1)

(x− bj)2

where b1, ..., bm are distinct complex numbers and s1, ..., sm are positive inte-
gers. The singular point bj of y′′ + qy = zy has indices −sj and sj + 1 and
hence any pole of y± is located at one of the points bj and has order sj . Now
define the function g(z, x) = y+(z, x)y−(z, x). Letting v(x) =

∏m
j=1(x − bj)sj

we see that the functions y±v are entire as functions of x and hence v2g(z, ·)
is an entire rational function, i.e., a polynomial. Letting

v(x)2g(z, x) =

d∑

j=0

cjx
j

the functions v2g(z, x), v3g′(z, x), v4g′′(z, x), and v5g′′′(z, x) are polynomials
in x whose coefficients are homogeneous polynomials of degree one in c0, ..., cd.
Since v2q and v3q′ are polynomials we find that v5(g′′′+4(q−z)g′+2q′g) is also
a polynomial in x whose coefficients are homogeneous polynomials of degree
one in c0, ..., cd. The coefficients of the cℓ in this last expression, in turn, are
polynomials in z of degree at most one, i.e.,

v5(g′′′ + 4(q − z)g′ + 2q′g) =
N∑

j=0

d∑

ℓ=0

(αj,ℓ + βj,ℓz)cℓx
j (10)

for suitable numbers N , αj,ℓ, and βj,ℓ, which depend only on q. From Appell’s
equation (3) it follows upon differentiation that the expression (10) vanishes
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identically. This gives rise to a homogeneous system of N + 1 linear equations
for the cℓ of which we know that it has a nontrivial solution. Solving the system
shows now that the coefficients cℓ are rational functions of z, i.e.,

cℓ(z) =
c̃ℓ(z)

γ(z)

where γ and c̃ℓ are polynomials in z. Therefore

g(z, x) =

∑d
j=0 c̃j(z)xj

γ(z)v(x)2
=
F (z, x)

γ(z)

where

F (z, x) =

∑d
j=0 c̃j(z)xj

v(x)2

is a polynomial as function of z and a rational function as function of x. We
have therefore proven that the hypotheses of Theorem 4 are satisfied and this
shows that q is algebro-geometric.

5.2 Simply Periodic Potentials

Suppose q is meromorphic, simply periodic with period p ∈ C, and bounded
in {x : | Im(x/p)| ≥ R} for some R > 0. Lemma 6 implies firstly that, for
all values of z all solutions of y′′ + qy = zy are meromorphic. To simplify
notation we assume without loss of generality that the fundamental period p
of q is equal to 2π. Define q∗ : C− {0} → C∞ by q∗(t) = q(−i log t). Because
of the periodicity of q the function q∗ is well-defined and meromorphic. Since
q(x) remains bounded as | Im(x)| tends to infinity the points zero and infinity
are removable singularities of q∗ and hence q∗ is a rational function which is
bounded at infinity and zero. Denoting its poles by t1, ..., tm we may write

q∗(t) = z0 +

m∑

j=1

Nj∑

k=1

tkjAj,k

(t− tj)k

where t1, ..., tm are distinct nonzero complex numbers. Let xj be any complex
number such that eixj = tj . Then we obtain that

q(x) = q∗(eix) = z0 +
m∑

j=1

Nj∑

k=1

Aj,k

(ei(x−xj) − 1)k
.

Since

ei(x−xj) − 1 = i(x− xj)(1 +
i

2
(x− xj) +O((x − xj)2))

we obtain from Lemma 6 that Nj = 2 and Aj,1 = Aj,2 = sj(sj+1) with sj ∈ N.
Hence

q∗(t) = z0 +

m∑

j=1

sj(sj + 1)
ttj

(t− tj)2
.
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In particular q∗(0) = q∗(∞) = z0.
From Floquet’s theorem we know that there are solutions (called Floquet so-
lutions) of y′′ + qy = zy of the form

ψ±(z, x) = p±(z, x)e±iλx

where p± are periodic functions with period 2π and λ is a suitable complex
number depending on z which is determined up to addition of an arbitrary
integer. Unless 2λ is an integer which happens only for an isolated set of values
of z the solutions ψ± are linearly independent.
The functions ψ±(z, ·) are meromorphic by assumption. Their poles are at the
singularities of the differential equation, i.e., at the poles of q. Because the
indices of the singularities xj = −i log tj are −sj and sj +1 the functions given
by

ψ±(z, x)e∓iλx
m∏

j=1

(eix − eixj )sj

are entire and periodic functions of period 2π.
Define

v(x) =

m∏

j=1

(eix − eixj )sj .

The substitution y = ueiλx/v transforms y′′ + qy = zy into

v2u′′ + (2iλv2 − 2vv′)u′ + ((−λ2 − z + q)v2 − 2iλvv′ + 2v
′2 − vv′′)u = 0

(11)

which has entire solutions at least one of which is periodic with period 2π.
Next define v∗(t) = v(−i log t) =

∏m
j=1(t − tj)sj and substitute u(x) = u∗(t)

where x = −i log t in (11) to obtain u′(x) = itu∗′(t), u′′(x) = −t2u∗′′(t)−tu∗′(t)
and hence

Q0u
∗′′ +Q1u

∗′ +Q2u
∗ = 0 (12)

where

Q0 = t2v∗2,

Q1 = t((1 + 2λ)v∗2 − 2tv∗v∗′),

Q2 = (z − q∗ + λ2)v∗2 − (2λ+ 1)tv∗v∗′ + 2t2v∗′2 − t2v∗v∗′′.

Because equation (11) has an entire 2π-periodic solution equation (12) has a
solution which is analytic on C−{0}, i.e., a solution for which zero and infinity
are isolated singularities.
Since v∗(0) 6= 0 the point zero is a regular singular point of (12) with indicial
equation

r2 + 2λr + z − z0 + λ2 = 0. (13)

Documenta Mathematica 4 (1999) 109–126



Solutions of Stationary KdV Equations 123

This equation must have at least one integer solution since otherwise no solution
of (12) would be one-valued, i.e., zero would not be an isolated singularity.
Thus suppose the solutions of (13) are m and −2λ −m where m ∈ Z. Then
−2λm−m2 = z− z0 +λ2 which implies λ = −m± i√z − z0. As we are free to
change λ by adding an integer we may assume from now on that λ2 = z0 − z
and that the zeros of the indicial equation (13) are zero and −2λ.
Next turn to the point infinity. After introducing 1/t as independent variable
it turns out that infinity is also a regular singular point with indicial equation

r2 + (2S − 2λ)r + S2 − 2λS = 0 (14)

where S =
∑m
j=1 sj = deg v∗. The solutions of (14) are −S and 2λ− S.

Now, if 2λ is not an integer then (11) has precisely one linearly independent 2π-
periodic solution. Hence (12) has precisely one single-valued analytic solution
in C − {0}. This must therefore be the solution associated with the indices 0
and −S at zero and infinity, respectively, i.e., this solution is a polynomial of
degree S.
Repeating the above procedure after replacing λ by −λ we now obtain that the
differential equation y′′ + qy = zy has the solutions

y±(z, x) =
u∗±(z, eix)

v∗(eix)
exp(±iλx)

where u∗+(z, ·) and v∗ are polynomials. These solutions are linearly independent
except at an at most countable number of isolated points z.
Again define the function g(z, x) = y+(z, x)y−(z, x). Then

v(x)2g(z, x) = u∗+(z, eix)u∗−(z, eix) =
d∑

j=0

cj(z)eijx.

The functions v2g(z, x), v3g′(z, x), v4g′′(z, x), and v5g′′′(z, x) are now polyno-
mials in eix whose coefficients are homogeneous polynomials of degree one in
c0, ..., cd and so is the function v5(g′′′ + 4(q − z)g′ + 2q′g). Specifically,

v5(g′′′ + 4(q − z)g′ + 2q′g) =
N∑

j=0

d∑

ℓ=0

(αj,ℓ + βj,ℓz)cℓe
ijx. (15)

As the expression (15) must vanish identically we obtain again a system of
linear equations which we use to show that the coefficients cℓ are rational
functions of z. Therefore g(z, x) = F (z, x)/γ(z) where F (z, x) is a polynomial
as function of z and a rational function as function of eix. Theorem 4 gives
that q is algebro-geometric.

5.3 Elliptic potentials

Finally let q be elliptic with fundamental periods 2ω1 and 2ω3. Assume that
none of the poles of q equals zero or a half-period (modulo the fundamental
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period parallelogram) which may always be achieved by a slight shift of the
independent variable. Then, by Lemma 6 and general properties of elliptic
functions,

q(x) =
q1(℘(x)) + q2(℘(x))℘′(x)∏m

j=1(℘(x) − pj)2

for suitable polynomials q1 and q2 and suitable numbers m and p1, ..., pm. Let

v(x) =

m∏

j=1

(℘(x)− pj)sj

where −sj < 0 and sj + 1 > 0 are the indices of the singularity xj for which
℘(xj) = pj. Then v2q and v3q′ are polynomials in ℘(x) and ℘′(x).
Picard’s theorem guarantees the existence of two linearly independent solutions
y±(z, ·) of y′′ + qy = zy which are elliptic of the second kind for all but an
at most countable number of isolated points z since we then have different
Floquet multipliers with respect to 2ω1. ¿From Floquet theory we know that
the product of these solutions must be doubly periodic since the product of
Floquet multipliers with respect to any period is equal to one in our case. As
all solutions are meromorphic (by Lemma 6) we have that g(z, ·) the product
of y+(z, ·) and y−(z, ·) is elliptic. Therefore and since the only poles of g(z, ·)
are at the points where ℘(x) = pj and have order at most 2sj we get

g(z, x) =
g1(z, ℘(x)) + g2(z, ℘(x))℘′(x)

v(x)2

where g1(z, ·) and g2(z, ·) are polynomials. Introduce the coefficients c0, ..., cd
by

g1(z, t) =
δ∑

j=0

cj(z)tj, g2(z, t) =
d∑

j=δ+1

cj(z)tj−δ−1.

Each of the functions v2g, v3g′, v4g′′, and v5g′′′ are now of the form
φ1(℘) + φ2(℘)℘′ where φ1 and φ2 represent various polynomials. The coeffi-
cients of these are homogeneous polynomials of degree one in c0, ..., cd. There-
fore v5(g′′′ + 4(q − z)g′ + 2q′g) = h1(℘(x)) + h2(℘(x))℘′(x) where h1 and h2

are polynomials whose coefficients are polynomials in the variables z, c0, ..., cd
homogeneous of degree one with respect to c0, ..., cd and of at most first order
with respect to z. This implies just as before that the cj are rational functions
of z and proves that g(z, x) = F (z, x)/γ(z) where F (z, x) is a polynomial as
function of z and a rational function as function of ℘(x) and ℘′(x). Theorem
4 gives that q is algebro-geometric.

References
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Abstract. In this paper simply connected twistor spaces Z con-
taining a pencil of fundamental divisors are studied. The Riemannian
base for such spaces is diffeomorphic to the connected sum nCP2. We
obtain for n ≥ 5 a complete description of the set of curves intersect-
ing the fundamental line bundle K−

1
2 negatively. For this purpose

we introduce a combinatorial structure, called blow-up graph. We
show that for generic S ∈| − 1

2K | the algebraic dimension can be
computed by the formula a(Z) = 1 + κ−1(S). A detailed study of
the anti Kodaira dimension κ−1(S) of rational surfaces permits to
read off the algebraic dimension from the blow-up graphs. This gives
a characterisation of Moishezon twistor spaces by the structure of
the corresponding blow-up graphs. We study the behaviour of these
graphs under small deformations. The results are applied to prove the
main existence result, which states that every blow-up graph belongs
to a fundamental divisor of a twistor space. We show, furthermore,
that a twistor space with dim | − 1

2K |= 3 is a LeBrun space [LeB2].
We characterise such spaces also by the property to contain a smooth
rational non-real curve C with C.(− 1

2K) = 2− n.

1991 Mathematics Subject Classification: 32L25, 32J17, 32J20,
14M20
Keywords and Phrases: Moishezon manifold, algebraic dimension,
self–dual, twistor space

1 Introduction

For a complex manifold with non-positive Kodaira dimension and zero dimen-
sional Albanese torus, the algebraic dimension is the most basic birational
invariant. By definition it is the transcendence degree over C of the field of
meromorphic functions on the manifold. Because it is often a difficult task
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to compute this invariant in explicit examples, it is interesting to study the
algebraic dimension in special classes of manifolds. A class where we can find
interesting phenomena is the class of twistor spaces. From our point of view,
a twistor space is a compact complex three-manifold Z equipped with

• a proper differentiable submersion π : Z −→M onto a real differentiable
four-manifold M (called the base), whose fibres are holomorphic curves
in Z which are isomorphic to the complex projective line and have normal
bundle in Z isomorphic to O(1)⊕O(1) and

• an anti-holomorphic fixed point free involution σ : Z −→ Z with πσ = π.

Usually, such spaces arise in 4-dimensional conformal geometry. The points of
Z correspond to complex structures on the tangent spaces at M , compatible
with the conformal structure. The idea for such a construction traces back
to F. Hirzebruch, H. Hopf [HH] and R. Penrose [Pe]. The twistor construc-
tion in the context of Riemannian geometry was first developed by M. Atiyah,
N. Hitchin, I. Singer [AHS]. It plays an important role as a bridge between
conformal Riemannian geometry and complex geometry. Twistor spaces have
always negative Kodaira dimension and trivial Albanese torus [H2]. If a twistor
space has the maximal possible algebraic dimension a(Z) = 3, then it must be
simply connected with base homeomorphic to either S4 or a connected sum of
CP2’s [C2]. Compare with Proposition 2.4 below.
The involution σ is called a real structure and we designate any σ-invariant
geometric object as being “real”. For example, the fibres of π are called “real
twistor fibres”, a line bundle L ∈ PicZ is called real if σ∗L ∼= L and a sub-
variety D ⊂ Z is called real if D := σ(D) = D. The degree deg(L) of a
line bundle L ∈ PicZ is by definition the degree of the restriction L ⊗ OF
to a real twistor fibre F ⊂ Z. The “type” of a twistor space is by definition
the sign of the scalar curvature of a metric with constant scalar curvature in
the conformal class of M . On every twistor space there exists a distinguished
square root K−

1
2 of the anti-canonical line bundle of Z. This bundle is called

the fundamental line bundle. The divisors in | − 1
2K | are called fundamental

divisors. The study of the structure of these divisors and of their linear system
played a fundamental role in the study of twistor spaces.
In this paper we study simply connected twistor spaces containing irreducible
fundamental divisors. Some authors start with the assumption that the twistor
space is of positive type, but we don’t here. We show in Section 2 that a
simply connected twistor space containing an irreducible fundamental divisor
must necessarily have positive type. For a collection of the basic properties of
such twistor spaces and appropriate references, the reader is referred to [K1,
Sections 2 and 3]. In the final three sections of the paper [K1], the case c31 = 0
is studied, whereas the case c31 > 0 is fairly well understood (see [H2], [FK],
[Po1], [KK], [Po4]). Here we focus on the general case: c31 < 0.
The goal of this paper is an understanding of the relationship between the alge-
braic dimension a(Z), the structure of fundamental divisors and the base locus
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and dimension of the fundamental linear system on Z. The results show that
a finite set of curves with certain numerical properties contains very important
information on the structure of the twistor space. We study the interplay be-
tween curves and surfaces, not merely divisors inside our three-manifolds. The
basic assumption for our study will be dim | − 1

2K |≥ 1. Under this assumption,
we develop in Section 3 a clear picture of the possibilities for the base locus and
dimension of the fundamental linear system. We also give a new characterisa-
tion of LeBrun twistor spaces (Theorem 3.6). For LeBrun twistor spaces and
the twistor spaces studied in [CK2] the place among all twistor spaces becomes
quite clear by Theorems 3.6 and 3.7. Curves with certain numerical properties
play an important role for these results.
To compute the algebraic dimension of a simply connected twistor space one
relies on the observation of Y.S. Poon [Po2] that one can compute a(Z) by the
Iitaka dimension of the anti-canonical line bundle κ(Z,K−1). This can be de-
duced from the fact that K−1 generates the unique one-dimensional subspace
in PicZ⊗R which is invariant under the involution, induced by the real struc-
ture on Z. To compute a(Z) one can use the inequality a(Z) ≤ 1 + κ(S,K−1

S ).
But in many cases this is not enough for computing the algebraic dimension.
In Section 4 we improve it (under our assumption dim | − 1

2K |≥ 1) to the
equality

a(Z) = 1 + κ(S,K−1
S )

for generic fundamental divisors S.
This motivates the study of the anti Kodaira dimension κ−1(S) := κ(S,K−1

S )
of rational surfaces in Section 5.
To handle the structure of the base locus of the fundamental system (which
is also related to the number of divisors of degree one, see [K1, Proposition
3.7]) we define the notion of a blow-up graph (Section 6). This is a combina-
torial structure which reflects numerical properties of the components of anti-
canonical divisors on rational surfaces. These graphs contain also information
on the anti Kodaira dimension.
The existence of new twistor spaces can be shown with the aid of deformation
theory [DonF], [C1], [LeBP], [PP2], [C3]. To be able to state interesting results
on the structure of twistor spaces constructed in such an indirect manner, we
study the behaviour of the blow-up graphs under small deformations in Section
7. These results will then be used in Section 8, where the relationship between
a(Z), dim | − 1

2K | and the structure of anti-canonical divisors on fundamental
divisors is studied. As a result we see that basic information on the structure
of twistor spaces is already contained in a finite set of curves in such a space.
We prove in this section a vanishing theorem for the second cohomology of the
tangent sheaf:

H2(Z,ΘZ) = 0,

which is necessary to show the existence of twistor spaces related to arbitrarily
prescribed blow-up graphs. Our main existence result (Theorem 8.8) states
that every blow-up graph appears as a blow-up graph of a fundamental divisor
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contained in a twistor space. To prove this we rely on recent results of N.Honda
[Ho], who studies the twistor spaces constructed in [PP3].

2 Consequences of the existence of fundamental divisors

In this section we show that the existence of an irreducible fundamental divisor
in a simply connected twistor space has strong consequences. We see, for
example, that there is no need to assume the twistor space to be of positive
type, because we obtain this from our assumption. As a consequence, we have
Hitchin’s vanishing theorem at our disposal. This states for simply connected
twistor spaces of positive type the vanishing of H1(Z,L) for any line bundle L
with deg(L) ≤ −2 [H1].

In fact, the topology of simply connected twistor spaces containing an effective
divisor can be restricted to a few cases by results of P. Gauduchon [Gau] and
C. LeBrun [LeB1].

First of all, we cite the following lemma from [PP1, Lemma 2.1], which will be
useful in the following.

Lemma 2.1. Let Z be a compact twistor space and S ⊂ Z an effective divisor
of degree 2 which is irreducible and real, then S is smooth.

This implies, in particular, that each real irreducible fundamental divisor S ∈
| − 1

2K| is smooth.

From here on, we are only concerned with simply connected twistor spaces.
Without assuming Hitchin’s vanishing theorem or the twistor space to be of
positive type, we can study the structure of irreducible fundamental divisors.

Lemma 2.2. Let Z be a compact simply–connected twistor space and S ∈ | −
1
2K| be real and irreducible. Then there exists a real twistor fibre F ⊂ S and
dim |F | = 1. The surface S is smooth and rational.

Proof: From Lemma 2.1 we know smoothness of S. If S would not contain a
real twistor fibre, the twistor fibration would give an unramified covering S →
M of degree two, since Z does not contain real points. This is in contradiction
with π1(M) = π1(Z) = 0. Similarly, if dim |F | = 0, we obtain an unramified
covering S \ F −→ M \ {pt} of degree two. Again, we obtain a contradiction
to π1(M \ {pt}) = π1(M) = 0 because S \ F is irreducible (being open in the
irreducible surface S). This implies h0(OS(F )) ≥ 2. The adjunction formula
on S yields (F 2)S = (F.(−KS))S − 2 = F.(− 1

2K)− 2 = 0. Hence, we have an
exact sequence 0 −→ OS −→ OS(F ) −→ OF −→ 0, implying h0(OS(F )) ≤
h0(OS) + h0(OF ) = 2. Thus |F | is a pencil. On the other hand, ((mF −
KS)2)S = 2m(F.(−KS))S + ((−KS)2)S = 4m + ((−KS)2)S > 0 for large
positive m. Therefore, S is a projective algebraic surface ([BPV, IV (5.2)]).
By Noether’s lemma ([GH, IV§3]) the existence of the pencil |F | implies the
rationality of S.
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Lemma 2.3. If Z is a compact, simply connected twistor space containing an
irreducible fundamental divisor, then hi(K

1
2 ) = 0 for all i and hi(OZ) = 0 for

i > 0.

Proof: By assumption | − 1
2K| contains an irreducible member, hence, the

generic member of this linear system is irreducible. Therefore, we can choose
an irreducible real S ∈ | − 1

2K|, which is smooth and rational by Lemma 2.2.
In particular, we have h1(OS) = h2(OS) = 0. Because the restriction defines

an isomorphism H0(OZ)
∼−→ H0(OS), the exact sequence 0 −→ K

1
2 −→

OZ −→ OS −→ 0 implies h0(K
1
2 ) = 0 and hi(K

1
2 ) = hi(OZ), if i > 0.

Using the Serre duality, this gives the desired vanishing for i ∈ {0, 3} and

h1(OZ) = h1(K
1
2 ) = h2(K

1
2 ) = h2(OZ). The simply connectedness of Z

implies 0 = b1(M) = h1(OZ) (see [ES]) finishing the proof.

Proposition 2.4. If Z −→ M is a compact, simply connected twistor space
containing an irreducible fundamental divisor, then M is diffeomorphic to the
connected sum nCP2 and M is of positive type.

Proof: Because Z is compact and M self–dual, we obtain (see e.g. [ES, Cor.
3.2]) b−(M) = h2(OZ) which vanishes under our assumptions by Lemma 2.3.
Therefore, the intersection form on H2(M,R) is positive definite. To see that
the type of M is positive, we recall a theorem of Gauduchon [Gau] stating that
a twistor space of negative type does not contain effective divisors. Hence, in
our case, the type is non–negative. If the type would be zero, we would obtain
(using π1(M) = 0) from [Pon, Cor. 4.3], that M̄ is a Kähler surface. But,
what we have seen above, implies then that the intersection form on H2(M̄,R)
would be negative definite. But for a simply connected complex surface this
is impossible by the signature theorem [BPV, IV (2.13.)]. Therefore, M has
positive type. In this situation a theorem of Pedersen and Poon [PP1] states
that M is diffeomorphic to nCP2.
From [Gau] and [LeB1] we obtain that a simply connected twistor space, which
contains an effective divisor, can only be built over a self-dual four manifold M
having one of the following properties (M denotes the anti-self-dual manifold
obtained by reversing the orientation of M):

(a) M is a blow–up of P2 at m > 9 points or

(b) M is a K3–surface with a Ricci–flat metric or

(c) M is homeomorphic to nCP2 with n ≥ 0.

From [Po3] we obtain that in case (a) a(Z) = 0 and in case (b) a(Z) = 1.
The goal of the following sections is to gain more knowledge on the algebraic
dimension and their relation to the geometry of Z in case (c).

3 The fundamental linear system of a twistor space

We consider a simply connected twistor space Z. In this section we study the
fundamental linear system | − 1

2K |. Under the assumption that it is at least a
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pencil, we obtain information on its dimension and the base locus. In Section
8 we study the algebraic dimension a(Z) in more detail.
In the case where an irreducible fundamental divisor exists, Proposition 2.4
shows that the Riemannian base of such a twistor space is diffeomorphic to the
connected sum nCP2 and the conformal class contains a metric with positive
scalar curvature. If n ≤ 3 it is well-known (and follows easily from the Riemann-
Roch formula and Hitchin’s vanishing theorem) that we have a(Z) = 3. The
case n = 4 was studied in [K1]. Since a twistor space of positive type over
nCP2 with n ≤ 4 contains always a pencil of fundamental divisors, the picture
is in this case fairly satisfactory. If, however, n > 4 (which is equivalent to
c1(Z)3 < 0) the situation is much more rich and less understood.
In the rest of this section we denote by Z a twistor space fulfilling:

(3.0) It is simply connected, contains an irreducible fundamental divisor and

satisfies h0(K−
1
2 ) ≥ 2 and c1(Z)3 < 0.

We have seen in Section 2 that such a twistor space is of positive type and is
built over nCP2 with n > 4. Furthermore, Pic(Z) is a free abelian group of
rank n+ 1 and (− 1

2K)3 = 2(4− n) (see [K1, Section 2]).

Lemma 3.1. Let D ⊂ Z be an effective divisor of degree one.
(a) If D ∩D 6= ∅ then D.D = F is a real twistor fibre.
(b) If h0(D) ≥ 2, then dim | D |= 1, dim | − 1

2K |= 3, the base locus of the

pencil | D | is a smooth rational curve B which is disjoint to its conjugate B.
The surface D is rational and intersects the conjugate surface D. The base
locus of the fundamental linear system | − 1

2K | is the curve B∪B and we have
B.(− 1

2K) = 2− n.

Proof: This lemma can be deduced from [Ku] and [Po4] but we prefer to
give a direct proof here.
(a) Assume D ∩ D 6= ∅. Consider a point z ∈ D ∩ D and denote by F the
real twistor fibre containing z. But F and D ∩D are real, hence z ∈ F ∩ D.
Using that D is of degree one we conclude F ⊂ D ∩ D. As D is smooth and
irreducible we have for every real twistor fibre F ⊂ D an exact normal bundle
sequence:

0 −→ NF |D −→ NF |Z −→ OZ(D)⊗OF −→ 0.

Using NF |Z ∼= OF (1)⊕2 and OZ(D)⊗OF ∼= OF (1), we obtain NF |D ∼= OF (1),
which means (F 2)D = 1. As in the proof of Lemma 2.2 this implies that D
is algebraic and rational. Since any two real twistor lines are disjoint we infer
from the Hodge index theorem that F is the unique real twistor fibre contained
in D. This implies D∩D = F because the intersection D ∩D would contain a
second twistor fibre if it contains a point outside F . We even have D.D = F ,
since D.D = rF implies r = ((D.D).F )D = D.F = 1.
(b) If we have OZ(D − D) ∼= OZ , then c1(OZ(D)) would be invariant under
the involution on H2(Z,Z). This would imply OZ(4D) ∼= K−1

Z , which is only
possible if n = 0. In this case Z = P3 by [H2] and [FK]. But we assumed n > 4.
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Hence, OZ(D−D) is not the trivial line bundle. This implies H0(OZ(D−D)) =
0 because there is no effective divisor of degree zero. If D and D would be
disjoint, we would have OZ(D)⊗OD ∼= OD. Considering the exact sequence

0 −→ OZ(D −D) −→ OZ(D) −→ OZ(D)⊗OD −→ 0

we would obtain a contradiction to the assumption h0(OZ(D)) ≥ 2. Therefore,
we must have D ∩D 6= ∅, hence D.D = F .
Let now D′ ∈| D | \{D} and define B := D.D′. We obtain B.D = D.D′.D =
(D.D).D′ = F.D′ = 1. Since | D | is at least a pencil, this implies B is smooth.
This computation shows furthermore (B.F )D = B.D = 1. In particular B ∩
B = ∅, because B ⊂ D and Z does not contain a real point.
Let IB ⊂ OZ be the ideal of B ⊂ Z and denote by s, s′ ∈ H0(OZ(D)) sections
defining the divisors D,D′. By V ⊂ H0(OZ(D)) we denote the vector space
generated by s, s′. This pair of sections defines the exact Koszul complex

0 −→ OZ(−2D) −→ V ⊗OZ(−D) −→ IB −→ 0. (1)

Since deg(−2D) = −2 we obtain from Hitchin’s vanishing h1(OZ(−2D)) =
0 and h2(OZ(−2D)) = 0. Hence, H1(OZ(−D)) ⊗ V ∼= H1(IB). But the
exact sequence 0 −→ OZ(−D) −→ OZ −→ OD −→ 0 and H1(OZ) = 0
imply H1(OZ(−D)) = 0. Hence, H1(IB) = 0, showing that the restriction
H0(OZ) −→ H0(OB) is surjective. Thus, B is connected, hence irreducible.
The linear system | F | on D is of dimension two and does not have base
points which can be seen from the exact sequence 0 −→ OD −→ OD(F ) −→
OF (F ) −→ 0. Since (B.F )D = 1 we see that B is the strict transform of a line
in CP2 under the blow up D −→ CP2, defined by | F |. In particular, B is
smooth and rational.
Now we can compute B.(− 1

2K) = B.(D+D) = D.D′.D+B.D = D3+1 = 2−n,

and this is negative since we assumed n > 4. In particular B and B are
contained in the base locus of | − 1

2K |. By a lemma of Poon [Po4, Lemma 1.4],

we can conclude h0(K−
1
2 ) ≤ 4.

To determine the base locus of | − 1
2K | consider a base point z of this linear

system. This point is contained in every divisor of the formD+D of which there
exist an infinite number. Thus there exists a pair of effective linearly equivalent

divisors of degree one D,D′ such that z ∈ D ∩ D′ = B or z ∈ D ∩ D′ = B.
This shows that the base locus of | − 1

2K | is contained in B ∪B, hence B ∪B
is the base locus.
Finally, we have to compute the dimension of the fundamental linear system.
For this purpose we tensor the exact sequence (1) with OZ(D + D) ∼= K−

1
2

and obtain an exact sequence

0 −→ OZ(D −D) −→ V ⊗OZ(D) −→ IB ⊗OZ(D +D) −→ 0.

If we use H0(OZ(D − D)) = 0 we obtain an injection H0(V ⊗ OZ(D)) =

V ⊗H0(OZ(D)) ⊂ H0(IB⊗K− 1
2 ) ⊂ H0(K−

1
2 ). Since V ⊗V ⊂ V ⊗H0(OZ(D))
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we obtain 4 ≤ h0(K−
1
2 ) which implies by the above inequality dim | K− 1

2 |= 3
and hence dim | D |= 1.

Lemma 3.2. Assume Z contains only finitely many divisors of degree one. If
A ⊂ Z is an irreducible and reduced curve with A.(− 1

2K) < 0, then there exists
a smooth real fundamental divisor S ∈| − 1

2K | containing a real twistor fibre
F with 2 ≥ F.A ≥ 1. We have A.F = 2 if and only if A is real.

Proof: Let x ∈ A be a point and x ∈ F ⊂ Z the real twistor fibre containing
this point. Since | − 1

2K | is at least a pencil, there exists a divisor S ∈ |− 1
2K|

containing a given point y ∈ F \ {x, x̄}. Because F.S = 2 and S ∩F ⊃ {y, x, x̄}
the twistor fibre F is contained in S. So the real subsystem |− 1

2K|F ⊂ |− 1
2K|

of divisors containing F is not empty. Because S contains at most a real
one-parameter family of real twistor fibres, the intersection points of A with
real twistor fibres contained in S form at most a real one-dimensional subset
of points z on A. Therefore, we obtain at least a one-parameter family of
surfaces S containing a real twistor fibre F with F.A ≥ 1. Since we assumed
that there are only finitely many divisors of degree one, we can choose an
irreducible real fundamental divisor among them, which is smooth by Lemma
2.1. Since (A.(−KS))S = A.(− 1

2K) < 0 each real anti-canonical divisor C ∈|
−KS | contains A and A. Since F is nef this implies (F.A)S ≤ (F.(−KS))S =
F.(− 1

2K) = 2. If A 6= A there even holds (F.(A + A))S ≤ (F.(−KS))S = 2

implying (F.A)S = (F.A)S = 1. If A = A, we must have (F.A)S 6= 1 since S
does not contain real points, hence (F.A)S = 2 in this case.

Lemma 3.3. If Z is a twistor space satisfying condition (3.0), then:

(a) There exists a reduced irreducible curve A ⊂ Z with A.(− 1
2K) < 0.

(b) If we have A.(− 1
2K) > 2 − n for every reduced irreducible curve A ⊂ Z,

then dim | − 1
2K |= 1.

Proof: Let S be a smooth real fundamental divisor. We have K−1
S
∼= K−

1
2 ⊗

OS and dim | − 1
2K |= dim | −KS | +1, hence | −KS |6= ∅. Since ((−KS)2)S =

(− 1
2K)3 = 2(4 − n) < 0 we obtain (a). To show (b) we recall from [K1, Prop.

3.6] that there exists a succession of blow-ups σ : S → P1 × P1 such that the
anticanonical system | −KS | contains a real member C mapped onto a curve
C′ on P1 × P1 having one of the following four types :
(0) C′ ∈ |O(2, 2)| is a smooth elliptic curve,
(1) C′ has four components C′ = F ′ + F ′ + G′ + G′ where F ′ ∈ |O(0, 1)| and
G′ ∈ |O(1, 0)| are not real,
(2) C′ has two components C′ = F ′ + C′0 where F ′ ∈ |O(0, 1)| is real and
C′0 ∈ |O(2, 1)| is real, smooth and rational,
(3) C′ has two distinct components C′ = A′ +A′ where A′, A′ ∈ |O(1, 1)|.
At each step of blow-up a conjugate pair of points, lying on the image of C, is
blown up. The pencil | F | generated by a real twistor fibre F ⊂ S is mapped
to the pencil |O(0, 1)| on P1×P1. It was shown in [K1, Prop. 3.3] that none of
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the blown up points lies over a real member of |O(0, 1)|. This implies in case
(2) that there is a component C0 of C with (C0.(−KS))S = 6− 2n < 2− n. In
case (0) we have (C2)S = (C.(−KS))S = 8−2n < 0 and C is irreducible, hence
| −KS |= {C}. If in case (3) all the blown up points lie over smooth points of
C′ = A′ + A′, then C = A +A with (A.(−KS))S = (A.(−KS))S = 4 − n < 0.
Hence, | −KS |= {C}. If, however, in case (3) the conjugate pair of singular
points A′ ∩ A′ is blown up, then we can choose the succession of blow-ups σ
such that C is mapped to a curve of type (1) in P1 × P1. This is done by an
elementary transformation (see [K1, Cor. 4.3]).
To deal with case (1) we choose an irreducible reduced curve G ⊂ Z with
G.(− 1

2K) < 0. By Lemma 3.1 the assumption of (b) implies that there does
not exist a pencil of divisors of degree one. Hence we can apply Lemma 3.2
and can find a smooth real fundamental divisor S with (F.(G + G))S = 2
for twistor fibres F ⊂ S. Take C ⊂ S as above in the description of type
(1), then G is a component of C, hence smooth rational and not real. This
implies (F.G)S = (F.G)S = 1. Thus, the curves G and G are mapped to the
components G′ and G′ of C′. Since G.(− 1

2K) = G(− 1
2K) < 0, at least three

of the blown up points are lying over G′ and their conjugates over G′. Since
we assumed G.(− 1

2K) > 2 − n, at most n − 1 blown-up points lie over G′.
Hence, a nonempty set of blown-up points lies over a conjugate pair F ′, F ′ of
members of |O(0, 1)|. This implies that these curves are not movable, hence
| −KS |= {C}.

Proposition 3.4. Let Z be a twistor space satisfying condition (3.0) and let
A ⊂ Z be an irreducible reduced curve.

(a) If A is not real, then A.(− 1
2K) ≥ 2− n.

(b) If A.(− 1
2K) < 2 − n, then A is real (i.e. A = A) and it is the unique

irreducible reduced curve having negative intersection number with K−
1
2 .

Only the following two cases are possible:

(i) A.(− 1
2K) = 8 − 2n, n > 6 and A is smooth elliptic. In this case

dim | − 1
2K |= 1.

(ii) A.(− 1
2K) = 6 − 2n and A is smooth rational. In this case dim |

− 1
2K |= 2.

(c) If A.(− 1
2K) = 2 − n, then {A,A} is the set of all irreducible reduced

curves in Z with negative intersection number with K−
1
2 and either

(i) n = 6 and A = A smooth and elliptic and dim | − 1
2K |= 1, or

(ii) A is smooth rational and not real. In this case dim | − 1
2K |= 3.

Proof: If a pencil of divisors of degree one exists, all the statements are clear
by Lemma 3.1. Therefore, we assume that there exists only a finite number of
divisors of degree one. This allows us to apply Lemma 3.2.
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If A.(− 1
2K) ≥ 0 nothing is to prove. Assume A.(− 1

2K) < 0 and choose a
smooth fundamental divisor S as in Lemma 3.2. Let, furthermore, be σ : S →
P1 × P1 a succession of blow-ups as in the proof of Lemma 3.3. Using the
notation of that proof, we obtain that A must be a component of C. Since
every curve on P1 × P1 has nonnegative self-intersection number, (a) is clear
from the description of the types (0) – (3).
The assumption of (b) implies that we are in types (0) or (2) which correspond
to the cases (i) and (ii) respectively. In type (0), the irreducible curve C
has negative intersection number with −KS, hence | −KS |= {C}, implying
dim | − 1

2K |= 1 in case (i) of (b). In type (2) we obtain | −KS |= C0 + |F |
yielding dim | − 1

2K |= 2 in case (ii) of (b). Finally, if A.(− 1
2K) = 2 − n we

can have type (0) only if n = 6, giving the case (i) of (c). Otherwise, we are
in type (1) and n blown-up points are over G′. The conjugate set of blown-up
points lies over G′, hence the components F ′ and F ′ of C′ are movable. This
yields dim | − 1

2K |= 3 and A + A is mapped to G′ + G′ giving the statement
(ii) of (c).
Now we are ready to give new characterisations of the Moishezon twistor spaces
introduced by LeBrun [LeB2] and studied by Kurke [Ku]. Recall the following
result of Kurke [Ku] and Poon [Po4]:

Theorem 3.5. If Z contains a pencil of divisors of degree one, then it is one
of the Moishezon twistor spaces introduced by LeBrun [LeB2] and studied by
Kurke [Ku].

The following theorem provides new characterisations for these twistor spaces.

Theorem 3.6. If Z is a twistor space satisfying condition (3.0) then the fol-
lowing properties are equivalent:

(a) Z contains a pencil of divisors of degree one.

(b) dim | − 1
2K |= 3.

(c) dim | − 1
2K |≥ 3.

(d) There exist exactly two reduced irreducible curves in Z having negative

intersection number with K−
1
2 . These two curves are smooth rational,

form a conjugate pair {A,A} and A.(− 1
2K) = 2− n.

(e) There exists a smooth rational curve A ⊂ Z with A.(− 1
2K) = 2− n.

Proof: The implication (a) ⇒ (b) was shown in Lemma 3.1. (c) ⇒ (d)
follows from Lemma 3.3(a) and Proposition 3.4. (d) ⇒ (e) is obvious. (e) ⇒
(a) can be shown by the same proof as in the case n = 4 given in [K1, Prop.
5.3.], therefore we omit it here.

Theorem 3.7. If Z is a twistor space satisfying condition (3.0) then the fol-
lowing properties are equivalent:
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(a) dim | − 1
2K |= 2.

(b) There exists a smooth irreducible real rational curve C0 ⊂ Z with the
property C0.(− 1

2K) = 2(3 − n). This is the unique irreducible reduced

curve in Z having negative intersection number with K−
1
2 .

(c) There exists a smooth real rational curve C0 ⊂ Z with C0.(− 1
2K) < 0.

Proof: This follows from Lemma 3.3(a) and Proposition 3.4. For (c) ⇒ (a)
see also [K2, Thm. 2.1].

4 Computation of the algebraic dimension

The computation of the algebraic dimension of a specific compact complex
manifold Z is often a very difficult task. It is known that in general there
exists a line bundle A ∈ PicZ whose Iitaka dimension κ(Z,A) is equal to a(Z).

It is an observation of Y.S. Poon [Po2], [Po3] that we can choose A = K−
1
2 if Z

is a simply connected twistor space and κ(Z,K−
1
2 ) 6= −∞. If S ∈| − 1

2K | is an
irreducible smooth fundamental divisor on a twistor space, then the inequality
a(Z) ≤ 1 + κ(S,K−1

S ) is easy to see. But this will in general not suffice to
compute a(Z). The following theorem improves this situation a lot.

Theorem 4.1. Let Z be a compact complex manifold, F and A line bundles
on Z, Λ ⊆| F | a one-dimensional linear system. Assume a(Z) = κ(Z,A)
and that the general member of Λ is irreducible and reduced. Then, for general
S ∈ Λ, the following formula holds:

a(Z) = 1 + κ(S,A⊗OS).

Proof: The linear system Λ does not have a fixed component since it contains
an irreducible reduced member. Let ϕ : Z 99K P1 be the meromorphic map
defined by the pencil Λ ⊂| F |. By B ⊂ Z we denote the set of indeterminacy
of ϕ, that is the base locus of Λ. Using Hironaka’s theorem on resolutions
of singularities in the complex analytic case (see [AHV]), we can resolve the

singularities of the graph space of ϕ to obtain a proper modification σ : Z̃ −→ Z
and a holomorphic map ϕ̃ : Z̃ −→ P1 such that: Z̃ is a smooth compact complex
manifold, ϕ̃ is proper and surjective, σ induces an isomorphism Z̃ \σ−1(B) −→
Z \B and ϕ̃ = ϕ ◦ σ on Z̃ \ σ−1(B).

In particular, the generic fibre of ϕ̃ is smooth (see [U, Cor. 1.8]). Since Z̃ is

irreducible and reduced and ϕ̃ maps Z̃ onto a smooth curve, the map ϕ̃ is flat.
But σ−1(B) has at least codimension one in Z and the general member S of Λ
is, by assumption, an irreducible smooth divisor in Z, hence the generic fibre of
ϕ̃ is connected. This implies, the general fibre S̃ of ϕ̃ is smooth and irreducible
and σ induces a proper modification σ : S̃ −→ S = σ(S̃) ∈ Λ. By [U, 5.13] we
obtain:

κ(S̃, σ∗(A⊗OS)) = κ(S,A⊗OS)
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and κ(Z̃, σ∗A) = κ(Z,A).
Let m be a positive integer and consider the projective fibre space P(ϕ̃∗σ∗A⊗m)

over P1. We have meromorphic maps Φm : Z̃ −→ P(ϕ̃∗σ∗A⊗m) compatible

with the maps to P1. The restriction of Φm to a generic fibre S̃ ⊂ Z̃ of ϕ̃ is
the map given by the line bundle (σ∗A⊗m) ⊗OS̃ (see [U, (2.8)–(2.10)]). This
implies for m≫ 0:

dim Φm(Z̃) = 1 + κ(S̃, σ∗A⊗OS̃).

Since P1 and hence P(ϕ̃∗σ∗A⊗m) are projective, we have a(Φm(Z̃)) =

dim Φm(Z̃) and obtain

a(Z) = a(Z̃) ≥ a(Φm(Z̃)) = 1 + κ(S̃, σ∗A⊗OS̃).

Finally, since we assumed κ(Z,A) = a(Z) ≥ 0, implying h0(A⊗m) > 0 for m≫
0, we can apply [U, Thm. 5.11] to the proper holomorphic map ϕ̃ : Z̃ −→ P1

to obtain

κ(Z̃, σ∗A) ≤ κ(S̃, σ∗A⊗OS̃) + 1.

All the inequalities together yield

a(Z) ≥ 1 + κ(S̃, σ∗A⊗OS̃) ≥ κ(Z̃, σ∗A) = κ(Z,A) = a(Z)

which gives the claim.

Definition 4.2. The anti Kodaira dimension of a compact complex variety
X is the number κ−1(X) := κ(X,K−1

X ).

Corollary 4.3. Let Z be a compact, simply connected twistor space contain-
ing an irreducible fundamental divisor. If h0(K−

1
2 ) ≥ 2 and S ∈| − 1

2K | is
generic, then:

a(Z) = 1 + κ−1(S).

Proof: Our assumptions imply that there exists a pencil Λ ⊆| − 1
2K | whose

general member is irreducible and reduced. The general fundamental divisor of
Z is contained in such a pencil. By Poon’s theorem we have a(Z) = κ(Z,K−

1
2 )

and by the adjunction formula we obtain K−1
S
∼= K−

1
2 ⊗ OS . Application of

Theorem 4.1 gives the result.

5 Anti Kodaira Dimension of Rational Surfaces

The results of the previous section motivate the study of the anti Kodaira
dimension of rational surfaces. Such studies were made by Sakai [Sa] but we
are interested in a more detailed knowledge on the relationship between the
anti Kodaira dimension and the numerical properties of the components of
anti-canonical divisors. The desired results can also not be found in the papers
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of E. Looijenga [Lo] and B. Harbourne [Hb] who studied surfaces containing
effective anti-canonical divisors.
In contrast to the Kodaira dimension, the anti Kodaira dimension is not a
birational invariant. Its behaviour under blow-ups becomes more transparent
by the following results.

Lemma 5.1. Let S′ be a smooth surface, P ′ ∈ S′ a point and C′ ∈ | −KS′ | an
anti-canonical divisor. By σ : S −→ S′ we denote the blow–up with centre P ′.
Then we have:

(a) κ−1(S) ≤ κ−1(S′) and

(b) if multP ′(C′) ≥ 2, then κ−1(S) = κ−1(S′).

Proof: Let E ⊂ S be the exceptional divisor of σ. Then σ∗K−1
S′ ∼= K−1

S ⊗
OS(E). Because E is effective and σ∗OS ∼= OS′ we obtain with m ≥ 1:
h0(S,K−mS ) ≤ h0(S,K−mS ⊗ OS(mE)) = h0(S, σ∗K−mS′ ) = h0(S′,K−mS′ ). This
proves (a).
Assume now multP ′ (C′) ≥ 2, then C̃ := σ∗C′ − 2E is effective. This is true
for non-reduced C′. Using K−2

S
∼= σ∗K−2

S′ ⊗ OS(−2E) ∼= σ∗K−1
S′ ⊗ OS(C̃),

we obtain h0(S′,K−mS′ ) = h0(S, σ∗K−mS′ ) ≤ h0(S, σ∗K−mS′ ⊗ OS(mC̃)) =
h0(S,K−2m

S ). This implies κ−1(S′) ≤ κ(S,K−2
S ) = κ−1(S) and we obtain

(b).

Theorem 5.2. Let S′ be a smooth rational surface and C′ ∈| −KS′ | an anti-
canonical divisor. The irreducible components (with reduced structure) are de-
noted by C′1, . . . , C

′
r. Assume that among the C′ν there is no smooth rational

(−1)–curve. Then we have:
(a) ∃ν : (C′ν .(−KS′))S′ > 0⇒ κ−1(S′) = 2
(b) ∀ν : (C′ν .(−KS′))S′ = 0⇒ κ−1(S′) ∈ {0, 1}
(c) ∀µ : (C′µ.(−KS′))S′ ≤ 0 and ∃ν : (C′ν .(−KS′))S′ < 0⇒ κ−1(S′) = 0
In the case (b) we have κ−1(S′) = 0 ⇐⇒ ∀m ≥ 1 : h0(C′, N⊗m) = 0, with the
abbreviation N := K−1

S′ ⊗OC′ .

Proof: We start with the observation that the exact sequence 0 −→ KS′ −→
OS′ −→ OC′ −→ 0 and the rationality of S′ imply h0(OC′) = 1. As a conse-
quence we obtain that C′ is connected.
Recall that for arbitrary D ∈ Pic(S′) and effective D′ ∈ Pic(S′) one always has
κ(S′, D) ≤ κ(S′, D +D′). If D is nef (i.e. for each effective divisor D′ one has
(D.D′)S′ ≥ 0), then (D2)S′ > 0 if and only if κ(S′, D) = 2.

To show (a) we assume first the existence of a component C′ν with (C′ν
2
)S′ > 0.

Such a divisor is nef and κ(S′, C′ν) = 2, but −KS′ − C′ν is effective, hence
κ−1(S′) = 2.

Assume now (C′µ
2
)S′ ≤ 0 for all µ. By assumption we have one component

C′ν with (C′ν .(−KS′))S′ > 0. We show (C′ν
2
)S′ = 0 as follows: The genus

formula gives 2pa(C
′
ν) − 2 < 2pa(Cν) − 2 + (C′ν .(−KS′))S′ = (C′ν

2
)S′ ≤ 0,

hence the arithmetic genus pa(C′ν) vanishes and C′ν ∼= P1. In turn, this implies
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0 ≥ (C′ν
2
)S′ = (C′ν .(−KS′))S′−2 > −2. By assumption, we have (C′ν

2
)S′ 6= −1

and conclude (C′ν
2)S′ = 0. In particular, −KS′ is not a multiple of C′ν .

Because C′ is connected, we can choose a component C′µ 6= C′ν with c :=

(C′µ.C
′
ν)S′ > 0. We define D := c ·C′µ + (1− (C′µ

2
)S′) ·C′ν which is an effective

divisor. Since (D.C′µ)S′ = c ·(C′µ2
)S′ +(1−(C′µ

2
)S′) ·c = c > 0 and (D.C′ν)S′ =

c2 + (1− (C′µ
2
)S′) · (C′ν2

)S′ = c2 > 0, we obtain (D2)S′ > 0 and D is nef. If we

choose m = max{c, 1 − (C′µ
2
)S′}, then κ−1(S′) = κ(S′,K−mS′ ) ≥ κ(S′, D) = 2

and (a) is proved.

If we have (C′ν .(−KS′))S′ = 0 for all components of C′, then −KS′ is nef and
((−KS′)2)S′ = 0, hence κ−1(S′) < 2. Because we assumed that | −KS′ | is
non–empty, we have κ−1(S′) ≥ 0 and (b) is shown.

To show (c) we can apply [Lo, (1.3)] which proves that the matrix ((C′i.C
′
j)S′)i,j

is negative definite. Hence, in the Zariski decomposition C′ = P ′ + N ′ of the
divisor C′ we have P ′ = 0 (see [Sa]). This implies κ−1(S′) = κ(S′, C′) =
κ(S′, P ′) = 0, hence (c).

To distinguish, in the case (b), anti Kodaira dimensions zero and one, we
consider the exact sequence (m ≥ 1):

0 −→ K
−(m−1)
S′ −→ K−mS′ −→ N⊗m −→ 0 (2)

If h0(C′, N⊗m) = 0 for all m ≥ 1, we obtain h0(K−mS′ ) = 1 for m ≥ 1
and κ−1(S′) = 0. On the other hand, if there exists some m ≥ 1 with
h0(C′, N⊗m) > 0, then we let m0 be the smallest one with this property.
From the sequence (2) we obtain h0(S′,K−mS′ ) = 1 for 0 ≤ m < m0. We
have h2(S′,K−mS′ ) = h0(S′,Km+1

S′ ) = 0 for m ≥ 0 (because S′ is rational)
and ((−KS′)2)S′ = 0 (in case (b)) and obtain from the Riemann–Roch formula
h0(K−mS′ )−h1(K−mS′ ) = 1. Therefore, h1(K−mS′ ) = 0 for 0 ≤ m < m0. The exact
sequence (2) with m = m0 implies now h0(K−m0

S′ ) > 1, thus κ−1(S′) > 0.

Remark 5.3. It is a remarkable fact that the numerical information contained
in an anti-canonical divisor is not sufficient for the computation of the anti
Kodaira dimension, if its components are orthogonal to the canonical class.
This phenomenon also appears in the paper [Sa]. It is the reason that it is
difficult to construct simply connected twistor spaces of algebraic dimension
two (see [CK1]).

Corollary 5.4. Let S be a smooth rational surface, C ∈| −KS | an effective
anti-canonical divisor with components C1, . . . , Cr and denote N := K−1

S ⊗OC.
Assume that among the Cν there is no smooth rational (−1)-curve or that S
cannot be blown-down to a surface with the properties of Theorem 5.2 (b).
Then, the anti–Kodaira dimension κ−1(S) is determined by the pair (C,N).

Proof: Since (C2
ν )S = 2pa(Cν) − 2 + (Cν .(−KS))S and (Cν .(−KS))S =

deg(N ⊗OCν ), this follows from Theorem 5.2.
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6 Blow-up graphs

In this section we develop a method to handle the numerical information of
an anti-canonical divisor on a surface obtained by a sequence of blow-ups from
P1 × P1 at points lying over an anti-canonical curve with four irreducible com-
ponents.

In view of our application to twistor spaces, we are only interested in blow-ups
of conjugate pairs of points to have real structures on all the blown-up surfaces.

We equip S = P1 × P1 with the real structure given by the antipodal map on
the first factor and the usual real structure on the second (cf. [K1, Ch. 3]).
Choose an anti-canonical curve C = F + F + G + G with F 6= F ∈| O(0, 1) |
and G ∈| O(1, 0) |.
Let S(k) −→ S(k−1) −→ . . . −→ S(0) = S be a sequence of blow-ups at each
step of which we blow up a conjugate pair of points lying on the effective anti-
canonical divisor C(i) which is mapped to C ⊂ S. Denote by σi : S(k) −→
S(i) the partial blow-up (0 ≤ i ≤ k). The curve C(k) ⊂ S(k) is a “cycle of
rational curves” as defined in [K1, Def. 3.5] with an even number of irreducible
components. Denote its components by C1, C2, . . . , C2m such that Ci intersects
Ci−1 and Ci+1 (we consider indices modulo 2m). We have 2 ≤ m ≤ k+ 2. We
associate the following graph to the given sequence of blow-ups:

The graph contains k+2 vertices, some of which are possibly marked. We let m
of these vertices correspond to the pairs of conjugate curves in S(k): (C1, Cm+1),
(C2, Cm+2), . . . , (Cm, C2m). We denote these vertices by v1, . . . , vm and call
them internal vertices of the graph. Two of these vertices vi and vj are joined
by one edge if and only if there is an integer 0 ≤ r ≤ k such that σr(Ci) and
σr(Cj) are curves and σr(Ci ∪ Cm+i) ∩ σr(Cj ∪ Cm+j) 6= ∅.
The graph can also contain external vertices. These vertices vm+1, . . . , vk
correspond bijectively to conjugate pairs of irreducible smooth rational curves
contracted under σ0 : S(k) −→ S. These are those strict transforms in S(k) of
exceptional curves of the blow-ups which are not components of C(k). Hence,
for every external vertex v there exists an integer 1 ≤ r(v) ≤ k−1 such that the
curves corresponding to v are the strict transforms of the exceptional curves of
the blow-up S(r(v)+1) −→ S(r(v)). The number of components of C(r(v)) and of
C(r(v)+1) are equal and the blown-up points lie on σr(v)(Ci∪Cm+i) for precisely
one i. We denote this index i by i(v). An external vertex is connected with
an other external vertex by an edge if and only if the corresponding pairs of
conjugate curves in S(k) have nonempty intersection. Every external vertex v
is connected by an edge with precisely one internal vertex, namely with vi(v).
Finally, we equip an external vertex v with a marking if and only if for every
external vertex w connected with v by an edge we have r(v) ≤ r(w). Internal
vertices are never marked. In our pictures we shall draw the vertices as circles
and indicate the marked vertices by an asterisk inside this circle.

In the description of the following examples the reader should keep in mind
that we consider only blow-ups of conjugate pairs of points. Thus, if there is
written: “if we blow up P ∈ F , then . . . ”, one should read: “if we blow up
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P ∈ F and the conjugate point P ∈ F , then . . . ”.

Example 6.1. If k = 1 and we blow up the point F ∩ G then the graph is the
following:

/.-,()*+

/.-,()*+

������������ /.-,()*+

222222222222

Example 6.2. If we blow up k distinct points on F , which are not contained in
G∪G, then we have m = 2 and the graph contains k marked external vertices
which are joined with one of the internal vertices. If k = 3, the graph looks
like:

/.-,()*+∗

/.-,()*+ /.-,()*+

��������

??
??

??
??

/.-,()*+∗

/.-,()*+∗

Example 6.3. If in the previous example we blow up four times the same point
on the strict transforms of F , the resulting graph can be drawn as follows:

/.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+∗

/.-,()*+

�������������� /.-,()*+

//////////////

��������

oooooooooooooo

jjjjjjjjjjjjjjjjjjjjj

Example 6.4. If k ≥ 2 and we always blow up the unique point over the point
F ∩G lying on the strict transform of F , we obtain a (k + 2)-gon divided into
triangles by the diagonals from one vertex to all other vertices. All vertices are
internal in this case. If k = 6 the graph looks like:
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/.-,()*+ /.-,()*+
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??

/.-,()*+
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//

//
/.-,()*+

/.-,()*+

??
??

??
??

/.-,()*+

/.-,()*+ /.-,()*+

��������

Example 6.5. If k = 3 and we blow up the two points F ∩ (G ∪G) and a third
point on F , the graph is the following:

/.-,()*+

/.-,()*+

��������

??
??

??
??

/.-,()*+

????????

��
��

��
��

/.-,()*+∗

/.-,()*+

Definition 6.6. A blow-up graph is a graph consisting of a finite number
of vertices, and edges connecting distinct vertices. Some of the vertices are
marked. Between two vertices there exists at most one edge. This graph can
be drawn in the real plane such that a subset of at least two non-marked vertices
(called internal vertices) form a regular m-gon such that the edges connecting
them are represented by mutually disjoint diagonals giving a triangulation of
this m-gon. (If m = 2 this means that the two vertices are connected by
one edge.) The remaining vertices are called external vertices. The subgraph
formed by these vertices and the edges among them is the disjoint union of
chains like this:

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+∗

such that each chain contains precisely one marked vertex. The marked vertex
of such a chain is an endpoint, i.e. is not connected with two other vertices
in that chain. Finally, every external vertex is connected with precisely one
internal vertex in such a way that the vertices of one chain are connected with
the same internal vertex.
If v is a vertex of such a graph, we denote by n(v) the number of edges adjacent
to this vertex v plus the number of its markings (which is zero or one).

Proposition 6.7. The graph associated to a blow-up in the way defined above
is always a blow-up graph in the sense of Definition 6.6. Moreover, the internal
vertices v1, . . . , vm form the vertices of the m-gon of the blow-up graph such
that vi and vi+1 are neighbours along the boundary of the m-gon.
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The self-intersection number of each of the curves corresponding to a vertex v
is equal to 1− n(v).

Every blow-up graph appears as a graph associated to a sequence of blow-ups.

Proof: We prove the proposition by induction on k ≥ 0. If k = 0 we obtain
m = 2 and the graph is a 2-gon: /.-,()*+ /.-,()*+ consisting of 2 internal

vertices. In this case the proposition is clear, because (F 2)S = (G2)S = 0 on
S.

For the inductive step let Γ be the graph associated to S(k) −→ . . . −→ S(0).
Let S(k+1) −→ S(k) be a further blow-up of a conjugate pair of points {P, P}
lying on C(k) and denote by Γ′ the graph associated to the sequence of blow-
ups S(k+1) −→ S(k) −→ . . . −→ S(0). Assume that Γ is a blow-up graph and
the self-intersection numbers in S(k) are those given by the claim. Then there
are three possibilities:

(1) P is a singular point of C(k), or equivalently, P is contained in two com-
ponents of C(k). The corresponding internal vertices vi and vi+1 are
neighbours in Γ along the boundary of the m-gon of internal vertices.
The exceptional curves of S(k+1) −→ S(k) are components of C(k+1),
hence correspond to a new internal vertex of Γ′. Therefore, the graph
Γ′ contains an (m+ 1)-gon of internal vertices {v′1, . . . , v′m+1} and is ob-
tained from Γ by adding a new internal vertex, which is connected with
vi and vi+1. The numbering of the vertices in Γ′ can be chosen such that
v′j = vj if 1 ≤ j ≤ i, v′i+1 is the new vertex and v′j+1 = vj if i+1 ≤ j ≤ m.
If part of Γ looks like the following picture:

/.-,()*+
vi

��
��

��
��

::
::

::
::

: /.-,()*+

��
��

��
��

�

??
??

??
??

vi+1

/.-,()*+
vi−1

. . . /.-,()*+
vi+2

the graph Γ′ is of the following kind:

/.-,()*+
v′i+1

/.-,()*+
v′i

��
��

��
��

::
::

::
::

:

rrrrrrrrrrrr /.-,()*+

��
��

��
��

�
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??
??

??
??

v′i+2

/.-,()*+
v′i−1

. . . /.-,()*+
v′i+3

This procedure will be recalled by saying “we added an internal triangle”.
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(2) P is a smooth point onC(k). In this case, the conjugate pair of exceptional
curves of the blow-up S(k+1) −→ S(k) is not contained in C(k+1). It
corresponds, therefore, to a new external vertex of Γ′. Assume P lies on
the strict transform E of an exceptional curve of one of the previous blow-
ups, which is not a component of C(k). Since E intersects C(k) we must
have E2 = −1. Hence, by the inductive hypothesis, the corresponding
external vertex w is one end of its chain of external vertices. Moreover,
if this chain consists of more that one vertex, it is the non-marked end,
because this is the only vertex on this chain having n(w) = 2. Let v be
the internal vertex being connected with w. The graph Γ′ is obtained
from Γ by adding a new external vertex which is connected with v and w.
It, therefore, becomes the unmarked end of its chain of external vertices.
For a graph Γ containing:

/.-,()*+
w

/.-,()*+ /.-,()*+∗

/.-,()*+

��
��

��
��

::
::

::
::

: /.-,()*+

��
��

��
��

�

��������

????????

??
??

??
??
v

/.-,()*+ . . . /.-,()*+

we obtain a graph Γ′ like the following:

/.-,()*+ /.-,()*+
w

/.-,()*+ /.-,()*+∗

/.-,()*+
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��
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::

: /.-,()*+
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��
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��
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��������

????????
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??
v

/.-,()*+ . . . /.-,()*+

We call this procedure “adding an external triangle”.

(3) P is a smooth point on C(k) not lying on a curve corresponding to an
external vertex. Let v be the internal vertex of Γ corresponding to the
components of C(k) containing P . Then we obtain Γ′ by adding a marked
external vertex to Γ and connect it with v. For example, from a graph Γ
containing:

/.-,()*+

��
��

��
��

::
::

::
::

: /.-,()*+

��
��

��
��

�

??
??

??
??

v
/.-,()*+∗

/.-,()*+ . . . /.-,()*+
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we obtain Γ′ with:

/.-,()*+∗

/.-,()*+
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��

��
��
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::
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::

: /.-,()*+

��
��

��
��

�

??
??

??
??

v
/.-,()*+∗

/.-,()*+ . . . /.-,()*+

We shall say, we “added a marked (external) vertex”.

In each of these three cases it is clear that Γ′ is again a blow-up graph and the
self-intersection numbers of the curves corresponding to the vertices decrease by
the number of additional edges at such a vertex. The self-intersection number
of the curves corresponding to a new vertex is−1 since these are the exceptional
curves of the blow-up. Hence, by the inductive hypothesis we obtain that the
self-intersection numbers can be computed as 1− n(v).
To show that every blow-up graph is associated to a sequence of blow-ups, we
first observe that we can construct every blow-up graph Γ in the following way:

• We start with the 2-gon.

• We carry out (m− 2) steps of “adding an internal triangle” and obtain a
triangulated m-gon.

• We add the necessary number of marked vertices.

• We add “external triangles”.

As seen above, each step of this procedure corresponds to a blow-up of a conju-
gate pair of points, such that there exists a sequence of blow-ups determining
the given graph Γ.

Remark 6.8. Observe that every vertex of a blow-up graph is connected with
at least one internal vertex by an edge. For every marked vertex v we have
n(v) ∈ {2, 3}. Every vertex v with n(v) > 3 is an internal vertex. The set
of internal vertices is determined by the vertices, their edges and markings.
Therefore, we don’t need a special marking for them.

Next we give the interpretation of the results of Section 5 in terms of our graphs
associated to blow-ups of surfaces.
Let Γ and Γ′ be blow-up graphs such that Γ is obtained from Γ′ by adding an
internal triangle. This corresponds to a blow up S −→ S′ of a singular point
(more precisely a conjugate pair of such points) on an anti-canonical divisor
of a rational surface S′. By Lemma 5.1(b) these surfaces have the same anti
Kodaira dimension. If for every sequence of blow-ups S −→ P1 × P1 with
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associated blow-up graph Γ the anti Kodaira dimension κ−1(S) is the same,
we define the anti Kodaira dimension of the graph Γ by κ−1(Γ) := κ−1(S) and
say that the graph determines the anti Kodaira dimension. This property of a
graph is not changed by adding an internal triangle.

Theorem 6.9. Let S −→ P1×P1 be a sequence of blow-ups of conjugate pairs
of points as before with anti-canonical divisor C =

∑2m
i=1 Ci and Γ the associated

blow-up graph. Assume that (C2
i )S 6= −1 for all i. Then:

(a) The graph Γ cannot be obtained from an other blow-up graph by adding
an internal triangle.

(b) The graph Γ determines the anti Kodaira dimension if and only if it
contains an internal vertex v with n(v) 6= 3.

(c) If Γ contains an internal vertex v with n(v) ≤ 2 then κ−1(Γ) = 2.

(d) If for all internal vertices v of Γ we have n(v) ≥ 3 and for at least one of
these vertices this inequality is strict, then κ−1(Γ) = 0.

If m = 2 and n(v1) = 2 (that is (C2
1 )S = −1), then

(b’) The graph Γ determines the anti Kodaira dimension if and only if n(v2) 6=
5.

(c’) If n(v2) ≤ 4, then κ−1(Γ) = 2.

(d’) If n(v2) ≥ 6, then κ−1(Γ) = 0.

Proof: To be able to apply Theorem 5.2 we recall that the conjugate pairs
of components of the anti-canonical divisor on the surface S correspond to
the internal points of the associated blow-up graph. These components are
irreducible smooth rational curves. By the adjunction formula for such a com-
ponent Ci we obtain (Ci.(−KS))S = 3−n(vi). (We keep denoting the internal
vertex of Γ corresponding to Ci, 1 ≤ i ≤ m by vi.) Therefore almost all state-
ments are purely a translation of the statements of Theorem 5.2. We have to
prove only two things.
First, the assertions (c’) and (d’), if m = 2 and (C2

1 )S = (C2
3 )S = −1. This

correspond to n(v1) = 2. This case is not covered by Theorem 5.2. Let −l =
(C2

2 )S = (C2
4 )S , then n(v2) = l + 1. We can contract C1 and C3 to obtain a

smooth rational surface S′ with C′ = C′2 + C′4 ∈| −KS′ | being the image of
C. Then we have (C′22 )S′ = (C′24 )S′ = 2 − l and κ−1(S) = κ−1(S′) by Lemma
5.1 (b). If l = 3 it is easy to see that C′ is nef and big, hence κ−1(S′) = 2. If
l 6= 3 we can apply Theorem 5.2 and obtain: κ−1(S) = κ−1(S′) = 2 if l < 4,
κ−1(S) = κ−1(S′) ∈ {0, 1} if l = 4 and κ−1(S) = κ−1(S′) = 0 if l > 4. This
shows (c’) and (d’).
Second, we have to prove (b) and (b’). So, we are looking for two sequences of
blow-ups S0 −→ P1×P1 and S1 −→ P1×P1 with same associated graph Γ but
with κ−1(Sj) = j. The graph Γ is required to fulfill m = 2, n(v1) = 2, n(v2) = 5
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or should be a blow-up graph whose internal vertices v all have n(v) = 3. Using
Remark 6.11 below this follows by a similar argumentation as in [CK1, Section
4].

Remark 6.10. A blow-up graph Γ contains more information than necessary
for computing κ−1(Γ). The values for all n(v) at internal vertices would suffice.
We shall see later (Sections 7, 8) the reason for using such graphs.

Remark 6.11. It is an easy observation that every triangulated m-gon con-
tains at least one vertex with more than three incident edges, provided m ≥ 5.
This implies, together with Theorem 6.9 (b), that a blow-up graph determines
the anti Kodaira dimension, provided it contains at least 5 internal vertices
and it cannot be obtained from an other blow-up graph by adding an internal
triangle. The following five blow-up graphs are the only ones with the property
that each internal vertex v has n(v) = 3.

If m (the number of internal vertices) is four, there is only one possibility:

/.-,()*+

/.-,()*+∗ /.-,()*+

��������

??
??

??
??

/.-,()*+

????????

��
��

��
��

/.-,()*+∗

/.-,()*+

If m = 3 the following graph is the unique blow-up graph with precisely three
edges starting at each internal vertex:

/.-,()*+∗

/.-,()*+

��
��
��

��
��
��

22
22

22
22

22
22

/.-,()*+ /.-,()*+

/.-,()*+∗

�������� /.-,()*+∗

????????

If m = 2 there exist three possibilities, whose differences concern only the
markings and the edges between external vertices:

Documenta Mathematica 4 (1999) 127–166



Twistor Spaces With a Pencil of Fundamental Divisors 149

/.-,()*+∗ /.-,()*+∗
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/.-,()*+ /.-,()*+∗
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/.-,()*+ /.-,()*+∗

/.-,()*+

????????

��������

/.-,()*+
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��
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��

/.-,()*+ /.-,()*+∗
All these five graphs have six vertices. Such graphs are obtained by blowing
up four pairs of conjugate points.
To obtain a complete understanding of all blow-up graphs not determining the
anti Kodaira dimension, we describe below the graphs mentioned in item (b’) of
the above theorem. There are only five blow-up graphs with m = 2, n(v1) = 2
and n(v2) = 5. Again, they differ only in the markings and edges between the
external vertices:

/.-,()*+∗ /.-,()*+∗ /.-,()*+∗

/.-,()*+∗ /.-,()*+ /.-,()*+

????????

�������� /.-,()*+∗

/.-,()*+∗ /.-,()*+ /.-,()*+∗

/.-,()*+∗ /.-,()*+ /.-,()*+

????????

�������� /.-,()*+∗

/.-,()*+∗ /.-,()*+ /.-,()*+

/.-,()*+∗ /.-,()*+ /.-,()*+

????????

�������� /.-,()*+∗

/.-,()*+∗ /.-,()*+ /.-,()*+

/.-,()*+∗ /.-,()*+ /.-,()*+

????????

�������� /.-,()*+

/.-,()*+∗ /.-,()*+ /.-,()*+∗

/.-,()*+∗ /.-,()*+ /.-,()*+

????????

�������� /.-,()*+

These graphs appear by blowing up five conjugate pairs of points, starting with
P1 × P1. But, as seen in the proof of Theorem 6.9, on such a surface we can
contract a pair of (−1)-curves to arrive at a smooth rational surface, having
by Lemma 5.1 (b) the same anti-Kodaira dimension as the surface we started
with. The blown-down surface is obtained by blowing-up four conjugate pairs
of points which are sitting on a conjugate pair of curves of type (1, 1) in P1×P1.
This situation appears as type (3) at the beginning of Section 8. In the paper
[CK1] we studied a similar situation and showed how to construct twistor spaces
of algebraic dimension one and two by moving the blown-up points a bit.
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Remark 6.12. If Γ is a graph as in Theorem 6.9 (c) or (c’), then m = 2 or
it contains an internal vertex v with n(v) = 1, since a vertex with n(v) =
2 corresponds to a (−1)-curve. Such a graph contains exactly two internal
vertices (i.e. m = 2) and one of them is connected with at most one external
vertex. If one internal vertex is not connected with an external vertex, we have
no further restrictions:

/.-,()*+∗

/.-,()*+ /.-,()*+

���������

>>
>>

>>
>>

>>

·
·
·

If both vertices are connected with an external vertex, then the number of
external vertices is at most four, one of them is connected with one internal
vertex, the remaining at most three with the other internal vertex:

/.-,()*+∗

/.-,()*+∗ /.-,()*+ /.-,()*+

��������

??
??

??
??

/.-,()*+

�
�
�

�
�
�

/.-,()*+

According to Theorems 5.2 and 6.9 the blow-up graphs associated to a sequence
of blow ups resulting in a surface with anti Kodaira dimension two are precisely
those which are obtained by adding a finite number of internal triangles to one
of the graphs described in this remark. In particular, we find among them all
blow-up graphs having no external vertex.

7 Small deformations of blow-up graphs

In this section we study small deformations of rational surfaces obtained by
blowing up P1×P1. The results will be used in Section 8 to show the existence
of twistor spaces containing fundamental divisors with certain properties. We
study the behaviour of blow-up graphs under small deformations, so that we
can apply the results of the previous sections to the deformed surfaces.

Definition 7.1. Let

S(k) σk−→ S(k−1) σk−1−−−→ . . .
σ2−→ S(1) σ1−→ S(0) = S

be a sequence of blow-ups of points P (i) ∈ S(i) on surfaces. We call a flat family
of surfaces S −→ T together with a T -morphism S −→ S×T a family of blow-
ups of S, if we are given T -flat families Si −→ T with sections ϕi : T −→ Si
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(0 ≤ i ≤ k − 1) such that Si+1 −→ T is obtained by blowing up Si −→ T
along ϕi(T ) ⊂ Si and S0 = S × T , S = Sk. We say that this family is a
deformation of the given sequence of blow-ups, if there is a point 0 ∈ T such
that for 1 ≤ i ≤ k the fibre of the blow-up morphism Si −→ Si−1 over 0 ∈ T
is isomorphic to the given blow-up S(i) −→ S(i−1).

Proposition 7.2. Let S be a smooth surface and A,B ⊂ S smooth curves
intersecting transversally at P ∈ S. Consider a sequence of morphisms

S(k) σk−→ S(k−1) σk−1−−−→ . . .
σ2−→ S(1) σ1−→ S(0) = S

where σi+1 is the blow-up of a point P (i) ∈ S(i). Denote by σ(i) : S(i) −→ S
the composition σ1 ◦σ2 ◦ . . .◦σi and define inductively A(0) = A, B(0) = B and
A(i), B(i) ⊆ S(i) to be the strict transforms of A(i−1), B(i−1) ⊆ S(i−1).
Assume: P (0) = P ∈ A(0) ∩ B(0) and σ(i)(P (i)) = P for all 1 ≤ i ≤ k − 1.
P (i) ∈ A(i) if 0 ≤ i ≤ a and P (i) ∈ B(i) if a + 1 ≤ i ≤ k − 1 for an integer
0 ≤ a ≤ k − 1.
Let π : {0, 1, . . . , k−1} −→ {1, 2, . . . , β} be a monotone partition of {0, 1, . . . , a}
and {a+ 1, . . . , k− 1}. This means β is a positive integer and π is a surjective
map with the properties i ≤ j ⇒ π(i) ≤ π(j) and α := π(a) < π(a + 1). The
fibres of π form then the usual partition sets πi := π−1(i) ⊆ {0, 1, . . . , k − 1}.
Then there exists a deformation Sπ −→ Tπ of the given sequence of blow-ups,
such that every neighbourhood of the special point 0 ∈ Tπ contains a point t ∈ Tπ
whose fibre St := (Sπ)t is isomorphic to a sequence of blow-ups

St ∼= S
(k)
t −→ S

(k−1)
t −→ . . . −→ S

(1)
t −→ S

(0)
t = S

at points Q(i) ∈ S
(i)
t with the following property (where we defined A

(i)
t , B

(i)
t

and σ
(i)
t in the same way as A(i), B(i) and σ(i)):

Q(i) ∈ A(i)
t if 0 ≤ i ≤ a,

Q(i) ∈ B(i)
t if a < i ≤ k − 1,

σ
(i)
t (Q(i)) 6= P for all i and

σ
(i)
t (Q(i)) = σ

(j)
t (Q(j)) if and only if π(i) = π(j).

In particular, there exists a deformation S −→ T of the given sequence of
blow-ups, such that every neighbourhood of the special point 0 ∈ T contains a
point t ∈ T whose fibre St is isomorphic to a blow-up of S at k distinct points
Q(i) (0 ≤ i ≤ k − 1) with the property Q(i) ∈ A \ {P} for 0 ≤ i ≤ a and
Q(i) ∈ B \ {P} for a < i ≤ k − 1.

The proof requires some preparation and will be given after Lemma 7.5.

Definition 7.3. We say that a quadruple (S,A,B, P ) is admissible with pa-
rameters in T , if S −→ T is a flat family of smooth projective surfaces, A,B ⊂ S
are flat sub-families of smooth curves and P = A ∩B is a section of S over T .

Lemma 7.4. Let (S,A,B, P ) be admissible with parameters in T . We define

S̃ −→ S×T A to be the blow-up along the graph ΓA ⊂ S×T A of the embedding
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A ⊂ S, i.e. ΓA is the intersection of S ×T A with the diagonal of S ×T S.
By Ã ⊂ S̃ and B̃ ⊂ S̃ we denote the strict transform of A ×T A and B ×T A
respectively. Let finally P̃ := Ã∩B̃ and S̃ −→ T̃ := A be the morphism induced
by the projection S×T A −→ A, then (S̃, Ã, B̃, P̃ ) is admissible with parameters

in T̃ . Furthermore, Ã −→ A ×T A and P̃ −→ P ×T A are isomorphisms and
B̃ −→ B×T A is the blow-up of P×T P , where the morphisms are those induced
by the blow-up S̃ −→ S ×T A.

Proof: Since ΓA ⊂ S ×T A is a section of the projection S ×T A −→ A we
obtain flatness of S̃ −→ T̃ = A. Since (A ×T A) ∩ (B ×T A) = P ×T A and
ΓA ∩ (P ×T A) = P ×T P is a divisor in P ×T A, we obtain an isomorphism

P̃ = Ã ∩ B̃ −→ P ×T A, hence P̃ ⊂ S̃ is a section of S̃ −→ T̃ . Because
(A×T A)∩ΓA is the diagonal in A×T A and A has relative dimension one over

T , we obtain an isomorphism Ã −→ A ×T A, which is, hence, a flat family of
smooth curves.

On the other hand, ΓA ∩ (B ×T A) = P ×T P , hence B̃ −→ B ×T A is the

blow-up of the sub-scheme of codimension two P ×T P ⊂ B ×T A. Since B̃, A
are smooth we obtain flatness of B̃ −→ A as soon as we have shown that all
fibres are one-dimensional. But this is clear since the fibres of S̃ over T̃ = A
are surfaces which are obtained by the blow-up of precisely one point of the
corresponding fibre of S over T .

In the following we denote the admissible quadruple (S̃, Ã, B̃, P̃ ) constructed
in the lemma by BA(S,A,B, P ). Interchanging the role of A and B we obtain

BB(S,A,B, P ) with parameters in T̃ = B.

We use this construction to define recursively the deformation which will be
used in the proof of the proposition.

Let T (0) be a point, S(0) := S,A(0) := A,B(0) := B and P(0) = A(0)∩B(0) = P .
Then (S(0),A(0),B(0),P(0)) is admissible with parameters in T (0). We define

(S(i+1),A(i+1),B(i+1),P(i+1)) :=

{
BA(i)(S(i),A(i),B(i),P(i)) if 0 ≤ i ≤ a,
BB(i)(S(i),A(i),B(i),P(i)) if a < i < k.

The following lemma provides more information on the parameter spaces
T (i+1) = A(i) if i ≤ a and T (i+1) = B(i) if a < i ≤ k − 1.

The careful reader will observe that we abuse notation a bit by using P to
denote on one hand the point P ∈ S and on the other hand the reduced closed
sub-scheme P ⊂ S supported by this point. This allows us to write P × Ai
instead of {P} ×Ai and will not cause confusion.

Lemma 7.5. If 0 ≤ i ≤ a+ 1 we have:

(a) A(i) ∼= A×Ai and the structure of a family of curves in S(i) is given by the
projection to the last i components (i.e. the first component is omitted)
A(i) ∼= A×Ai −→ A(i−1) ∼= Ai = T (i).

(b) Under this isomorphism, P(i) ⊂ A(i) corresponds to P ×Ai.
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(c) B(i) −→ B × Ai is obtained by successively blowing up first P ×Hi and
then the strict transforms of P ×Hi−1, P ×Hi−2, . . . , P ×H1, where we
denote by Hm ⊂ Ai the hyper-surface being the preimage of P ∈ A under
the m-th projection Ai −→ A. Again, the projection B ×Ai −→ Ai gives
the structure map B(i) −→ Ai = T (i).

If s ≥ 2 and i = a+ s ≤ k − 1 we have:

(d) B(i) −→ Bs×Aa+1 is obtained by successively blowing up the sub-varieties
of codimension two H ′s×Ha+1, then the strict transforms of H ′s×Ha, . . . ,
H ′s ×H1 followed by the same sequence with H ′s−1 replacing H ′s, etc. up
to H ′1 ×H1. Here we let H ′n ⊂ Bs be the preimage of P ∈ B under the
n-th projection Bs −→ B. The map B(i) −→ B(i−1) = T (i) is induced
by the projection which forgets the first component B×Bs−1×Aa+1 −→
Bs−1 ×Aa+1.

(e) For all 1 ≤ i ≤ k the family S(i) −→ T (i) is a family of blow-ups of
the surface S (see Definition 7.1), which implies in particular that it is
obtained from S × T (i) by a succession of i blow ups of one point in
each fibre. If we consider the sequence of blow-ups of S corresponding
to a point t ∈ T (k), then the images in S of the blown-up points are
precisely the components of the image of t under the blow-up T (k) =
B(k−1) −→ Bk−1−a × Aa+1 (if a = k − 1 one has no blow up, namely
T (k) = A(k−1) ∼= Ak)

Proof: Assume 0 ≤ i ≤ a+1. Since we use BA∗ to construct S(1), . . . ,S(a+1)

the statements (a) and (b) follow by induction from Lemma 7.4, where we use
always (for different T ′) the natural isomorphism (A ×T T ′) ×T ′ (A ×T T ′) ∼=
A×T (A×T T ′) which forgets the first T ′.
The statement of (c) is clear for i = 0, 1 from the same lemma, which also
implies, that B(i) −→ B(i−1) ×A(i−2) A(i−1) is the blow-up at P(i−1) ×A(i−2)

P(i−1). Using (a) and (b) this translates by induction to the statement that
B(i) −→ (B×Ai−1)×Ai−1 Ai ∼= B×Ai is the succession of the blow-ups of (the
strict transforms of) P ×Hi, P ×Hi−1, . . . , P ×H2 followed by the blow-up of
the strict transforms of (P ×Ai−1)×Ai−1 (P ×Ai−1) ∼= P ×P ×Ai−1 = P ×H1.
We assume now s ≥ 2 and i = a + s ≤ k − 1. To prove (d) we first observe
(cf. (a)) that the Lemma 7.4 implies that B(i) is isomorphic to the s-fold fibre
product B(a+1) ×T (a+1) B(a+1) ×T (a+1) . . .×T (a+1) B(a+1) and the projection to
B(i−1) is by forgetting the first factor. But we know from (a) and (c) that
T (a+1) = Aa+1 and B(a+1) −→ B × Aa+1 is the blow-up of P × Ha+1, P ×
Ha, . . . , P ×H1 and the projection to Aa+1 gives the map B(a+1) −→ T (a+1).
Induction on s implies now easily the claim of (d). The statement (e) is clear
by induction since S(0) = S and S(i) −→ S(i−1) ×T (i−1) T (i) is the blow-up of
the section of the projection to T (i) given by the inclusion T (i) ⊂ S(i−1).
Proof: (of Proposition 7.2)
Let S := S(k) and T := T (k) with the notation of Lemma 7.5. The assumptions
imply that for every 0 ≤ i ≤ k − 1 the surface S(i) is the fibre of S(i) −→ T (i)
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over a point P (i−1) ∈ T (i) ⊂ S(i−1). The point P (i) ∈ S(i) is the intersection
point of the section P(i) ⊂ S(i) with the fibre S(i).
The special point 0 ∈ T = T (k) corresponds to P (k−1) ∈ T (k) ⊂ S(k−1).
Its image under the sequence of blow-ups T −→ Bk−a−1 × Aa+1 is the point
P k−a−1 × P a+1 = (P, P, . . . , P ).
Using the partition π we can define an embedding δπ : Bβ−α×Aα −→ Bk−a−1×
Aa+1 by the formula δπ(xβ , xβ−1, . . . , x1) := (xπ(k−1), xπ(k−2), . . . , xπ(0)). This
is a kind of diagonal. The fibre product of the sequence of blow-ups T −→
Bk−1−a×Aa+1 with δπ defines a variety Tπ together with a morphism Tπ −→ T
and a sequence of blow-ups Tπ −→ Bβ−α×Aα. Tπ ⊂ T is the strict transform
of δπ(Bβ−α × Aα) and, therefore, the morphism Tπ −→ Bβ−α × Aα is the
composition of the blow-ups of H ′β−α × Hα followed by the blow-up of the
strict transforms of H ′β−α ×Hα−1, . . . , H

′
β−α ×H1, H

′
β−α−1 ×Hα, H

′
β−α−1 ×

Hα−1, . . . , H
′
β−α−1×H1, . . . , H

′
1×Hα, . . . , H

′
1×H1. The H ′i , Hj have the same

meaning as above but now as sub-varieties in Bβ−α and Aα respectively. The
assumption that the partition π is monotone ensures that we put the H ′i ×Hj

in the right order.
Since A and B are by assumption smooth irreducible curves, Tπ is smooth
and irreducible. The preimage in Tπ of the union of all two-fold diagonals in
Bβ−α × Aα and the set of points with at least one component equal to P is
a Zariski-closed subset of Tπ containing P (k−1) and has codimension one in
Tπ. On its complement the blow-up Tπ −→ Bβ−α ×Aα is an isomorphism (by
Lemma 7.5). Hence, each (analytic) neighbourhood of P (k−1) ∈ Tπ contains a
point t, whose image in Bβ−α × Aα is a point whose components are distinct
from each other and from P . Hence, the fibre of S −→ T over the image of t

in T is a sequence of blow-ups S
(i+1)
t −→ S

(i)
t of points Q(i) ∈ S(i)

t with the
required properties.
The family Sπ −→ Tπ obtained by base change via Tπ −→ T from S −→ T is
the family with the required properties. The particular situation with k distinct
points in S corresponds to the partition π : {0, 1, . . . , k − 1} −→ {1, 2, . . . , k}
given by π(i) = i+ 1. In this case we have Tπ = T .
Because our main interest is the study of sequences of blow-ups of conjugate
pairs, we need an additional result to make Proposition 7.2 applicable. On the
other hand, we want to patch together deformations of the kind described in
Proposition 7.2 centred around different points P ∈ S. For both purposes, we
can apply the following lemma.

Lemma 7.6. Let S be a smooth surface and S′ −→ S×T ′ and S′′ −→ S×T ′′
be two flat families of sequences of blow-ups of S. Hence, we are given sections
ϕ′i : T ′ −→ S′i (0 ≤ i ≤ k′ − 1) of T ′-flat families S′i −→ T ′ being the
blow-up of S′i−1 −→ T ′ along ϕ′i−1(T ′) ⊂ S′i−1 and S′0 = S × T ′, S′ = S′k′ .
By ψ′i : T ′ −→ S we denote the composition of ϕ′i with the projection to S.

Similarly for S′′ −→ T ′′. Assume
⋃k′−1
i=0 ψ′i(T ′) ∩

⋃k′′−1
i=0 ψ′′i (T ′′) = ∅.

Then S := S′ ×S S′′ −→ T := T ′ × T ′′ is a flat family of blow-ups of S. The
fibre over (t′, t′′) ∈ T is isomorphic to the blow-up of S corresponding to t′ ∈ T ′
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followed by the sequence of blow-ups corresponding to t′′ ∈ T ′′.

Proof: By the disjointness assumption we can lift ϕ′′i to a section ϕ̃′′i of
Si −→ T ′ × T ′′ where S0 := S′ × T ′′ = S′ ×S (S × T ′′) and Si −→ Si−1 is the
blow-up of ϕ̃′′i−1(T ′ × T ′′), that is Si ∼= S′ ×S S′′i . This gives the lemma.

Remark 7.7. We shall apply this lemma in the following situation to obtain
a real structure on the family S −→ T . We assume S is a surface with a
real structure (without real points) and S′′ is the conjugate family to S′, this
means T ′′ = T ′, S′′ = S′ and ϕ′′i is the conjugate section to ϕ′i. The projection
S′′ −→ S is the composition of the corresponding projection S′′ −→ S with
the isomorphism S −→ S defining the real structure. The real structures on
S and T are given by interchanging the components. This is anti-holomorphic
since the identity S′ −→ S′ is.

We start now the study of small deformations with the aid of the blow-up
graphs of Section 6.

Definition 7.8. We say that a blow-up graph Γ is a small deformation of
an other blow-up graph Γ0 if and only if there exists a flat family of surfaces
S −→ T with real structures having special fibre S0 over the real point 0 ∈ T
such that S0 is isomorphic to a blow-up of P1×P1 with associated graph Γ0 and
every (analytic) neighbourhood of 0 ∈ T contains a real point t ∈ T (R) \ {0}
whose fibre St is isomorphic to a blow-up of P1 × P1 with associated graph Γ.

In the following we want to determine blow-up graphs which are small deforma-
tions of a given blow-up graph. We shall not solve the problem of determining
all graphs being a small deformation of a given one, because this includes the
study of different graphs belonging to isomorphic surfaces. The results obtained
here are sufficient for our applications.

Definition 7.9. Let Γ0,Γ be blow-up graphs with the same set of vertices.
We say Γ is an elementary deformation of Γ0 if we obtain Γ by removing one
edge from Γ0 which connects two internal vertices or two external vertices in
Γ0. We require that one of these vertices, call it v, is marked in Γ but not
marked in Γ0. All other markings of Γ and Γ0 coincide.

Remark 7.10. Since the number of adjacent edges of the vertex v in Γ is one
less than in the graph Γ0 but it is marked in Γ, the number n(v) must be the
same for both graphs. If the removed edge connects two external vertices, the
chain of external vertices in Γ0 containing this edge splits into two chains in
Γ. One of these two parts does already contain a marked point. Therefore, the
vertex to be marked is in this case already determined by Γ0. If we remove
an edge connecting two internal vertices, the vertex v must fulfill n(v) = 2 or
n(v) = 3, since in Γ it is an external marked vertex. In general, the vertex v
which becomes marked in Γ is not determined by the graph Γ0.
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Example 7.11. If Γ0 is the following graph:
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/.-,()*+∗
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we obtain as an elementary deformation by removing a connection of external
vertices the following graph:
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????????

��������
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and by removing an edge connecting two internal vertices we obtain the ele-
mentary deformation:
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Example 7.12. The following two graphs are elementary deformations of the
graph Γ0 drawn in Example 6.4. Here we see that we have two possibilities for
the additional marking in the graph Γ. In the first example we have m = 6
and in the second m = 3, whereas for the graph Γ0 we have m = 8.
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Theorem 7.13. Let Γ0,Γ be two blow-up graphs such that Γ can be obtained
from Γ0 by a finite number of elementary deformations. Then Γ is a small
deformation of Γ0.

Proof: Assume Γ0 and Γ have the same set of vertices. If Γ0 6= Γ there is a
certain set V of vertices which are marked in Γ and not marked in Γ0. Every
vertex v ∈ V is contained in precisely one (maximal) chain of external vertices
C(v) in the graph Γ. By C we denote the union of these sets of external vertices
C =

⋃
v∈V C(v).

Let Γ′ be the graph obtained from Γ by removing all the vertices in C and
the edges connecting them with internal vertices of Γ. This means, Γ can be
obtained from Γ′ by adding marked vertices and external triangles. As seen

in the proof of Proposition 6.7 there exist sequences of blow-ups S1
σ−→ S′1

σ′
−→

S = P1 × P1 such that Γ (resp. Γ′) is the graph associated to the sequence of
blow ups σ′ ◦σ (resp. σ′). Furthermore, it is clear from the definitions, that we
obtain Γ0 from Γ′ by adding internal triangles, external triangles and marked
vertices. This implies the existence of a sequence of blow-ups σ0 : S0 −→ S′1
such that Γ0 is the graph associated to the composition σ′ ◦ σ0.

The graph obtained from Γ0 by removing all the internal vertices of Γ consists
of certain connected components. We denote by Ci with 1 ≤ i ≤ c the subsets
of C obtained by intersection with these connected components.

Every set Ci consists entirely of internal or of external vertices of Γ0, because
in a blow-up graph two marked vertices are not contained in the same chain
of external vertices. If Ci contains an internal vertex of Γ0, then it contains
exactly one vertex connected with two internal vertices of Γ. All other vertices
of Ci are connected with precisely one of these internal vertices of Γ. If Ci
consists of external vertices of Γ0, then all its vertices are connected with the
same internal vertex in Γ.

From the relation between blow-ups and the operation of adding a marked
vertex or an external triangle to a graph (described in the proof of Proposition
6.7) it is clear that the sets Ci are precisely the equivalence classes on C given
by the equivalence relation: w ∼ w′ if and only if the conjugate pairs of curves
corresponding to w and w′ are mapped under σ0 : S0 −→ S′1 to the same
conjugate pair of points. These points lie on the curves in S′1, corresponding
to the internal vertices of the graph Γ′ connected with Ci.
By Lemma 7.6 it is enough to prove the theorem in the case of only one set Ci.
But in this case the result is a reformulation of Proposition 7.2 (using Lemma
7.6 to obtain a version of Proposition 7.2 with pairs of blown-up points at each
step, see Remark 7.7). The partition of the set Ci is defined by the chains of
external vertices of Γ inside Ci. The following picture gives an example of a
part of a graph Γ0 where the edges which are not edges of Γ are drawn with
broken lines. The vertices of the set V are indicated with bullets.
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In this example we have five sets in the corresponding partition (i.e. β = 5),
namely {P (0), P (1)}, {P (2)}, {P (3), P (4)}, {P (5)}, {P (6), P (7)}.
Corollary 7.14. Every blow-up graph Γ is a small deformation of a blow-up
graph Γ0 with the same number of vertices, but having no external vertices.

Proof: This follows easily by induction from the observation that we obtain a
blow-up graph Γ0 by the following procedure: In a blow-up graph Γ we unmark
a marked external vertex v. Let w be the unique internal vertex connected with
v. Then, we connect v by an edge with one of the internal vertices which are
neighbours of w along the boundary of the m-gon of internal vertices of the
given graph Γ.
This motivates the following definition.

Definition 7.15. A basic blow-up graph is a blow-up graph which does not
contain external vertices.

Remark 7.16. Let us equip the set of blow-up graphs with the partial ordering
generated by the requirement: Γ ≥ Γ0 if Γ is an elementary deformation of Γ0.
Then the basic blow-up graphs are precisely the minimal elements in this PO-
set.

Remark 7.17. For every 2 ≤ m ≤ 5 there exists precisely one basic blow-up
graph with m vertices. They are the following:
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All other blow-up graphs with m ≤ 5 are small deformations of them. If m = 6
there exist three different basic blow-up graphs:
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8 Application to twistor spaces

We return to the situation of Section 3. Let Z be a compact, simply con-
nected twistor space containing an irreducible fundamental divisor and satis-
fying c1(Z)3 < 0 and h0(K−

1
2 ) ≥ 2.

By Proposition 2.4 we know that the Riemannian base of such a twistor space
is diffeomorphic to the connected sum nCP2 (with n > 4) and the conformal
class contains a metric with positive scalar curvature.
The existence of such a pencil implies that the algebraic dimension of Z must
be positive. Let S be an irreducible real fundamental divisor, then there exists
a sequence of blow-ups of n ≥ 5 conjugate pairs of points S −→ P1 × P1. We
know from [K1, Prop. 3.6] that we can choose this succession of blow-ups such
that the anti-canonical system | −KS | contains a real member C mapped onto
a curve C′ on P1 × P1 having one of the following four types :

(0) C′ ∈ |O(2, 2)| is a smooth elliptic curve,

(1) C′ has four components C′ = F ′+F ′+G′+G′ where F ′ ∈ |O(0, 1)| and
G′ ∈ |O(1, 0)| are not real,

(2) C′ has two components C′ = F ′ + C′0 where F ′ ∈ |O(0, 1)| is real and
C′0 ∈ |O(2, 1)| is real, smooth and rational,

(3) C′ has two distinct components C′ = A′ +A′ where A′, A′ ∈ |O(1, 1)|.
In the case of type (0) the curve C is smooth elliptic and (C2)S < 0, hence,
by Theorem 5.2 we have κ−1(S) = 0. Corollary 5.4 implies that we have for
generic real fundamental divisors κ−1(S) = 0. Hence, by Corollary 4.3 we
obtain a(Z) = 1.
In the type (2) case we always have κ−1(S) = 2, because there is no point on F ′

blown up and hence the strict transform F of F ′ is a curve with (F.K−1
S )S = 2.

Again, by Corollaries 5.4 and 4.3 we obtain a(Z) = 3. This was also obtained
in [K2].
The case of type (3) reduces to type (1) using elementary transformations,
if the intersection points of A′ and A′ are blown up. Otherwise, we obtain
(A.(−KS))S < 0 and C = A + A. In this situation, Theorem 5.2 tells us
κ−1(S) = 0 and again we compute a(Z) = 1 using the Corollaries 5.4 and 4.3.
It remains to study the situation of type (1). This is precisely the situation
where we can associate to the sequence of blow-ups a blow-up graph Γ. If
Γ does not contain one of the ten graphs of Remark 6.11 as a subgraph that
contains all external vertices and all edges between them, then Γ determines the
anti Kodaira dimension of S by Theorem 6.9. If this is the case, the algebraic
dimension a(Z) is determined by Γ. This follows from Corollaries 5.4 and 4.3,

because the restriction K−1
S ⊗OC ∼= K−

1
2 ⊗OC does not depend on the chosen

fundamental divisor S. For example we can formulate the following theorem:

Theorem 8.1. A simply connected twistor space Z containing at least a pencil
of fundamental divisors is Moishezon if and only if it fulfills the equivalent
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conditions of Theorem 3.7 or contains a real irreducible fundamental divisor S
possessing an associated blow-up graph that either

• contains one internal vertex which is connected with all external vertices,
or

• contains at most four external vertices and a pair of connected internal
vertices with the property that one of them is connected with precisely one
of the external vertices and the other one with all the remaining external
vertices.

In particular, basic blow-up graphs appear only in Moishezon spaces.

Proof: The observations at the beginning of this section show for n ≥ 5 that
a Moishezon twistor space, not fulfilling the conditions of Theorem 3.7, contains
a real fundamental divisor S possessing a blow-up graph. For n = 4 this follows
from [K1] and in case n ≤ 3 every twistor space contains a fundamental divisor
possessing an associated blow-up graph.

Observe that a blow-up graph with at most five vertices always fulfills the
conditions of the theorem. Since in the case n ≤ 3 all twistor spaces are
Moishezon, nothing is to prove then. In the case n = 4 (corresponding to blow-
up graphs with six vertices) the result follows from previous work [K1] and the

observation, that (in this case) K−
1
2 is not nef if and only if the corresponding

blow-up graph fulfills the conditions of the theorem. By a nef line bundle we
mean here one which has non-negative intersection number with all curves in
Z. Let us, therefore, assume n ≥ 5.

In the theorem the conditions on the graph are made to match precisely the
graphs obtained by adding internal triangles to a graph fulfilling condition (c)
or (c’) of Theorem 6.9. If dim | − 1

2K |= 1, we can apply Corollary 5.4 and
Theorem 6.9 to show that the generic S ∈| − 1

2K | has κ−1(S) = 2. Corollary
4.3 implies that Z is a Moishezon space. If dim | − 1

2K |≥ 2, then the result
follows from Theorems 3.6, 3.7 and the observations at the beginning of this
section.

Remark 8.2. A blow-up graph fulfills the properties of the theorem precisely
when it contains one of the graphs of Remark 6.12 as a subgraph that contains
all external vertices of it.

Remark 8.3. In Corollary 7.14 we saw that every blow-up graph is a small
deformation of a basic blow-up graph. By Theorem 8.1 basic blow-up graphs
appear only in Moishezon twistor spaces. This suggests that one could hope
to be able to construct twistor spaces containing a fundamental divisor associ-
ated to an arbitrarily given blow-up graph by studying small deformations of
Moishezon twistor spaces. We shall see in Theorem 8.8 that this in fact works.
In particular, small deformations of Moishezon twistor spaces need not to be
Moishezon [C1], [LeBP].
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It would be very interesting to obtain a better understanding of a(Z) and
κ−1(S) if Γ does not determine the anti Kodaira dimension. This would help
to understand the case a(Z) = 2.

Definition 8.4. A blow-up graph Γ is called twistorial if there exists a twistor
space Z containing an irreducible fundamental divisor S which is obtained from
P1 × P1 by a sequence of blow-ups whose associated graph is Γ.

Example 8.5. The basic blow-up graphs of Example 6.4 containing one vertex
which is connected with all other vertices are twistorial.
By Proposition 6.7, Theorems 3.6 and 3.5 one should search for a correspond-
ing fundamental divisor in a LeBrun twistor space. Such twistor spaces Z are
birational to conic bundles over P1 × P1 whose discriminant is the union of n
irreducible divisors in the linear system | O(1, 1) |. The fundamental linear
system is isomorphic to | O(1, 1) | such that every divisor in | O(1, 1) | cor-
responds to a fundamental divisor in Z. The most degenerate LeBrun spaces
are those where the n components of the discriminant of the conic bundle are
contained in one pencil in | O(1, 1) |. Such a pencil has two base-points on
P1 × P1. Every real member of this pencil, which is different from the n com-
ponents of the discriminant of the conic bundle, has as its associated graph the
basic blow-up graph mentioned above. (Below, the picture for the case n = 6
is drawn.) This degenerate case was not studied in [LeB2]. The details can be
found in [Ku]. /.-,()*+ /.-,()*+
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In the sequel we want to study the question which blow-up graphs are twistorial.
For that purpose we have to show the existence of twistor spaces with certain
properties. A very efficient tool for constructing new twistor spaces is the
following theorem, which has its origin in the paper [DonF].

Theorem 8.6. ([DonF],[LeB3],[PP2],[C3]) Let Z be a Moishezon twistor
space with H2(Z,ΘZ) = 0. Then, any real member of a small deformation
of Z is again a twistor space. Furthermore, any small deformation of a real ir-
reducible fundamental divisor S with real structure is induced by a deformation
of Z in the sense that the deformed surfaces are members of the fundamental
system of the deformed twistor spaces.

For LeBrun twistor spaces the vanishing of H2(Z,ΘZ) was shown in the papers
[LeBP], [C1] and [C3]. But the authors of these papers do not take care of the
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degenerate case. Therefore we need the following theorem, whose proof grew
out of a discussion with H. Kurke. The author is grateful to him.

Theorem 8.7. If Z is a Moishezon twistor space containing an irreducible
fundamental divisor, then H2(Z,ΘZ) = 0.

Proof: The space Z is simply connected [C2] and of positive type by Propo-
sition 2.4 or [Po2]. Let S ∈| − 1

2K | be an irreducible fundamental divisor. By
Lemma 2.2 S is a smooth rational surface. The adjunction formula implies
K

1
2 ⊗OS ∼= KS . The exact sequence

0 −→ N∨S|Z −→ Ω1
Z ⊗OS −→ Ω1

S −→ 0

implies H0(Ω1
Z ⊗OS) = 0, because H0(N∨S|Z) = H0(OS(−S)) = H0(KS) = 0

and H0(Ω1
S) = 0 by the rationality of S.

On the other hand, the restriction map PicZ −→ PicS is injective by
[K1, Lemma 3.1]. The Fröhlicher spectral sequence (which degenerates for
Moishezon varieties [U]) together with the rationality of S, the vanishing
of H0(Z,Ω2

Z) ([H2]) and Lemma 2.3 induces natural isomorphisms PicZ ∼=
H1(Z,Ω1

Z) and PicS ∼= H1(S,Ω1
S). The corresponding natural injective map

H1(Z,Ω1
Z) −→ H1(S,Ω1

S) is the composition of the natural maps H1(Ω1
Z) −→

H1(Ω1
Z ⊗ OS) −→ H1(Ω1

S). The first morphism, which is hence injective,
appears in the exact cohomology sequence of

0 −→ Ω1
Z(−S) −→ Ω1

Z −→ Ω1
Z ⊗OS −→ 0.

With the vanishing of H0(Ω1
Z ⊗OS), shown above, we obtain now: H1(Ω1

Z ⊗
K

1
2 ) = H1(Ω1

Z(−S)) = 0.
Using the standard exact sequence 0 −→ N∨S|Z −→ Ω1

Z ⊗OS −→ Ω1
S −→ 0 we

obtain, using N∨S|Z = OS(−S) = K
1
2 ⊗OS , the exact sequence

0 −→ K⊗2
S −→ Ω1

Z ⊗K
1
2 ⊗OS −→ Ω1

S ⊗KS −→ 0.

Since S is a rational surface we have h0(K⊗2
S ) = 0 and h0(Ω1

S⊗KS) = h2(ΘS) =

0. Hence, we obtain h0(Ω1
Z ⊗K

1
2 ⊗OS) = 0. Using the exact sequence

0 −→ Ω1
Z ⊗K −→ Ω1

Z ⊗K
1
2 −→ Ω1

Z ⊗K
1
2 ⊗OS −→ 0,

and the vanishing of h1(Ω1
Z ⊗ K

1
2 ), this implies h1(Ω1

Z ⊗ K) = 0. By Serre
duality we obtain the desired vanishing.
The following theorem is the main result of this section.

Theorem 8.8. Every blow-up graph is twistorial.

Proof: Combining Theorems 8.7, 8.6 with Theorem 7.13 and Corollary 7.14
we see that it is enough to show that every basic blow-up graph is twistorial.
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The corresponding twistor spaces are provided by the equivariant version of the
method of Donaldson and Friedman [DonF] to construct self-dual structures on
the connected sum of two self-dual manifolds. Such a method was developed
by Pedersen and Poon in the paper [PP3]. The spaces obtained in the case
of the action of a two dimensional torus are investigated in detail in a recent
preprint of Honda [Ho].
His main result is that the twistor spaces obtained by the equivariant version of
the Donaldson-Friedman construction contain a pencil of fundamental divisors
invariant under the action of the two-dimensional torus. The general member
of this pencil is a smooth toric surface, which is isomorphic to a successive
blow-up of P1 × P1 at conjugate pairs of fixed points of the action.
Furthermore, he shows, using the results of Orlik and Raymond [OR], that
every such toric surface appears as a fundamental divisor in a twistor space. But
the fixed points of the torus action are precisely the singularities of the (unique)
torus invariant effective anti-canonical divisor on the toric surface. This means
that an arbitrary sequence of blow ups of conjugate singularities of the torus
invariant effective anti-canonical divisor, starting at P1×P1, leads to a surface
which appears as a fundamental divisor in a twistor space. Because every basic
blow-up graph can be obtained in this way, the theorem is proven.
There is another construction of twistor spaces over nCP2 with the symmetry
of the two-torus, introduced by D. Joyce [J]. It seems to be not clear, whether
these spaces contain a pencil of fundamental divisors or not. But, observe
that D. Joyce associates (in a different way) to each of his spaces one of the
basic blow-up graphs [J, p. 541]. These graphs reflect the orbit structure and
isotropy groups of the action of T 2 = S1 × S1 on nCP2.
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Abstract. Let G be a finite group and ρ a complex linear repre-
sentation of G. In 1961, Atiyah and Venkov independently defined
Chern classes ci(ρ) with values in the integral or mod p cohomology
of G. We consider here the mod p Chern classes of the regular repre-
sentation rG of G. Venkov claimed that ci(rG) = 0 for i < pn− pn−1,
where pn is the highest power of p dividing |G|; however his proof is
only valid for G elementary abelian. In this note, we show Venkov’s
assertion is valid for any G. The proof also shows that the ci(rG) are
p-powers of cohomology classes invariant by Aut(G) as soon as G is a
non-abelian p-group.
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Introduction

Soient G un groupe fini et ρ une représentation linéaire complexe de G. La
définition des classes de Chern de ρ est généralement attribuée à Atiyah [1,
appendice]. Toutefois, ces classes ont également été introduites par B.B. Venkov
dans une note contemporaine [16].
Venkov annonce dans cette note un certain nombre de résultats1. En partic-
ulier, soit rG la représentation régulière de G. Venkov [16] annonce le théorème
suivant:

0.1. Théorème. Soit p un nombre premier, et soit ν = vp(|G|). Alors les
classes de Chern ci(rG) ∈ H2i(G,Z/p) de rG à coefficients Z/p sont nulles
pour i < pν , sauf peut-être si i est de la forme pν − pl pour un l < ν.

1Certains sont manifestement erronés, comme celui affirmant que les classes de Chern de
ρ et son degré déterminent la classe de ρ dans R(G).
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Son esquisse de démonstration ne donne malheureusement le résultat annoncé
que dans le cas où G est abélien élémentaire. Dans cet article, nous nous
proposons de démontrer le théorème annoncé par Venkov. La méthode est
inspirée de [7].
Je remercie Don Zagier pour son aide dans la démonstration du lemme 1.3 et
le referee pour sa lecture soigneuse du manuscrit.

1. Classes de Chern modulo p d’un fibré vectoriel complexe

Soit E un fibré vectoriel complexe sur un espace topologique X , et soit p un
nombre premier. Pour tout i ≥ 0, on note ci(E) ∈ H2i(X,Z/p) la i-ème classe
de Chern modulo p de E.

1.1. Théorème. Supposons que ci(E) = 0 pour i 6≡ 0 (mod p − 1). Si les
ci(E) ne sont pas tous nuls, il existe ν > 0 tel que

(i) pour i < pν − pν−1, ci(E) = 0; cpν−pν−1(E) 6= 0.

(ii) Pkcpν−pν−1(E) =
(
pν−pν−1−1

k

)
cpν−pν−1+(p−1)k(E) pour 0 < k < pν−1, où

Pk est la k-ième puissance de Steenrod (Pk = Sq2k si p = 2);
(iii) pour pν − pν−1 ≤ i < pν , ci(E) = 0 si i n’est pas de la forme pν − pr

(r < ν).

Démonstration. Elle procède essentiellement comme dans [7, dém. de la
prop. 1.1]. Pour simplifier, notons ci = ci(E); soit M le plus petit entier tel
qu cM 6= 0. D’après [11, th. 2] (voir aussi [8]), on a

Pkci =

(
i− 1

k

)
ci+(p−1)k +

∑

0≤l<(p−1)k

ci+lPl(c)

où Pl(c) est un polynôme en les cj isobare de poids (p−1)k− l, donc ne faisant
intervenir cj que pour j ≤ (p− 1)k. On a donc, pour i < M :

(
i− 1

k

)
ci+(p−1)k = 0 pour 0 < k <

M

(p− 1)

et pour i = M :

PkcM =

(
M − 1

k

)
cM+(p−1)k pour 0 < k <

M

(p− 1)
.

Notons Ci = c(p−1)i. Sous l’hypothèse du théorème, on a M = (p− 1)m pour
un m convenable. Les relations ci-dessus donnent alors:(

i(p− 1)− 1

k

)
Ci+k = 0 pour 0 < i < m et 0 < k < m (1)

et

PkCm =

(
m(p− 1)− 1

k

)
Cm+k pour 0 < k < m. (2)

Prenant en particulier i = m− k dans (1), on obtient:
(

(m− k)(p− 1)− 1

k

)
≡ 0 (mod p) pour 0 < k < m. (3)
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1.2. Lemme. Tout entier m vérifiant la condition (3) est une puissance de p.

Démonstration. Écrivons m = m0p
n, avec (m0, p) = 1. Supposons m0 > 1.

Choisissons k = pn dans (3). En écrivant dans Fp[[t]]

(1 + t)p
n(m0−1)(p−1)−1 = (1 + tp

n

)(m0−1)(p−1)(1− t+ t2 − . . . )

on voit que le coefficient de tp
n

dans (1 + t)p
r(m0−1)(p−1)−1 est (m0 − 1)(p −

1) + (−1)p
n

. Par hypothèse, on a donc:

(m0 − 1)(p− 1) + (−1)p
n ≡ 0 (mod p)

ou encore

m0 ≡ 1 + (−1)p
n ≡ 0 (mod p)

ce qui contredit l’hypothèse. On a donc m0 = 1 et m = pn. ✷

Dans le théorème 1.1, (i) résulte du lemme 1.2 et (ii) résulte de (i) et de (2).
Pour voir (iii), soit j ≤ 2pn − 2 tel que Cj 6= 0. En vertu de (1), on a alors:

(
(j − k)(p− 1)− 1

k

)
≡ 0 (mod p) pour j − pn < k < pn. (4)

il suffit donc de prouver:

1.3. Lemme. Tout j ∈ [pn, pn + pn−1 + · · · + 1] vérifiant (4) est de la forme
pn + pn−1 + · · ·+ pr.

Démonstration. (Don Zagier) Soit r le plus petit entier tel que j ≤ pn +
pn−1 + · · ·+ pr. On a donc

j = pn + pn−1 + · · ·+ pr+1 + x

avec 0 < x ≤ pr.

Supposons x < pr. Choisissons k = pn−1 + pn−2 + · · · + pr. Alors l’entier
N = (j − k)(p− 1)− 1 vérifie l’inégalité

(pn − pr)(p− 1) < N < pn(p− 1)

donc a un développement en base p ayant pour chiffres

chiffre p− 2 p− 1 p− 1 . . . p− 1 c ∗ . . . ∗
place n n− 1 n− 2 . . . r + 1 r r − 1 . . . 0

avec c > 0, tandis que k a pour développement en base p

chiffre 0 1 1 . . . 1 1 0 . . . 0
place n n− 1 n− 2 . . . r + 1 r r − 1 . . . 0
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On a donc(
(j − k)(p− 1)− 1

k

)

≡
(
p− 2

0

)(
p− 1

1

)(
p− 1

1

)
. . .

(
p− 1

1

)(
c

1

)(∗
0

)
. . .

(∗
0

)

6≡ 0 (mod p)

ce qui contredit l’hypothèse. ✷

2. L’invariant νp

Notation. Soit E un fibré vérifiant la condition du théorème 1.1. L’entier ν
de ce théorème est noté νp(E). Si tous les ci(E) sont nuls, on note νp(E) =∞.

2.1. Proposition. Soit f : Y → X un revêtement fini, et soit E un fibré
vectoriel complexe sur Y vérifiant les conditions du théorème 1.1. Soit ν =
νp(E); supposons que rgE soit divisible par pν . Alors

(i) f∗E vérifie les conditions du théorème 1.1.
(ii) On a νp(f∗E) ≥ νp(E).

(iii) Soit r = pν − pν−1. Alors

cr(f∗E) = f∗cr(E).

Démonstration. Par un dévissage standard, on se ramène au cas où f est
galoisien de degré p. Dans ce cas, on utilise la formule d’Evens-Kahn-Fulton-
MacPherson [3], [4, th. 14.2]

c(f∗E) = N (c(E)) +

n−1∑

i=0

(
(1− µp−1)n−i − 1

)
N (ci(E)) (5)

où n = rgE, N est le transfert multiplicatif d’Evens-Steiner [2], [15] et

µ = c1(L) avec f∗1 =
⊕p−1

i=0 L⊗i (1 est le fibré trivial de rang 1).

Pour voir (i), il suffit de vérifier que N (c(E)) ne fait intervenir que des classes
de degré divisible par p− 1, ce qui résulte de [4, th. 8.1]. D’après [4, cor. 5.7],
on a la formule

ci(f∗E) = f∗ci(E) + ci(nf∗1) pour i ≤ r.

Écrivons n = n0p
ν . Alors c(nf∗1) = (1 − µp−1)n = (1 − µ(p−1)pν

)n0 , donc
ci(nf∗1) = 0 pour i < (p− 1)pν , ce qui démontre (ii) et (iii). ✷

2.2. Proposition. Soient p un nombre premier, X un espace topologique et E
un fibré sur X vérifiant la condition du théorème 1.1, et tel que pνp(E) | rg(E).
Alors

νp(E ⊠B(rZ/p)) = νp(E) + 1

où E ⊠B(rZ/p) est le produit tensoriel externe de E et de B(rZ/p) sur l’espace
X ×BZ/p.
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Démonstration. On peut écrire

rZ/p =
⊕

χ∈X(Z/p)

χ

où X(Z/p) est le groupe des caractères de Z/p. Choisissons un générateur τ
de ce groupe. On a alors

c(E ⊠B(rZ/p)) = c(E ⊠

⊕

i∈Z/p

B(τ i)) =
∏

i∈Z/p

c(E ⊠B(τ i)).

Soit n = rgE. On a

c(E ⊠B(τ i)) =
n∑

j=0

cj(E)× (1 + ic1(τ))n−j

où × désigne le cross-produit. Les termes de plus bas degré sont

(1 + ic1(τ))n + cr(E)

où r = pνp(E) − pνp(E)−1. Par hypothèse sur n, les termes apparaissant dans
(1 + ic1(τ))n − 1 sont tous de degré > r. On a donc

c(E ⊠B(τ i)) ≡ 1 + cr(E) (mod deg r + 1)

et

c(E ⊠B(rZ/p)) ≡ (1 + cr(E))p ≡ 1 (mod deg r + 1).

Il reste à voir que cpν+1−pν (E⊠B(rZ/p)) 6= 0; pour cela, il suffit de vérifier que le

coefficient numérique de c(p−1)pν−1(E)⊠ c1(τ)(p−1)2pν−1

dans sa décomposition
de Künneth est 6= 0. Or

c(E ⊠B(rZ/p)) ≡
p−1∏

i=0

(
(1 + ic1(τ))n + cr(E) × (1 + ic1(τ))n−r

)

≡
p−1∏

i=0

(1 + ic1(τ))n
p−1∏

i=0

(
1 + cr(E)× (1 + ic1(τ))−r

)

≡ (1− c1(τ)p−1)n
(
1 + cr(E)×

p−1∑

i=0

(1 + ic1(τ))−r
)

≡ (1− c1(τ)p
ν+1−pν

)n0
(
1+ cr(E)×

p−1∑

i=0

(1+ ic1(τ)p
ν−1

)−p+1
)

(mod cr(E)2)

où on a posé n = n0p
ν . Le terme cherché est donc

p−1∑

i=0

(−p+ 1

(p− 1)2

)
i(p−1)2c(p−1)pν−1(E)× c1(τ)(p−1)2pν−1

= −
(−p+ 1

(p− 1)2

)
c(p−1)pν−1(E)× c1(τ)(p−1)2pν−1
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et on veut voir que

(−p+ 1

(p− 1)2

)
6≡ 0 (mod p). En écrivant

(1 + t)−p+1 = (1 + tp)−1(1 + t) =
∑

(−1)itpi(1 + t) ∈ Fp[[t]]

on voit que (−p+ 1

(p− 1)2

)
≡ −1 (mod p).

✷

2.3. Remarque. Comme dans [7], définissons pour tout n ≥ 0

I(n)(X) = {[E] ∈ K(X) | ci(E) = 0 pour i 6≡ 0 (mod p− 1),

νp(E) ≥ n et rgE ≡ 0 (mod pn)}.
On vérifie facilement (par le principe de scindage, par exemple) que I(n)(X)
est un idéal de K(X), stable par image réciproque. La proposition 2.1 montre
que I(n)(X) se conserve également par image directe pour un revêtement fini.
Comme dans [7], on peut demander:

Question. Est-il vrai que I(m)(X)I(n)(X) ⊂ I(m+n)(X) pour tous m,n,X?

Il est facile de voir, encore par le principe de scindage, que la réponse est oui
pour m = 1.

3. Représentations rationnelles

Soient G un groupe et ρ : G→ GLn(C) une représentation de dimension finie
de G. La construction de Borel associe à ρ un fibré vectoriel Bρ sur l’espace
classifiant BG de G. Les classes de Chern de Bρ sont par définition les classes
de Chern de ρ; on les note ci(ρ).

Supposons ρ définie sur Q. Alors la condition du théorème 1.1 est vérifiée pour
tout p [5]; l’invariant νp(Bρ) =: νp(ρ) est donc défini.

Supposons G fini, et prenons ρ = rG, représentation régulière de G. Alors ρ
est évidemment définie sur Q. L’entier νp(rG) est noté νp(G).

Voici quelques propriétés de l’invariant νp(G):

3.1. Proposition. Soient G un groupe fini, p un nombre premier et H un
sous-groupe de G. Alors
a) On a νp(H) ≤ νp(G) et cpνp(H)−pνp(H)−1(rG) = CorGH cpνp(H)−pνp(H)−1 (rH).

b) Supposons que H soit un p-sous-groupe de Sylow de G. Alors on a νp(H) =
νp(G).

Démonstration. a) résulte de la proposition 2.1. Pour voir b), on écrit

ResGH rG = (G : H)rH

Documenta Mathematica 4 (1999) 167–178



Classes de Chern 173

donc
ResGH c(rG) = c((G : H)rH) = c(rH)(G:H).

Comme (G : H) est premier à p, on a νp((G : H)rH) = νp(rH). Par ailleurs,
l’homomorphisme de restriction

Res : H∗(G,Z/p)→ H∗(H,Z/p)

est injectif. Il en résulte que νp(rG) = νp((G : H)rH). ✷

3.2. Proposition. Soit G un groupe fini. Alors νp(G× Z/p) = νp(G) + 1.

Cela résulte de la proposition 2.2. ✷

3.3. Proposition. Pour tout groupe fini G, on a νp(G) ≤ vp(|G|).
Démonstration. Soit r = pvp(|G|)−pvp(|G|)−1: on va montrer que cr(rG) 6= 0.
D’après la proposition 3.1, on peut supposer que G est un p-groupe. Soit E un
sous-groupe d’ordre p de G. On a

ResGE c(rG) = c(ResGE rG) = c((G : E)rE) = c(rE)(G:E)

On a c(rE) = 1− c1(ρ)p−1, où ρ est un caractère non trivial de E. On sait que
c1(ρ) n’est pas nilpotent dans H∗(E,Z/p); par conséquent, cp−1(rE)(G:E) 6= 0.
Mais

c(rE)(G:E) = (1 + cp−1(E) + . . . )(G:E) = 1 + cp−1(E)(G:E) + . . .

puisque (G : E) est une puissance de p. On en conclut que

ResGE cr(rG) = cp−1(E)(G:E) 6= 0.

✷

Vu le théorème 1.1, l’assertion de Venkov se reformule ainsi:

3.4. Assertion. (Venkov) Pour tout groupe fini G et tout nombre premier p,
on a νp(G) = vp(|G|).
La proposition 3.2 implique:

3.5. Proposition. [16] L’assertion de Venkov est vraie pour un p-groupe
abélien élémentaire. ✷

4. Groupes d’ordre p2 et p3

4.1. Proposition. L’assertion de Venkov est vraie pour G = Z/p2.

Démonstration. On écrit rG =
⊕

χ∈X(G) χ. Choisissant un générateur τ de

X(G), on obtient

c(rG) =

p2−1∏

i=0

(1 + ic1(τ)) =

p−1∏

i=0

(1 + ic1(τ))p = (1− c1(τ)p−1)p = 1− c1(τ)p
2−p.

✷
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4.2. Proposition. Supposons p impair. L’assertion de Venkov est vraie pour
le groupe non abélien G d’ordre p3 et d’exposant p.

Démonstration. En effet, G est produit semi-direct de C et H pour tout
sous-groupe H d’indice p de G et tout C engendré par un g /∈ H . Par la
proposition 3.5, νp(H) = 2. On a

rH = (rG/C)|H

où rG/C est la représentation de permutation de G sur G/C, d’où

CorGH cp2−p(rH) = CorGH ResGH cp2−p(rG/C) = 0.

D’après la proposition 3.1 a), on a donc νp(G) > 2. D’autre part, νp(G) ≤ 3
d’après la proposition 3.3. On en conclut que νp(G) = 3, comme souhaité. ✷

4.3. Proposition. Soit G un p-groupe tel que tout sous-groupe propre de G
soit abélien élémentaire. Alors

• soit G est abélien élémentaire;
• soit G est cyclique d’ordre p2;
• soit p est impair est G est d’ordre p3 et d’exposant p.

Démonstration. Supposons que G ne soit pas abélien élémentaire. S’il est
cyclique, il est nécessairement d’ordre p2. Si G n’est pas cyclique, tout élément
de G est contenu dans un sous-groupe propre de G, donc est d’ordre ≤ p. Par
conséquent, G est d’exposant p. Si p = 2, c’est impossible, car G serait alors
abélien élémentaire.
Supposons donc p > 2. Comme G n’est pas cyclique, on a (G : [G,G]) > p;
comme [G,G] est distingué dans G, pour tout g ∈ G le sous-groupe engendré
par g et [G,G] est propre, ce qui implique par hypothèse que [G,G] est central.
On en déduit une application bilinéaire alternée

[, ] : G/[G,G]×G/[G,G]→ [G,G]

dont l’image engendre [G,G]. La conclusion résulte alors du lemme suivant:

4.4. Lemme. Soit [, ] : V × V → W une application bilinéaire alternée, où
V,W sont des Fp-espaces vectoriels. Supposons que [, ] 6= 0, que l’image de [, ]
engendre W et que, pour tout hyperplan H de V , [, ]|H = 0. Alors dimV = 2
et dimW = 1.

En effet, choisissons un hyperplan H de V et soit e ∈ V \ H . Soit K ⊂ H
un hyperplan de H . Alors < e,K > est un hyperplan de V ; il en résulte que
[e,K] = 0 et donc que [V,K] = 0. Mais alors on a dimH = 1: sinon, tout
élément de H serait contenu dans un de ses hyperplans, et on aurait [V,H ] = 0,
d’où [V, V ] = 0 puisque [, ] est alternée. ✷

5. Démonstration de l’assertion de Venkov

5.1. Lemme. Soient G un p-groupe, H un sous-groupe de G d’indice p et
a ∈ H∗(H,Z/p) une classe de cohomologie invariante sous l’action de G/H.
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Alors

CorGH a
p = 0.

Démonstration. On a

ResGHN (a) =
∏

σ∈G/H
σa = ap

d’où

CorGH a
p = CorGH ResGH N (a) = 0.

✷

(Autre démonstration: (Cor a)2 = Cor(a · Res Cor a) = 0, d’où (Cor a)p =
Cor(ap) = 0.)

5.2. Lemme clé. Soit G un p-groupe non abélien élémentaire. Supposons que
l’assertion de Venkov soit vraie pour G. Alors c(rG) = ap, où a ∈ H∗(G,Z/p)
est invariant sous l’action des automorphismes de G.

Démonstration. Soit Φ(G) le sous-groupe de Frattini de G. On peut écrire

rG = rG/Φ(G) ⊕ ρ
avec

ρ = ρ′ ⊕ pρ′′

où rG/Φ(G) est la somme des caractères abéliens d’ordre p de G, ρ′ est la
somme de ses caractères abéliens d’ordre > p et pρ′′ est la somme de ses autres
caractères irréductibles, avec leur multiplicité. (Rappelons qu’un caractère
irréductible intervient dans rG avec une multiplicité égale à son degré; comme
G est un p-groupe, ce degré est une puissance de p. Cf. par exemple [13, p.
30, cor. 1 et p. 68, cor. 2].)
La représentation ρ′′ est évidemment invariante par automorphismes de G; il
en est donc de même de c(ρ′′). Si χ est un caractère abélien d’ordre pr > p, il
en est de même de χi pour tout i premier à p. On a

c(χi) = 1 + ic1(χ)

donc

c(
⊕

i∈(Z/pr)∗

χi) =
∏

i∈(Z/pr)∗

(1 + ic1(χ)) = (1− c1(χ)p−1)p
r−1

.

Soit σ un automorphisme de G. Alors σ permute les caractères abéliens d’ordre
pr ainsi que les orbites [χ] = {χi | i ∈ (Z/pr)∗} de l’action de (Z/pr)∗ sur ces
caractères. Par conséquent, pour tout r > 1, Aut(G) laisse invariante la classe
de cohomologie ∏

[χ]

(1− c1(χ)p−1)

où [χ] décrit les orbites ci-dessus. On en déduit que c(ρ′), et donc c(ρ), est de
la forme bp, où b est invariant sous l’action de Aut(G).
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Soient ν = vp(|G|) et d = vp((G : Φ(G))). Par hypothèse, on a d < ν. Par
conséquent, pd − 1 < pν − pν−1. Il en résulte que

ci(rG/Φ(G)) = 0 pour i ≥ pν − pν−1.

D’autre part, on a par hypothèse

c(rG/Φ(G)) = c(rG)c(ρ)−1 = (1 + cpν−pν−1(rG) + . . . )c(ρ)−1.

On en déduit que les ci(rG/Φ(G)) sont des polynômes en les ci(ρ) (plus
précisément, on a ci(rG/Φ(G)) = −ci(ρ) puisque les seules classes de Chern

éventuellement 6= 0 de rG/Φ(G) sont celles de degré ≥ pd − pd−1 d’après la
proposition 3.5). La conclusion du lemme clé en résulte (avec une formule
explicite pour a si besoin est). ✷

5.3. Théorème. L’assertion de Venkov est vraie.

Démonstration. D’après la proposition 3.1 b), il suffit de la démontrer
pour tout p-groupe G. On raisonne par récurrence sur |G|. Si G est abélien
élémentaire, le théorème résulte de la proposition 3.5. De même, si G est
cyclique d’ordre p2 ou non abélien d’ordre p3 et d’exposant p, il résulte des
propositions 4.1 et 4.2.
Supposons maintenant que G ne soit pas de l’un des types ci-dessus. D’après
la proposition 4.3, G contient un sous-groupe H d’indice p qui n’est pas abélien
élémentaire. Soit ν = vp(|G|). Par hypothèse de récurrence, on a νp(H) = ν−1;
d’autre part, d’après le lemme-clé, on a

cpν−1−pν−2(rH) = ap

où a est invariant sous l’action de Aut(H). En appliquant le lemme 5.1, on en

déduit que CorGH cpν−1−pν−2(rH) = 0. On conclut comme dans la démonstration
de la proposition 4.2. ✷

5.4. Corollaire. (O. Kroll [9]) Soit G un p-groupe qui n’est pas abélien
élémentaire. Alors on a

∏

χ∈H1(G,Z/p)−{0}
βχ = 0

où β est le Bockstein modulo p.

Démonstration. Les arguments du lemme clé montrent que c(rG/Φ(G)) est

une puissance p-ième; en particulier, cpd−1(rG/Φ(G)) = 0, où pd = (G : Φ(G)),
ce qui est équivalent à l’énoncé du corollaire. ✷

5.5. Remarques.

1. Le corollaire 5.4 a été amélioré par Serre [14]: on a
∏
βχ = 0, où χ

décrit un système de représentants de l’espace projectif sur le Fp-espace
vectoriel H1(G,Z/p). (Voir aussi [10].)
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2. Soit n = vp(|G|), et soit r = rp(G) le maximum des rangs des p-sous-
groupes abéliens élémentaires de G. En se restreignant à de tels sous-
groupes, on voit facilement que les classes

cpn−pn−1(rG), . . . , cpn−pn−r(rG)

sont non nilpotentes et algébriquement indépendantes sur Fp. Par un
théorème de Quillen [12, th. 7.1], les autres classes de Chern de rG sont
nilpotentes. D’après un autre théorème de Quillen (loc. cit., cor. 2.4),
l’algèbre de cohomologie H∗(G,Z/p) est un module de type fini sur sa
sous-algèbre engendrée par les ci(rG); c’est donc un module de type fini
sur la sous algèbre engendrée par les cpn−pk(rG) pour k ∈ [n − r, n −
1]. Notons que Aut(G) opère trivialement sur cette sous-algèbre. Par
ailleurs, le lemme clé 5.2 montre que, si G n’est pas abélien élémentaire,
les cpn−pk (rG) sont puissances p-ièmes d’éléments également invariants
par Aut(G).

3. Le théorème 5.3 est à comparer avec les résultats obtenus dans [7] pour
les classes de Stiefel-Whitney de rG. Un entier ν(ρ) analogue à νp(ρ) y
est défini pour toute représentation réelle ρ d’un groupe G. Si G est fini,
on montre que

r2(G) ≤ ν(rG) ≤ v2(|G|)
où r2(G) est comme dans la remarque précédente. En général, on a
ν(rG) < v2(|G|), par exemple pour G = Z/4. Toutefois, on montre que
ν(2rG) = v2(|G|) + 1 pour tout groupe fini G.
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1 Introduction

We are concerned with the numerical solution of the Vlasov equation with
a Manev-type correction to the potential in 1 + 1 (one space, one velocity)
dimensions. In the three-dimensional case, the Newtonian potential is changed
to the “Manev” potential

U(|x− y|) = − γ

|x− y| −
δ

|x− y|2 . (1)

The correction −δ/|x − y|2 was introduced by Manev in a series of papers
[7],[8],[9], [10] in the 1920s in an attempt to find a semiclassical approxima-
tion to the relativistic central force problem. For γ the universal gravitational
constant and δ = 3γ2/c2, where c is the speed of light, this correction gives a
qualitatively accurate prediction of the precession of the perihelion of Mercury.
Manev’s work was the main motivation for the recent paper [2], in which the
authors discuss the properties of the corresponding stellar dynamic equation.
Notably, it is shown that the Cauchy problem for this equation does not, in

Documenta Mathematica 4 (1999) 179–201



180 R. Illner and S. Rjasanow

general, admit global solutions (the corresponding result for the classical stel-
lar dynamic equation holds only if the number of space dimensions is larger
than or equal to 4, see, e.g., [4]). This means that a stellar system driven by
Manev forces will typically develop features where the spatial density ρ loses
smoothness such that the Manev force term, i.e., the Riesz transform of ρ

E2[ρ](t, x) := −δ
∫

x− y
|x− y|4 ρ(t, y) dy

diverges. Possible reasons for this are the local formation of singularities in
ρ (“concentrations”) or in ∇xρ (e.g., “shock waves”). As it is well known
that such singularities do not occur in solutions of the classical stellar dynamic
equation (see [4]), the Manev correction may be of physical relevance in mod-
elling the evolution of large stellar systems like galaxies, globular clusters or
interstellar dust clouds.
We remark that an equation with γ = 0 and δ > 0 (referred to as the “pure”
Manev case in [2]) possesses an interesting “projective” invariance in addition
to the standard translation, scaling and Galilei invariances. Specifically, as
shown in [2], if f(t, x, v) is a solution of the pure Manev equation

∂tf + v · ∇xf + E2[ρ] · ∇vf = 0

and if for some a > 0, τ = t/(1 + at), y = x/(1 + at) and w = (1 + at)v − ax,
then

F (τ, y, w) := f(t, x, v)

solves

∂τF + w · ∇yF + E2[ρ̃] · ∇wF = 0

with ρ̃ =
∫
F dw. This “projective” invariance, described in the context of

the corresponding N-body problem by Bobylev and Ibragimov [1], may be
of significance (and use) in regions where ρ or ∇ρ are large and the Manev
correction dominates the Newtonian forces.
As also discussed in [2], Boltzmann collision terms are dimensionally of the
same order as the Manev force term and should therefore be included in a
proper model. However, the present study aims at the identification of effects
which can be attributed to the Manev correction alone; we therefore omit
Boltzmann collision terms and any other conceivable correction (such as, e.g.,
Smoluchowski type coagulation terms).
It is tempting to try a particle or particle-in-cell scheme for this equation, as
is common for the Vlasov-Poisson (VP) system. The most advanced scheme of
this type for VP is due to Greengard and Rokhlin [5]. We experimented with
particle schemes for the Vlasov-Manev equation and found that they performed
poorly due to the strong singularity of the Manev correction at very short range.
Specifically, particles could be accelerated to extreme velocities over one time
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step, an effect which can also happen for VP but which is rare enough to cause
no difficulties. It should also be an insignificant effect for the Vlasov-Manev
equation while the densities are smooth (this follows from the existence and
uniqueness proof shown in [6]), so a good numerical method should reflect this;
but particle methods do not. Of course, one could mollify the Manev potential
in order to avoid the difficulty, but unless the mollification parameter is chosen
with great care, this may obfuscate the effects of the Manev correction relative
to the Newtonian forces. It is for these reasons that we decided to avoid particle
methods altogether.

The main objective of this paper is therefore the construction and testing of a
difference scheme for the Vlasov-Manev (VM) equation in one-dimensional ge-
ometry; effective generalisation for multidimensional cases is planned for future
work.

Our paper is organised as follows. In Section 2, we describe the VM equation
and summarise its properties. In Section 3, a difference scheme for VM is
derived, and its properties are formulated and proved. Section 4 contains a few
informative numerical examples.

2 The Vlasov-Manev equation and its properties

The one-dimensional Vlasov-Manev equation is associated with the potential

U(|x− y|) = −γ|x− y| − δ ln |x− y|.

This potential arises from (1) by assuming homogeneity of the stellar system
in the y− and z− directions, and the Vlasov-Manev equation can be written
in the form

ft + v fx + E fv = 0, (2)

where f = f(t, x, v) : R+×Rx×Rv → R+ is a non-negative distribution density
function, t ≥ 0 is the time variable, x is the space variable and v is the velocity
variable. The force function E = E(t, x) is defined as follows:

E(t, x) = −γ
∫

Ry

x− y
|x− y|ρ(t, y)dy − δ

∫

Ry

x− y
|x− y|2 ρ(t, y)dy, (3)

ρ(t, x) =

∫

Rv

f(t, x, v)dv.

or E = −∇U , with

U(t, x) = −γ
∫
|x− y|ρ(t, y) dy − δ

∫
ln |x− y|ρ(t, y) dy.
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Here, ρ denotes the spatial density. The non-negative constants γ and δ are
given, and typically γ >> δ. The equation (2) is complemented with the initial
condition

f(0, x, v) = f0(x, v) ≥ 0. (4)

We summarise the main properties of this equation.

1. Conservation of non-negativity

if f0(x, v) ≥ 0, then for t > 0 f(t, x, v) ≥ 0.

2. Conservation of mass

m(t) =

∫

Rx

∫

Rv

f(t, x, v)dvdx = m(0) =

∫

Rx

∫

Rv

f0(x, v)dvdx.

3. The continuity equation reads

ρt(t, x) + jx(t, x) = 0, (5)

j(t, x) =

∫

Rv

v f(t, x, v)dv.

4. Conservation of energy

e(t) =
1

2

∫

Rv

∫

Rx

v2f(t, x, v)dxdv

− 1

2

∫

Rx

∫

Ry

(γ|x− y|+ δ ln |x− y|)ρ(t, x)ρ(t, y)dxdy = e(0).

5. Second derivative of the moment of inertia

d2

dt2

∫

Rx

x2ρ(t, x)dx = 2

∫

Rx

∫

Rv

v2f(t, x, v) dv dx

− γ

∫

Rx

∫

Ry

|x− y|ρ(t, x)ρ(t, y)dy dx− δ m2(0).
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In the three-dimensional case and for γ = 0, the last identity is

d2

dt2

∫
x2ρ(t, x) dx = 4e(0),

and this can be used to show non-global existence (for γ = 0) whenever the ini-
tial energy is negative. This argument is not applicable in the one-dimensional
case under consideration; it may well be that solutions in this situation always
exist globally.

3 A difference scheme

We begin our numerical study of the initial value problem (2),(4) with the
discretisation of the physical and velocity spaces. First, we restrict the whole
space Rx × Rv to a rectangle

QL = {(x, v) ∈ Rx × Rv, −Lx ≤ x ≤ Lx, −Lv ≤ v ≤ Lv} ,

and assume that f(t, x, v) has its support with respect to x and v in the box
QL. We can then compute the force field by integrating over QL alone; later,
we shall act as if f is extended periodically in x and v.
The next step is the discretisation of the rectangle QL using the nodes

(xi, vj) = (−Lx + i hx,−Lv + j hv), (i, j) ∈ Qn
hx =

2Lx
nx

, nx ∈ N, and nx is even,

hv =
2Lv
nv

, nv ∈ N, and nv is even,

Qn = {(i, j) ∈ Z2, 0 ≤ i ≤ nx, 0 ≤ j ≤ nv}.

Furthermore, we introduce the index set Q̃n as a subset of all vectors in Qn
excluding those which have the form (0, j) or (i, 0).
Let τ > 0 be the time discretisation parameter, and tk = k τ, k = 0, 1, . . . . The
function f(tk, x, v) will now be represented by a vector fk ∈ Rn, n = nx nv
with components

fkl = fki,j ≈ f(tk, xi, vj), (i, j) ∈ Q̃n. (6)

Here, l denotes the global index of the vector f0, given by

l = (j − 1)nx + i, l = 1, . . . , n.
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Note that (6) defines the vector fk for all (i, j) ∈ Qn by the assumed periodic
extension of f .
It is also convenient to use the matrix form of the unknown function:

F k ∈ Rnx×nv .

The numerical density ρki ≈ ρ(tk, xi) can be computed using the midpoint
integration rule

ρki = hv

nv∑

j=1

fki,j, i = 1, . . . , nx,

ρk0 = ρknx
, k = 0, 1, . . . ,

or in the matrix form

ρk = hvF
kenv , (7)

where ρk ∈ Rnx and env = (1, . . . , 1)T ∈ Rnv .
The total mass of the system is

mk = hx

nx∑

i=1

ρki

and can be computed as follows:

mk = hx
(
ρk, enx

)
= hx hv

(
fk, en

)
= hx hv

(
F kenv , enx

)
. (8)

The next and most involved step is the numerical computation of the force due
to (3). We take advantage of the fact that it is sufficient to integrate over one
spatial period in (3), because what is really done is treat the case where the
support of ρ stays inside such a period.
Using the notation

P (x− y) = −γ x− y
|x− y| − δ

x− y
|x− y|2

and the piecewise representation of the density ρ we compute

E(tk, xi) ≈ Eki =

nx∑

j=1

ρkjGij , (9)

Ek = Gρk, Ek ∈ Rnx , G ∈ Rnx×nx . (10)
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The elements of the matrix G are defined by

Gij =

∫ xj+hx/2

xj−hx/2

P (xi − y)dy. (11)

Direct computation of the force via (9) will require O(n2
x) arithmetical opera-

tions in each time step and is therefore an “expensive” step. The combination
of the special form of the matrix G and uniform discretisation leads to a special,
Toeplitz form of the matrix G.

Lemma 1 The matrix G defined in (11) is a skew-symmetric Toeplitz matrix.

Proof:
A matrix G is Toeplitz if

Gi+1,j+1 = Gij , i, j = 1, . . . , nx − 1.

The analytical integration in (11) leads to

Gij = γ hx − δ ln
j − i− 1/2

j − i+ 1/2
, j > i.

For j < i we get

Gij = −Gji

because of (11).

The matrix G is therefore uniquely defined by its first row. The element
G11 is a strongly singular integral which should be considered as a Cauchy
integral

G11 = lim
ε→0

(∫ x1−ε

x1−hx/2

P (x1 − y)dy +

∫ x1+hx/2

x1+ε

P (x1 − y)dy

)
.

Using the substitution y = −y′ + 2x1 in the second integral and the obvious
property

P (x− y) = −P (y − x)

we obtain
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∫ x1+hx/2

x1+ε

P (x1 − y)dy = −
∫ x1−hx/2

x1−ε
P (x1 + y′ − 2x1)dy′

=

∫ x1−ε

x1−hx/2

P (y′ − x1)dy′

= −
∫ x1−ε

x1−hx/2

P (x1 − y′)dy′,

and therefore

G11 = 0.

Remark 1 The multiplication of a Toeplitz matrix with a vector can be realised
efficiently using the following well known trick. The matrix G can be considered
as a left-upper block of the circulant matrix G̃ of the dimension m which is a
power of two:

G̃ =

(
G G12

G21 G22

)
,

The matrix G̃ has the following additional property

G̃i,m = G̃i+1,1, i = 1, . . . ,m− 1

and its first row is defined as

(G11, . . . , G1,nx , 0, . . . , 0,−Gnx,1,−Gnx−1,1, . . . ,−G2,1) ∈ R1×m. (12)

The dimension m of the matrix G̃ is the next power of two for the number
2nx−1 and the number of zeros in (12) is equal to m−2nx+1. It is obviously
true that 2nx − 1 < m < 4nx − 4.
Each circulant matrix C of the dimension m can be represented as

C = m−1Fm ΛF ∗m,

where Fm denotes the matrix of the Discrete Fourier Transform (DFT) of the
dimension m. The diagonal matrix Λ contains the eigenvalues of C and can be
computed as

Λ = diag(λ1, . . . , λm) = diag(FmC
T e1), (13)

e.g. as the DFT of the first row of the matrix C.
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The computation of the force due to (10) therefore reduces to one DFT in a
preparatory step for the computation of the eigenvalues of the matrix G̃ using
(13) (the matrix G̃ remains fixed during the time steps), and then to two DFTs
and one multiplication of the diagonal matrix n−1

x Λ with a vector. If m is a
power of two then the computation of the force only requires O(nx log2(nx))
arithmetical operations using the Fast Fourier Transform (FFT) [3],[13] and is
therefore much “cheaper” than the computation of the density via (7) which
requires O(n) = O(nx nv) arithmetical operations. The number of arithmetical
operations for the multiplication

G̃ρ̃k =

(
G G12

G21 G22

)(
ρk
0

)
=

(
Gρk
G21 ρk

)
(14)

is then of the same order O(nx log2(nx)).

Remark 2 In a two- (d = 2) or three-dimensional case (d = 3) we will obtain
a circulant-block matrix [12]. Such matrices can again be efficiently multi-
plied with a vector using the FFT. The amount of arithmetical work would be
O(ndx log2(nx)) in this case.

The next step in the numerical procedure we are describing is the discretisation
of the equation (2) using a semi-implicit difference scheme. At the given time
level k we compute the density ρk via (7) and the force Ek via (10) or (14),
and then we use the following “upwind” approximation for the derivatives in
(2):

ft(tk, xi, vj) ≈ fkt,ij =
fk+1
ij − fkij

τ
, (15)

v fx(tk, xi, vj) ≈ vj f
k+1
x,ij =





vj
fk+1
ij − fk+1

i−1,j

hx
, vj ≥ 0

vj
fk+1
i+1,j − fk+1

ij

hx
, vj < 0

, (16)

E fv(tk, xi, vj) ≈ Eki f
k+1
v,ij =





Eki
fk+1
ij − fk+1

i,j−1

hv
, Eki ≥ 0

Eki
fk+1
i,j+1 − fk+1

ij

hv
, Eki < 0

. (17)

The resulting difference scheme can now be written in the form

fkt,ij + vj f
k+1
x,ij + Eki f

k+1
v,ij = 0, i, j ∈ Q̃n, k = 0, 1, . . . . (18)

The initial values f0
ij = f0(xi, vj) are given. After multiplication by τ , (18) is

a system of linear equations which can be written in the matrix form
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Ak f
k+1 = fk, Ak ∈ Rn×n, fk, fk+1 ∈ Rn, n = nx nv.

The elements of the matrix Ak using the global numbering with l = nx(j−1)+i
are of the form

(Ak)ll = 1 +
τ

hx
|vj |+

τ

hv
|Eki |, (19)

(Ak)l,l−1 =

{
− τ
hx
|vj | , vj ≥ 0

0 , vj < 0
, (20)

(Ak)l,l+1 =

{
0 , vj ≥ 0

− τ
hx
|vj | , vj < 0 , (21)

(Ak)l,l−nx
=

{
− τ
hv
|Eki | , Eki ≥ 0

0 , Eki < 0
, (22)

(Ak)l,l+nx
=

{
0 , Eki ≥ 0

− τ
hv
|Eki | , Eki < 0 , (23)

l = 1, . . . , n .

All other elements of the matrix Ak are equal to zero, i.e. the matrix Ak is
extremely sparse. Exactly three elements of each row of this matrix are unequal
to zero. In a d−dimensional case this number would be 2d+ 1.

Remark 3 If the indices in (15)-(17) or in (20)-(24) are not from the set Q̃n
then we always assume the periodic property (e.g. fk+1

nx+1,j ≡ fk+1
1,j etc.).

The main properties of the difference scheme (18) correspond to the properties
of the matrices Ak, k = 0, . . . .

Lemma 2 The matrix Ak has the following properties

1. Ak is a regular M-matrix,

2. Ak en = en, A
T
k en = en,

3. ‖A−1
k ‖2 = 1.

Here ‖A−1
k ‖2 denotes the spectral norm of the matrix A−1

k , i.e. its biggest
singular value.
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Proof:

1. The elements of the matrix Ak fulfil

(Ak)ll > 0, (Ak)lm ≤ 0, l 6= m,
n∑

m=1

(Ak)lm = 1, l = 1, . . . , n. (24)

By (24), the matrix Ak is strongly diagonal-dominant and therefore a
regular M−matrix.

2. The first property is given trivially in (24). This means that the vector
en is an eigenvector of the matrix Ak and corresponds to the eigenvalue
one. The matrix ATk has the same eigenvector and the same eigenvalue
because

(
ATk en

)
l

=

n∑

m=1

(Ak)ml =

= (Ak)ll + (Ak)l+1,l + (Ak)l−1,l + (Ak)l−nx,l
+ (Ak)l+nx,l

.

Using the representations (l + 1, l) = (l + 1, (l + 1) − 1) and (l − 1, l) =
(l− 1, (l− 1) + 1), the property l± 1 = (nx − 1)j + (i± 1) and (20),(21)
we obtain

(Ak)l+1,l + (Ak)l−1,l = − τ

hx
|vj |.

By analogy

(Ak)l−nx,l
+ (Ak)l+nx,l

= − τ

hv
|Eki |.

Together with (19) we obtain the required result.

3. The matrix A−1
k is element-wise non-negative, because it is the inverse

of the M−matrix. The spectral norm of the matrix A−1
k is equal to

its largest singular value or to the square root of the largest eigenvalue
of the matrix A−Tk A−1

k . This matrix only has non-negative elements
(as a product of two element-wise non-negative matrices) and the real
eigenvector en only has positive components. Then the corresponding
eigenvalue (Perron-Frobenius theorem) is the largest Perron-eigenvalue
of this matrix. In our case this eigenvalue is equal to one, because of the
properties in 2. Hence the spectral norm of the matrix A−1

k is equal to
one.
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More details concerning M−matrices can be found in [11].
The above lemma enables us to prove some important properties of the differ-
ence scheme

1. Initial step
f0
ij = f0(xi, vj),

2. Time step for k = 0, 1, . . .
2.1 ρk = hv F

k env ,
2.2 Ek = Gρk,
2.3 Akf

k+1 = fk.

(25)

Corollary 1 The solution of the difference scheme (25) exists for all k =
0, 1 . . . .

Proof: This property follows directly from the regularity of the matrix Ak for
all k = 0, 1 . . . .

Corollary 2 If the initial function f0(x, v) is non-negative then the vectors
fk remain component-wise non-negative for all k = 0, 1, . . . .

Proof:
The initial vector f0 is component-wise non-negative because of its definition
in step 1 of (25). If fk, k = 0, 1, . . . is component-wise non-negative, then we
obtain from Step 2.3 of (25)

fk+1 = A−1
k fk.

The matrix A−1
k is component-wise non-negative because it is inverse of an

M-matrix. The proof is then completed by induction.

Corollary 3 The difference scheme (25) conserves mass.

Proof:
The mass of the system can be computed for k = 1, 2, . . . corresponding to
formula (8)

mk = hxhv(fk, en) = hxhv(Ak−1f
k−1, en)

= hxhv(fk−1, ATk−1en) = hxhv(f
k−1, en) = mk−1 = . . . = m0.

Corollary 4 The difference scheme (25) is stable in the discrete maximum
norm with respect to the initial data.
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Proof: The discrete maximum norm of fk, k = 0, 1, . . . is defined as

‖fk‖∞ = max
l
|fkl | = max

l
fkl = fkl∗

because the components of the vector fk are non-negative. Here we have used
the global numbering l = nx(j − 1) + i of the components of fk. Using

(Ak−1)l∗l∗ > 0, (Ak−1)ij ≤ 0, i 6= j

in the time step k = 1, 2, . . . we obtain the following estimate for the index l∗

‖fk‖∞ = fkl∗ = ((Ak−1)l∗l∗ + (Ak−1)l∗l∗−1

+ (Ak−1)l∗l∗+1 + (Ak−1)l∗l∗−nx + (Ak−1)l∗l∗+nx) fkl∗

≤ (Ak−1)l∗l∗f
k
l∗ + (Ak−1)l∗l∗−1f

k
l∗−1

+ (Ak−1)l∗l∗+1f
k
l∗+1 + (Ak−1)l∗l∗−nxf

k
l∗−nx

+ (Ak−1)l∗l∗+nxf
k
l∗+nx

=

+ (Ak−1f
k)l∗ = fk−1

l∗ ≤ ‖fk−1‖∞ ≤ . . . ≤ ‖f0‖∞.

Corollary 5 The difference scheme (25) is stable in the discrete L2−norm
with respect to the initial data.

Proof: The discrete L2−norm of fk, k = 0, 1, . . . is defined as

‖fk‖22 = hxhv(f
k, fk).

Using this definition and property 3 in Lemma 2 we obtain for k = 1, . . .

‖fk‖2 = ‖A−1
k−1f

k−1‖2 ≤ ‖A−1
k−1‖2‖fk−1‖2 = ‖fk−1‖2 ≤ . . . ≤ ‖f0‖2.

Corollary 6 If the sequence {fk} converges then it converges to the constant

lim
k→∞

fk =
m0

4LxLv
en

Proof: If the sequence {fk} converges to f∞ then this vector fulfils

A∞f
∞ = f∞,
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where A∞ denotes the limit of the sequence of matrices {Ak}. Since the matrix
A∞ is still a regular M−matrix, its eigenvalue 1 is simple. It means that only
a constant vector f∞ = αen can fulfil the equation (26). The constant α can
be obtained using the conservation of mass

m0 = hxhv(f
∞, en) = hxhvα(en, en) = α(hxnx)(hvnv) = α(4LxLv).

Next, we obtain the discrete form of the continuity equation (5). We will use
the following notations

v = (v1, . . . , vnv )T ∈ Rnv − vector of the velocities,
Dv = diag(v) ∈ Rnv×nv − corresponding diagonal matrix,
D+
v = diag(0.5(|v|+ v)) ∈ Rnv×nv − positive part of Dv,

D−v = diag(0.5(|v| − v)) ∈ Rnv×nv − negative part of Dv,
w = (v2

1 , . . . , v
2
nv

)T ∈ Rnv − vector of squares of the velocities,
Ek = (Ek1 , . . . , E

k
nx

)T ∈ Rnx − vector of the forces, (∗)
DE = diag(Ek) ∈ Rnx×nx − corresponding diagonal matrix,
D+
E = diag(0.5(|Ek|+ Ek)) ∈ Rnx×nx − positive part of Dx,

D−E = diag(0.5(|Ek| − Ek)) ∈ Rnx×nx − negative part of Dv,
Jm = circ(0, 1, 0, . . . , 0) ∈ Rm×m − circulant matrix of the dimension m,
ρk = hv F

k env ∈ Rnx − density,
jk = hv F

k v ∈ Rnx − numerical flux.

Using (∗) we rewrite the difference scheme (18) in the matrix form

F k+1 − F k
τ

+
1

hx

(
(Inx − Jnx)F k+1D−v + (Inx − JTnx

)F k+1D+
v

)

+
1

hv

(
D−EF

k+1(Inv − JTnv
) +D+

EF
k+1(Inv − Jnv)

)
= 0,

k = 0, 1, . . . .

If we multiply this matrix with the vector hvenv then we obtain using

(Inv − Jnv )env = (Inv − JTnv
)env = 0,

D−v env = v−,

D+
v env = v+

the following equation

ρk+1 − ρk
τ

+
hv
hx

(
(Inx − Jnx)F k+1v− + (Inx − JTnx

)F k+1v+
)
,
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ρk+1 − ρk
τ

+
hv
hx

(
0.5(Inx − Jnx)F k+1(|v| − v) + 0.5(Inx − JTnx

)F k+1(|v|+ v)
)
,

ρk+1 − ρk
τ

+
1

2hx
(Jnx − JTnx

)jk+1 +
1

2
hxhv

1

h2
x

(2Inx − Jnx − JTnx
)F k+1|v| = 0

or

ρk+1 − ρk
τ

+
1

2hx
(Jnx − JTnx

)jk+1 = −1

2
hxhv

1

h2
x

(2Inx − Jnx − JTnx
)F k+1|v|.

The short form of this equation is

ρkt + jẋ = −1

2
hx(hvF

k+1|v|)xx, (26)

where yx denotes the central difference and yxx the second difference of the
grid function y. The equation (26) corresponds to the continuous equation
(5). While the left hand side of (26) is a possible correct approximation of the
derivatives in (5), the right hand side forms an artificial viscosity of our scheme.
Because of this term which is of the order O(hx) we are not able to obtain the
conservation of the energy of the scheme directly. However, our numerical tests
show that the variation of the energy in one time step is small.

4 Numerical examples

In this section we calculate some examples using our difference scheme. The
initial distribution f0(x, v) is given by

f0(x, v) =
1

2π
√
TxTv

(
exp

(
− (x− x0)2

2Tx

)
+ exp

(
− (x+ x0)2

2Tx

))
exp

(
− v2

2Tv

)
,

where Tx, Tv and x0 are some positive parameters. In Figures 1,2 we present
the time evolution of the density and of the force in the time interval (0, 1.4) for
the following setting of parameters: γ = 4, δ = 0, Tx = 2, Tv = 0.05, x0 = 4
and nx = 60, nv = 90, i.e. for the pure Vlasov case. The time interval (0, 1.4)
is sufficient to show the main numerical effects.
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Figure 1: The density profiles for γ = 4, δ = 0
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Figure 2: The force profiles for γ = 4, δ = 0
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Figure 3: The solution and its iso-lines for γ = 4, δ = 0
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We observe a very clear unification of the two particle “clouds” in space and no
remarkable concentration of mass during the time evolution. Figure 3 shows
the function f(t, x, v) and its iso-lines for the time t = 1.4.
In the second test we consider the pure Manev case with the same initial
distribution and the same parameter of discretisation.
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Figure 4: The density profiles for γ = 0, δ = 4
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Figure 5: The force profiles for γ = 0, δ = 4
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Figure 6: The solution and its iso-lines for γ = 0, δ = 4
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There is a very clear difference in the behaviour of the two examples. The pure
Manev case leads to a significant concentration of the mass in the two “clouds”,
and during the evolution they remain separated. Figure 6 shows the function
f(t, x, v) and its iso-lines for the time t = 1.4.
Finally, we consider the mixed case γ = 2, δ = 2 in order to illustrate the
influence of the two effects: unification and concentration. The results are
presented in Figures 7,8,9.
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Figure 7: The density profiles for γ = 2, δ = 2
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Figure 8: The force profiles for γ = 2, δ = 2
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Figure 9: The solution and its iso-lines for γ = 2, δ = 2
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5 Conclusions

Our calculations suggest that the Manev correction will have a “stabilising”
effect on isolated one-dimensional matter concentrations; this effect counteracts
the tendency of the long-range Newtonian potential to accumulate all matter
in one location; while this is only an isolated phenomenon which is observed
here as a consequence of the Manev correction, we believe it to be evidence
that truly interesting effects may occur in the more relevant three-dimensional
case. Numerical experiments to this end are planned.
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1377, 1930.

[10] G. Manev. Le principe de la moindre action et la gravitation. Comptes
Rendues, 190: 963–965, 1930.

[11] H. Minc. Nonnegative Matrices. J. Wiley & Sons, 1988.

[12] S. Rjasanow. Effective algorithms with circulant-block matrices. Linear
Alg. Appl., 202: 55–69, 1994.

[13] C. Van Loan. Computational Frameworks for the Fast Fourier Transform.
SIAM, Philadelphia, 1992.

Documenta Mathematica 4 (1999) 179–201



Difference Scheme for the Vlasov-Manev System 201

R. Illner
Department of Mathematics
and Statistics
University of Victoria
P.O. Box 3045
Victoria, B.C. V8W 3P4
Canada
rillner@Math.UVic.CA

S. Rjasanow
Fachbereich 9 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany
rjasanow@num.uni-sb.de

Documenta Mathematica 4 (1999) 179–201



202

Documenta Mathematica 4 (1999)



Doc. Math. J. DMV 203

Sur les Formes Quadratiques de Hauteur 3

et de Degr

�

e au Plus 2

Ahmed Laghribi1

Received: December 9, 1998

Revised: May 12, 1999

Communicated by Ulf Rehmann

Abstract. Let F be a commutative field of characteristic not 2. In
this paper, we give some results on the classification of F -quadratic
forms of height 3 and degree ≤ 2.

Résumé. Soit F un corps commutatif de caractéristique différente de
2. Dans ce papier, on donne certains résultats sur la classification des
F -formes quadratiques de hauteur 3 et de degré ≤ 2.
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1. Introduction

A une F -forme quadratique ϕ de dimension ≥ 3, on associe la quadrique
projective Xϕ d’équation ϕ = 0. On désigne par F (ϕ) le corps des fonctions
de Xϕ. Lorsque ϕ est anisotrope de dimension 2 (resp. ϕ est isotrope de

dimension 2 ou dimϕ ≤ 1), on pose F (ϕ) = F (
√
− det(ϕ)) (resp. F (ϕ) = F ).

D’après [19], on associe à une forme quadratique ϕ 6∼ 0 une suite de formes
quadratiques et d’extensions de F , appelée la tour de déploiement générique
de ϕ, de la manière suivante: ϕ0 = ϕan (la partie anisotrope de ϕ), F0 = F et
pour n ≥ 1, on définit par récurrence Fn = Fn−1(ϕn−1) et ϕn = ((ϕn−1)Fn)an.
La hauteur de ϕ, noté h = h(ϕ), est le plus petit entier tel que dimϕh ≤ 1.
Pour j ∈ {0, · · · , h}, on note ij(ϕ) l’indice de Witt de ϕFj . Clairement, on
a 0 ≤ i0(ϕ) < · · · < ih(ϕ). La suite {i0(ϕ), · · · , ih(ϕ)} s’appelle la suite des
indices de déploiement de ϕ (splitting pattern [14]). Si dimϕ est impaire, alors
dimϕh = 1 et ϕ est dite de degré 0; sinon dimϕh = 0 et donc ϕh−1 devient
hyperbolique sur Fh−1(ϕh−1), ce qui implique par un résultat de Knebusch

1Soutenu par les fonds FDS de l’Université Catholique de Louvain, Belgique.
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[19, Theorem 5.8] et Wadsworth [32], que ϕh−1 est semblable à une forme de
Pfister ρ ∈ PdFh−1, qu’on appelle la forme dominante (leading form) de ϕ.
L’entier d s’appelle le degré de ϕ qu’on note deg(ϕ). La forme ϕ est dite bonne
si sa forme dominante ρ ∈ PdFh−1 est définie sur F , i.e. s’il existe une F -forme
quadratique τ telle que ρ ∼= τFh−1

(dans ce cas τ est unique à isométrie près
[20, Proposition 9.2]). Lorsque ϕ est bonne de forme dominante τ , on dit que
ϕ est fortement bonne (resp. faiblement bonne) si ϕF (τ) est anisotrope (resp.
ϕF (τ) est isotrope).

Ce procédé de déploiement générique d’une forme quadratique motive le
problème suivant, dit “problème de classification des formes quadratiques par
hauteur et degré”.

Problème: Etant donné deux entiers positifs h et d, quelles sont les F -formes
quadratiques ϕ telles que h(ϕ) = h et deg(ϕ) = d?

Jusqu’à présent, on a certaines réponses à ce problème. En effet, la car-
actérisation d’une forme quadratique anisotrope de hauteur 1 a été faite par
Knebusch [19, Theorem 5.8] et de manière indépendante par Wadsworth [32].
Une telle forme quadratique est une voisine de codimension 0 ou 1. Dans
[20, Lemma 10.1], Knebusch a caractérisé une forme quadratique anisotrope et
excellente de hauteur 2 et de degré d en démontrant qu’une telle forme quadra-
tique est de la forme aρ ⊗ π′ pour a ∈ F ∗, ρ ∈ PdF et π = 〈1〉 ⊥ π′ ∈ PnF
avec n ≥ 2, et il a démontré qu’une forme quadratique anisotrope de hau-
teur 2 et de degré 1 qui n’est pas excellente est nécessairement de dimension
4 et de discriminant 6= 1 [20, Theorem 10.3]. Fitzgerald [8, 1.6] et Knebusch
[20, Lemma10.1, Proposition 10.8] ont obtenu certains résultats sur les formes
quadratiques anisotropes et bonnes de hauteur et de degré 2. Dans [17], Kahn a
caractérisé de manière complète une forme quadratique de hauteur et de degré
2 en démontrant qu’une telle forme quadratique ϕ est excellente, ou une forme
d’Albert (i.e. dimϕ = 6 et d±ϕ = 1), ou ϕ ∈ I2F de dimension 8 telle que
ind c(ϕ) = 2. Pour les formes quadratiques anisotropes de hauteur 2 et de degré
≥ 3, Hurrelbrink et Rehmann [15, 3.4] ont montré qu’une forme quadratique
anisotrope de hauteur 2, de degré 3 qui est bonne mais non excellente est de
dimension 16. Ce résultat a été généralisé par Hoffmann [11] qui a montré
qu’une forme quadratique anisotrope de hauteur 2, de degré d qui est bonne
mais non excellente est de dimension 2d+1. Pour le moment, on n’a pas une
caractérisation complète des formes quadratiques de hauteur 2 et de degré ≥ 3.
Dans ce sens, Kahn a posé la conjecture suivante.

Conjecture 1. (Kahn [17, Conjecture 7])
(1) Une forme quadratique ϕ anisotrope qui est bonne mais non excellente, est
de hauteur 2 et de degré d ≥ 1 si et seulement si ϕ ∼= ρ⊗ψ pour ρ ∈ Pd−1F et
dimψ = 4.
(2) Une forme quadratique ϕ anisotrope qui n’est pas bonne, est de hauteur 2
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et de degré d ≥ 2 si et seulement si ϕ ∼= ρ ⊗ γ pour γ une forme d’Albert et
ρ ∈ Pd−2F .

Théorème 1. ([17, Théorème 2.12])
La conjecture 1(1) est vraie en degré d = 3.

Dans [18], Kahn a obtenu certains résultats sur la caractérisation des formes
quadratiques de hauteur 3 et de degré 1.

Théorème 2. (Kahn [18, Corollary 1])
Soit ϕ une forme quadratique anisotrope de hauteur 3 et de degré 1. Alors:
(1) La forme ϕ est de l’un des quatres types (s’excluant mutuellement):
(i) ϕ est excellente;
(ii) ϕ n’est pas excellente mais voisine de forme complémentaire une forme de
dimension 4 et de discriminant 6= 1;
(iii) ϕ n’est ni voisine ni une forme d’Albert et dimϕ = 6;
(iv) ϕ n’est pas voisine et dimϕ > 6. Dans ce cas, (ϕF (ϕ))an est excellente.
(2) Si ϕ n’est pas voisine telle que dim(ϕF (ϕ))an = 6, alors dimϕ ≤ 16.

1.1. Les formes quadratiques de hauteur 3, de degré 1 et de di-
mension > 6 (resp. de hauteur 3, de degré 2 et de dimension > 16).
Les formes quadratiques anisotropes de hauteur 3 et de degré 1 qui ont la
plus petite dimension sont celles de type (iii) comme dans le théorème 2, i.e.
de dimension 6. Dans cette section, on va s’intéresser à la caractérisation
des formes quadratiques de hauteur 3, de degré 1 et de dimension > 6 (resp.
de hauteur 3, de degré 2 et de dimension > 16). Les formes quadratiques
de hauteur 3, de degré 2 et de dimension≤ 16 seront traitées dans la section 1.2.

Les formes quadratiques ϕ anisotropes de hauteur 3 et de degré 1 telles que
dimϕ > 6 (resp. de hauteur 3 et de degré 2 telles que dimϕ > 16), se
partagent en quatre types qui s’excluent mutuellement:

Type I: Les formes quadratiques excellentes. Ces formes quadratiques sont
décrites dans la proposition suivante.

Proposition 1. Soit ϕ une forme quadratique anisotrope. Alors, on a
équivalence entre:
(1) ϕ est excellente de hauteur 3 et de degré d ≥ 1;
(2) Il existe a ∈ F ∗, des formes de Pfister τ ∈ PdF , λ1 = 〈1〉 ⊥ λ′1, λ2 telles
que deg(λ1) ≥ 1, deg(λ2) ≥ 2 et ϕ ∼= aτ ⊗ (λ′1 ⊗ λ2 ⊥ 〈1〉).
Type II: Les formes quadratiques voisines mais non excellentes. Ces formes
quadratiques sont décrites dans la proposition suivante.

Proposition 2. Soit ϕ une forme quadratique anisotrope qui n’est pas excel-
lente, de degré 1 ou 2. Alors, on a équivalence entre:
(1) ϕ est voisine de hauteur 3;
(2) • Si deg(ϕ) = 1: ϕ est voisine de forme complémentaire une forme quadra-
tique de dimension 4 et de discriminant 6= 1. En particulier, dimϕ = 2n − 4
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pour un certain entier n ≥ 4.
• Si deg(ϕ) = 2: ϕ est voisine de forme complémentaire une forme quadratique
ψ telle que ψ est d’Albert ou bien ψ ∈ I2F de dimension 8 avec ind c(ψ) = 2.
En particulier, il existe un entier m ≥ 5 qui vérifie dimϕ = 2m − 6 ou 2m− 8.

Type III: Les formes quadratiques ϕ anisotropes mais non voisines, de dimen-
sion différente de 2deg(ϕ)k pour tout entier k impair. Ces formes quadratiques
sont décrites dans le théorème suivant.

Théorème 3. Soit ϕ une forme quadratique anisotrope qui n’est pas voisine,
de degré d = 1 ou 2 telle que dimϕ 6= 2dk pour tout entier k impair. On
suppose que dimϕ > 6 lorsque d = 1, et que dimϕ > 16 lorsque d = 2. Alors,
on a équivalence entre:
(1) ϕ est de hauteur 3;
(2) ϕ ∈ GP ′n,dF pour un certain entier n ≥ d+ 2 (voir définition 3).

Type IV: Les formes quadratiques ϕ anisotropes mais non voisines, de dimen-
sion 2deg(ϕ)k pour un certain entier k impair. Pour le moment, on n’a pas une
caractérisation complète de ces formes quadratiques. D’après la proposition 3,
on obtient que ces formes quadratiques sont celles qui sont faiblement bonnes,
et par conséquent les formes quadratiques décrites dans le théorème 3 sont
celles qui sont fortement bonnes.

Proposition 3. Soit ϕ une forme quadratique anisotrope qui n’est pas voisine,
de degré 1 ou 2 telle que dimϕ > 6 lorsque deg(ϕ) = 1, et que dimϕ > 16
lorsque deg(ϕ) = 2. Supposons que ϕ soit de hauteur 3. Alors, ϕ est bonne.
De plus, on a équivalence entre:
(1) ϕ est faiblement bonne (resp. fortement bonne);
(2) Il existe un entier k impair tel que dimϕ = 2deg(ϕ)k (resp. dimϕ 6= 2deg(ϕ)k
pour tout entier k impair);
(3) ϕF (τ) ∼ 0 (resp. ϕF (τ) est semblable à une forme de Pfister anisotrope) où
τ est la forme dominante de ϕ.

Le théorème suivant donne une caractérisation d’une forme quadratique ϕ
anisotrope et faiblement bonne, de hauteur 3 et de degré 1 telle que dimϕ ≤ 16.
En particulier, on raffine le théorème 2(2) lorsqu’il s’agit d’une forme quadra-
tique faiblement bonne.

Théorème 4. Soit ϕ une forme quadratique anisotrope de discriminant à signe
d 6= 1. Supposons que ϕ ne soit pas voisine et dimϕ > 6. Alors, on a
équivalence entre:
(1) ϕ est faiblement bonne de hauteur 3 et de dimension ≤ 16;
(2) ϕ est faiblement bonne de hauteur 3 et dim(ϕF (ϕ))an = 6;
(3) ϕ ∼= 〈1,−d〉 ⊗ ξ pour ξ une forme quadratique de dimension 5.

1.2. Les formes quadratiques de hauteur 3, de degré 2 et de dimen-
sion au plus 16.
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• Cas des formes quadratiques de dimension 8.

La proposition suivante donne une caractérisation des formes quadratiques
anisotropes de dimension 8, de hauteur 3 et de degré 2.

Proposition 4. ([13], [15])
Une forme quadratique ϕ anisotrope de dimension 8 est de hauteur 3 et de
degré 2 si et seulement si ϕ ∈ I2F et ind c(ϕ) ≥ 4.

• Cas des formes quadratiques de dimension 10.

Pour les formes quadratiques de dimension 10, de hauteur 3 et de degré 2, on
a la caractérisation suivante.

Proposition 5. ([13]) Soit ϕ une forme quadratique anisotrope de dimension
10 qui n’est pas voisine. On a équivalence entre:
(1) ϕ est de hauteur 3 et de degré 2;
(2) Il existe π = 〈1〉 ⊥ π′ ∈ P3F , τ = 〈1〉 ⊥ τ ′ ∈ P2F telles que ϕ ∼= a(π′ ⊥
−τ ′) pour a ∈ F ∗ convenable;
(3) ϕ ∈ I2F et ind c(ϕ) = 2.

• Cas des formes quadratiques de dimension 12.

On n’a pas d’énoncé, même conjecturale, sur la caractérisation des formes
quadratiques de dimension 12 fortement bonnes de hauteur 3 et de degré 2.
Par contre pour celles qui sont faiblement bonnes, on pose la conjecture suiv-
ante.

Conjecture 2. Soit ϕ une forme quadratique anisotrope de dimension 12 qui
n’est pas voisine. Alors, on a équivalence entre:
(1) ϕ est faiblement bonne, de hauteur 3 et de degré 2;
(2) Il existe δ ∈ I2F de dimension 8 telle que ind c(δ) = 2 et ϕ ⊥ δ ∈ I4F .

La conjecture 2 est liée à la conjecture 3 sur le problème d’isotropie d’une forme
quadratique sur le corps des fonctions d’une quadrique (Théorème 5).

Conjecture 3. Soient π ∈ P3F , τ ∈ P2F . Supposons que δ := (π ⊥ −τ)an
soit de dimension 10. Si ψ est une forme quadratique telle que δF (ψ) soit
isotrope, alors dimψ ≤ dim δ.

Théorème 5. La conjecture 3 implique la conjecture 2.

• Cas des formes quadratiques de dimension 14 ou 16.

On commence par un résultat général.

Proposition 6. Soit ϕ une forme quadratique anisotrope de dimension 14 ou
16, de hauteur 3 et de degré 2. Alors, on a les assertions suivantes:
(1) ϕ est fortement bonne.
(2) Soit τ ∈ P2F la forme dominante de ϕ. On a:
(i) Si dimϕ = 14, alors ϕF (τ) est anisotrope de hauteur 2 et de degré 3.
(ii) Si dimϕ = 16, alors ϕF (τ) est anisotrope de hauteur 1 ou de hauteur 2 et
de degré 3.
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La proposition 6 permet de ramener la caractérisation des formes quadratiques
de hauteur 3, de degré 2 et de dimension 14 ou 16 à celle des formes quadra-
tiques de hauteur ≤ 2.

Jusqu’à présent, on ne connait pas un exemple d’une forme quadratique
anisotrope de dimension 14, de hauteur 3 et de degré 2. Le théorème 6 précise
de manière conjecturale qu’il n’existe pas une telle forme quadratique.

Théorème 6. Supposons que toute forme quadratique anisotrope de hauteur
2, de degré 3 qui n’est pas bonne soit de dimension 12. Alors:
(1) Il n’existe pas de forme quadratique anisotrope de hauteur 3, de degré 2 et
de dimension 14.
(2) Une forme quadratique anisotrope ϕ de dimension 16 qui n’est pas voisine
est de hauteur 3 et de degré 2 si et seulement si ϕ ∈ GP4,2F .

Remarque. L’hypothèse qui a été faite dans le théorème 6 est motivée par
la conjecture 1(2) en degré d = 3.
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2. Définitions et rappels de résultats

Toutes les notations et définitions concernant les formes quadratiques se
trouvent dans [23] et [29].

La somme orthogonale et le produit de deux formes quadratiques ϕ et ψ, sont
notés respectivement ϕ ⊥ ψ et ϕ⊗ ψ.

Si a ∈ F ∗, on note 〈a〉 ⊗ ϕ = aϕ. On dit que ψ est une sous-forme de ϕ et
on note ψ < ϕ s’il existe une forme quadratique ρ telle que ϕ ∼= ψ ⊥ ρ où ∼=
désigne l’isométrie des formes quadratiques. On dit que ϕ et ψ sont semblables
s’il existe a ∈ F ∗ tel que ϕ ∼= aψ. Une forme quadratique ϕ est dite isotrope
(resp. hyperbolique) si H := 〈1,−1〉 < ϕ (resp. ϕ ∼= H ⊥ · · · ⊥ H). L’indice de
Witt iW (ϕ) de ϕ est le plus grand entier n tel que n×H := H ⊥ · · · ⊥ H︸ ︷︷ ︸

n fois

< ϕ.

Deux formes quadratiques ϕ et ψ sont dites équivalentes et on note ϕ ∼ ψ,
si ϕ ⊥ −ψ est hyperbolique. La partie anisotrope de ϕ est l’unique forme
quadratique anisotrope, notée ϕan, telle que ϕ ∼ ϕan.

Une n-forme de Pfister est une forme de type 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉, qu’on
note 〈〈a1, · · · , an〉〉. On note PnF (resp. GPnF ) l’ensemble des n-formes de
Pfister à isométrie près (resp. l’ensemble des formes quadratiques qui sont
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semblables à des n-formes de Pfister). Une forme quadratique ϕ est dite
voisine s’il existe une n-forme de Pfister π tel que dimϕ > 2n−1 et aπ ∼= ϕ ⊥ ψ
pour un certain a ∈ F ∗ et une certaine forme quadratique ψ qu’on appelle la
forme complémentaire de ϕ; dimψ est dite la codimension de ϕ. Les formes
quadratiques π et ψ sont uniques à isométrie près.

On note InF = (IF )n où IF est l’idéal fondamental de W (F ) formé des
formes quadratiques de dimension paire. On utilisera fréquemment le résultat,
dit le Hauptsatz d’Arason-Pfister, qui affirme que si ϕ ∈ InF anisotrope, alors
dimϕ ≥ 2n [29, Chapter 4, 5.6].

L’ensemble Jn(F ) = {ϕ ∈ W (F ) | deg(ϕ) ≥ n} est un idéal de W (F ) qui
vérifie InF ⊂ Jn(F ) pour tout n ≥ 0 [19, Theorem 6.4, Corollary 6.6].

L’invariant de Clifford c(ϕ) de ϕ est la classe dans le groupe de Brauer Br(F )
de F , de C(ϕ) (algèbre de Clifford de ϕ) ou C0(ϕ) (algèbre de Clifford paire
de ϕ) suivant que dimϕ est paire ou non. On désigne par ind c(ϕ) l’indice de
Schur de C(ϕ) ou C0(ϕ) suivant que dimϕ est paire ou non.

Théorème 7. (1) (Théorème de la sous-forme de Cassels-Pfister [29, Chapter
4, 5.4(ii)]) Soient ψ = 〈1〉 ⊥ ψ′, ϕ deux formes quadratiques telles que ϕ soit
anisotrope et que ϕF (ψ) ∼ 0. Alors pour tout α ∈ DF (ϕ), on a αψ < ϕ. En
particulier, dimϕ ≥ dimψ.
(2) Soit τ une forme de Pfister. Alors:
(2.1) (Pfister [29, Chapter 4, 1.5]) On a que τ est isotrope si et seulement si
τ ∼ 0. De plus, τ est multiplicative, i.e. DF (τ) = GF (τ).
(2.2) ([29, Chapter 4, 5.4(iv)]) Ker(W (F ) −→W (F (τ))) = τW (F ).

Définition 1. [20, Definition 7.7] Toute forme quadratique de dimension ≤ 1
est dite excellente. Une forme quadratique de dimension ≥ 2 est dite excellente
si elle est voisine et sa forme complémentaire est excellente.

Définition 2. Soit K/F une extension de corps.
(1) On dit qu’une K-forme quadratique ϕ est définie sur F s’il existe une F -
forme quadratique ψ telle que ϕ ∼= ψK .
(2) ([20]) On dit que K/F est excellente si pour toute F -forme quadratique ϕ,
la K-forme quadratique (ϕK)an est définie sur F .
(3) ([17]) Soit n ≥ 1 un entier. On dit que K/F satisfait à la descente pour
les n-formes de Pfister si pour toute K-forme quadratique ϕ ∈ PnK − {0} qui
est définie sur F , il existe ψ ∈ PnF telle que ψK ∼= ϕ.

Proposition 7. (1) ([29, Chapter 2, 5.1] pour d = 1; [2] pour d = 2) Soit
π ∈ GPdF avec d ≤ 2. Alors, l’extension F (π)/F est excellente.
(2) ([6, 2.10]) Si K/F est une extension excellente, alors elle satisfait à la
descente pour les n-formes de Pfister quel que soit n ≥ 1.

Définition 3. Soient n > m ≥ 1 deux entiers, ϕ une forme quadratique
anisotrope de dimension 2n. On dit que ϕ appartient à GP ′n,mF (resp.
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GPn,mF ) s’il existe τ ∈ GPmF telle que ϕ ⊥ τ ∈ Jn(F ) (resp. (ϕ ⊥ τ)an ∈
GPnF ).

L’ensemble GPn,mF a été introduit par Hoffmann [10]. Il est clair que
GPn,mF ⊂ GP ′n,mF . Dans [10, Conjecture 3.9], Hoffmann a conjecturé que
GPn,mF = GP ′n,mF (la notation GP ′n,mF n’a pas été introduite dans [10]).

Proposition 8. ([10, Proposition 3.6]) Soient n > m ≥ 1 deux entiers. Alors:
(1) Toute forme quadratique de GP ′n,mF est fortement bonne.
(2) Si de plus n ≥ m + 2 , alors toute forme quadratique de GP ′n,mF est de
hauteur 3 et de degré m.

Pour tout n ≥ 0 entier, HnF est le groupe de cohomologie galoisienne
Hn(Gs,Z/2) où Gs est le groupe de Galois d’une clôture séparable de F .
Par la théorie de Kummer, on a H0F ≃ Z/2, H1F ≃ F ∗/F ∗2 et H2F est
isomorphe à la 2-torsion de Br(F ).

D’après Arason [1, Satz 1.6], il existe une application ẽn de PnF vers HnF ,
définie par ẽn(〈〈a1, . . . , an〉〉) = (a1) · . . . · (an) ∈ HnF où · est le cup produit
de l’algèbre de cohomologie H∗F .

Pour n = 0, 1, 2, l’application ẽn se prolonge en un homomorphisme en

de InF/In+1F vers HnF . Les homomorphismes e0, e1, e2 correspondent à
e0(ϕ) = dimϕ (mod 2), e1(ϕ) = d±ϕ (mod F ∗2) et e2(ϕ) = c(ϕ).

On a que e0 et e1 sont des isomorphismes. L’homomorphisme e2 est un iso-
morphisme d’après Merkur’ev [24]; ẽ3 se prolonge en un homomorphisme e3

de I3F/I4F vers H3F d’après Arason [1], et e3 est un isomorphisme d’après
Merkur’ev-Suslin [26] et Rost [28]; ẽ4 se prolonge en un homomorphisme e4

de I4F/I5F vers H4F d’après Jacob-Rost [16] et Szyjewski [30], et e4 est un
isomorphisme d’après Rost (non publié). Récemment, Orlov, Vishik et Vo-
evodsky ont montré que ẽn se prolonge en un isomorphisme en de InF/In+1F
vers HnF pour tout n [27].

3. Démonstrations

Le long de cette section et pour une F -forme quadratique ϕ, on note
ϕ1 = (ϕF (ϕ))an.

Le lemme suivant est bien connu. On en aura besoin pour la suite.

Lemme 1. Soient ϕ une forme quadratique bonne, de degré d ≥ 1 et de forme
dominante τ . Si ρ est une forme quadratique telle que ϕ ∼ ρ ⊗ τ , alors la
dimension de ρ est impaire.

Démonstration. Si la dimension de ρ était paire, on aurait ρ ∈ IF . Puisque
τ ∈ IdF , on aurait ϕ ∈ Id+1F et donc ϕ serait de degré ≥ d + 1, ceci est
absurde.
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3.1. Démonstration de la proposition 1. La démonstration de la propo-
sition 1 se déduit de [18, Proposition 7.17] et [8, Proposition 1.2].

3.2. Démonstration de la proposition 2. La démonstration de la propo-
sition 2 est une conséquence du lemme 2 et de la caractérisation des formes
quadratiques de hauteur 2 et de degré ≤ 2.

Lemme 2. Soient ϕ une forme quadratique voisine anisotrope et ϕ′ sa forme
complémentaire. Alors, deg(ϕ) = deg(ϕ′) et h(ϕ) = h(ϕ′) + 1.

Démonstration. D’après [15], les formes quadratiques ϕ′ et ϕ′F (ϕ) ont la

même suite des indices de déploiement. En particulier, h(ϕ′) = h(ϕ′F (ϕ)) et

deg(ϕ′) = deg(ϕ′F (ϕ)). On a ϕF (ϕ) ∼ −ϕ′F (ϕ). D’après [9, Theorem 1], on

obtient que ϕ′F (ϕ) est anisotrope. Par conséquent, ϕ1 = ((ϕ)F (ϕ))an = −ϕ′F (ϕ).

Ainsi, h(ϕ) = h(ϕ1) + 1 = h(ϕ′F (ϕ)) + 1 = h(ϕ′) + 1 et deg(ϕ) = deg(ϕ1) =

deg(ϕ′F (ϕ)) = deg(ϕ′).

3.3. Un résultat sur les formes quadratiques de hauteur 3 et de
degré 2. On aura besoin de la proposition suivante dans les démonstrations
de la proposition 3 et du théorème 3.

Proposition 9. Soit ϕ une forme quadratique anisotrope qui n’est pas voisine.
Supposons que ϕ soit de hauteur 3, de degré 2 et de dimension ≥ 10. Soient
ϕ1 = (ϕF (ϕ))an et τ la forme dominante de ϕ. Alors:
(1) La forme ϕ est bonne, i.e. on peut supposer que τ ∈ P2F . En particulier,
c(ϕ) = c(τ) et ind c(ϕ) = 2.
(2) La forme ϕ1 satisfait l’une des deux conditions suivantes:
(2.1) ϕ1 est voisine dont la forme complémentaire est semblable à τF (ϕ). En
particulier, ϕF (ϕ)(τ) ∼ 0.
(2.2) dimϕ1 = 8, c(ϕ1) = c(τF (ϕ)) et ind c(ϕ1) = 2.
(3) Si dimϕ > 16, alors le cas (2.2) est impossible.

Démonstration. (1) Cette assertion a été prouvée dans [18, Corollary 1(f)].

(2) D’après (1), la forme ϕ1 est bonne de hauteur 2 et de forme dominante
τF (ϕ) ∈ P2F (ϕ). En utilisant la caractérisation des formes quadratiques de
hauteur et de degré 2 [17], on déduit que l’une des assertions (2.1) et (2.2) est
vérifiée.

(3) Supposons que dimϕ > 16 et que ϕ1 vérifie la condition (2.2). On aura
besoin du résultat suivant.

Théorème 8. ([22])
Soient ϕ une forme quadratique de dimension > 16, K = F (ϕ) et ψ ∈ I2K de
dimension 8 telle que ind c(ψ) = 2. On suppose que ψ ∈ Im(W (F ) −→W (K)).
Alors ψ est définie sur F .

Ce théorème permet de déduire que ϕ1 est définie sur F . D’après [20, Theorem
7.13], la forme ϕ est voisine, ceci est absurde.
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3.4. Démonstration de la proposition 3. On a que ϕ est bonne (évident
pour deg(ϕ) = 1 et c’est la proposition 9 pour deg(ϕ) = 2). Soit τ la forme
dominante de ϕ.
• Si deg(ϕ) = 1, alors on obtient par le théorème 2(iv) que ϕ1 est excellente
de hauteur 2. Ainsi, ϕF (ϕ)(τ) ∼ 0.
• Si deg(ϕ) = 2, alors on obtient par la proposition 9(3) que ϕF (ϕ)(τ) ∼ 0.

(i) D’après [19, Theorem 5.8] et si ϕF (τ) est anisotrope, alors ϕF (τ) est sem-
blable à une forme de Pfister anisotrope, en particulier ϕ est de dimension une
puissance de 2.

(ii) Lorsque ϕF (τ) est isotrope, on déduit que ϕF (τ) ∼ 0, et donc

dimϕ = 2deg(ϕ)k pour un certain entier k impair (Lemme 1).

On déduit les équivalences de la proposition en combinant (i) et (ii).

3.5. Démonstration du théorème 3. (1) =⇒ (2) D’après la proposition
3, la forme ϕ est bonne et que ϕF (τ) est semblable à une forme de Pfister
anisotrope où τ ∈ PdF est la forme dominante de ϕ. Par la proposition 7, il ex-
iste une forme π ∈ GPnF telle que ϕF (τ)

∼= πF (τ). Les hypothèses du théorème
impliquent que n ≥ d + 2. Puisque ϕ ⊥ −π ∈ Ker(W (F ) −→ W (F (τ))), on
obtient que ϕ ⊥ −π ∼ τ⊗ρ pour une forme ρ de dimension impaire (Lemme 1).
Ainsi, ϕ ≡ τ ⊗ ρ (mod Jn(F )). Par conséquent, ϕ ∈ Pwn,dF au sens de [10, Def-

inition 3.4(ii)]. D’après [10, Corollary 3.7], on obtient que iW (ϕF (ϕ)) = 2d−1.

Par conséquent, dimϕ1 = 2n − 2d. D’après le théorème 2(iv) et la propo-
sition 9, on déduit que ϕ1 est voisine et que sa forme complémentaire est
semblable à la forme τF (ϕ) qui est de dimension 2d. Par conséquent, il ex-

iste a ∈ F (ϕ)∗ tel que ϕ1 ⊥ a(τF (ϕ)) ∈ GPnF (ϕ) ⊂ InF (ϕ) ⊂ Id+2F (ϕ).

D’autre part, ϕ ⊥ kτ ∼ π ⊥ τ ⊗ (ρ ⊥ 〈k〉) ∈ Id+2F , avec k ∈ F ∗

qui vérifie ρ ⊥ 〈k〉 ∈ I2F . Par conséquent, a(τF (ϕ)) ≡ k(τF (ϕ))

(mod Id+2F (ϕ)). Par le Hauptsatz d’Arason-Pfister, on obtient que
a(τF (ϕ)) ∼= k(τF (ϕ)). Ainsi, ϕ1 ⊥ k(τF (ϕ)) ∈ GPnF (ϕ). Par conséquent,
ϕ2 = (ϕF (ϕ)(ϕ1))an = (−kτ)F (ϕ)(ϕ1) est définie sur F . D’après [18, Propo-
sition 3(iii)], on obtient que deg(ϕ ⊥ kτ) = n. Par conséquent, ϕ ≡ −kτ
(mod Jn(F )).

(2) =⇒ (1) C’est une conséquence de la proposition 8(2).

3.6. Démonstration du théorème 4. On aura besoin du résultat suivant.

Proposition 10. (Rost)
Soient ϕ et τ = 〈〈a, b〉〉 deux formes quadratiques anisotropes. Alors, on a
équivalence entre:
(1) iW (ϕF (τ)) ≥ 2k et ϕF (

√
a) ∼ 0;

(2) Il existe deux formes quadratiques λ, γ telles que ϕ ∼= 〈〈a, b〉〉⊗λ ⊥ 〈〈a〉〉⊗γ
avec dimλ = k.
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Démonstration. Le résultat a été prouvé par Rost [12, Lemma 2.6] lorsque
k = 1. Le cas général se déduit par une simple récurrence sur k.

Démonstration du théorème 4. Soit d = d±ϕ.

(3) =⇒ (1) Evident.

(2) =⇒ (3) D’après la proposition 3, on a ϕF (
√
d) ∼ 0. Ainsi, ϕ ∼= 〈〈d〉〉 ⊗ η

avec dim η ≥ 4. Par le théorème 2(2), on a dim η ≤ 8. Puisque la di-
mension de η est impaire (Lemme 1), on a dim η = 5 ou 7. Si dim η = 5,
alors le théorème est démontré. Supposons que dim η = 7. Soit b ∈ F ∗

tel que 〈〈b〉〉 soit semblable à une sous-forme de η. Alors, τ ∼= 〈〈d, b〉〉 est
semblable à une sous-forme de ϕ. Par conséquent, ϕF (τ) est isotrope et
iW (ϕF (τ)) ≥ iW (ϕF (ϕ)) = 4. Par la proposition 10, ϕ ∼= 〈〈d, b〉〉⊗λ ⊥ 〈〈d〉〉⊗γ
avec dimλ = 2. On a bien que dim γ = 3. Ecrivons γ = 〈k〉 ⊥ µ avec
dimµ = 2. Soit ξ = 〈k〉 ⊥ 〈〈b〉〉 ⊗ λ. On a ϕ = 〈〈d〉〉 ⊗ (ξ ⊥ µ). Clairement,
ξ est voisine de dimension 5. Ainsi, il existe une forme quadratique ξ′ de
dimension 3 telle que ξ ⊥ ξ′ ∈ GP3F . On peut supposer que 1 ∈ DF (ξ′),
et donc ξ ⊥ ξ′ ∈ P3F . Par conséquent, π := 〈〈d〉〉 ⊗ (ξ ⊥ ξ′) ∈ P4F . On
a ϕ ⊥ ν ∼ π, où ν = 〈〈d〉〉 ⊗ (−µ ⊥ ξ′). Clairement, dim ν = 10. Si ν est
isotrope, alors dim(πF (ϕ))an = dim((ϕ ⊥ ν)F (ϕ))an ≤ 6 + 8 < 16. Ainsi,
πF (ϕ) ∼ 0, et donc ϕ est voisine, ceci est absurde. Si ν est anisotrope,
alors ν admet la propriété de déploiement maximal (maximal splitting prop-
erty; voir [13, Theorem 5.1]). Puisque ϕ ⊥ ν ∼ π ∈ P4F , on obtient que
ϕF (π) ∼ −νF (π). Puisque dim ν < dimϕ, la forme ϕF (π) est isotrope. On a
dim(νF (π))an = dim(ϕF (π))an ≤ dim(ϕF (ϕ))an = 6. Ainsi, νF (π) est isotrope.
D’après [9, Corollary 3], ν est voisine de π. Puisque 1 ∈ DF (ν), on a ν ⊂ π.
Ainsi, dim(π ⊥ −ν)an = 16 − 10 = 6. Puisque ϕ ∼ π ⊥ −ν, on obtient que
dimϕan = 6, ceci est absurde.

(1) =⇒ (2) Comme dans le début de la preuve de l’implication (2) =⇒ (3),
on obtient que ϕ ∼= 〈〈d〉〉 ⊗ η pour η de dimension 5 ou 7. Par le théorème
2(iv), la forme quadratique ϕ1 est excellente de hauteur 2 et de degré 1. Ainsi,
dimϕ1 = 2n − 2 pour un certain entier n ≥ 3. Puisque dimϕ1 ≤ dimϕ − 2 ≤
2 · 7− 2 = 12, on déduit que n = 3 et donc dimϕ1 = 6.

3.7. Démonstration du théorème 5. On commence par un lemme.

Lemme 3. Soient ϕ ∈ I2F anisotrope, τ ∈ P2F−{0} telles que dim(ϕF (ϕ))an=
8 et c(ϕ) = c(τ). Alors, on a les assertions suivantes:
(1) Si ϕF (τ) est isotrope, alors il existe η ∈ GP3F , r ∈ F ∗ tels que ϕ ⊥ η ⊥
rτ ∈ I4F . Si de plus, dimϕ ∈ {14, 16}, alors ϕF (η) est isotrope.
(2) Supposons que ϕF (τ) soit anisotrope de hauteur ≥ 2, dimϕ = 16 et qu’il

existe δ ∈ GP3F , s ∈ F ∗ tels que ϕ ⊥ δ ⊥ sτ ∈ I4F . Alors, ϕF (δ) est
anisotrope.
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Démonstration. (1) Supposons que ϕF (τ) soit isotrope. On obtient que
iW (ϕF (τ)) ≥ iW (ϕF (ϕ)). Puisque F (τ)/F est excellente et que dim(ϕF (ϕ))an =
8, il existe η une forme de dimension 8 telle que ϕF (τ) ∼ −ηF (τ). Puisque
c(η)F (τ) = 0, on peut supposer par la proposition 7 que η ∈ GP3F . Puisque
ϕ ⊥ η ∈ Ker(W (F ) −→ W (F (τ))), on déduit que ϕ ⊥ η ∼ ρ ⊗ τ pour ρ une
forme de dimension impaire (Lemme 1). Soit r ∈ F ∗ tel que ρ ⊥ 〈r〉 ∈ I2F .
Ainsi,

ϕ ⊥ η ⊥ rτ ∈ I4F (1)

Supposons, de plus, que dimϕ ∈ {14, 16}. On déduit par l’équation (1) et le
Hauptsatz d’Arason-Pfister que ϕF (τ)(η) ∼ 0. Si la forme ϕF (η) est anisotrope,
on obtient que ϕF (η)

∼= τ ⊗ γ pour γ une forme de dimension 4. Ainsi,
dimϕ = 16 et c(ϕ)F (η) = 0. Par le théorème de réduction d’indice ([31], [25]),
on déduit que c(ϕ) = 0, ceci est absurde. Ainsi, ϕF (η) est isotrope.

(2) Supposons que ϕF (τ) soit anisotrope de hauteur ≥ 2, dimϕ = 16 et qu’il

existe δ ∈ GP3F , s ∈ F ∗ tels que ϕ ⊥ δ ⊥ sτ ∈ I4F . Si ϕF (δ) est isotrope, alors
iW (ϕF (δ)) ≥ iW (ϕF (ϕ)) = 4. Par le Hauptsatz d’Arason-Pfister ϕF (δ)(τ) ∼ 0.
Puisque ϕF (τ) est anisotrope, on déduit que ϕF (τ)

∼= δ ⊗ ρ pour ρ une forme
de dimension 2. Ainsi, ϕF (τ) ∈ GP4F (τ) − {0} et donc elle est de hauteur 1,
ceci est absurde.

Démonstration du théorème 5. Supposons que la conjecture 3 soit vraie.
Soit ϕ une forme quadratique de dimension 12 qui n’est pas voisine.

(1) =⇒ (2) Supposons que ϕ soit faiblement bonne, de hauteur 3 et de degré
2. Soit τ ∈ P2F la forme dominante de ϕ. On a ϕF (τ) 6∼ 0 car sinon ϕ serait
divisible par τ et donc serait une voisine. Par la proposition 9, on a dimϕ1 = 8
et c(ϕ) = c(τ). Puisque ϕF (τ) est isotrope, on déduit par le lemme 3 l’existence
de η ∈ GP3F , r ∈ F ∗ tels que

ϕ ⊥ η ⊥ rτ ∈ I4F (2)

Par le Hauptsatz d’Arason-Pfister et l’équation (2), on déduit que
(ϕ1 ⊥ rτ)F (ϕ)(η) ∼ 0. Par conséquent ϕ1 ⊥ (rτ)F (ϕ) ∼ λη pour λ ∈ F (ϕ)∗

convenable. Puisque dimϕ1 = 8, on obtient iW ((−rτ)F (ϕ) ⊥ λη) ≥ 2.
Par la multiplicativité d’une forme de Pfister, il existe α ∈ F (ϕ)∗ tel que
(−rτ)F (ϕ) ⊥ λη ∼ α(η′ ⊥ −τ ′)F (ϕ) ([5, Theorem 4.5], [10, Lemma 3.2]).
Puisque iW ((−rτ)F (ϕ) ⊥ λη) ≥ 2, on déduit que (η′ ⊥ −τ ′)F (ϕ) est isotrope.

Par la conjecture 3, η′ ⊥ −τ ′ est isotrope. Soit δ := −r(η′ ⊥ −τ ′)an ∈ I2F .
On affirme que dim δ = 8, car sinon dim δ = 6 ou 4. Or si dim δ = 6,
alors δ est une forme d’Albert anisotrope et donc ind c(δ) = 4, ceci contredit
l’hypothèse c(δ) = c(τ). Si dim δ = 4, alors en remplaçant dans l’équation
(2) η par −rη, on obtient ϕ ⊥ δ ∈ GP4F , et donc ϕ est voisine, ceci est absurde.

(2) =⇒ (1) D’après [20, Example 9.12], il existe a ∈ F ∗ tel que δF (
√
a) ∼ 0.

Puisque ϕ ⊥ δ ∈ I4F , on obtient par le Hauptsatz d’Arason-Pfister que
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ϕF (
√
a) ∼ 0. Par conséquent, pour toute extension L/F , on obtient que

(ϕL)an ∼= 〈〈a〉〉 ⊗ µ pour une certaine L-forme quadratique µ de dimension
≤ 6. Puisque ϕ ∈ I2F , on déduit que la dimension de µ est paire. Ainsi,
dim(ϕL)an ∈ {0, 4, 8, 12}. La classification des formes quadratiques de hauteur
et de degré ≤ 2 implique que h(ϕ) 6= 1, 2. Par conséquent, ϕ est de hauteur
3 et de degré 2. Soit τ ∈ P2F telle que c(τ) = c(δ). Par la proposition 9, ϕ
est bonne de forme dominante τ . Puisque δF (τ) ∈ GP3F (τ), on obtient que
δF (τ)(δ) ∼ 0. Par le Hauptsatz d’Arason-Pfister on déduit que ϕF (τ)(δ) ∼ 0.
Ainsi, ϕF (τ) est isotrope, i.e. ϕ est faiblement bonne.

3.8. Démonstration de la proposition 6. D’après la proposition 9, la
forme ϕ est bonne et ϕ1 est de dimension 8 ou est excellente de dimension 12,
avec c(ϕ) = c(τ) où τ ∈ P2F est la forme dominante de ϕ.

(1) Supposons que ϕF (τ) soit isotrope.

• Supposons que ϕ1 soit excellente de dimension 12. Par la proposition
9, ϕF (τ)(ϕ) ∼ 0. Ainsi, ϕ ∈ Ker(W (F ) −→ W (F (τ))). Si dimϕ = 14,
alors ϕ est isotrope, ceci est absurde. Si dimϕ = 16, on déduit que ϕ est
divisible par τ et donc c(ϕ) = 0, ceci est absurde. Ainsi, ϕ1 ne peut être
une forme excellente de dimension 12.
• Supposons dimϕ1 = 8: Par le lemme 3, il existe r ∈ F ∗, η ∈ GP3F tels

que ϕ ⊥ η ⊥ rτ ∈ I4F et ϕF (η) isotrope. Ainsi, iW (ϕF (η)) ≥ iW (ϕF (ϕ)).
Par le Hauptsatz d’Arason-Pfister, (ϕ ⊥ rτ)F (η) ∼ 0. Ainsi, ϕ ⊥ rτ ∼
ρ⊗ η pour ρ de dimension 2. En particulier, ϕ ⊥ rτ ∈ I4F . De nouveau
par le Hauptsatz d’Arason-Pfister, ϕF (τ) ∼ 0. Si dimϕ = 14 (resp.
dimϕ = 16), on obtient que ϕ est isotrope (resp. ϕ est divisible par τ),
ceci est absurde car ϕ est anisotrope (resp. car c(ϕ) 6= 0).

Ainsi, dans tous les cas ϕ est fortement bonne.

(2)

• Si dimϕ1 = 12, alors ϕF (ϕ)(τ) ∼ 0. Puisque ϕF (τ) est anisotrope, on
déduit que ϕF (τ) est de hauteur 1. Dans ce cas, dimϕ = 16.
• Si dimϕ1 = 8, alors d’après [21, Théorème 4], (ϕ1)F (ϕ)(τ) ∈
GP3F (ϕ)(τ) − {0}. Par conséquent, ϕF (τ) est de hauteur 2 et de degré
3.

3.9. Démonstration du théorème 6. Soient ϕ une forme quadratique
anisotrope qui n’est pas voisine, de hauteur 3 et de degré 2 et τ ∈ P2F sa
forme dominante. Supposons que l’hypothèse suivante, appelée hypothèse (H),
soit vraie:

Hypothèse (H): Toute forme quadratique anisotrope qui n’est pas bonne, de
hauteur 2 et de degré 3 est de dimension 12.
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(1) Supposons que dimϕ = 14. Par la proposition 6, on a que ϕF (τ) est
anisotrope de hauteur 2 et de degré 3. D’après l’hypothèse (H), ϕF (τ) est
bonne. Ceci est absurde d’après un résultat de Hurrelbrink et Rehmann sur la
dimension des formes quadratiques bonnes de hauteur 2 et de degré 3 [15, 3.4].
Par conséquent, il n’existe pas de forme quadratique anisotrope de hauteur 3,
de degré 2 et de dimension 14.

(2) Supposons que dimϕ = 16. Par la proposition 9, on a que dimϕ1 = 8 ou
ϕ1 est excellente de dimension 12.

• Supposons que dimϕ1 = 12. D’après la démonstration de la proposition
6, on a ϕF (τ) ∈ GP4F (τ) − {0}. D’après la proposition 7, il existe η ∈
GP4F telle que ϕF (τ)

∼= ηF (τ). Ainsi, ϕ ⊥ −η ∼ ρ ⊗ τ pour ρ une
forme quadratique de dimension impaire (Lemme 1). Par conséquent,
ϕ ⊥ bτ ∈ I4F avec b ∈ F ∗ qui vérifie ρ ⊥ 〈b〉 ∈ I2F . D’après [12] et
puisque dim(ϕ ⊥ bτ)an ≤ 20, on obtient que ϕ ∈ GP4,2F .

• Supposons que dimϕ1 = 8. Toujours par la démonstration de la
proposition 6, on a que ϕF (τ) est de hauteur 2 et de degré 3. Soit
π ∈ P3F (τ)(ϕ) la forme dominante de ϕF (τ). D’après l’hypothèse
(H), π est définie sur F (τ). D’après [20, Theorem 9.6], on déduit que
ϕF (τ) ≡ π (mod J4(F (τ))). D’après [18, Proposition 4], π est définie

sur F par une forme de Pfister. Par conséquent, e3(ϕ ⊥ −π ⊥ τ) ∈
Ker(H3F −→ H3F (τ)). D’après [1, Satz 5.5], il existe c ∈ F ∗ tel que
e3(ϕ ⊥ −π ⊥ τ) = e3(τ ⊥ −cτ). Par la bijectivité de e3, on a

ϕ ⊥ −π ⊥ cτ ∈ I4F (3)

Par le lemme 3, ϕF (π) est anisotrope. Par l’équation (3), on a ϕF (π) ≡
−cτF (π) (mod I4F (π)). D’après [10, Proposition 3.6], on obtient que
iW (ϕF (π)(ϕ)) = 2. Ceci contredit la condition iW (ϕF (ϕ)) = 4.

Réciproquement si ϕ ∈ GP4,2F , alors on déduit que ϕ est de hauteur 3 et de
degré 2 (Proposition 8(2)).
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Abstract. Let V be a crystalline p-adic representation of the abso-
lute Galois group of Qp. The author has built the Iwasawa theory of
such a representation in Invent. Math (1994) and conjectured a reci-
procity law which has been proved by P. Colmez. In this text, we write
the initial construction with simplification and the proof of P. Colmez
in a different language. This point of view will allow us to study the
universal norms in the geometric cohomology classes associated to V
by Bloch and Kato in a forthcoming article.
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La loi explicite de réciprocité classique sur un corps local remonte à Artin-
Hasse et Iwasawa et donne une description du symbole de Hilbert. Elle a été
généralisée à des modules de Lubin-Tate, citons Wiles, Kolyvagin, Vostokov,
Brückner, Coleman, Sen, de Shalit, Fesenko. On renvoie à [3] pour un his-
torique. Le développement de ces lois s’est fait en parallèle et en liaison avec le
développement de la théorie d’Iwasawa locale ; dans le cas classique, il s’agit de
l’étude du comportement des unités locales sur la Z×p -extension cyclotomique
K∞ à l’aide de l’application exponentielle (Iwasawa, Coates-Wiles, Coleman).
On peut envisager des généralisations de la loi de réciprocité à des
représentations cristallines quelconques. Dans [4], nous avons donné une
généralisation de cette étude des unités locales à des représentations
cristallines V du groupe de Galois de Qp générales : les unités locales
sont remplacées par la limite projective Z1

∞(Qp, T ) des groupes de co-
homologie galoisiennes H1(Qp(µpn ), T ) et on construit une application
“exponentielle” ΩV d’un Qp ⊗ Zp[[G∞]]-module libre Zp[[G∞]] ⊗Zp Dp(V )
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dans H(G∞) ⊗Zp[[G∞]] Z
1
∞(Qp, T ) où Zp[[G∞]] est l’algèbre d’Iwasawa de

G∞ = Gal(K∞,Qp), H(G∞) une algèbre de “séries formelles” avec condition
de croissance, contenant Zp[[G∞]] et Dp(V ) le module de Fontaine associé
à V . On a alors conjecturé dans ce cadre une loi explicite de réciprocité.
On peut en donner deux formulations : la première (appelée Réc(V )) dit
essentiellement que pour les dualités naturelles, ΩV et ΩV ∗(1) sont adjoints (ici
V ∗(1) est le dual de Tate de V ). La deuxième formulation ([6]) plus proche de
la formulation traditionnelle calcule à un niveau fini (c’est-à-dire sur le corps
Qp(µpn )) l’application duale de l’exponentielle sur ΩV (k)(g) en termes de g
pour des twists à la Tate V (k) convenables de V . Il n’est pas difficile de voir
que les deux formulations sont équivalentes.
Cette loi vient d’être montrée par P. Colmez ([1]) et indépendemment par
Kato, Kurihara, Tsuji. Plus récemment, D. Benois en a aussi donné une
démonstration en utilisant la théorie des (ϕ,Γ)-modules de Fontaine.
Nous reprenons dans ce texte la démonstration de Colmez de la loi explicite
de réciprocité pour une représentation cristalline (ou un tout petit peu plus
généralement pour la partie cristalline de son module filtré). La présentation
est très légèrement différente : outre que nous n’utilisons pas le langage des
distributions, nous commençons par démontrer la loi explicite de réciprocité

puis nous voyons la construction (un peu modifiée) de son application Log
(h)
V

(dans le cas où V est cristalline) comme une conséquence de cette loi,
ce qui permet d’utiliser des arguments sur l’anneau Bcris moins subtils que
les siens. Cependant, comme il a été souligné, nous ne regardons ici que la
partie cristalline du module filtré associé à V , ce qui nous permet de travailler
uniquement avec des fonctions analytiques. Dans [1], il est fait plus mais cette
généralisation très importante est encore mal comprise (par moi en tout cas) : il
semble en effet qu’il faille abandonner l’idée de raisonner avec de bonnes vieilles
fonctions (ou distributions sur Zp). La justification de ce texte est peut-être
qu’avant de sauter ce pas, nous voulions faire le point sur le cas cristallin, dans
le langage “usuel”. La démonstration de Colmez est alors extrêmement simple
et naturelle : donnons-en les ingrédients. Si u est un générateur topologique de
1 + pZp, il s’agit de calculer la valeur d’une fonction analytique f sur le disque
unité de Cp en uk−1, la fonction f étant obtenue par interpolation de nombres
en h familles de points de la forme ζuj − 1 pour ζ racine de l’unité d’ordre une
puissance de p et 0 ≤ j < h ; bien sûr k est différent de ces j. Il y a pour cela
une formule générale qui exprime f(uk− 1) comme une limite de combinaisons
linéaires des f(ζuj − 1). Plus précisément, on a par exemple

(−1)h(h− 1)!

k(k − 1) . . . (k − h+ 1)

f(uk − 1)

log u
=

lim
n→∞

h−1∑

i=0

(−1)i
pn

1− u(k−i)pn

(
h− 1

i

)
Rn,i(f)(uk−i − 1)
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où Rn,i(f) est le polynôme de degré < pn tel que

f ≡ Rn,i(f)(u−i(1 + T )− 1) mod u−ip
n

(1 + T )p
n − 1 .

Maintenant, si Γ est le groupe de Galois de Qp(µp∞)/Q(µp) de générateur
topologique γ et si u = χ(γ) avec χ le caractère cyclotomique, par définition
de la fonction f dont on veut calculer la valeur en uk− 1, Rn,i(f)(uk−i− 1) est

relié à la valeur en γn = γp
n−1

d’un cocycle de Γn à valeurs dans V : ce cocycle

devient un cobord (γn−1)cn lorsqu’on étend les scalaires à B
GQ(µp∞ )

cris . On relie

ainsi
Rn,i(f)(uk−i−1)

1−u(k−i)pn = χk(
Rn,i(f)(u−iγ−1)

1−u−iγk
n

) à l’image de cn dans Qp(µpn ) par

l’application λk,n : B
GQ(µp∞ )

dR → BdR/(χ
−k(γn)γn − 1)→ Qp(µpn) (application

de Tate). On peut relier ce dernier élément à l’application exponentielle duale
grâce à une formule due à Kato.

Nous avons ensuite donné quelques conséquences de cette loi. Certaines sont
déjà dans des articles antérieurs ([4], [7]). D’autres sont plus nouvelles.
Dans les §1 et 2, nous faisons quelques préliminaires et rappels : théorie
d’Iwasawa locale, lemme fondamental d’interpolation des fonctions analytiques,
résolution d’équations du type (1 − ϕ)G = g. Dans le §3, nous reprenons
complètement la construction de l’application exponentielle ΩV,h faite dans
[4] en tenant compte des points de H1

f (Kn, V ). Nous donnons dans le §4 la
démonstration due à Colmez de la loi explicite de récipocité. Dans le §5,
se trouvent des conséquences de cette loi explicite (anciennement conjecture
Réc(V ) ) et des calculs sur les valeurs spéciales de l’application logarithme que
l’on peut en grande partie déjà trouvés dans [4], [5] et [7]. On espère ainsi
donner un panorama complet des formules que l’on a à sa disposition. Ces for-
mules sont très utiles dans la théorie des fonctions L p-adiques comme cela a
déjà beaucoup exploité dans [5] et [4]. Dans l’appendice A, on donne quelques
formules relatives au lemme de Shapiro, aux opérations de twist et de projec-
tions puis reliant différentes manières de voir les fonctions analytiques. Dans
l’appendice B, on démontre la formule exprimant la valeur de f(uk − 1) en
termes des valeurs aux points d’interpolation pour une fonction analytique f
d’ordre fini. Dans l’appendice C, on reprend la suite exacte de Coleman-Colmez
en modifiant légèrement la présentation de Colmez.

Errata. Une erreur dans [4] m’a été signalée par J. Nekovář. La plupart
des résultats ne sont valables que lorsque H est une extension finie de Qp,
car on utilise à divers endroits l’accouplement local de dualité. Ainsi, il n’y
a en particulier pas de résultats nouveaux sur les représentations p-adiques
ordinaires sur un corps local dont le corps résiduel n’est pas fini dans [4].
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1. Préliminaires

1.1. On pose K = Qp. On fixe une clôture algébrique K de K et on note

GL = Gal(K/L) pour toute extension algébrique L de K (supposée contenue
dans K). On pose Kn = K(µpn) où µpn est le groupe des racines pn-ièmes
de l’unité. On fixe dans tout le texte un système ǫ de racines de l’unité ζn
d’ordre pn vérifiant ζpn+1 = ζn. On note Gn le groupe de Galois de Kn/K pour

n ∈ N∪{∞} et Λ = Zp[[G∞]]. On note χ le caractère cyclotomique GK → Z×p .
On désigne par γ un générateur topologique de Γ = Gal(K∞/K1) et on pose

γn = γp
n−1

pour n ≥ 1, c’est un générateur topologique de Gal(K∞/Kn). On
pose ∆ = Gal(K(µp)/K) = Gal(K1/K). Tous les groupes de cohomologie
galoisienne considérés sont les groupes de cohomologie continue.

1.2. Soit H l’algèbre des séries formelles en une variable convergeant sur le
disque unité {x ∈ Cp tel que |x| < 1} où Cp est le complété p-adique de Qp. Si
ρ est un réel inférieur à 1, on note ||f ||ρ = sup|x|=ρ |f(x)| = sup|x|≤ρ |f(x)|.
On pose ρn = p−

1
pn(p−1) . Il est commode d’introduire R̄ = R∪{r−pour r ∈ R}

avec l’ordre total : si r1 < r2, alors r1 < r−2 < r2. Pour r ∈ R−, on note ⌊r⌋ le
plus grand entier inférieur ou égal à r. Si r est entier, on a donc ⌊r−⌋ = r − 1.
Si r ∈ R̄, on note Hr le sous-Qp-espace vectoriel de H formé des séries F telles

que la suite
||F ||ρn

pnr est bornée si r ∈ R et tend vers 0 si r ∈ R−. On dit que F est

tempérée d’ordre ≤ r. Si r1 < r2 dans R̄, on a Hr1 ⊂ Hr2 . Plus précisément, si

F appartient à Hr, la suite
||F ||ρn

pnr′ tend vers 0 lorsque n tend vers l’infini pour

tout r′ < r. On note H∞ la réunion des Hr. Si g ∈ H∞, on note o(g) (resp.
O(g)) la borne inférieure des r ∈ R tel que g ∈ Hr− (resp. le plus petit réel r tel
que g ∈ Hr s’il existe). Pour r ∈ R̄∪{∞}, on noteHr(Γ) les éléments de Qp[[Γ]]
de la forme f(γ − 1) avec f ∈ Hr, Hr(G∞) = Zp[Gal(K(µp)/K)] ⊗ Hr(Γ) et
H(G∞) la réunion des Hr(G∞).

On munit Hr de la norme Cr définie par Cr(F ) = supn
||F ||ρn

pnr et Hr(G∞) de

la norme qui s’en déduit.
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1.3. Si g ∈ Qp[[T ]], on poseD(g) = (1+T ) d
dT g. On pose ϕ(g) = g((1+T )p−1)

et on note ψ l’opérateur de Qp[[T ]] tel que ϕ◦ψ(g) = p−1
∑

ζ∈µp
f(ζ(1+T )−1).

On peut aussi voir pψ comme la trace de l’extension Qp[[T ]]/ϕQp[[T ]].
Il est important de rappeler qu’on dispose d’un isomorphisme canonique
d’espaces vectoriels normés entre HΨ=0

r et Hr(G∞). Si τ ∈ G∞, on pose
τ.(1 + T ) = (1 + T )χ(τ) et on prolonge cette action à Λ par continuité. Pour la
prolonger à Hr(G∞), on montre que si fn,r est le polynôme d’approximation

de f modulo
∏⌊r⌋)
i=0 (χ−i(γn)γn − 1), la suite fn,r.(1 + T ) converge dans Hr

et ne dépend pas des choix ; c’est par définition f.(1 + T ). L’opérateur D
sur HΨ=0

r correspond sur Hr(G∞) à l’opération de twist τ 7→ χ(τ)τ et est un
isomorphisme topologique de HΨ=0

r .

Soit D un espace vectoriel de dimension finie muni d’une norme fixée. On
définit alors naturellement ||f ||ρ pour f ∈ H ⊗D.

1.4. Définition : Soit u un automorphisme de D. On dit qu’un élément
F ∈ H⊗D est u-borné (resp. u−-borné) si la suite ||(1⊗ u)−nF ||ρn est bornée
(resp. tend vers 0) lorsque n tend vers l’infini.

On note (H ⊗ D)uǫ l’espace vectoriel des éléments uǫ-bornés (il est contenu
dans H∞ ⊗D) et on pose alors Cu(F ) = supn(||(1 ⊗ u)−nF ||ρn).

Remarques : 1) Prenons D = Qp et pour u = p−rI la multiplication par
p−r. Alors, si r ≥ 0, Hp−rIǫ = Hrǫ ; si r < 0, Hp−rIǫ = 0. Ainsi, on a
Cp−rI = Cr pour r ≥ 0.
2) Supposons la suite d’opérateurs p−nru−n de D bornée. Alors, Hrǫ ⊗ D est
contenu dans (H⊗D)uǫ . On a en effet alors

||(1⊗ u)−nF ||ρn ≤ cn
||F ||ρn

pnr

avec cn bornée. Si l’on pose ||v||r = sup ||p−nrvn|| pour un endomorphisme v
de D lorsque cela existe (r peut être négatif), on obtient plus précisément

Cu(F ) ≤ ||u−1||rCr(F ) .

3) Supposons la suite pnsun bornée. Alors, (H⊗D)uǫ est contenu dans Hsǫ⊗D.
En particulier, si s < 0, (H⊗D)uǫ = 0. En effet, en écrivant F = (1⊗ un)(1⊗
u−n)F , on a

||F ||ρn

pns
≤ c′n||(1 ⊗ u)−nF ||ρn

avec c′n bornée et on obtient plus précisément

Cs(F ) ≤ ||u||−sCu(F ) .

4) Si g est un élément de (Hψ=0 ⊗ D)uǫ , alors Dk(g) est aussi uǫ-borné et on
a Cu(Dk(g)) = Cu(g).
5) Si r ≤ s, on a

(H⊗D)p−ruǫ ⊂ (H⊗D)p−suǫ .
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6) S’il existe un réel s tel que g ∈ H ⊗ D soit p−su− bornée, on note ou(g)
(resp. Ou(g)) la borne inférieure des r ∈ R tel que g ∈ Hp−ru− (resp. le plus
petit des r tels que g ∈ Hp−ru s’il existe). Ainsi, ou(g) < r si et seulement
si la suite ||prnu−ng||ρn tend vers 0 lorsque n → ∞. Si Ou(g) existe, on a
Ou(g) = ou(g).

1.5. Soit V une représentation p-adique continue de GK de dimension finie.
Si T est un réseau de V stable par GK , on note Z1

∞(K,T ) la limite pro-
jective des H1(Kn, T ) pour les applications de corestriction (encore appelées

trace) et Z1
∞(K,V ) = Qp ⊗Zp Z

1
∞(K,T ). On note Z̃1

∞(K,T ) le quotient du

Λ-module Z1
∞(K,T ) par son sous-Λ-module de torsion et Z̃1

∞(K,V ) = Qp ⊗Zp

Z̃1
∞(K,T ). Rappelons que ce sous-Λ-module de torsion est la limite projective

des H1(K∞/Kn, T
GK∞ ) et est isomorphe à TGK∞ une fois choisi un générateur

de G∞. Le lemme de Shapiro implique que Z1
∞(K,T ) = H1(K,Λ ⊗ T ) ([1,

II.1], il s’agit ici de cohohomologie continue). Grâce à la suite exacte inflation-
restriction, les applications de restriction induisent l’isomorphisme canonique

Z̃1
∞(K,T ) ∼= H1(K∞,Λ⊗ T )Γ

et en tensorisant par Qp l’isomorphisme canonique

Z̃1
∞(K,V ) ∼= H1(K∞,Λ⊗ V )Γ .

1.6. Si k est un entier, on note V (k) la représentation p-adique V avec la
nouvelle action de GK donnée pour τ ∈ GK par v 7→ χ(τ)kτv. On a alors
un opérateur de twist Twk : Z1

∞(K,T ) → Z1
∞(K,T (k)) induit par l’identité,

l’action de Galois étant modifiée : τ(Twk(x)) = χ(τ)kTwk(τx). Pour tout
entier n ≥ 0 et pour tout entier k ∈ Z, le composé des opérateurs de twists
et de la projection canonique de Z1

∞(K,T (k)) → H1(Kn, T (k)) induisent des
applications

πn,k : Z1
∞(K,V )→H1(Kn, V (k))

π̃n,k : Z̃1
∞(K,V )→H1(Kn, V (k))/H1(Gn, V (k)GK∞ )

res∞∼= H1(K∞, V (k))Γn

où res∞ est la restriction de H1(Kn, V (k)) dans H1(K∞, V (k))Γn . On
démontre comme dans [4, 3.4.3] que si V est de de Rham, l’action de G∞ sur
V GK∞ est semi-simple et que V GK∞ = ⊕V (−j)GK (j). En particulier, on en
déduit que V GKn = V GK pour tout entier n et que V ∗(1)GKn = V ∗(1)GK . En
utilisant la dualité locale et le fait que G∞ est de dimension cohomologique 1, il
n’est pas difficile de démontrer que l’image de Z1

∞(K,T ) dans H1(Kn, T (k)) est
d’indice borné par rapport à n dès que V (k)∗(1)GK est nul (voir par exemple
[4, 3.2.1]). Lorsque V ∗(1)GK est non nul, l’application

Z1
∞(K,T )Γn → H1(Kn, T )

n’est pas surjective, le conoyau est isomorphe à H1(Γn, (V
∗(1)/T ∗(1))GK∞ )̂ .

L’image de Z1
∞(K,T )Γn est par contre d’indice fini borné dans l’intersection de
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H1(Kn, T ) et de l’image Yn de Qp ⊗ Z1
∞(K,T )Γn . Un élément de H1(Kn, V )

est dans Yn si et seulement si son image dans

H1(Γn, V
∗(1)GK∞ )∗ = (V ∗(1)GK∞ /(γn − 1))∗ ∼= (V ∗(1)GKn )∗ ∼= (V ∗(1)GK )∗

est nulle, l’application H1(Kn, V ) → H1(Γn, V
∗(1)GK∞ )∗ provenant de la du-

alité locale. Nous dirons que x ∈ H1(Kn, V ) est admissible s’il appartient à
l’image de Qp⊗Z1

∞(K,T )Γn . Ce qui précède montre que x est admissible si et
seulement si sa trace à K l’est.

1.7. Les applications πn,k se prolongent en des applications que l’on note de
la même manière :

πn,k : Hr(G∞)⊗Qp⊗Λ Z
1
∞(K,V )→ H1(Kn, V (k))

ou

πn,k : Hr(G∞)⊗Λ Z̃
1
∞(K,V )→H1(Kn, V (k))/H1(Γn, V (k)GK∞ )

= H1(K∞, V (k))Γn

pour tout entier n ≥ 0 et pour tout entier relatif k. Nous verrons souvent
H1(K∞, V (k))Γn comme contenu dans H1(K∞, V ). On note ∗k l’action twistée
: τ ∗k m = χ(τ)kτm.
Nous allons donner un critère pour qu’une famille de points de H1(Kn, V (k))
soit dans l’image de Hr(G∞) ⊗Qp⊗Λ Z1

∞(K,V ) (interpolation de familles de
points).

1.8. Proposition. Soit s ∈ R et h un entier > s. Soit Pn,k une famille
d’éléments admissibles de H1(Kn, V (k)) pour n ∈ N et k = 0, . . . h−1 telle que

(i) Trn+1,n(Pn+1,k) = Pn,k ;

(ii) les suites p⌊n(s−j)⌋∑j
k=0(−1)k

(
j
k

)
res∞Pn,k convergent vers 0 dans

H1(K∞, V ) pour tout 0 ≤ j ≤ h− 1.

Alors, il existe un unique élément z de Hs−(G∞)⊗ Z̃1
∞(K,T ) tel que π̃n,k(z) =

P̃n,k.

Démonstration. On commence par remplacer G∞ par Γ (on a Hs−(G∞) ⊗
Z1
∞(K,T ) = Hs−(Γ)⊗Zp[∆]⊗Z1

∞(K,T )). Il existe un système libreX1, · · · , Xd

du ΛΓ-module Z1
∞(K,T ) tels que pour tout entier k compris entre 0 et h− 1,

les éléments π̃n,k(Xi) de res∞H1(Kn, T (k)) = H1(K∞, T (k))Γn ⊂ H1(K∞, T )
en forment un système libre (modulo torsion) engendrant un Zp[Gn]-module
d’indice borné c par rapport à n dans le Qp-espace vectoriel des éléments ad-
missibles de H1(K∞, T (k))Γn . On écrit alors les points res∞(Pn,k) dans cette
base :

res∞(Pn,k) =

d∑

i=1

b
(i)
n,k ∗k π̃n,k(Xi) =

d∑

i=1

Twkb
(i)
n,kπ̃n,k(Xi)

avec les b
(i)
n,k dans Qp[Gn]. On peut écrire b

(i)
n,k = R

(i)
n,k(γ− 1) avec γ générateur

de Γ et R
(i)
n,k polynôme en T de degré < pn à coefficients dans Qp[∆]. La
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première condition signifie que par l’application naturelle de Qp[Gn+1] dans

Qp[Gn], l’image de b
(i)
n+1,k est b

(i)
n,k et donc que R

(i)
n+1,k ≡ R

(i)
n,k mod (1+T )p

n−1.
La deuxième condition signifie que pour tout entier j avec 0 ≤ j ≤ h−1 et pour

i = 1, · · · , d, les suites pn(s−j)∑j
k=0(−1)k

(
j
k

)
R

(i)
n,k(χ(γ)k(1+T )−1) tendent vers

0, ce qui est la condition pour qu’il existe un unique élément de f (i) ∈ Hs−
tel que f (i)(T ) ≡ R

(i)
n,k(χ(γ)k(1 + T ) − 1) mod χ(γp

n

)kγp
n − 1. L’élément

∑d
i=1 f

(i)(γ − 1)Xi ∈ Hs−(G∞)⊗ Z1
∞(K,T ) convient. L’unicité de z vient de

l’unicité des f (i).

Remarques : 1. Une famille d’éléments vérifiant les conditions de la propo-
sition sera dite tempérée d’ordre < s. Nous parlerons de congruences pour
évoquer les conditions (ii).
2. On peut mettre d’autres types de conditions : par exemple, si s est un
entier, une famille de points Pn,k pour n ≥ 1 et k ∈ {0, . . . , s− 1} telle que

(i) Trn+1,n(Pn+1,k) = Pn,k
(ii) les suites pn

∑s−1
k=0(−a)k

(
s−1
k

)
res∞Pn,k convergent vers 0 pour tout a ∈

Zp,

est tempérée d’ordre < s. Pour le démontrer, on écrit (X − 1)j pour j ∈
{0, . . . , s − 1} dans le système libre formé des (X − al)s−1 pour al s points
distincts de Zp et on en déduit une relation

j∑

k=0

(−1)k
(
j

k

)
res∞Pn,k =

s−1∑

l=0

ck,l

s−1∑

k=0

(−al)k
(
s− 1

k

)
res∞Pn,k .

Le résultat s’en déduit.
3. La proposition dit aussi que l’application naturelle

Hs−(G∞)⊗ Z̃1
∞(K,T )

∏
π̃n,k→

∏

n,0≤k≤h−1

H1(K∞, V (k))

est injective.

1.9. L’application naturelle de Λ-modules de Z1
∞(K,T ) dans H1(K,Λ⊗T ) se

prolonge en une application δ de Hs(G∞)⊗ΛZ
1
∞(K,T ) dans H1(K,Hs(G∞)⊗

T ). Colmez démontre qu’il s’agit en fait d’un isomorphisme. Pour cela, on re-

marque qu’il suffit de montrer que l’homomorphisme Hs(G∞)⊗Λ Z̃
1
∞(K,T )→

H1(K∞,Hs(G∞) ⊗ T )G∞ est un isomorphisme. On a en effet un diagramme
commutatif dont les lignes sont exactes :
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0 → Hs(G∞)⊗ TGK∞ → Hs(G∞)⊗ Z1
∞(K,T ) →

↓ ↓
0 → H1(G∞,Hs(G∞)⊗ TGK∞ ) → H1(K,Hs(G∞)⊗ T ) →

→ Hs(G∞)⊗ Z̃1
∞(K,T ) → 0

↓
→ H1(K∞,Hs(G∞)⊗ T )G∞ → 0

Il est facile de vérifier que la première flèche verticale est un isomorphisme. Il
ne reste donc plus qu’à montrer que la troisième l’est. On a des applications
naturelles de H1(K,Hs(G∞) ⊗ T ) dans H1(Kn, V (k)) pour tout entier n ≥ 1
et k ∈ Z induites par l’homomorphisme sn,k de GKn -modules Hs(G∞)⊗ V →
Zp[Gn] ⊗ V (k) → V (k) donné par f 7→ Rn,k(f) ≡ Twk(f) mod γp

n − 1 7→
νnId(Rn,k(f)) où νnId(

∑
τ aττ) = aId (cf. l’appendice A.1) et le diagramme

suivant commute

Hs(G∞)⊗Λ Z̃
1
∞(K,T )

δ→ H1(K∞,Hs(G∞)⊗ T )G∞

π̃ ↓ π′ ↓∏
n,kH

1(K∞, V (k))Γn =
∏
n,kH

1(K∞, V (k))Γn

L’image d’un élément de H1(K∞,Hs(G∞)⊗ T )G∞ vérifie les conditions de la
proposition 1.8, ce qui permet de définir un homomorphisme δ′ de Λ-modules de
H1(K∞,Hs(G∞)⊗T )G∞ dansHs(G∞)⊗ΛZ̃

1
∞(K,T ) tel que π′(δ◦δ′(x)−x) = 0

et tel que π̃(δ′◦δ(x)−x) = 0. Comme
∏
n,0≤k≤h−1 π̃n,k est injective, δ′◦δ(x) =

x. De même, il n’est pas difficile de voir que
∏
n,0≤k≤h−1 π

′
n,k est injective, ce

qui implique δ ◦ δ′(x) = x. D’où l’isomorphisme.

2. Equations (1− prΦ)Gr = Dr(g)

On fixe un ϕ-module D de dimension finie, c’est-à-dire un Qp-espace vectoriel
de dimension finie muni d’un automorphisme ϕ. Le Qp-espace vectorielH∞⊗D
est muni d’une action continue de G∞, des opérateurs Φ = ϕ⊗ϕ et D = D⊗1.

2.1. On note ∆̃ : Hψ=0
∞ ⊗ D → ⊕k∈ZD/(1 − p−kϕ)D l’application définie

par g 7→ (D
k(g)(0)
k! mod (1 − p−kϕ)D)k∈Z. On note D∞,e = (Hψ=0

∞ ⊗ D)∆̃=0

l’ensemble des éléments g ∈ Hψ=0
∞ ⊗ D tels que Dk(g)(0)

k! ∈ (1 − p−kϕ)D pour
tout k ∈ Z.
Soit g ∈ D∞,e. Alors, l’équation (1−prΦ)H = Drg a une solution dans H∞⊗D
pour tout r ∈ Z. Pour le démontrer, on fixe un entier h assez grand pour que
la série

∑∞
n=0 Φn(f) converge dans H∞ ⊗ D dès que f ∈ H ∩ T hQp[[T ]], on

remarque que f = Dr(g)−∑0≤k<h
Dr+k(g)(0)

k! logk(1+T ) ∈ T hQp[[T ]] ; comme
Dr+k(g)(0)

k! = (1− pr+kϕ)ak et que (1− prΦ)(ak
logk(1+T )

k! ) = Dr+k(g)(0)
k! logk(1 +

T ), on en déduit l’existence d’une solution de l’équation (1− prΦ)H = Dr(g).
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Définition : Soit g ∈ D∞,e. On appelle solution compatible des équations

(1 − prΦ)Gr = Dr(g) une famille G = (Gr) de solutions Gr ∈ H∞ ⊗ D de
l’équation (1− prΦ)Gr = Drg tels que D(Gr) = Gr+1. On pose alors Dr(G) =
Gr pour tout r et D0(G) = G.

Deux solutions compatibles des équations (1 − prΦ)Gr = Dr(g) différent d’un

élémentH = (Hr) avecHr =
∑
i≥0

ai+r

i! logi(1+T ) =
∑

j≥r
aj

(j−r)! logj−r(1+T )

avec aj ∈ Dϕ=p−j

.
D’autre part, il existe toujours une telle solution pour g ∈ D∞,e : soit r vérifiant

Dϕ=p−s

= 0 pour tout s < r ; pour s < r deux solutions H et H ′ de l’équation
(1 − psΦ)H = Dsg telles que Dr−s(H) = Dr−s(H ′) sont égales. Pour exhiber
une solution compatible des équations (1 − prΦ)Gr = Dr(g), il suffit donc
de choisir Gr ∈ H∞ ⊗ D tel que (1 − prΦ)Gr = Dr(g) et de prendre Gk =
Dk−r(Gr) pour k ≥ r et Gk = l’unique solution de (1 − pkΦ)H = Dkg telle
que Dr−k(H) = Gr pour k < r.
On obtient aussi que G est déterminé par Gr pour r assez petit. De plus, si
Dϕ=pr

est nul pour tout r ∈ Z, la donnée de G0 détermine tous les Gr. Il suffit
donc de se donner une solution G de l’équation (1− Φ)G = g.

2.2. Notons D∞,f = Hψ=0
∞ ⊗ D. Pour tout entier r, définissons une appli-

cation Lr : ⊕j∈ZD → H∞ ⊗ D par Lr(c) =
∑
j≥r

cj

(j−r)! logj−r(1 + T ). On a

D(Lr(c)) = Lr+1(c).

Définition : Soit g ∈ D∞,f . On appelle solution compatible des équations

(1 − prΦ)Gr = Dr(g) un couple G = (b,G) où b ∈ ⊕j∈ZD et où G = (Gr)r∈Z

est une famille d’éléments de H∞ ⊗D tels que

1. D(Gr) = Gr+1

2. (1− prΦ)Gr − Lr(b) = Dr(g) .

Il existe toujours une solution compatible des équations (1− prΦ)Gr = Dr(g).
Il suffit en effet de choisir des éléments aj presque tous nuls tels que aj ≡
Dj(g)(0) mod (1− pjϕ)D pour tout j ∈ Z, de poser b = (ai)i∈Z et de prendre
pour r0 assez petit une solution Gr0 de l’équation (1 − pr0Φ)Gr0 = Dr0(g) −∑

j≥r0
aj

(j−r0)! logj−r0(1 + T ). et de poser pour tout r ≥ r0, Gr = Dr−r0Gr0 et

pour r < r0 l’unique solution Gr telle que Dr0−rGr = Gr0 .
Considérons l’application β : ⊕j∈ZD → (⊕j∈ZD)⊕⊕r∈ZH∞ ⊗D donnée par

(αj)j∈Z 7→ (((1 − pjϕ)αj)j∈Z, (
∑

j≥r

αj
(j − r)! (log(1 + T ))j−r))r∈Z

Deux solutions compatibles des équations (1 − prΦ)Gr = Dr(g) différent d’un
élément (βr(α)) avec α ∈ ⊕j∈ZD.

Si G = (b,G) est une solution compatible des équations (1− prΦ)Gr = Dr(g),
on note Dr(G) = (Lr(b), Gr) pour tout r ∈ Z.

Documenta Mathematica 4 (1999) 219–273
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2.3. Si τ est un élément de G∞, on pose

Πτ (T ) = (1− p−1ϕ) log
(1 + T )χ(τ) − 1

T
.

Comme ((1 +T )χ(τ)− 1)/T appartient à Z×p +TZp[[T ]], Πτ ∈ Qp⊗Zp[[T ]] par

le lemme de Dwork. C’est de plus un élément de Qp ⊗ Zp[[T ]]ψ=0 et l’on peut
donc considérer pour tout entier r ∈ Z l’élément Dr(Πτ ) ∈ Qp ⊗ Zp[[T ]]ψ=0.

Définition : On définitD∞,g comme l’extension deG∞-modules de⊕Dϕ=pi

(i+
1) par D∞,f = Hψ=0

∞ ⊗D donnée par le cocycle

τ 7→ ((ai) 7→
∑

i∈Z

Di+1(Πτ )ai) ,

l’action de G∞ sur Dϕ=pi

(i + 1) = Dϕ=pi

étant donnée par le caractère χi+1.

Si a ∈ Dϕ=pi

(i + 1), on note U(a) l’élément de D∞,g tel que (τ − 1)(U(a)) =
Di+1(Πτ )a.

On a donc une suite exacte de G∞-modules

0→ D∞,f → D∞,g → ⊕Dϕ=pi

(i+ 1)→ 0 .

Remarquons aussi que si l’on tensorise par l’anneau total des fractions K(G∞)
de H(G∞), on obtient un isomorphisme K(G∞)⊗D∞,f ∼= K(G∞)⊗D∞,g. On

prolonge l’application U par linéarité sur ⊕Dϕ=pi

(i + 1). La formule D ◦ τ =

χ(τ)τ ◦D et le fait que l’on a muni ici Dϕ=pi

de l’action de G∞ donnée par χi+1

impliquent que l’expression écrite est bien un cocycle. L’équationD◦ϕ = pϕ◦D
implique que pour a ∈ Dϕ=pi

,

(1− Φ)(Di+1 log
(1 + T )χ(τ) − 1

T
a) = Di+1(Πτ )a .

Ainsi, moralement pour a ∈ Dϕ=p−1

, on a U(a) = (1 − Φ)(a logT ) et pour

a ∈ Dϕ=pi

, U(a) = (1−Φ)((Di+1 logT )a). On notera symboliquement Ũ(a) =

(Di+1 logT )a et (1 − Φ)Ũ(a) = U(a). Remarquons que si l’on veut évaluer
logT en T = ζn − 1, il est nécessaire de faire un choix du logarithme : nous
prendrons lorsque cela sera nécessaire l’extension de log telle que log p = 0. Si

g ∈ D∞,g, on note λi(g) sa projection sur Dϕ=pi

(i + 1) ; donc

g −
∑

i

U(λi(g)) ∈ D∞,f .

Définition : Soit g ∈ D∞,g. On appelle solution compatible des équations de
(1 − prΦ)Gr = Dr(g) une solution compatible des équations (1 − prΦ)Hr =
Dr(g −∑i U(λi(g))) ∈ D∞,f .

Ainsi, on se donne b ∈ ⊕j∈ZD et Hr ∈ H∞ ⊗D tels que

1. D(Hr) = Hr+1

2. (1− prΦ)Hr −
∑

j≥r

bj
(j − r)! logj−r(1 + T ) = Dr(g −

∑

i

U(λi(g))).
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Si G est une telle solution, on pose Dr(G) = (λr(g), Lr(b), Hr).

3. Application exponentielle

3.1. Nous utiliserons comme Colmez les anneaux Amax et Bmax[t−1] à la place
de Bcris. La norme définie sur Bmax par ||x||max ≤ 1 si et seulement si x ∈ Amax

vérifie la propriété

p−1||x||max.||y||max ≤ ||xy||max ≤ ||x||max.||y||max

L’importance de la norme || ||max vient en particulier de son lien avec les || ||ρ
définies sur H. Pour l’énoncer, introduisons [ǫ] le relèvement de Teichmüller de
ǫ = (ζn) dans Amax et βn = ϕ−n([ǫ]) = [(ζm+n)m].

3.1.1. Lemme. Si F est un élément de H, alors F (βn − 1) = Φ−n(F ([ǫ]− 1))
vérifie

||F ||ρn ≤ ||F (βn − 1)||max ≤ p||F ||ρn .

Ainsi, si F est p−uϕ−-borné, la suite ||pnu(1 ⊗ ϕ)−nF (βn − 1)||max tend vers
0 lorsque n→∞.

Démonstration. Nous ne donnons qu’une esquisse de la démonstration. Colmez

([1, corollaire V.5.5]) démontre que dans B
GK∞
max muni de la norme || ||max, les

éléments en,k = (βn−1)k

p
[ k
pn(p−1)

]
(à n fixé) forment un système libre de Banach, c’est-

à-dire que la série
∑

k≥0 aken,k converge dans Bmax pour ak ∈ K si et seulement

si sup |ak| <∞ et on a alors

||
∑

k≥0

aken,k||max = sup |ak|

(il démontre plus que cela, mais nous ne nous servirons que de cela). Si F ∈ H,
on a d’autre part

||F ||ρn = sup |ak|ρkn = sup |ak|p−
k

pn(p−1) .

En utilisant le fait que

k

pn(p− 1)
− 1 ≤ [

k

pn(p− 1)
] ≤ k

pn(p− 1)
,

on en déduit que F (βn − 1) existe dans Bmax et que

||F ||ρn ≤ ||F (βn − 1)||max ≤ p||F ||ρn ,

ce qui termine la démonstration. Remarquons qu’en utilisant le fait que
||FG||ρ = ||F ||ρ||G||ρ, on peut en déduire l’inégalité pour x = F (βn − 1) et
y = G(βn − 1)

p−2||x||max||y||max ≤ ||xy||max ≤ p||x||max||y||max ,

ce qui est bien sûr moins fort que ce que démontre Colmez, mais suffisant.
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Soit Dp(V ) = (Bcris⊗V )GK = (Bmax⊗V )GK et DdR(V ) = (BdR⊗V )GK . On
note ek la base canonique du ϕ-module filtré Qp[k] égal à Qp avec ϕα = pkα
; on a donc un isomorphisme canonique entre Dp(V ) et Dp(V (k)) donné par
d 7→ d ⊗ e−k. On plonge Dp(V (k)) dans Bmax ⊗Dp(V ) par d 7→ t−k ⊗ (dek),
ce qui donne l’identification Dp(V (k)) = Dp(V ) ⊗ e−k → Bmax ⊗ Dp(V ) :
d ⊗ e−k 7→ t−k ⊗ d. Remarquons que cette identification est compatible avec
la filtration et avec l’homomorphisme de Frobenius, mais non avec l’action de
Galois : ainsi, on obtient bien que Fil0(Bmax ⊗Dp(V (k)))ϕ=1 est V (k).
Nous utiliserons la propriété suivante du ϕ-module filtré Dp(V ) : si

Fil−hDp(V ) = Dp(V ), les applications 1 − psϕ sont des isomorphismes de
Dp(V ) pour s > h.
Bloch et Kato définissent une application expV = expV,Kn

: Dp(V ) ⊕ Kn ⊗
DdR(V )→ H1(Kn, V ). Plus précisément, nous noterons :

expV,e = expV,Kn,e :Kn ⊗DdR(V )→ H1
e (Kn, V ),

expV,f = expV,Kn,f :Dp(V )⊕Kn ⊗DdR(V )→ H1
e (Kn, V )

expV,g = expV,Kn,g :Dp(V )ϕ=p−1 ⊕Dp(V )⊕Kn ⊗DdR(V )→ H1
g (Kn, V )

la dermière de ces exponentielles dépendant du choix d’un logarithme (nous
prendrons ici logp p = 0). Rappelons les définitions des applications exp∗ pour
∗ ∈ {e, f, g} sur la partie “cristalline” qui nous intéresse. Fixons un scindage
continu Eul de

1− ϕ : Fil0(Bmax ⊗Dp(V ))→ Bmax ⊗Dp(V ) .

Deux tels scindages diffèrent d’un homomorphisme continu de Bmax ⊗Dp(V )

dans V . Ainsi, si b ∈ Bmax⊗Dp(V ), (1−ϕ)Eul(b) = b et Eul(b) ∈ Fil0(Bmax⊗
Dp(V )).
Soit L une extension algébrique de K contenue dans K̄.

3.1.2. Soit a ∈ L ⊗Dp(V ). Alors P = expV,e(a) ∈ H1(L, V ) est la classe du
cocycle

τ ∈ GL 7→ (τ − 1)(c− Eul((1− ϕ)c))

où c ∈ Bmax⊗Dp(V ) vérifie c−a ∈ Fil0(BdR⊗Dp(V )). Si C = c−Eul((1−ϕ)c),

on a donc (1− ϕ)C = 0, NC = 0 et C ≡ a mod Fil0(BdR ⊗Dp(V )).

3.1.3. Soit (b, a) ∈ Dp(V ) ⊕ L ⊗Dp(V ). Alors P = expV,f (b, a) ∈ H1(L, V )
est la classe du cocycle

τ ∈ GL 7→ (τ − 1)(c− Eul((1− ϕ)c− b))

où c ∈ Bmax ⊗Dp(V ) vérifie c− a ∈ Fil0(BdR ⊗Dp(V )). De nouveau, si C =

c−Eul((1−ϕ)c−b), il vérifie (1−ϕ)C = b et C ≡ a mod Fil0(BdR⊗Dp(V )).

Documenta Mathematica 4 (1999) 219–273



232 Bernadette Perrin-Riou

3.1.4. Soit (d, b, a) ∈ Dp(V )ϕ=p−1 ⊕ Dp(V ) ⊕ L ⊗ Dp(V ). Alors P =
expV,g(d, b, a) ∈ H1(L, V ) est la classe du cocycle

τ ∈ GL 7→ (τ − 1)(c− Eul((1− ϕ)c− b))
où c ∈ Bst ⊗Dp(V ) vérifie

1. c− a ∈ Fil0(BdR ⊗Dp(V )),
2. Nc = d

(remarquons que N((1−ϕ)c− b) = (1− p−1ϕ)Nc = 0 et Eul((1−ϕ)c− b) est
donc définie) et C = c − Eul((1 − ϕ)c − b) vérifie (1 − ϕ)C = b, NC = d et

C ≡ a mod Fil0(BdR ⊗Dp(V )).

Remarque : eB(a) = c−Eul((1−ϕ)c) est bien définie à valeurs dans Bϕ=1
max⊗

V/V . Lorsque L est contenue dans K∞, on peut en fait choisir c dans B
GK∞
max ⊗

Dp(V ) : en effet la nullité de H1(K∞,Fil0Bmax) (voir [1, IV], voir aussi le §4.1)

implique la surjectivité de l’application B
GK∞
max → (BdR/B

+
dR)GK∞ et donc en

tensorisant par V celle de B
GK∞
max ⊗ V → (BdR/B

+
dR)GK∞ ⊗ V ; nous allons

le faire explicitement au paragraphe suivant. On en déduit que la restriction
res∞(P ) de P à K∞ est la classe du cocycle τ 7→ −(τ − 1)Eul((1− ϕ)c), où c

est un élément de B
GK∞
max ⊗Dp(V ) congru à a mod Fil0(BdR ⊗Dp(V )).

3.2. On pose

D∞,e(V ) =(Hψ=0
∞ ⊗Dp(V ))∆̃=0

D∞,f (V ) =Hψ=0
∞ ⊗Dp(V )

D∞,g(V ) =D∞,g(Dp(V ))

Soit h un entier ≥ 1 et k un entier tel que h+ k − 1 ≥ 0.

3.2.1. Soient g ∈ D∞,e(V ) et G une solution compatible des équations
(1− prΦ)Gr = Dr(g). Posons pour n ≥ 1

Ξ
(h)
n,k(G) =(−1)h+k−1(h+ k − 1)!p−n(1⊗ ϕ)−n(D−k(G)(ζn − 1)⊗ e−k)

=(−1)h+k−1(h+ k − 1)!pn(k−1)(1 ⊗ ϕ)−nD−k(G)(ζn − 1)⊗ e−k ;

c’est un élément de Kn ⊗Dp(V (k)). Posons pour n ≥ 1

P
(h)
n,k (G) = expV (k),e(Ξ

(h)
n,k(G)) ∈ H1

e (Kn, V (k)) .

3.2.2. Soient g ∈ D∞,f (V ) et G une solution compatible des équations

(1− prΦ)Gr = Dr(g) : G = (b, (Gr)r∈Z) avec b ∈ ⊕j∈ZD et Gr ∈ H∞ ⊗ D.
Posons pour n ≥ 1

Ξ
(h)
n,k(G) =(−1)h+k−1(h+ k − 1)!p−n(1⊗ ϕ)−n(D−k(G)(ζn − 1)⊗ e−k)

=(−1)h+k−1(h+ k − 1)!pn(k−1)(1 ⊗ ϕ)−nD−k(G)(ζn − 1)⊗ e−k ;
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c’est un élément de Dp(V (k))⊕Kn ⊗Dp(V (k)). Posons

P
(h)
n,k (G) = expV (k),f (Ξ

(h)
n,k(G)) ∈ H1

f (Kn, V (k)) .

Comme log ζn = 0, les contributions des bi dans L−k(b) pour i > −k sont nulles
et on a donc

Ξ
(h)
n,k(G) =

(−1)h+k−1(h+ k − 1)!pn(k−1)(ϕ−nb−k ⊗ e−k, (1⊗ ϕ)−nG−k(ζn − 1)⊗ e−k) .

3.2.3. Enfin, soit g ∈ D∞,g(V ). On fixe une solution compatible Ψτ des

équations (1− prϕ)Gr = Dr(Πτ ), c’est-à-dire une famille de Ψ
(r)
τ = Dr(Ψτ ) de

solutions de l’équation (1− prϕ)Ψ
(r)
τ = DrΠτ pour tout entier r ∈ Z vérifiant

D(Ψ
(r)
τ ) = Ψ

(r+1)
τ . On vérifie alors que pour τ ∈ Gal(K∞/Kn) non trivial

et i 6= 0, l’expression (χ−i(τ) − 1)−1Di(Ψτ )(ζn − 1) est un élément de Kn ne
dépendant pas du choix de τ . On le note ℓ(1−i)(ζn− 1). On pose l(1)(ζn− 1) =
log(ζn − 1) (où l’on a choisi logp p = 0).

Si a ∈ Dp(V )ϕ=pk−1

, on pose

Ξ
(h)
n,k(Ũ(a)) = (−1)h+k−1(h+ k − 1)!(a, 0, log(ζn − 1)a)⊗ e−k .

Si a ∈ Dp(V )ϕ=pi

avec k 6= i+ 1, on pose

Ξ
(h)
n,k(Ũ(a)) =(−1)h+k−1(h+ k − 1)!(0, 0, ℓ(k−i)(ζn − 1)a⊗ e−k

=(−1)h+k−1(h+ k − 1)!(0, 0,
D−k+i+1(Ψτ )(ζn − 1)

(χ−k+i+1(τ) − 1)
a⊗ e−k) .

On pose P
(h)
n,k (Ũ(a)) = expV (k),g(Ξ

(h)
n,k(Ũ(a)). On note P̃

(h)
n,k (U(a)) la restriction

de P
(h)
n,k (Ũ(a)) à H1(K∞, V (k)).

Si maintenant g = h +
∑

i∈Z U(ai) est un élément de D∞,g(V ) et si G =

H+
∑
i∈Z Ũ(ai) est une solution compatible des équations (1−prΦ)G = Dr(g),

on étend les définitions de Ξ
(h)
n,k et de P

(h)
n,k par linéarité. On a donc P̃

(h)
n,k (G) =

P̃
(h)
n,k (H) +

∑
i∈Z P̃

(h)
n,k (U(ai)).

3.3. Théorème. Soit V une représentation de de Rham et soit h un entier
≥ 1 tel que Fil−hDdR(V ) = DdR(V ). Soient g ∈ D∞,f (V ) et G une solution
compatible des équations (1 − prΦ)Gr = Dr(g). Soit u un entier > −h tel que
g soit p−uϕ−-bornée. Si g n’est pas dans D∞,e(V ), on suppose de plus que

Dh(g)(0) ∈ (1 − phϕ)Dp(V ). La famille (P
(h)
n,k (G))n≥1,k≥−h+1 est tempérée

d’ordre ≤ (u+h)− et définit un élément ΩV,h(g) de H(u+h)−(G∞)⊗ Z̃1
∞(K,T )

ne dépendant que de g. Ainsi, on a

π̃n,k(ΩV,h(g)) = P̃
(h)
n,k (g)

pour n ≥ 1 et pour k ∈ {1− h, · · · ,+∞}.
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On a

o(ΩV,h(g)) ≤ h+ oϕ(g)

et lorsque V est cristalline,

o(ΩV,h(g)) = h+ oϕ(g) .

Ainsi, si r0 est un entier tel que la suite d’opérateurs pnr0ϕ−n de Dp(V )

est bornée et si g appartient de plus à Hψ=0
s− ⊗ Dp(V ), ΩV,h(g) appartient

à H(r0+s+h)−(G∞) ⊗ Z̃1
∞(T ). En effet, g est alors p−(r0+s)ϕ−-borné. Remar-

quons que r0 peut être négatif, mais on a nécessairement r0 + h ≥ 0 et donc
r0 + s > −h. Par exemple, si V = Qp(r), on peut prendre h = r et r0 = −r.
La relation entre les ordres de tempérance signifie : ΩV,h(g) est un o(logs) si et

seulement si g est p−(s−h)ϕ−-bornée et ΩV,h(g) est un O(logs) si et seulement

si g est p−(s−h)ϕ-bornée.

Remarques : 1) Cet homomorphisme est (−1)h−1 fois le ΩV,h de [4]. Cela
permet d’éliminer certains signes : par exemple, il n’est pas difficile de déduire
du théorème la relation suivante entre ΩV,h+1 et ΩV,h :

ΩV,h+1 = ℓhΩV,h

avec

ℓh =
log γ

logχ(γ)
− h =

logχ(γ)−hγ
logχ(γ)

= Tw−h(
log γ

logχ(γ)
)

(attention au changement de signe par rapport à [4]). On pose pour tout entier
r,

ΩV,r = (
∏

r≤j<h
ℓj)
−1ΩV,h(3.3.1)

pour h > r et tel que Fil−hDp(V ) = Dp(V ). C’est un élément de K(G∞) ⊗
Z̃1
∞(K,T ) avec K(G∞) l’anneau des factions total de H(G∞) (il suffit en fait

d’inverser les ℓj). De même, avec des identifications convenables, on a

ΩV (j),h+j(g) = Twj(ΩV,h(Dj(g))) .

2) La lettre Ω évoque pour certains une période : isomorphisme de périodes

entre H∞ ⊗Dp(V ) et H(G∞)⊗ Z̃1
∞(K,V ). On peut le voir aussi comme une

manière de mettre ensemble toutes les exponentielles de Bloch-Kato relatives à
V et à ses twists cyclotomiques, d’où la notation Exph,V de [2]. Il est d’ailleurs
amusant de remarquer que dans [2], c’est le point de vue “matrice de périodes”
de cet homomorphisme qui est utilisé.
3) Ici, on n’a pas supposé V cristalline mais si V ne l’est pas, la dimension de
Kn ⊗Dp(V ) est de dimension sur Kn strictement inférieure à la dimension de
V et donc le rang de Λ⊗Dp(V ) est strictement inférieure à celui de Z1

∞(K,T ).
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Nous ne démontrons dans les paragraphes qui suivent que l’inégalité

o(ΩV,h(g)) ≤ h+ oϕ(g) ;

l’égalité dans le cas où V est cristalline sera une conséquence de la loi de
réciprocité (cf. 4.2.4).

4) Si Dp(V )ϕ=p−h 6= 0, V contient alors Qp(h). Dans ce cas, si
Dh(g)(0) 6∈ (1 − phϕ)Dp(V ), on peut définir ΩV,h(g) à valeurs dans

(χ(γ)−hχ− 1)−1H(u+h)−(G∞)⊗ Z̃1
∞(T ) par

ΩV,h(g) = (χ(γ)−hγ − 1)−1ΩV,h((χ(γ)−hχ− 1)g) .

Remarquons qu’alors ΩV,h+1(g) est défini directement par le théorème, ce qui
est cohérent avec la relation ΩV,h+1(g) = ℓhΩV,h(g) : ΩV,h+1(g) n’a plus de
pôles. Donnons maintenant les formules qui s’en déduisent pour n = 0 :

3.3.1. Proposition. Sous les hypothèses du théorème 3.3, on a

π̃0,k(ΩV,h(g)) = expV (k),f (Ξ
(h)
0,k(G))

avec

Ξ
(h)
0,k(G) =(−1)h+k−1(h+ k − 1)!×

((1− pk+1ϕ−1)b−k ⊗ e−k, (1− pk+1ϕ−1)D−k(G)(0) ⊗ e−k) .

En particulier, si 1− p−kϕ est un isomorphisme sur Dp(V ), on a

π̃0,k(ΩV,h(g)) = expV (k),e(Ξ
(h)
0,k(G))

avec

Ξ
(h)
0,k(G) =(−1)h+k−1(h+ k − 1)!×

(1− pk+1ϕ−1)(1 − p−kϕ)−1D−k(g)(0)⊗ e−k .

La proposition se déduit de l’équation fonctionnelle reliant G et g et de ce que
ψ(g) = 0 (voir (4.3.2)).
Avant de commencer la démonstration du théorème, expliquons comment on
peut traiter le cas où g ∈ D∞,g(Dp(V )). Il s’agit de définir l’image de U(a)

pour a ∈ Dp(V )ϕ=pi

. Pour cela, plutôt que de vérifier les congruences, ce que
nous n’avons pas su faire, on définit directement ΩV,h(U(a)) puis on vérifie que

πn,k(ΩV,h(U(a)) est bien expV (k),g(Ξ
(h)
n,k(Ũ(a))).

Pour cela, on commence par énoncer le lemme suivant :

Lemme. Soit τ un élément de G∞ non de torsion. Soit u ∈ H(G∞) ⊗
Z1
∞(K,T ) tel que π0,0(u) = 0. Alors, il existe vτ ∈ H(G∞)⊗Z1

∞(K,T ) tel que
(τ − 1)vτ = u.

On peut exprimer le lemme sous la forme suivante en le twistant : si π0,j(u) = 0,
il existe vτ tel que (χ(τ)jτ − 1)vτ = u. Remarquons qu’on a alors pour tout
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entier k la formule (χ(τ)j−k − 1)πn,k(vτ ) = πn,k(u) pour τ laissant fixe Kn,
c’est-à-dire que pour tout entier k 6= j, πn,k(vτ ) = 1

χ(τ)j−k−1
πn,k(u).

Enfin, remarquons que l’on a unicité de vτ si l’on ne regarde que son image
dans H(G∞) ⊗ Z̃1

∞(K,T ) et que si u est tempérée d’ordre ≤ r, il en est de
même de vτ .

Appliquons ce lemme à xτ = ΩV,h(Di+1Πτa) pour a ∈ Dp(V )ϕ=pi

. Par twist,
on peut se ramener au cas où i = −1.
Comme πn,0(xτ ) = expV,e((−1)h−1(h− 1)! Gτ (ζn − 1)a) pour n ≥ 1 avecGτ =

log (1+T )χ(τ)−1
T , on a

π0,0(xτ ) = TrK1/K(expV,e((−1)h−1(h− 1)! log
ζ
χ(τ)
1 − 1

ζ1 − 1
a)) = 0 .

Il existe donc y ∈ H∞(G∞) ⊗ Z̃∞(K,T ) tel que (τ − 1)y = xτ et on vérifie
facilement que y ne dépend pas de τ . On pose alors ΩV,h(U(a)) = y. On a
donc

ΩV,h(U(a)) = (τ − 1)−1ΩV,h(Πτ (a)

et en général pour a ∈ Dp(V )ϕ=pi

ΩV,h(U(a)) = (χ(τ)i+1τ − 1)−1ΩV,h(Di+1Πτ (a) .

On définit ainsi un prolongement de ΩV,h à D∞,g(Dp(V )). La formule

expV (k),f (Ξ
(h)
n,k(U(a))) = πn,k(ΩV,h(U(a)))

est claire pour k 6= i + 1. Pour k = i + 1, nous la montrerons plus tard en
utilisant la loi de réciprocité.

3.4. Démonstration du théorème.

3.4.1. Il s’agit de montrer que les points Pn,k(G) vérifient les conditions de la
proposition 1.8. La propriété que

Trn+1,n(P
(h)
n+1,k(G)) = P

(h)
n,k (G)

dans H1(Kn, V (k)) se déduit de la condition ψ(g) = 0. Pour montrer
que les points Pn,k(G) sont admissibles, il suffit de le faire pour P0,k(G) =

TrKn/K(Pn,k(G)). Prenons k = 0 pour simplifier (on s’y ramène en rem-
plaçant V par V (k)). Ce point est admissible si et seulement son accouplement
local avec un élément v de V ∗(1)GK ∼= H1(Γ, V ∗(1)GK ) ⊂ H1(K,V ∗(1)) est nul
(§1.6). Pour le calculer, nous utilisons les formules de Kato qui sont rappelées
en 4.1.3. On en déduit que si v est vu comme élément de Fil0 Dp(V

∗(1))ϕ=1 ⊂
Dp(V

∗(1)), cet accouplement est de la forme [(1−pϕ−1)(u), v] = [u, (1−ϕ)v] =
0.
Démontrons les congruences vérifiées par les P

(h)
n,k . Comme me l’a fait remarqué

Colmez, il y a une démonstration beaucoup plus simple au niveau des calculs
que celle faite dans [4]. Nous allons commencer par celle-là. Cependant, nous
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avons besoin pour la démonstration de la loi de réciprocité du calcul explicite
du cocycle fait dans [4]. Aussi, ferons-nous ensuite ce calcul.
Notons [ǫ] le relèvement de Teichmüller de ǫ = (ζn) dans Amax et βn =
ϕ−n([ǫ]) = [(ζm+n)m]. Il s’agit donc d’un relèvement de la racine de l’unité
ζn dans Bmax puisque l’image de βn dans K ⊂ BdR/B

+
dR est ζn.

Prenons g ∈ D∞,e(V ). On se donne une solution compatibleG de l’équation(1−
Φ)G = g, c’est-à-dire des éléments Gr de H∞⊗Dp(V ) vérifiant D(Gr) = Gr+1

et (1 − prΦ)Gr = Dr(g). On pose Dr(G) = Dr(G) = Gr. Le point P
(h)
n,k (G)

est la classe du cocycle

(−1)h+k−1(h+ k − 1)!pn(k−1)eB((1⊗ ϕ)−nG−k(ζn − 1)⊗ e−k) .

Pour démontrer les congruences, il suffit de montrer que pour s′ ≥ h + u et
pour τ ∈ GK∞ , la limite de la suite

pn(s′−(j+h−1))(τ − 1)eB(

j∑

k=1−h
(−1)k+h−1

(
j + h− 1

k + h− 1

)
Ξ

(h)
n,k(G)t−k)

tend vers 0 lorsque n→∞. (rappelons que Ξ
(h)
n,k(G) ∈ Dp(V (k)) est identifié à

Ξ
(h)
n,k(G)t−kek ∈ Bmax ⊗Dp(V )). Notons

Yhj =

j∑

k=1−h
(−1)k+h−1

(
j + h− 1

k + h− 1

)
Ξ

(h)
n,k(G)t−k

On a

Yhj = (j + h− 1)!

j∑

k=1−h

pn(k−1)

(j − k)!
(1⊗ ϕ)−nG−k(ζn − 1)t−k

= (j + h− 1)!pn(j−1)

h+j−1∑

k=0

p−nk

k!
(1⊗ ϕ)−nDk(G−j)(ζn − 1)tk−j

en changeant k en j − k.
Soit H ∈ H∞ ⊗ Dp(V ). Posons H̃(Z) = H(ζn exp(Z) − 1) : comme βn =

ζn exp(t/pn), on a H(βn − 1) = H̃(t/pn). Si Th−1(H̃) est le développement de

Taylor d’ordre h− 1 de H̃ en 0, on vérifie facilement que

H̃(t/pn)− Th−1(H̃)(t/pn) ∈ thB+
dR ⊗Dp(V ) = FilhBdR ⊗Dp(V )

et que

Th−1(H̃)(t/pn) =
h−1∑

i=0

1

i!
Di(H)(ζn − 1)

ti

pni

On en déduit que

h−1∑

i=0

1

i!
Di(H)(ζn − 1)

ti

pni
−H(βn − 1) ∈ Filh(BdR)⊗Dp(V ) ,
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et en remplaçant h par h+ j, que

h+j−1∑

i=0

1

i!
Di(H)(ζn − 1)

ti

pni
t−j −H(βn − 1)t−j ∈ Filh(BdR)⊗Dp(V )) .

Remarquons que la condition sur h implique que FilhBdR⊗Dp(V ) est contenu

dans Fil0(BdR⊗Dp(V )). En appliquant cela à H = (1⊗ϕ)−nG−j et en utilisant

le fait que eB est nul sur Fil0(BdR ⊗D), on obtient que

eB(Yhj ) = eB((j + h− 1)!pn(j−1)(1⊗ ϕ)−nG−j(βn − 1)t−j)

= (j + h− 1)!pn(j−1)eB(Φ−n(G−j(ǫ− 1))t−j

Par définition de eB et de Eul et comme Φ−n(G−j(ǫ − 1))t−j appartient à
(Bmax ⊗Dp(V ))GK∞ , on a

(τ − 1)eB(Yhj ) = −(j + h− 1)!pn(j−1)(τ − 1)Eul(Φ−n(D−j(g)([ǫ]− 1))t−j) .

Il s’agit donc de montrer par continuité de Eul et stabilité de Amax par GK
que pour s′ − h ≥ u, la suite pn(s′−h)Φ−n(D−j(g)([ǫ]− 1)) tend vers 0 lorsque
n→∞. On applique pour cela le lemme 3.1.1 à D−j(g) qui est p−uϕ−-bornée
:

||pn(s′−h)Φ−n(D−j(g)([ǫ]− 1))||max = pn(h+u−s′)||pnu(1 ⊗ ϕ)−nD−j(g)||ρn

tend vers 0 lorsque n→∞.
Il n’est pas difficile de voir que la même démonstration s’applique à g ∈
D∞,f (V ).

3.4.2. Comme annoncé, nous allons maintenant reprendre la démonstration

en calculant explicitement un cocycle représentant P
(h)
n,k pour g ∈ D∞,f (V ). On

se donne donc une solution compatible G, c’est-à-dire b = (br) ∈ ⊕r∈ZDp(V )
et des éléments Gr de H∞ ⊗Dp(V ) vérifiant D(Gr) = Gr+1 et (1− prΦ)Gr =

Dr(g) +Lr(b) avec Lr(b) =
∑
i≥r

bi

(i−r)! logi−r(1 +T ). Il est commode de noter

formellement L(b) =
∑
i
bi

i! logi(1 + T ) et L(b)r = Dr(L(b)) = Lr(b). On pose

G = (b,G) avec G = (Gr) et Dr(G) = (Lr(b), D
r(G)) = (Lr(b), Gr). Posons

S(h)
0 (G) =(−1)h−1(h− 1)!

h−1∑

i=0

(−1)i
1

i!
Di(G)([ǫ]− 1)ti

S(h)
k (G) =(−1)h+k−1(h+ k − 1)!

h+k−1∑

i=0

(−1)i
1

i!
Di−k(G)([ǫ] − 1)ti−k

=(−1)h−1(h+ k − 1)!

h−1∑

i=−k
(−1)i

1

(i+ k)!
Di(G)([ǫ] − 1)ti
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et

S(h)
n,0,cris(G) =(pΦ)−n(S

(h)
0 (G))

S(h)
n,k,cris(G) =(pΦ)−n(S

(h)
k (G))

Ainsi, S(h)
k (G) = S(h+k)

0 (D−k(G))t−k.
Lorsque h = 1, les formules se simplifient et deviennent

S(1)
n,0,cris(G) =(pΦ)−n(G0([ǫ]− 1))

S(1)
n,k,cris(G) =(pΦ)−n(k!

k∑

i=0

(−1)i−k
1

i!
Di−k(G)([ǫ] − 1)ti−k)

=(pΦ)−n(k!
k∑

u=0

(−1)u
1

(k − u)!
D−u(G)([ǫ]− 1)t−u) .

Notons b(r) la suite b où l’on a remplacé le r-ième terme par 0. On définit par

les mêmes formules S(h)
n,k,cris(L(b)) et S(h)

n,k,cris(L(b(r))).

3.4.3. Lemme. Supposons comme dans le théorème que Fil−hDdR(V ) =
DdR(V ) et que h+ k − 1 ≥ 0. Alors,

(i) P
(h)
n,k (G) est la classe du cocycle

τ ∈ GKn 7→ (τ − 1)(S(h)
n,k,cris(G)− Eul(S(h)

n,k,cris(g + L(b(−k)))) ;

(ii) res∞(P
(h)
n,k (G)) est la classe du cocycle

τ ∈ GK∞ 7→ −(τ − 1)Eul(S(h)
n,k,cris(g)− p−nD

h(g)(0)th

h+ k
)

Si Dh(g)(0) ∈ (1− phϕ)Dp(V ), res∞(P
(h)
n,k (G)) est la classe du cocycle

τ ∈ GK∞ 7→ −(τ − 1)Eul(S(h)
n,k,cris(g)) .

Démonstration. Soit H ∈ H∞ ⊗Dp(V ). Posons H̃(Z) = H(βn exp(−Z) − 1)

: en utilisant la formule ζn = βn exp(−t/pn), on a H(ζn − 1) = H̃(t/pn). La
même démonstration que précédemment donne que

H(ζn − 1)−
h−1∑

i=0

(−1)i

i!
Di(H)(βn − 1)

ti

pni
∈ thB+

dR ⊗Dp(V )

En appliquant cette formule à D−k(G) et à h+ k − 1 ≥ 0, on en déduit que

Ξhn,k(G) − S(h)
n,k,cris(G) ∈ Filh(BdR)⊗Dp(V ) ⊂ Fil0(BdR ⊗Dp(V (k)))
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De plus, S(h)
n,k,cris(G) est invariant par GK∞ . En utilisant la formule

(1− prΦ)Dr(G) = Dr(g) + Lr(b), on a

(1− Φ)S(h)
n,k,cris(G) = S(h)

n,k,cris(g) + S(h)
n,k,cris(L(b)) .

En revenant à la définition de expf et en remarquant que

S(h)
n,k,cris(L(b))− (−1)h+k−1(h+ k − 1)!(pϕ)−nb−kt

−k = S(h)
n,k,cris(L(b(−k))) ,

on obtient que res∞(P
(h)
n,k (G)) est la classe du cocycle

τ ∈ GK∞ 7→ −(τ − 1)Eul(S(h)
n,k,cris(g + L(b(−k)))) .

Calculons maintenant S(h)
n,k,cris(L(b(−k)). On a

S(h)
n,k,cris(L(b))

= (−1)h+k−1(h+ k − 1)!

h+k−1∑

i=0

(−1)i

i!
(
∑

u≥i−k

bu
(u− i+ k)!

tu−i+k)ti−k

= (−1)h+k−1(h+ k − 1)!

h+k−1∑

i=0

(−1)i

i!

∑

u≥i−k

bu
(u − i+ k)!

tu

= (−1)h+k−1(h+ k − 1)!
∑

u≥−k
αhu,kbut

u

avec

αhu,k =
∑

i≤u+k
0≤i≤h+k−1

(−1)i

i!(u− i+ k)!
.

Lorque u ≤ h− 1, on a

(u + k)!αhu,k =
∑

0≤i≤u+k

(−1)i(u+ k)!

i!(u − i+ k)!
= (1− 1)u+k =

{
0 si −k < u ≤ h− 1

1 si u = −k
Ainsi,

S(h)
n,k,cris(L(b)) = (h+ k − 1)!(−1)h+k−1(b−kt

−k +
∑

u≥h
αhu,kbut

u)

et

S(h)
n,k,cris(L(b(k))) = (−1)h+k−1(h+ k − 1)!

∑

u≥h
αhu,kbut

u

et αhh,k = (−1)h+k−1

(h+k)! . On en déduit que

S(h)
n,k,cris(L(b(k))) ∈ thB+GK∞

max ⊗Dp(V ) ⊂ Fil0(Bmax ⊗Dp(V )) .

Plus précisément, pour u > h ou pour bh ∈ (1 − phϕ)Dp(V ), but
u appartient

à (1 − ϕ) Fil0(B+GK∞
max ⊗ Dp(V )), car 1 − puϕ est alors un isomorphisme de
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Dp(V ), et on en déduit que (τ − 1)Eul(S(h)
n,k,cris(L(b(k))) = 0 pour τ ∈ GK∞ et

res∞(P
(h)
n,k (G)) est simplement la classe du cocycle

τ ∈ GK∞ 7→ −(τ − 1)Eul(S(h)
n,k,cris(g) + p−n(h+1)ϕ

−n(bh)th

h+ k
)

et si bh ∈ (1− phϕ)Dp(V ), c’est la classe du cocycle

τ ∈ GK∞ 7→ −(τ − 1)Eul(S(h)
n,k,cris(g)) .

Sans condition sur bh, remarquons que bh + Dh(g)(0) ∈ (1 − phϕ)Dp(V ) et
pour les mêmes raisons,

(τ − 1)Eul(ϕ−n(bh)th)

= (τ − 1)Eul(pnhbht
h) = −pnh(τ − 1)Eul(Dh(g)(0)th) .

On en déduit le lemme.

3.4.4. Corollaire. La restriction de P
(h)
n,k (G) à H1(K∞, V (k)) ne dépend que

de g, on la note P̃
(h)
n,k (g).

3.4.5. Plaçons-nous sous les hypothèses du théorème en supposant que
Dh(g)(0) ∈ (1− phϕ)Dp(V ). Montrons que pour s′ ≥ h+ u, la suite

pn(s′−(j+h−1))

j∑

k=1−h
(−1)k+h−1

(
j + h− 1

k + h− 1

)
S(h)
n,k,cris(g)

= pn(s′−j−h+1)

j+h−1∑

k=0

(−1)k
(
j + h− 1

k

)
S(h)
n,k−h+1,cris(g)

tend vers 0. Notons

Z(h)
j =

j+h−1∑

k=0

(−1)k
(
j + h− 1

k

)
k!(−1)k

k∑

i=0

(−1)i
1

i!
Di−k+h−1(g)([ǫ]− 1)ti−k+h−1) .

On a donc (pΦ)−n(Z(h)
j ) =

∑j
k=1−h(−1)k+h−1

(
j+h−1
k+h−1

)
S(h)
n,k,cris(g). On a en

changeant i en k − i

Z(h)
j =

=

j+h−1∑

k=0

(−1)k
(
j + h− 1

k

)
k!

k∑

i=0

(−1)i
1

(k − i)!D
−i+h−1(g)([ǫ]− 1)t−i+h−1)

=

j+h−1∑

i=0

(−1)ivi,j+h−1D
−i+h−1(g)([ǫ]− 1)t−i+h−1
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avec

vi,t =

t∑

k=i

(−1)k
(
t

k

)
k!

(k − i)!

=

t∑

k=i

(−1)k
(
u

k

)
k(k − 1) . . . (k − i+ 1)

=(
di

dX i
(1−X)t)|X=1

Donc, seul vt,t est non nul, il vaut (−1)tt! et on obtient finalement

p−nj(pΦ)−n(Z(h)
j ) =p−nj(pΦ)−n((j + h− 1)!D−j(g)([ǫ]− 1)t−j)

=(pΦ)−n((j + h− 1)!D−j(g)([ǫ]− 1))t−j

Il s’agit donc de montrer que pn(s′−1−h+1)Φ−n(D−j(g)([ǫ]−1)) tend vers 0 pour
s′ ≥ h+ u. On applique pour cela le lemme 3.1.1 à D−j(g) ∈ Hψ=0

∞ ⊗Dp(V )
qui est p−uϕ−-bornée pour obtenir que

||pn(s′−h)Φ−n(D−j(g)([ǫ]− 1))||max = pn(h+u−s′)||pnu(1 ⊗ ϕ)−nD−j(g)||ρn

tend vers 0 lorsque n→∞. Cela termine la démonstration du théorème 3.3.

3.4.6. Revenons sur le cas où Dh(g)(0) 6∈ (1 − phϕ)Dp(V ). Rappelons que le

fait que Dp(V )ϕ=p−h 6= 0 avec Fil−hDp(V ) = Dp(V ) implique que V (−h)GK

est non nul.
On voit alors apparâitre dans le cocycle définissant le point P

(h)
n,k (G) un terme

de la forme
ck,h

pn . Ce terme est signe de l’existence d’un pôle dans ΩV,h(g). Il

disparâıt si l’on remplace g par g̃ = (χ(γ)−hγ − 1)g (on a alors Dh(g̃)(0) = 0),
d’où la définition

ΩV,h(g) = (χ(γ)−hγ − 1)−1ΩV,h(g̃) .

Il disparâıt aussi lorsqu’on remplace par h par h + 1 et cela s’explique par la
formule :

ΩV,h+1(g) = ℓhΩV,h(g)

et le fait que χ(γ)−hγ− 1 divise lh. Que peut-on dire du résidu, c’est-à-dire de
π0,−h((χ(γ)−hγ − 1)ΩV,h(g) ? D’après la deuxième formule, il s’agit de

π̃0,−h(ΩV,h+1(g)) = P̃
(h+1)
0,−h = TrK1/K0

(P̃
(h+1)
0,−h )

= res∞ expV (−h),f(bh ⊗ eh, (1− p−h+1ϕ−1)Dh(G)(0)⊗ eh) .

Le cocycle associé (restreint à K∞) est

τ 7→ (τ − 1)Eul(Dh(g)([ǫ]− 1)th) .
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On peut supposer que bh = Dh(g)(0) car

Dh(g)([ǫ]− 1)th ≡
(1− Φ)(Dh(G)([ǫ]− 1)th) +Dh(g)(0)th mod (1− Φ)(th ⊗Dp(V )) .

Le premier terme disparâıt lorsqu’on applique (τ − 1)Eul pour τ ∈ GK∞ , on
obtient donc

(τ − 1)Eul(Dh(g)(0)th) .

Dans ce cas, Eul(Dh(g)(0)th) appartient en fait à Q̂nr
p ⊗Dp(V (−h)) = Q̂nr

p t
h⊗

Dp(V )eh, où Q̂nr
p est le complété de l’extension maximale non ramifiée de Qp,

c’est-à-dire que comme il est bien connu, on n’a pas besoin de passer dans ce
cas à Bcris. Par exemple, prenons V = Qp(h) et Dh(g)(0) = 1, on est donc en
train de construire un élément de H1(K∞,Qp)

G∞ par la recette

τ 7→ (τ − 1)Eul(th) .

Il s’agit en fait de résoudre l’équation (1−ϕ)Ω = 1, ce qui se résoud dans Q̂nr
p .

0n a dans ce cas un isomorphisme

H1
f/e(K,Qp) = H1

/e(K,Qp) ∼= H1(K∞,Qp)
G∞ = HomG∞(GabK∞ ,Qp)

Cette situation ne se produit pas si V GK∞ = 0. On ne le voit non plus pas très
bien si V (−i)GK 6= 0 pour un i < h à cause des relations du type

ΩV,h+1(g) = ℓhΩV,h(g)

qui font disparâıtre le pôle. Cependant cela doit apparâıtre en théorie globale
avec une bonne normalisation des “facteurs Γ”.

4. Lois de réciprocité

On désigne toujours par γ un générateur fixé de Γ et on pose γn = γp
n−1

.

4.1. L’application exponentielle duale. Ce paragraphe repose sur les
théorèmes de Tate dont on rappelle ici l’énoncé : on note K̂∞ le complété de
K∞.

4.1.1. Théorème. (Tate)

1. H1(K∞,Cp) = 0, H0(K∞,Cp) = K̂∞ ;

2. Pour n ≥ 1, il existe un unique isomorphisme TKn : K̂∞/(γn − 1)→ Kn

induisant 1
pm−nTrKm/Kn

sur Km ;

3. Hm(K∞/Kn, K̂∞(i)) = 0 pour i 6= 0 ; H0(K∞/Kn, , K̂∞) = Kn et

H1(K∞/Kn, , K̂∞) ∼= Kn où cette dernière application est donnée par

H1(Γn, K̂∞) = K̂∞/(γn − 1) → Kn

c 7→ cγn 7→ 1
logχ(γn)TKn(cγ)

Documenta Mathematica 4 (1999) 219–273



244 Bernadette Perrin-Riou

Avec cette normalisation, on a TKm = pn−mTrKn/Km
◦ TKn pour n ≥ m ≥ 1.

On a le diagramme commutatif pour m ≤ n

H1(K∞/Kn, K̂∞) → K̂∞/(γp
n − 1) → Kn

res ↑ ↑ ↑
H1(K∞/Km, K̂∞) → K̂∞/(γp

m − 1) → Km

où la deuxième flèche verticale est donnée par c 7→ ∑pn−m−1
i=0 γip

m

c et la
troisième par l’inclusion. Remarquons aussi que si x ∈ Km avec m ≥ n ≥ 1,
on a TKn(x) = 1

pm−nTrKm/Kn
(x).

4.1.2. Construisons une famille d’applications λk,n : B
GK∞
dR → Kn pour n ≥ 0

et k ∈ Z.
On rappelle que FiliBdR/Fili+1 BdR = Cp(i) en tant que GK-modules. La

nullité de H1(K∞,Cp) implique que FiliB
GK∞
dR /Fili+1B

GK∞
dR = K̂∞(i). On

déduit alors de la nullité des Hm(G∞, K̂∞(i)) pour i 6= 0 que γn − 1 est

inversible sur Fil1B
GK∞
dR de même que sur B

GK∞
dR /Fil0B

GK∞
dR et donc que

B
GK∞
dR /(γn − 1)B

GK∞
dR

∼=B+
dR

GK∞ /(γn − 1)B+
dR

GK∞

=B+
dR

GK∞ /Fil1BdR
GK∞ /(γn − 1)

=K̂∞/(γn − 1)K̂∞ .

En composant avec TKn , on obtient une application λ0,n : B
GK∞
dR → Kn. Les

applications λk,n : B
GK∞
dR /(χ(γn)−kγn − 1)B

GK∞
dR → Kn sont obtenues par

twist :

B
GK∞
dR

×t−k

→ B
GK∞
dR /(γn − 1)

λ0,n→ Kn .

On a ainsi λk,n(b) = λ0,n(t−kb).

Lemme. Les applications λk,n vérifient :

1. λk,n(τx) = χ(τ)kλk,n(x) ;
2. TrKm/Kn

(λk,n(x)) = pm−nλk,n(x) pour m ≥ n.
3. Soit G ∈ H∞. Alors, pour m ≥ n et k ≥ 0

λk,n(G(βm − 1)) =
1

pm−n
TrKm/Kn

(Dk(G)(ζm − 1))

pmkk!

Démonstration. Démontrons la troisième assertion. Remarquons d’abord qu’il
est facile de calculer λk,n sur un élément de Km((t)). En effet, si α ∈ Km et
m ≥ n, on a λk,n(αti) = 0 si i 6= k et 1

pm−nTrKm/Kn
(α) si i = k. Le premier

cas vient de ce que χ(γn)i−kγn − 1 est un isomorphisme sur K̂∞, le deuxième
de ce que λk,n(αti) = λ0,n(α) = TKn(α).
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Si on utilise le fait que βm = ζme
t/pm

, on obtient que

G(βm − 1) =

∞∑

j=0

Dj(G)(ζm − 1)

j!

tj

pmj

et donc que

λk,n(G(βm − 1)) =λk,n(
Dk(G)(ζm − 1)

k!

tk

pmk
)

=pn−m
TrKm/Kn

(Dk(G)(ζm − 1))

k!pmk

Remarquons (ce qui a été utilisé dans la démonstration) que si f =∑
j aj(f)tj ∈ Kn((t)), on a λk,n(f) = ak(f) et que l’on peut définir une applica-

tion Tn de K∞((t)) dans Kn((t)) par Tn(f) = p−n
∑
k λk,n(f)tk. Un résultat

important de Colmez est que Tn se prolonge en une application continue de

B
GK∞
max dans Kn((t)). Nous n’en avons pas besoin pour la démonstration de la

loi de réciprocité pour l’application ΩV,h que nous avons construite ici. Ce pro-
longement semble par contre fondamental dans l’extension qu’en donne Colmez.

4.1.3. Rappelons le théorème de Kato relatif à l’application exponentielle
duale. Si W est une représentation p-adique de de Rham de GQp et L une
extension algébrique de Qp, on note exp∗W∗(1),L,/u∗ l’application duale de

l’application exponentielle expW∗(1),L,u avec u ∈ {e, f} et e∗ = g, f∗ = f .
On pose

λW,L = exp∗W∗(1),L,/g : H1(L,W )→ L⊗ Fil0 DdR(W ) .

En notant par < ., . >W,L le cup produit :

H1(L,W )×H1(L,W ∗(1))→ H2(L,Qp(1)) ∼= Qp

et [., .]DdR(W ) la dualité naturelle

L⊗DdR(W )× L⊗DdR(W ∗(1))→ L
TrL/Qp→ Qp ,

on a donc par exemple la formule

< x, expW∗(1),L,e(b) >W,L= [exp∗W∗(1),L,/g(x), b]Dp(W ) = [λW,L(x), b]Dp(W ) .

On fera attention que

< expW,L,e(a), y >W,L= −[a, exp∗W,L,/g(y)]Dp(W ) = −[a, λW∗(1),L(y)]Dp(W ) .

Proposition. L’application λV (k),Kn
: H1(Kn, V (k)) → Kn ⊗

Fil0 DdR(V (k)) peut se calculer de la manière suivante : soit τ 7→ cτ un
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cocycle de GKn à valeurs dans B
GK∞
dR ⊗ DdR(V ) ayant même image que

x ∈ H1(Kn, V (k)) dans H1(Kn, BdR ⊗ V ) ; alors,

λV (k),Kn
(x) = λ−k,n(

cγn

logχ(γn)
) .

Démonstration. L’existence de c vient de ce que H1(K∞, BdR⊗V ) = 0, ce qui
implique que l’application inflation suivante est un isomorphisme :

H1(G∞, (BdR ⊗ V )GK∞ ) = H1(G∞, B
GK∞
dR ⊗DdR(V ))

∼=→ H1(K,BdR ⊗ V ) .

Kato démontre que si x est représenté par un cocycle τ 7→ dτ , les deux cocycles
de GKn à valeurs dans BdR ⊗ V donnés par τ 7→ λV,Kn(x) logχ(τ) et par
τ 7→ dτ ont même image dans H1(Kn, BdR ⊗ V ). Colmez remarque alors
qu’on peut remplacer d par le cocycle τ 7→ cτ ayant même image que d dans
H1(Kn, BdR ⊗ V ). On en déduit que λV,Kn(x) logχ(γn) ≡ cγn mod γn − 1 et
donc que

λV,Kn(x) logχ(γn) = λ0,n(λV,Kn(x) logχ(γn)) = λ0,n(cγn) .

Pour passer à V (k), il suffit de faire un twist convenable.

Remarques : 1) L’image de H1(Gn, V
GK∞ ) dans Kn ⊗ Fil0 DdR(V ) par

λV,K est égale à V GK = Fil0 DdR(V )ϕ=1. Notons λ̃V (k),Kn
le composé de

λV (k),Kn
avec la projection modulo V (k)GK .

2) On a le diagramme commutatif

H1(K,V )
↓

H1(K,BdR ⊗DdR(V ))
∪ logχ← H0(K,BdR ⊗DdR(V )) = K ⊗DdR(V )

∼=↑ ↓ ||
H1(G∞, B

GK∞
dR ⊗DdR(V ))

∪ logχ← B
GK∞
dR ⊗DdR(V )/(γ − 1) → K ⊗DdR(V )

où logχ est vu comme élément de H1(K,Qp) = H1(G∞,Qp) = Hom(G∞,Qp).

4.2. Loi de réciprocité (Enoncés).

4.2.1. Théorème. (Colmez) Soit h un entier tel que Fil−hDdR(V ) =
DdR(V ). Soit g ∈ D∞,e(V ), G une solution compatible des équations
(1 − prΦ)Gr = Dr(g). Alors, pour tout entier k ≤ −h et pour tout entier
n ≥ 1, on a

λ̃V (k),Kn
(π̃n,k(ΩV,h(g))) ≡

pn(k−1)(1⊗ ϕ)−nD−k(G)(ζn − 1)

(−k − h)!
⊗ e−k mod V (k)GK .
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Remarquons que sous les hypothèses du théorème, V (k)GK = 0 sauf peut-être
pour k = −h.
Rappelons que l’on a par définition même de ΩV,h(g) les formules pour k ≥ 1−h,

logV (k),n(πn,kΩV,h(g)) ≡ (−1)h+k−1(h+ k − 1)!×
× pn(k−1)(1⊗ ϕ)−nD−k(G)(ζn − 1)⊗ e−k mod Fil0 Dp(V (k)) .

Pour uniformiser les formules, posons (cf. [5]) Γ∗(k) = (k − 1)! si k > 0 et
(−1)k/(−k!) si k ≤ 0. On a encore l’équation fonctionnelle : Γ∗(k+1) = kΓ∗(k)
pour tout k ∈ Z sauf pour k = 0. On obtient alors que

pn(k−1)(1⊗ ϕ)−nD−k(G)(ζn − 1)

Γ∗(−k − (h− 1))
=

{
logV (k),n(πn,kΩV,h(g)) si h+ k − 1 > 0

λV (k),Kn
(πn,k(ΩV,h(g))) si h+ k − 1 < 0

(4.2.1)

On peut aussi remarquer que

Γ∗(−k) =

h−1∏

i=1

(−k − i).Γ∗(−k − (h− 1))

à condition que k 6∈ {−h+ 1, · · ·− 1}. Le produit
∏h−1
i=1 (−k− i) est un produit

de h− 1 termes et c’est aussi la valeur de
∏h−1
i=1 ℓi sur le caractère χ−k. On a

donc aussi

pn(k−1)(1⊗ ϕ)−nD−k(G)(ζn − 1)

Γ∗(−k)
=

{
logV (k),n(ΩV,1(g)) si k ≥ 0

λV (k),Kn
(πn,k(ΩV,1(g))) si k ≤ −h

en posant ΩV,1 = (
∏h−1
i=1 ℓi)

−1ΩV,h. On a en effet alors

πn,k(ΩV,1(g)) = (

h−1∏

i=1

(−i− k))−1πn,k(ΩV,h)

On a bien sûr perdu un certain nombre de termes.

4.2.2. Il est commode de transformer le théorème 4.2.1 et de le mettre sous
la forme de la conjecture Réc(V ) de [4]. Cela permettra ensuite d’obtenir de
nouvelles formules que nous donnerons dans le §5.2. Nous supposons dans la
fin du §4.2 que V est une représentation cristalline.
Rappelons que l’on a un accouplement naturel sesquilinéaire par rapport à
l’involution ι induite par τ 7→ τ−1

Z1
∞(K,V )× Z1

∞(K,V ∗(1))→ Qp ⊗ Λ

donnée par

< x, y >V = lim
←
n

∑

τ∈Gn

< τ−1πn,0(x), πn,0(y) >V,Kn τ
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où < , >V,Kn est l’accouplement de Kummer H1(Kn, V )×H1(Kn, V
∗(1))→

Qp. Il vérifie pour tout entier i

Tw−i(< x, y >V ) =< Twi(x), Tw−i(y) >V (i) .

On a d’autre part l’accouplement naturel

Dp(V )×Dp(V
∗(1))→ Qp .

On prolonge respectivement ces deux accouplements par extension des scalaires
à K(G∞) :

< ., . >V : K(G∞)⊗Λ Z
1
∞(K,V )×K(G∞)⊗Λ Z

1
∞(K,V ∗(1))→ K(G∞)

et

[ ., .]Dp(V ) : K(G∞)⊗Λ Dp(V )×K(G∞)⊗Λ Dp(V
∗(1))→ K(G∞)

On note de la même manière l’accouplement qui s’en déduit sur Hψ=0
∞ ⊗

Dp(V ) × Hψ=0
∞ ⊗ Dp(V ). Notons encore ι l’involution de Hψ=0

∞ correspon-
dant à l’involution ι précédemment définie sur H(G∞). Enfin, notons σ−1

l’élément de G∞ agissant sur les racines de l’unité par ζ 7→ ζ−1. On a donc
σ−1(1 + T ) = (1 + T )−1.

4.2.3. Théorème. (Réc(V )) Supposons que V est une représentation
cristalline. On a pour tout entier h

<ΩV,h(g1), σ−1ΩV ∗(1),1−h(g2)>V .(1 + T ) = (−1)h[g1, ι(g2)]Dp(V ) .

Autrement dit, l’inverse de ΩV,h est au signe près l’adjoint de ΩV ∗(1),1−h.

Ainsi, au lieu de commencer à construire ΩV,h à partir des exponentielles de
Bloch-Kato, on aurait pu construire Ω∗V ∗(1),1−h à partir de l’exponentielle duale,

ou son inverse, ou l’adjoint de son inverse. Remarquons que l’application ΩV,h
dépend du choix de ǫ. Appliquer σ−1 revient à changer ǫ en ǫ−1.
Nous donnerons au §5 les formules sur l’application inverse LV,h de ΩV,h se
déduisant de ce théorème.

Démonstration. Montrons comment le théorème 4.2.3 se déduit du théorème
4.2.1. On s’appuie sur les formules données dans l’appendice A.2. On
vérifie facilement que cela ne dépend pas de h, on prend alors h tel que

Fil−hDp(V ) = Dp(V ). Soit h∗ tel que Fil−h
∗
Dp(V

∗(1)) = Dp(V
∗(1)). On

a alors Filh
∗
Dp(V ) = 0. Prenons k tel que −k ≥ 1 − h et k < −h∗. On

pose x = ΩV,h(g1) et y = ΩV ∗(1),h∗(g2). On note encore abusivement πn,k la
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projection H(G∞)⊗ Z1
∞(K,T ∗(1))→ H1(Kn, V

∗(1)(k)). On a alors

sn,k(< ΩV,h(g1),ΩV ∗(1),1−h(g2) >V )

= sn,k(< ΩV,h(g1), (
∏

−h<j<h∗

ℓj)
−1ΩV ∗(1),h∗(g2) >V )

= sn,k(< (
∏

−h<j<h∗

−ℓ−j)−1x, y >V )

=
(−k − h∗)!

(−k + h− 1)!
< πn,−k(x), πn,k(y) >V (−k),Kn

car πn,−k(ℓ−jx) = (j + k)πn,−k(x) ;

= − (−k − h∗)!
(−k + h− 1)!

TrKn/K([logV (−k),Kn
πn,−k(x), λV (k),Kn

(πn,k(y))]Dp(V (−k)))

(remarquons que πn,−k(x) ∈ H1
e (Kn, V (−k)) sous les hypothèses faites sur

k : Fil0 DdR(V (−k)) = 0 ; le signe − provient de 4.1.3). Exprimons le
dernier terme à l’aide de g1 et g2. Avec (1 − pkΦ)Dk(G1) = Dk(g1) et
(1− p−kΦ)D−k(G2) = D−k(g2), on a

(−k − h∗)!
(−k + h− 1)!

< πn,−k(x), πn,k(y) >V (−k),Kn

= (−1)h−kp−nTrKn/K([Dk(G1)(ζn − 1), D−k(G2)(ζn − 1)]Dp(V (−k)))

en utilisant les formules (4.2.1) et

[ϕu, ϕv]Dp(V (−k)) = p−1[u, v]Dp(V (−k)) .

Ce qui vaut pour n ≥ 1,

(−1)h−kp−n
∑

ζ∈µpn−µpn−1

[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V ) .

On remarque que pour n > 1
∑

ζ∈µpn−µpn−1

[Dk(G1)(ζp − 1), D−k(g2)(ζ − 1)]Dp(V ) = 0

car ψ(g2) = 0 et idem en renversant les rôles de G2 et G1. Donc,

∑

ζ∈µpn−µpn−1

[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V )

=
∑

ζ∈µpn−µpn−1

[Dk(g1)(ζ − 1), D−k(g2)(ζ − 1)]Dp(V )

+ p.p−1
∑

ζ∈µpn−1−µpn−2

[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V )
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En recommençant, on en déduit que
∑

ζ∈µpn−µpn−1

[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V )

=
∑

ζ∈µpn−µp

[Dk(g1)(ζ − 1), D−k(g2)(ζ − 1)]Dp(V )

+
∑

ζ∈µp−{1}
[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V )

Enfin,

∑

ζ∈µp−{1}
[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V )

=
∑

ζ∈µp

[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V ) − [Dk(G1)(0), D−k(G2)(0)]Dp(V )

=
∑

ζ∈µp

[Dk(g1)(ζ − 1), D−k(g2)(ζ − 1)]Dp(V )

+ [Dk(G1)(0), D−k(G2)(0)]Dp(V ) − [Dk(G1)(0), D−k(G2)(0)]Dp(V )

=
∑

ζ∈µp

[Dk(g1)(ζ − 1), D−k(g2)(ζ − 1)]Dp(V )

D’où l’égalité pour n ≥ 1

p−n
∑

ζ∈µpn−µpn−1

[Dk(G1)(ζ − 1), D−k(G2)(ζ − 1)]Dp(V )

= p−n
∑

ζ∈µpn

Dk(g1)(ζ − 1), D−k(g2)(ζ − 1)]Dp(V ) .

Comme D−k ◦ σ−1 = (−1)kσ−1D
k, on obtient finalement que pour n ≥ 1,

sn,k(< ΩV,h(g1),ΩV ∗(1),1−h(g2) >V )

= (−1)hp−n
∑

ζ∈µpn

[Dk(g1)(ζ − 1), D−k(σ−1g2)(ζ−1 − 1)]Dp(V )

= (−1)hsn,k([ĝ1, σ−1ĝ
ι
2]Dp(V ))

L’égalité ayant lieu pour tout k inférieur à h et à −h∗, on en déduit que

< ΩV,h(g1),ΩV ∗(1),1−h(g2) >V = (−1)h[ĝ1, σ−1ĝ
ι
2]Dp(V ) ,

ou ce qui revient au même que

< ΩV,h(g1),ΩV ∗(1),1−h(g2) >V .(1 + T ) = (−1)h[g1, σ−1g
ι
2]Dp(V ) .
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4.2.4. Avant de passer à la démonstration de la loi de réciprocité, montrons
comment elle permet de transformer l’inégalité

o(ΩV,h(g)) ≤ h+ oϕ(g)

pour g ∈ D∞,f (V ) en égalité. On a de même

o(ΩV ∗(1),h∗(g∗)) ≤ h∗ + oϕ(g∗)

pour g∗ ∈ D∞,f (V ∗(1)) avec h∗ comme précédemment. Choisissons g∗ de
manière à ce que oϕ(g) + oϕ(g∗) = oϕ([g, σ−1g

∗ι]Dp(V )). Les inégalités déjà
montrées et le théorème 4.2.3 impliquent alors que

o(ΩV,h(g)) + o(ΩV,h∗(g∗)) ≤ oϕ(g) + h+ oϕ(g∗) + h∗

≤ o(ΩV,h(g)) + o(ΩV,h∗(g∗))

à cause du terme (
∏
−h<j<h∗ ℓj)

−1. On en déduit l’égalité

o(ΩV,h(g)) = h+ oϕ(g) .

4.3. Loi de réciprocité (Démonstration). Soient g un élément de
D∞,e(V ) et G une solution compatible des équations (1 − prΦ)Gr = Dr(g).
On suppose que g est p−uϕ−-bornée, ce qui assure que ΩV,h(g) appartient à

H(h+u)−(G∞)⊗Z̃1
∞(K,T ). Au cours de la construction de ΩV,h(G), nous avons

construit explicitement (lemme 3.4.3) un cocycle Zn,k,τ de GKn à valeurs dans
V représentant πn,k(ΩV,h(G)) pour n ≥ 0 et k + h− 1 ≥ 0 : pour τ ∈ GKn ,

Zn,k,τ = (χ(τ)kτ − 1)(en,k)

avec en,k = cn,k − Eul((1 − ϕ)cn,k) et cn,k = S
(h)
n,k,cris(G). Une remarque

fondamentale de P. Colmez est qu’on peut retrouver G à partir d’un tel cocycle
:

4.3.1. Proposition. Soit g un élément p−uϕ−-borné de Hψ=0
∞ ⊗ D et et

G une solution des équations (1 − prΦ)Gr = Dr(g). Alors, la suite

pm
∑u+h−1
j=0 (−1)j

(
u+h−1

j

)
em,j−h+1 converge dans (B

GK∞
max ⊗Dp(V ))Φ=pu

et on

a pour tout entier n ≥ 0 et tout entier k tel que k + u ≥ 0,

λk,n( lim
m→∞

pm
u+h−1∑

j=0

(−1)j
(
u+ h− 1

j

)
em,j−h+1) =

(u + h− 1)!

(k + u)!

(1⊗ ϕ)−nDk(G)(ζn − 1)

pnk
.

Remarquons que pour k + u < 0, le membre de gauche est nul.

Démonstration. La limite de pm
∑u+h−1

j=0 (−1)j
(
u+h−1

j

)
S

(h)
n,j−h+1,cris(g) est

nulle (3.4.5, c’est d’ailleurs un argument essentiel dans l’existence de

Documenta Mathematica 4 (1999) 219–273



252 Bernadette Perrin-Riou

l’homomorphisme ΩV,h) et donc par continuité de Eul, il s’agit d’étudier
la limite de

pm
u+h−1∑

j=0

(−1)j
(
u+ h− 1

j

)
S

(h)
n,j−h+1,cris(G) .

Nous avons calculé dans le §3.4.5 (avec g à la place de G, mais le calcul est
bien sûr identique)

u+h−1∑

j=0

(−1)j
(
u+ h− 1

j

)
S

(h)
m,j−h+1,cris(G) =

= (u + h− 1)!pm(u−1)Φ−mD−u(G)([ǫ]− 1)t−u

On utilise alors le lemme suivant :

Lemme. Si g est p−uϕ−-bornée, alors, pmuΦ−mD−u(G)([ǫ]−1)) a une limite

dans (B
GK∞
max ⊗Dp(V ))Φ=pu

.

Démonstration. On s’appuie sur le fait que si F ∈ H∞, F (βm − 1) existe dans
B+

max et que l’on a

||F (βm − 1)||max ∼ ||F ||ρm ,(4.3.1)

(le symbole ∼ signifiant que ||F ||ρm ≤ ||F (βm−1)||max ≤ p||F ||ρm). Rappelons
que D−u(g) = (1 − p−uΦ)D−u(G) et que ψ(D−u(g)) = 0. Posons um =
pmuΦ−mD−u(G)([ǫ]− 1) = pmu(1⊗ ϕ)−mD−u(G)(βm − 1). On a

um − um−1 =pmuΦ−m(1 − p−uΦ)(D−u(G))([ǫ] − 1)

=pmuΦ−m(D−u(g)([ǫ]− 1)) .

On a grâce à 3.1.1

||um − um+1||max ∼ ||pmu(1⊗ ϕ)−mf ||ρm

Comme g est par hypothèse p−uϕ−-borné, il en est de même de D−u(g) (voir
1.3, 1.4) ; um − um+1 tend donc vers 0 dans B+

max ⊗ Dp(V ) et la suite (um)
converge dans B+

max ⊗ Dp(V ). Il est clair que sa limite est fixe par GK∞
puisque ce groupe de Galois laise fixe les βm. Comme p−uΦ(um+1) = um, elle

appartient à (B
GK∞
max ⊗Dp(V ))Φ=pu

On déduit de ce qui précède que

λk,n( lim
m→∞

pm
u+h−1∑

j=0

(−1)j
(
u+ h− 1

j

)
Sm,j−h+1,cris(G)) =

= (u+ h− 1)!λk,n( lim
m→∞

pmuΦ−mD−u(G)([ǫ] − 1)t−u)

= (u+ h− 1)! lim
m→∞

λk+u,n(pmuΦ−mD−u(G)([ǫ] − 1))

=
(u+ h− 1)!

(k + u)!
lim
m→∞

1

pm−n
TrKm/Kn

(pmu(1⊗ ϕ)−mDk(G)(ζm − 1)

pm(k+u)
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pour k + u ≥ 0. Comme Ψ((1− pkΦ)(Dk(G))) = 0, on a
∑

ζ∈µp

Dk(G)(ζ(1 + T )− 1) = pk+1(1 ⊗ ϕ)Dk(G)((1 + T )p − 1) .(4.3.2)

On en déduit que

TrKm/Kn
((1 ⊗ ϕ)−m(Dk(G)(ζm − 1)) =

p(k+1)(m−n)(1⊗ ϕ)m−nDk(G))(ζn − 1) ,

d’où,

1

pm−n
TrKm/Kn

(pmu(1⊗ ϕ)−mDk(G)(ζm − 1)

pm(k+u)
=

(1⊗ ϕ)−nDk(G)(ζn − 1)

pkn
.

On en déduit la proposition.

4.3.2. Posons pour simplifier h̃ = h+u. Notons Amax,v = t−vAmax. On a des
applications

α : H1(G∞,Hh̃−(G∞)⊗(A
GK∞
max,v ⊗Dp(V )))

→ H1(K∞,Hh̃−(G∞)⊗ (A
GK∞
max,v ⊗Dp(V )))

et

β : Hh̃−(G∞)⊗ Z1
∞(K,T )→ H1(K,Hh̃−(G∞)⊗ V )

→ H1(K∞,Hh̃−(G∞)⊗ (A
GK∞
max,v ⊗Dp(V )))

Lemme. Il existe un élément z′ de H1(G∞,Hh̃−(G∞)⊗ (A
GK∞
max,v⊗V )) tel que

α(z) = β(ΩV,h(g)).

La démonstration utilise les résultats du type de ceux de Tate et de Sen. On
renvoie à [1, chap. IV,§1-3 et lemme VI.3.2].
Choisissons un cocycle Z ′ représentant z′. Pour j + h − 1 ≥ 0, l’image de
ΩV,h(g) dans H1(Kn, (Bmax ⊗ V (j))ϕ=1) est nulle, il en est donc de même de
celle de z′ et on a donc πn,j(Z

′
τ ) = (τ − 1) ∗j dn,j = (χ(τ)jτ − 1)dn,j.

Lemme. Avec les notations précédentes, la suite

pm
∑u+h−1
j=0 (−1)j

(
u+h−1

j

)
dm,j−h+1 a une limite dans (B

GK∞
max ⊗Dp(V ))Φ=pu

et

pour tout entier n ≥ 0 et tout entier k tel que k + u ≥ 0, on a

λk,n( lim
m→∞

pm
u+h−1∑

j=0

(−1)j
(
u+ h− 1

j

)
dm,j−h+1) =

(u+ h− 1)!

(k + u)!

(1⊗ ϕ)−nDk(G)(ζn − 1)

pnk
.
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Démonstration. Il suffit de montrer que la limite de

pm
u+h−1∑

j=0

(−1)j
(
u+ h− 1

j

)
(dm,j−h+1 − em,j−h+1)

est nulle. Or si Z est le cocycle représentant ΩV,h(g) tel que

πm,k(Z)τ = (τ − 1)(em,k) ,

on a Zτ − Z ′τ = (τ − 1)(B) avec B ∈ Hh̃− ⊗ (A
GK∞
max,v ⊗ Dp(V )) et donc

em,j−h+1 − dm,j−h+1 = sm,j−h+1(B). Il s’agit donc de montrer que

lim
m→∞

pm
h̃−1∑

j=0

(−1)j
(
h̃− 1

j

)
πm,j−h+1(B) = 0 ,

ce qui se déduit du fait que B appartient à Hh̃− ⊗Amax,v ⊗Dp(V ).

4.3.3. Prenons donc un cocycle Z ′ comme dans le paragraphe précédent et
posons Z̃ = Z ′γ . Avec les notations précédentes, on a pour i+ h− 1 > 0,

πm,i(Z
′)τ = (τ − 1) ∗i dm,i = (χ(τ)iτ − 1)dm,i

avec dm,i ∈ (A
GK∞
max,v ⊗Dp(V ))Φ=1 et τ ∈ GKm . D’où, pour i+ h− 1 ≥ 0,

πm,i(Z
′)γm = (χ(γm)iγm − 1)dm,i

et pour k 6= i

λ−k,n(dm,i) =
1

χ(γm)−k+i − 1
λ−k,n(πm,i(Z

′)γm) .

Commençons par faire le cas où m ≥ n = 1. Dans l’appendice A, est fait
le calcul explicite de πm,i(Z

′). Si Rm,i(Z̃) est le polynôme d’interpolation de

TwiZ̃ modulo γm − 1 vu comme élément de Zp[Gm]⊗M , on a

λ−k,1(πm,i(Z
′)γm) =< χ >k−i (Rm,i(Z̃))

avec M = (A
GK∞
max,v ⊗Dp(V ))Φ=1. D’où

lim
m→∞

λ−k,1(

h̃−1∑

j=0

(−1)j
(
h̃− 1

j

)
pmdm,j−h−1)

= λ−k,1( lim
m→∞

h̃−1∑

j=0

(−1)j
(
h̃− 1

i

)
pm < χ >k−j+h−1 (Rm,j−h+1(Z̃))

< χ > (γm)j−h+1−k − 1
) .

On applique alors la proposition de l’appendice B à Tw−h+1Z̃ (avec k remplacé

par k + h − 1, h par h̃ et < χ > (γ) par < χ > (γ)−1) et on obtient que pour
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k n’appartenant pas à {1− h, · · · , u}

lim
m→∞

λ−k,1(

h̃−1∑

j=0

(−1)j
(
h̃− 1

j

)
pmdm,j−h−1)

= (−1)h̃
(h̃− 1)!

(k + h− 1) · · · (k − u)

λ−k,1(< χ >k (Z̃))

log < χ > (γ)

Lorsque n est quelconque (avec toujours m ≥ n), on décompose πm,i(Z
′)γm

sous la forme d’une somme de termes de la forme πm,i(Z
′)(j)γmγ

j ∈
Qp[Gal(Km/Kn)]γj pour j compris entre 0 et pn−1 − 1, ce qui re-
vient à remplacer le groupe Γ par le groupe Γn, on utilise le fait que
λ−k,n(τx) =< χ >−k (τ)λ−k,n(x) pour τ ∈ Γn (cela n’est pas vrai pour γj

avec j = 0, · · · , pn−1 − 1) et on procède ensuite de la même manière. On
obtient alors de nouveau que pour k n’appartenant pas à {1− h, · · · , u}

lim
m→∞

λ−k,n(

h̃−1∑

j=0

(−1)j
(
h̃− 1

j

)
pmdm,j−h−1)

= (−1)h̃
(h̃− 1)!

(k + h− 1) · · · (k − u)

λ−k,n(< χ >k (Z̃))

log < χ > (γ)

Le premier membre vaut pour −k + u ≥ 0,

(h̃− 1)!

(−k + u)!
pnk(1⊗ ϕ)−nD−k(G)(ζn − 1) .

D’où,

(h̃− 1)!

(−k + u)!
pnk(1⊗ ϕ)−nD−k(G)(ζn − 1) =

(−1)h̃
(h̃− 1)!

(k + h− 1) · · · (k − u)

λ−k,n(< χ >k (Z̃))

logχ(γ)
.

Grâce au lemme de Kato

λ−k,n(< χ >k (Z̃))

pn logχ(γ)
= λV (k),n(πn,k(z)) .

D’où,

λV (k),Kn,/g(πn,k(z)) =

(−1)h̃(k + h− 1) · · · (k − u)

(−k + u)!
p(k−1)n(1⊗ ϕ)−nD−k(G)(ζn − 1)

pour k− u < 0 et k 6= 1− h, . . . , u, c’est-à-dire k < 1− h. En posant k̃ = k− u
(on a toujours h̃ = h+u), on trouve que le coefficient dans le membre de droite
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est

C =
(−1)h̃(k̃ + h̃− 1) · · · k̃

(−k̃)!
=
k̃′ · · · (k̃′ − h̃+ 1)

k̃′!

avec k̃′ = −k̃ ≥ h

=
1

(k̃′ − h̃)!
=

1

(−k − h)!
.

D’où,

λV (k),Kn
(πn,k(z)) =

pn(k−1)(1⊗ ϕ)−nD−k(G)(ζn − 1)

(−k − h)!

Ce qui termine la démonstration du théorème 4.2.1.

5. Quelques conséquences

On suppose dans ce paragraphe V cristalline. Nous trouvons commode
d’identifier ici Zp[[G∞]] avec Zp[[T ]]ψ=0 et H(G∞) avec Hψ=0

∞ par l’application

induite par τ 7→ (1 + T )χ(τ) pour τ ∈ G∞. On a donc canoniquement
D∞,f (V ) = H(G∞)⊗Dp(V ).
Pour tout entier r, on note LV,r l’inverse de ΩV,r. Il est donc à valeurs dans
K(G∞)⊗Dp(V ).

5.1. Déterminant et inverse de ΩV,h. Si Fil−hDp(V ) = Dp(V ),
on note δh(ΩV ) l’idéal suivant de Qp ⊗ K(G∞) : c’est l’image par
l’application déterminant det ΩV,h du Qp ⊗ Λ-module detQp⊗Λ(Λ ⊗Dp(V )) ⊗
⊗i∈{1,2}(detQp⊗Λ Z

i
∞(K,V ))(−1)i

où Z2
∞(K,V ) = Qp ⊗ lim

←
n

H2(Kn, T ) ∼=

(V ∗(1)GK∞ )∗. Ainsi, si B est une base du Qp-espace vectoriel Dp(V ) et B′
un système libre de Z1

∞(K,T ) engendrant un Λ-module Z de Z1
∞(K,T ), si

detB′ ΩV,h(B) est le déterminant de ΩV,h dans les systèmes libres B et B′, si
FZ1

∞(K,T )/B est une série caractéristique du module Z1
∞(K,T )/Z et FT∗(1)GK∞

une série caractéristique de T ∗(1)GK∞ , on a

δh(ΩV ) = FZ1
∞(K,T )/B(F ι

T∗(1)GK∞ )−1detB′ΩV,h(B)Λ .

On pose ensuite

δ(ΩV ) =
∏

j>−h
ℓ
− dimQp Filj Dp(V )

−j δh(V )

qui est indépendant de h à condition que Fil−hDp(V ) = Dp(V ). Il est
démontré dans [4] que δ(V ) est contenu dans Qp⊗Λ et que (Réc(V)) implique
que δ(V ) = Qp ⊗ Λ. On obtient ainsi le théorème.
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5.1.1. Théorème. (δ(V )) Si V est une représentation cristalline, alors

δ(ΩV ) = Qp ⊗ Λ .

Soit h ≥ 1 tel que Fil−hDp(V ) = Dp(V ). On déduit de δ(V ) que

Lh(z) ∈
∏

j>−h
ℓ
− dimQp Filj Dp(V )

−j (F ι
T∗(1)GK∞ )−1H(G∞)⊗Dp(V ) .

En particulier, si Frac(Λ) est l’anneau total des fractions de Λ,

Lh(z) ∈
∏

j>−h
ℓ
− dimQp Filj Dp(V )

−j Frac(Λ)H(G∞)⊗Dp(V ) .

Soit h∗ ≥ 1 tel que Filh
∗
Dp(V ) = 0 (remarquons que cela est équivalent à dire

que Fil−h
∗
Dp(V

∗(1)) = Dp(V
∗(1))). Dans le cas où V contient Qp(h), (resp.

où V ∗(1) contient Qp(h
∗)), on augmente h (resp. h∗) de 1. En utilisant le fait

que V ∗(1)GK∞ est de la forme ⊕j∈JV ∗(1)(−j)GK (j) avec J un sous-ensemble
de ]− h∗, . . . h[, on en déduit qu’il existe des entiers αj pour −h < j < h∗ tels
que LV,h(

∏
−h<j<h∗ ℓ

αj

−jx) ∈ H(G∞)⊗Dp(V ). On a en fait la proposition plus
précise suivante.

5.1.2. Proposition. Si x ∈ H(G∞)⊗ Z1
∞(K,T ), alors

L−h∗(x) =
∏

−h<j<h∗

ℓ−jLh(x)

appartient à H(G∞)⊗Dp(V ).

Remarquons que x′ =
∏
−h<j<h∗ ℓ−jx vérifie automatiquement la condition

que πn,k(x′) ∈ H1
e (Kn, V (k)) pour tout k ≥ 1− h.

Démonstration. Soit g = LV,h(
∏
−h<j<h∗ ℓ

αj

−jx) ∈ H(G∞)⊗Dp(V ) avec αj ≥
1. On désire montrer que si αj ≥ 2, il est possible de diviser g par ℓ−j dans
H(G∞) ⊗Dp(V ), c’est-à-dire que g s’annule sur tout caractère du type χ−jη
avec η d’ordre fini. Soit g2 ∈ H(G∞) ⊗Dp(V

∗(1)) quelconque, on a alors en
remarquant que ΩV ∗(1),1−h = (

∏
−h<j<h∗ lj)

−1ΩV ∗(1),h∗

(−1)h[g, σ−1g
ι
2]Dp(V ) =< ΩV,h(g), (

∏

−h<j<h∗

lj)
−1ΩV ∗(1),h∗(g2) >V

=<
∏

−h<j<h∗

ℓ
αj−1
−j x,ΩV ∗(1),h∗(g2) >V ∈

∏

−h<j<h∗

ℓ
αj−1
−j H(G∞) .

(5.1.1)

Ainsi, si αj ≥ 2, le dernier terme est nul sur tout caractère ηχ−j ; comme g2
est quelconque, cela implique qu’il en est de même de g qui est donc divisible
par ℓ−j.
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5.1.3. Proposition. Soit J un ensemble fini d’entiers contenu dans {−h +
1, . . . , h∗ − 1} et Jc le complémentaire de J dans {−h + 1, . . . , h∗ − 1}. On
suppose que x ∈ H(G∞)⊗Z1

∞(K,T ) vérifie πn,k(x) ∈ H1
e (Kn, V (k)) pour tout

entier n ≥ 0 et pour tout k ∈ J . Alors, gh,h
∗,J

x =
∏
j∈Jc ℓ−jLh(x) appartient à

H(G∞)⊗Dp(V ). Autrement dit,
∏
j∈Jc ℓ−j.x appartient à l’image de H(G∞)⊗

Dp(V ) par ΩV,h. De plus, oϕ(gh,h
∗,J

x ) = o(x) + h∗ − ♯J − 1.

Démonstration. On prend g = LV,h(
∏
−h<j<h∗ ℓ−jx). On a alors comme précé-

demment

(−1)h[g, σ−1g
ι
2]Dp(V ) =< x,ΩV ∗(1),h∗(g2) >V .(5.1.2)

Soit k ∈ J . Il s’agit de montrer que ℓ−k divise g. Comme h∗ − k − 1 ≥ 0,
πn,−k(ΩV ∗(1),h∗(g2)) appartient à H1

f (Kn, V (k)∗(1)), on en déduit que pour

tout g2 ∈ H(G∞) ⊗ Dp(V ), χ−kη([g, σ−1g
ι
2]Dp(V )) = 0 pour tout caractère

d’ordre fini (cf. Appendice A.2, rappelons que l’orthogonal de H1
f (Kn, V (k))

est égal à H1
f (Kn, V (k)∗(1)) pour la dualité locale). Donc g est divisible par

ℓ−k.
La formule sur l’ordre de tempérence se déduit de ce que

oϕ(gh,h
∗,J

x ) + h = o(x) + h+ h∗ − 1− ♯J ,

(cf. 3.3).

Prenons par exemple comme dans [1] J = {−r + 1, · · · , 0} avec r = o(x). On
a donc alors

oϕ(gh,h
∗,J

x ) = h∗ − 1 .

Ainsi, gh,h
∗,J

x est p−(h∗−1)ϕ−-bornée. On peut alors appliquer le lemme 4.3.2 :
si l’on choisit un cocycle Z(y) représentant y =

∏
j∈Jc ℓ−jx avec πn,k(Z(y)τ ) =

(χ(τ)kτ − 1)dn,k(y) pour k > −h, la limite de

pn
h∗−1∑

j=−h+1

(−1)j+h−1

(
h∗ + h− 2

j + h− 1

)
dn,j(y)

existe et vaut

lim
m→∞

pm(h∗−1)Φ−m(D−(h∗−1)(G)([ǫ]− 1))t−(h∗−1) =

lim
m→∞

Φ−m(D−(h∗−1)(G)([ǫ]− 1)t−(h∗−1)) .

On remarque alors que l’on peut d’abord choisir un cocycle Z(x) représentant
x avec πn,k(Z(x)τ ) = (χ(τ)kτ − 1)dn,k(x) pour k > −h et que l’on peut alors
prendre

dn,k(y) = (
∏

j∈Jc

j − k)dn,k(x)
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pour j ∈ {−h+ 1, · · · , h∗− 1} ; en particulier, dn,k(y) est nul pour k ∈ Jc. Un
calcul élémentaire montre que

1

(h+ h∗ − 2)!

h∗−1∑

j=−h+1

(−1)j+h−1

(
h∗ + h− 2

j + h− 1

)
dn,j(y)

=
1

(r − 1)!

0∑

j=−r+1

(−1)j+r−1

(
r − 1

j + r − 1

)
dn,j(x)

Faisons-le ! Le premier terme vaut

1

(h+ h∗ − 2)!

0∑

j=−r+1

(−1)j+h−1

(
h∗ + h− 2

j + h− 1

) −r∏

k=−h+1

(k − j)
h∗−1∏

k=1

(k − j)dn,j(x) .

On a pour j compris entre −r + 1 et 0

(−1)j+h−1

(h+ h∗ − 2)!

(
h∗ + h− 2

j + h− 1

) −r∏

k=−h+1

(k − j)
h∗−1∏

k=1

(k − j)

= (−1)r+1−j 1

(h+ j − 1)!(h∗ − j − 1)!

(h+ j − 1)!

(r + j)!

(h∗ − 1− j)!
(−j)!

= (−1)r+1−j 1

(r − 1 + j)!(−j)! =
(−1)r−1−j

(r − 1)!

(
r − 1

j + r − 1

)
.

La limite de la suite pn

(r−1)!

∑0
j=−r+1(−1)j+r−1

(
r−1
j+r−1

)
dn,j(x) lorque n → ∞

est ce que Colmez appelle Log
(r)
V (x) modulo un isomorphisme entre (B

GK∞
max ⊗

Dp(V ))Φ=1 et H(G∞)⊗Dp(V ) (voir appendice C). Ainsi,

1

(h+ h∗ − 2)!
lim
m→∞

pm(h∗−1)Φ−m(D−(h∗−1)(G)([ǫ]− 1))t−(h∗−1) = Log
(r)
V (x)

pour ΩV,h(g) =
∏
j∈{−h+1,...,−r}∪{1,··· ,h∗−1} ℓ−j .x. Remarquons que l’on peut

préciser dans quel cran de la filtration il est. A priori, on obtient un élément

de (Fil−(h∗−1)B
GK∞
max ⊗Dp(V ))Φ=1.

5.2. Un formulaire. Nous allons essayer de donner un formulaire complet.
On a les formules

LV,r = ℓrLV,r+1

LV (k),r+k(Twk(z)) = D−k(LV,r) .

Nous avons ici abandonné l’idée de ne pas identifier Dp(V (k)) avec Dp(V ) !

Nous réserverons la notation h pour un entier tel que Fil−hDp(V ) = Dp(V ).
On fait agir ϕ sur Kn ⊗Dp(V ) par 1⊗ ϕ. Soient ρ =< χ >kρ ηρ où kρ est un

entier et ηρ un caractère d’ordre fini et de conducteur pf(ηρ). On note logV (ρ) et
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expV (ρ),∗ le logarithme et les exponentielles associés à la représentation twistée

V (ρ) et πρ l’application composée

Z1
∞(K,V )

πk,f(ηρ)→ H1(Kf(ηρ), V (k))
e

η
−1
ρ→ H1(Kf(ηρ), V (k))(ηρ) = H1(K,V (ρ))

Enfin, on pose

Γ∗(ρ) = Γ∗(k − h+ 1)

Pρ(ϕ) =

{
pfηkρϕ−fη si η est non trivial

(1− pkρ+1ϕ−1)(1 − p−kρϕ) si η est le caractère trivial

ℓρ = lk(ρ) =
log ρ−1(τ)τ

χ(τ)

G(ρ) = G(ηρ)

La proposition suivante est une simple traduction de résultats déjà démontrés:

5.2.1. Proposition. Soit x ∈ H(G∞) ⊗ Z1
∞(K,V ) appartenant à l’image de

H(G∞)⊗Dp(V ). Soit ρ un caractère géométrique de G∞.

1. Si kρ ≥ 1− h,

P (ϕρ)(ρ
−1(LV,h(x))) = G(ρ−1)

logV (ρ)(πρ(x))

Γ∗(ρχh−1)

2. Si kρ < 1− h,

Pρ(ϕ)(ρ−1(LV,h(x))) = G(ρ−1)
λV (ρ),(πρ(x))

Γ∗(ρχh−1)

On ne suppose maintenant plus que x est dans l’image de H(G∞)⊗Dp(V ). Il
ne l’est en particulier pas si πn,k(x) n’appartient pas à H1

g pour tout n ≥ 0 et
k ≥ 1− h. On trouvera la démonstration des formules suivantes dans [7].

5.2.2. Proposition. Soit x ∈ H(G∞)⊗ Z1
∞(K,V ).

1. Si Filkρ Dp(V ) = Fil0 Dp(V (ρ)) = 0 et si Dp(V (ρ))ϕ=p−1

= 0,

Pρ(ϕ)ρ−1(ℓ−1
ρ−1LV,h(x)) = G(ρ−1)

logV (ρ)(πρ(x))

Γ∗(ρχh−1)
.

2. Si Fil0 Dp(V (ρ)) 6= 0 et Dp(V (ρ))ϕ=p−1

= 0, alors

Pρ(ϕ)ρ−1(LV,h(x)) = G(ρ−1)
λV (ρ),(πρ(x))

Γ∗(ρχh−1)

Si de plus πρ(x) ∈ H1
f (K,V (ρ)), on a

Pρ(ϕ)ρ−1(ℓ−1
ρ−1LV,h(x)) ≡ G(ρ−1)

logV (ρ) πρ(x)

Γ∗(ρχh−1)
mod Fil0 Dp(V (ρ))
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3. Si Dp(V (ρ))ϕ=p−1 6= 0, alors

(ρ−1LV (ρ),h(x),−(1 − pkρ+1ϕ−1)(ρ−1LV (ρ),h(x))) =

(1− p−kρϕ)
exp∗V (ρ),f (πρ(x))

Γ∗(ρχh−1)
.

Si de plus πρ(x) ∈ H1
f (K,V (ρ)), on a

(1− pkρ+1ϕ−1)(ρ−1(ℓ−1
ρ−1LV,h(x)))

≡ logf,1(πρ(x))− (1− p−kρϕ) logf,2(πρ(x))

Γ∗(ρχh−1)
mod (1− p−kρϕ) Fil0 Dp(V (ρ))

où logf,1 et logf,2 désignent les composantes de l’application réciproque
de expf (voir 3.1).

5.3. Conjecture de Tamagawa locale. On renvoie à [4] et à [6] pour les
conséquences sur les conjectures de Tamagawa locales. La loi de réciprocité
implique que ces conjectures sont invariantes par twist. En particulier, on peut
pour la démontrer twister V de manière à ce que Fil0 Dp(V ) = 0 (un des
nombres de Tamagawa est alors juste un cardinal d’un groupe de torsion).

Appendice A. Formules diverses

A.1. Lemme de Shapiro.

A.1.1. Soit G un groupe profini et H un sous-groupe fermé distingué de G.
Soit M un H-module. On définit Ind M comme l’ensemble des applications
localement constantes f de G dans M vérifiant f(hx) = hf(x) pour h ∈ H . Le
groupe G opère sur Ind M par g(f)(x) = f(xg). L’application α : Ind M →M
donnée par α(f) = f(1) est un homomorphisme de H-modules. On a en effet

α(h(f)) = (hf)(1) = f(h) = hf(1) .

On en déduit une application de Z1(G, Ind M) dans Z1(H,M) puis de
H1(G, Ind M) dans H1(H,M) qui est en fait un isomorphisme.
Le cas qui nous intéresse ici est celui où M est déjà muni d’une action de G-
modules et où G/H est abélien et même cyclique. On a alors un isomorphisme
de G-modules

Z[G/H ]⊗M = M [G/H ]→ IndM :

l’image de
∑
τ∈G/H aττ est l’application f : x 7→ xax−1 avec un abus sur

ax−1 : il ne dépend que de l’image de x−1 dans G/H ; f ∈ Ind M car
f(hx) = hxa(hx)−1 = hxax−1 = hf(x)) ; l’application réciproque est donnée

par f 7→ α =
∑

τ∈G/H τ̃
−1(f(τ̃ ))τ−1 (on vérifie que la définition ne dépend pas

du choix des représentants τ̃ des éléments τ de G/H , puisque pour h ∈ H ,
(hτ̃ )−1(f(hτ̃ )) = τ̃−1h−1h(f(τ̃ )) = τ̃−1(f(τ̃)), le composé des deux appli-
cations est d’une part f 7→ g avec g(x) = xax−1 = xx−1f(x) = f(x),
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d’autre part α 7→ β avec β =
∑
τ∈G/H τ̃

−1(τ̃ aτ̃−1).τ−1 =
∑
τ∈G/H aτ .τ =

α. L’action de G sur Z[G/H ] ⊗ M est l’action diagonale (si g ∈ G,
l’image de gf est

∑
τ∈G/H τ̃

−1(g(f)(τ̃ ))τ−1 =
∑
τ∈G/H τ̃

−1(f(τ̃ g))τ−1 =∑
τ∈G/H gτ̃

−1(f(τ̃ ))gτ−1 = g(
∑
τ∈G/H τ̃

−1(f(τ̃ ))τ−1). En composant avec

l’application Ind M → M , on obtient un homomorphisme de Z-modules

ν
G/H
Id : Z[G/H ] ⊗ M → M donnée par

∑
τ∈G/H aττ → aId , qui in-

duit un isomorphisme de G/H-modules H1(G,Z[G/H ] ⊗ M) ∼= H1(H,M),
l’action sur le premier étant donnée par l’action de G/H sur Z[G/H ] par

multiplication. On a ν
G/H
Id (g(

∑
τ∈G/H aτ .τ)) = ν

G/H
Id (

∑
τ∈G/H g(aτ ).gτ) =

ν
G/H
Id (

∑
τ∈G/H g(ag−1τ ).τ) = gag−1 .

Notons ν
G/H
g l’application

∑
τ∈G/H aτ .τ 7→ ag−1 . On a donc ν

G/H
Id (gf) =

gν
G/H
g (f) pour f ∈ Z[G/H ]⊗M et g ∈ G.

A.1.2. Reprenons la situation du texte. Si M est un G∞-module avec action
continue de G∞, on identifie M et M(k) en tant que Zp-modules, on note τ ∗km
l’action sur M(k) : τ ∗k m = χ(τ)kτm. On note νGn = νn pour alléger les
notations.
On considère d’abord l’isomorphisme de G∞-modules ιk : H(G∞) ⊗ M →
H(G∞)⊗M(k) induit par τ ⊗m 7→ χ(τ)kτ ⊗m [vérifions que c’est compatible
avec l’action diagonale de G∞ : ιk(g(τ ⊗m)) = ι(gτ ⊗ gm) = χ(g)kχ(τ)kgτ ⊗
gm = χ(τ)kgτ ⊗ g ∗k m = g ∗k (χ(τ)kτ ⊗m) = g ∗k ιk(τ ⊗m)]. On peut aussi
écrire ιk = Twk ⊗ id. Soit Rn la projection de H(G∞) sur Qp[Gn]. On pose
alors

sn,k = νnId ◦Rn ◦ ιk = νnId ◦Rn ◦ Twk ;

c’est une application de H(G∞) ⊗M → M(k). Remarquons que Rn ◦ Twk a
à voir avec le “polynôme d’interpolation”. Ainsi, on peut écrire avec d’autres
notations Rn,k(f) = Rn ◦ Twk(f) et Tw−kRn,k(f) ≡ f mod χ(γ)−kp

n

γp
n − 1

ou Rn,k(f) ≡ Twkf mod γp
n − 1.

Vérifions pour se rassurer que sn,k est bien un homomorphisme deGKn -modules
: on a en effet pour f ∈ H(G∞) et m ∈M

sn,k(g(f ⊗m)) = νnId(χ(g)kRn(gTwk(f)⊗ g(m))

= χ(g)kνng (Rn(Twk(f))⊗ g(m)

= νng (Rn(Twk(f))⊗ g ∗k m)

Utilisons maintenant le fait que g ∈ GKn , ce qui implique que νng = νnId et donc

sn,k(g(f ⊗m)) = νnId(Rn(Twk(f))⊗ g ∗k m)

= g ∗k νnId(Rn(Twk(f))⊗m)

= g ∗k sn,k(f ⊗m)

On désire maintenant décrire l’application

πn,k : H1(G∞,H(G∞)⊗M)→ H1(K∞/Kn,M(k)) .
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induite par sn,k : H(G∞) ⊗M → M(k). Rappelons que l’on a des isomor-
phismes

H1(G∞,H(G∞)⊗M)
∼=→ H(G∞)⊗M/(γn − 1)

et

H1(K∞/Kn,M(k))
∼=→M(k)/(χ(γn)kγn − 1)

obtenu en fixant un générateur γ de G∞; γn = γp
n

est alors un générateur
de Gal(K∞/Kn) : si Z est un cocycle de G∞ (resp. de Gal(K∞/Kn)), on lui
associe Zγ ∈ H(G∞)⊗M (resp. Zγn).

Soit donc Z̃ ∈ H(G∞)⊗M et Z le cocycle déterminé par Zγ = Z̃. On a alors

Twk(Zγr) = Twk(
∑r−1

i=0 γ
iZ̃) =

∑r−1
i=0 χ(γ)ikTwk(γiZ̃). Le cocycle πn,k(Z)

associé dans Z1(K∞/Kn,M(k)) est déterminé par sa valeur en γp
n

qui est

πn,k(Z)γn = νnId(

pn−1∑

i=0

χ(γ)ikRn(γiTwkZ̃)

=

pn−1∑

i=0

χ(γ)ikγiνγi(Rn(TwkZ̃))

=

pn−1∑

i=0

γi ∗k νγi(Rn(TwkZ̃))

= ν̃nk (Rn(TwkZ̃))

avec

ν̃nk (

pn−1∑

i=0

aγi ⊗ γi) =

pn−1∑

i=0

γi ∗k aγ−i .

Si maintenant λs est un homomorphisme de M dans N vérifiant λs(τm) =
χs(τ)λs(m), on a pour f ∈ Zp[Gn]⊗M , λs ◦ ν̃nk (f) = λs(χ

−k−s(f)), d’où

λs(πn,k(Z)γn) = λs(χ
−k−s(Rn(TwkZ̃))) = λs(χ

−k−s(Rn,k(Z̃)))

Si on écrit Z̃ = f(γ − 1) avec f ∈ H ⊗ (Zp[∆] ⊗M), si u = χ(γ), Rn,k(f)
est le polynôme en T de degré < pn tel que Rn,k(f) ≡ f(uk(1 + T ) − 1)

mod (1 + T )p
n − 1 et la formule devient

λs(πn,k(Z)γn) = λs(Rn,k(f)(u−k−s − 1)) .

A.2. Formulaire d’évaluation. Rappelons que l’on a un isomorphisme
canonique de G∞-modules entre Λ et Zp[[T ]]ψ=0 qui se prolonge en un iso-

morphisme entre H(G∞) et Hψ=0
∞ . Il est induit par τ 7→ (1 + T )χ(τ) pour

τ ∈ G∞. D’où l’isomorphisme canonique D∞,f (V ) ∼= H(G∞) ⊗ Dp(V ). Si
g ∈ Hψ=0

∞ ⊗Dp(V ), on posera g = ĝ.(1 + T ).
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A.2.1. Si η est un caractère d’ordre fini de conducteur pn avec n ≥ 0, on
note eη =

∑
τ∈Gal(Kn/K) η(τ)τ . Soit ρ = ηχk un caractère continu de G∞ à

valeurs dans C∗p avec η un caractère d’ordre fini de Gal(Kn/K) de conducteur
pn (c’est-à-dire ne se factorisant pas par Kn−1). On peut évaluer les éléments
de H(G∞) sur un tel caractère. On a

eηg(ζn − 1) = G(η)η−1(ĝ)

avec

G(η) = eη(ζn) =
∑

τ∈Gal(Kn/K)

η(τ)τζn

la somme de Gauss associée à η. On a d’autre part

Dk(g) = Twk(ĝ).(1 + T ) .

On en déduit que

G(η)ρ−1(ĝ) = eηD
−k(g)(ζn − 1) .(A.2.1)

A.2.2. On a une application Rn,k : H(G∞)→ Qp[Gn], composé du twist Twk

et de la projection sur Qp[Gn]. Si x ∈ H(G∞) ⊗ Z1
∞(K,T ) et y ∈ H(G∞) ⊗

Z1
∞(K,T ∗(1)), l’image twistée de < x, y >V dans Zp[Gn] est donnée par

Rn,k(< x, y >V ) = Rn(< Tw−k(x), Twk(y) >V (k)

=
∑

τ∈Gn

< τ−1.πn,−k(x), πn,k(y) >V (−k),Kn
τ .

En prenant le coefficient de Id ∈ Gn, on obtient que

sn,k(< x, y >V ) =< πn,−k(x), πn,k(y) >V (−k),Kn
.

Enfin,

ρ−1(< x, y >V ) = η−1(Rn,−k(< x, y >V ))

=
∑

τ∈Gn

< τ−1.πn,k(x), πn,−k(y) >V (k),Kn
η−1(τ)

=<
∑

τ∈Gn

η−1(τ)τ−1 .πn,k(x), πn,−k(y) >V (k),Kn

D’où

ρ−1(< x, y >V ) = (♯Gn)−1 < eηπn,k(x), eη−1πn,−k(y) >V (k),Kn
(A.2.2)

A.2.3. Passons aux formules concernant le produit de convolution. On a g1 ∗
g2 = ĝ1ĝ2.(1+T ). On a Dk(g1 ∗g2) = Dk(g1)∗Dk(g2). D’autre part, on note ι
l’involution de Hψ=0

∞ correspondant à l’involution ι de H(G∞) changeant τ en
τ−1. On a alors Dk(gι) = D−k(g)ι et Dk(g1 ∗ gι2) = Dk(g1) ∗D−k(g2)ι. Enfin,
σ−1 ◦Dk(g) = (−1)kDk(σ−1g).
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Le polynôme d’interpolation de g1 ∗ g2 modulo (1 + T )p
n − 1 est

Rn(g1 ∗ g2) =

pn−1∑

j=0,(j,p)=1

1

pn

∑

ζ∈µpn

g1(ζj
−1 − 1)g2(ζ−1 − 1)(1 + T )j .

D’où,

sn,k(ĝ1ĝ
ι
2) = sn,0(Twk(ĝ1ĝ

ι
2)) =

1

pn

∑

ζ∈µpn

Dk(g1)(ζ − 1)D−k(g2)ι(ζ−1 − 1) .

Enfin,

eη(D−k(g1 ∗ gι2)) = G(η)ρ−1(ĝ1)ρ(ĝ2) .

Appendice B. Interpolation

Soit u un générateur topologique de 1 + pZp. Un élément f ∈ Hh− est connu

par ses polynômes d’interpolation modulo les u−ip
n

(1 + T )p
n − 1 pour i ∈

{0, . . . h− 1) et on peut calculer f(uk− 1) pour tout entier k comme une limite
de combinaisons linéaires des Rn,i(f)(uj − 1) pour i ∈ {0, . . . h− 1) ([4, lemme
1.3.4]. Nous allons ici démontrer la formule exacte.
Pour tout entier i, on désigne par Rn,i(f) est le polynôme de degré < pn tel
que

f ≡ Rn,i(f)(u−i(1 + T )− 1) mod u−ip
n

(1 + T )p
n − 1 .

En particulier, on a f(ui − 1) = Rn,i(f)(0).

Lemme. Si f ∈ Hh− , alors pour tout entier k ≥ h (resp. pour tout élément k
de Zp − {0, · · ·h− 1}), on a

(−1)h−1 (h− 1)!

k(k − 1) . . . (k − h+ 1)
f(uk − 1)

= lim
n→∞

h−1∑

i=0

(−1)i
(
h− 1

i

)
Rn,i(f)(uk−i − 1)

k − i .

La formule peut encore s’écrire pour f ∈ Hh−(G∞) et k ∈ Zp − {0, · · ·h− 1},

(−1)h−1 (h− 1)!

k(k − 1) . . . (k − h+ 1)
<χ>k (f)

= lim
n→∞

h−1∑

i=0

(−1)i
(
h− 1

i

)
< χ >k−i

Rn(Twi(f))

k − i .

Ici, < χ > est la projection de χ sur 1 +pZp. La formule s’étend par continuité
à tout élément de Zp − {0, · · · , h− 1}.
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Ce lemme ou ses variantes est à la base de tous les calculs de valeurs de fonctions
obtenues par interpolation p-adique. Lorsque f ∈ Λ ou H1− , le lemme dit
simplement que

f(uk − 1) = lim
n→∞

Rn,0(f)(uk − 1) .

Démonstration. Nous avons choisi une démonstration “élémentaire”. Il suffit
de démontrer la formule pour k ≥ h et de conclure par continuité.
Si g est une fonction sur les entiers positifs, on définit (cf [8])

δs(g) =

s∑

r=0

(−1)r
(
s

r

)
g(s− r) .

On a alors la formule d’inversion

g(n) =

∞∑

s=0

δs(g)

(
n

s

)
.

En particulier, si les δs(g) sont nuls pour s ≥ h, on a

g(k) =

h−1∑

s=0

δs(g)

(
k

s

)
.

et toute valeur de g sur un entier positif s’exprime uniquement en fonction de
g(0), g(1), . . . , g(h− 1). Plus précisément,

g(k) =

h−1∑

i=0

(−1)i
(
h− 1

i

)
ch,k,ig(i)

avec

ch,k,i = (−1)i
k!(h− 1− i)!

(h− 1)!(k − i)!

h−1−i∑

s=0

(−1)s
(
k − i
s

)
.

On remarque alors que l’on a l’identité (que l’on peut montrer par récurrence)
u∑

s=0

(−1)s
(
v

s

)
= (−1)u

(
v − 1

u

)

pour 0 < u < v. On obtient alors

ch,k,i = (−1)h−1 k!(h− 1− i)!
(h− 1)!(k − i)!

(
k − i− 1

h− 1− i

)

= (−1)h−1 k!

(k − h)!(h− 1)!(k − i) .

Ainsi, si g est une fonction sur les entiers telle que δs(g) = 0 pour tout entier
s ≥ h, on a pour tout entier k ≥ h

(−1)h−1 (h− 1)!

k(k − 1) · · · (k − h+ 1)
g(k) =

h−1∑

i=0

(−1)i
(
h− 1

i

)
g(i)

k − i
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Revenons au lemme à démontrer et posons gn(i) = Rn,i(f)(uk−i − 1). Le
fait que f ∈ Hh− implique que pour tout entier s ≥ h, la suite δs(gn) =∑s

i=0(−1)i
(
s
i

)
gn(s− i) tend vers 0 avec n. On en déduit que pour tout entier

k ≥ h, la limite de gn(k) −∑h−1
s=0 δs(gn)

(
k
s

)
est nulle. Il ne reste plus qu’à

utiliser le calcul précédent et à remarquer que gn(k) = f(uk − 1) pour tout
entier n > 0 pour conclure.

Lemme. Si f ∈ Hh− et P est un polynôme de degré < t, on a

lim
n→∞

pn inf(t,h)
h−1∑

i=0

(−1)i
(
h− 1

i

)
P (k − i)Rn(f)(k − i) = 0 .

Démonstration. Soit g une fonction sur les entiers vérifiant δr(g) = 0 pour r ≥
h−1 et P un polynôme de degré< t avec t ≥ 1 ; on a en P (x) =

∑t−1
s=0 δs(P )

(
x
s

)

(ces deux polynômes de degré ≤ t − 1 cöıncident en x = 0, · · · , t − 1 et sont
donc égaux), ainsi, δs(P ) = 0 pour s ≥ t). On a

δh−1(Pg) =
h−1∑

j=0

δj(P )δh−1−j(g)

=

t−1∑

j=0

δj(P )δh−1−j(g) .

Prenons pour P le polynôme Q = P (k − x) et remplaçons g par gn =
i 7→ Ri,n(f)(uk−i − 1). Rappelons que pnδr(gn) → 0 pour r ≥ h et que
pnjδh−1−j(gn) → 0 lorsque n → ∞ pour 0 ≤ j ≤ h − 1. On déduit alors du
calcul précédent que

lim
n→∞

pnt
h−1∑

i=0

(−1)i
(
h− 1

i

)
P (k − i)Ri,n(f)(uk−i − 1)

= lim
n→∞

pntδh−1(Qgn)

= lim
n→∞

pnt
t−1∑

j=0

δj(P )δh−1−j(g) = 0

Si t ≤ h, on a encore

δh−1(Pg) =

h−1∑

j=0

δj(P )δh−1−j(g)
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et

lim
n→∞

pnh
h−1∑

i=0

(−1)i
(
h− 1

i

)
P (k − i)Ri,n(f)(uk−i − 1)

= lim
n→∞

pnh
h−1∑

j=0

δj(P )δh−1−j(g)

= lim
n→∞

pn(h−j)
h−1∑

j=0

δj(P )pnjδh−1−j(g) = 0

Proposition. Si f ∈ Hh− , alors pour tout entier k ≥ h, on a

(−1)h(h− 1)!

k(k − 1) . . . (k − h+ 1)

f(uk − 1)

log u
=

lim
n→∞

h−1∑

i=0

(−1)i
pn

1− u(k−i)pn

(
h− 1

i

)
Rn,i(f)(uk−i − 1) .

Nous avonc utilisé cette proposition pour des éléments de f ∈ Hh−(G∞). Elle
se traduit alors par la formule

(−1)h(h− 1)!

k(k − 1) . . . (k − h+ 1)

χk(f)

logχ(γ)
=

lim
n→∞

h−1∑

i=0

(−1)i
pn

1− χ(γ)(k−i)pn

(
h− 1

i

)
χk−i(Rn,i(f))

(B.0.3)

Démonstration. On écrit 1
1−eT + 1

T =
∑∞
j=0 cjT

j avec pr0pjcj ∈ Zp pour r0
indépendant de j. On a alors

pn

1− u(k−i)pn +
1

(k − i) log u
=

∞∑

j=0

cjp
n(j+1)(k − i)j

=

h−1∑

j=0

pn−jpjcjp
nj(k − i)j +

∞∑

j=h

pn(j+1−h)−jpjcjp
nh(k − i)j .

Comme n(j + 1− h)− j ≥ 1− h pour j ≥ h, on en déduit du lemme précédent

que si Fn(i) = pn

1−u(k−i)pn + 1
(k−i) log u que

lim
n→∞

h−1∑

i=0

(−1)i
(
h− 1

i

)
Fn(i)Ri,n(f)(uk−i − 1) = 0 .

Il ne reste plus qu’à appliquer le premier lemme.
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Appendice C. Suite exacte de Coleman-Colmez

C.1. Rappelons la définition suivante :

Définition : Soit D un espace vectoriel normé de dimension finie muni d’un
automorphisme u. Si ǫ ∈ {±}, on dit qu’un élément F ∈ H⊗D est uǫ-borné si
la suite ||(1 ⊗ u)−nF ||ρn est bornée pour ǫ = + et tend vers 0 pour ǫ = −.

On note (H⊗D)uǫ l’ensemble des éléments uǫ-bornés et on pose alors ||F ||ϕ =
Cu(F ) = supn(||(1 ⊗ u)−nF ||ρn).

C.2. Fixons un Qp-espace vectoriel D de dimension finie muni d’un automor-
phisme ϕ. Colmez démontre le théorème suivant (nous avons déjà utilisé et
démontré le A):

C.2.1. Théorème. (Colmez) A) Soit F un élément de H⊗D tel que

(1− Φ)F ∈ (H⊗D)ϕ− .

Alors la suite Φ−n(F ([ǫ] − 1)) = (1 ⊗ ϕ)−nF (βn − 1) converge dans BdR ⊗ D
vers un élément αF de ((B+

max)GK∞ ⊗D)Φ=1.
B) Réciproquement, soit α un élément de ((B+

max)GK∞ ⊗D)Φ=1. Il existe une
série Fα ∈ H⊗D telle que (1 − Φ)Fα ∈ (H⊗D)ϕ− et telle que α = αFα .

C) L’application α 7→ Fα est une bijection entre ((B+
max)GK∞ ⊗ D)Φ=1 et les

éléments de H⊗D tels que (1− Φ)F ∈ (Hψ=0 ⊗D)ϕ− .

On en déduit une application

CD : ((B+
max)GK∞ ⊗D)Φ=1 → (Hψ=0 ⊗D)ϕ−

donnée par α 7→ (1− Φ)Fα .

C.3. Corollaire. On a la suite exacte de G∞-modules

0→ ⊕k≥0t
kDϕ=p−k → ((B+

max)GK∞ ⊗D)Φ=1 → (Hψ=0 ⊗D)ϕ−

→ ⊕k≥0D/(1 − pkϕ)(k)→ 0

et on a ||CD(α)||ϕ = ||α||max.

C.4. Remarques. 1. Un cas particulier est celui où D = Dp(Qp(1)). On
obtient alors la suite exacte de Coleman :

0→ Zpt→ ((B+
max)GK∞ )ϕ=p → Λ⊗Dp(Qp(1))→ Zp(1)→ 0

2. L’idée fondamentale de Colmez est de montrer la convergence des éléments
du type (1 ⊗ ϕ)−nF (βn − 1) vers un élément de ((B+

max)GK∞ ⊗ D)Φ=1 et de
construire l’application réciproque de F 7→ αF , c’est-à-dire de construire une
série tempérée à partir d’un élément de ((B+

max)GK∞ ⊗ D)Φ=1. Pour cela, il a
besoin d’opérateurs de trace sur (B+

max)GK∞ que nous allons introduire dans
le paragraphe C.6. Ces opérateurs nous permettront aussi de compléter le
théorème en reliant α avec les valeurs de Fα.
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C.5. Quelques propriétés de (B+
max)GK∞ . Enonçons sans le démontrer la

proposition cruxiale suivant [1, lemme VIII.3.3] :

C.5.1. Proposition. (Colmez) Si n ≥ 1, tout élément α de B+
max ∩ Kn[[t]]

s’écrit de manière unique sous la forme α = F (βn − 1) où F ∈ K[[T ]] a un
rayon de convergence ≥ ρn. On a de plus ||F ||ρn ≤ ||F (βn−1)||max ≤ p||F ||ρn .

Ainsi, si F =
∑∞
k=0 akT

k, la suite vp(ak) + k
(p−1)pn−1 en k tend vers +∞. On

définit un opérateur δ̃k sur K∞[[t]] par

α =
∞∑

k=0

δ̃k(α)tk

et on pose δk = δ̃kt
k. L’opérateur δk n’est pas continu pour la topologie de

BdR et ne se prolonge pas à (B+
dR)GK∞ .

C.5.2. Lemme. Les opérateurs δ̃k et D sont reliés par

δ̃k(F (βn − 1)) =
Dk(F )(ζn − 1)

pnkk!

Démonstration. Comme βn = ζn exp(t/pn), et que δ̃ laisse fixe Kn, on a

δ̃k(F (βn − 1)) =
1

k!

d

dkT
(F (ζn exp(T/pn)− 1))T=0

=
1

pnkk!

d

dkT
(F (ζn exp(T )− 1))T=0

=
Dk(F (ζn(1 + T )− 1))T=0

pnkk!

=
Dk(F )(ζn − 1)

pnkk!

C.6. Le projecteur Tn de (B+
dR)GK∞ sur Kn[[t]]. L’inclusion de Kn[[t]]

dans (B+
dR)GK∞ admet une section naturelle définie par Colmez et dont les

propriétés sont résumées dans la proposition suivante. On note TrKm/Kn

l’application de Km[[t]] induite par la trace sur Km et par l’identité sur t.

C.6.1. Proposition. Pour n ≥ 1, il existe une unique application Qp-linéaire
continue Tn de (B+

dR)GK∞ dans Kn[[t]] vérifiant

Tn(x) =
1

pm
TrKm/Kn

(x)

pour x ∈ Km[[t]] et m ≥ n. Elle vérifie les propriétés suivantes :

1.

Tn(βm) =

{
0 pour m > n
1
pn βm pour m ≤ n
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2. limn→∞ pnTn(α) = α pour α ∈ (B+
dR)GK∞ ;

3. ||pnTn(α)||max ≤ ||α||max pour α ∈ B∗max)GK∞ ;
4. Si α ∈ (B+

cont)
GK∞ avec B+

cont = ∩ϕn(B+
max), ϕnpnTnϕ

−n(α) est
indépendant de n ≥ 1.

Ainsi, on a Tn−1 ◦ ϕ = pϕ ◦ Tn, pnTn est l’identité sur Kn[[t]] et fournit une
section de Kn[[t]] → (B+

dR)GK∞ . Si α ∈ ϕ((B+
dR)GK∞ ), par exemple si α ∈

(B+
cont)

GK∞ , on pose

T̃0(α) = ϕ(pT1(ϕ−1(α)))

C.6.2. Lemme. Soit α un élément de ((B+
max)GK∞ ⊗ D)Φ=1. Il existe une

unique série Fα ∈ H ⊗D telle que

T̃0(α) = Fα([ǫ]− 1) .

De plus, (1− Φ)Fα ∈ (Hψ=0 ⊗D)ϕ− .

Démonstration. Soit α ∈ ((B+
max)GK∞ ⊗ D)Φ=1. On vérifie facilement que

((B+
max)GK∞ ⊗ D)Φ=1 = ((B+

cont)
GK∞ ⊗ D)Φ=1. Soit δ = pT1((ϕ−1 ⊗ 1)α).

C’est un élément de ((B+
cont)

GK∞ ∩K1[[t]])⊗D). Grâce à la proposition C.5.1,

il existe une unique série Fα ∈ Qp[[T ]] ⊗ D de rayon de convergence ≥ p−
1

p−1

tel que δ = Fα(β1 − 1). On a alors

T̃0(α) = (ϕ⊗ 1)δ = (ϕ⊗ 1)Fα(β1 − 1) = Fα([ǫ]− 1) .

Montrons que Fα ∈ H ⊗D. Comme

pn(ϕn ⊗ 1)Tn((ϕ−n ⊗ 1)α) = p(ϕ⊗ 1)T1((ϕ−1 ⊗ 1)α) = T̃0(α) ,

on a

Fα(βn − 1) = pnTn((ϕ−n ⊗ 1)α) ∈ (B
GK∞
max ∩Kn[[t]])⊗Dp(V ) .

En appliquant de nouveau la proposition C.5.1, on en déduit que le rayon de
convergence de Fα est ≥ ρn pour tout n et donc que Fα ∈ H ⊗ D. On vérifie
que la limite de Fα(βn − 1) est α. Utilisons maintenant l’invariance de α par
Φ pour montrer que ψ((1 − Φ)Fα) = 0. Par définition, il est équivalent de
montrer que

∑

ζ∈µp

Fα(ζ(1 + T )− 1) = p(1⊗ ϕ)Fα((1 + T )p − 1)
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ou encore de montrer l’égalité obtenue en remplaçant T par un quelconque
βn+1 − 1 pour n ≥ 1. On a

∑

ζ∈µp

Fα(ζβn+1 − 1) =TrKn+1[[t]]/Kn[[t]](Fα(βn+1 − 1)

=TrKn+1[[t]]/Kn[[t]](p
n+1Tn+1((ϕ−n+1 ⊗ 1)α))

=pn+1Tn((ϕ−n+1 ⊗ 1)α) = pn+1Tn((ϕ−n ⊗ ϕ)α)

en utilisant le fait que ϕ⊗ ϕ(α) = α

=p(1⊗ ϕ)pnTn((ϕ−n ⊗ 1)α) = p(1⊗ ϕ)Fα(βn − 1)

Montrons enfin que f = (1− Φ)Fα est ϕ−-borné. On montre facilement que

(1⊗ ϕ)−nf(βn − 1) = pnTn(Φ−nα)− pn−1Tn−1(Φ−(n−1)α) .

Comme Φ(α) = α, cela vaut aussi

pnTn(α) − pn−1Tn−1(α) ,

ce qui tend vers 0 dans Bmax ⊗ D. En utilisant en fait que ||(1 ⊗ ϕ)−nf(βn −
1)||max ∼ ||(1 ⊗ ϕ)−nf ||ρn , on en déduit que f est ϕ−-borné.

C.6.3. Démontrons le théorème C.2.1. Soit F ∈ H ⊗ D tel que (1 − Φ)F ∈
(Hψ=0 ⊗ D)ϕ− . Soit αF = limm→∞ Φ−m(F ([ǫ] − 1)) ; calculons Tn(αF ). Par
continuité de Tn, on a

Tn(αF ) = lim
m→∞

Tn((1⊗ ϕ)−mF (βm − 1))

En voyant (1 ⊗ ϕ)−mF (βm − 1) dans Km[[t]] grâce à la formule βm =
ζm exp(t/pm), on a pour m ≥ n ≥ 1,

pnTn((1 ⊗ ϕ)−mF (βm − 1)) =
1

pm−n
TrKm[[t]]/Kn[[t]]((1 ⊗ ϕ)−mF (βm − 1))

=
1

pm−n
∑

ζ∈µpm−n

((1 ⊗ ϕ)−mF (ζβm − 1))

Le fait que ψ((1 − Φ)F ) = 0 implique que ψ(F ) = (1 ⊗ ϕ)F et donc que
(1⊗ ϕ−n)F = ψm−n((1⊗ ϕ−m)F ). On en déduit que

pnTn((1 ⊗ ϕ)−mF (βm − 1)) = (1⊗ ϕ−n)F (βn − 1) .

D’où

pnTn(αF ) = (1 ⊗ ϕ)−nF (βn − 1) .

La formule pour δk(Tn(αF )) se déduit du lemme C.5.2.
Si α ∈ ((B+

max)GK∞ ⊗ D)Φ=1 et Fα construit comme dans le lemme C.6.2, on
a vu dans la démonstration que

(1⊗ ϕ−n)Fα(βn − 1) = pnTn(Φ−nα) = pnTn(α) .
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On en déduit que α 7→ Fα 7→ αFα est l’identité sur ((B+
max)GK∞ ⊗ D)Φ=1 et

que F 7→ αF 7→ FαF est l’identité à condition de se restreindre aux F tels que
ψ((1 − Φ))F = 0.
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1 Introduction

Recently Dolbeault, Esteban, and Séré [4, 3, 2] have found a minimax principle
for Dirac operators with Coulomb potentials. Independently, Griesemer and
Siedentop [5] have found a minimax principle characterizing the eigenvalues of
self-adjoint operators in their spectral gaps, which is flexible enough to adapt
to various situations. In particular it can also be applied to Dirac operators.
Such a minimax principle is of particular interest for applications, e.g., in solid
state physics and relativistic quantum chemistry where differential operators
having gaps in their spectra naturally arise. Apart from the computational
point of view (see, e.g., Kutzelnigg [7]) it can serve as a tool to obtain non-
asymptotic eigenvalue estimates, e.g., comparing the number of eigenvalues of

1 This work has been partially supported by the European Union through the TMR
network FMRX-CT 96-0001.
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the Dirac operator in the gap with the number of negative eigenvalues of a
corresponding Schrödinger operator (see [5]).
Comparing [3, 2] and [5] shows, that although the hypotheses for the validity of
the minimax principle overlap, the methods of proof are quite different. On the
other hand, with these different hypotheses different classes of operators can
be treated: Dolbeault, Esteban, and Séré’s result allows for Dirac operators
with singular potentials of Coulomb type. Griesemer and Siedentop’s result
allows for a flexible formulation of the minimax principle adaptable to various
situations, e.g., an earlier minimax principle for the first positive eigenvalue of
the Dirac operator considered by Talman [9] and Datta and Deviah [1] can be
proved.
This difference in hypotheses indicates that the optimal assumption for the
abstract minimax principle is yet to be found. The present paper is a step in
this direction.
In Section 2 we prove the abstract minimax principle under assumptions al-
ternative to those in [5]. In Section 3 we show that these hypotheses allow for
Dirac operators with Coulomb potentials. Applications to other self-adjoint
operators with eigenvalues in spectral gaps like perturbed periodic Schrödinger
operators are also conceivable.

2 The Minimax Principle

In this section we formulate and prove the abstract minimax principle. Suppose
A and A0 are self-adjoint operators in a Hilbert space H and assume that their
form domains are equal

Q(A) = Q(A0) = Q. (1)

Let D(A) and D(A0) denote the domains of A and A0 respectively and let
PI(A) be the spectral projection of A corresponding to the interval I ⊂ R.
Define

Λ+ = P(0,∞)(A0), Λ− = 1− Λ+,

P+ = P(0,∞)(A), P− = 1− P+.
(2)

We set H± := Λ±H and Q± := Λ±Q. Then H = H+ ⊕H− and, by assumption
(1), Q± ⊂ Q. The minimax values in which we are interested are given by

λn(A) := inf
M+⊂Q+

dim(M+)=n

sup
ψ∈M+⊕Q−
‖ψ‖=1

(ψ,Aψ), (3)

and have been introduced in [5]. These minimax values are to be compared
with the standard (Courant) minimax values

µn(B) := inf
M⊂Q(B)
dim(M)=n

sup
ψ∈M
‖ψ‖=1

(ψ,Bψ)
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for the eigenvalues of a self-adjoint operator B which is bounded from below.
The value µn(B) is the n-th eigenvalue of B counting from below (see, e.g.,
Reed and Simon [8]).

Theorem 1. Suppose A and A0 are self-adjoint operators in H with the same
form domain Q and define Λ±, P±, Q±, λn(A) and µn(·) as above. If
(ψ,Aψ) ≤ 0 for all ψ ∈ Q− and if

‖(|A0|+ 1)1/2Λ+P−(|A0|+ 1)−1/2‖ < 1 (4)

then λn(A) = µn(A|̀P+H) for all n ≤ dim H+.

We remark that |A0|+ 1 can be replaced by |A0| in (4), if we assume that 0 is
in the resolvent set of A0. This will be obvious from the proof.

Proof. We prove the theorem in two steps. Although these are partly contained
in [5] we do not omit the similar parts in order to be self-contained: First, we
show that it suffices to prove that Λ+ : P+Q → Q+ is a bijection. Secondly,
we verify this property using assumption (4) and the negativity of (ψ,Aψ) on
Q−.

Step 1. If Λ+P+Q = Q+, then we have

λn(A) = inf
M+⊂Λ+P+Q
dim(M+)=n

sup
ψ∈M+⊕Q−
‖ψ‖=1

(ψ,Aψ) (5)

using the defining Equation (3). Since for each M+ ⊂ Λ+P+Q with
dim(M+) = n, we can find a subspace M ⊂ P+Q with dim(M) = n such
that M+ = Λ+M and since Λ+M⊕Q− ⊃M, we get from (5)

λn(A) = inf
M+⊂Λ+P+Q
dim(M+)=n

sup
ψ∈M+⊕Q−
‖ψ‖=1

(ψ,Aψ)

≥ inf
M⊂P+Q

dim(M)=n

sup
ψ∈M
‖ψ‖=1

(ψ,Aψ) = µn(A|̀P+H).

To prove the converse inequality we proceed as in [5]: pick ǫ > 0 and let
M := P(0,µn+ǫ)(A)Q. Then dim(M) ≥ n and hence dim(Λ+M) ≥ n by the
remark above. Therefore

λn ≤ sup
ψ∈Λ+M⊕Q−
‖ψ‖=1

(ψ,Aψ) = sup
ψ∈M+Q−
‖ψ‖=1

(ψ,Aψ),

where Λ+M ⊕ Q− = M + Q− was used. To estimate this from above we
first decompose ψ ∈ M + Q− as ψ = ψ1 + ψ2, where ψ1 ∈ M and ψ2 ∈
M⊥ ∩ (M + Q−), and then ψ2 as ψ2 = ψ3 + ψ− where ψ3 ∈M and ψ− ∈ Q−.
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Since Aψ3 ∈ M and ψ3 + ψ− ∈ M⊥ we have (Aψ3, ψ−) = −(Aψ3, ψ3). Using
this, (Aψ3, ψ3) ≥ 0, and (ψ−, Aψ−) ≤ 0 we find

(ψ,Aψ) = (ψ1, Aψ1) + (ψ2, Aψ2)

= (ψ1, Aψ1)− (ψ3, Aψ3) + (ψ−, Aψ−) ≤ (ψ1, Aψ1) ≤ (µn + ǫ)(ψ, ψ)

which implies λn ≤ µn.
Step 2. Surjectivity: Since Λ+P+Q ⊂ Q+ it suffices that Λ+P+Q+ = Q+,
which is equivalent to (|A0|+1)1/2Λ+P+(|A0|+1)−1/2H+ = H+. Now Λ+P+ =
1− Λ+P− on H+ so that

(|A0|+ 1)1/2Λ+P+(|A0|+ 1)−1/2 = 1− (|A0|+ 1)1/2Λ+P−(|A0|+ 1)−1/2

on H+. By assumption (4) the latter is an isomorphism from H+ to H+.
Injectivity: Suppose Λ+ : P+Q → Q+ would not be one-to-one. Then there
would exist a non-zero ψ ∈ H− ∩ P+Q such that

0 ≥ (ψ,Aψ) = (P+ψ,AP+ψ) > 0.

3 Application to the Dirac Operator

The hypothesis (4) of Theorem 1 contains the a priori unknown operator P−,
i.e., it is not straightforward to check. In this section we will show how to
verify it for given operators nevertheless. To be specific we restrict ourselves to
the Dirac operator Dγ with a screened Coulomb potential, i.e., Dγ := (1/i)∇ ·
α + mβ − γϕ in H := L2(R3)4, where ϕ(x) = y(x)/|x| with measurable y
and y(R3) ⊂ [0, 1]. By Hardy’s inequality we have that Dγ is an operator
perturbation of D0 for γ ∈ (−1/2, 1/2). We will assume this restriction on γ
henceforth. In particular, perturbation theory for |D0| = (−∆+m2)1/2 implies
by Hardy’s and Kato’s inequality

∀γ∈[0,1/2) D(Dγ) = H1(R3)⊗ C4 =: D, (6)

∀γ∈[0,2/π) Q(Dγ) = H1/2(R3)⊗ C4 =: Q (7)

for the operator and form domain of Dγ , respectively. To make connections
with Section 2 we pick A0 := D0 and A := Dγ . The notation (2) is used
correspondingly here.
By γ0 we denote the real solution of 2γ3

0 − 3γ2
0 + 4γ0 = 1. Note that 0.305 <

γ0 < 0.306 holds.

Theorem 2. For γ ∈ [0, γ0)

inf
M+⊂Q+

dim M+=n

sup
ψ∈M+⊕Q−
‖ψ‖=1

(ψ,Dγψ) (8)

is equal to the n-th positive eigenvalue – counting multiplicity – of the Dirac
operator Dγ or equals the mass m.
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Our strategy is to roll the proof back to a verification of the hypotheses of
Theorem 1. The main step is the verification of (4) which we break up into
several steps:

Lemma 1. For all f ∈ H

Λ+P−f = − γ
2πΛ+

∫∞
−∞(D0 − iz)−1ϕ(Dγ − iz)−1dzf

= − γ
πΛ+

∫∞
0

[
(D2

0 + z2)−1(D0ϕDγ − z2ϕ)(D2
γ + z2)−1

]
dzf.

(9)

Proof. Since for γ ∈ [0, 2/π), zero is in the resolvent set of Dγ , we have that

P± =
1

2
± 1

2π

∫ ∞

−∞
(Dγ − iz)−1dz =

1

2
± 1

π

∫ ∞

0

Dγ(D2
γ + z2)−1dz (10)

(Kato [6], Chapter VI.5, Lemma 5.6); Λ± is obtained from (10) by setting
γ = 0. Therefore, by (10), and the second resolvent identity

P− = Λ− −
γ

2π

∫ ∞

−∞
(D0 − iz)−1ϕ(Dγ − iz)−1dz

from which we may conclude that the first part of (9) holds.
We can simplify

∫ ∞

−∞
(D0 − iz)−1ϕ(Dγ − iz)−1dzf

=

∫ ∞

0

[
(D0 − iz)−1ϕ(Dγ − iz)−1 + (D0 + iz)−1ϕ(Dγ + iz)−1

]
dzf

=

∫ ∞

0

[
D0 + iz

D2
0 + z2

ϕ
Dγ + iz

D2
γ + z2

+
D0 − iz
D2

0 + z2
ϕ
Dγ − iz
D2
γ + z2

]
dzf

= 2

∫ ∞

0

[
(D2

0 + z2)−1(D0ϕDγ − z2ϕ)(D2
γ + z2)−1

]
dzf

which implies that the second part of (9) holds.

Lemma 2. For γ ∈ R+ we have (1/2− γ)2ϕ2 ≤ |Dγ |2 ≤ (1 + 2γ)2|D0|2.
Proof. For all ψ ∈ D(D0) we have ‖Dγψ‖ ≥ ‖D0ψ‖−γ‖ϕψ‖ ≥ (1/2−γ)‖ϕψ‖,
where we first use the triangle inequality and then Hardy’s inequality. This
implies the first stated operator inequality. The second one follows from
‖Dγψ‖ ≤ ‖D0ψ‖+ γ‖ϕψ‖ ≤ (1 + 2γ)‖D0ψ‖.

Lemma 3. For all γ ∈ (0, 1
2 ) and f ∈ H we have

‖|D0|1/2
∫ ∞

0

(D2
0 + z2)−1(D0ϕDγ − z2ϕ)(D2

γ + z2)−1dz|D0|−1/2f‖

≤ π
√

1 + 2γ

1− 2γ
‖f‖. (11)
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Proof. Using the fact that

‖h‖ = sup
‖g‖=1

|(g, h)|, h ∈ H

and setting f ′ := |D0|−1/2f we see that the norm on the left hand side of (11)
can be approximated by finding an upper bound for

|(g, |D0|1/2
∫ ∞

0

[
(D2

0 + z2)−1(D0ϕDγ − z2ϕ)(D2
γ + z2)−1

]
dzf ′)|, ‖g‖ = 1.

(12)

First, consider the term

|(g, |D0|1/2
∫ ∞

0

[
(D2

0 + z2)−1(D0ϕDγ)(D2
γ + z2)−1

]
dzf ′)|

≤
[∫ ∞

0

‖D0(D2
0 + z2)−1|D0|1/2g‖2dz

] 1
2
[∫ ∞

0

‖ϕDγ(D2
γ + z2)−1f ′‖2dz

] 1
2

.

(13)

Note that
∫ ∞

0

dz

(1 + z2)2
=

∫ ∞

0

z2dz

(1 + z2)2
=
π

4
. (14)

Thus, the first factor yields

∫ ∞

0

‖D0(D2
0 + z2)−1|D0|1/2g‖2dz =

∫ ∞

0

(g,
|D0|3

(D2
0 + z2)2

g)dz =
π

4
(g, g). (15)

In a similar manner we show for γ ∈ (0, 1/2)

∫ ∞

0

‖ϕDγ(D2
γ + z2)−1f ′‖2dz (16)

=

∫ ∞

0

(f ′, (D2
γ + z2)−1Dγϕ

2Dγ(D2
γ + z2)−1f ′)dz (17)

≤ 1

(1/2− γ)2

∫ ∞

0

(f ′, (D2
γ + z2)−1|Dγ |4(D2

γ + z2)−1f ′)dz (18)

=
π

(1 − 2γ)2
(f ′, |Dγ |f ′) ≤

π(1 + 2γ)

(1− 2γ)2
(f ′, |D0|f ′) ≤

π(1 + 2γ)

(1− 2γ)2
(f, f)(19)

where we have used the first inequality of Lemma 2 to go from (17) to (18) and
the second inequality of that Lemma in (19).
Thus we have for the product

|(g, |D0|1/2
∫ ∞

0

[
(D2

0 + z2)−1(D0ϕDγ)(D2
γ + z2)−1

]
dzf ′)| ≤ π

2

√
1 + 2γ

1− 2γ
‖f‖.
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Likewise, we estimate the second term in (12)

|(g, |D0|1/2
∫ ∞

0

(D2
0 + z2)−1z2ϕ(D2

γ + z2)−1dz|D0|−1/2f)|

= |
∫ ∞

0

(z(D2
0 + z2)−1|D0|1/2g, zϕ(D2

γ + z2)−1f ′)dz|

≤
[∫ ∞

0

‖z(D2
0 + z2)−1|D0|1/2g‖2dz

] 1
2
[∫ ∞

0

‖zϕ(D2
γ + z2)−1f ′‖2dz

] 1
2

. (20)

By scaling and (14) we get for the first factor
∫ ∞

0

‖z|D0|1/2(D2
0 + z2)−1g‖2dz =

π

4
. (21)

The second factor yields using Lemma 2 twice
∫ ∞

0

‖zϕ(D2
γ + z2)−1f ′‖2dz = (f ′,

∫ ∞

0

(D2
γ + z2)−1ϕ2z2(D2

γ + z2)−1dzf ′)

≤ 1

(1/2− γ)2
(f ′,

∫ ∞

0

(D2
γ + z2)−1|Dγ |2z2(D2

γ + z2)−1dzf ′)

=
π

4(1/2− γ)2
(f ′, Dγf

′) ≤ π 1 + 2γ

(1− 2γ)2
(f ′, D0f

′).

Thus we get

|(g, |D0|1/2
∫ ∞

0

(D2
0 + z2)−1z2ϕ(D2

γ + z2)−1dzf ′)| ≤ π

2

√
1 + 2γ

1− 2γ
‖f‖, (22)

i.e., the same upper bound as for the first term. By (11), (12), and the calcu-
lations above, we have the upper bound

‖|D0|1/2
∫ ∞

0

[
(D2

0 + z2)−1(D0ϕDγ − z2ϕ)(D2
γ + z2)−1

]
dz|D0|−1/2f‖

≤ π
√

1 + 2γ

1− 2γ
‖f‖

for γ ∈ [0, 1/2) which we claimed.

From Lemmata 1 and 3 we have the immediate

Corollary 1. For all γ ∈ (0, 1
2 )

‖|D0|1/2Λ+P−|D0|−1/2‖ ≤ γ
√

1 + 2γ

1− 2γ
.

We remark that an argument similar to the proofs of Lemmata 1 and 3 shows
that ‖Λ+P−‖ = O(γ) as γ → 0 which implies that Λ+P+H = H+ and H+ ∩
P−H = {0} for small enough positive γ.
We turn now to the proof of Theorem 2.
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Proof. First, we reiterate our remark (7) that for γ ∈ [0, 2/π) the form domain
of Q := Q(Dγ) = H1/2(R3) ⊗ C4. In particular, it is independent of γ. This
also means that P± and Λ± leave Q invariant. Moreover, Λ−DγΛ− is certainly
non-positive. Finally, Corollary 1 implies that (4) holds true for γ ∈ [0, γ0)
which completes the proof.

Finally, we remark, that the construction of this Section is easily generalized
to other types of potentials, as long as one can prove an analogue of Lemma 3.

Acknowledgment. This work has been partially supported by the European
Union through its Training, Research, and Mobility program, grant FMRX-
CT 96-0001.
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1.Introduction

The classification of symbolic dynamical systems has been a very important
and one of central problems in the theory of topological dynamical systems
and the ergodic theory. The classification problem has been first examined for
a class of symbolic dynamical systems called subshifts of finite type or topo-
logical Markov shifts. Each dynamical system of the class is determined by a
single square matrix with entries in nonnegative integers. Hence the behav-
ior of such a dynamical system depends on the underlying matrix. In [Wi],
R. F. Williams introduced the notions of strong shift equivalence and shift
equivalence between nonnegative matrices and showed that two topological
Markov shifts are topologically conjugate if and only if the associated matri-
ces are strong shift equivalent. He also showed that strong shift equivalence
implies shift equivalence. Although the converse implication had been a long
standing problem, Kim-Roush [KimR2] has recently solved negatively for even
irreducible matrices. There is a class of subshifts called sofic subshifts that are
generalized class of Markov shifts and that are determined by square matrices
with entries in alphabet (see [Kit], [Kr3], [LM], [We], etc.). A square matrix
with entries in alphabet is simply called a symbolic matrix. It is an equivalent
object to a labeled graph called a λ-graph. M. Nasu in [N], [N2] generalized the
notion of strong shift equivalence to symbolic matrices. He showed that two
sofic subshifts are topologically conjugate if and only if their canonical sym-
bolic matrices are strong shift equivalent ([N], [N2], see also [HN]). M. Boyle
and W. Krieger in [BK] introduced the notion of shift equivalence for symbolic
matrices and studied topologically conjugacy for sofic subshifts.
In this paper, we first introduce the notions of symbolic matrix system and
λ-graph system. They are generalized notions of symbolic matrix and λ-graph
for sofic subshifts. We will show that they are presentations of subshifts.
A symbolic matrix system consists of two sequences of rectangular matrices
(Ml,l+1, Il,l+1), l ∈ N. The matrices Ml,l+1 have entries in symbols and the
matrices Il,l+1 have entries in {0, 1}. They satisfy the following commutation
relations

Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2, l ∈ N.

A λ-graph system is an inductive sequence of Bratteli diagrams, that come from
the theory of operator algebras, with labeled edges by symbols. We will know
that the symbolic matrix systems and the λ-graph systems are the same objects
and give rise to subshifts. There is a canonical method to construct a sym-
bolic matrix system from an arbitrary subshift (Theorem 3.7). The obtained
symbolic matrix system is said to be canonical for the subshift. If a subshift is
sofic, the canonical symbolic matrix system corresponds to the symbolic matrix
of its left Krieger cover graph.
As a generalization of the notion of strong shift equivalence for nonnegative
matrices and symbolic matrices, we will introduce the notion of strong shift
equivalence for our symbolic matrix systems. We will prove
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Theorem A (Theorem 4.2 and Theorem 4.15). Two subshifts are topologically
conjugate if and only if their canonical symbolic matrix systems are strong shift
equivalent.

Hence classification problem for subshifts are completely reduced to the classi-
fication of symbolic matrix systems up to strong shift equivalence in our sense.
In the proof of the only if part of Theorem A, we provide the notion of bi-
partite λ-graph system. We then essentially use Nasu’s factorization theorem
for topological conjugacy between subshifts into bipartite codes and symbolic
conjugacies.

We will next define shift equivalence between two symbolic matrix systems.
That is a generalization of the corresponding notion for symbolic matrices
defined by Boyle-Krieger in [BK]. We will see that strong shift equivalence
implies shift equivalence even in our setting (Theorem 6.2). Similarly to the
case of topological Markov shifts, we can prove that shift equivalence between
two canonical symbolic matrix systems gives rise to an eventual conjugacy for
the associated subshifts, that is, a topological conjugacy for their corresponding
higher power shifts (Proposition 6.3). This result was motivated by a question
raised by W. Krieger at a workshop at Kyushu University, Japan, March 1998.

For nonnegative matrices, there are two crucial shift equivalence invariants con-
sisting of abelian groups. One is the dimension groups defined by W. Krieger in
[Kr], [Kr2] and the other one is the Bowen-Franks groups in [BF]. They induce
topological conjugacy invariants for the associated topological Markov shifts.
We will generalize the two shift equivalence invariants to our symbolic matrix
systems. For a symbolic matrix system (M, I), let Ml,l+1 be the nonnegative
rectangular matrix obtained from Ml,l+1 by setting all the symbols equal to
1 for each l ∈ N. Then the resulting pair (M, I) still satisfies the following
relations.

Il,l+1Ml+1,l+2 = Ml,l+1Il+1,l+2, l ∈ N.

We call (M, I) the nonnegative matrix system for (M, I). We say (M, I) to be
canonical when (M, I) is canonical. More generally, for a sequenceMl,l+1, l ∈ N
of rectangular matrices with entries in nonnegative integers and a sequence
Il,l+1, l ∈ N of rectangular matrices with entries in {0, 1}, the pair (M, I) is
called a nonnegative matrix system if they satisfy the relations above. For a sin-
gle n×n nonnegative square matrix A, if we set Ml,l+1 = A and Il,l+1 = In : the
n×n identity matrix for all l ∈ N, the pair (M, I) is a nonnegative matrix sys-
tem. We will similarly formulate strong shift equivalence and shift equivalence
between nonnegative matrix systems. These equivalences are generalizations
of the corresponding equivalences for single nonnegative square matrices.

We will define the following three kinds of objects for a nonnegative matrix
system (M, I).

(i) The dimension triple: (∆(M,I),∆
+
(M,I), δ(M,I)).

(ii) The K-groups: K0(M, I), K1(M, I).
(iii) The Bowen-Franks groups: BF 0(M, I), BF 1(M, I).
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The dimension triple (∆(M,I),∆
+
(M,I), δ(M,I)) consist of an ordered abelian

group ∆(M,I) with positive cone ∆+
(M,I) and an ordered automorphism δ(M,I)

on it. The K-groups Ki(M, I), i = 0, 1 consist of a pair of abelian groups.
The Bowen-Franks groups BF i(M, I), i = 0, 1 also consist of a pair of abelian
groups. Let m(l) be the row size of the matrix Il,l+1 for each l ∈ N. Let ZIt

be the abelian group defined by the inductive limit ZIt = lim−→
l

{Itl,l+1 : Zm(l) →

Zm(l+1)}. The sequence M t
l,l+1, l ∈ N of the transposes of Ml,l+1 naturally

yields an endomorphism on ZIt that is denoted by λ(M,I). The dimension
group and the K-groups are defined as follows:

∆(M,I) = lim−→{λ(M,I) : ZIt → ZIt}

and

K0(M, I) = ZIt/(id− λ(M,I))ZIt , K1(M, I) = Ker(id− λ(M,I)) in ZIt .

The positive cone ∆+
(M,I) of ∆(M,I) is lim−→{λ(M,I) : Z+

It → Z+
It} where Z+

It

is the natural positive cone of ZIt and the automorphism δ(M,I) on ∆(M,I)

is induced one from λ(M,I). Set the projective limit of the abelian group as

ZI = lim←−
l

{Il,l+1 : Zm(l+1) → Zm(l)}. The sequence Ml,l+1, l ∈ N acts on ZI as

an endomorphism that we denote by M . The identity on ZI is denoted by I.
The Bowen-Franks groups for (M, I) are defined by

BF 0(M, I) = ZI/(I −M)ZI , BF 1(M, I) = Ker(I −M) in ZI .

The above notions of dimension triple and Bowen-Franks group of degree zero
for a nonnegative matrix system are generalizations of the corresponding no-
tions for a single nonnegative square matrix. We will prove that the following
Universal Coefficient Theorem holds (Theorem 9.6). It says that there exists a
short exact sequence

0 −→ Ext1Z(K0(M, I),Z)
δ−→ BF 0(M, I)

γ−→ HomZ(K1(M, I),Z) −→ 0

that splits unnaturally. We also see that

BF 1(M, I) ∼= HomZ(K0(M, I),Z).

The three kinds of objects above are proved to be invariant under shift equiv-
alence in nonnegative matrix systems. Hence they are naturally induce topo-
logical conjugacy invariants for subshifts by taking their canonical nonnegative
matrix systems.
We will describe relationships among the equivalences and the invariants for
the matrix systems as in the following way :
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Theorem B. For two symbolic matrix systems (M, I), (M′, I ′) and their non-
negative matrix systems (M, I), (M ′, I ′), consider the following situations:

(S1) (M, I) ≈ (M′, I) : strong shift equivalence,
(N1) (M, I) ≈ (M ′, I) : strong shift equivalence,
(S2) (M, I) ∼ (M′, I) : shift equivalence,
(N2) (M, I) ∼ (M ′, I) : shift equivalence,

(3) (∆(M,I),∆
+
(M,I), δ(M,I)) ∼= (∆(M ′,I′),∆

+
(M ′,I′), δ(M ′,I′)) : isomorphic di-

mension triples,
(4) (∆(M,I), δ(M,I)) ∼= (∆(M ′,I′), δ(M ′,I′)) : isomorphic dimension pairs,
(5) K∗(M, I) ∼= K∗(M ′, I) : isomorphic K-groups,
(6) BF ∗(M, I) ∼= BF ∗(M ′, I) : isomorphic Bowen-Franks groups.

Then we have the following implications:

(S1) =⇒ (S2)

⇓ ⇓
(N1) =⇒ (N2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6).

It is well-known that the set of all nonzero eigenvalues of a nonnegative matrix
A is also a shift equivalence invariant. The set for A is called the nonzero spec-
trum of A and plays an important rôle for studying dynamical properties of the
associated topological Markov shift (cf.[LM], [Kit]). We introduce eigenvalues
and eigenvectors of a nonnegative matrix system and then generalize the notion
of the nonzero spectrum of a single nonnegative matrix to a nonnegative matrix
system (M, I). We denote by Sp×(M, I) the set of all nonzero eigenvalues of
(M, I). A nonnegative matrix system (M, I) in general is an infinite sequence of
pairs of matrices Ml,l+1, Il,l+1, l ∈ N for which sizes of matrices are increasing.
Hence it seems to be natural to deal with eigenvalues having a certain bound-
edness condition on the corresponding eigenvectors. We denote by Sp×b (M, I)
the set of all nonzero eigenvalues of (M, I) with the boundedness condition on
the corresponding eigenvectors. We will prove, in Section 10, that the both of
the nonzero spectrums Sp×(M, I) and Sp×b (M, I) are not empty and invari-
ant under shift equivalence of (M, I). In particular, if (M, I) is the canonical
nonnegative matrix system for a subshift, the set Sp×b (M, I) is bounded by the
topological entropy of the subshift. We then define the nonzero spectrum and
the nonzero bounded spectrum for subshifts by the corresponding sets for the
canonical nonnegative matrix systems (Theorem 10.14).
In the final section, we present an example of the canonical symbolic matrix sys-
tem for a certain nonsofic subshift, called the context free shift in [LM;Example
1.2.9]. Its K-groups and Bowen-Franks groups are calculated. We see that the
types of the invariants can not appear in those of sofic shifts. The maximum of
the absolute values of the bounded spectrums of the canonical nonnegative ma-

trix system for the subshift is 1 +
√

1 +
√

3. The value is the maximum in the
bounded spectrum and coincides with the topological entropy of the subshift.

The author has recently constructed the C∗-algebraOΛ associated with subshift
Λ ([Ma]). The C∗-algebra OΛ has a canonical action of the one dimensional
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torus group, called gauge action and written as α. The fixed point algebra
FΛ of OΛ under α is an AF-algebra which is stably isomorphic to the crossed
product OΛ ×α T ([Ma2]). Let (M, I) be the canonical nonnegative matrix
system for the subshift Λ. The invariants mentioned above are described in
terms of the K-theory for the C∗-algebras as in the following way:

(∆(M,I),∆
+
(M,I), δ(M,I)) = (K0(FΛ),K0(FΛ)+, α̂∗),

Ki(M, I) = Ki(OΛ), i = 0, 1,

BF i(M, I) = Exti+1(OΛ), i = 0, 1

where α̂ denotes the dual action of α and Ext1(OΛ) = Ext(OΛ),Ext0(OΛ) =
Ext(OΛ ⊗ C0(R)). The normalized nonnegative eigenvectors of (M, I) exactly
correspond to the KMS-states for α on the C∗-algebra OΛ. Hence the set of
all bounded spectrums with nonnegative eigenvectors are the set of all inverse
temperatures for the admitted KMS states.

Acknowledgements: The author would like to thank Wolfgang Krieger for his
valuable advices and suggestions, in particular for his question on Proposi-
tion 6.3. The author also would like to thank Toshihiro Hamachi and Yasuo
Watatani for pointing out an error and an inaccuracy in an earlier version of
this paper. Finally, the author wishes to express his gratitude to Joachim Cuntz
and referees for advices and suggestions in the presentation of this paper.

2. symbolic matrix systems and λ-graph systems

We fix a finite set Σ and call it the alphabet. Each element of Σ is called a
symbol. We always write the empty symbol ∅ in Σ as 0. We denote by SΣ the
set of all finite formal sums of elements of Σ. A square matrix with entries in
SΣ is called a symbolic matrix over Σ.

Definition. Let (Ml,l+1, Il,l+1), l ∈ N be a pair of sequences of rectangular
matrices such that the following four conditions for each l ∈ N are satisfied:

(1) Ml,l+1 is an m(l)×m(l + 1) rectangular matrix with entries in SΣ.
(2) Il,l+1 is an m(l) × m(l + 1) rectangular matrix with entries in {0, 1}

satisfying the following two conditions:
(2-a) For i, there exists j such that Il,l+1(i, j) 6= 0.
(2-b) For j, there uniquely exists i such that Il,l+1(i, j) 6= 0.

(3) m(l) ≤ m(l + 1).
(4) Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2.

The pair (M, I) is called a symbolic matrix system over Σ. For i =
1, . . . ,m(l), j = 1, . . . ,m(l+ 1), we denote byMl,l+1(i, j), Il,l+1(i, j) the (i, j)-
components ofMl,l+1, Il,l+1 respectively. A symbolic matrix system (M, I) is
said to be essential if it satisfies the following further conditions:

(5-i) For i, there exists j such that Ml,l+1(i, j) 6= 0.
(5-ii) For j, there exists i such that Ml,l+1(i, j) 6= 0.
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We henceforth study essential symbolic matrix systems and call them symbolic
matrix systems for simplicity.
The following notion of specified equivalence between symbolic matrices has
been introduced by M. Nasu in [N1], [N2].
For two symbolic matrices A over alphabet Σ and A′ over alphabet Σ′ and
bijection φ from a subset of Σ onto a subset of Σ′, we call A and A′ are
specified equivalence under specification φ if A′ can be obtained from A by

replacing every symbol a appearing in A by φ(a). We write it as A φ≃ A′. We
call φ a specification from Σ to Σ′.
Two symbolic matrix systems (M, I) over Σ and (M′, I ′) over Σ′ are said to
be isomorphic if there exists a specification φ from Σ to Σ′ and an m(l)×m(l)-
square permutation matrix Pl for each l ∈ N such that

PlMl,l+1
φ≃M′l,l+1Pl+1, PlIl,l+1 = I ′l,l+1Pl+1 for l ∈ N.

The notion of symbolic matrix system is a generalized notion of symbolic ma-
trix. We say a symbolic matrix system (M, I) to be sofic if there exists a
number L ∈ N such that

Ml,l+1 =ML,L+1, Il,l+1 = IL,L+1

for all l ≥ L. Hence in this case, we see m(L) = m(l) for all l ≥ L.
A symbolic matrix corresponds to a labeled graph, called a λ-graph, that is
a presentation of a sofic subshift. We will next consider a generalization of
λ-graphs corresponding to symbolic matrix systems.
We first explain the notion of Bratteli diagram that appears in the theory
of operator algebras (see [Bra], [Ef], [El]). A Bratteli diagram consists of a
vertex set V and an edge set E satisfying the following conditions. We have a
decomposition of V as a disjoint union V = V1∪V2 ∪· · · where each Vl is finite
and nonempty. Similarly E decomposes as a disjoint union E = E1,2∪E2,3∪· · ·
where each El,l+1 is finite and nonempty. Moreover we have maps s, r : E → V
such that s(El,l+1) ⊂ Vl, r(El,l+1) ⊂ Vl+1. They are called a source map and
a range map respectively. A Bratteli diagram (V,E) is said to be essential if
it satisfies the condition that s−1(v) is nonempty for all v ∈ V and r−1(v) is
nonempty for all v ∈ V�V1. For u ∈ Vl, v ∈ Vl+1, put

El,l+1(u, v) = {e ∈ El,l+1|s(e) = u, r(e) = v}.

We next introduce the notion of labeled Bratteli diagram. A labeled Bratteli
diagram over alphabet Σ consists of a Bratteli diagram (V,E) and a map λ
from E to Σ.
Definition. A λ-graph system over alphabet Σ consists of a labeled Bratteli
diagram (V,E, λ) over Σ and a surjective map ι from V�V1 to V satisfying
the following two conditions:

(1) ι(Vl+1) = Vl for l ∈ N.
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(2) For u ∈ Vl, w ∈ Vl+2, there exists a bijective correspondence between
the edge sets

El,l+1(u, ι(w)) and
⋃

v∈Vl+1,ι(v)=u

El+1,l+2(v, w)

that is compatible with the labeling λ.

We denote by (V,E, λ, ι) the λ-graph system.
The following two conditions are implied from the above condition (2).

(2-i) For e ∈ El+1,l+2, there exists e′ ∈ El,l+1 such that

ι(s(e)) = s(e′), ι(r(e)) = r(e′) and λ(e) = λ(e′).

(2-ii) For f ∈ El,l+1, v ∈ Vl+2 with ι(v) = r(f), there exists e ∈ El+1,l+2

such that

ι(s(e)) = s(f), r(e) = v and λ(e) = λ(f).

A λ-graph system (V,E, λ, ι) is said to be essential if the Bratteli diagram
(V,E) is essential. We always treat an essential λ-graph system and call it a λ-
graph system for simplicity. We remark that by the condition (1) in Definition
of λ-graph system the cardinality of the set Vl+1 is greater than or equal to
that of the set Vl.
Two λ-graph systems (V,E, λ, ι) over alphabet Σ and (V ′, E′, λ′, ι′) over al-
phabet Σ′ are said to be isomorphic if there exist bijections ΦV : V → V ′,
ΦE : E → E′ and a specification φ : Σ→ Σ′ such that

(1) ΦV (Vl) = V ′l and ΦE(El,l+1) = E′l,l+1 for l ∈ N,
(2) ΦV (s(e)) = s(ΦE(e)) and ΦV (r(e)) = r(ΦE(e)) for e ∈ E,
(3) ι′(ΦV (v)) = ΦV (ι(v)) for v ∈ V,
(4) λ′(ΦE(e)) = φ(λ(e)) for e ∈ E.

Proposition 2.1. There exists a bijective correspondence between the set of all
isomorphism classes of symbolic matrix systems and the set of all isomorphism
classes of λ-graph systems.

Proof. 1. From symbolic matrix systems to λ-graph systems: Let (M, I) be
a symbolic matrix system over Σ. We are always assuming that it is essential.
For each l ∈ N, let Vl = {1, . . . ,m(l)} be the set of all rows of the matrix
Ml,l+1 and El,l+1 the disjoint union of elements appearing in the components
of Ml,l+1. For each e ∈ El,l+1 we put s(e) = i and r(e) = j if e appears
in Ml,l+1(i, j). The map ι : V�V1 → V is defined as ι(j) = i for j ∈ Vl+1

if Il,l+1(i, j) = 1. The map λ : E → Σ is defined by λ(e) = e. Then it is
straightforward to see that (V,E, λ, ι) is a λ-graph system.
2. From λ-graph systems to symbolic matrix systems : Let (V,E, ι, λ) be a
λ-graph system over Σ. We denote by m(l) the cardinality of the vertex set
Vl. We identify Vl with the set {1, . . . ,m(l)}. We define m(l) × m(l + 1)
matrices as follows: For i ∈ Vl, j ∈ Vl+1, set Il,l+1(i, j) = 1 if ι(j) = i otherwise
Il,l+1(i, j) = 0. For ek ∈ El,l+1, k = 1, . . . , n with s(ek) = i, r(ek) = j, we put
Ml,l+1(i, j) = λ(e1)+ · · ·+λ(en). It is straightforward to see that the relations
Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2 for l ∈ N hold.
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3. Presentations of subshifts

As in the preceding section, symbolic matrix systems may be identified with λ-
graph systems. We will in this section construct subshifts, a class of topological
dynamical systems, from λ-graph systems. We will further show that any
subshift comes from a λ-graph system. This is a generalized observation of the
correspondences between the sofic subshits and the symbolic matrices. Hence
studies of subshifts are completely reduced to the studies of λ-graph systems
and hence symbolic matrix systems.

We will review on subshifts. Let Σ be an alphabet. Let ΣZ, ΣN be the infinite
product spaces

∏∞
i=−∞Σi,

∏∞
i=1 Σi where Σi = Σ, endowed with the product

topology respectively. The transformation σ on ΣZ,ΣN given by (σ(xi)) =
(xi+1), i ∈ Z,N is called the (full) shift. Let Λ be a shift invariant closed subset
of ΣZ i.e. σ(Λ) = Λ. The topological dynamical system (Λ, σ|Λ) is called a
subshift. We denote σ|Λ by σ and write the subshift as Λ for short. We denote
by XΛ(⊂∏∞i=1 Σi) the set of all right-infinite sequences that appear in Λ. The
dynamical system (XΛ, σ) is called the right one-sided subshift for Λ. We will
give examples of subshifts as follows (cf.[LM], [Kit]):
Let A be an n × n matrix with entries in nonnegative integers. Put VA =
{1, . . . , n}: the vertex set. Write A(i, j) edges from i ∈ VA to j ∈ VA. Hence
we have a directed graph from A. We denote it by GA. Let EA be the set of all
edges of the graph GA. Let sA, rA be the map from EA to VA that assigns the
source and the range of the edge. Let ΛA be the set of all biinfinite sequences
(ei)i∈Z of ei ∈ EA with rA(ei) = sA(ei+1), i ∈ Z. Then ΛA becomes a subshift,
called the topological Markov shift defined by A.
Let A be an n × n symbolic matrix over Σ. Each entry A(i, j), i, j = 1, . . . , n
consists of elements of SΣ. Similarly to the construction above, we have a
directed graph GA from the matrix A with labeled edges by the symbols in Σ.
We denote by λ(e) = α ∈ Σ the label α of edge e. Let ΛA be the set of all
biinfinite sequences λ(ei)i∈Z of labels of the sequence of edges ei ∈ EA with
rA(ei) = sA(ei+1), i ∈ Z. Then ΛA becomes a subshift, called the sofic subshift
defined by A. The labeled graph GA is called a λ-graph for A.
There are many nonsofic subshifts as seen in [LM]. We will see an example of
nonsofic subshift in the final section.
A finite sequence µ = (µ1, ..., µk) of elements µj ∈ Σ is called a block or a word.
We denote by |µ| the length k of µ. A block µ = (µ1, ..., µk) is said to occur or
appear in x = (xi) ∈ ΣZ if xm = µ1, ..., xm+k−1 = µk for some m ∈ Z.

We will first construct subshifts from symbolic matrix systems.
Let (M, I) be a symbolic matrix system over Σ and (V,E, λ, ι) its corresponding
λ-graph system. For k < l, let Pk,l be the set of all paths from Vk to Vl, that
is,

Pk,l={(ek, ek+1, . . . , el−1)|ei ∈ Ei,i+1, r(ei) = s(ei+1) for i = k, k+1, . . . , l−2}.
We define the maps s : Pk,l → Vk and r : Pk,l → Vl by

s(ek, ek+1, . . . , el−1) = s(ek), r(ek, ek+1, . . . , el−1) = r(el−1).
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The labeling λ : Pk,l → Σl−k = Σ× · · · × Σ︸ ︷︷ ︸
l−k times

is defined by

λ(ek, ek+1, . . . , el−1) = λ(ek)λ(ek+1) · · ·λ(el−1).

Set
Lk,l = {λ(w) ∈ Σl−k|w ∈ Pk,l}.

Put Ll = L1,l+1 and endow it with discrete topology. The map πl : Ll+1 → Ll
is defined by

πl(α1, . . . , αl+1) = (α1, . . . , αl).

We set
X(M,I) = lim←−{πl : Ll+1 → Ll}

the projective limit in the category of compact Hausdorff spaces. That is

X(M,I) = {(λ(e1), λ(e2), . . . ) ∈ ΣN|ei ∈ Ei,i+1, r(ei) = s(ei+1) for i ∈ N}
the set of all right infinite sequences consisting of labels along infinite paths.
The topology on X(M,I) is defined from open sets of the form

U(µ1,...,µk) = {(α1, α2, . . . ) ∈ X(M,I)|αi = µi for i = 1, . . . , k}
for (µ1, . . . , µk) ∈ Lk.
Lemma 3.1. If (α1, α2, . . . ) ∈ X(M,I), we have (α2, α3, . . . ) ∈ X(M,I).

Proof. The assertion is direct from the condition (2-i) of Definition of λ-graph
system.

Lemma 3.2. For l > k, if (αk, . . . , αl−1) ∈ Lk,l, we have (αk, . . . , αl−1) ∈
Lk+1,l+1.

Proof. For (αk, . . . , αl−1) ∈ Lk,l, take fi ∈ Ei,i+1 such as αi = λ(fi) for i =
k, k + 1, . . . , l − 1 and r(fi) = s(fi+1) for i = k, k + 1, . . . , l − 2. We find
vl+1 ∈ Vl+1 with ι(vl+1) = r(fl−1). By the condition (2-ii) of Definition of λ-
graph system, there exists el ∈ El,l+1 such that ι(s(el)) = s(fl−1), r(el) = vl+1

and λ(el) = λ(fl−1). Put vl = s(el) ∈ Vl. We continue theses procedures so
that we get ei ∈ Ei,i+1 for i = k + 1, k + 2, . . . , l satisfying ι(s(ei)) = s(fi−1),
r(ei) = s(ei+1) and λ(ei) = λ(fi−1) for i = k + 1, k + 2, . . . , l. Hence αi =
λ(ei+1) and (αk, . . . , αl−1) ∈ Lk+1,l+1.

As in [LM; Definition 1.3.1], a set L of words of alphabet Σ is called a language
if it satisfies the following conditions:

(a) Every subword of a word w in L belongs to L.
(b) For a word w in L, there are nonempty words u, v in L such that uwv

belongs to L.

Let L(M, I) be the set of all words appearing in X(M,I). That is

L(M, I) = ∪k≤lLk,l.
Then we have
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Proposition 3.3. L(M, I) is a language.

Proof. L(M, I) clearly satisfies the condition (a) above. For a word
w ∈ Lk,l, we know w ∈ Lk+1,l+1 by Lemma 3.2. We write w =
(λ(ek+1), λ(ek+2), . . . , λ(el)) for ei ∈ Ei,i+1 with r(ei) = s(ei+1), i = k +
1, . . . , l − 1. Since both the sets r−1(s(ek+1)) and s−1(s(el)) are not empty,
we may find words u, v ∈ L(M, I) such that uwv ∈ L(M, I). Thus L(M, I)
satisfies the condition (b).

By [LM;Proposition 1.3.4], we see

Theorem 3.4. There exists a subshift Λ over alphabet Σ whose language is
L(M, I). Namely the set of all admissible words of the subshift Λ is L(M, I).

We denote by Λ(M,I) the subshift Λ in the theorem above and call it the subshift
associated with symbolic matrix system (M, I).

It is also possible to construct the subshift Λ(M,I) by using projective limit
method as in the folloing way.

Lemma 3.5. For (α1, α2, . . . ) ∈ X(M,I), there exists a symbol α0 ∈ Σ such that
(α0, α1, α2, . . . ) ∈ X(M,I).

Proof. Put wk = (α1, α2, . . . , αk−1) ∈ L1,k. By Lemma 3.2 and Proposition
3.3, there exists a symbol βk ∈ Σ such that βkwk ∈ L1,k+1. Hence we may
find yk ∈ X(M,I) such that βkwkyk ∈ X(M,I). As the alphabet Σ is a finite
set, there exists a symbol α0 ∈ Σ and a subsequence of (βk)k∈N such that
βkn = α0 for n = 1, 2, . . . and k1 < k2 < · · · . Put xkn = α0wknykn , n ∈ N.
They converge to an element

x = (α0, α1, α2, . . . ) ∈ X(M,I).

By Lemma 3.1, the following map

S : (α1, α2, α3, . . . ) ∈ X(M,I) → (α2, α3, . . . ) ∈ X(M,I)

is well-defined, continuous and surjective. We set

Λ = lim←−{S : X(M,I) → X(M,I)}

the projective limit in the category of compact Hausdorff spaces. Thus Λ is
identified with the set of all biinfinite sequences arising from the sequences in
X(M,I). That is

Λ = {(. . . , α2, α1, α0, α1, α2, . . . )|(αn, αn+1, . . . ) ∈ X(M,I) for all n ∈ Z}.

The map S induces a homeomorphism on it. We denote it by σ that satisfies
σ((αi)i∈Z) = (αi+1)i∈Z. Therefore we have a subshift (Λ, σ) from symbolic
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matrix system (M, I). It is nothing but the subshift (Λ(M,I), σ) defined in the
preceding discussion.

We will next construct symbolic matrix systems from subshifts.

For a subshift (Λ, σ) over Σ and a number k ∈ N, let Λk be the set of all words
of length k in ΣZ occurring in some x ∈ Λ. Put Λ∗ = ∪∞k=0Λk where Λ0 denotes
the empty word ∅. Set

Λl(x) = {µ ∈ Λl|µx ∈ XΛ} for x ∈ XΛ, l ∈ N.

We define a nested sequence of equivalence relations in the space XΛ. Two
points x, y ∈ XΛ are said to be l-past equivalent if Λl(x) = Λl(y). We write
this equivalence as x ∼l y. We denote by Ωl = XΛ/ ∼l the quotient space by
l-past equivalence classes of XΛ ([Ma3]).

Lemma 3.6. For x, y ∈ XΛ and µ ∈ Λk,

(i) if x ∼l y, we have x ∼m y for m < l.
(ii) if x ∼l y and µx ∈ XΛ, we have µy ∈ XΛ and µx ∼l−k µy for l > k.

Hence we have the following sequence of surjections in a natural way:

Ω1 ← Ω2 ← · · · ← Ωl ← Ωl+1 ← · · · .

We easily see that (Λ, σ) is a sofic subshift if and only if Ωl = Ωl+1 for some
l ∈ N.

For a fixed l ∈ N, let F li , i = 1, 2, . . . ,m(l) be the set of all l-past equivalence
classes of XΛ. Hence XΛ is a disjoint union of the subsets F li , i = 1, 2, . . . ,m(l).
We define two rectangular m(l)×m(l+ 1) matrices IΛ

l,l+1,MΛ
l,l+1 with entries

in {0, 1} and entries in SΣ respectively as in the following way. For i =
1, 2, . . . ,m(l), j = 1, 2, . . . ,m(l + 1), the (i, j)-component IΛ

l,l+1(i, j) of IΛ
l,l+1

is one if F li contains F l+1
j otherwise zero. Let a1, . . . , an be the set of all

symbols in Σ for which akx ∈ F li for some x ∈ F l+1
j . We then define the (i, j)-

component of the matrixMΛ
l,l+1(i, j) asMΛ

l,l+1(i, j) = a1 + · · ·+an: the formal

sum of a1, . . . , an. We call IΛ
l,l+1 the inclusion matrices for Λ and MΛ

l,l+1 the
symbolic representation matrices for Λ respectively.

We next construct a labeled graph from subshift Λ for each l ∈ N. The vertices
of the graph consist of the sets F li , i = 1, . . . ,m(l) and F l+1

j , j = 1, . . . ,m(l+1)
which we denote by Vl and Vl+1 respectively. We write an arrow with label a,
denoted by λΛ(a), from the vertex F li to F l+1

j if ax ∈ F li for some x ∈ F l+1
j .

We denote by El,l+1 the set of all arrows from Vl to Vl+1. Since for each j =
1, . . . ,m(l+1) there uniquely exists i = 1, . . . ,m(l) such that Il,l+1(i, j) = 1, we
have a natural map ιΛl from Vl+1 to Vl. Set V Λ = ∪∞l=1Vl and EΛ = ∪∞l=1El,l+1.
We then see
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Theorem 3.7. For a subshift (Λ, σ), the pair (MΛ, IΛ) is a symbolic ma-
trix system for which its λ-graph is (V Λ, EΛ, λΛ, ιΛ). Moreover the subshift
Λ(MΛ,IΛ) associated with (MΛ, IΛ) coincides with the original subshift Λ.

Proof. For each l ∈ N, it is straightforward to check that the relation

IΛ
l,l+1MΛ

l+1,l+2 =MΛ
l,l+1I

Λ
l+1,l+2

holds. It then follows that the pair (MΛ, IΛ) is a symbolic matrix system
whose associated λ-graph system is (V Λ, EΛ, λΛ, ιΛ). It is also easy to see that
the subshift associated with (MΛ, IΛ) coincides with the original subshift Λ
because their forbidden words coincide.

Therefore we have a symbolic matrix system (MΛ, IΛ) and a λ-graph system
(V Λ, EΛ, λΛ, ιΛ) from subshift (Λ, σ). We call them the canonical symbolic
matrix system for Λ and the canonical λ-graph system for Λ respectively.
It is now clear that sofic symbolic matrix systems exactly correspond to sofic
subshifts.
For a symbolic matrix system (M, I), let Λ(M,I) be the associated subshift

constructed from (M, I). Then its canonical symbolic matrix system (MΛ, IΛ)
does not necessarily coincide with the original symbolic matrix system (M, I).
We indeed see the following proposition. Its proof is direct.

Proposition 3.8. For a subshift Λ, we have

(i) the representation matrices MΛ
l,l+1 are left resolving, i.e. the incoming

edges to each vertex carry different labels.
(ii) the labeled Bratteli diagram (V Λ, EΛ, λΛ) is predecessor-separated, i.e.

distinct vertices at each level have distinct predecessor sets of labels.

For example set, for each l ∈ N, Ml,l+1 =

[
a b
b 0

]
and Il,l+1 =

[
1 0
0 1

]
. The

symbolic matrix system gives rise to the even shift that is denoted by Y . Its
canonical symbolic matrix system is given by the following matrices:

MY
1,2 =

[
a a+ b b
b 0 0

]
, IY1,2 =

[
1 1 0
0 0 1

]

and

MY
l,l+1 =



a a b
0 b 0
b 0 0


 , IYl,l+1 =




1 0 0
0 1 0
0 0 1


 for l ≥ 2.

We indeed have

Proposition 3.9. If Λ is a sofic subshift, its canonical λ-graph system is
eventually realized as the left Krieger cover graph for Λ. Hence the canonical
symbolic matrix system for Λ is eventually realized as the symbolic representa-
tion matrix for the left Krieger cover graph.
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4. Strong shift equivalence.

In this section, we will define two kinds of strong shift equivalences between two
symbolic matrix systems. One is called the properly strong shift equivalence
that exactly reflects a bipartite decomposition of the associated λ-graph sys-
tems. The other one is called the strong shift equivalence that is weaker than
the former strong shift equivalence. They coincide at least between canonical
symbolic matrix systems and between sofic symbolic matrix systems. The latter
is easier defined and treated than the former. We will see, in the next section,
that the latter strong shift equivalence directly leads to the shift equivalence
between symbolic matrix systems. The main result in this section is that topo-
logical conjugacy between two subshifts are completely characterized by strong
shift equivalence between their canonical symbolic matrix systems. We first
define properly strong shift equivalence in 1-step between two symbolic matrix
systems as a generalization of strong shift equivalence in 1-step between two
nonnegative matrices defined by R. Williams in [Wi] and between two symbolic
matrices defined by M. Nasu in [N](see also [BK]).
For alphabets C,D, put C ·D = {cd|c ∈ C, d ∈ D}. For x =

∑
j cj ∈ SC and

y =
∑
k dk ∈ SD, define xy =

∑
j,k cjdk ∈ SC·D.

Let (M, I) and (M′, I ′) be symbolic matrix systems over alphabets Σ,Σ′ re-
spectively, whereMl,l+1, Il,l+1 are m(l)×m(l+ 1) matrices and M′l,l+1, I

′
l,l+1

are m′(l)×m′(l + 1) matrices.
Definition. Two symbolic matrix systems (M, I) and (M′, I ′) are said to
be properly strong shift equivalent in 1-step if there exist alphabets C,D and
specifications

ϕ : Σ→ C ·D, φ : Σ′ → D · C
and increasing sequences n(l), n′(l) on l ∈ N such that for each l ∈ N, there
exist an n(l) × n′(l + 1) matrix Pl over C, an n′(l) × n(l + 1) matrix Ql over
D, an n(l)× n(l + 1) matrix Xl over {0, 1} and an n′(l)× n′(l + 1) matrix X ′l
over {0, 1} satisfying the following equations:

(4.1) Ml,l+1
ϕ≃ P2lQ2l+1, M′l,l+1

φ≃ Q2lP2l+1,

(4.2) Il,l+1 = X2lX2l+1, I ′l,l+1 = X ′2lX
′
2l+1

and

(4.3) XlPl+1 = PlX ′l+1, X ′lQl+1 = QlXl+1.

We write this situation as

(M, I) ≈
1−pr

(M′, I ′).

It follows by (4.1) that n(2l) = m(l) and n′(2l) = m(l) for l ∈ N.
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Two symbolic matrix systems (M, I) and (M′, I ′) are said to be properly strong
shift equivalent in N-step if there exists a sequence of symbolic matrix systems
(M(i), I(i)), i = 1, 2, . . . , N − 1 such that

(M, I) ≈
1−pr

(M(1), I(1)) ≈
1−pr

(M(2), I(2))

≈
1−pr

· · · ≈
1−pr

(M(N−1), I(N−1)) ≈
1−pr

(M′, I ′)

We denote this situation by

(M, I) ≈
N−pr

(M′, I ′)

and simply call it a properly strong shift equivalence.

Proposition 4.1. Properly strong shift equivalence is an equivalence relation
on symbolic matrix systems.

Proof. It is clear that properly strong shift equivalence is symmetric and tran-
sitive. It suffices to show that (M, I) ≈

1−pr
(M, I). Put C = Σ, D = {0, 1}.

Define ϕ : a ∈ Σ→ a · 1 ∈ C ·D and φ : a ∈ Σ→ 1 · a ∈ D · C. Let Ek be the
k × k identity matrix. Set

P2l = P2l+1 =Ml,l+1, Q2l = Em(l), Q2l+1 = Em(l+1),

X2l = Em(l), X2l+1 =Il,l+1, X ′2l = Il,l+1, X ′2l+1 = Em(l+1).

It is straightforward to see that they give a properly strong shift equivalence
in 1-step between (M, I) and (M, I).

We will prove the following theorem.

Theorem 4.2. Two subshifts Λ and Λ′ are topologically conjugate if and only if
their canonical symbolic matrix systems (MΛ, IΛ) and (MΛ′

, IΛ′
) are properly

strong shift equivalent.

We will first show the only if part of the theorem above. In our proof, we will
use Nasu’s factorization theorem for topological conjugacy between subshifts
into bipartite codes ([N]).
We now introduce the notion of bipartite symbolic matrix system.
Definition. A symbolic matrix system (M, I) over alphabet Σ is said to
be bipartite if there exist disjoint subsets C,D ⊂ Σ and increasing sequences
n(l), n′(l) on l ∈ N with m(l) = n(l)+n′(l) such that for each l ∈ N, there exist
an n(l)× n′(l+ 1) matrix Pl,l+1 over C, an n′(l)× n(l+ 1) matrix Ql,l+1 over
D, an n(l)× n(l + 1) matrix Xl,l+1 over {0, 1} and an n′(l)× n′(l + 1) matrix
X ′l,l+1 over {0, 1} satisfying the following equations:

Ml,l+1 =

[
0 Pl,l+1

Ql,l+1 0

]
, Il,l+1 =

[
Xl,l+1 0

0 X ′l,l+1

]
.

We thus see
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Lemma 4.3. For a bipartite symbolic matrix system (M, I) as above, set

Pl = Pl,l+1, Ql = Ql,l+1, Xl = Xl,l+1, X ′l = X ′l,l+1

and
MCD

l,l+1 = P2lQ2l+1, MDC
l,l+1 = Q2lP2l+1,

ICDl,l+1 = X2lX2l+1, IDCl,l+1 = X ′2lX
′
2l+1.

Then the both pairs (MCD, ICD) and (MDC , IDC) are symbolic matrix systems
over alphabets C · D and D · C respectively and they are properly strong shift
equivalent in 1-step.

Proof. The relations Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2 and

I2l,2l+1I2l+1,2l+2M2l+2,2l+3M2l+3,2l+4

=M2l,2l+1M2l+1,2l+2I2l+2,2l+3I2l+3,2l+4

shows that the both pairs (MCD, ICD) and (MDC , IDC) are symbolic matrix
systems and they are properly strong shift equivalent in 1-step because we see

Xl−1,lPl,l+1 = Pl−1,lX
′
l,l+1, X ′l−1,lQl,l+1 = Ql−1,lXl,l+1.

Definition. A λ-graph system (V,E, λ, ι) over alphabet Σ is said to be bipar-
tite if there exist disjoint subsets C,D ⊂ Σ such that Σ = C ∪D and disjoint
subsets V Cl , V

D
l ⊂ Vl for each l ∈ N such that V Cl ∪ V Dl = Vl and

(1) for each e ∈ El,l+1

s(e) ∈V Dl , r(e) ∈ V Cl+1 if and only if λ(e) ∈ C,
s(e) ∈V Cl , r(e) ∈ V Dl+1 if and only if λ(e) ∈ D.

(2)
ι(V Dl+1) = V Dl , ι(V Cl+1) = V Cl .

Proposition 4.4. A symbolic matrix system is bipartite if and only if its
corresponding λ-graph system is bipartite.

Proof. It is clear that a bipartite symbolic matrix system gives rise to a bipartite
λ-graph system. Conversely, suppose that a λ-graph system (V,E, λ, ι) is bipar-
tite. Let n(l) and n′(l) be the cardinalities of the sets V Dl and V Cl respectively.
We may identify V Dl and V Cl with the sets {1, . . . , n(l)} and {1, . . . , n′(l)}
respectively. For i ∈ V Dl , j ∈ V Cl+1, put Pl,l+1(i, j) = λ(e1) + · · · + λ(ep)
where ek ∈ El,l+1, k = 1, . . . , p are the set of all edges in El,l+1 satisfy-
ing s(ek) = i, r(ek) = j. Similarly we define for i ∈ V Cl , j ∈ V Dl+1, put
Ql,l+1(i, j) = λ(f1) + · · · + λ(fq) where fk ∈ El,l+1, k = 1, . . . , q are the set
of all edges in El,l+1 satisfying s(fk) = i, r(fk) = j. For i ∈ V Dl , j ∈ V Dl+1,

Documenta Mathematica 4 (1999) 285–340



Presentations of Subshifts 301

put Xl,l+1(i, j) = 1 if ι(j) = i and Xl,l+1(i, j) = 0 otherwise. Similarly for
i ∈ V Cl , j ∈ V Cl+1, put X ′l,l+1(i, j) = 1 if ι(j) = i and X ′l,l+1(i, j) = 0 other-
wise. Then by these matrices, we know that the corresponding symbolic matrix
system (M, I) for (V,E, λ, ι) is bipartite.

M. Nasu introduced the notion of bipartite subshift in [N] and [N2]. A subshift
Λ over alphabet Σ is said to be bipartite if there exist disjoint subsets C,D ⊂ Σ
such that any (xi)i∈Z ∈ Λ is either

xi ∈ C and xi+1 ∈ D for all i ∈ Z or xi ∈ D and xi+1 ∈ C for all i ∈ Z.

Let Λ(2) be the 2-higher power shift for Λ. Put

ΛCD = {(cidi)i∈Z ∈ Λ(2)|ci ∈ C, di ∈ D},
ΛDC = {(dici)i∈Z ∈ Λ(2)|ci ∈ C, di ∈ D}.

They are subshifts over alphabets C ·D and D · C respectively. Hence Λ(2) is
partitioned into the two subshifts ΛCD and ΛDC .

Proposition 4.5. A subshift Λ is bipartite if and only if its canonical symbolic
matrix system (MΛ, IΛ) is bipartite.

Proof. It is clear that a bipartite canonical symbolic matrix system gives rise
to a bipartite subshift from the preceding proposition. Suppose that Λ is bi-
partite with respect to alphabets C,D. It suffices to show that its canonical
λ-graph system (V,E, λ, ι) is bipartite. As in the construction of the canonical
λ-graph system, the vertex set Vl is the set of all l-past equivalence classes
{F li }i=1,...,m(l). Put

V Cl ={F li |x1 ∈ D for all (x1, x2, . . . , ) ∈ F li },
V Dl ={F li |x1 ∈ C for all (x1, x2, . . . , ) ∈ F li }

so that we have a disjoint union V Cl ∪ V Dl = Vl. It is easy to see that this
decomposition of Vl, l ∈ N yields a bipartite decomposition of the λ-graph
system (V,E, λ, ι).

Let Λ be a bipartite subshift over Σ with respect to alphabets C,D. As
in Lemma 4.3, we have two symbolic matrix systems (MCD, ICD) and
(MDC , IDC) over alphabets C ·D and D ·C from the bipartite canonical sym-
bolic matrix system (MΛ, IΛ) for Λ respectively. They are naturally identified
with the canonical symbolic matrix systems for the subshifts ΛCD and ΛDC
respectively.
We thus see by Lemma 4.3.

Corollary 4.6. For a bipartite subshift Λ with respect to alphabets C,D, we
have

(MCD, ICD) ≈
1−pr

(MDC , IDC)
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a properly strong shift equivalence in 1-step.

The following notion of bipartite conjugacy has been introduced by Nasu in [N],
[N2]. The conjugacy from ΛCD onto ΛDC that maps (cidi)i∈Z to (dici+1)i∈Z

is called the forward bipartite conjugacy. The conjugacy from ΛCD onto ΛDC
that maps (cidi)i∈Z to (di−1ci)i∈Z is called the backward bipartite conjugacy.
A topological conjugacy between subshifts is called a symbolic conjugacy if it
is a 1-block map given by a bijection between the underlying alphabets of the
subshifts. M. Nasu proved the following factorization theorem.

Lemma 4.7(M.Nasu [N]). Any topological conjugacy ψ between subshifts is
factorized into a composition of the form

ψ = κnζnκn−1ζn−1 · · ·κ1ζ1κ0

where κ0, . . . , κn are symbolic conjugacies and ζ1, . . . , ζn are either forward or
backward bipartite conjugacies.

Thanks to the Nasu’s result above, we reach the following theorem

Theorem 4.8. For two subshifts Λ,Λ′, let (M, I), (M′, I ′) be their canonical
symbolic matrix systems for Λ,Λ′ respectively. If Λ and Λ′ are topologically
conjugate, the symbolic matrix systems (M, I), (M′, I ′) are properly strong shift
equivalent.

We will prove the converse implication of the theorem above. We will indeed
prove the following proposition.

Proposition 4.9. If two symbolic matrix systems are properly strong shift
equivalent in 1-step, their associated subshifts are topologically conjugate.

To prove the proposition, we provide a notation and a lemma.

Set the m(l)×m(l + k) matrices:

Il,l+k = Il,l+1 · Il+1,l+2 · · · Il+k−1,l+k,

Ml,l+k =Ml,l+1 ·Ml+1,l+2 · · ·Ml+k−1,l+k

for each l, k ∈ N.

Lemma 4.10. Assume that two symbolic matrix systems (M, I) over Σ and
(M′, I ′) over Σ′ are properly strong shift equivalent in 1-step. Let ϕ : Σ→ C ·D
and φ : Σ′ → D ·C be specifications that give a properly strong shift equivalence
in 1-step between them. For any word x1x2 ∈ (Λ(M,I))

2 of length two in the
associated subshift Λ(M,I), put ϕ(xi) = cidi, i = 1, 2 where ci ∈ C, di ∈ D.
Then there uniquely exists a symbol y0 ∈ Σ′ such that φ(y0) = d1c2.

Proof. Note that by definition the specification φ is not necessarily defined
on all the elements of Σ′. It suffices to show the existence of y0. Since
x1x2 ∈ (Λ(M,I))

∗, for any fixed l ≥ 3, we find j = 1, 2, . . . ,m(l + 2) and k =
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1, 2, . . . ,m(l) such that x1x2 appears inMl,l+2(k, j). Take i = 1, 2, . . . ,m(l−2)
with Il−2,l(i, k) = 1. Hence x1x2 appears in Il−2,lMl,l+2(i, j). As we know the
equality:

Il−2,lMl,l+2
ϕ≃ Il−2,l−1X2l−1P2l−1Q2lP2l+1Q2l+2X2l+3,

the word ϕ(x1x2) = c1d1c2d2 appears in a component of the right hand sym-
bolic matrix above. Thus the word d1c2 appears in a component of Q2lP2l+1.

By the equalityM′l,l+1

φ≃ Q2lP2l+1, we can find a symbol y0 in the correspond-

ing component of the matrix M′l,l+1 so that φ(y0) = d1c2.

Proof of Proposition 4.9. Suppose that (M, I) and (M′, I ′) are properly strong
shift equivalent in 1-step. We use the same notation as in Definition of properly
strong shift equivalence. Set Λ = Λ(M,I) and Λ′ = Λ(M′,I′). By the preceding

lemma, we have a 2-block map Φ from Λ2 to Σ′ defined by Φ(x1x2) = y0 where
φ(y0) = d1c2 and ϕ(xi) = cidi, i = 1, 2. Let Φ∞ be the sliding block code

induced by Φ so that Φ∞ is a map from Λ to Σ′Z. We also write as Φ the map
from Λ∗ to the set of all words of Σ′ defined by

Φ(x1x2 · · ·xn) = Φ(x1x2)Φ(x2x3) · · ·Φ(xn−1xn).

We will prove that Φ∞(Λ) ⊂ Λ′. To prove this, it suffices to show that for any
word w in Λ, Φ(w) is an admissible word in Λ′. For w = w1w2 · · ·wn ∈ Λn and
any fixed l ≥ n + 1, we find j = 1, 2, . . . ,m(l + n) and k = 1, 2, . . . ,m(l) such
that w appears inMl,l+n(k, j). Take i = 1, 2, . . . ,m(l−n) with Il−n,l(i, k) = 1.
Hence w appears in Il−n,lMl,l+n(i, j). Put ϕ(wi) = cidi, i = 1, 2, . . . , n. By
the equality

Il−1,lMl,l+n
ϕ≃ X2l−2P2l−1Q2lP2l+1Q2l+2 · · · P2l+2n−3Q2l+2n−2X2l+2n−1,

the word d1c2d2c3 · · ·dn−1cn appears in a component of Q2lP2l+1Q2l+2 · · ·
P2l+2n−3. Hence the word φ−1(d1c2)φ−1(d2c3) · · ·φ−1(dn−1cn) appears in a
component of M′l,l+1 · M′l+1,l+2 · · ·M′l+n−2,l+n−1. Thus we see that Φ(w) is

an admissible word in Λ′ and that the sliding block code Φ∞ maps Λ to Λ′.
Similarly, we can construct a sliding block code Ψ∞ from Λ′ to Λ that is an
inverse of Φ∞. Thus two subshifts Λ′ and Λ are topologically conjugate.

Therefore we conclude the following theorem

Theorem 4.11. If two symbolic matrix systems are properly strong shift equiv-
alent, their associated subshifts are topologically conjugate.

By Theorem 4.8 and Theorem 4.11, we conclude Theorem 4.2.

Remark. If there exist the matrices Pl,Ql for all sufficiently large number l
in Definition of properly strong shift equivalence in 1-step, we may show that
the associated subshifts are topologically conjugate because of the proof of
Proposition 4.9.

Documenta Mathematica 4 (1999) 285–340



304 Kengo Matsumoto

Properly strong shift equivalence exactly corresponds to a finite sequence of
bipartite decompositions of symbolic matrix systems and λ-graph systems.
The definition of properly strong shift equivalence for symbolic matrix sys-
tems however needs rather complicated formulations than that of strong shift
equivalence for nonnegative matrices. We will next introduce the notion of
strong shift equivalence between two symbolic matrix systems that is simpler
and weaker condition than properly strong shift equivalence. It is also a gen-
eralization of the notion of strong shift equivalence between nonnegative ma-
trices defined by Williams in [Wi] and between symbolic matrices defined by
Nasu in [N]. Let (M, I), (M′, I) be two symbolic matrix systems over alphabet
Σ,Σ′ respectively. Let m(l),m′(l) be the sequences for which Ml,l+1, Il,l+1

are m(l)×m(l + 1) matrices and M′l,l+1, I
′
l,l+1 are m′(l)×m′(l + 1) matrices

respectively.
Definition. Two symbolic matrix systems (M, I), (M′, I) are said to be
strong shift equivalent in 1-step if there exist alphabets C,D and specifications

ϕ : Σ→ C ·D, φ : Σ′ → D · C

such that for each l ∈ N, there exist an m(l− 1)×m′(l) matrix Hl over C and
an m′(l − 1)×m(l) matrix Kl over D satisfying the following equations:

Il−1,lMl,l+1
ϕ≃ HlKl+1, I ′l−1,lM′l,l+1

φ≃ KlHl+1

and
HlI ′l,l+1 = Il−1,lHl+1, KlIl,l+1 = I ′l−1,lKl+1.

We write this situation as

(M, I) ≈
1−st

(M′, I ′).

Two symbolic matrix systems (M, I) and (M′, I ′) are said to be strong shift
equivalent in N-step if there exist symbolic matrix systems (M(i), I(i)), i =
1, 2, . . . , N − 1 such that

(M, I) ≈
1−st

(M(1), I(1)) ≈
1−st

(M(2), I(2))

≈
1−st
· · · ≈

1−st
(M(N−1), I(N−1)) ≈

1−st
(M′, I ′).

We denote this situation by

(M, I) ≈
N−st

(M′, I ′)

and simply call it a strong shift equivalence.

Similarly to the case of properly strong shift equivalence, we see that strong
shift equivalence on symbolic matrix systems is an equivalence relation.
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Proposition 4.12. Properly strong shift equivalence in 1-step implies strong
shift equivalence in 1-step.

Proof. Let Pl,Ql, Xl and X ′l be the matrices in Definition of properly strong
shift equivalence in 1-step between (M, I) and (M′, I ′). We set

Hl = X2l−1P2l−1, Kl = X ′2l−1Q2l−1.

They give rise to a strong shift equivalence in 1-step between (M, I) and
(M′, I ′).
Conversely we have

Proposition 4.13. Suppose that both (M, I) and (M′, I ′) are canonical. If
they are strong shift equivalent in 1-step, they are properly strong shift equiv-
alent in 1-step. Hence strong shift equivalence on canonical symbolic matrix
systems is completely the same as properly strong shift equivalence.

Proof. Let Λ,Λ′ be the associated subshifts for (M, I), (M′, I ′) respectively.
Suppose that (M, I) ≈

1−st
(M′, I ′). We use the same notation as in Definition

of strong shift equivalence. Set

Λϕ = {(. . . , c−1, d−1, ċ0, d0, c1, d1, . . . )|
there exists (xi)i∈Z ∈ Λ;ϕ(xi) = cidi for all i ∈ Z},

Λ′φ = {(. . . , d−1, c0, ḋ0, c1, d1, c2, . . . )|
there exists (yi)i∈Z ∈ Λ′;φ(yi) = dici for all i ∈ Z}

where ċ0, ḋ0 locate at the position of the 0-th coordinate in the sequences. Put

Λo = Λϕ ∪ Λ′φ

that becomes a subshift over C∪D because of strong shift equivalence between
(M, I) and (M′, I ′). It is clear that Λo is a bipartite subshift with respect

to the alphabets C,D. Hence the 2-higher power shift Λ
(2)
o is decomposed as

Λ
(2)
o = Λ

(2)
ϕ ∪ Λ

(2)
φ . As there exist symbolic conjugacies:

Λ
ϕ≃ Λ(2)

ϕ , Λ′
φ≃ Λ

(2)
φ ,

the canonical symbolic matrix systems for the subshifts Λ and Λ′ are properly
strong shift equivalence in 1-step by the previous discussions.

By a similar argument to the proof of Proposition 4.9, we obtain

Proposition 4.14. If two symbolic matrix systems ( not necessarily canonical
) are strong shift equivalent in 1-step, their associated subshifts are topologically
conjugate.

Thus we conclude

Theorem 4.15. If two symbolic matrix systems (not necessarily canonical) are
strong shift equivalent, their associated subshifts are topologically conjugate.
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5. Higher λ-graph systems

In studies of symbolic dynamics, the operation of taking higher block presen-
tation plays important rôles (cf.[Kit], [LM]). In topological Markov shifts, the
operation of taking 2-higher block presentation is a typical example of giving
strong shift equivalence in 1-step. The N -higher block presentation of an edge
shift corresponds to the edge shift of the N -higher edge graph. We in this
section introduce higher λ-graph systems and correspondingly higher symbolic
matrix systems. It follows that the subshift associated with the N -higher λ-
graph system is the N -higher block presentation of the subshift associated with
the original λ-graph system. We see that a symbolic matrix system is properly
strong shift equivalent in N-step to its N-higher symbolic matrix system. We
treat a left resolving λ-graph system, that is, the incoming edges to each vertex
carry different labels. General case and also general state splitting procedure
of λ-graph systems will be treated in a forthcoming paper.
For a left resolving λ-graph system (V,E, λ, ι) over alphabet Σ and a natural
number N ∈ N, we will define a λ-graph system (V [N ], E[N ], λ[N ], ι[N ]) over
Σ[N ] = Σ · · ·Σ︸ ︷︷ ︸

N-times

as follows:

V
[N ]
l = {(e1, e2, . . . , eN−1) ∈ El,l+1 × El+1,l+2 × · · · ×El+N−2,l+N−1|

r(ei) = s(ei+1) for i = 1, 2, . . . , N − 2},
E

[N ]
l,l+1 = {((e1, . . . , eN−1),(f1, . . . , fN−1)) ∈ V [N ]

l × V [N ]
l+1 |

ei+1 = fi for i = 1, 2, . . . , N − 2}.

The maps

s[N ] : E
[N ]
l,l+1 → V

[N ]
l , r[N ] : E

[N ]
l,l+1 → V

[N ]
l+1

are defined by

s[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = (e1, . . . , eN−1),

r[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = (f1, . . . , fN−1).

Set V [N ] = ∪l∈NV
[N ]
l and E[N ] = ∪l∈NE

[N ]
l,l+1. Hence (V [N ], E[N ], s[N ], r[N ]) is a

Bratteli diagram. A labeling λ[N ] on (V [N ], E[N ]) is defined by

λ[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = λ(e1)λ(e2) . . . λ(eN−1)λ(fN−1) ∈ Σ[N ]

for ((e1, . . . , eN−1), (f1, . . . , fN−1)) ∈ E[N ]. A sequence of surjections ι[N ] :

V
[N ]
l+1 → V

[N ]
l , l ∈ N is defined as follows. For (e1, . . . , eN−1) ∈ V [N ]

l+1 , since the
λ-graph system (V,E, λ, ι) is left resolving, there uniquely exist e′i ∈ El+i−1,l+i

for i = 1, 2, . . . , N − 2 such that

ι(s(ei)) = s(e′i), ι(r(ei)) = r(e′i), λ(ei) = λ(e′i).
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As we know (e′1, . . . , e
′
N−1) ∈ V

[N ]
l , by setting ι[N ](e1, . . . , eN−1) =

(e′1, . . . , e
′
N−1). We get a λ-graph system (V [N ], E[N ], λ[N ], ι[N ]) over Σ[N ].

Definition. We call the λ-graph system (V [N ], E[N ], λ[N ], ι[N ]) the N -higher
λ-graph system for (V,E, λ, ι). For a symbolic matrix system (M, I), the N -
higher symbolic matrix system (M[N ], I [N ]) is defined to be the symbolic matrix
system associated with the N -higher λ-graph system for the λ-graph system of
(M, I).
It is routine to show the following proposition.

Proposition 5.1. Λ(M[N ],I[N ]) = (Λ(M,I))
[N ].

As seen in the case of nonnegative matrices, we see

Proposition 5.2. (M, I) ≈
1−pr

(M[2], I [2]) : a properly strong shift equivalence

in 1-step.

Proof. Let (V,E, λ, ι) and (V [2], E[2], λ[2], ι[2]) be the associated λ-graph sys-
tems for (M, I), (M[2], I [2]) over alphabets Σ and Σ[2] respectively. We will

construct a bipartite λ-graph system (V̂ , Ê, λ̂, ι̂) that gives rise to a properly
strong shift equivalence in 1-step between the λ-graph systems. We set for
l ∈ N

V̂2l−1 = El,l+1 ∪ Vl, V̂2l = Vl+1 ∪El,l+1

and

Ê2l−1,2l={(f, u) ∈ El,l+1 × Vl+1|u = r(f)} ∪ {(v, e) ∈ Vl × El,l+1|v = s(e)},
Ê2l,2l+1 ={(v, e) ∈ Vl+1 × El+1,l+2|v = s(e)} ∪{(f, u)∈El,l+1×Vl+1|u = r(f)}.

The source maps ŝ2l−1,2l : Ê2l−1,2l → V̂2l−1 and ŝ2l,2l+1 : Ê2l,2l+1 → V̂2l are
defined as follows:

ŝ2l−1,2l(f, u) = f ∈ El,l+1, ŝ2l−1,2l(v, e) = v ∈ Vl,
ŝ2l,2l+1(v, e) = v ∈ Vl+1, ŝ2l,2l+1(f, u) = f ∈ El,l+1.

The range maps r̂2l−1,2l : Ê2l−1,2l → V̂2l and r̂2l,2l+1 : Ê2l,2l+1 → V̂2l+1 are
defined as follows:

r̂2l−1,2l(f, u) = u ∈ Vl+1, r̂2l−1,2l(v, e) = e ∈ El,l+1,

r̂2l,2l+1(v, e) = e ∈ El+1,l+2, r̂2l,2l+1(f, u) = u ∈ Vl+1.

The maps ι̂2l,2l−1 : V̂2l → V̂2l−1 and ι̂2l+1,2l : V̂2l+1 → V̂2l are defined as follows:

ι̂2l,2l−1(u) = ι(u) for u ∈ Vl+1, ι̂2l,2l−1(f) = f for f ∈ El,l+1,

ι̂2l+1,2l(e) = ι(e) for e ∈ El+1,l+2, ι̂2l+1,2l(v) = v for v ∈ Vl+1
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where ι(e) ∈ El,l+1 is naturally defined for e ∈ El+1,l+2. Put DΣ = {Dα|α ∈
Σ}, CΣ = {Cα|α ∈ Σ} and Σ̂ = DΣ ∪ CΣ. The labeling λ̂ is defined as a map

from Ê to the alphabet Σ̂ as follows: For (f, u), (v, e) in Ê2l−1,2l = {(f, u) ∈
El,l+1 × Vl+1|u = r(f)} ∪ {(v, e) ∈ Vl × El,l+1|v = s(e)}, we set

λ̂(f, u) = Cλ(f), λ̂(v, e) = Dλ(e).

For (v, e), (f, u) in Ê2l,2l+1 = {(v, e) ∈ Vl+1 × El+1,l+2|v = s(e)} ∪ {(f, u) ∈
El,l+1 × Vl+1|u = r(f)}, we set

λ̂(v, e) = Dλ(e), λ̂(f, u) = Cλ(f).

Then it is routine to check that (V̂ , Ê, λ̂, ι̂) is a bipartite λ-graph system over

alphabet Σ̂. Through the specifications ϕ : Σ→ DΣ ·CΣ and φ : Σ[2] → CΣ ·DΣ

defined by
ϕ(α) = Dα · Cα and φ(α, β) = Dα · Cβ ,

we know that the symbolic matrix system for (V̂ , Ê, λ̂, ι̂) gives rise to a properly
strong shift equivalence in 1-step between (M, I) and (M[2], I [2]).

Since (M[N+1], I [N+1]) is isomorphic to ((M[N ])[2], (I [N ])[2]), we have

Corollary 5.3. For any symbolic matrix system (M, I), we have

(M[N ], I [N ]) ≈
N−st

(M, I)

a properly strong shift equivalence in N -step.

6. Shift equivalence

By the discussions of Section 4, the topological conjugacy classes of subshifts are
completely characterized by the strong shift equivalence classes of the associ-
ated canonical symbolic matrix systems. However, even for topological Markov
shifts, there is no general algorithm known for deciding whether two nonnega-
tive matrices are strong shift equivalent. R. F. Williams introduced the notion
of shift equivalence between two nonnegative matrices that is weaker but easier
to treat than the notion of strong shift equivalence ([Wi]). The formulation
of shift equivalence between nonnegative matrices is described by certain alge-
braic relations between the matrices that determine a crucial invariant called
the dimension group ([Kr], [Kr2]). The notion of shift equivalence has been
generalized to symbolic matrices by Boyle-Krieger and studied as a topological
conjugacy invariant for sofic subshifts in [BK].
We in this section introduce the notion of shift equivalence between two sym-
bolic matrix systems as a generalization of Williams’s notion for nonnegative
matrices and Boyle-Krieger’s notion for symbolic matrices. Let (M, I), (M′, I ′)
be two symbolic matrix systems over alphabets Σ,Σ′ respectively. For N ∈ N,
we put (Σ)N = Σ · · ·Σ, (Σ′)N = Σ′ · · ·Σ′ : the N -times products.
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Definition. For N ∈ N, two symbolic matrix systems (M, I), (M′, I ′) are said
to be shift equivalent of lag N if there exist alphabets CN , DN and specifications

ϕ1 : Σ · CN → CN ·Σ′, ϕ2 : Σ′ ·DN → DN ·Σ

and
ψ1 : (Σ)N → CN ·DN , ψ2 : (Σ′)N → DN · CN

such that for each l ∈ N, there exist an m(l) ×m′(l + N) matrix Hl over CN
and an m′(l)×m(l+N) matrix Kl over DN satisfying the following equations:

Ml,l+1Hl+1
ϕ1≃ HlM′l+N,l+N+1, M′l,l+1Kl+1

ϕ2≃ KlMl+N,l+N+1,

Il,l+NMl+N,l+2N
ψ1≃ HlKl+N , I ′l,l+NM′l+N,l+2N

ψ2≃ KlHl+N
and

Il,l+1Hl+1 = HlI ′l+N,l+N+1, I ′l,l+1Kl+1 = KlIl+N,l+N+1.

We denote this situation by

(M, I) ∼
lagN

(M′, I ′) or (H,K) : (M, I) ∼
lagN

(M′, I ′)

and simply call it a shift equivalence.

Similarly to the case of nonnegative matrices and symbolic matrices, we can
see the following lemma.

Lemma 6.1.

(i) (M, I) ∼
lagN

(M′, I ′) implies (M, I) ∼
lagL

(M′, I ′) for all L ≥ N .

(ii) (M, I) ∼
lagN

(M′, I ′) and (M′, I ′) ∼
lagN ′

(M′′, I ′′) implies

(M, I) ∼
lagN+N ′

(M′′, I ′′). Hence shift equivalence is an equivalence

relation on symbolic matrix systems.

Proof. (i) Suppose that (M, I) and (M′, I ′) are shift equivalent of lag N . It
suffices to show that they are shift equivalent of lag N + 1. We use the same
notation as above. Set the alphabets

CN+1 = CN , DN+1 = DN ·Σ.

Put the specification ϕ′1 = ϕ1 : Σ·CN+1 → CN+1 ·Σ′. Through the specification
ϕ2, we have a natural specification ϕ′2 : Σ′ · DN+1 → DN+1 · Σ. Similarly,
through the specifications ψ1, ψ2, ϕ1, we have natural specifications

ψ′1 : (Σ)N+1 → CN+1 ·DN+1, ψ′2 : (Σ′)N+1 → DN+1 · CN+1.
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Put the matrices

H′l = HlI ′l+N,l+N+1, K′l = KlMl+N,l+N+1.

Then it is straightforward to see that they give a shift equivalence of lag N + 1
between (M, I) and (M′, I ′).
(ii) Assume that

(H,K) : (M, I) ∼
lagN

(M′, I ′), (H′,K′) : (M′, I ′) ∼
lagN ′

(M′′, I ′′).

Then it is routine to check that

(HH′,K′K) : (M, I) ∼
lagN+N ′

(M′′, I ′′).

Similarly to the case of matrices, we have

Theorem 6.2. Strong shift equivalence in N -step implies shift equivalence of
lag N .

Proof. Suppose that (M, I) ≈
N−st

(M′, I ′) a strong shift equivalence in N -step.

There exist symbolic matrix systems (M(i), I(i)) for i = 1, . . . , N − 1 such that

(M, I) = (M(0), I(0)) ≈
1−st

(M(1), I(1)) ≈
1−st

(M(2), I(2)) ≈
1−st

· · · ≈
1−st

(M(N−1), I(N−1)) ≈
1−st

(M(N), I(N)) = (M′, I ′).

Let H(i)
l ,K(i)

l be rectangular symbolic matrices that give a strong shift equiva-

lence between (M(i−1), I(i−1)) and (M(i), I(i)) where H(i)
l is an m(i−1)(l−1)×

m(i)(l) matrix over alphabet C(i) and K(i)
l is an m(i)(l− 1)×m(i−1)(l) matrix

over alphabet D(i) for each l ∈ N and i = 1, . . . , N . Set the alphabets

CN = C(1) · · ·C(N), DN = D(1) · · ·D(N).

Put the matrices

Pl = H(1)
l+2H

(2)
l+3 · · ·H

(N)
l+N+1, Ql = K(1)

l+2K
(2)
l+3 · · ·K

(N)
l+N+1

an m(l) × m′(l + N) matrix over CN , an m′(l) × m(l + N) matrix over DN

respectively. We then have the following natural specifications

ϕ1 : Σ · CN → CN ·Σ′, ϕ2 : Σ′ ·DN → DN ·Σ

and
ψ1 : (Σ)N → CN ·DN , ψ2 : (Σ′)N → DN · CN
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that yield a shift equivalence of lag N between (M, I) and (M′, I ′).
For a subshift (Λ, σ) over Σ, its n-higher power shift (Λ(n), σ) is defined to
be the subshift (Λ, σn) over (Σ)n (cf.[LM]). Two subshifts is called eventually
conjugate if their n-higher power shifts are conjugate for all large enough n
([Wi], [KimR]). Williams and Kim-Roush showed that two square nonnegative
matrices are shift equivalent if and only if the associated topological Markov
shifts are eventually conjugate. Boyle-Krieger generalized their result to sym-
bolic matrices and sofic subshifts ([BK]). W. Krieger kindly asked the author
whether or not these results can be generalized to general subshifts. The author
sincerely thanks him for his question.

Proposition 6.3. If symbolic matrix systems (M, I) and (M′, I ′) are shift
equivalent, their associated subshifts Λ(M,I) and Λ(M′,I′) are eventually conju-
gate.

To show the proposition, we provide a lemma that is proved by a straightfor-
ward calculation.

Lemma 6.4. For a symbolic matrix system (M, I), let Λ the associated subshift.
We set for n, l ∈ N,

Inl,l+1 = Inl,nl+1Inl+1,nl+2 · · · Inl+n−1,nl+n,

Mn
l,l+1 =Mnl,nl+1Mnl+1,nl+2 · · ·Mnl+n−1,nl+n.

Then (Mn, In) becomes a symbolic matrix system whose associated subshift is
the n-higher power shift Λ(n) of Λ.

Proof of Proposition 6.3. Put Λ = Λ(M,I), Λ′ = Λ(M′,I′) over Σ,Σ′ respectively.
Assume that

(H,K) : (M, I) ∼
lagN

(M′, I ′).

For a number K ∈ N, put n = K + N . We will see that Λ(n) ≈
1−st

Λ′(n)
. Let

CN , DN be alphabets as in Definition of shift equivalence. Set C = CN , D =
DN · (Σ)K . There are natural specifications

(Σ)
n → C ·D, (Σ′)

n → D · C

by using the specifications in the shift equivalence between Λ and Λ′. Put the
matrices

Pl = Hnl−nI ′nl−K,nl−K+1I
′
nl−K+1,nl−K+2 · · · I ′nl−1,nl,

Ql = Knl−nMnl−K,nl−K+1Mnl−K+1,nl−K+2 · · ·Mnl−1,nl.

They are an m(nl − n) × m′(nl) matrix over C and an m′(nl − n) × m(nl)
matrix over D respectively. We see that they yield a strong shift equivalence
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in 1-step between (Mn, In) and (M′n, I ′n) so that their associated subshifts
are topologically conjugate by Theorem 4.15.

We will comment on the notion of properly shift equivalence between symbolic
matrix systems. The following is the definition of properly shift equivalence
that is a slightly stronger than shift equivalence and weaker than properly
strong shift equivalence.
Let (M, I) and (M′, I ′) be symbolic matrix systems over alphabets Σ,Σ′ re-
spectively. HenceMl,l+1, Il,l+1 are m(l)×m(l+ 1) matrices andM′l,l+1, I

′
l,l+1

are m′(l)×m′(l + 1) matrices.
Definition. (M, I) and (M′, I ′) are said to be properly shift equivalent of lag
N if there exist alphabets CN , DN and specifications

ϕ1 :Σ · CN → CN ·Σ′, ϕ2 : Σ′ ·DN → DN · Σ,
ψ1 :(Σ)N → CN ·DN , ψ2 : (Σ′)

N → DN · CN

and increasing sequences n(l), n′(l) on l ∈ N such that for each l ∈ N, there
exist an n(k) × n′(k + 2N − 1) matrix Pk over CN , an n′(k) × n(k + 2N − 1)
matrix Qk over DN for k = 2l, 2l+ 2N − 1, an n(l)× n(l + 1) matrix Xl over
{0, 1} and an n′(l) × n′(l + 1) matrix X ′l over {0, 1} satisfying the following
equations:
(6.1)

Ml,l+NIl+N,l+2N−1
ψ1≃ P2lQ2l+2N−1, M′l,l+N I ′l+N,l+2N−1

ψ2≃ Q2lP2l+2N−1,

Ml,l+1P2(l+1)X
′
2l+2N+1

ϕ1≃P2lX
′
2l+2N−1M′l+N,l+N+1,

M′l,l+1Q2(l+1)X2l+2N+1
ϕ2≃Q2lX2l+2N−1Ml+N,l+N+1,

Il,l+1 = X2lX2l+1, I ′l,l+1 = X ′2lX
′
2l+1

and
XlPl+1 = PlX ′l+2N−1, X ′lQl+1 = QlXl+2N−1.

We denote this situation by

(M, I) ∼
N−pr

(M′, I ′).

It follows that by (6.1), n(2l) = m(l) and n′(2l) = m′(l) for l ∈ N.
For N = 1, if we understand that the matrices Il+1,l+1 and I ′l+1,l+1 are the

m(l+1)×m(l+1) identity matrix and the m′(l+1)×m′(l+1) identity matrix
respectively, the properly shift equivalence of lag 1 is exactly the same as the
properly strong shift equivalence in 1-step.

This definition is also a generalization of Boyle-Krieger ’s shift equivalence
between symbolic matrices ([BK] see also [N2]).
The following proposition is routine.
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Proposition 6.5.

(i) (M, I) ∼
N−pr

(M′, I ′) implies (M, I) ∼
lagN

(M′, I ′). That is, properly

shift equivalence implies shift equivalence.
(ii) (M, I) ≈

N−pr
(M′, I ′) implies (M, I) ∼

N−pr
(M′, I ′). That is, properly

strong shift equivalence implies properly shift equivalence.

We thus summarize as in the following way:

(M, I) ≈
N−pr

(M′, I ′) =⇒ (M, I) ∼
N−pr

(M′, I ′))

⇓ ⇓
(M, I) ≈

N−st
(M′, I ′) =⇒ (M, I) ∼

lagN
(M′, I ′).

We may define strong shift equivalence and shift equivalence between subshifts
as their corresponding properties for their canonical symbolic matrix systems.
Hence we can say that two subshifts are topologically conjugate if and only
if they are strong shift equivalence. The strong shift equivalence for subshifts
imply the shift equivalence.

7. Nonnegative matrix systems

In this section, we will introduce the notion of nonnegative matrix system
that is also a generalization of nonnegative matrices. We will then generalize
strong shift equivalence and shift equivalence between nonnegative matrices to
between nonnegative matrix systems. Let (Al,l+1, Il,l+1), l ∈ N be a pair of
sequences of rectangular matrices such that the following four conditions for
each l ∈ N are satisfied:

(1) Al,l+1 is an m(l)×m(l+ 1) rectangular matrix with entries in nonneg-
ative integers.

(2) Il,l+1 is an m(l) × m(l + 1) rectangular matrix with entries in {0, 1}
satisfying the following two conditions:

(2-a) For i, there exists j such that Il,l+1(i, j) 6= 0.
(2-b) For j, there uniquely exists i such that Il,l+1(i, j) 6= 0.

(3) m(l) ≤ m(l + 1).
(4) Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2.

The pair (A, I) is called a nonnegative matrix system. For i = 1, . . . ,m(l), j =
1, . . . ,m(l + 1), we denote by Al,l+1(i, j), Il,l+1(i, j) the (i, j)-components of
Al,l+1, Il,l+1 respectively. A nonnegative matrix system (A, I) is said to be
essential if it satisfies the following further conditions

(5-i) For i, there exists j such that Al,l+1(i, j) 6= 0.
(5-ii) For j, there exists i such that Al,l+1(i, j) 6= 0.

We henceforth study essential nonnegative matrix systems and call them non-
negative matrix systems for simplicity.
The property “sofic ”for nonnegative matrix systems are similarly defined to
the cases of symbolic matrix systems. The following is basic.
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Lemma 7.1. For a symbolic matrix system (M, I), let Ml,l+1 be the m(l) ×
m(l+1) rectangular matrix obtained fromMl,l+1 by setting all the symbols equal
to 1. Then the resulting pair (M, I) becomes a nonnegative matrix system.

We write the matrices above as supp(Ml,l+1) = Ml,l+1 and call Ml,l+1 the
support of Ml,l+1. The pair (M, I) is called the nonnegative matrix system
associated with (M, I). Conversely we see

Proposition 7.2. For a nonnegative matrix system (A, I) and a symbolic ma-
trixM1,2 over alphabet Σ such that supp(M1,2) = A1,2, there exists a sequence
Ml,l+1, l ∈ N of symbolic matrices over Σ such that the pair (M, I) is a sym-
bolic matrix system and supp(Ml,l+1) = Al,l+1 for all l ∈ N.

Proof. We will prove the assertion by induction. Assume that a symbolic
matrix Mk,k+1 is determined. For j = 1, . . . ,m(k + 2), take a unique in-
dex j′ = 1, . . . ,m(k + 1) such that Ik+1,k+2(j′, j) = 1. For i = 1, . . . ,m(k),
suppose that Mk,k+1(i, j′) = α1 + · · · + αn. Let l1, . . . , lp be the set of
all numbers l = 1, . . . ,m(k + 1) satisfying Ik,k+1(i, l) = 1. Hence we have
n =

∑p
r=1Ak+1,k+2(lr, j). Put ξr = Ak+1,k+2(lr, j). Now we define

Mk+1,k+2(l1, j) = α1 + · · ·+ αξ1 ,

Mk+1,k+2(l2, j) = αξ1+1 + · · ·+ αξ1+ξ2 ,

Mk+1,k+2(l3, j) = αξ1+ξ2+1 + · · ·+ αξ1+ξ2+ξ3 ,

· · · · · ·
Mk+1,k+2(lp, j) = αξ1+···+ξp−1+1 + · · ·+ αn.

Since for any l = 1, . . . ,m(k + 1), there uniquely exists i = 1, . . . ,m(k) such
that Ik,k+1(i, l) = 1 we may defineMk+1,k+2(l, j) for all l = 1, . . . ,m(k+1) by
the above way. The matrices satisfy Ik,k+1Mk+1,k+2 = Mk,k+1Ik+1,k+2 and
supp(Mk+1,k+2)(l, j) = Ak+1,k+2(l, j).

For nonnegative matrix systems we will formulate strong shift equivalence as
follows.
Definition. Two nonnegative matrix systems (A, I), (A′, I ′) are said to be
strong shift equivalent in 1-step if for each l ∈ N, there exist an m(l−1)×m′(l)
matrix Hl with entries in nonnegative integers and an m′(l− 1)×m(l) matrix
Kl with entries in nonnegative integers satisfying the following equations:

Il−1,lAl,l+1 = HlKl+1, I ′l−1,lA
′
l,l+1 = KlHl+1

and
HlI

′
l,l+1 = Il−1,lHl+1, KlIl,l+1 = I ′l−1,lKl+1.

We write this situation as

(A, I) ≈
1−st

(A′, I ′).
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Two nonnegative matrix systems (A, I) and (A′, I ′) are said to be strong shift
equivalent in N-step if there exist nonnegative matrix systems (A(i), I(i)), i =
1, 2, . . . , N − 1 such that

(A, I) ≈
1−st

(A(1), I(1)) ≈
1−st

(A(2), I(2))

≈
1−st
· · · ≈

1−st
(A(N−1), I(N−1)) ≈

1−st
(A′, I ′).

We denote this situation by

(A, I) ≈
N−st

(A′, I ′)

and simply call it a strong shift equivalence.

This formulation is also a generalization of Williams’s strong shift equivalence
between nonnegative matrices ([Wi]). Similarly to symbolic matrix systems,
strong shift equivalence is an equivalence relation on nonnegative matrix sys-
tems.
We directly have

Proposition 7.3. If two symbolic matrix systems are strong shift equivalence
(in N -step), then the associated nonnegative matrix systems are strong shift
equivalent (in N -step).

We will describe the matrix relations appearing in the formulation of strong
shift equivalence between nonnegative matrix systems in terms of certain single
homomorphisms between inductive limits of abelian groups. For a nonnegative
matrix system (A, I), the transpose Itl,l+1 of the matrix Il,l+1 naturally induces

an ordered homomorphism from Zm(l) to Zm(l+1), where the positive cone Z
m(l)
+

of the group Zm(l) is defined by

Zm(l)
+ = {(n1, n2, . . . , nm(l)) ∈ Zm(l)|ni ≥ 0, i = 1, 2 . . .m(l)}.

We put the inductive limits:

ZIt = lim−→{Itl,l+1 : Zm(l) → Zm(l+1)},
Z+
It = lim−→{I

t
l,l+1 : Zm(l)

+ → Zm(l+1)
+ }.

The condition (2-a) for the matrix Il,l+1 says the following lemma.

Lemma 7.4. For each l ∈ N, the homomorphism Itl,l+1 : Zm(l) → Zm(l+1) is

injective. Hence the canonical homomorphism ιl : Zm(l) → ZIt is injective.

By the relation: Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2, the sequence of the transposed
matrices Atl,l+1, l ∈ N of the matrices Al,l+1, l ∈ N yields an endomorphism of
the ordered group ZIt . We write it as λ(A,I).
Definition. For nonnegative matrix systems (A, I), (A′, I ′) and L ∈ N, a
homomorphism ξ from the group ZIt to the group ZI′t is said to be finite
homomorphism of lag L if it satisfies the condition

ξ(Zm(l)) ⊂ Zm
′(l+L) for all l ∈ N

where Zm(l) and Zm
′(l) are naturally imbedded into ZIt and ZI′t respectively.

We then have
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Proposition 7.5. Two nonnegative matrix systems (A, I) and (A′, I ′) are
strong shift equivalence in 1-step if and only if there exist order preserving
finite homomorphisms of lag 1: ξ : ZIt → ZI′t and η : ZI′t → ZIt such that

η ◦ ξ = λ(A,I), ξ ◦ η = λ(A′,I′).

Proof. Suppose that (A, I) and (A′, I ′) are strong shift equivalent in 1-step.
Let Hl,Kl be sequences of matrices that give rise to a strong shift equivalence
between them. Then by the condition I ′tl,l+1H

t
l = Ht

l+1I
t
l−1,l, the family Ht

l , l ∈
N yields a homomorphism from ZIt to ZI′t which we denote by ξ. Similarly
we define a homomorphism η from ZI′t to ZIt induced by the family Kl, l ∈ N.
It is easy to see that the homomorphisms ξ, η are order preserving and finite
homomorphisms of lag 1. By the condition A′tl,l+1I

t
l−1,l = Kt

l+1H
t
l , we see

η ◦ ξ = λ(A,I). Similarly, we have ξ ◦ η = λ(A′,I′).
The converse implication is also easy by using Lemma 7.4. We in fact see that
the matrices Hl,Kl are given by the transposed matrices of the restrictions of
the homomorphisms ξ to Zm(l)(→֒ ZIt) and η to Zm

′(l)(→֒ ZI′t) respectively.
They satisfy the required conditions of strong shift equivalence between (A, I)
and (A′, I ′).

We will next formulate shift equivalence between two nonnegative matrix sys-
tems. For a nonnegative matrix system (A, I), we set the m(l) × m(l + k)
matrices:

Il,l+k = Il,l+1 · Il+1,l+2 · · · Il+k−1,l+k,

Al,l+k = Al,l+1 ·Al+1,l+2 · · ·Al+k−1,l+k

for each l, k ∈ N.
Definition. Two nonnegative matrix systems (A, I), (A′, I ′) are said to be
shift equivalent of lag N if for each l ∈ N, there exist an m(l) × m′(l + N)
matrix Hl with entries in nonnegative integers and an m′(l)×m(l+N) matrix
Kl with entries in nonnegative integers satisfying the following equations:

Al,l+1Hl+1 = HlA
′
l+N,l+N+1, A′l,l+1Kl+1 = KlAl+N,l+N+1,

HlKl+N = Il,l+NAl+N,l+2N , KlHl+N = I ′l,l+NA
′
l+N,l+2N

and
Il,l+1Hl+1 = HlI

′
l+N,l+N+1, I ′l,l+1Kl+1 = KlIl+N,l+N+1.

We write this situation as

(A, I) ∼
lagN

(A′, I ′) or (H,K) : (A, I) ∼
lagN

(A′, I ′)

and simply call it a shift equivalence.

This formulation is a generalization of Williams’s shift equivalence between
square matrices with entries in nonnegative integers ([Wi] see also [BK]).
Similarly to the case of shift equivalence for nonnegative matrices and symbolic
matrix systems, we have.
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Lemma 7.6.

(i) (A, I) ∼
lagN

(A′, I ′) implies (A, I) ∼
lagL

(A′, I ′) for all L ≥ N .

(ii) (A, I) ∼
lagN

(A′, I ′) and (A′, I ′) ∼
lagN ′

(A′′, I ′′) implies (A, I) ∼
lagN+N ′

(A′′, I ′′). Hence shift equivalence is an equivalence relation on nonneg-
ative matrix systems.

Similarly to Theorem 6.2, we have

Proposition 7.7. For nonnegative matrix systems, strong shift equivalence in
N -step implies shift equivalence of lag N .

As in the case of strong shift equivalence, we may describe the matrix relations
appearing in the formulation of shift equivalence in terms of single homomor-
phisms between inductive limits of abelian groups.

Proposition 7.8. Two nonnegative matrix systems (A, I) and (A′I ′) are shift
equivalent of lag N if and only if there exist order preserving finite homomor-
phisms of lag N : ξ : ZIt → ZI′t and η : ZI′t → ZIt such that

λ(A′,I′) ◦ ξ = ξ ◦ λ(A,I), λ(A,I) ◦ η = η ◦ λ(A′,I′)

and
η ◦ ξ = λN(A,I), ξ ◦ η = λN(A′,I′).

Let (M, I), (M′, I ′) be symbolic matrix systems and (M, I), (M ′, I ′) be their
supports respectively. The following proposition is direct.

Proposition 7.9.

(i) (M, I) ≈
n−st

(M′, I ′) implies (M, I) ≈
n−st

(M ′, I ′).

(ii) (M, I) ∼
lagN

(M′, I ′) implies (M, I) ∼
lagN

(M ′, I ′).

8. Dimension groups

In this section, we will introduce the notions of dimension group and dimension
triple for nonnegative matrix systems that is shown to be a shift equivalence
invariant. It is a generalization of the notions of dimension group and dimension
triple for nonnegative matrices defined by W. Krieger in [Kr], [Kr2]. The
Krieger’s idea to define dimension groups for nonnegative matrices is based on
the K-theory for C∗-algebras (cf.[Ef]). The author considered the dimension
groups for subshifts by using K0-groups for certain C∗-algebras associated with
subshifts as in [Ma2],[Ma3]. It is a generalization of the original idea of Krieger.
We will in this section formulate the dimension groups and the dimension triples
for nonnegative matrix systems.
Let (A, I) be a nonnegative matrix system. Recall that ZIt denotes the ordered
group of the inductive limit of the sequence of the ordered abelian groups
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Zm(l), l ∈ N through the transposed matrices Itl,l+1, l ∈ N. As seen in the

previous discussion, the sequence of the transposed matrices Atl,l+1 naturally
induces an order preserving endomorphism on the ordered group ZIt that is
denoted by λ(A,I). We set ZIt(k) = ZIt and Z+

It(k) = Z+
It for k ∈ N. We define

an abelian group and its positive cone by the following inductive limits:

∆(A,I) = lim−→
k

{λ(A,I) : ZIt(k)→ ZIt(k + 1)},

∆+
(A,I) = lim−→

k

{λ(A,I) : Z+
It(k)→ Z+

It(k + 1)}.

We call the ordered group (∆(A,I),∆
+
(A,I)) the dimension group for (A, I).

Since the map δ(A,I) : ZIt(k)→ ZIt(k+1) defined by δ(A,I)([X, k]) = ([X, k+1])
for X ∈ ZIt yields an automorphism on ∆(A,I) that preserves the positive cone

∆+
(A,I). We also denote it by δ(A,I) and call it the dimension automorphism.

We call the triple (∆(A,I),∆
+
(A,I), δ(A,I)) the dimension triple for (A, I) and

the pair (∆(A,I), δ(A,I)) the dimension pair for (A, I).

Proposition 8.1. If two nonnegative matrix systems are shift equivalent, their
dimension triples are isomorphic.

Proof. Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . By Proposition 7.8, there exist order preserving
finite homomorphisms ξ : ZIt → ZI′t and η : ZI′t → ZIt of lag N such that

λ(A′,I′) ◦ ξ = ξ ◦ λ(A,I), λ(A,I) ◦ η = η ◦ λ(A′,I′)

and

η ◦ ξ = λN(A,I), ξ ◦ η = λN(A′,I′).

Define the maps Φξ : ZIt(k) → ZI′t(k) and Φη : ZI′t(k) → ZIt(k) as
Φξ([X, k]) = ([ξ(X), k]) and Φη([Y, k]) = ([η(Y ), k]) for X ∈ ZIt , Y ∈ ZI′t .
It is easy to see that they induce homomorphisms from ∆(A,I) to ∆(A′,I′) and
∆(A′,I′) to ∆(A,I) respectively. We still denote them by Φξ and Φη respec-
tively. Since the homomorphisms ξ, η are order preserving, the maps Φξ, Φη
also preserve order structures of the dimension groups. It then follows that

δ(A,I) ◦ Φη = Φη ◦ δ(A′I′), δ(A′,I′) ◦ Φξ = Φξ ◦ δ(A,I)

and

Φη ◦ Φξ = δ−N(A,I), Φξ ◦ Φη = δ−N(A′,I′).

Therefore we see that the both maps Φξ and Φη are isomorphisms and the
corresponding dimension triples are isomorphic.

In particular we have (cf.[BK])
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Proposition 8.2. Two sofic nonnegative matrix systems are shift equivalent
if and only if their dimension triples are isomorphic. Thus the dimension
triple are complete invariants for shift equivalence of sofic nonnegative matrix
systems.

Proof. The only if part is from the preceding proposition. By a similar discus-
sion to [Kr],[Kr2], we obtain the if part of the assertion.

We will define the dimension triples for symbolic matrix systems as the dimen-
sion triples for their supports. Namely let (M, I) be a symbolic matrix system
and (M, I) its support. Then the dimension triple (∆(M,I),∆

+
(M,I), δ(M,I)) is

defined to be the dimension triple (∆(M,I),∆
+
(M,I), δ(M,I)). We may also de-

fine dimension triples for subshifts as the dimension triple for their canonical
symbolic matrix systems. Let Λ be a subshift and (M, I) its canonical sym-
bolic matrix system for Λ. Then the future dimension triple (∆Λ,∆

+
Λ , δΛ) for

subshift Λ is defined to be the dimension triple (∆(M,I),∆
+
(M,I), δ(M,I)). The

past dimension triple for Λ is defined as the future dimension triple for the
transposed subshift ΛT for Λ.
Thus we have

Proposition 8.3. The future dimension triples for subshifts are shift equiva-
lence invariants and in particular topological conjugacy invariants.

The notion of dimension pair (∆Λ, δΛ) for subshifts has been also seen in [Le].

9. K-groups and Bowen-Franks groups

The Bowen-Franks groups for nonnegative matrices and hence for topological
Markov shifts have been introduced by R. Bowen and J. Franks in [BF]. For an
n× n nonnegative square matrix A, its Bowen-Franks group BF (A) is defined
by the group Zn/(1−A)Zn. This group has discovered in a study of suspension
flows of topological Markov shifts by Bowen and Franks (cf. [PS]). They showed
that the groups are not only invariants under shift equivalence but also almost
complete invariants under flow equivalence between nonnegative matrices.
We will in this section introduce and study the notion of Bowen-Franks groups
for nonnegative matrix systems as a generalization of the original Bowen-Franks
groups for nonnegative matrices. Our Bowen-Franks groups for a nonnegative
matrix system consist of a pair of abelian groups. One corresponds to a gener-
alization of the original Bowen-Franks group, called the Bowen-Franks group of
degree zero, and the other one corresponds to its suspension, called the Bowen-
Franks group of degree one. For matrices, the latter group is the torsion-free
part of the original Bowen-Franks group. But in general nonnegative matrix
systems the group of degree one is not necessarily the torsion-free part of the
group of degree zero (see Section 10).
Before going to definition of the Bowen-Franks groups for nonnegative ma-
trix systems, we introduce two abelian groups for nonnegative matrix systems,
called K-groups, that will be proved to be invariant under shift equivalence.
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Let (A, I) be a nonnegative matrix system. For l ∈ N, we set the abelian groups

K l
0(A, I) = Zm(l+1)/(Itl,l+1 −Atl,l+1)Zm(l),

K l
1(A, I) = Ker(Itl,l+1 −Atl,l+1) in Zm(l).

Lemma 9.1. The map Itl,l+1 : Zm(l) → Zm(l+1) naturally induces homomor-
phisms between the following groups:

il∗ : K l
∗(A, I)→ K l+1

∗ (A, I) for ∗ = 0, 1.

The proof is straightforward by using the relations

Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2.

We now define the K-groups for nonnegative matrix system (A, I).

Definition. The K-groups for (A, I) are defined as the following inductive
limits of the abelian groups:

K0(A, I) = lim−→
l

{il0 : K l
0(A, I)→ K l+1

0 (A, I)},

K1(A, I) = lim−→
l

{il1 : K l
1(A, I)→ K l+1

1 (A, I)}.

For a symbolic matrix system (M, I), its K-groups K0(M, I),K1(M, I) are
defined to be the K-groups for the associated nonnegative matrix systems. It
is easy to see that the groups K∗(A, I) are also represented as in the following
way

Proposition 9.2.

(i) K0(A, I) = ZIt/(id− λ(A,I))ZIt ,
(ii) K1(A, I) = Ker(id− λ(A,I)) in ZIt .

We will see that the groups K∗(A, I) are invariant under shift equivalence.

Lemma 9.3.

(i) K0(A, I) = ∆(A,I)/(id− δ(A,I))∆(A,I),
(ii) K1(A, I) = Ker(id− δ(A,I)) in ∆(A,I).

Proof. As the automorphism δ(A,I) is given by λ(A,I) = {Atl,l+1} on ∆(A,I), the
assertions are easily proved.

Since the dimension triple (∆(A,I),∆
+
(A,I), δ(A,I)) is invariant under shift equiv-

alence of nonnegative matrix systems, we thus have
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Proposition 9.4. The groups Ki(A, I), i = 0, 1 are invariant under shift
equivalence of nonnegative matrix systems.

Set the abelian group

ZI = lim←−
l

{Il,l+1 : Zm(l+1) → Zm(l)}

the projective limit of the system: Il,l+1 : Zm(l+1) → Zm(l), l ∈ N. The sequence
Al,l+1, l ∈ N naturally acts on ZI as an endomorphism that we denote by A.
The identity on ZI is denoted by I. We now define the Bowen-Franks groups
for (A, I) as follows:
Definition. For a nonnegative matrix system (A, I),

BF 0(A, I) = ZI/(I −A)ZI , BF 1(A, I) = Ker(I −A) in ZI .

We call BF 0(A, I) the Bowen-Franks group for (A, I) of degree zero and
BF 1(A, I) the Bowen-Franks group for (A, I) of degree one. We see

Theorem 9.5. The Bowen-Franks groups BF i(A, I), i = 0, 1 are invariant
under shift equivalence of nonnegative matrix systems.

Proof. (i) Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . Let Hl,Kl be sequences of nonnegative matrices
such that (H,K) : (A, I) ∼

lagN
(A′, I ′). For (xi)i∈N ∈ ZI , put ΦK((xi)i∈N) =

(Ki(xN+i)i∈N). It is easy to see that the ΦK gives rise to a homomorphism
from ZI to ZI′ . As we see the equality: Ki ◦ (IN+i,N+i+1 − AN+i,N+i+1) =
(I ′i,i+1 − A′i,i+1) ◦ Ki+1, the homomorphism induces a homomorphism from

ZI/(I − A)ZI to ZI′/(I ′ − A′)ZI′ . We denote it by Φ̄K . We similarly have
a homomorphism Φ̄H from ZI′/(I ′ − A′)ZI′ to ZI/(I − A)ZI . Since we have

ΦH ◦ ΦK = AN on ZI and ΦK ◦ ΦH = A′N on ZI′ , the homomorphisms Φ̄H
and Φ̄K are inverses each other.
(ii) It is direct to see that the homomorphisms ΦH and ΦK induce isomorphisms
between Ker(I −A) in ZI and Ker(I ′ −A′) in ZI′ .

We will prove the following Universal Coefficient Theorem. It says that the
Bowen-Franks groups are determined by the K-groups.

Theorem 9.6.

(i) There exists a short exact sequence

0 −→ Ext1Z(K0(A, I),Z)
δ−→ BF 0(A, I)

γ−→ HomZ(K1(A, I),Z) −→ 0

that splits unnaturally.
(ii)

BF 1(A, I) ∼= HomZ(K0(A, I),Z).
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In the theorem above, Ext1Z is the derived functor of the Hom-functor in homo-
logical algebra. The formulations above come from the Universal Coefficient
Theorem for K-theory of the C∗-algebraOΛ associated with subshift Λ ([Ma4]).
General framework of the Universal Coefficient Theorem for K-theory of C∗-
algebras have been proved in [Bro], [RS]. If an abelian group G is finitely
generated, it is well known that

HomZ(G,Z) = The torsion-free part of G,

Ext1Z(G,Z) = The torsion part of G.

We provide some lemmas to prove Theorem 9.6.

Lemma 9.7. Ext1Z(ZIt ,Z) = 0.

Proof. It suffices to show that an extension

0 −→ Z −→ G
ρ−→ ZIt −→ 0

of abelian groups splits. For each l ∈ N, let ιl be the canonical inclusion of
Zm(l) into ZIt . We will choose homomorphisms ϕl : Zm(l) → G such that

ρ ◦ ϕl = ιl, ϕl+1 ◦ Itl,l+1 = ϕl

as follows: Let eli, i = 1, . . . ,m(l) be the standard basis of Zm(l). We first

take homomorphisms φl : Zm(l) → G such that ρ ◦ φl = ιl for l ∈ N. Put
ϕ1 = φ1. Since we see ρ((φ2 ◦ It1,2 − ϕ1)(e1i )) = 0, we may regard the element

φ2 ◦ It1,2(e1i ) − ϕ1(e1i ) as an integer m1
i . For each i = 1, . . . ,m(1), take ri =

1, . . . ,m(2) such that I1,2(i, ri) = 1. We set

ϕ2(e2j) =

{
φ2(e2j )−m1

i if j = ri

φ2(e2j ) otherwise.

Then it is easy to see that

ρ ◦ ϕ2 = ι2, ϕ2 ◦ It1,2 = ϕ1.

By continuing these procedures, we can find a sequence of homomorphisms
ϕl, l ∈ N that have the desired property. They give rise to a homomorphism
ϕ : ZIt → G such that ρ ◦ ϕ = id.

Lemma 9.8.

(i) Ext1Z((id− λ(A,I))ZIt ,Z) = 0.

(ii) Ext1Z(Ker(id− λ(A,I)) in ZIt ,Z) = 0.
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Proof. Regard (id−λ(A,I))ZIt and Ker(id−λ(A,I)) in ZIt as subgroups of ZIt .
Consider the following short exact sequences:

0 −→(id− λ(A,I))ZIt
ι−→ ZIt

q−→ ZIt/(id− λ(A,I))ZIt −→ 0,

(9.1)

0 −→Ker(id− λ(A,I))
j−→ ZIt

id−λ(A,I)−→ (id− λ(A,I))ZIt −→ 0

(9.2)

of abelian groups. They yield the following exact sequences respectively:

· · · −→Ext1Z(ZIt ,Z) −→ Ext1Z((id− λ(A,I))ZIt ,Z)

−→ Ext2Z(ZIt/(id− λ(A,I))ZIt ,Z) −→ · · ·

and

· · · −→Ext1Z(ZIt ,Z) −→ Ext1Z(Ker(id− λ(A,I)),Z)

−→ Ext2Z((id− λ(A,I))ZIt ,Z) −→ · · ·

As Ext2Z = 0, we have

Ext1Z((id− λ(A,I))ZIt ,Z) = Ext1Z(Ker(id− λ(A,I)),Z) = 0

by the preceding lemma.

Lemma 9.9.

(i)
Ext1Z(ZIt/(id− λ(A,I))ZIt ,Z)

∼= HomZ((id− λ(A,I))ZIt ,Z)/ι∗HomZ(ZIt ,Z).

(ii)

HomZ(Ker(id− λ(A,I)),Z)

∼= HomZ(ZIt ,Z)/(id− λ(A,I))
∗HomZ((id− λ(A,I))ZIt ,Z).

Proof. The short exact sequences (9.1) and (9.2) make the following sequences
exact:

0 −→HomZ(ZIt/(id− λ(A,I))ZIt ,Z)

(9.3)

q∗−→ HomZ(ZIt ,Z)
ι∗−→ HomZ((id− λ(A,I))ZIt ,Z)

−→ Ext1Z(ZIt/(id− λ(A,I))ZIt ,Z) −→ Ext1Z(ZIt ,Z) −→ · · · ,

0 −→HomZ((id− λ(A,I))ZIt ,Z)
(id−λ(A,I))

∗

−→ HomZ(ZIt ,Z)

(9.4)

j∗−→ HomZ(Ker(id− λ(A,I)),Z) −→ Ext1Z((id− λ(A,I))ZIt ,Z) −→ · · · .
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Hence we get the desired isomorphisms.

Proof of Theorem 9.6. (i) By Proposition 9.2 and the previous lemmas, we
have

HomZ(K1(A, I),Z) ∼=HomZ(ZIt ,Z)/(id− λ(A,I))
∗HomZ((id− λ(A,I))ZIt ,Z),

Ext1Z(K0(A, I),Z) ∼=HomZ((id− λ(A,I))ZIt ,Z)/ι∗HomZ(ZIt ,Z).

The exact sequence (9.4) says the map

(id− λ(A,I))
∗ : HomZ((id− λ(A,I))ZIt ,Z) −→ HomZ(ZIt ,Z)

is injective. Hence we know that the group

HomZ((id− λ(A,I))ZIt ,Z)/ι∗HomZ(ZIt ,Z)

is isomorphic to the group

(id− λ(A,I))
∗HomZ(id− λ(A,I))ZIt ,Z)/(id− λ(A,I))

∗ι∗HomZ(ZIt ,Z).

The map
(id− λ(A,I))

∗ι∗ : HomZ(ZIt ,Z) −→ HomZ(ZIt ,Z)

is naturally regarded as the endomorphism

I −A : ZI → ZI

through a natural identification between HomZ(ZIt ,Z) and ZI . As there exists
an short exact sequence

0 −→(id− λ(A,I))
∗HomZ(id− λ(A,I))ZIt ,Z)/(id− λ(A,I))

∗ι∗HomZ(ZIt ,Z)

−→HomZ(ZIt ,Z)/(id− λ(A,I))
∗ι∗HomZ((id− λ(A,I))ZIt ,Z)

−→HomZ(ZIt ,Z)/(id− λ(A,I))
∗HomZ((id− λ(A,I))ZIt ,Z)

−→0,

we obtain a short exact sequence:

0 −→ Ext1Z(K0(A, I),Z)
δ−→ ZI/(I −A)ZI

γ−→ HomZ(K1(A, I),Z) −→ 0.

The short exact sequence above splits unnaturally, since the group Ext1Z(G,Z) is
algebraically compact and the group HomZ(H,Z) is torsion-free for any abelian
groups G,H (cf. [KKS]).
(ii) By the exact sequence (9.3), we see

HomZ(K0(A, I),Z) ∼=HomZ(ZIt/(id− λ(A,I))ZIt , ),Z)

∼=Ker ι∗ : HomZ(ZIt ,Z) −→ HomZ((id− λ(A,I))ZIt ,Z)
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By a natural identification between HomZ(ZIt ,Z) and ZI , we obtain Ker ι∗ :
HomZ(ZIt ,Z) −→ HomZ((id − λ(A,I))ZIt ,Z) is regarded as Ker(I − A) in ZI .
Thus we end the proof of the theorem.

Remark. Lemma 9.8 (ii) means Ext1Z(K1(A, I),Z) = 0. Hence the following
short exact sequence clearly holds by Theorem 9.6 (ii):

0 −→ Ext1Z(K1(A, I),Z)
δ−→ BF 1(A, I)

γ−→ HomZ(K0(A, I),Z) −→ 0.

Example. Let M be an n× n nonnegative matrix . Put for each l ∈ N

Al,l+1 = M, Il,l+1 = the n× n identity matrix.

Then (A, I) is a nonnegative matrix system. The K-groups are

K0(A, I) = Zn/(1−M t)Zn, K1((A, I) = Ker(1−M t) in Zn.

The Bowen-Franks groups are

BF 0(A, I) = Zn/(1−M)Zn, BF 1((A, I) = Ker(1−M) in Zn.

Hence we have

K0(A, I) ∼= BF 0(A, I) = BF (M) : the original Bowen-Franks group for M,

K1(A, I) ∼= BF 1(A, I) = the torsion-free part of BF (M)

We will next define K-groups and Bowen-Franks groups for subshifts.
Definition. For a subshift Λ, let (AΛ, IΛ) be the canonical nonnegative matrix
system associated with Λ. We define

Ki(Λ) = Ki(AΛ, IΛ), i = 0, 1 : the K-groups for Λ

BF i(Λ) = BF i(AΛ, IΛ), i = 0, 1 : the Bowen-Franks groups for Λ

We thus have

Theorem 9.10. The K-groups Ki(Λ) and the Bowen-Franks groups BF i(Λ)
for subshift Λ are abelian groups that are invariant under shift equivalence of
subshifts. In particular, they are topological conjugacy invariants of subshifts.

Proposition 9.11. Let Λ be a sofic subshift. We denote by m(Λ) the cardi-
nality of the vertices of the left Krieger cover graph for Λ and AΛ its adjacency
matrix. Then we have

BF 0(Λ) = Zm(Λ)/(1−AΛ)Zm(Λ), BF 1(Λ) = Ker(1 −AΛ) in Zm(Λ).
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Proof. As we see

K0(Λ) = Zm(Λ)/(1−AΛ)Zm(Λ), K1(Λ) = Ker(1 −AΛ) in Zm(Λ),

the assertion is clear.

In the final section, we will see an example of a nonsofic subshift Λ for which
BF 1(Λ) is no longer the torsion-free part of the group BF 0(Λ).
Remark. In [Ma], the author introduced the C∗-algebra OΛ associated with
subshift Λ as a generalization of the construction of the Cuntz-Krieger algebra
OA associated with the topological Markov shift ΛA determined by a matrix
A with entries in {0, 1}. Cuntz-Krieger proved in [CK] that the Ext-group
Ext(OA) of the C∗-algebra OA is Zn/(1 − A)Zn : the Bowen-Franks group of
the matrix A. The author in [Ma4] generalized the notion of the Bowen-Franks
group to the subshifts as:

BF (Λ) := Ext(OΛ).

From the view point of the K-theory for C∗-algebras, the invariants
Ki, BF

i, i = 0, 1 introduced in this section appear as

K0(Λ) = K0(OΛ), K1(Λ) = K1(OΛ)

and
BF 0(Λ) = Ext(OΛ), BF 1(Λ) = Ext(OΛ ⊗ C0(R)).

The formulations in Theorem 9.6 come from the Universal Coefficients Theorem
for C∗-algebras ([Bro], [RS] ).
As the K-groups and the Ext-groups for C∗-algebras are stably isomorphic
invariant and the stable isomorphism class of the C∗-algebra OΛ with gauge
action is invariant under topological conjugacy class of subshifts ([Ma5]), we
know that the dimension triple, the K-groups and the Bowen-Franks groups
for subshifts are topological conjugacy invariants without using discussions of
this paper under some mild conditions for subshifts.
The Bowen-Franks group for nonnegative matrix was first invented for use
as an invariant of flow equivalence of the associated topological Markov shift
rather than topological conjugacy ([BF],[Fr],[PS]). We can prove that the K-
groups K∗(Λ) and hence the Bowen-Franks groups BF ∗(Λ) for subshift are also
invariant under flow equivalence of subshift by using a result of Parry-Sullivan
[PS]. The proof, that we do not give in this paper, will appear in a forthcoming
paper (cf.[Ma4],[Ma5]).

We will finally present another candidate of Bowen-Franks groups for subshifts.
For a topological Markov shift ΛA determined by an n×n matrix A with entries
in {0, 1}, the group BF (ΛA) is isomorphic to the K0-group for the subshift ΛAt

determined by the transpose of the matrix A. The subshift ΛAt is the transpose
ΛTA of ΛA as a subshift. From this point of view, it seems to be one way to
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define the Bowen-Franks group for canonical symbolic matrix systems as the
K-groups for their transpose.
Let (M, I) be a canonical symbolic matrix system and Λ(M,I) the associated

subshift. We define the transpose (MT , IT ) of (M, I) as the canonical symbolic
matrix system for the transpose ΛT(M,I) of the subshift Λ(M,I). We will define

another pair of Bowen-Franks groups as in the following way.
Definition. For a canonical symbolic matrix system (M, I), we define

BF iK(M, I) = Ki(MT , IT ), i = 0, 1

where Ki(MT , IT ) is defined as the Ki-groups for the nonnegative matrix
system associated with (MT , IT ). We call them the Bowen-Franks groups
from K for (M, I). For a subshift Λ, let (M, I) be its canonical symbolic
matrix system. We will then define Bowen-Franks groups (from K) for subshift
as follows:

BF iK(Λ) = BF iK(M, I), i = 0, 1.

We thus have

Proposition 9.12. The Bowen-Franks groups BF iK(Λ), i = 0, 1 from K for
subshift Λ are topological conjugacy invariants of subshifts.

Proof. Suppose that two subshifts Λ,Λ′ are topologically conjugate. We
denote by (M, I), (M′, I ′) their canonical symbolic matrix systems respec-

tively. Hence their transposed subshifts ΛT ,Λ′T are topologically conjugate

so that their canonical symbolic matrix systems (MT , IT ), (M′T , I ′T ) are
strong shift equivalent and hence shift equivalent. As their corresponding non-

negative matrix systems (MT , IT ), (M ′T , I ′T ) are shift equivalent, we have

Ki(M
T , IT ) = Ki(M

′T , I ′T ) for i = 0, 1.

Proposition 9.13. For a topological Markov shift ΛA determined by an n×n
square matrix A with entries in {0, 1}, we have

BF 0
K(ΛA) = Zn/(1−A)Zn = BF (ΛA), BF 1

K(ΛA) = Ker(1−A) in Zn.

Hence the group BF 1
K(Λ) is the torsion-free part of the group BF 0

K(Λ).

We will finally present the calculation formulae for the Bowen-Franks groups
from K. For a subshift Λ, let X−Λ be the set of all left-infinite sequences ap-
pearing in Λ. That is

X−Λ = {(..., z−2, z−1, z0) ∈
0∏

i=−∞
Σi|(zi)i∈Z ∈ Λ}.

We will define l-future equivalence in the space X−Λ in a symmetric way to the

previous l-past equivalence. Namely, for z ∈ X−Λ and l ∈ N, put

Λ−l(z) = {µ ∈ Λl|zµ ∈ X−Λ }.
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Two points z, w ∈ X−Λ are said to be l-future equivalent if Λ−l(z) = Λ−l(w).
We write this equivalence as x ∼−l y. For a fixed l ∈ N, let P li , i = 1, 2, . . . , n(l)
be the set of all l-future equivalence classes of X−Λ . We define two rectangu-
lar n(l) × n(l + 1) matrices Jl,l+1, Bl,l+1 with entries in {0, 1} and entries in
nonnegative integers similarly to the matrix Il,l+1, Al,l+1. Namely, we define

Jl,l+1 for Λ = Il,l+1 for ΛT , Bl,l+1 for Λ = Al,l+1 for ΛT .

By [Ma2;Theorem 4.9], we have

Theorem 9.14.

(i) BF 0
K(Λ) = lim−→

l

{J tl,l+1 : Zn(l)/(J tl,l+1 −Btl,l+1)Zn(l)}.

(ii) BF 1
K(Λ) = lim−→

l

{J tl,l+1 : Ker(J tl,l+1 −Btl,l+1) in Zn(l)}.

We similarly obtain by Lemma 9.2,

Theorem 9.15. The past dimension pair (∆ΛT , δΛT ) for subshift Λ determines
the Bowen-Franks group BF iK(Λ), i = 0, 1 from K for Λ,

10. Spectrum

It is well-known that the set of all nonzero eigenvalues of a nonnegative matrix
M is a shift equivalence invariant. The set of M is called the nonzero spectrum
of M and plays an important rôle for studying dynamical properties of the as-
sociated topological Markov shift (cf.[LM],[Ki]). In this section, we introduce
the notion of spectrum of nonnegative matrix system (A, I). It is an eigenvalue
of (A, I) in the sense stated bellow. We denote by Sp(A, I) the set of all eigen-
values of (A, I). As the sequence of the sizes of matrices Al,l+1, Il,l+1, l ∈ N are
increasing, it seems to be natural to deal with eigenvalues of (A, I) with a cer-
tain boundedness condition defined bellow on the corresponding eigenvectors.
We denote by Spb(A, I) the set of all eigenvalues of (A, I) with the bounded-
ness condition on the corresponding eigenvectors. We will prove that the both
of the sets of nonzero spectrum of Sp(A, I) and Spb(A, I) are invariant under
shift equivalence of (A, I).
We fix a nonnegative matrix system (A, I) throughout this section.
Definition. A sequence {vl}l∈N of vectors vl = (vl1, . . . , v

l
m(l)) ∈ Cm(l), l ∈ N

is called an I-compatible vector if it satisfies the conditions:

(10.1) vl = Il,l+1v
l+1 for all l ∈ N.

An I-compatible vector {vl}l∈N is said to be nonzero if vl is a nonzero vector
for some l. If vli ≥ 0 (resp. vli > 0 ) for all i = 1, . . . ,m(l) and l ∈ N, {vl}l∈N is
said to be nonnegative (resp. positive). If there exists a number M such that∑m(l)

i=1 |vli| ≤ M for all l ∈ N, {vl}l∈N is said to be bounded. We remark that,
for an I-compatible vector {vl}l∈N, vN 6= 0 for some N implies vl 6= 0 for all
l ≥ N .
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Definition. For a complex number β, a nonzero I-compatible vector {vl} is
called an eigenvector of (A, I) for eigenvalue β if it satisfies the conditions:

(10.2) Al,l+1v
l+1 = βvl for all l ∈ N.

An eigenvalue β is said to be bounded if it is an eigenvalue for a bounded
eigenvector.
Remark. If a sequence vl of vectors satisfies the above conditions (10.1),(10.2)
for l = N,N + 1, . . . for some N , we may extendedly define vectors vl for
l = 1, . . . , N − 1 for which {vl}l∈N satisfy the conditions (10.1),(10.2) for all
l ∈ N by using the condition (10.1).
Definition. Let Sp×(A, I) be the set of all nonzero eigenvalues of (A, I) and
Sp×b (A, I) the set of all nonzero bounded eigenvalues of (A, I). We call them
the nonzero spectrum of (A, I) and the nonzero bounded spectrum of (A, I)
respectively.
We will prove

Theorem 10.1. If two nonnegative matrix systems are shift equivalent, their
nonzero spectrum coincide.

Proof. Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . Let Hl,Kl be sequences of nonnegative matrices
such that (H,K) : (A, I) ∼

lagN
(A′, I ′). We will show Sp×(A, I) ⊂ Sp×(A′, I ′).

For β ∈ Sp×(A, I) with nonzero eigenvector vl, we set ul = Klv
l+N for l ∈ N.

It is direct to see that

ul = I ′l,l+1u
l+1, A′l,l+1u

l+1 = βul.

Now if the vectors ul are zero for all l ≥ l0 for some l0, by the equality
HlKl+Nv

l+2N = Il,l+NAl+N,l+2Nv
l+2N , it follows that

0 = Al,l+NIl+N,l+2Nv
l+2N = Al,l+Nv

l+N = βvl.

Thus vl = 0 for all l ≥ l0 and hence for all l ∈ N, a contradiction. Therefore β
is a nonzero eigenvalue of (A′, I ′).

We will next show that the nonzero bounded spectrum of (A, I) is also invariant
under shift equivalence. We must provide some lemmas.

Lemma 10.2. Put N l
A = maxj

∑m(l)
i=1 Al,l+1(i, j) for l ∈ N. We have N l

A =

N l+1
A . That is, the value N l

A does not depend on the choice of l ∈ N.

Proof. We note that
∑m(l)
i=1 Il,l+1(i, j) = 1 for each j. It follows that

m(l+1)∑

j=1

Al+1,l+2(j, k) =

m(l)∑

i=1

m(l+1)∑

j=1

Il,l+1(i, j)Al+1,l+2(j, k)

=

m(l)∑

i=1

m(l+1)∑

p=1

Al,l+1(i, p)Il+1,l+2(p, k).
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Hence for k = 1, . . . ,m(l + 2), there uniquely exists pk = 1, . . . ,m(l + 1) such
that

m(l+1)∑

j=1

Al+1,l+2(j, k) =

m(l)∑

i=1

Al,l+1(i, pk).

This implies the inequality N l+1
A ≤ N l

A. For p = 1, . . . ,m(l + 1), take kp =
1, . . . ,m(l + 2) with Il+1,l+2(p, kp) = 1. It follows that

m(l)∑

i=1

Al,l+1(i, p) =

m(l)∑

i=1

Al,l+1(i, p)Il+1,l+2(p, kp)

=

m(l)∑

i=1

m(l+1)∑

q=1

Al,l+1(i, q)Il+1,l+2(q, kp)

=

m(l)∑

i=1

m(l+1)∑

j=1

Il,l+1(i, j)Al+1,l+2(j, kp)

=

m(l+1)∑

j=1

Al+1,l+2(j, kp).

This implies the inequality N l
A ≤ N l+1

A .

Set NA = maxj
∑m(l)

i=1 Al,l+1(i, j) that is independent of the choice of l ∈ N.

For an I-compatible vector {vl}l∈N, we put ‖vl‖ =
∑m(l)

i=1 |vli|.
Lemma 10.3. The sequence {‖vl‖}l∈N is increasing. If {vl}l∈N is nonnegative,
{‖vl‖}l∈N is constant and hence {vl}l∈N is bounded.

Proof. We know
∑m(l)

i=1 |Il,l+1(i, j)vl+1
j | = |vl+1

j | and

‖vl‖ ≤
m(l)∑

i=1

m(l+1)∑

j=1

|Il,l+1(i, j)vl+1
j | ≤

m(l+1)∑

j=1

|vl+1
j | = ‖vl+1‖.

If {vl}l∈N is nonnegative, both of the inequalities above go to equalities.

For a bounded I-compatible vector v = {vl}l∈N, we put

‖v‖1 = sup
l→∞

‖vl‖.

Proposition 10.4. Sp×b (A, I) ⊂ {z ∈ C||z| ≤ NA}.
Proof. For β ∈ Sp(A, I) with a bounded eigenvector {vl}l∈N, we have

β

m(l)∑

i=1

|vli| ≤
m(l+1)∑

j=1

(max
j

m(l)∑

i=1

Al,l+1(i, j))|vl+1
j |.
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Hence we obtain the inequality

β‖vl‖ ≤ NA‖vl+1‖.
As {vl} is bounded, the limit liml→∞ ‖vl‖ = ‖v‖1 exists so that we have a
desired assertion.

We denote by BI the set of all bounded I-compatible vectors. It is a complex
Banach space with norm ‖ ·‖1. A nonnegative I-compatible vector v = {vl}l∈N

is called a state for I if ‖v‖1 = 1. Let SI be the set of all states for I. It is a
convex subset of BI .

Lemma 10.5. For v = {vl}l∈N ∈ BI , put

|v|li = sup
N≥l

m(N)∑

j=1

Il,N (i, j)|vNj | for i = 1, . . . ,m(l), l ∈ N.

We then have

(i) |v|li <∞.
(ii) The vectors defined by |v|l = (|v|l1, |v|l2, . . . , |v|lm(l)) for l ∈ N give rise

to a nonnegative I-compatible vector.

Proof. (i) By the inequality
∑m(N)

j=1 Il,N (i, j)|vNj | ≤
∑m(N)
j=1 |vNj | = ‖vN‖, we

get |v|li ≤ ‖v‖1.
(ii) As we easily see

m(N)∑

k=1

Il,N (i, k)|vNk | ≤
m(N+1)∑

j=1

Il,N+1(i, j)|vN+1
j |,

the sequence of sums
∑m(N)

j=1 Il,N (i, j)|vNj | is increasing on N so that we have

|v|li = lim
N→∞

m(N)∑

j=1

Il,N (i, j)|vNj |.

Hence the following equalities hold

m(l+1)∑

j=1

Il,l+1(i, j)|v|l+1
j =

m(l+1)∑

j=1

lim
N→∞

(

m(N)∑

k=1

Il,l+1(i, j)Il+1,N (j, k)|vNk |)

= lim
N→∞

m(N)∑

k=1

m(l+1)∑

j=1

Il,l+1(i, j)Il+1,N (j, k)|vNk |

= lim
N→∞

m(N)∑

k=1

Il,N (i, k)|vNk | = |v|li

so that the vectors {|v|l}l∈N yield an I-compatible vector.

The I-compatible vector |v| for v ∈ BI is called the total variation of v. A
bounded I-compatible vector v ∈ BI is said to be real if all elements vli of the
vectors vl, l ∈ N are real numbers. Thus we obtain
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Corollary 10.6. For a real bounded I-compatible vector v ∈ BI , there exist
nonnegative bounded I-compatible vectors v+, v− ∈ BI such that

v = v+ − v−, |v| = v+ + v−.

This decomposition is called the Jordan decomposition of v.

Proof. As |v|li ≥ |vli| for each i, l, by putting

v+ =
1

2
(|v|+ v), v− =

1

2
(|v| − v)

we get the desired assertions.

Corollary 10.7. For a bounded I-compatible vector v ∈ BI , there exist states
vj ∈ SI and nonnegative real numbers cj ∈ R such that

v = c1v1 − c2v2 + i(c3v3 − c4v4).

Proposition 10.8. For a bounded I-compatible vector v ∈ BI , we put

(LAv)li =

m(l+1)∑

j=1

Al,l+1(i, j)vl+1
j for i = 1, . . . ,m(l), l ∈ N.

Then LA gives rise to a bounded linear operator on the Banach space BI that

satisfies ‖LA‖ = NA, where the norm of LA is given by ‖LA‖ = supv 6=0
‖LAv‖1
‖v‖1 .

To prove the proposition above, we note the following lemma.

Lemma 10.9. For an arbitrary fixed l ∈ N and nonnegative real numbers ci
for i = 1, . . . ,m(l), there exists a nonnegative I-compatible vector v ∈ BI such
that vli = ci for i = 1, . . . ,m(l).

Proof. Put vli = cli for i = 1, . . . ,m(l). For k ≤ l, we put vk = Ik,lv
l. For

k = l + 1, we can choose nonnegative real numbers vl+1
j , j = 1, . . . ,m(l + 1)

such that vli =
∑m(l+1)

j=1 vl+1
j because for each j there uniquely exists i satisfying

Il,l+1(i, j) = 1 and Il,l+1(i′, j) = 0 for other i′. Hence we may get a nonnegative
I-compatible vector v by induction such that vli = ci, i = 1, . . . ,m(l).

Proof of Proposition 10.8. We first show that LAv is a bounded I-compatible
vector. By the relation Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2, it is direct to see
that LAv is an I-compatible vector. We have ‖(LAv)l‖ ≤ NA‖vl+1‖ so that
‖LAv‖1 ≤ NA‖v‖1. Hence LAv is bounded and ‖LA‖ ≤ NA. Fix l ∈ N. Take

i0 such that maxi
∑m(l−1)

h=1 Al−1,l(h, i) =
∑m(l−1)

h=1 Al−1,l(h, i0). By the previ-
ous lemma, there exists a nonnegative I-compatible vector v ∈ BI such that
vli0 = 1 and vli 6= 0 for i 6= i0. It then follows that

‖(LAv)l−1‖ =

m(l−1)∑

h=1

Al−1,l(h, i0) = NA.

Thus we get ‖(LAv)‖1 = NA. As ‖v‖1 = ‖vl‖ = 1, we conclude ‖LA‖ ≥ NA so
that ‖LA‖ = NA.

Therefore we have
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Corollary 10.10. For a complex number β, it belongs to Spb(A, I) if and
only if it satisfies LAv = βv for some v ∈ BI . That is, the bounded spectrum
of (A, I) are nothing but the eigenvalues of the bounded positive operator LA
on the Banach space BI .

Corresponding to Theorem 10.1, we have

Theorem 10.11. If two nonnegative matrix systems are shift equivalent, their
nonzero bounded spectrum coincide.

Proof. Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . Let Hl,Kl be sequences of nonnegative matrices
such that (H,K) : (A, I) ∼

lagN
(A′, I ′). Following the proof of Theorem 10.1,

it suffices to show that for a bounded vector v ∈ BI , the vectors defined by
ul = Klv

l+N , l ∈ N give rise to a bounded vector. As the equalities I ′l,l+1Kl+1 =

KlIl+N,l+N+1 hold, the boundedness of the vector {ul}l∈N is shown by a similar
manner to the proof of the boundedness of the vector LAv as in the proof of
Proposition 10.8. Hence we know Sp×b (A, I) = Sp×b (A′, I ′).

We will next see that the set Sp×b (A, I) is not empty. We will consider another
topology on BI . The topology is defined from the subbases of open sets of the
form:

Ul(v, i, ǫ) = {u ∈ BI ||vli−uli| < ǫ} for v ∈ BI , i = 1, . . . ,m(l), ǫ > 0, l ∈ N.

We call it the weak topology on BI . It is straightforward to see that the state
space SI is compact in the topology. Let σ(LA) be the set of all spectrum of
LA as a bounded linear operator on the Banach space BI . General theory of
bounded linear operators tells us that the set σ(LA) is not empty. Let rA be the
spectral radius of the operator LA on BI , that is, rA = sup{|r| : r ∈ σ(LA)}.
Proposition 10.12. There exists a state v ∈ SI such that LAv = rAv. Hence
we have rA ∈ Sp×b (A, I).

Our proof is completely similar to the proof of [MWY;Lemma 4.1]. We will
give a proof for the sake of completeness.

Proof. Let RA(z) be the resolvent of LA that is defined by RA(z)v = (z −
LA)−1v for z ∈ C with |z| > rA and v ∈ BI . For z ∈ C with |z| > rA, we see
RA(z)v =

∑∞
k=0

1
zk+1L

k
A(v) and

|(LkA(v)li| ≤
m(l+k)∑

j=1

Al,l+k(i, j)|vl+kj |.

As |vl+kj | ≤ |v|l+kj , it follows that |(RA(z)v)li| ≤ (RA(|z|)|v|)li and hence

(10.3) ‖RA(z)v‖1 ≤ ‖RA(|z|)|v|‖1.
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Since {RA(z)}|z|>rA
can not be uniformly bounded in the set L(BI) of all

bounded linear operators on BI , by the inequality (10.3) we may find v0 ∈ SI

so that ‖RA(t)v0‖1 is unbounded for t ↓ rA. Put

vn =
RA(rA + 1

n )v0

‖RA(rA + 1
n )v0‖

for n = 1, 2, . . . .

As LA is a positive operator on BI , the operator RA(t) is also positive so that
the vectors vn, n = 1, 2, . . . are states. Hence there exists a limit point v∞ of
the sequence {vn} in SI in the weak topology of SI . The following identity

(rA − LA)vn = − 1

n
vn +

v0

‖RA(rA + 1
n )v0‖

implies rAv∞ = LAv∞. As (A, I) is essential, the vector LAv∞ can not be zero.
Hence we have rA > 0 and rA ∈ Sp×b (A, I).

The author would like to thank Yasuo Watatani for pointing out an inaccuracy
of a proof of the proposition above given in an earlier version of this paper.

We finally show that the spectrum are majorizied by topological entropy of
the associated subshift. It is well-known that topological entropy htop(Λ) for
subshift Λ is given by

htop(Λ) = lim
k→∞

1

k
log ♯|Λk|

where ♯|Λk| denotes the cardinality of the set of all admissible words of length
k in the subshift Λ (cf.[LM],[Ki]).
We say a symbolic matrix system (M, I) to be left resolving if a symbol ap-
pearing in M(i, j) can not appear in M(i′, j) for other i′ 6= i, equivalently, its
λ-graph system is left resolving. As in Proposition 3.8, a canonical symbolic
matrix system is left resolving.

Proposition 10.13. Let (M, I) be a left resolving symbolic matrix system and
(M, I) its associated nonnegative matrix system. For any β ∈ Spb(M, I), we
have the inequalities:

log |β| ≤ log rM ≤ htop(Λ(M,I))

where rM is the spectral radius of the operator LM on BI and Λ(M,I) is the
associated subshift with (M, I).

Proof. The inequality log |β| ≤ log rM is clear. By the previous lemma, take
v ∈ SI such that LMv = rMv. We have for k ∈ N,

rkMv
1
i =

m(k+1)∑

j=1

M1,k+1(i, j)vk+1
j .
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As
∑m(1)

i=1 v1
i = 1, it follows that

rkM ≤ (max
j

m(1)∑

i=1

M1,k+1(i, j))

m(k+1)∑

j=1

vk+1
j = ‖LkM‖.

We may find j0 such that ‖LkM‖ =
∑m(1)
i=1 M1,k+1(i, j0). Since (M, I) is

left resolving, the number
∑m(1)

i=1 M1,k+1(i, j0) is majorized by the cardinality

♯|Λk(M,I)| of the set of all admissible words of length k in the subshift Λ(M,I).

Thus we obtain the inequalities

rkM ≤ ‖LkM‖ ≤ ♯|Λk(M,I)|.

As ‖LkM‖
1
k → rM for k →∞, we have desired inequalities.

For subshift (Λ, σ), let (M, I) be its canonical nonnegative matrix system.
We define the nonzero spectrum Sp×(Λ) and the nonzero bounded spectrum
Sp×b (Λ) of Λ by the nonzero spectrum and the nonzero bounded spectrum of
(M, I) respectively. We have thus proved

Theorem 10.14. Both the sets Sp×(Λ) and Sp×b (Λ) are not empty and topo-

logical conjugacy invariants of subshifts. In particular, Sp×b (Λ) is bounded by
the topological entropy of the subshift (Λ, σ).

11. Example

We will give an example of the canonical symbolic matrix system, the K-groups
and the Bowen-Franks groups for a certain nonsofic subshift, that is called the
context free shift in [LM]. Let Σ be the set of symbols {a, b, c}. The nonsofic
subshift is defined to be the subshift Z over Σ whose forbidden words are

FZ = {abmcka|m 6= k}
where the word abmcka means a b · · · b︸ ︷︷ ︸

m times

c · · · c︸ ︷︷ ︸
k times

a (cf.[LM]). In [Ma6], the C∗-

algebraOZ associated with the subshift Z has been studied so that its K-groups
has been calculated. By using discussions of the computation of the K-groups,
we may write the canonical symbolic matrix system for Z. Let XZ be the
corresponding one-sided subshift for Z. Define sequences of subsets of XZ in
the following way.

P0 = {ckb∞|k ≥ 0} ∪ {bkcmby ∈ XZ |k ≥ 0,m ≥ 1, y ∈ XZ}
and for n, j = 0, 1, . . . ,

Ej ={cjay ∈ XZ |y ∈ XZ},
Qn = ∪j>n Ej ,
Fj ={bmcm+jay ∈ XZ |m ≥ 1, y ∈ XZ},
Rn ={bmckay ∈ XZ |m ≥ 1, k ≥ 0,m+ j 6= k for j = 0, 1, . . . , n}.
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Lemma 11.1([Ma6;Lemma 4.3]). For each l ∈ N, the space XZ is decomposed
into the disjoint union:

XZ = P0 ∪l−1
j=0 Ej ∪Ql−1 ∪l−1

j=0 Fj ∪Rl−1.

This decomposition of XZ into 2l + 3-components corresponds to the l-past
equivalence classes of XZ .

The canonical symbolic matrix systems Ml,l+1, Il,l+1 for Z are m(l)(= 2l +
3)×m(l + 1)(= 2l + 5) matrices that are written as follows:

Ml,l+1 =




b+ c c c c c c · · · · · · c
a a a

b b
c

b b
c

b b
c

. . .
. . .

. . .
. . .

. . .
. . .

b b
c c c

b b b b




,

Il,l+1 =




1
1

1
1

1
1

1
1

1
1

1
. . .

. . .

1 1
1 1
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along the following ordered basis

P0, E0, F0, E1, F1, . . . , El−1, Fl−1, Ql−1, Rl−1

where in the matrices above, blanks denote zeros. The transposed matrices of
its nonnegative matrix systems are written as:

Atl,l+1 =




2 1
1 1 1

1 1 1
1 1

1 1
1 1

1 1

1
. . .

1 1

1
. . .

1 1
. . . 1

...
. . .

1 1
... 1

1 1
1 1




,

Itl,l+1 =




1
1

1
1

1
1

1
1

1
1

1
. . .

. . .

1
1

1
1




.

Hence we have
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Proposition 11.2.

K0(Z) = Z, K1(Z) = 0 and BF 0(Z) = 0, BF 1(Z) = Z.

Since the subshift Z is conjugate to its transpose ZT and by the formula for
the Bowen-Franks groups from K for subshifts, we obtain

Proposition 11.3.

BF 0
K(Z) = Z, BF 1

K(Z) = 0.

Hence these types of the Bowen-Franks groups can not be realized in sofic sub-
shifts because BF 1(Z) (resp. BF 1

K(Z)) is not the torsion-free part of BF 0(Z)
(resp. BF 0

∗ (Z)). We finally see

Proposition 11.4([Ma6:Theorem 6.9]). The spectral radius of the operator

LA is 1+
√

1 +
√

3 = 2.65289 · · · that is the topological entropy for the subshift

Z. Hence the maximum value of Sp×b (A, I) is 1 +
√

1 +
√

3.

In [KMW], the K-groups and the dimension groups for β-shifts have been cal-
culated. The K-groups and the Bowen-Franks groups for the Dyck shifts are
also calculated in [Ma7].
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Abstract. In this paper we find asymptotic upper and lower bounds
for the spectrum of random operators of the form

S∗S =
( r∑

i=1

ai ⊗ Y (n)
i

)∗( r∑

i=1

ai ⊗ Y (n)
i

)
,

where a1, . . . , ar are elements of an exact C∗-algebra and

Y
(n)
1 , . . . , Y

(n)
r are complex Gaussian random n × n matrices, with

independent entries. Our result can be considered as a generalization
of results of Geman (1981) and Silverstein (1985) on the asymptotic
behavior of the largest and smallest eigenvalue of a random matrix of
Wishart type. The result is used to give new proofs of:

(1) Every stably finite exact unital C∗-algebra A has a tracial state.

(2) If A is an exact unital C∗-algebra, then every state on K0(A) is
given by a tracial state on A.

The new proofs do not rely on quasitraces or on AW ∗-algebra tech-
niques.
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46L50, 46L35, 46L80, 60F15.

Introduction

Following the terminology in [HT], we let GRM(m,n, σ2) denote the
class of m × n random matrices B = (bij)1≤i≤m, 1≤j≤n, for which(
Re(bij), Im(bij)

)
1≤i≤m, 1≤j≤n form a set of 2mn independent Gaussian

random variables, all with mean 0 and variance 1
2σ

2. In other words, the
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entries of B are mn independent complex random variables with distribution
measure on C given by

1
πσ2 exp(− |z|

2

σ2 ) dRe(z) dIm(z).

The theory of exact C∗-algebras has been developed by Kirchberg (see [Ki1],
[Ki2], [Ki3], [Was] and references given there). A C∗-algebra A is exact, if for
all pairs (B,J ), of a C∗-algebra B and a closed two-sided ideal J in B, the
sequence

0 −→ A ⊗
min
J −→ A ⊗

min
B −→ A ⊗

min

(
B/J

)
−→ 0

is exact. Here, for any C∗-algebras C and D, C ⊗min D means the completion
of the algebraic tensor product C ⊙ D in the minimal (=spatial) tensor norm.
Sub-algebras and quotients of exact C∗-algebras are again exact (cf. e.g. [Was,
2.5.2 and Corollary 9.3]), and the class of exact C∗-algebras contains most of
the C∗-algebras of current interest, such as all nuclear C∗-algebras, and the
non-nuclear reduced group C∗-algebras C∗r (Fn), associated with the free group
Fn on n generators (2 ≤ n ≤ ∞).
For any element T of a unital C∗-algebra, we let sp(T ) denote the spectrum of
T . The main result of this paper is

0.1 Main Theorem. Let H and K be Hilbert spaces, and let a1, . . . , ar be
elements of B(H,K), such that {a∗i aj | 1 ≤ i, j ≤ r} is contained in an exact
C∗-subalgebra A of B(H). Let (Ω,F , P ) be a fixed probability space, and let,

for each n in N, Y
(n)
1 , . . . , Y

(n)
r be independent Gaussian random matrices on

Ω in the class GRM(n, n, 1
n ). Put

Sn =

r∑

i=1

ai ⊗ Y (n)
i , (n ∈ N),

and let c, d be positive real numbers. We then have

(i) If ‖∑r
i=1 a

∗
i ai‖ ≤ c and ‖∑r

i=1 aia
∗
i ‖ ≤ d, then for almost all ω in Ω,

lim sup
n→∞

max
[
sp
(
S∗n(ω)Sn(ω)

)]
≤
(√
c+
√
d
)2
.

(ii) If
∑r
i=1 a

∗
i ai = c111B(H), ‖

∑r
i=1 aia

∗
i ‖ ≤ d, and d ≤ c, then for almost all

ω in Ω,

lim inf
n→∞

min
[
sp
(
S∗n(ω)Sn(ω)

)]
≥
(√
c−
√
d
)2
. �

The Main Theorem can be considered as a generalization of the results of
Geman (cf. [Gem]) and Silverstein (cf. [Si]), on the asymptotic behavior of the
largest and smallest eigenvalues of a random matrix of Wishart type (see also
[BY], [YBK] and [HT]).
The Main Theorem has the following two immediate consequences:
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0.2 Corollary. Let a1, . . . , ar be elements of an exact C∗-algebra A, and

for each n in N, let Y
(1)
1 , . . . , Y

(n)
r be independent elements of GRM(n, n, 1

n ).
Then

lim sup
n→∞

∥∥∥
r∑

i=1

ai ⊗ Y (n)
i (ω)

∥∥∥ ≤
∥∥∥

r∑

i=1

a∗i ai
∥∥∥

1
2

+
∥∥∥

r∑

i=1

aia
∗
i

∥∥∥
1
2

,

for almost all ω in Ω. �

0.3 Corollary. Let a1, . . . , ar and Sn, n ∈ N, be as in the Main Theorem,
and assume that

∑r
i=1 a

∗
i ai = c111B(H) and ‖∑r

i=1 a
∗
i ai‖ ≤ d, for some positive

real numbers c, d, such that d < c. Then for almost all ω in Ω,

0 /∈ sp
(
S∗n(ω)Sn(ω)

)
, eventually as n→∞. �

In a subsequent paper [Th] by the second named author, it is proved, that if
a1, . . . , ar and Sn, n ∈ N, are as in the Main Theorem, and if furthermore∑r

i=1 a
∗
i ai = c111B(H) and

∑r
i=1 aia

∗
i = d111B(K), for some positive real numbers

c, d, then

lim
n→∞

max
[
sp(S∗nSn)

]
=
(√
c+
√
d
)2
, almost surely,

and if c ≥ d, then

lim
n→∞

min
[
sp(S∗nSn)

]
=
(√
c−
√
d
)2
, almost surely.

Hence the asymptotic upper and lower bounds in the Main Theorem cannot,
in general, be improved.
Exactness is essential both for the Main Theorem and for the corollaries. An
example of violation of the upper bound in the Main Theorem is given in
Section 4. The example is based on the non-exact full C∗-algebra C∗(Fr)
associated with the free group on r generators, for r ≥ 6.
In [Haa], the first named author proved that bounded quasitraces on exact
C∗-algebras are traces. Together with results of Handelman (cf. [Han]) and
Blackadar and Rørdam (cf. [BR]), this result implies

(1) Every stably-finite exact unital C∗-algebra has a tracial state.

(2) If A is an exact unital C∗-algebra, then every state on K0(A) is given by
a tracial state on A.

The proof in [Haa] of the above mentioned quasitrace result, relies heavily
on ultra product techniques for AW ∗-algebras, but the starting point of the
proof in [Haa] is the following fairly simple observation: Let a1, . . . , ar be r
elements in a (not necessarily exact) C∗-algebra A, such that

∑r
i=1 a

∗
i ai = 111A

and ‖∑r
i=1 aia

∗
i ‖ < 1. Let further x1, . . . , xr be a semi-circular system (in the

sense of Voiculescu; cf. [Vo2]) in some C∗-probability space (B, ψ). Then the
operator s =

∑r
i=1 ai ⊗ xi in A ⊗ C∗(x1, . . . , xr,111B), satisfies 0 /∈ sp(s∗s) but
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0 ∈ sp(ss∗), and this implies that u = s(s∗s)−
1
2 is a non-unitary isometry in

the C∗-algebra A⊗ C∗(x1, . . . , xr,111B).
Corollary 0.3 can be viewed as a random matrix version of the result that
0 /∈ sp(s∗s). The corresponding random matrix version of the result that
0 ∈ sp(ss∗), holds too, i.e., if a1, . . . , ar and Sn, n ∈ N, are as in Corollary 0.3,
then with probability 1, 0 ∈ sp(SnS

∗
n), eventually as n → ∞ (cf. [Th]). In

view of Voiculescu’s random matrix model for a semi-circular system (cf. [Vo1,

Theorem 2.2]), it would have been more natural to substitute Y
(n)
1 , . . . , Y

(n)
r

from GRM(n, n, 1
n ), with a set of independent, selfadjoint Gaussian random

matrices. However, we found it more tractable to work with the non-selfadjoint

random matrices Y
(n)
1 , . . . , Y

(n)
r .

In the last section (Section 9), we use Corollary 0.3 to give a new proof of the
statements (1) and (2) above. The new proof does not rely on quasitraces or
AW ∗-algebra techniques. The main step in the new proof of (1) and (2) is to
prove, that Corollary 0.3 implies the following

0.4 Proposition. Let p, q be projections in an exact C∗-algebra A, and as-
sume that there exists an ǫ in ]0, 1[, such that

τ(q) ≤ (1− ǫ)τ(p),

for all lower semi-continuous (possibly unbounded) traces τ : A+ → [0,∞].
Then for some n in N, there exists a partial isometry u in Mn(A) = A⊗Mn(C),
such that

u∗u = q ⊗ 111Mn(C) and uu∗ ≤ p⊗ 111Mn(C). �

In the rest of this introduction, we shall briefly discuss the main steps of the
proof of the Main Theorem. Observe first, that by a simple scaling argument,
it is enough to treat the case d = 1. This normalization will be used throughout
the paper. The proof of the Main Theorem relies on the following

0.5 Key Estimates. Let a1, . . . , ar be elements of B(H,K), let c be a positive

constant, and put Sn =
∑r

i=1 ai ⊗ Y
(n)
i , n ∈ N, as in the Main Theorem. We

then have

(a) If ‖∑r
i=1 a

∗
i ai‖ ≤ c and ‖∑r

i=1 aia
∗
i ‖ ≤ 1, then for 0 ≤ t ≤ min{ n2c , n2 },

E
[

exp(tS∗nSn)
]
≤ exp

(
(
√
c+ 1)2t+ (c+ 1)2 t

2

n

)
111B(Hn). (0.1)

(b) If
∑r
i=1 a

∗
i ai = c111B(H),

∑r
i=1 aia

∗
i = 111B(K) and c ≥ 1, then for 0 ≤ t ≤ n

2c ,

E
[

exp(−tS∗nSn)
]
≤ exp

(
− (
√
c− 1)2t+ (c+ 1)2 t

2

n

)
111B(Hn). (0.2)

�
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We emphasize that the key estimates (0.1) and (0.2) hold without the exact-
ness assumption of the Main Theorem. Once these estimates are proved, a
fairly simple application of the Borel-Cantelli Lemma yields, that if H is finite
dimensional, and λmax and λmin denote largest and smallest eigenvalues, then
one has

lim sup
n→∞

λmax(S∗nSn) ≤
(√
c+ 1

)2
, almost surely,

in the situation of (a) above, and

lim inf
n→∞

λmin(S∗nSn) ≥
(√
c− 1

)2
, almost surely,

in the situation of (b) above. (This is completely parallel to the proof of the
complex version of the Geman-Silverstein result, given in [HT, Section 7]). To
pass from the case dim(H) < ∞ to the case dim(H) = +∞, we need the
assumption that the C∗-algebra C∗({a∗i aj | 1 ≤ i, j ≤ r}) is exact, as well as
the following characterization of exact C∗-algebras, due to Kirchberg (cf. [Ki2]
and [Was, Section 7]):
A unital C∗-subalgebra A of B(H) is exact if and only if the inclusion map
ι : A →֒ B(H) has an approximate factorization

A ϕλ−→Mnλ
(C)

ψλ−→ B(H),

through a net of full matrix algebras Mnλ
(C), λ ∈ Λ. Here, ϕλ, ψλ are unital

completely positive maps, and

lim
λ
‖ψλ ◦ ϕλ(x)− x‖ = 0, for all x in A.

Finally, we use a dilation argument to pass from the condition
∑r

i=1 aia
∗
i = 111K

of (b) above, to the less restrictive one: ‖∑r
i=1 aia

∗
i ‖ ≤ 1, which is assumed

in (ii) of the Main Theorem (when d = 1). The proof of the fact that the key
estimates (0.1) and (0.2) imply the Main Theorem, is given in Section 4 for the
upper bound, and in Section 8 for the lower bound. Sections 1-3 and 5-7 are
used to prove the key estimates (0.1) respectively (0.2).
In Section 1, we associate to any permutation π in the symmetric group Sp, a
permutation π̂ in S2p, for which π̂2 = π̂ ◦ π̂ = id and π̂(j) 6= j for all j, namely
the permutation given by

π̂(2j − 1) = 2π−1(j), (j ∈ {1, 2, . . . , p})
π̂(2j) = 2π(j)− 1, (j ∈ {1, 2, . . . , p}).

Moreover, following [Vo1], we let ∼π̂ denote the equivalence relation on
{1, 2, . . . , 2p}, generated by the expression:

j ∼π̂ π̂(j) + 1, (addition formed mod. 2p),

and we let d(π̂) denote the number of equivalence classes for ∼π̂. We can write
d(π̂) = k(π̂) + l(π̂), where k(π̂) (resp. l(π̂)) denotes the number of equivalence
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classes for ∼π̂, consisting entirely of even numbers (resp. odd numbers) in
{1, 2, . . . , 2p}. With this notation we prove, that for any random matrix B
from GRM(m,n, 1),

E ◦ Trn
[
(B∗B)p

]
=
∑

π∈Sp

mk(π̂)nl(π̂). (0.3)

Consider next the quantity σ(π̂) = 1
2 (p + 1 − d(π̂)). It turns out, that σ(π̂) is

always a non-negative integer, and that σ(π̂) = 0 if and only if π̂ is non-crossing
(cf. Definition 1.14). In Section 2 we show, that if a1, . . . , ar are elements

of B(H,K) and S =
∑r

i=1 ai ⊗ Y
(n)
i , where Y

(n)
1 , . . . , Y

(n)
r are independent

elements of GRM(n, n, 1
n ), then

E[(S∗S)p] =
( ∑

π∈Sp

n−2σ(π̂) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
⊗ 111Mn(C). (0.4)

In [HT, Section 6], we found explicit formulas for the quantities E ◦
Trn[exp(tB∗B)] and E ◦ Trn[B∗B exp(tB∗B)], where B is an element of
GRM(m,n, 1). In Section 3, a careful comparison of the terms in (0.3)
and (0.4), combined with these explicit formulas, allows us to prove, that if
‖∑r

i=1 a
∗
i ai‖ ≤ c and ‖∑r

i=1 aia
∗
i ‖ ≤ 1, then for 0 ≤ t ≤ min{ n2c , n2 },

‖E[exp(tS∗S)]‖ ≤ exp((c+ 1)2 t
2

n )

∫ ∞

0

exp(tx) dµc(x), (0.5)

where µc is the free (analog of the) Poisson distribution with parameter c (cf.
[VDN] and [HT, Section 6]). The measure µc is also called the Marchenko-
Pastur distribution (cf. [OP]), and it is given by

µc = max{1− c, 0}δ0 +

√
(x − a)(b− x)

2πx
· 1[a,b](x) dx,

where a = (
√
c − 1)2, b = (

√
c + 1)2 and δ0 is the Dirac measure at 0. Since

supp(µc) ⊆ [0, b], the first key estimate, (0.1), follows immediately from (0.5).
To prove the second key estimate, (0.2), we show in Sections 5-6, that under
the condition

r∑

i=1

a∗i ai = c111B(H), and

r∑

i=1

aia
∗
i = 111B(K),

one has, for any q in N, the formula:

E
[
P cq (S∗S)

]
=

[ ∑

ρ∈Sirr
q

n−2σ(ρ̂)
( ∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

)]
⊗ 111Mn(C).

(0.6)
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Here P c0 (x), P c1 (x), P c2 (x), . . . , is the sequence of monic polynomials obtained
from 1, x, x2, . . . , by the Gram-Schmidt orthogonalization process, w.r.t. the
inner product

〈f, g〉 =

∫ ∞

0

fg dµc, (f, g ∈ L2(R, µc)).

Moreover, Sirr
q denotes the set of permutations ρ in Sq, for which

1 6= ρ(1) 6= 2 6= ρ(2) 6= · · · 6= q 6= ρ(q).

For fixed t in R, we expand in Section 7 the exponential function x 7→ exp(tx),
in terms of the polynomials P cq (x), q ∈ N0:

exp(tx) =

∞∑

q=0

ψcq(t)P
c
q (x), (x ∈ [0,∞[). (0.7)

We show that the coefficients ψcq(t) are non-negative for all t in [0,∞[, and that
for any q in N0,

|ψcq(−t)| ≤
(∫∞

0 exp(−tx) dµc(x)∫∞
0 exp(tx) dµc(x)

)
· ψcq(t), (t ∈ [0,∞[). (0.8)

By combining (0.6), (0.7) and (0.8) with the proof of (0.5), we obtain that for
c ≥ 1 and 0 ≤ t ≤ n

2c ,

‖E[exp(−tS∗S)]‖ ≤ exp((c+ 1)2 t
2

n )

∫ ∞

0

exp(−tx) dµc(x),

and since supp(µc) ⊆ [a,∞[ = [(
√
c−1)2,∞[, when c ≥ 1, we obtain the second

key estimate (0.2).

The rest of the paper is organized in the following way:

1 A Combinatorial Expression for E◦Trn[(B∗B)p
]
, for a Gaussian

Random Matrix B in GRM(m,n, 1) . . . . . . . . . . . . . . . . . . 348
2 A Combinatorial Expression for the Moments of S∗S . . . . . . . . 360
3 An upper bound for E

[
exp(tS∗S)

]
, t ≥ 0 . . . . . . . . . . . . . . . 370

4 Asymptotic Upper Bound on the Spectrum of S∗nSn in the Exact
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

5 A New Combinatorial Expression for E
[
(S∗S)p

]
. . . . . . . . . . . 390

6 The Sequence of Orthogonal Polynomials for the Measure µc . . . . 405
7 An Upper Bound for E

[
exp(−tS∗S)

]
, t ≥ 0 . . . . . . . . . . . . . 415

8 Asymptotic Lower Bound on the Spectrum of S∗nSn in the Exact
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

9 Comparison of Projections in Exact C∗-algebras and states on
the K0-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
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1 A Combinatorial Expression for E ◦Trn[(B∗B)p
]
, for a Gaussian

Random Matrix B in GRM(m,n, 1)

For ξ in R and σ2 in ]0,∞[, we let N(ξ, σ2) denote the Gaussian (or normal)
distribution with mean ξ and variance σ2. In [HT], we introduced the following
class of Gaussian random matrices

1.1 Definition. (cf. [HT]) Let (Ω,F , P ) be a classical probability space, let
m,n be positive integers, and let

B = (b(i, j))1≤i≤m
1≤j≤n

: Ω→Mm,n(C),

be a complex, random m × n matrix defined on Ω. We say then that B is a
(standard) Gaussian randomm×n matrix with entries of variance σ2, if the real
valued random variables Re(b(i, j)), Im(b(i, j)), 1 ≤ i ≤ m, 1 ≤ j ≤ n, form
a family of 2mn independent, identically distributed random variables, with

distribution N(0, σ
2

2 ). We denote by GRM(m,n, σ2) the set of such random
matrices defined on Ω. Note that σ2 equals the second absolute moment of the
entries of an element from GRM(m,n, σ2). �

In the following we shall omit mentioning the underlying probability space
(Ω,F , P ), and it will be understood that all considered random matri-
ces/variables are defined on this probability space. As a matter of notation,
by 1n we denote the unit of Mn(C), and by trn we denote the trace on Mn(C)
satisfying that trn(1n) = 1. Moreover, we put Trn = n · trn.
Let B be an element of GRM(m,n, σ2). Then for any p in N, (B∗B)p is a
positive definite n × n random matrix, and Trn((B∗B)p) is a positive valued,
integrable, random variable. The main aim of this section is to derive a com-
binatorial expression for the moments E ◦Trn((B∗B)p) of B∗B w.r.t. E ◦Trn,
where E denotes expectation w.r.t. P .

1.2 Lemma. Let m,n, r, p be positive integers, let B1, B2, . . . , Br be inde-
pendent elements of GRM(m,n, σ2), and for each s in {1, 2, . . . , r}, let
b(u, v, s), 1 ≤ u ≤ m, 1 ≤ v ≤ n, denote the entries of Bs. Then for any
i1, j1, i2, j2, . . . , ip, jp in {1, 2, . . . , r}, we have that

E ◦ Trn(B∗i1Bj1B
∗
i2Bj2 · · ·B∗ipBjp )

=
∑

1≤u2,u4,... ,u2p≤m
1≤u1,u3,... ,u2p−1≤n

E
(
b(u2, u1, i1)b(u2, u3, j1) · · · b(u2p, u2p−1, ip)b(u2p, u1, jp)

)
,

(1.1)

and moreover E ◦ Trn(B∗i1Bj1B
∗
i2
Bj2 · · ·B∗ipBjp) = 0, unless there exists a

permutation π in the symmetric group Sp, such that jh = iπ(h) for all h in
{1, 2, . . . , p}.
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Proof. Let f(u, v), 1 ≤ u ≤ m, 1 ≤ v ≤ n, denote the usual m × n matrix
units, and let g(u, v), 1 ≤ u ≤ n, 1 ≤ v ≤ m, denote the usual n ×m matrix
units. We have then that

E ◦ Trn(B∗i1Bj1B
∗
i2Bj2 · · ·B∗ipBjp )

=
∑

1≤v1,u2,v3,u4,... ,v2p−1,u2p≤m
1≤u1,v2,u3,v4,... ,u2p−1,v2p≤n

E
(
b∗(u1, v1, i1)b(u2, v2, j1) · · · b∗(u2p−1, v2p−1, ip)b(u2p, v2p, jp)

)

· Trn
(
g(u1, v1)f(u2, v2) · · · g(u2p−1, v2p−1)f(u2p, v2p)

)

=
∑

1≤u2,u4,... ,u2p≤m
1≤u1,u3,... ,u2p−1≤n

E
(
b(u2, u1, i1)b(u2, u3, j1) · · · b(u2p, u2p−1, ip)b(u2p, u1, jp)

)
.

Note here, that for any u2, u4, . . . , u2p in {1, 2, . . . ,m} and u1, u3, . . . , u2p−1

in {1, 2, . . . , n}, we have because of the independence assumptions,

E
(
b(u2, u1, i1)b(u2, u3, j1) · · · b(u2p, u2p−1, ip)b(u2p, u1, jp)

)

=

r∏

l=1

E
( ∏

h:ih=l

b(u2h, u2h−1, l)
∏

h:jh=l

b(u2h, u2h+1, l)
)
,

where 2h+ 1 is calculated mod. 2p.
Note here, that for any l in {1, 2, . . . , r}, any u in {1, 2, . . . ,m} and any v in
{1, 2, . . . , n}, the distribution of b(u, v, l) is invariant under multiplication by
complex numbers of norm 1. Hence, for any s, t in N0, E

[
b(u, v, l)s ·b(u, v, l)t

]
=

0, unless s = t. Using this, and the independence assumptions, it follows
that for any l in {1, 2, . . . , r}, any u2, u4, . . . , u2p in {1, 2, . . . ,m} and any
u1, u3, . . . , u2p−1 in {1, 2, . . . , n}, a necessary condition for the mean

E
( ∏

h:ih=l

b(u2h, u2h−1, l) ·
∏

h:jh=l

b(u2h, u2h+1, l)
)

to be distinct from zero is that

card
({
h ∈ {1, 2, . . . , p}

∣∣ ih = l
})

= card
({
h ∈ {1, 2, . . . , p}

∣∣ jh = l
})
. (1.2)

It follows that E ◦ Trn(B∗i1Bj1B
∗
i2
Bj2 · · ·B∗ipBjp ) = 0, unless (1.2) holds for all

l in {1, 2, . . . , r}, and in this case, it is not hard to construct a permutation π
from Sp, with the property described in the lemma. �

1.3 Definition. Let p be a positive integer, and let π be an element of Sp. We
associate to π a family Λ(π,m, n), m,n ∈ N, of complex numbers, as follows:
Let B1, B2, . . . , Bp be independent elements of GRM(m,n, 1), and then define

Λ(π,m, n) = E ◦ Trn(B∗1Bπ(1)B
∗
2Bπ(2) · · ·B∗pBπ(p)). �
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1.4 Remark. Let m,n, r, p be positive integers, and let B1, B2, . . . , Br be
arbitrary elements of GRM(m,n, σ2). Moreover, let i1, j1, . . . , ip, jp be ar-
bitrary elements of {1, 2, . . . , r}. We shall need the fact that the quan-
tity E ◦ Trn(B∗i1Bj1 · · ·B∗ipBjp ) is bounded numerically by some constant

K(m,n, p, σ2) depending only on m,n, p, σ2 and not on r or the distribu-
tional relations between B1, B2, . . . , Br. For this, adapt the notation from
Lemma 1.2, and note then that by (1.1) from that lemma,

|E ◦ Trn(B∗i1Bj1 · · ·B∗ipBjp )|

≤
∑

1≤u2,u4,... ,u2p≤m
1≤u1,u3,... ,u2p−1≤n

∣∣ E
(
b(u2, u1, i1)b(u2, u3, j1) · · · b(u2p, u2p−1, ip)b(u2p, u1, jp)

) ∣∣ .

Then let M(2p, σ2) denote the 2p’th absolute moment of the entries of an
element from GRM(m,n, σ2). A standard computation yields thatM(2p, σ2) =
σ2p · p!, but we shall not need this explicit formula. It follows now by the
generalized Hölder inequality, that for any u2, u4, . . . , u2p in {1, 2, . . . ,m} and
u1, u3, . . . , u2p−1 in {1, 2, . . . , n},
∣∣E
(
b(u2, u1, i1)b(u2, u3, j1) · · · b(u2p, u2p−1, ip)b(u2p, u1, jp)

) ∣∣

≤
∥∥b(u2, u1, i1)

∥∥
2p

∥∥b(u2, u3, j1)
∥∥

2p
· · ·
∥∥b(u2p, u2p−1, ip)

∥∥
2p

∥∥b(u2p, u1, jp)
∥∥

2p

=
(
M(2p, σ2)

1
2p
)2p

= M(2p, σ2).

Thus it follows that we may use K(m,n, p, σ2) = mpnpM(2p, σ2). �

1.5 Proposition. Let B be an element of GRM(m,n, 1), and let p be a pos-
itive integer. We then have

E ◦ Trn[(B∗B)p] =
∑

π∈Sp

Λ(π,m, n).

Proof. Let (Bi)i∈N be a sequence of independent elements of GRM(m,n, 1).
Note then that for any s in N, the matrix 1√

s
(B1 + · · ·+Bs) is again an element

of GRM(m,n, 1), and therefore

E ◦ Trn [(B∗B)p] = E ◦ Trn

[((
s−

1
2 (B1 + · · ·+Bs)

)∗(
s−

1
2 (B1 + · · ·+Bs)

))p]

= s−p
∑

1≤i1,j1,... ,ip,jp≤s
E ◦ Trn

[
B∗i1Bj1 · · ·B∗ipBjp

]
.

(1.3)

For π in Sp we define

M(π, s) =
{

(i1, j1, . . . , ip, jp) ∈ {1, 2, . . . , s}2p
∣∣ j1 = iπ(1), . . . , jp = iπ(p)

}
.
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It follows then from Lemma 1.2, that in (1.3), we only have to sum over those
2p-tuples (i1, j1, . . . , ip, jp) that belong to M(π, s) for some π in Sp, and con-
sequently

E ◦ Trn [(B∗B)p] = s−p
∑

(i1,j1,... ,ip,jp)∈∪π∈SpM(π,s)

E ◦ Trn

[
B∗i1Bj1 · · ·B∗ipBjp

]
.

Note though, that the sets M(π, s), π ∈ Sp, are not disjoint. However, if we
put

D(s) =
{

(i1, j1, . . . , ip, jp) ∈ {1, 2, . . . , s}2p
∣∣ i1, i2, . . . , ip are distinct

}
,

then the sets M(π, s) ∩ D(s), π ∈ Sp, are disjoint. Thus we have

E ◦ Trn [(B∗B)p]

= s−p
∑

π∈Sp

∑

(i1,j1,... ,ip,jp)∈M(π,s)∩D(s)

E ◦ Trn

[
B∗i1Bj1 · · ·B∗ipBjp

]

+ s−p
∑

(i1,j1,... ,ip,jp)∈(∪π∈SpM(π,s))\D(s)

E ◦ Trn

[
B∗i1Bj1 · · ·B∗ipBjp

]
.

(1.4)

Note here, that if (i1, j1, . . . , ip, jp) ∈ M(π, s) ∩ D(s), then Bi1 , Bi2 , . . . , Bip
are independent elements of GRM(m,n, 1), and hence

E ◦ Trn

[
B∗i1Bj1 · · ·B∗ipBjp

]
= Λ(π,m, n).

Thus, the first term on the right hand side of (1.4) equals

s−p
∑

π∈Sp

card(M(π, s) ∩D(s)) · Λ(π,m, n).

Here card(M(π, s) ∩D(s)) = s(s− 1) · · · (s− p+ 1), so

s−p · card(M(π, s) ∩ D(s))→ 1 as s→∞.
Hence, the first term on the right hand side of (1.4) tends to

∑
π∈Sp

Λ(π,m, n)

as s → ∞, and since the left hand side of (1.4) does not depend on s, it remains
thus to show that the second term on the right hand side of (1.4) tends to 0
as s → ∞. This follows by noting that according to Remark 1.4, for any
(i1, j1, . . . , ip, jp) in {1, 2, . . . , s}2p, the quantity |E ◦ Trn

[
B∗i1Bj1 · · ·B∗ipBjp

]
|

is bounded by some constant K(m,n, p) depending only on m,n, p; not on s.
And moreover,

s−pcard
((
∪π∈SpM(π, s)

)
\ D(s)

)
≤
∑

π∈Sp

s−pcard(M(π, s) \ D(s))

=
∑

π∈Sp

[
s−pcard(M(π, s)) − s−pcard(M(π, s) ∩ D(s))

]

=
∑

π∈Sp

[
1− s−pcard(M(π, s) ∩ D(s))

]
→ 0,
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as s→∞. This concludes the proof of the proposition. �

It follows from Proposition 1.5, that in order to obtain a combinatorial expres-
sion for the moments E ◦ Trn((B∗B)p) for a matrix B from GRM(m,n, 1), we
need to derive a combinatorial expression for the quantities

Λ(π,m, n) = E ◦ Trn(B∗1Bπ(1)B
∗
2Bπ(2) · · ·B∗pBπ(p)),

where π ∈ Sp and B1, . . . , Bp are independent elements of GRM(m,n, 1).
As it turns out, it shall be useful to have the relations between the factors in
the product B∗1Bπ(1)B

∗
2Bπ(2) · · ·B∗pBπ(p) determined in terms of a permutation

π̂ in S2p, rather than in terms of the permutation π from Sp.

1.6 Definition. Let p be a positive integer, and let π be a permutation in Sp.
Then the permutation π̂ in S2p is determined by the equations:

π̂(2i− 1) = 2π−1(i), (i ∈ {1, 2, . . . , p}),
π̂(2i) = 2π(i)− 1, (i ∈ {1, 2, . . . , p}). �

1.7 Remark. (a) Let p, π and π̂ be as in Definition 1.6. Note then that
π̂2 = π̂ ◦ π̂ = id, the identity mapping on {1, 2, . . . , 2p}, and that π̂ maps
odd numbers to even numbers, i.e., that π̂(j) − j = 1 (mod. 2), for all j in
{1, 2, . . . , 2p}. In particular, π̂ has no fixed points. It is easy to check that
{π̂ | π ∈ Sp} is exactly the set of permutations γ in S2p, for which γ2 = id and
γ(j)− j = 1 (mod. 2), for all j in {1, 2, . . . , 2p}. Moreover, the mapping π 7→ π̂
is injective.
(b) If B1, B2, . . . , Bp are independent elements of GRM(m,n, 1) ,
then we may write the product B∗1Bπ(1)B

∗
2Bπ(2) · · ·B∗pBπ(p) in the form

C∗1C2C
∗
3C4 · · ·C∗2p−1C2p, where C2i−1 = Bi and C2i = Bπ(i) for all i

in {1, 2, . . . , p}. Then π̂ is constructed exactly so that for any j, j′ in
{1, 2, . . . , 2p}, we have

Cj = Cj′ ⇔ j = j′ or π̂(j) = j′. �

1.8 Definition. We associate to π̂ an equivalence relation ∼π̂ on Z2p. This
is the equivalence relation (introduced by Voiculescu in [Vo1, Proof of Theo-
rem 2.2]), generated by the expression:

j ∼π̂ π̂(j) + 1, (j ∈ {1, 2, . . . , 2p}),

where addition is formed mod. 2p. �

1.9 Remark. For a permutation π in Sp, the ∼π̂-equivalence classes are pre-
cisely the orbits in {1, 2, . . . , 2p} for the cyclic subgroup of S2p generated by
the permutation j 7→ π̂(j) + 1 (addition formed mod. 2p). Since this subgroup
is finite, the equivalence class [j]π̂ of an element j in {1, 2, . . . , 2p} has the
following form:

Documenta Mathematica 4 (1999) 341–450



Random Matrices and K-Theory . . . 353

Let q be the number of elements in [j]π̂. Then

[j]π̂ = {j0, j1, . . . , jq−1},

where j0 = j, j1 = π̂(j0) + 1, j2 = π̂(j1) + 1, . . . , jq−1 = π̂(jq−2) + 1, j0 =
π̂(jq−1) + 1, (addition formed mod. 2p). �

It follows immediately from the definition of π̂ and Remark 1.9 that each ∼π̂-
equivalence class consists entirely of even numbers or entirely of odd numbers.
This is used in the following definition:

1.10 Definition. Let p be a positive integer, let π be a permutation in Sp,
and consider the corresponding permutation π̂ in S2p. By k(π̂) and l(π̂), we
denote then the number of ∼π̂-equivalence classes consisting of even numbers,
respectively the number of ∼π̂-equivalence classes consisting of odd numbers:

k(π̂) = card
({

[j]π̂
∣∣ j ∈ {2, 4, . . . , 2p}

})
,

l(π̂) = card
({

[j]π̂
∣∣ j ∈ {1, 3, . . . , 2p− 1}

})
.

Moreover, we define the quantities d(π̂) and σ(π̂) by the equations:

d(π̂) = k(π̂) + l(π̂) = card
({

[j]π̂
∣∣ j ∈ {1, 2, . . . , 2p}

})
,

σ(π̂) = 1
2

(
p+ 1− d(π̂)

)
. �

Regarding the definition of σ(π̂), it will be shown later (cf. Theorem 1.13), that
σ(π̂) is always a non-negative integer. The quantity d(π̂) was introduced by
Voiculescu in [Vo1, Proof of Theorem 2.2].

1.11 Theorem. For any positive integers m,n and any π in Sp, we have that

Λ(π,m, n) = mk(π̂)nl(π̂).

Proof. Consider independent elements B1, B2, . . . , Bp of GRM(m,n, 1), and
for each j in {1, 2, . . . , p}, let b(u, v, j), 1 ≤ u ≤ m, 1 ≤ v ≤ n, denote the
entries of Bj . It follows then by (1.1) in Lemma 1.2, that

Λ(π,m, n)

= E ◦ Trn(B∗1Bπ(1)B
∗
2Bπ(2) · · ·B∗pBπ(p))

=
∑

1≤u1,u3,...,u2p−1≤n
1≤u2,u4,...,u2p≤m

E
(
b(u2, u1, 1)b(u2, u3, π(1)) · · · b(u2p, u2p−1, p)b(u2p, u1, π(p))

)
.

(1.5)

Arguing as in the proof of Lemma 1.2, it follows that the term in the above
sum corresponding to u1, u2, . . . , u2p is zero, unless the corresponding matrix
entries are pairwise conjugate to each other, i.e., unless we have that

b(u2i, u2i+1, π(i)) = b(u2π(i), u2π(i)−1, π(i)), (i ∈ {1, 2, . . . , p}). (1.6)
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Note also, that if (1.6) is satisfied, then the corresponding term in (1.5) equals
1, and consequently

Λ(π,m, n)

= card
({

(u1, u2, . . . , u2p)
∣∣ 1 ≤ u2i−1 ≤ n, 1 ≤ u2i ≤ m, and (1.6) holds

})
.

To calculate this cardinality, we note first that (1.6) is equivalent to the condi-
tion

u2i = u2π(i) and u2i+1 = u2π(i)−1, (i ∈ {1, 2, . . . , p}), (1.7)

where addition and subtraction are formed mod. 2p. Replacing now i by π−1(i)
in the first equation in (1.7), we get the equivalent condition:

u2i = u2π−1(i) and u2i+1 = u2π(i)−1, (i ∈ {1, 2, . . . , p}).

Recall then that by definition of π̂, π̂(2i−1) = 2π−1(i), and using this formula
with i replaced by π(i), we get that also 2π(i)− 1 = π̂

(
π̂(2π(i)− 1)

)
= π̂(2i).

Thus (1.6) is equivalent to the condition

u2i = uπ̂(2i−1), and u2i+1 = uπ̂(2i), (i ∈ {1, 2, . . . , p}),

i.e., the condition

uj = uπ̂(j−1), (j ∈ {1, 2, . . . , 2p}).

Replacing finally j by π̂(j) + 1, we conclude that (1.6) is equivalent to the
condition

uj = uπ̂(j)+1, (j ∈ {1, 2, . . . , 2p}),
where π̂(j) + 1 is calculated mod. 2p. Having realized this, it follows immedi-
ately from Remark 1.9 and the definitions of k(π̂) and l(π̂), that the right hand
side of (1) equals mk(π̂)nl(π̂), and hence we have the desired formula. �

1.12 Corollary. Let m,n be positive integers and let B be an element of
GRM(m,n, 1). Then for any positive integer p, we have that

E ◦ Trn
[
(B∗B)p

]
=
∑

π∈Sp

mk(π̂)nl(π̂).

Proof. This follows immediately by combining Proposition 1.5 and Theo-
rem 1.11. �

1.13 Theorem. Let p be a positive integer, and let π be a permutation in Sp.
Then
(i) k(π̂) ≥ 1 and l(π̂) ≥ 1.
(ii) k(π̂) + l(π̂) ≤ p+ 1.
(iii) σ(π̂) = 1

2

(
p+ 1− k(π̂)− l(π̂)

)
is a non-negative integer.
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Proof. (i) This is clear from Definition 1.10.
(ii) Since d(π̂) = k(π̂) + l(π̂) is the number of equivalence classes for ∼π̂, (ii)
follows from [Vo1, Proof of Theorem 2.2].
(iii) The proof of (iii) requires more work. For elements p of N and k, l of N0,
we define

δ(p, k, l) = card({π ∈ Sp | k(π̂) = k and l(π̂) = l}).
By (i) and (ii), δ(p, k, l) = 0 unless k ≥ 1, l ≥ 1 and k + l ≤ p + 1. By
Corollary 1.12, we have for an element B of GRM(m,n, 1), that

E ◦ Trn
[
(B∗B)p

]
=

∑

k,l∈N
k+l≤p+1

δ(p, k, l)mknl.

On the other hand, by the recursion formula for the moments E ◦
Trn
[
(B∗B)p

]
, (p ∈ N), found in [HT, Theorem 8.2], it follows that for p in

N, the moment E ◦Trn
[
(B∗B)p

]
can be expressed as a polynomial in m and n

of the form:
E ◦ Trn

[
(B∗B)p

]
=

∑

k,l∈N
k+l≤p+1

δ′(p, k, l)mknl,

for suitable coeffecients δ′(p, k, l). By the remarks following the proof of
[HT, Theorem 8.2], only terms of homogeneous degree p + 1 − 2j, j ∈
{0, 1, 2, . . . , [p−1

2 ]}, appear in this polynomial, i.e.,

δ′(p, k, l) = 0, when k + l = p (mod. 2).

If polynomials of two variables coincide on N2, then they are equal. Therefore,
δ(p, k, l) = δ′(p, k, l) for all k, l, which proves that

card({π ∈ Sp | k(π̂) = k and l(π̂) = l}) = 0, if k + l = p (mod. 2).

Hence, σ(π̂) is an integer for all π in Sp, and by (ii), σ(π̂) ≥ 0. This proves
(iii). �

In the rest of this section, we shall introduce a method of “reductions of per-
mutations”, which will be needed to determine the asymptotic lower bound of
the spectrum of S∗nSn (cf. Sections 5-8).
Let p be a positive integer, let π be a permutation in Sp, and consider the
corresponding permutation π̂ in S2p, introduced in Definition 1.6. Since π̂2 = id
and π̂ has no fixed points, the orbits under the action of π̂ form a partition of
{1, 2, . . . , 2p} into p sets, each with two elements.

1.14 Definition. Let p be a positive integer, and let π be a permutation in
Sp. Following the standard definition of crossings in partitions of {1, 2, . . . , 2p}
into sets of cardinality 2 (see e.g. [Sp]), we say that (a, b, c, d) is a crossing for
π̂, if a, b, c, d ∈ {1, 2, . . . , 2p} such that

a < b < c < d, and π̂(a) = c, π̂(b) = d. (1.8)
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If π̂ has no such crossings, we say that π̂ is a non-crossing permutation, and
we let Snc

p denote the set of permutations π in Sp for which π̂ is non-crossing.
�

1.15 Definition. Let p be a positive integer, let π be a permutation in Sp,
and let e be an element of {1, 2, . . . , 2p− 1}. We say then that (e, e + 1) is a
pair of neighbors for π̂, if π̂(e) = e + 1. Note, that a pair of neighbors for π̂ is
either of the form

(2k − 1, 2k), where k ∈ {1, . . . , p},
or of the form

(2k, 2k + 1), where k ∈ {1, . . . , p− 1}.
In the first case k = π(k), and in the second case π(k) = k + 1. �

1.16 Definition. Let p be a positive integer, let π be a permutation in Sp, and
consider the permutation π̂ in S2p introduced in Definition 1.6. We say then
that π̂ is irreducible if π̂ has no pair of neighbors (in the sense of Definition 1.15),
i.e., if π̂(j) 6= j + 1 for all j in {1, 2, . . . , 2p− 1}. We denote by Sirr

p the set of
permutations π in Sp for which π̂ is irreducible. Note that

π ∈ Sirr
p ⇐⇒ 1 6= π(1) 6= 2 6= π(2) 6= · · · 6= p 6= π(p).

If π ∈ Sp \ Sirr
p , we say that π̂ is reducible. Note, that we do not require that

π̂(2p) 6= 1 in order for π̂ to be irreducible. Thus, irreducibility of π̂ is not
invariant under cyclic permutations of {1, 2, . . . , 2p}. �

1.17 Lemma. Let p be a positive integer, and let π be a permutation in Snc
p .

Then π̂ has a pair of neighbors, i.e., π̂ is reducible in the sense of Definition 1.16.
In other words, we have the inclusion Snc

p ⊆ Sp \ Sirr
p or equivalently Sirr

p ⊆
Sp \ Snc

p .

Proof. We prove the inclusion: Sirr
p ⊆ Sp \ Snc

p . So let π from Sirr
p be given,

and consider the set M = {j ∈ {1, 2, . . . , 2p} | π̂(j) ≥ j}. Note that M 6= ∅,
since clearly 1 ∈M . Define now

α = min{π̂(j)− j | j ∈M}.
Since π̂ has no fixed points and no pairs of neighbors (since π ∈ Sirr

p ), we must
have α ≥ 2. Choose j in {1, 2, . . . , 2p} such that π̂(j) − j = α. Since α ≥ 2,
π̂(j) 6= j + 1, or equivalently (since π̂2 = id), π̂(j + 1) 6= j. Combining this
with the definition of α, and the fact that π̂ has no fixed points, it follows that

π̂(j + 1) /∈ {j, j + 1, . . . , j + α} = {j, j + 1, . . . , π̂(j)},
i.e., either π̂(j+1) < j or π̂(j+1) > π̂(j). In the first case (π̂(j+1), j, j+1, π̂(j))
is a crossing for π̂, and in the second case (j, j + 1, π̂(j), π̂(j + 1)) is a crossing
for π̂. In all cases, π ∈ Sp \ Snc

p , as desired. �
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1.18 Definition. Let p be a positive integer, greater than or equal to 2, let π
be a permutation in Sp, and assume that the permutation π̂ in S2p has a pair of
neighbors (e, e+1). Let ϕ be the order preserving bijection of {1, 2, . . . , 2p−2}
onto {1, 2, . . . , 2p} \ {e, e+ 1}, i.e.,

ϕ(i) =

{
i, if 1 ≤ i ≤ e− 1,

i+ 2, if e ≤ i ≤ 2p− 2.
(1.9)

By π0 we denote then the unique permutation in Sp−1, satisfying that

π̂0 = ϕ−1 ◦ π̂ ◦ ϕ.

We say that π̂0 is obtained from π̂ by cancellation of the pair (e, e+ 1). �

A few words are appropriate about the introduction of π0 in the defini-
tion above. Note first of all that ϕ−1 ◦ π̂ ◦ ϕ is a well-defined permu-
tation of {1, 2, . . . , 2p − 2}, since π̂2 = id and π̂(e) = e + 1, so that
π̂({1, 2, . . . , 2p} \ {e, e + 1}) = {1, 2, . . . , 2p} \ {e, e + 1}. To see that this
permutation is actually of the form π̂0 for some (necessarily uniquely deter-
mined) permutation π0 in Sp−1, it suffices, by Remark 1.7(a), to check that
(ϕ−1 ◦ π̂ ◦ ϕ)2 = id, and that ϕ−1 ◦ π̂ ◦ ϕ(j) − j = 1 (mod. 2), for all j in
{1, 2, . . . , 2p− 2}. But these properties follow from the corresponding proper-
ties of π̂, and the fact that ϕ(j) = j (mod. 2), for all j.

1.19 Remark. Let p be a positive integer, greater than or equal to 2, let π be
a permutation in Sp, and assume that the permutation π̂ in S2p has a pair of
neighbors (e, e+ 1). Let π0 be the permutation in Sp−1 obtained from π as in
Definition 1.18.
(a) If (e, e+ 1) = (2k− 1, 2k) for some k in {1, . . . , p}, then π0 = ψ−1 ◦ π ◦ ψ,
where ψ : {1, . . . , p− 1} → {1, . . . , p} \ {k} is the bijection given by

ψ(j) =

{
j, if 1 ≤ j ≤ k − 1,

j + 1, if k ≤ j ≤ p− 1.
(1.10)

(b) If (e, e+1) = (2k, 2k+1) for some k in {1, . . . , p−1}, then π0 = χ−1◦π◦ψ,
where χ : {1, . . . , p− 1} → {1, . . . , p} \ {k + 1} is the bijection given by

χ(j) =

{
j, if 1 ≤ j ≤ k,
j + 1, if k + 1 ≤ j ≤ p− 1,

(1.11)

and where ψ is given by (1.10). �

1.20 Lemma. Let p be a positive integer, greater than or equal to 2, and let
π be a permutation in Sp \ Sirr

p . Let (e, e+ 1) be a pair of neighbors for π̂ and
let π0 be the permutation in Sp−1, for which π̂0 is the permutation obtained
from π̂ by cancellation of (e, e+ 1). Then π̂ is non-crossing if and only if π̂0 is
non-crossing.
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Proof. Let ϕ : {1, 2, . . . , 2p − 2} → {1, 2, . . . , 2p} \ {e, e + 1} be the bijection
introduced in (1.9). We show that π̂0 has a crossing if and only if π̂ does.
Assume first that π̂0 has a crossing (a, b, c, d). Then since ϕ is (strictly) mono-
tone and since (by definition of π0) π̂(ϕ(a)) = ϕ(c), π̂(ϕ(b)) = ϕ(d), it follows
that (ϕ(a), ϕ(b), ϕ(c), ϕ(d)) is a crossing for π̂.
Assume conversely that π̂ has a crossing (a′, b′, c′, d′). Then clearly

{a′, b′, c′, d′} ∩ {e, e+ 1} = ∅,

so that the numbers ϕ−1(a′), ϕ−1(b′), ϕ−1(c′), ϕ−1(d′) are well-defined. It fol-
lows then, as above, that (ϕ−1(a′), ϕ−1(b′), ϕ−1(c′), ϕ−1(d′)) is a crossing for
π̂0. �

1.21 Lemma. Let m,n be positive integers, and let B be an element of
GRM(m,n, 1). Then

E(B∗B) = m111n, and E(BB∗) = n111m. (1.12)

Proof. Let (bij)1≤i≤m
1≤j≤n

be the entries of B. Then

E(bijbst) =

{
1, if (i, j) = (s, t),

0, otherwise.
(1.13)

Since (B∗B)ij =
∑m

s=1 bsibsj and (BB∗)ij =
∑n

s=1 bisbjs, for all i, j, (1.12)
follows readily from (1.13). �

1.22 Proposition. Let p be a positive integer, greater than or equal to 2,
and let π be a permutation in Sp \ Sirr

p . Let (e, e + 1) be a pair of neighbors
for π̂ and let π0 be the permutation in Sp−1, for which π̂0 is the permutation
obtained from π̂ by cancellation of (e, e+ 1). Then with k(·), l(·), d(·) and σ(·)
as introduced in Definition 1.10, we have that
(i) If e is odd, then k(π̂0) = k(π̂)− 1 and l(π̂0) = l(π̂).
(ii) If e is even, then k(π̂0) = k(π̂) and l(π̂0) = l(π̂)− 1.
In both cases, d(π̂0) = d(π̂)− 1 and σ(π̂0) = σ(π̂).

Proof. Let m,n be positive integers, and let B1, . . . , Bp be independent random
matrices from GRM(m,n, 1). By Theorem 1.11, we have then that

E ◦ Trn
[
B∗1Bπ(1) · · ·B∗pBπ(p)

]
= mk(π̂)nl(π̂). (1.14)

(i) Assume that e is odd, i.e., that (e, e + 1) = (2q − 1, 2q) for some q in
{1, 2, . . . , p}. Then π(q) = q, and hence the set of random matrices

(B∗1 , Bπ(1), . . . , B
∗
q−1, Bπ(q−1), B

∗
q+1, Bπ(q+1), . . . , B

∗
p , Bπ(p))
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is independent from the set (B∗q , Bπ(q)). Therefore,

E ◦ Trn
[
B∗1Bπ(1) · · ·B∗pBπ(p)

]

= E ◦ Trn
[
B∗1Bπ(1) · · ·B∗q−1Bπ(q−1)E(B∗qBπ(q))B

∗
q+1 · · ·B∗pBπ(p)

]

= m · E ◦ Trn
[
B∗1Bπ(1) · · ·B∗q−1Bπ(q−1)B

∗
q+1 · · ·B∗pBπ(p)

]
,

(1.15)

where the last equality follows from Lemma 1.21. Note that only the random
matrices B1, . . . , Bq−1, Bq+1, . . . , Bp occur in the last expression in (1.15). De-
fine now for i in {1, 2, . . . , p− 1},

B′i =

{
Bi, if 1 ≤ i ≤ q − 1,

Bi+1, if q ≤ i ≤ p− 1.

Then by Remark 1.19(a), it follows that the last expression in (1.15) is equal
to

m · E ◦ Trn
[
(B′1)∗B′π0(1)

· · · (B′p−1)∗B′π0(p−1)

]
,

which, by Theorem 1.11, is equal to m·mk(π̂0)nl(π̂0). Altogether, we have shown
that

mk(π̂)nl(π̂) = m ·mk(π̂0)nl(π̂0),

and since this holds for all positive integersm,n, it follows that k(π̂) = k(π̂0)+1
and l(π̂) = l(π̂0). This proves (i).
(ii) Assume that e is even, i.e., that (e, e + 1) = (2q, 2q + 1), for some q in
{1, 2, . . . , p− 1}. Then π(q) = q+ 1, and arguing now as in the proof of (i), we
find that

mk(π̂)nl(π̂) = E ◦ Trn
[
B∗1Bπ(1) · · ·B∗pBπ(p)

]

= E ◦ Trn
[
B∗1Bπ(1) · · ·B∗qE(Bπ(q)B

∗
q+1)Bπ(q+1) · · ·B∗pBπ(p)

]

= n · E ◦ Trn
[
B∗1Bπ(1) · · ·B∗qBπ(q+1) · · ·B∗pBπ(p)

]
,

(1.16)

where the last equality follows from Lemma 1.21. Defining, this time, for each
i in {1, 2, . . . , p− 1},

B′i =

{
Bi, if 1 ≤ i ≤ q,
Bi+1, if q + 1 ≤ i ≤ p− 1,

we get by application of Remark 1.19(b), that the last expression in (1.16) is
equal to

n · E ◦ Trn
[
(B′1)∗B′π0(1) · · · (B′p−1)∗B′π0(p−1)

]
,

which, by Theorem 1.11, equals n ·mk(π̂0)nl(π̂0). Arguing then as in the proof
of (i), it follows that k(π̂) = k(π̂0) and l(π̂) = l(π̂0) + 1. This proves (ii).
The last statements of Proposition 1.22 follow immediately from (i), (ii) and
Definition 1.10. �
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1.23 Proposition. Let p be a positive integer, and let π be a permutation in
Sp. By finitely many (or possibly none) successive cancellations of pairs, π̂ can
be reduced to either
(i) ê1, where e1 is the trivial permutation in S1,
or
(ii) ρ̂, where ρ is a permutation in Sirr

q for some q in {2, . . . , p}.
Case (i) appears if and only if π ∈ Snc

p .

Proof. It is clear, that by finitely many (or possibly none) successive cancel-
lations of pairs, π̂ can be reduced to a permutation ρ̂, where either ρ ∈ S1 or
ρ ∈ Sirr

q for some q in {2, 3, . . . , p}. By Lemma 1.20, π̂ is non-crossing if and

only if ρ̂ is. Since S1 = Snc
1 = {e1}, and Sirr

q ∩Snc
q = ∅ for all q in {2, 3, . . . , p},

by Lemma 1.17, it follows thus, that either case (i) or case (ii) occurs, and that
case (i) occurs if and only if π̂ is non-crossing. �

The following corollary is a special case of [Sh, Lemma 2.3]. For the convenience
of the reader, we include a proof based on Propositions 1.22 and 1.23.

1.24 Corollary. Let p be a positive integer and let π be a permutation in
Sp. Then π̂ is non-crossing if and only if k(π̂) + l(π̂) = p+ 1, or, equivalently,
if and only if σ(π̂) = 0.

Proof. Assume first that π̂ is non-crossing. It follows then from Proposi-
tion 1.23, that by successive cancellations of pairs, π̂ may be reduced to ê1,
where e1 is the unique permutation in S1. Since σ(·) is invariant under can-
cellations of pairs, (cf. Lemma 1.22), it follows that σ(π̂) = σ(ê1), and it is
straightforward to check that σ(ê1) = 0.
Assume next that π̂ has a crossing. Then, by Proposition 1.23, there exist
q in {2, . . . , p} and a permutation ρ in Sirr

q , such that π̂ may be reduced to
ρ̂ by finitely many (or possibly none) successive cancellations of pairs. By
Proposition 1.22, σ(π̂) = σ(ρ̂), and hence it suffices to show that σ(ρ̂) > 0, i.e.,
that d(ρ̂) < q + 1. Note for this, that since ρ̂ is irreducible, ρ̂(j) 6= j + 1, for
all j in {1, 2, . . . , 2q − 1}. Since ρ̂2 = id, this is equivalent to the condition
that ρ̂(j) 6= j − 1, for all j in {2, 3, . . . , 2q}, and by Remark 1.9, this implies
that card([j]ρ̂) ≥ 2, for all j in {2, 3, . . . , 2q}. Letting r denote the number of
∼ρ̂-equivalence classes, that are distinct from [1]ρ̂, we have thus the inequality

2r + card([1]ρ̂) ≤ 2q.

Since r = d(ρ̂)−1, and since card([1]ρ̂) ≥ 1, this implies that 2(d(ρ̂)−1)+1 ≤ 2q,
and hence that d(ρ̂) ≤ q, as desired. �

2 A Combinatorial Expression for the Moments of S∗S

Let H and K be Hilbert spaces, let r be a positive integer, and let a1, . . . , ar
be elements of B(H,K). Moreover, let n be a fixed positive integer, and let
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Y1, . . . , Yr be independent elements of GRM(n, n, 1
n ). We then define

S =

r∑

i=1

ai ⊗ Yi.

Note that S is a random variable taking values in B(H,K)⊗Mn(C). The aim
of this section is to derive combinatorial expressions for the moments

(idB(H) ⊗ (E ◦ trn))[(S∗S)p] and (idB(H) ⊗ E)[(S∗S)p], (p ∈ N),

where idB(H) denotes the identity mapping on B(H). Moreover, we shall obtain
another combinatorial expression, which is an upper estimate for the norm of
(idB(H) ⊗ E)[(S∗S)p]. For the sake of short notation, in the following we shall
just write E ◦ trn and E instead of idB(H) ⊗ (E ◦ trn) and idB(H) ⊗ E.
We start with the following generalization of Proposition 1.5.

2.1 Proposition. Let H,K be Hilbert spaces, let r be a positive integer, and
let a1, . . . , ar be elements of B(H,K). Moreover, let m,n be fixed positive
integers, and let B1, . . . , Br be independent elements of GRM(m,n, 1). Then
with T =

∑r
i=1 ai ⊗Bi, we have for any positive integer p, that

E ◦ Trn[(T ∗T )p] =
∑

π∈Sp

mk(π̂)nl(π̂) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
.

Proof. Let (B(1, h))h∈N, . . . , (B(r, h))h∈N be sequences of elements from
GRM(m,n, 1), such that (the entries of) the random matrices B(i, h), 1 ≤
i ≤ r, h ∈ N, are jointly independent. Then for h in N, we define

Th =

r∑

i=1

ai ⊗B(i, h).

Note then, that for each s in N,

s−
1
2

s∑

h=1

Th = s−
1
2

s∑

h=1

r∑

i=1

ai ⊗B(i, h) =

r∑

i=1

ai ⊗
(
s−

1
2

s∑

h=1

B(i, h)
)
,

where the random matrices s−
1
2

∑s
h=1B(1, h), . . . , s−

1
2

∑s
h=1B(r, h) are in-

dependent elements of GRM(m,n, 1). It follows thus, that the moments of
s−1(

∑s
h=1 Th)∗

∑s
h=1 Th w.r.t. E◦Trn are equal to those of T ∗T . Thus for any

p, s in N, we have

E ◦ Trn[(T ∗T )p] = E ◦ Trn

[
s−p
(( s∑

h=1

Th

)∗ s∑

h=1

Th

)p
]

= s−p ·
∑

1≤h1,h2,... ,hp≤s
1≤g1,g2,... ,gp≤s

E ◦ Trn

[
T ∗h1

Tg1T
∗
h2
Tg2 · · ·T ∗hp

Tgp

]
.

(2.1)
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Consider here an arbitrary 2p–tuple (h1, g1, . . . , hp, gp) in {1, 2, . . . , s}2p. Re-
calling then the definition of Th, we find that

E ◦ Trn

[
T ∗h1

Tg1T
∗
h2
Tg2 · · ·T ∗hp

Tgp

]

=
∑

1≤i1,... ,ip≤r
1≤j1,... ,jp≤r

(a∗i1aj1 · · ·a∗ipajp) · E
[
Trn(B(i1, h1)∗B(j1, g1) · · ·B(ip, hp)

∗B(jp, gp))
]
.

Since B(i, h) is independent of B(j, g) unless i = j and h = g, it follows here
from Lemma 1.2 in Section 1, that

E ◦ Trn [B(i1, h1)∗B(j1, g1) · · ·B(ip, hp)
∗B(jp, gp)] 6= 0

=⇒ ∃π ∈ Sp : (j1, g1) = (iπ(1), hπ(1)), . . . , (jp, gp) = (iπ(p), hπ(p)).
(2.2)

In particular it follows that in (2.1), we only have to sum over
(h1, g1, . . . , hp, gp) in ∪π∈SpM(π, s), where, as in the proof of Proposition 1.5
in Section 1 ,

M(π, s) =
{

(h1, g1, . . . , hp, gp) ∈ {1, 2, . . . , s}2p
∣∣ g1 = hπ(1), . . . , gp = hπ(p)

}
,

for any π in Sp. Following still the proof of Proposition 1.5 in Section 1, we
define,

D(s) =
{

(h1, g1, . . . , hp, gp) ∈ {1, 2, . . . , s}2p
∣∣ h1, . . . , hp are distinct

}
,

and then the sets M(π, s) ∩ D(s), π ∈ Sp, are disjoint and

E ◦ Trn[(T ∗T )p]

= s−p
∑

π∈Sp

∑

(h1,g1,... ,hp,gp)∈M(π,s)∩D(s)

E ◦Trn[T ∗h1
Tg1 · · ·T ∗hp

Tgp ]

+ s−p
∑

(h1,g1,... ,hp,gp)∈(∪π∈SpM(π,s))\D(s)

E ◦ Trn[T ∗h1
Tg1 · · ·T ∗hp

Tgp ].

(2.3)

As was noted in the proof of Proposition 1.5, we have here that

s−p · card(M(π, s) ∩ D(s))→ 1, as s→∞, (π ∈ Sp), (2.4)

and that

s−p · card(
(
∪π∈Sp M(π, s)

)
\ D(s))→ 0, as s→∞. (2.5)
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Moreover, for any h1, g1, . . . , hp, gp in N, we have that
∥∥E ◦ Trn[T ∗h1

Tg1 · · ·T ∗hp
Tgp ]

∥∥

≤
∑

1≤i1,... ,ip≤r
1≤j1,... ,jp≤r

‖a∗i1aj1 · · · a∗ipajp‖ ·
∣∣E
[
Trn(B(i1, h1)∗B(j1, g1) · · ·B(ip, hp)

∗B(jp, gp))
]∣∣

≤ K(m,n, p, 1) ·
∑

1≤i1,... ,ip≤r
1≤j1,... ,jp≤r

‖a∗i1aj1 · · · a∗ipajp‖,

whereK(m,n, p, 1) is the constant introduced in Remark 1.4 in Section 1. Since
this constant does not depend on s, it follows thus, by (2.5), that the second
term on the right hand side of (2.3) tends to 0 as s→∞.
Regarding the first term on the right hand side of (2.3), for any π in Sp and
any 2p–tuple (h1, g1, . . . , hp, gp) in M(π, s) ∩ D(s), we have that

E ◦ Trn[T ∗h1
Tg1 · · ·T ∗hp

Tgp ] = E ◦ Trn[T ∗h1
Thπ(1)

· · ·T ∗hp
Thπ(p)

]

=
∑

1≤i1,... ,ip≤r
1≤j1,... ,jp≤r

(a∗i1aj1 · · · a∗ipajp )

· E
[
Trn(B(i1, h1)∗B(j1, hπ(1)) · · ·B(ip, hp)

∗B(jp, hπ(p)))
]
.

Recalling here the statement (2.2) and that h1, . . . , hp are distinct, it follows
that the term in the above sum corresponding to (i1, j1, . . . , ip, jp) is 0, unless
j1 = iπ(1), . . . , jp = iπ(p). Thus we have that

E ◦ Trn[T ∗h1
Tg1 · · ·T ∗hp

Tgp ]

=
∑

1≤i1,... ,ip≤r
(a∗i1aiπ(1)

· · ·a∗ipaiπ(p)
)

· E
[
Trn(B(i1, h1)∗B(iπ(1), hπ(1)) · · ·B(ip, hp)

∗B(iπ(p), hπ(p)))
]
.

Note here, that since h1, . . . , hp are distinct, B(i1, h1), . . . , B(ip, hp) are inde-
pendent for any choice of i1, . . . , ip in {1, 2, . . . , r}, and consequently

E
[
Trn(B(i1, h1)∗B(iπ(1), hπ(1)) · · ·B(ip, hp)

∗B(iπ(p), hπ(p)))
]

= Λ(π,m, n),

for any i1, . . . , ip in {1, 2, . . . , r}. Thus, we may conclude that

E ◦ Trn[T ∗h1
Tg1 · · ·T ∗hp

Tgp ] = Λ(π,m, n) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
,

and this holds for any (h1, g1, . . . , hp, gp) in M(π, s)∩D(s). Therefore the first
term on the right hand side of (2.3) equals
∑

π∈Sp

s−p · card(M(π, s) ∩ D(s)) · Λ(π,m, n) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
,
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and by (2.4), this tends to

∑

π∈Sp

Λ(π,m, n) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
,

as s→∞. Since the left hand side of (2.3) does not depend on s, we get thus
by letting s→∞ in (2.3), that

E ◦ Trn[(T ∗T )p] =
∑

π∈Sp

Λ(π,m, n) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
.

Combining finally with Theorem 1.11, we obtain the desired formula. �

2.2 Corollary. Let H,K be Hilbert spaces, let r be a positive integer, and
let a1, . . . , ar be elements of B(H,K). Moreover, let n be a fixed positive
integer, and let Y1, . . . , Yr be independent elements of GRM(n, n, 1

n ). Then
with S =

∑r
i=1 ai ⊗ Yi, we have for any positive integer p, that

E ◦ trn[(S∗S)p] =
∑

π∈Sp

n−2σ(π̂) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
, (2.6)

where σ(π̂) is the quantity introduced in Definition 1.10 in Section 1.

Proof. With Bi =
√
n · Yi, i ∈ {1, 2, . . . , r}, we have that B1, . . . , Br are

independent elements of GRM(n, n, 1). It follows thus from Proposition 2.1,
that for any p in N,

np · E ◦ Trn[(S∗S)p] =
∑

π∈Sp

nk(π̂)+l(π̂)
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · ·a∗ipaiπ(p)
,

and consequently

E ◦ trn[(S∗S)p] =
∑

π∈Sp

n−p−1+k(π̂)+l(π̂)
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
.

Formula (2.6) now follows by noting that,

p+ 1− k(π̂)− l(π̂) = p+ 1− d(π̂) = 2σ(π̂),

for any π in Sp. �

Our next objective is to derive a matrix version of formula (2.6). In other
words, we shall obtain a combinatorial expression for E[(S∗S)p].

2.3 Lemma. Let n, r be positive integers and let Y1, . . . , Yr be independent
elements of GRM(n, n, σ2). Then for any (non–random) unitary n×n matrices
u1, . . . , ur, the random matrices u1Y1u

∗
1, . . . , urYru

∗
r are again independent

elements of GRM(n, n, σ2).
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Proof. Note first that for each i in {1, 2, . . . , r}, the entries of uiYiu
∗
i are all

measurable w.r.t. the σ–algebra generated by the entries of Yi. It follows there-
fore immediately that u1Y1u

∗
1, . . . , urYru

∗
r are independent random matrices.

We note next, that it follows easily from Definition 1.1, that the joint distribu-
tion of the entries of an element from GRM(n, n, σ2) has the following density

w.r.t. Lebesgue measure on Mn(C) ≃ R2n2

:

y 7→
(

1
πσ2

)n2

exp
(
− 1

σ2 ·Trn(y∗y)
)
, (y ∈Mn(C)). (2.7)

(Here the identification of Mn(C) with R2n2

is given by

y 7→ (Re(yjk), Im(yjk))1≤j,k≤n.)

Now let u be a unitary n× n matrix, and consider then the linear mapping

Adu : y 7→ uyu∗ : Mn(C)→Mn(C).

Under the identification of Mn(C) with R2n2

, the Euclidean structure on R2n2

is given by the inner product:

〈y, z〉 = Re(Trn(z∗y)), (y, z ∈Mn(C)).

Thus Adu : R2n2 → R2n2

is a linear isometry, and hence the Jacobi determi-
nant of this mapping equals 1. Combining this fact with (2.7) and the usual
transformation theorem for Lebesgue measure, it follows that for any Y in
GRM(n, n, σ2), the joint distribution of the entries of uY u∗ equals that of the
entries of Y . �

2.4 Lemma. Let B be a C∗–algebra with unit 111, let n be a positive integer,
and consider the tensor product B ⊗Mn(C). If x ∈ B ⊗Mn(C), such that
(111⊗ u)x(111 ⊗ u)∗ = x for any unitary n× n matrix u, then x ∈ B ⊗ 111n.

Proof. Assume that x ∈ B ⊗Mn(C), and that (111 ⊗ u)x(111 ⊗ u)∗ = x for any
unitary n × n matrix u. Since Mn(C) is the linear span of its unitaries, it
follows that

x ∈
{
y ∈ B ⊗Mn(C)

∣∣ yT = Ty for all T in 111⊗Mn(C)
}

= B ⊗ 111n,

where the last equality follows by standard matrix considerations; thinking of
B ⊗Mn(C) as the set of n× n matrices with entries from B. �

2.5 Proposition. Let S be as in Corollary 2.2. Then for any positive integer
p, we have that:

E[(S∗S)p] =
( ∑

π∈Sp

n−2σ(π̂) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · ·a∗ipaiπ(p)

)
⊗ 111n.
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Proof. Let u be an arbitrary unitary n×n matrix, and define: Su =
∑r

i=1 ai⊗
(uYiu

∗). Note then that S∗uSu = (111H⊗ u)S∗S(111H ⊗ u)∗, where 111H denotes the
unit of B(H). It follows now by Lemma 2.3, that

E[(S∗S)p] = E[(S∗uSu)p]

= E[(111H ⊗ u)(S∗S)p(111H ⊗ u)∗] = (111H ⊗ u)E[(S∗S)p](111H ⊗ u)∗.

Since this holds for any unitary u, it follows from Lemma 2.4, that E[(S∗S)p] ∈
B(H)⊗ 111n, and consequently

E[(S∗S)p] =
(

trn(E[(S∗S)p])
)
⊗ 111n =

(
E ◦ trn[(S∗S)p]

)
⊗ 111n.

The proposition now follows by application of Corollary 2.2. �

In the next section, we shall obtain combinatorial expressions that are upper
estimates for the moments E[(S∗S)p]. It follows from Proposition 2.5, that in
order to obtain such combinatorial estimates, we should concentrate on deriving
combinatorial estimates for the quantities

∥∥ ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · ·a∗ipaiπ(p)

∥∥,

where π ∈ Sp, and a1, . . . , ar are arbitrary bounded operators from a Hilbert
space H to a Hilbert space K.

2.6 Definition. Let p be a positive integer, let π be a permutation in Sp and
consider the permutation π̂ in S2p. We then put

κ(π̂) = card(
{
j ∈ {1, 3, . . . , 2p− 1}

∣∣ π̂(j) > j
}

),

λ(π̂) = card(
{
j ∈ {1, 3, . . . , 2p− 1}

∣∣ π̂(j) < j
}

) + 1. �

We note, that since π̂ has no fixed points, it follows that

κ(π̂) + λ(π̂) = p+ 1, (p ∈ N, π ∈ Sp). (2.8)

Recalling that by definition of π̂, π̂(2h−1) = 2π−1(h) for all h in {1, 2, . . . , p},
it follows furthermore that

κ(π̂) = card(
{
h ∈ {1, 2, . . . , p}

∣∣ 2π−1(h) > 2h− 1
}

)

= card(
{
h ∈ {1, 2, . . . , p}

∣∣ π−1(h) ≥ h
}

)

= card(
{
h ∈ {1, 2, . . . , p}

∣∣ h ≥ π(h)
}

),

(2.9)

where the last equality follows by replacing h by π−1(h). Similarly we have
that

λ(π̂) = p+ 1− κ(π̂)

= card(
{
h ∈ {1, 2, . . . , p}

∣∣ π−1(h) < h
}

) + 1

= card(
{
h ∈ {1, 2, . . . , p}

∣∣ h < π(h)
}

) + 1.

(2.10)
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We note also, that since π̂(j) = j+ 1 mod. 2 and π̂(π̂(j)) = j for all j, we have
that

κ(π̂) = card(π̂
[{
j ∈ {1, 3, . . . , 2p− 1}

∣∣ π̂(j) > j
}]

)

= card(
{
j ∈ {2, 4, . . . , 2p}

∣∣ π̂(j) < j
}

),
(2.11)

and similarly

λ(π̂) = card(
{
j ∈ {2, 4, . . . , 2p}

∣∣ π̂(j) > j
}

) + 1. (2.12)

In connection with products of the form a∗i1aiπ(1)
· · · a∗ipaiπ(p)

, note that κ(π̂)

denotes the number of h’s in {1, 2, . . . , p} for which the factor a∗ih appears
before the factor aih in this product. Similarly λ(π̂)− 1 denotes the number of
h’s in {1, 2, . . . , p} for which the factor aih appears before the factor a∗ih .

2.7 Proposition. Let H,K be Hilbert spaces, let r be a positive integer, and
let a1, . . . , ar be elements of B(H,K). Let further c and d be positive real
numbers, such that

∥∥∥
r∑

i=1

a∗i ai
∥∥∥ ≤ c and

∥∥∥
r∑

i=1

aia
∗
i

∥∥∥ ≤ d. (2.13)

Then for any positive integer p and any permutation π in Sp, we have that

∥∥∥
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

∥∥∥ ≤ cκ(π̂)dλ(π̂)−1.

Proof. Let V be an infinite dimensional Hilbert space, and choose r isometries
s1, . . . , sr in B(V), with orthogonal ranges, i.e.,

s∗i sj = δi,j111B(V), (i, j ∈ {1, 2, . . . , r}). (2.14)

Consider then the Hilbert space Ṽ = V ⊗ · · · ⊗ V (p factors), and for each i in
{1, 2, . . . , r} and h in {1, 2, . . . , p}, define the operator s(i, h) in B(Ṽ) by the
equation

s(i, h) = 111B(V) ⊗ · · · ⊗ 111B(V) ⊗ Si ⊗ 111B(V) ⊗ · · · ⊗ 111B(V)
↑

h’th position

. (2.15)

Next, put

t(i, h) =

{
s(i, h), if h ≤ π−1(h),

s(i, h)∗, if h > π−1(h),
(i ∈ {1, 2, . . . , r}, h ∈ {1, 2, . . . , p}),

(2.16)
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and

Ah =

r∑

i=1

ai ⊗ t(i, h), (h ∈ {1, 2, . . . , p}). (2.17)

We consider Ah as an element of B(H⊗ Ṽ ,K⊗ Ṽ) in the usual way. We claim
then that

A∗1Aπ(1)A
∗
2Aπ(2) · · ·A∗pAπ(p) =

( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · ·a∗ipaiπ(p)

)
⊗ 111B(Ṽ).

(2.18)

To prove (2.18), observe first that

A∗1Aπ(1) · · ·A∗pAπ(p)

=
∑

1≤i1,i2,... ,ip≤r
1≤j1,j2,... ,jp≤r

(a∗i1aj1a
∗
i2aj2 · · · a∗ipajp)⊗Π(i1, j1, i2, j2, . . . , ip, jp), (2.19)

where

Π(i1, j1, . . . , ip, jp)

= t(i1, 1)∗t(j1, π(1))t(i2, 2)∗t(j2, π(2)) · · · t(ip, p)∗t(jp, π(p)),
(2.20)

for all i1, j1, . . . , ip, jp in {1, 2, . . . , r}. By (2.15) and (2.16), t(i, h) and t(i, h)∗

both commute with t(j, k) and t(j, k)∗, as long as h 6= k. Hence, we can reorder
the factors in the product on the right hand side of (2.20), according to the
second index in t(·, ·) and t(·, ·)∗, in the following way

Π(i1, j1, . . . , ip, jp) = T (1)T (2) · · ·T (p),

where

T (h) =

{
t(ih, h)∗t(jπ−1(h), h), if h ≤ π−1(h),

t(jπ−1(h), h)t(ih, h)∗, if h > π−1(h),

for each h in {1, 2, . . . , p}. By (2.16), it follows that

T (h) =

{
s(ih, h)∗s(jπ−1(h), h), if h ≤ π−1(h),

s(jπ−1(h), h)∗s(ih, h), if h > π−1(h),

and thus by (2.14)-(2.15), we get that for all i1, j1, . . . , ip, jp in {1, 2, . . . , r}
and all h in {1, 2, . . . , p},

T (h) =

{
111B(Ṽ), if ih = jπ−1(h),

0, if ih 6= jπ−1(h).

Therefore, Π(i1, j1, . . . , ip, jp) = 0, unless ih = jπ−1(h), for all h in {1, 2, . . . , p},
or equivalently, unless iπ(h) = jh, for all h in {1, 2, . . . , p}, in which case
Π(i1, j1, . . . , ip, jp) = 111B(Ṽ). Combining this with (2.19), we obtain (2.18).
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Using again that s(i, h)∗s(j, h) = δi,j111B(Ṽ), for all i, j in {1, 2, . . . , r}, we get

that if h ≤ π−1(h),

A∗hAh =

r∑

i,j=1

a∗i aj ⊗ s(i, h)∗s(j, h) =

r∑

i=1

a∗i ai ⊗ 111B(Ṽ),

and if h > π−1(h),

AhA
∗
h =

r∑

i=1

aia
∗
i ⊗ 111B(Ṽ).

By (2.13), it follows thus, that

‖Ah‖2 = ‖A∗hAh‖ ≤ c, if h ≤ π−1(h),

‖Ah‖2 = ‖AhA∗h‖ ≤ d, if h > π−1(h),

so by (2.9) and (2.10),

‖A∗1Aπ(1) · · ·A∗pAπ(p)‖ ≤
p∏

h=1

‖Ah‖2 ≤ cκ(π̂)dλ(π̂)−1.

Together with (2.18), this proves the proposition. �

2.8 Corollary. Let H,K be Hilbert spaces, let r be a positive integer, and
let a1, . . . , ar be elements of B(H,K). Moreover, let n be a fixed positive
integer, and let Y1, . . . , Yr be independent elements of GRM(n, n, 1

n ). Then
with S =

∑r
i=1 ai ⊗ Yi, c = ‖∑r

i=1 a
∗
i ai‖ and d = ‖∑r

i=1 aia
∗
i ‖, we have for

any positive integer p, that

‖E[(S∗S)p]‖ ≤
∑

π∈Sp

n−2σ(π̂)cκ(π̂)dλ(π̂)−1.

Proof. This follows immediately by combining Propositions 2.5 and 2.7. �

In Section 3 we shall estimate further the quantity ‖E[(S∗S)p]‖. As preparation
for this, we will in Proposition 2.10 below, compare the numbers κ(π̂) and λ(π̂)
with the numbers k(π̂) and l(π̂), defined in Section 1.

2.9 Lemma. Let p be a positive integer, let π be a permutation in Sp, and con-
sider the permutation π̂ in S2p and the corresponding equivalence relation ∼π̂.
Then any equivalence class for ∼π̂, except possibly [1]π̂, contains an element j
with the property that π̂(j) < j.

Proof. Let j′ be an element of {1, 2, . . . , 2p}, such that 1 /∈ [j′]π̂. We show
that [j′]π̂ contains an element j such that π̂(j) < j. For this, note first, that
we may assume that j′ is the smallest element of [j′]π̂. Then, by assumption,
j′ ≥ 2. Now write in the usual manner (cf. Remark 1.9)

[j′]π̂ = {j0, j1, . . . , jq}.
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In particular, π̂(jq) + 1 = j0 = j′ (addition formed mod. 2p). Now, since
j′ ≥ 2, we have that j′ − 1 < j′, even when the subtraction is formed mod. 2p.
Therefore, since j′ is the smallest element of [j′]π̂, π̂(jq) = j′ − 1 < j′ ≤ jq.
Thus we may choose j = jq. �

2.10 Proposition. Let p be a positive integer, let π be a permutation in Sp,
and consider the permutation π̂ in S2p. We then have
(i) κ(π̂) ≥ k(π̂) and λ(π̂) ≥ l(π̂).
(ii) (κ(π̂)− k(π̂)) + (λ(π̂)− l(π̂)) = 2σ(π̂).
(iii) κ(π̂) = k(π̂) and λ(π̂) = l(π̂) if and only if π̂ is non–crossing.

Proof. (i) By Lemma 2.9 and the definition of l(π̂), it follows that

l(π̂)− 1 ≤ card(
{
j ∈ {1, 3, . . . , 2p− 1}

∣∣ π̂(j) < j
}

) = λ(π̂)− 1.

Similarly we find by application of (2.11), that

k(π̂) ≤ card(
{
j ∈ {2, 4, . . . , 2p}

∣∣ π̂(j) < j
}

) = κ(π̂).

(ii) We find by application of (2.8), that

(κ(π̂)− k(π̂)) + (λ(π̂)− l(π̂)) = (κ(π̂) + λ(π̂))− d(π̂) = p+ 1− d(π̂) = 2σ(π̂).

(iii) This follows immediately by combining (i), (ii) and Corollary 1.24. �

3 An upper bound for E
[

exp(tS∗S)
]
, t ≥ 0

In the previous section, we computed E[(S∗S)p], for p in N and S =
∑r

i=1 ai⊗
Yi, where a1, . . . , ar ∈ B(H,K), for Hilbert spaces H and K, and where
Y1, . . . , Yr are independent random matrices in GRM(n, n, 1

n ). For fixed p

in N, the function ω 7→
(
S∗(ω)S(ω)

)p
only takes values in a finite dimen-

sional subspace of B(H) ⊗ Mn(C). This is not the case for the function
ω 7→ exp

(
tS∗(ω)S(ω)

)
, so in order to give precise meaning to the mean

E
[

exp(tS∗S)
]
, we will need the following definition (cf. [Ru, Definition 3.26]).

3.1 Definition. Let X be a Banach space, let (Ω,F , P ) be a probability space,
and let f : Ω→ X be a mapping, that satisfies the following two conditions
(a) ∀ϕ ∈ X ∗ : ϕ ◦ f ∈ L1(Ω,F , P )
(b) ∃x0 ∈ X ∀ϕ ∈ X ∗ :

∫
Ω ϕ ◦ f(ω) dP (ω) = ϕ(x0).

We say then that f is integrable in X , and we call x0 the integral of f , and
write

E(f) =

∫

Ω

f dP = x0. �

Note that in the above definition, x0 is uniquely determined by (b). Note also,
that we do not require that

∫
Ω ‖f‖ dP < ∞, in order for f to be integrable.

However, if X is finite dimensional, then this follows automatically from (a).
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3.2 Proposition. Let H and K be Hilbert spaces, let a1, . . . , ar be elements
of B(H,K), and let γ be a strictly positive number, such that

max
{
‖∑r

i=1a
∗
i ai‖, ‖

∑r
i=1 aia

∗
i ‖
}
≤ γ.

Furthermore, let n be a positive integer, let Y1, . . . , Yr be independent random
matrices in GRM(n, n, 1

n ), and put S =
∑r

i=1 ai ⊗ Yi.
Then for any complex number t, such that |t| < n

γ , the function

ω 7→ exp
(
tS∗(ω)S(ω)

)
, (ω ∈ Ω),

is integrable in B(Hn), in the sense of Definition 3.1, and

E
[

exp(tS∗S)
]

=

∞∑

p=0

tp

p! E
[
(S∗S)p

]
, (3.1)

where the series on the right hand side is absolutely convergent in B(Hn).

Proof. By Proposition 2.5, we have for any p in N,

E
[
(S∗S)p

]
=
( ∑

π∈Sp

n−2σ(π̂)
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
⊗ 111n,

and by Proposition 2.7 and formula (2.8), we have here for all π in Sp, that

∥∥ ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

∥∥ ≤ γp. (3.2)

Hence the absolute convergence of the right hand side of (3.1) will follow, if we
can prove that

1 +
∞∑

p=1

(γ|t|)p

p!

(∑

π∈Sp

n−2σ(π̂)
)
<∞, (3.3)

whenever |t| < n
γ . For this, consider an element B of GRM(n, n, 1), and recall

then from Corollary 1.12, that

E ◦ Trn
[
(B∗B)p

]
=
∑

π∈Sp

nk(π̂)+l(π̂) = np+1
∑

π∈Sp

n−2σ(π̂).

Hence for positive numbers s, we have

E ◦ Trn
[

exp(sB∗B)
]

= n
(

1 +

∞∑

p=1

(ns)p

p!

∑

π∈Sp

n−2σ(π̂)
)
. (3.4)

From [HT, Theorem 6.4], we know that

E ◦ Trn
[

exp(sB∗B)
]
<∞, when 0 ≤ s < 1.

Documenta Mathematica 4 (1999) 341–450



372 U. Haagerup and S. Thorbjørnsen

Hence the sum in (3.4) is finite, whenever 0 ≤ s < 1, and this implies that (3.3)
holds whenever |t| < n

γ .

Consider now the state space S(B(Hn)) of B(Hn) and an element ϕ of
S(B(Hn)). For any ω in Ω, we have then that

ϕ
[

exp
(
tS∗(ω)S(ω)

)]
=

∞∑

p=0

tp

p!ϕ
[
(S∗(ω)S(ω))p

]
,

which is clearly a positive measurable function of ω (since ϕ is a state). More-
over, by Lebesgue’s Monotone Convergence Theorem,

E
[
ϕ
(

exp(tS∗S)
)]

=
∞∑

p=0

tp

p! E
[
ϕ
(
(S∗S)p

)]

=

∞∑

p=0

tp

p!ϕ
(
E
[
(S∗S)p

])

= 1 +

∞∑

p=0

tp

p!ϕ
(∑

π∈Sp

n−2σ(π̂)
( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
⊗ 111n

)

≤ 1 +
∞∑

p=0

tp

p!

∑

π∈Sp

n−2σ(π̂)
∥∥ ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · ·a∗ipaiπ(p)

∥∥,

(3.5)

and by (3.2) and (3.3), the latter sum is finite, when |t| < n
γ . Since

B(Hn)∗ = span
(
S(B(Hn)

)
, it follows that the function ω 7→ exp(tS∗(ω)S(ω)),

is integrable, and (by the first two equalities in (3.5)) that E
[

exp(tS∗S)
]

is
given by (3.1). �

The main result of this section is the following

3.3 Theorem. Let H,K be Hilbert spaces, and let a1, . . . , ar be elements of
B(H,K), satisfying that

r∑

i=1

a∗i ai ≤ c111B(H) and
r∑

i=1

aia
∗
i ≤ 111B(K),

for some constant c in ]0,∞[. Consider furthermore independent elements
Y1, . . . , Yr of GRM(n, n, 1

n ), and put S =
∑r
i=1 ai ⊗ Yi. Then for any t in

[0, n2c ] ∩ [0, n2 ], we have that

E
[

exp(tS∗S)
]
≤ exp

(
(
√
c+ 1)2t+ (c+ 1)2 · t2n

)
· 111B(Hn).

For the proof of Theorem 3.3, we need three lemmas. Before stating these
lemmas, we introduce some notation:
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For any p, k, l in N, we put

δ(p, k, l) = card({π ∈ Sp | k(π̂) = k and l(π̂) = l}). (3.6)

Note that for any p, k, l in N, δ(p, k, l) = 0, unless k + l ≤ p + 1 (cf. Theo-
rem 1.13).
For any complex number w and any n in N0, we put

(w)n =

{
1, if n = 0,

w(w + 1)(w + 2) · · · (w + n− 1), if n ∈ N.

We recall then, that the hyper-geometric function F , is defined by the formula

F (a, b, c;x) =

∞∑

k=0

(a)k(b)k
(c)kk!

xk,

for a, b, c, x in C, such that c /∈ Z \ N, and |x| < 1.

3.4 Lemma. For all positive real numbers α, β, we have that

∞∑

p=1

tp−1

(p− 1)!

∑

k,l∈N
k+l≤p+1

δ(p, k, l)αk−1βl−1

=
F (1− α, 1− β, 2, t2)

(1− t)α+β
, (t ∈ C, |t| < 1).

(3.7)

Proof. Assume first that α = n and β = m, where m,n ∈ N, and consider an
element B of GRM(m,n, 1). Then by [HT, Theorem 6.4],

F (1− n, 1−m, 2, t2)

(1− t)m+n
=

1

mn
E ◦ Trn

[
B∗B exp(tB∗B)

]

=
1

mn

∞∑

p=1

tp−1

(p− 1)!
E ◦ Trn

[
(B∗B)p

]
.

But from Section 1 of this paper, we know that for any p in N

E ◦ Trn
[
(B∗B)p

]
=
∑

π∈Sp

mk(π̂)nl(π̂) =
∑

k,l∈N
k+l≤p+1

δ(p, k, l)mknl,

and thus (3.7) holds for all α, β in N. In particular, the left hand side (3.7) is
finite for all α, β in N. Since the left hand side of (3.7) is an increasing function
of both α and β, it is therefore finite for all α, β in ]0,∞[.
To prove (3.7) for general positive real numbers, α, β, we get first, as in [HT,
Proof of Proposition 8.1], by multiplying the power series

F (1 − α, 1− β, 2; t2) =

∞∑

j=0

1

j + 1

(
α− 1

j

)(
β − 1

j

)
t2j , (|t| < 1),
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and

(1− t)−(α+β) =
∞∑

k=0

(
α+ β + k − 1

k

)
tk, (|t| < 1),

that the power series expansion for F (1−α,1−β,2;t2)
(1−t)α+β is given by

F (1 − α, 1− β, 2; t2)

(1− t)α+β
=

∞∑

p=1

ψ(p, α, β)tp−1, (|t| < 1), (3.8)

where for all p in N,

ψ(p, α, β) =

[ p−1
2 ]∑

j=0

1

j + 1

(
α− 1

j

)(
β − 1

j

)(
α+ β + p− 2j − 2

p− 2j − 1

)
. (3.9)

Since we know that (3.7) holds for all α, β in N, we have, on the other hand,
that

ψ(p, α, β) =
1

(p− 1)!

∑

k,l∈N
k+l≤p+1

δ(p, k, l)αk−1βl−1, (3.10)

for all α, β in N. Thus, for fixed p, the right hand sides of (3.9) and (3.10)
coincide whenever α, β ∈ N, and since these two right hand sides are both
polynomials in α and β, they must therefore coincide for all α, β in ]0,∞[. In
other words, (3.10) holds for all α, β in ]0,∞[, and inserting this in (3.8), we
get the desired formula. �

3.5 Lemma. Let α, β be positive numbers, and assume that either α or β is
an integer. Then

F (1− α, 1 − β, 2; t2) ≤
∞∑

j=0

(αβ)jt2j

j!(j + 1)!
, whenever 0 ≤ t < 1. (3.11)

Proof. We recall first, that

F (1− α, 1− β, 2; t2) =

∞∑

j=0

1

j + 1

(
α− 1

j

)(
β − 1

j

)
t2j , (t ∈ [0, 1[).

If both α and β are integers, then

0 ≤
(
α− 1

j

)
≤ αj

j!
and 0 ≤

(
β − 1

j

)
≤ βj

j!
,

for all j in N0, and (3.11) follows immediately. By symmetry of (3.11) in α
and β, it is therefore sufficient to treat the case where α is an integer and β is
not. In this case, we have

F (1− α, 1 − β, 2; t2) =

α−1∑

j=0

1

j + 1

(
α− 1

j

)(
β − 1

j

)
t2j .
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If β ≥ α, we have for any j in {0, 1, . . . , α − 1}, that 0 <
(
α−1
j

)
≤ αj

j! and

0 <
(
β−1
j

)
≤ βj

j! , and again (3.11) follows immediately.
Assume then that β < α, and let n be the integer for which n − 1 < β < n.
Since α is an integer, and α > β, we have that α ≥ n. Forming now Taylor
expansion on the function f(s) = F (1− α, 1− β, 2; s), (s > 0), it follows that

F (1− α, 1− β, 2; s) =

n−1∑

j=0

1

j + 1

(
α− 1

j

)(
β − 1

j

)
sj + rn(s), (s > 0),

(3.12)

where rn(s) = f(n)(ξ(s))
n! sn, for some ξ(s) in ]0, s[. It suffices thus to show that

f (n)(ξ) ≤ 0, for all ξ in [0, 1[, since this will imply that for all s in [0, 1[,

F (1− α, 1− β, 2; s) ≤
n−1∑

j=0

1

j + 1

(
α− 1

j

)(
β − 1

j

)
sj ,

where, as above, 0 <
(
α−1
j

)
≤ αj

j! and 0 <
(
β−1
j

)
≤ βj

j! , for all j in {0, 1, . . . , n−
1}.
To show that f (n)(ξ) ≤ 0 for all ξ in [0, 1[, we note that by [HTF, Vol. 1, p. 58,
formula (7)],

f (n)(ξ) =
dn

dξn
F (1− α, 1 − β, 2; ξ)

=
(1− α)n(1− β)n

(n+ 1)!
F (n+ 1− α, n+ 1− β, n+ 2; ξ),

for all ξ in [0, 1[. Note here that

(1− α)n(1− β)n = (α− 1)(α− 2) · · · (α− n)(β − 1)(β − 2) · · · (β − n) ≤ 0,

because α ≥ n and n− 1 < β < n. Moreover, by [HTF, Vol. 1, p. 105, formula
(2)], we have for all ξ in [0, 1[

F (n+ 1− α, n+ 1− β, n+ 2; ξ) = (1 − ξ)α+β−nF (α+ 1, β + 1, n+ 2; ξ)

= (1 − ξ)α+β−n
∞∑

j=0

(α + 1)j(β + 1)j
j!(n+ 2)j

ξj ,

and therefore F (n + 1 − α, n + 1 − β, n + 2; ξ) > 0 for all ξ in [0, 1[. Taken
together, it follows that f (n)(ξ) ≤ 0 for all ξ in [0, 1[, as desired. �

For any c in ]0,∞[, we let µc denote the free Poisson distribution with parameter
c, i.e., the probability measure on R, given by

µc = max{1− c, 0}δ0 +

√
(x − a)(b− x)

2πx
· 1[a,b](x) · dx, (3.13)
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where a = (
√
c− 1)2, b = (

√
c+ 1)2 and δ0 is the Dirac measure at 0 (cf. [HT,

Definition 6.5]).

3.6 Lemma. Let α, β be strictly positive real numbers, and assume that either
α or β is an integer. Then for any t in [0, 1

2 ],

1 +

∞∑

p=1

tp

p!

∑

k,l∈N
k+l≤p+1

δ(p, k, l)αkβl−1 ≤ exp((α+ β)t2)

∫ ∞

0

exp(βtx) dµα
β

(x),

Proof. Using that − log(1 − t) =
∑∞

n=1
tn

n ≤ t + t2, whenever 0 ≤ t ≤ 1
2 , we

note first that

(1− t)−(α+β) ≤ exp((α + β)t) exp((α + β)t2), (t ∈ [0, 1
2 ]).

Hence by Lemma 3.4 and Lemma 3.5,

∞∑

p=1

tp−1

(p− 1)!

∑

k,l∈N
k+l≤p+1

δ(p, k, l)αk−1βl−1

≤ exp((α + β)t) exp((α + β)t2)

∞∑

j=0

(αβ)jt2j

j!(j + 1)!

(3.14)

Put c = α
β and s = βt. From [HT, Formula (6.27)], it follows then that

∫ ∞

0

x exp(sx) dµc(x) = c exp((c+ 1)s)

∞∑

j=0

cjs2j

j!(j + 1)!

= c exp((α+ β)t)

∞∑

j=0

(αβ)j t2j

j!(j + 1)!
.

Hence (3.14) can be rewritten as

∞∑

p=1

tp−1

(p− 1)!

∑

k,l∈N
k+l≤p+1

δ(p, k, l)αk−1βl−1

≤ β
α exp((α + β)t2)

∫ ∞

0

x exp(βtx) dµα
β

(x).

(3.15)

Using then that tp

p! =
∫ t
0

up−1

(p−1)! du, for all p in N, and that exp((α + β)u2) ≤
exp((α + β)t2), whenever 0 ≤ u ≤ t, we get by termwise integration of (3.15)
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(after replacing t by u), that

∞∑

p=1

tp

p!

∑

k,l∈N
k+l≤p+1

δ(p, k, l)αk−1βl−1

≤ β
α exp((α+ β)t2)

∫ t

0

(∫ ∞

0

x exp(βux) dµα
β

(x)
)
du

= β
α exp((α+ β)t2)

∫ ∞

0

x
exp(βtx) − 1

βx
dµα

β
(x)

= 1
α exp((α+ β)t2)

∫ ∞

0

(exp(βtx) − 1) dµα
β

(x).

Hence, using that µα
β

is a probability measure, it follows that

1 +

∞∑

p=1

tp

p!

∑

k,l∈N
k+l≤p+1

δ(p, k, l)αkβl−1

≤ 1 + exp((α+ β)t2)
( ∫ ∞

0

exp(βtx) dµα
β

(x) − 1
)

≤ exp((α+ β)t2)

∫ ∞

0

exp(βtx) dµα
β

(x).

This concludes the proof. �

Proof of Theorem 3.3. Let a1, . . . , ar, Y1, . . . , Yr and S be as set out in Theo-
rem 3.3. By Proposition 2.5 and Proposition 2.7, we have then that

E
[
(S∗S)p

]
=
( ∑

π∈Sp

n−2σ(π̂)
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · ·a∗ipaiπ(p)

)
⊗ 111n

≤
( ∑

π∈Sp

n−2σ(π̂)cκ(π̂)
)
· 111B(Hn),

(3.16)

where κ(π̂) was introduced in Definition 2.6.
We assume first that c ≥ 1. By Proposition 2.10(i) and (ii), we have that

κ(π̂) ≤ k(π̂) + 2σ(π̂), (π ∈ Sp).
Hence,

E
[
(S∗S)p

]
≤
( ∑

π∈Sp

(
n
c

)−2σ(π̂)
ck(π̂)

)
· 111B(Hn).

Using now that 2σ(π̂) = p+ 1− d(π̂) = p+ 1− k(π̂)− l(π̂), we find that

E
[
(S∗S)p

]
≤
((

c
n

)p+1 ∑

π∈Sp

nk(π̂)
(
n
c

)l(π̂)
)
· 111B(Hn)

=
((

c
n

)p ∑

k,l∈N
k+l≤p+1

δ(p, k, l)nk
(
n
c

)l−1
)
· 111B(Hn),
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and therefore, for 0 ≤ t ≤ n
max{c,1} = n

c , it follows by application of Proposi-

tion 3.2, that

E
[

exp(tS∗S)
]

= 111B(Hn) +

∞∑

p=1

tp

p! E
[
(S∗S)p

]

≤
(

1 +

∞∑

p=1

1
p!

(
ct
n

)p ∑

k,l∈N
k+l≤p+1

δ(p, k, l)nk
(
n
c

)l−1
)
· 111B(Hn).

Using now Lemma 3.6, we get for 0 ≤ ct
n ≤ 1

2 , that

E
[

exp(tS∗S)
]
≤
(

exp
(
(n+ n

c )( ctn )2
)∫ ∞

0

exp
(
n
c ( ctn )x

)
dµc(x)

)
· 111B(Hn)

=
(

exp
(
c(c+ 1) t

2

n

)∫ ∞

0

exp(tx) dµc(x)
)
· 111B(Hn)

≤
(

exp
(
(c+ 1)2 · t2n

)∫ ∞

0

exp(tx) dµc(x)
)
· 111B(Hn).

Since supp(µc) ⊆
[
0, (
√
c+ 1)2

]
, it follows that

E
[

exp(tS∗S)
]
≤ exp

(
(c+ 1)2 · t2n

)
exp

(
(
√
c+ 1)2t

)
· 111B(Hn),

and this proves the theorem in the case where c ≥ 1.
Assume then that c < 1. In this case we use (3.16) together with the fact that
κ(π̂) ≥ k(π̂) for all π in Sp, (Proposition 2.10(ii)) to obtain

E
[
(S∗S)p

]
≤
( ∑

π∈Sp

n−2σ(π̂)ck(π̂)
)
· 111B(Hn)

≤
(

1
np+1

∑

π∈Sp

(nc)k(π̂)nl(π̂)
)
· 111B(Hn)

=
(

1
np

∑

k,l∈N
k+l≤p+1

δ(p, k, l)(nc)knl−1
)
· 111B(Hn).

Hence for 0 ≤ t < n
max{c,1} = n, we get by application of Proposition 3.2,

E
[

exp(tS∗S)
]
≤ 111B(Hn) +

∞∑

p=1

tp

p! E
[
(S∗S)p

]

≤
(

1 +

∞∑

p=1

1
p!

(
t
n

)p ∑

k,l∈N
k+l≤p+1

δ(p, k, l)(nc)knl−1
)
· 111B(Hn).
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Hence by Lemma 3.6, we have for 0 ≤ t
n ≤ 1

2 ,

E
[

exp(tS∗S)
]
≤
(

exp
(
(nc+ n)( tn )2

)∫ ∞

0

exp
(
n( tn )x

)
dµc(x)

)
· 111B(Hn)

=
(

exp
(
(c+ 1) t

2

n

)∫ ∞

0

exp(tx) dµc(x)
)
· 111B(Hn)

≤ exp
(
(c+ 1)2 · t2n )

)
exp

(
(
√
c+ 1)2t

)
· 111B(Hn),

and this completes the proof. �

3.7 Remark. Assume that a1, . . . , ar ∈ B(H,K), satisfying that
∑r

i=1 a
∗
i ai ≤

c111B(H) and
∑r

i=1 aia
∗
i ≤ d111B(H), for some positive constants c and d. Consider

furthermore independent elements Y1, . . . , Yr of GRM(n, n, 1
n ), and put S =∑r

i=1 ai ⊗Yi. Applying then Theorem 3.3 to a′i = 1√
d
ai and c′ = c

d , we get the

following extension of Theorem 3.3:
For any t in [0, n2c ] ∩ [0, n2d ],

E
[

exp(tS∗S)
]
≤ exp

(
(
√
c+
√
d)2t+ (c+ d)2 · t2n

)
· 111B(Hn). �

4 Asymptotic Upper Bound on the Spectrum of S∗nSn in the Exact
Case

Throughout this section, we consider elements a1, . . . , ar of B(H,K) (for
Hilbert spaces H and K), satisfying that

∥∥
r∑

i=1

a∗i ai
∥∥ ≤ c, and

∥∥
r∑

i=1

aia
∗
i

∥∥ ≤ 1, (4.1)

for some constant c in ]0,∞[. Let A denote the unital C∗-subalgebra of B(H)
generated by the family

{
a∗i aj

∣∣ i, j ∈ {1, . . . , r}
}
∪ {111B(H)}. Furthermore, for

each n in N, we consider independent elements Y
(n)
1 , . . . , Y

(n)
r of GRM(n, n, 1

n ),
and we define

Sn =

r∑

i=1

ai ⊗ Y (n)
i . (4.2)

In this section, we shall determine (almost surely) the asymptotic behavior (as
n→∞) of the largest element of the spectrum of S∗nSn (i.e., the norm of S∗nSn),
under the assumption that A is an exact C∗-algebra. We start by studying the
corresponding asymptotic behavior for the image of S∗nSn under certain matrix
valued completely positive mappings. More precisely, let d be a fixed positive
integer, and let Φ: A → Md(C) be a unital completely positive mapping. For
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each n in N, let idn : Mn(C)→Mn(C) denote the identity mapping on Mn(C).
We then define

Vn =
(
Φ⊗ idn

)
(S∗nSn) =

r∑

i,j=1

Φ(a∗i aj)⊗
(
Y

(n)
i

)∗
Y

(n)
j , (n ∈ N). (4.3)

Note that Vn is a random variable taking values in Md(C)⊗Mn(C) ≃Mdn(C).
As indicated above, our first objective is to determine the asymptotic behavior
of the largest eigenvalue of Vn. We emphasize, that this step does not require
that A be exact.
The following lemma is a version of Jensen’s Inequality, which we shall need
significantly in this section and in Section 8. The lemma has been proved in
much more general settings by Brown and Kosaki (cf. [BK]) and by Petz (cf.
[Pe]). For the reader’s convenience, we include a short proof, handling the
special case needed here.

4.1 Lemma. (i) Let L be a Hilbert space, and let P be a finite dimensional
projection in B(L). Let tr denote the normalized trace on B(P (L)). Then for
any selfadjoint element a of B(L), and any convex function g : R→ R, we have
that

tr
[
g(PaP )

]
≤ tr

[
Pg(a)P

]
. (4.4)

(ii) Let B be a C∗-algebra, let m be a positive integer and let Ψ: B →Mm(C)
be a unital completely positive mapping. Then for any selfadjoint element a of
B and any convex function g : R→ R, we have that

trm
[
g(Ψ(a))

]
≤ trm

[
Ψ(g(a))

]
.

Proof. (i) Note first that g is continuous (being convex on the whole real
line). Let m denote the dimension of P (L), and choose an orthonormal basis
(e1, . . . , em) for P (L) consisting of eigenvectors for PaP . Let λ1, . . . , λm be
the corresponding eigenvalues for PaP , i.e.,

λi = 〈PaPei, ei〉 = 〈aei, ei〉, (i ∈ {1, 2, . . . ,m}).

Then g(λ1), . . . , g(λm) are the eigenvalues of g(PaP ), and hence

tr
[
g(PaP )

]
=

m∑

i=1

g(λi) =
m∑

i=1

g(〈aei, ei〉). (4.5)

Since the trace on B(P (L)) is independent of the choice of orthonormal basis
for P (L), we have at the same time, that

tr
[
Pg(a)P ] =

m∑

i=1

〈Pg(a)Pei, ei〉 =

m∑

i=1

〈g(a)ei, ei〉. (4.6)
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Comparing (4.5) and (4.6), we see that it suffices to show that 〈g(a)ei, ei〉 ≥
g(〈aei, ei〉), for all i in {1, 2, . . . ,m}. But for each i, this follows from the
classical Jensen Inequality, applied to the distribution of a w.r.t. the state
〈 · ei, ei〉, i.e., the probability measure µi supported on sp(a), and satisfying
that 〈f(a)ei, ei〉 =

∫
sp(a) f(t) dµi(t), for all functions f in C(sp(a)). This

concludes the proof of (i).

(ii) By Stinespring’s Theorem, we may choose a Hilbert space L, a ∗-
representation π : B → B(L) of B on L, and an embedding ι : Cm → L of
Cm into L, such that

Ψ(b) = PKπ(b)PK , (b ∈ B), (4.7)

where K = ι(Cm), and PK is the orthogonal projection of L onto K. Moreover,
the equality (4.7) is modulo the natural identifications associated with ι. Let
trK denote the normalized trace on B(K). By application of (i), it follows then
that

trm
[
g(Ψ(a))

]
= trK

[
g(PKπ(a)PK)

]
≤ trK

[
PKg(π(a))PK

]

= trK
[
PKπ(g(a))PK

]
= trm

[
Ψ(g(a))

]
,

and this proves (ii). �

4.2 Lemma. Let Vn, n ∈ N, be as in (4.3), and let λmax(Vn) denote the largest
eigenvalue of Vn (considered as an element of Mdn(C)). Then for any ǫ in
]0,∞[, we have that

∞∑

n=1

P
(
λmax(Vn) ≥ (

√
c+ 1)2 + ǫ

)
<∞. (4.8)

Proof. The proof proceeds along the same lines as the proof of [HT, Lemma 7.3];
the main difference being that in the present situation, we have to rely on the
estimate obtained in Theorem 3.3. Consider first a fixed n in N. We find then
for any t in ]0,∞[, that

P
(
λmax(Vn) ≥ (

√
c+ 1)2 + ǫ

)
= P

(
exp

(
tλmax(Vn)− t(√c+ 1)2 − tǫ

)
≥ 1
)

≤ E
[

exp
(
tλmax(Vn)− t(√c+ 1)2 − tǫ

)]

= exp(−t(√c+ 1)2 − tǫ) · E
[
λmax

(
exp(tVn)

)]

≤ exp(−t(√c+ 1)2 − tǫ) · E
[
Trdn

(
exp(tVn)

)]
,

(4.9)

where the last inequality follows by noting, that since exp(tVn) is a positive
dn × dn matrix, λmax(exp(tVn)) ≤ Trdn(exp(tVn)). Note now, that since the
mapping Φ ⊗ idn is unital, completely positive, and since the function x 7→
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etx : R→ R is convex, it follows from Lemma 4.1(ii), that

trdn
[

exp(tVn)
]

= trdn
[

exp
(
t(Φ⊗ idn)(S∗nSn)

)]

≤ trdn
[(

Φ⊗ idn
)
(exp(tS∗nSn))

]

= trd ⊗ trn
[(

Φ⊗ idn
)
(exp(tS∗nSn))

]
= φ⊗ trn

[
exp(tS∗nSn)

]
,

(4.10)

where φ is the state trd ◦ Φ on A. Note here, that by Definition 3.1 and
Theorem 3.3,

E
[
φ⊗ trn

(
exp(tS∗nSn)

)]
= φ⊗ trn

(
E
[

exp(tS∗nSn)
])

≤ exp
(
t(
√
c+ 1)2 + t2

n (c+ 1)2
)
,

(4.11)

for all t in ]0, n2c ].
Combining now (4.9)-(4.11), we get that for all t in ]0, n2c ],

P
(
λmax(Vn) ≥(

√
c+ 1)2 + ǫ

)

≤ dn · exp(−t(√c+ 1)2 − tǫ) · exp
(
t(
√
c+ 1)2 + t2

n (c+ 1)2
)

= dn · exp
(
t( tn (c+ 1)2 − ǫ)

)
,

Now choose t = tn = nǫ
2(c+1)2 , and note that tn ∈ ]0, n2c ], as long as ǫ ≤ 1.

Clearly it suffices to prove the lemma for such ǫ, so we assume that ǫ ≤ 1. It
follows then that

P
(
λmax(Vn) ≥ (

√
c+1)2 +ǫ

)
≤ dn ·exp

(
tn( tnn (c+1)2−ǫ)

)
= dn ·exp

( −nǫ2
4(c+1)2

)
.

Since this estimate holds for all n in N, it follows immediately that (4.8) holds.
�

4.3 Proposition. Let Vn, n ∈ N, be as in (4.3). We then have

lim sup
n→∞

λmax(Vn) ≤
(√
c+ 1

)2
, almost surely.

Proof. It suffices to show, that for any ǫ from ]0,∞[,

P
(

lim sup
n→∞

λmax(Vn) ≤ (
√
c+ 1)2 + ǫ

)
= 1,

and this will follow, if we show that

P
(
λmax(Vn) ≤ (

√
c+ 1)2 + ǫ, for all but finitely many n

)
= 1,

for all ǫ in ]0,∞[. But this follows from the Borel-Cantelli Lemma (cf. [Bre,
Lemma 3.14]) together with Lemma 4.2. �
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The next step is to replace Vn in Proposition 4.3 by S∗nSn itself. This is where we
need to assume that A is an exact C∗-algebra. The key point in this step is the
important result of E. Kirchberg that exactness implies nuclear embeddability
(cf. [Ki2, Theorem 4.1] and [Was, Theorem 7.3]).
Let B be a unital C∗-algebra. Recall then that an operator system in B is a
subspace E of B, such that 111B ∈ E and x∗ ∈ E for all x in E.

4.4 Proposition. Let B be a unital exact C∗-algebra, and let E be a finite
dimensional operator system in B. Then for any ǫ in ]0,∞[, there exist d in N
and a unital completely positive mapping Φ: B →Md(C), such that

∥∥(Φ⊗ idn
)
(x)
∥∥ ≥ (1− ǫ)‖x‖,

for all n in N and all x in Mn(E).

Proof. Clearly we may assume that B is a unital C∗-subalgebra of B(L) for
some Hilbert space L. Let N denote the dimension of E. Then by Auerbach’s
Lemma (cf. [LT, Proposition 1.c.3]), we may choose linear bases e1, . . . , eN of
E and e∗1, . . . , e

∗
N of the dual space E∗, such that

‖ei‖ = ‖e∗i ‖ = 1, and e∗i (ej) = δi,j , (i, j ∈ {1, 2, . . . , N}). (4.12)

Now since B is exact, and hence nuclear embeddable, there exist d in N, and
unital completely positive mappings Φ: B → Md(C) and Ψ: Md(C) → B(L),
such that

‖Ψ(Φ(ei))− ei‖ ≤ ǫ
N , (i ∈ {1, 2, . . . , N}), (4.13)

(cf. [Was, p. 60]). We show that this Φ has the property set out in the propo-
sition. For this, it suffices to show that

∥∥(Ψ ◦ Φ− ιB)|E
∥∥

cb
≤ ǫ, (4.14)

where ιB : B → B(L) is the embedding of B into B(L). Indeed, knowing the
validity of (4.14), we have for n in N and x in Mn(E), that

‖x‖ ≤
∥∥((Ψ ◦ Φ)⊗ idn

)
(x)− x

∥∥+
∥∥((Ψ ◦ Φ)⊗ idn

)
(x)
∥∥

≤ ǫ‖x‖+
∥∥((Ψ ◦ Φ)⊗ idn

)
(x)
∥∥,

and hence that

(1− ǫ)‖x‖ ≤
∥∥((Ψ ◦ Φ)⊗ idn

)
(x)
∥∥ ≤ ‖(Φ⊗ idn)(x)‖,

where the last inequality is due to the fact that Ψ, being unital completely
positive, is a complete contraction.
To verify (4.14) note first, that for x in E, we have by (4.12),

x =
N∑

i=1

e∗i (x)ei,
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and hence

Ψ ◦ Φ(x)− x =
N∑

i=1

e∗i (x)
(
Ψ ◦ Φ(ei)− ei

)
=

N∑

i=1

e∗i (x)fi,

where fi = Ψ ◦ Φ(ei) − ei. Note that by (4.13), ‖fi‖ ≤ ǫ
N , for all i in

{1, 2, . . . , N}.
Consider now n in N and x = (xrs)1≤r,s≤n in Mn(E). We then have

(
(Ψ ◦ Φ)⊗ idn

)
(x)− x =

[
(Ψ ◦ Φ)(xrs)− xrs

]
1≤r,s≤n

=
[∑N

i=1e
∗
i (xrs)fi

]
1≤r,s≤n

=
N∑

i=1

(
[e∗i (xrs)]1≤r,s≤n · diagn(fi, . . . , fi)

)
,

(4.15)

where diagn(fi, . . . , fi) is the n×n diagonal matrix with fi in all the diagonal
positions. Note here that by (4.12), ‖e∗i ‖cb = ‖e∗i ‖ = 1, for all i (cf. [Pa,
Proposition 3.7]). Consequently,

∥∥[e∗i (xrs)]1≤r,s≤n
∥∥ ≤ ‖e∗i ‖cb · ‖x‖ = ‖x‖, (i ∈ {1, 2, . . . , N}),

and using this in (4.15), we get that

∥∥((Ψ ◦ Φ)⊗ idn
)
(x)− x

∥∥ ≤
N∑

i=1

‖x‖ · ‖fi‖ ≤
N∑

i=1

‖x‖ ǫN = ǫ‖x‖,

which proves (4.14). �

4.5 Theorem. Let a1, . . . , ar be elements of B(H,K), such that
‖∑r

i=1 a
∗
i ai‖ ≤ c, and ‖∑r

i=1 aia
∗
i ‖ ≤ 1, for some constant c in ]0,∞[.

Assume, in addition, that the C∗-subalgebra A of B(H), generated by
{a∗i aj | i, j ∈ {1, 2, . . . , r}} ∪ {111B(H)}, is exact. Consider furthermore, for

each n in N, independent elements Y
(n)
1 , . . . , Y

(n)
r of GRM(n, n, 1

n ), and put

Sn =
∑r

i=1 ai ⊗ Y
(n)
i . We then have

lim sup
n→∞

max
[
sp(S∗nSn)

]
≤
(√
c+ 1

)2
, almost surely.

Proof. It suffices to show, that for any ǫ from ]0,∞[, the set

Tǫ =
{
ω ∈ Ω

∣∣∣ lim sup
n→∞

max
[
sp(Sn(ω)∗Sn(ω))

]
≤ 1

1−ǫ(
√
c+ 1)2

}
,

has probability 1. So let ǫ from ]0,∞[ be given, and put

E = span
(
{111A} ∪

{
a∗i aj

∣∣ i, j ∈ {1, 2, . . . , r}
})
.
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Note that x∗ ∈ E for all x in E, and that 111A ∈ E. Hence E is a finite di-
mensional operator system in A. Since A is exact, it follows thus from Propo-
sition 4.4, that we may choose d in N and a completely positive mapping
Φ: A →Md(C), such that

∥∥(Φ⊗ idn
)
(x)
∥∥ ≥ (1− ǫ)‖x‖, (n ∈ N, x ∈Mn(E)). (4.16)

Now put
Vn =

(
Φ⊗ idn

)
(S∗nSn), (n ∈ N),

and define furthermore

V =
{
ω ∈ Ω

∣∣∣ lim sup
n→∞

‖Vn(ω)‖ ≤ (
√
c+ 1)2

}
.

By Proposition 4.3, P (V) = 1, and hence it suffices to show that Tǫ ⊇ V . But
if ω ∈ V , it follows from (4.16) that

lim sup
n→∞

‖Sn(ω)∗Sn(ω)‖ ≤ (1− ǫ)−1 lim sup
n→∞

‖Vn(ω)‖ ≤ (1 − ǫ)−1(
√
c+ 1)2,

which shows that ω ∈ Tǫ. This concludes the proof. �

4.6 Corollary. Let a1, . . . , ar be elements of an exact C∗-algebra A, and

let, for each n in N, Y
(n)
1 , . . . , Y

(n)
r be independent elements of GRM(n, n, 1

n ).
Then

lim sup
n→∞

∥∥
r∑

i=1

ai ⊗ Y (n)
i

∥∥ ≤
∥∥

r∑

i=1

a∗i ai
∥∥ 1

2 +
∥∥

r∑

i=1

aia
∗
i

∥∥ 1
2 , almost surely.

Proof. We may assume that not all ai are zero. Put γ = ‖∑r
i=1 a

∗
i ai‖ > 0 and

δ = ‖∑r
i=1 aia

∗
i ‖ > 0. We may assume that A ⊆ B(H) for some Hilbert space

H. Then the unital C∗-algebra Ã = C∗(A,111B(H)) is also exact, and hence so is

every C∗-subalgebra of Ã (cf. [Ki1] and [Was, 2.5.2]). Therefore Corollary 4.6
follows by applying Theorem 4.5 to a′i = 1√

δ
ai, i = 1, . . . , r, and c = γ

δ . �

Regarding the corollary above, consider arbitrary elements a1, . . . , ar of an
arbitrary C∗-algebra A, and let {y1, . . . , yr} be a circular (or semi-circular)
system in some C∗-probability space (B, ψ) (cf. [Vo2]), and normalized so that
ψ(y∗i yi) = 1, i = 1, 2, . . . , r. In [HP, Proof of Proposition 4.8], G. Pisier and
the first named author showed, that in this setting, the following inequality
holds:

∥∥
r∑

i=1

ai ⊗ yi
∥∥ ≤ 2 max

{∥∥
r∑

i=1

a∗i ai
∥∥ 1

2 ,
∥∥

r∑

i=1

aia
∗
i

∥∥ 1
2

}
. (4.17)

In [HP, Proof of Proposition 4.8], the factor 2 on the right hand side of (4.17)
is missing, but this is due to a different choice of normalization of semi-circular
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and circular families. By application of [Haa, Section 1], it is not hard to
strengthen (4.17) to the inequality

∥∥
r∑

i=1

ai ⊗ yi
∥∥ ≤

∥∥
r∑

i=1

a∗i ai
∥∥ 1

2 +
∥∥

r∑

i=1

aia
∗
i

∥∥ 1
2 , (4.18)

both for semi-circular and circular systems. Since independent elements

Y
(n)
1 , . . . , Y

(n)
r of GRM(n, n, 1

n ) can be considered as a random matrix model
for the circular system {y1, . . . , yr}, in the sense of [Vo1, Theorem 2.2], we
should thus consider Corollary 4.6 as a random matrix version of (4.18). How-
ever, the random matrix version holds only under the assumption that the
C∗-algebra A be exact. In fact, we shall spend the remaining part of this sec-
tion, showing that the assumption in Theorem 4.5 that the C∗-algebra A be
exact, can not be omitted. We start with two lemmas, the first of which is a
slightly strengthened version of [HT, Theorem 7.4] (which, in turn, is a special
case of a theorem of Wachter (cf. [Wac])).

4.7 Lemma. Let c be a positive number, and let (mn) be a sequence of positive
integers, such that mn

n → c as n→∞. Let furthermore (Yn) be a sequence of
random matrices, such that for each n in N, Yn ∈ GRM(mn, n,

1
n ). Then for

any continuous function f : [0,∞[→ C, we have that

lim
n→∞

trn
[
f(Y ∗n Yn)

]
=

∫ b

0

f(x) dµc(x), almost surely, (4.19)

where b = (
√
c+ 1)2 and µ is the measure introduced in (3.13).

Proof. By splitting f in its real and imaginary parts, it is clear, that we may
assume that f is a real valued continuous function on [0,∞[. We note next,
that it follows from [HT, Theorem 7.4] and the definition of weak convergence
(cf. [HT, Definition 2.2]), that (4.19) holds for all continuous bounded functions
f : [0,∞[ → R. Thus, our objective is to pass from bounded to unbounded
continuous functions, and the key to this, is the fact (cf. [HT, Theorem 7.1]),
that

lim
n→∞

‖Y ∗n Yn‖ =
(√
c+ 1

)2
, almost surely. (4.20)

Indeed, it follows from (4.20), that (for example)

P
(
‖Y ∗n Yn‖ ≤ (

√
c+ 1)2 + 1, for all but finitely many n

)
= 1,

and hence, given any ǫ in ]0,∞[, we may choose N in N, such that

P (FN ) ≥ 1− ǫ,

where

FN =
{
ω ∈ Ω

∣∣ ‖Yn(ω)∗Yn(ω)‖ ≤ (
√
c+ 1)2 + 1, whenever n ≥ N

}
.
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Now, given a continuous function f : [0,∞[ → R, let f1 : [0,∞[ → R be an
arbitrary continuous function, satisfying that f1 = f on [0, (

√
c+ 1)2 + 1], and

that supp(f) is compact. Then for any ω in FN , we have that

f1(Yn(ω)∗Yn(ω)) = f(Yn(ω)∗Yn(ω)), whenever n ≥ N,

and hence, since f1 is bounded,

lim
n→∞

trn
[
f(Yn(ω)∗Yn(ω))

]
= lim

n→∞
trn
[
f1(Yn(ω)∗Yn(ω))

]
=

∫ b

a

f1(x) dµc(x)

=

∫ b

a

f(x) dµc(x).

It follows thus, that

P
(

lim
n→∞

trn
[
f(Y ∗n Yn)

]
=
∫ b
a
f(x) dµc(x)

)
≥ P (FN ) ≥ 1− ǫ,

and since this holds for any ǫ in ]0,∞[, we obtain the desired conclusion. �

Next, we shall study the polar decomposition of Gaussian random matrices.
Let n be a positive integer and let Y be an element of GRM(n, n, 1

n ), defined
on (Ω,F , P ). Furthermore, let Un denote the unitary group of Mn(C).
By a measurable unitary sign for Y , we mean a random matrix U : Ω → Un,
such that for almost all ω in Ω, the polar-decomposition of Y (ω) is given by:

Y (ω) = U(ω)|Y (ω)|,

where, as usual, |Y (ω)| = [Y (ω)∗Y (ω)]
1
2 . To see that such measurable unitary

signs do exist, we note first that by [HT, Theorem 5.2], Y (ω) is invertible for
almost all ω. Thus, for example the random matrix U : Ω→ Un given by

U(ω) =

{
Y (ω)

[
Y (ω)∗Y (ω)

]− 1
2 , if Y (ω) is invertible,

111n, otherwise,

is a measurable unitary sign for Y .

4.8 Lemma. For each n in N, let Y
(n)
1 , . . . , Y

(n)
r be (not necessarily indepen-

dent) random matrices in GRM(n, n, 1
n ), and let U

(n)
1 , . . . , U

(n)
r be measurable

unitary signs for Y
(n)
1 , . . . , Y

(n)
r , respectively. Furthermore, let U

(n)

1 , . . . , U
(n)

r ,

denote the complex conjugated matrices of U
(n)
1 , . . . , U

(n)
r . We then have

lim inf
n→∞

∥∥
r∑

i=1

U
(n)

i ⊗ Y (n)
i

∥∥ ≥ 8
3π · r, almost surely.
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Proof. Let (e1, . . . , en) be the usual orthonormal basis for Cn, and consider
then the unit vector ξ = 1√

n

∑n
i=1 ei ⊗ ei in Cn ⊗ Cn. Note then that for any

A = (ajk) and B = (bjk) in Mn(C), we have that

〈
(A⊗B)ξ, ξ

〉
= 1

n

n∑

j,k=1

〈
(A⊗B)(ej ⊗ ej), ek ⊗ ek

〉

= 1
n

n∑

j,k=1

〈Aej , ek〉 · 〈Bej , ek〉

= 1
n

n∑

j,k=1

akjbkj = trn(ABt) = trn(AtB).

It follows thus, that

∥∥
r∑

i=1

U
(n)

i ⊗ Y (n)
i

∥∥ ≥
∣∣∣
〈( r∑

i=1

U
(n)

i ⊗ Y (n)
i

)
ξ, ξ
〉∣∣∣ =

∣∣∣
r∑

i=1

trn
[(
U

(n)
i

)∗
Y

(n)
i

]∣∣∣

=

r∑

i=1

trn
(
|Y (n)
i |

)
,

(4.21)

where the last equation holds almost surely. By Lemma 4.7, we have for all i
in {1, . . . , r}, that

lim
n→∞

trn
(
|Y (n)
i |

)
=

∫ 4

0

√
x dµ1(x), almost surely,

and combining this with (4.21), it follows that

lim inf
n→∞

∥∥
r∑

i=1

U
(n)

i ⊗ Y (n)
i

∥∥ ≥ r
∫ 4

0

√
x dµ1(x), almost surely.

We note finally that

∫ 4

0

√
x dµ1(x) =

∫ 4

0

√
x ·
√
x(4−x)
2πx dx = 1

2π

∫ 4

0

√
4− x dx = 8

3π ,

and this concludes the proof. �

We are now ready to give an example where the conclusion of Theorem 4.5 fails,
due to lack of exactness of the C∗-algebra A. Consider a fixed positive integer
r, greater than or equal to 2, and let Fr denote the free group on r generators.
Let g1, . . . , gr denote the generators of Fr, and let C∗(Fr) denote the full C∗-
algebra associated to Fr. Recall that there is a canonical unitary representation
uFr : Fr → C∗(Fr), and that the pair (C∗(Fr), uFr) is characterized (up to ∗-
isomorphism) by the universal property, that given any unital C∗-algebra B
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and any unitary representation u : Fr → B, there exists a unique unital ∗-
homomorphism Φu : C∗(Fr)→ B, such that the following diagram commutes:

Fr
uFr //

u

��

C∗(Fr)

Φu
{{ww

ww
ww

ww
w

B
It is well-known (cf. [Was, Corollary 3.7]) that C∗(Fr) is not exact. We let
u1, . . . , ur be the canonical unitaries in C∗(Fr) associated to g1, . . . , gr respec-
tively, i.e., ui = uFr(gi), i = 1, . . . , r. We then define

ai = 1√
r
ui, (i ∈ {1, . . . , r}). (4.22)

Then clearly,

r∑

i=1

a∗i ai =

r∑

i=1

aia
∗
i = 111C∗(Fr). (4.23)

Consider now, in addition, for each n in N, independent elements Y
(n)
1 , . . . , Y

(n)
r

of GRM(n, n, 1
n ), and define

Sn =

r∑

i=1

ai ⊗ Y (n)
i , (n ∈ N). (4.24)

We then have the following

4.9 Proposition. With a1, . . . , ar and Sn, n ∈ N, as introduced in (4.22) and
(4.24), we have that

(i) lim inf
n→∞

‖S∗nSn‖ ≥
(

8
3π

)2 · r, almost surely.

(ii) The conclusion of Theorem 4.5 does not hold for these a1, . . . , ar, whenever
r ≥ 6.
In particular, the assumption in Theorem 4.5, that A be exact, can not, in
general, be omitted.

Proof. (i) For each positive integer n, choose measurable unitary signs

U
(n)
1 , . . . , U

(n)
r for Y

(n)
1 , . . . , Y

(n)
r respectively, and let U

(n)

1 , . . . , U
(n)

r denote

the complex conjugated matrices of U
(n)
1 , . . . , U

(n)
r . Since Fr is the group free

product of r copies of Z, it follows that for each ω in Ω and each n in N, there

exists a unitary representation u
(n)
ω : Fr →Mn(C), such that

u(n)
ω (gi) = U

(n)

i (ω), (i ∈ {1, . . . , r}).
By the universial property of C∗(Fr) it follows then, that for each ω in Ω and

each n in N, we may choose a ∗-homomorphism Φ
(n)
ω : C∗(Fr)→Mn(C), such

that
Φ(n)
ω (ui) = U

(n)

i (ω), (i ∈ {1, . . . , r}).
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For each ω in Ω and each n in N, note now that

∥∥
r∑

i=1

ui ⊗ Y (n)
i (ω)

∥∥ ≥
∥∥(Φ(n)

ω ⊗ idn
)( r∑

i=1

ui ⊗ Y (n)
i (ω)

)∥∥

=
∥∥

r∑

i=1

U
(n)

i (ω)⊗ Y (n)
i (ω)

∥∥.

Applying then Lemma 4.8, it follows that

lim inf
n→∞

∥∥
r∑

i=1

ui ⊗ Y (n)
i

∥∥ ≥ 8
3π · r, almost surely,

and hence that

lim inf
n→∞

∥∥
r∑

i=1

ai ⊗ Y (n)
i

∥∥ ≥ 8
3π ·
√
r, almost surely.

Since ‖S∗nSn‖ = ‖Sn‖2, we get the desired formula.
(ii) By (4.23), a1, . . . , ar introduced in (4.22) satisfy condition (4.1) in the case
c = 1. Thus, if the conclusion of Theorem 4.5 were to hold for these a1, . . . , ar,
it would mean that

lim sup
n→∞

∥∥
r∑

i=1

ai ⊗ Y (n)
i

∥∥ ≤ 2, almost surely.

However, Proposition 4.9 shows that

lim inf
n→∞

∥∥
r∑

i=1

ai ⊗ Y (n)
i

∥∥ ≥
(

8
3π

)
· √r, almost surely,

and thus the conclusion of Theorem 4.5 breaks down, for c = 1, whenever
r > (3π

4 )2 ≈ 5.55, i.e., for r ≥ 6. �

5 A New Combinatorial Expression for E
[
(S∗S)p

]

Throughout this section, we consider elements a1, . . . , ar of B(H,K), where
H and K are Hilbert spaces. In Section 2 we proved that if Y1, . . . , Yr are
independent random matrices in GRM(n, n, 1

n ), and we put S =
∑r

i=1 ai ⊗ Yi,
then

E
[
(S∗S)p

]
=
( ∑

π∈Sp

n−2σ(π̂) ·
∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
⊗ 111n. (5.1)

In this section, we shall assume that a1, . . . , ar satisfy the condition

r∑

i=1

a∗i ai = c111B(H), and

r∑

i=1

aia
∗
i = 111B(K), (5.2)
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for some number c in ]0,∞[. Under this assumption, and by application of
the method of “reductions of permutations”, introduced in Section 1, we show
that E

[
(S∗S)p

]
can be expressed as a constant plus a linear combination of the

sums:
∑

ρ∈Sirr
q

n−2σ(ρ̂)
( ∑

1≤i1,... ,ip≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

)
, (q = 2, . . . , p),

where Sirr
q , as in Section 1, denotes the set of permutations ρ in Sq for which

ρ̂ is irreducible in the sense of Definition 1.16.

5.1 Lemma. Let a1, . . . , ar be elements of B(H,K), and assume that (5.2)
holds. Let p be a positive integer, greater than or equal to 2, let π be a
permutation in Sp \ Sirr

p , and let π0 be the permutation in Sp−1 obtained by
cancellation of a pair (e, e+ 1) for π̂ (cf. Definition 1.18). We then have
(i) If e is odd, then k(π̂0) = k(π̂)− 1, and

∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
= c ·

( ∑

1≤i1,... ,ip−1≤r
a∗i1aiπ0(1)

· · · a∗ip−1
aiπ0(p−1)

)
.

(5.3)

(ii) If e is even, then k(π̂0) = k(π̂), and

∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
=

∑

1≤i1,... ,ip−1≤r
a∗i1aiπ0(1)

· · · a∗ip−1
aiπ0(p−1)

.

(5.4)

Proof. (i) Assume that e is odd. Then k(π̂0) = k(π̂)− 1 by Proposition 1.22.
Moreover, (e, e + 1) is of the form (2j − 1, 2j) for some j in {1, 2, . . . , p}, and
therefore π(j) = j (cf. Definition 1.15). Hence, the index ij occur only at the
2j−1’th and the 2j’th factor in the product a∗i1aiπ(1)

· · · a∗ipaiπ(p)
, and therefore

the sum on the left hand side of (5.3) is equal to

∑

1≤i1,... ,ij−1,ij+1,... ,ip≤r
a∗i1aiπ(1)

· · ·aiπ(j−1)

( r∑

ij=1

a∗ijaij
)
a∗ij+1

· · · a∗ipaiπ(p)
,

which by (5.2) is equal to

c ·
( ∑

1≤i1,... ,ij−1,ij+1,... ,ip≤r
a∗i1aiπ(1)

· · · aiπ(j−1)
a∗ij+1

· · · a∗ipaiπ(p)

)
. (5.5)

Note here, that if we relabel the indices ij+1, . . . , ip by ij , . . . , ip−1, then it
follows from Remark 1.19(a), that (5.5) is equal to

c ·
( ∑

1≤i1,... ,ip−1≤r
a∗i1aiπ0(1)

· · · a∗ip−1
aiπ0(p−1)

)
,

Documenta Mathematica 4 (1999) 341–450



392 U. Haagerup and S. Thorbjørnsen

and this proves (5.3).
(ii) Assume that e is even. Then k(π̂0) = k(π̂) by Proposition 1.22, and
(e, e + 1) = (2j, 2j + 1), for some j in {1, 2, . . . , p − 1}, so that π(j) = j + 1
(c.f. Definition 1.15). Hence, the left hand side of (5.4) is equal to

∑

1≤i1,... ,ij ,ij+2,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ij
( r∑

ij+1=1

aij+1a
∗
ij+1

)
aiπ(j+1)

· · · a∗ipaiπ(p)
.

(5.6)

Here,
∑r
ij+1=1 aij+1a

∗
ij+1

= 111B(K), by (5.2), and proceeding then as in the

proof of (i), we obtain by Remark 1.19(b) (after relabeling ij+2, . . . , ip by
ij+1, . . . , ip−1), that (5.6) is equal to

∑

1≤i1,... ,ip−1≤r
a∗i1aiπ0(1)

· · · a∗ip−1
aiπ0(p−1)

.

This proves (5.4) �

Recall that for p in N, Snc
p denotes the set of permutations π in Sp, for which

the permutation π̂ is non-crossing in the sense of Definition 1.14.

5.2 Lemma. Let a1, . . . , ar be elements of B(H,K), such that (5.2) holds, let
p be a positive integer, and let π be a permutation in Snc

p . Then

∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
= ck(π̂)111B(H), (5.7)

and
∑

1≤i1,... ,ip≤r
ai1a

∗
iπ(1)
· · · aipa∗iπ(p)

= cl(π̂)−1111B(K). (5.8)

Proof. We start by proving (5.7); proceeding by induction on p. The case
p = 1 is clear from (5.2). Assume now that p ≥ 2, and that (5.7) holds for p−1
instead of p, and all permutations in Snc

p−1. Consider then a permutation π
from Snc

p , and recall from Lemma 1.17 that π̂ has a pair of neighbors (e, e+ 1).
Let π0 be the permutation in Sp−1 obtained by cancellation of this pair. Then
by Lemma 1.20, π0 ∈ Snc

p−1, and hence by the induction hypothesis,

∑

1≤i1,... ,ip−1≤r
a∗i1aiπ0(1)

· · · a∗ip−1
aiπ0(p−1)

= ck(π̂0)111B(H). (5.9)

But by Lemma 5.1, (5.9) implies (5.7), both when e is odd, and when e is even.
This completes the proof of (5.7).
To prove (5.8), we put bi = 1√

c
a∗i , i = 1, 2, · · · , r. Then

r∑

i=1

b∗i bi = c−1111B(K), and
r∑

i=1

bib
∗
i = 111B(H).
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Applying then (5.7), with c replaced by c−1, it follows that
∑

1≤i1,... ,ip≤r
b∗i1biπ(1)

· · · b∗ipbiπ(p)
= c−k(π̂)111B(K),

i.e., that ∑

1≤i1,... ,ip≤r
ai1a

∗
iπ(1)
· · · aipa∗iπ(p)

= cp−k(π̂)111B(K).

Recall finally, that since π̂ is non-crossing, k(π̂) + l(π̂) = p + 1 (cf. Corol-
lary 1.24), and hence it follows that (5.8) holds. �

As in Section 3, for any c in ]0,∞[, µc denotes the probability measure on
[0,∞[, given by

µc = max{1− c, 0}δ0 +

√
(x − a)(b− x)

2πx
· 1[a,b](x) · dx,

where a = (
√
c − 1)2, b = (

√
c + 1)2 and δ0 is the Dirac measure at 0. Recall

from [OP] or [HT, Remark 6.8], that the moments of µc are given by

∫ ∞

0

xp dµc(x) = 1
p

p∑

j=1

(
p
j

)(
p
j−1

)
cj, (p ∈ N). (5.10)

5.3 Lemma. For any positive integer p, we have

∑

π∈Snc
p

ck(π̂) = 1
p

p∑

j=1

(
p
j

)(
p
j−1

)
cj , (5.11)

and

∑

π∈Snc
p

cl(π̂)−1 = 1
p

p∑

j=1

(
p
j

)(
p
j−1

)
cj−1. (5.12)

Proof. To prove (5.11), recall from Corollary 1.12, that for B in GRM(m,n, 1),
we have that

E ◦ Trn
[
(B∗B)p

]
=
∑

π∈Sp

mk(π̂)nl(π̂).

Hence, for Y in GRM(m,n, 1
n ),

E ◦ trn
[
(Y ∗Y )p

]
= n−p−1

∑

π∈Sp

mk(π̂)nl(π̂) =
∑

π∈Sp

n−2σ(π̂)
(
m
n

)k(π̂)
, (5.13)

where we have used that σ(π̂) = 1
2 (p+1−k(π̂)−l(π̂)). Consider now a sequence

(mn) of positive integers, such that mn

n → c as n → ∞, and for each n in N,
let Yn be an element of GRM(mn, n,

1
n ). It follows then from (5.13), that

lim
n→∞

E ◦ trn
[
(Y ∗Y )p

]
=

∑

π∈Sp

σ(π̂)=0

ck(π̂) =
∑

π∈Snc
p

ck(π̂), (5.14)
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where the last equality follows from Corollary 1.24. On the other hand, it
follows from [HT, Theorem 6.7(ii)] and (5.10), that

lim
n→∞

E ◦ trn
[
(Y ∗Y )p

]
=

∫ ∞

0

xp dµc(x) = 1
p

p∑

j=1

(
p
j

)(
p
j−1

)
cj . (5.15)

Combining (5.14) and (5.15), we obtain (5.11).
To prove (5.12), we use, again, that k(π̂) + l(π̂) = p + 1 for all π in Snc

p . It
follows thus, that

∑

π∈Snc
p

cl(π̂)−1 = cp
∑

π∈Snc
p

c−k(π̂). (5.16)

But by (5.11) (with c replaced by c−1), the right hand side of (5.16) is equal
to

1
p

p∑

j=1

(
p
j

)(
p
j−1

)
cp−j . (5.17)

Substituting finally j with p+ 1− j in (5.17), we obtain (5.12). �

5.4 Corollary. Let a1, . . . , ar be elements of B(H,K), such that (5.2) holds.
Then for any p in N, we have that

(i)
∑

π∈Snc
p

( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
=
[

1
p

p∑

j=1

(
p
j

)(
p
j−1

)
cj
]
· 111B(H),

and

(ii)
∑

π∈Snc
p

( ∑

1≤i1,... ,ip≤r
ai1a

∗
iπ(1)
· · ·aipa∗iπ(p)

)
=
[

1
p

p∑

j=1

(
p
j

)(
p
j−1

)
cj−1

]
· 111B(K).

Proof. Combine Lemma 5.2 and Lemma 5.3. �

5.5 Definition. (a) A subset I of Z is called an interval of integers, if it is
the form

I = {α, α+ 1, . . . , β},
for some α, β in Z, such that α ≤ β.
(b) Let p be a positive integer, let π be a permutation in Sp, and let I be
an interval of integers, such that I ⊆ {1, 2, . . . , 2p}. We say then that the
restriction π̂|I of π̂ to I is non-crossing, if π̂(I) = I, and π̂ has no crossing
(a, b, c, d) where a, b, c, d ∈ I. In this case, we refer to I as a non-crossing
interval of integers for π̂. �
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5.6 Remark. Let p be a positive integer, let π be a permutation in Sp and let
I be an interval of integers, such that I ⊆ {1, 2, . . . , 2p} and π̂(I) = I. Since
π̂2 = id and π̂ has no fixed points, it follows then, that card(I) is an even
number. Put t = 1

2card(I), and consider the unique order preserving bijection
ϕ : {1, 2, . . . , 2t} → I of {1, 2, . . . , 2t} onto I (i.e., ϕ(j) = min(I) − 1 + j, for
all j in {1, 2, . . . , 2t}). It is clear then, that the mapping ϕ−1 ◦ (π̂|I) ◦ ϕ is a
permutation of {1, 2, . . . , 2t}, and that we may choose a (unique) permutation
π1 in St, such that

π̂1 = ϕ−1 ◦ (π̂|I) ◦ ϕ, (5.18)

(cf. Remark 1.7(a)). It is clear too, that the restriction π̂|I of π̂ to I is non-
crossing in the sense of Definition 5.5, if and only if π̂1 is a non-crossing per-
mutation in the usual sense (cf. Definition 1.14). �

5.7 Lemma. Let p be a positive integer, and let π be a permutation in Sp.

(i) If I is an interval of integers such that I ⊆ {1, 2, . . . , 2p} and π̂|I is non-
crossing, then there exists e in I, such that e+ 1 ∈ I and π̂(e) = e+ 1.

(ii) If π ∈ Sirr
p , then π̂ has no non-crossing interval of integers.

Proof. (i) Assume that I ⊆ {1, 2, . . . , 2p} and that π̂|I is non-crossing. Put

t = 1
2card(I), let ϕ be the order preserving bijection of {1, 2, . . . , 2t} onto I,

and let π1 be the permutation in St given by (5.18). Then π1 ∈ Snc
t , and hence

π̂1 has a pair of neighbors (e′, e′ + 1) by Lemma 1.17. Putting e = ϕ(e′), it
follows that e+ 1 = π̂(e) ∈ I, and this proves (i).

(ii) This follows immediately from (i). �

5.8 Lemma. Let p be a positive integer, and let π be a permutation in Sp,
such that π̂ is reducible. Consider furthermore a family (Iλ)λ∈Λ of intervals
of integers, such that Iλ ⊆ {1, 2, . . . , 2p} for all λ, and such that the union
I = ∪λ∈ΛIλ is again an interval of integers. If each Iλ is a non-crossing interval
of integers for π̂, then so is I.

Proof. Assume that each Iλ is a non-crossing interval of integers for π̂. Then
π̂(Iλ) = Iλ for all λ, and hence also π̂(I) = I. Assume then that I contains a
crossing for π̂, i.e., that there exist a, b, c, d in I, such that a < b < c < d and
π̂(a) = c, π̂(b) = d. Choose λ in Λ such that a ∈ Iλ. Then c = π̂(a) ∈ Iλ, and
since Iλ is an interval of integers, also b ∈ Iλ. But then d = π̂(b) ∈ Iλ too, and
hence (a, b, c, d) is a crossing for π̂ contained in Iλ; a contradiction. Therefore
I too is a non-crossing interval of integers for π̂. �

5.9 Definition. Let p be a positive integer and let π be a permutation in Sp.
By J (π̂) we denote then the family of all non-crossing intervals of integers for
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π̂. Moreover, we put

NC(π̂) =
⋃

I∈J (π̂)

I, (5.19)

IRR(π̂) = {1, 2, . . . , 2p} \NC(π̂). (5.20)

We refer to NC(π̂) (respectively IRR(π̂)) as the non-crossing set (respectively
irreducible set) for π̂. �

5.10 Lemma. Let p be a positive integer and let π be a permutation in Sp.
We then have
(i) NC(π̂) = {1, 2, . . . , 2p} if and only if π̂ is non-crossing.
(ii) NC(π̂) = ∅ if and only if π̂ is irreducible.

Proof. (i) If NC(π̂) = {1, 2, . . . , 2p}, then is follows from Lemma 5.8, that π̂ is
non-crossing. If, conversely, π̂ is non-crossing, then {1, 2, . . . , 2p} ∈ J (π̂), and
hence NC(π̂) = {1, 2, . . . , 2p}.
(ii) If NC(π̂) = ∅, then for any j in {1, 2, . . . , 2p − 1}, {j, j + 1} can not
be a non-crossing interval of integers for π̂. Hence π̂(j) 6= j + 1 for all j
in {1, 2, . . . , 2p − 1}, which means that π̂ is irreducible. If, conversely, π̂ is
irreducible, then J (π̂) = ∅ by Lemma 5.7(ii), and hence also NC(π̂) = ∅. �

5.11 Proposition. Let p be a positive integer, let π be a permutation in Sp,
and assume that π̂ has a crossing. Then the set IRR(π̂) is of the form

IRR(π̂) = {s1, s2, . . . , s2q},

where q ∈ {1, . . . , p}, and 1 ≤ s1 < s2 < · · · < s2q ≤ 2p. Moreover,
s1, s2, . . . , s2q have the following properties:
(i) The set {s1, s2, . . . , s2q} is π̂-invariant and π̂(si) 6= si+1, for all i in
{1, 2, . . . , 2q − 1}.
(ii) If we put s0 = 0 and s2q+1 = 2p+ 1, then for each i in {0, 1, . . . , 2q}, the
set

Ii = ]si, si+1[ ∩ Z

is either the empty set or a non-crossing interval of integers for π̂.

Proof. By Definition 5.5(b), each I in J (π̂) is π̂-invariant. Therefore NC(π̂)
is π̂-invariant too, and hence so is IRR(π̂). Since π̂2 = id and π̂ has no fixed
points, it follows that card(IRR(π̂)) = 2q for some q in {0, 1, . . . , p}, and since
π̂ has a crossing, Lemma 5.10(i) shows that q ≥ 1. Thus, we may write IRR(π̂)
in the form {s1, s2, . . . , s2q}, where s1 < s2 < · · · < s2q, and it remains to show
that these s1, s2, . . . , s2q satisfy (i) and (ii).

We start by proving (ii). For all I from J (π̂), I ∩ {s1, s2, . . . , s2q} = ∅,
and hence each such I is contained in one of the sets Ii = ]si, si+1[ ∩ Z,
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i = 0, 1, . . . , 2q. Therefore

J (π̂) =

2q⋃

i=0

Ji(π̂), (5.21)

where Ji(π̂) = {I ∈ J (π̂) | I ⊆ Ii}, for all i in {0, 1, . . . , 2q}. Note here that

⋃

I∈Ji(π̂)

I ⊆ Ii, (i ∈ {0, 1, . . . , 2q}), (5.22)

and that

⋃

I∈J (π̂)

I = NC(π̂) = {1, 2, . . . , 2p} \ IRR(π̂) =

2q⋃

i=0

Ii. (5.23)

Combining (5.21)-(5.23), it follows that we actually have equality in (5.22), i.e.,

⋃

I∈Ji(π̂)

I = Ii, (i ∈ {0, 1, . . . , 2q}). (5.24)

Since each Ii is either empty or an interval of integers, (ii) follows now by
combining (5.24) with Lemma 5.8.
It remains to prove (i). We already noted (and used) that IRR(π̂) is π̂-invariant.
Assume then that π̂(si) = si+1 for some i in {1, . . . , 2q− 1}. Then, by (ii), the
set

Ĩi = {si} ∪ Ii ∪ {si+1},
is a non-crossing interval of integers for π̂. But this contradicts that si /∈ NC(π̂),
and hence we have proved (i). �

We prove next the following converse of Proposition 5.11.

5.12 Proposition. Let p be a positive integer, let π be a permutation in
Sp, and assume that there exist q in {1, . . . , p} and s1 < s2 < · · · < s2q in
{1, 2, . . . , 2p}, such that
(i) The set {s1, s2, . . . , s2q} is π̂-invariant and π̂(si) 6= si+1, for all i in
{1, 2, . . . , 2q − 1}.
(ii) If we put s0 = 0 and s2q+1 = 2p + 1, then for each i in {0, 1, . . . , 2q},
the set Ii = ]si, si+1[ ∩ Z is either the empty set or a non-crossing interval of
integers for π̂.
Then {s1, s2, . . . , s2q} = IRR(π̂).

Proof. It follows from (i), that there exists a (unique) permutation γ in S2q,
such that

π̂(si) = sγ(i), (i ∈ {1, 2, . . . , 2q}),
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and moreover

γ(i) 6= i+ 1, (i ∈ {1, 2, . . . , 2q − 1}). (5.25)

Our first objective is to prove that γ is of the form ρ̂ for some (unique) per-
mutation ρ in Sirr

q . For this, note first that by (ii), card(Ii) is an even number
for all i in {0, 1, . . . , 2q}. Hence si+1 − si is odd for all i in {0, 1, . . . , 2q}, and
this implies that

s1, s3, . . . , s2q−1 are odd numbers

s2, s4, . . . , s2q are even numbers

Since π̂2 = id and π̂(j) − j is odd for all j in {1, 2, . . . , 2p}, it follows now
that γ2 = id and that γ(i) − i is odd for all i in {1, 2, . . . , 2q}. Therefore, by
Remark 1.7(a), γ = ρ̂ for some (unique) ρ in Sq, and (5.25) shows that in fact
ρ ∈ Sirr

q .
Returning now to the proof of the equation {s1, s2, . . . , s2q} = IRR(π̂), note

first that ∪2q
i=0Ii ⊆ NC(π̂), and therefore

{s1, s2, . . . , s2q} = {1, 2, . . . , 2p} \ ∪2q
i=0Ii ⊇ IRR(π̂).

Suppose then that IRR(π̂) is a proper subset of {s1, s2, . . . , s2q}. Then there
exists j0 in {1, 2, . . . , 2q}, such that sj0 ∈ NC(π̂), i.e., sj0 ∈ I, for some non-
crossing interval of integers for π̂. For this I, define

J =
{
j ∈ {1, 2, . . . , 2q}

∣∣ sj ∈ I
}
.

Then J 6= ∅, and since s1 < s2 < · · · < s2q, J is an interval of integers. Consider
now the permutation ρ in Sirr

q , introduced above. Then, since π̂(I) = I, we
have also that ρ̂(J) = J . Moreover, J is a non-crossing interval of integers
for ρ̂. Indeed, if (a, b, c, d) were a crossing for ρ̂ contained in J , then clearly
(sa, sb, sc, sd) would be a crossing for π̂ contained in I, which is impossible.
Altogether, ρ is both irreducible and has a non-crossing interval of integers, and
by Lemma 5.10(ii), this is impossible. Thus, we have reached a contradiction,
which means that we must also have the inclusion {s1, s2, . . . , s2q} ⊆ IRR(π̂).

�

5.13 Lemma. Let p be a positive integer, and let π be a permutation in Sp\Snc
p .

Write then, as in Proposition 5.11, IRR(π̂) in the form

IRR(π̂) = {s1, s2, . . . , s2q},

where q ∈ {1, . . . , p} and 1 ≤ s1 < s2 < · · · < s2q ≤ 2p. Then s1, s2, . . . , s2q
satisfy, in addition, that
(i) s1, s3, . . . , s2q−1 are odd numbers.
(ii) s2, s4, . . . , s2q are even numbers.
(iii) There is one and only one permutation ρ in Sirr

q , such that π̂(sj) = sρ̂(j)
for all j in {1, 2, . . . , 2q}.
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Proof. This follows immediately from Proposition 5.11 and the first part of the
proof of Proposition 5.12. �

5.14 Definition. Let p be a positive integer, let π be a permutation in Sp\Snc
p ,

and let q, s1, s2, . . . , s2q and I0, I1, . . . , I2q , be as in Proposition 5.11. Then
put

ti = 1
2card(Ii), (i ∈ {0, 1, . . . , 2q}),

and note that since Ii is either empty or a non-crossing interval of integers
for π̂, ti ∈ N0 for all i. If ti > 0, then as in Remark 5.6, we consider the
order-preserving bijection ϕi of {1, 2, . . . , 2ti} onto Ii, and we let πi denote
the (unique) permutation in Sti , satisfying that π̂i = ϕ−1

i ◦ (π̂|Ii
) ◦ ϕ. Clearly

πi ∈ Snc
p .

It is convenient to consider the permutation group S0 of the empty set, as a
group with one element π∅. Then, in the setting considered above, we put
πi = π∅, for all i in {0, 1, . . . , 2q}, for which ti = 0. By convention, we put

k(π̂∅) = 0, and l(π̂∅) = 1. (5.26)

�

5.15 Lemma. Let p be a positive integer, let π be a permutation in Sp \ Snc
p ,

and let ρ be the irreducible permutation introduced in Lemma 5.13(iii). Then
σ(ρ̂) = σ(π̂).

Proof. Let q, s1, s2, . . . , s2q and I0, I1, . . . , I2q, be as in Proposition 5.11, and
for each i in {0, 1, . . . , 2q}, let ti and πi be as in Definition 5.14. If ti > 0, then
π̂i is non-crossing, and hence, by Proposition 1.23, π̂i may be reduced to ê1
(where e1 is the permutation in S1), by a series of successive cancellations of
pairs. Here ê1 consists exactly of one pair of neighbors, so, formally speaking, ê1
can be reduced π̂∅, by cancellation of this pair. Thus, π̂i can be reduced to π̂∅,
by a series of successive cancellations of pairs, and forming the corresponding
series of cancellations of pairs to π̂|Ii

, it follows that π̂ can be reduced to a
permutation, which is, loosely speaking, obtained by “cutting out” π̂|Ii

from π̂.
Forming these reductions for each i in {0, 1, . . . , 2q}, for which ti > 0, it follows
that π̂ can be reduced to ρ̂ by a series of successive cancellations of pairs. By
Proposition 1.22, this implies that σ(π̂) = σ(ρ̂). �

5.16 Proposition. Let p be a positive integer, let π be a permutation in
Sp \ Snc

p , and let q, s1, s2, . . . , s2q be as in Proposition 5.11. Let further ρ be

the permutation in Sirr
q introduced in Lemma 5.13(iii), and let π0, π1, . . . , π2q

be as in Definition 5.14. Then for any elements a1, . . . , ar of B(H,K) for which
(5.2) holds, we have

∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)
= ch(π̂)

∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)
,

(5.27)
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where

h(π̂) = k(π̂0) + (l(π̂1)− 1) + k(π̂2) + · · ·+ (l(π̂2q−1)− 1) + k(π̂2q). (5.28)

Proof. We start by introducing some notation. Let t be a positive integer, and
let η be a permutation in St. We then put

Γ(η̂) =
∑

1≤i1,... ,it≤r
a∗i1aiη(1)

· · · a∗itaiη(t)
, (5.29)

and moreover, we put

Γ(π̂∅) = 111B(H). (5.30)

Note that Γ(η̂) can be expressed in terms of η̂ only, namely as

Γ(η̂) =
∑

(i1,i2,i3,i4,... ,i2t)∈N(η̂)

a∗i1ai2a
∗
i3ai4 · · · a∗i2t−1

ai2t , (5.31)

where

N(η̂)

=
{

(i1, i2, . . . , i2t) ∈ {1, 2, . . . , r}2t
∣∣ ij = iη̂(j), for all j in {1, 2, . . . , 2t}

}
,

(5.32)

(cf. Remark 1.7(b)). Consider next an interval of integers I, such that I ⊆
{1, 2, . . . , 2t} and η̂(I) = I. Write I in the form {α, α + 1, . . . , β}, and note
that β − α+ 1 = card(I) is an even number. We then put

N(η̂, I) =
{

(iα, . . . , iβ) ∈ {1, 2, . . . , r}β−α+1
∣∣ ij = iη̂(j), j = α, α+ 1, . . . , β

}

(5.33)

and

Γ(η̂, I) =





∑

(iα,... ,iβ)∈N(η̂,I)

a∗iαaiα+1 · · · a∗iβ−1
aiβ , if α is odd,

∑

(iα,... ,iβ)∈N(η̂,I)

aiαa
∗
iα+1
· · · aiβ−1

a∗iβ , if α is even.
(5.34)

Now, to prove (5.27), consider p in N and π in Sp\Snc
p , and let q, s1, s2, . . . , s2q

and I0, I1, . . . , I2q, t0, t1, . . . , t2q be as in Proposition 5.11. Note then, that we
may write N(π̂) as

N(π̂) =
⋃

(is1 ,... ,is2q )∈N1(π̂)

N(π̂, I0)× {is1} ×N(π̂, I1)× {is2} × · · · × {is2q} ×N(π̂, I2p),

(5.35)
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with the convention that N(π̂, Ii) is omitted in the product sets when 2ti =
card(Ii) = 0, and where

N1(π̂) =
{

(is1 , . . . , is2q ) ∈ {1, 2, . . . , r}2q
∣∣ isj = iπ̂(sj), j = 1, 2, . . . , 2q

}
.

(5.36)

It follows thus, by (5.31), that

Γ(π̂) =
∑

(is1 ,... ,is2q )∈N1(π̂)

Γ(π̂, I0)a∗is1
Γ(π̂, I1)ais2

· · ·ais2q
Γ(π̂, I2q), (5.37)

with the convention that if card(Ii) = 0,

Γ(π̂, Ii) =

{
111B(H), if si is even,

111B(K), if si is odd.
(5.38)

To calculate Γ(π̂, I0), . . . ,Γ(π̂, I2q), consider the non-crossing permutations
π0, π1, . . . , π2q introduced in Definition 5.14. Note then, that for each v in
{0, 1, . . . , 2q}, such that tv > 0, we have by a suitable relabeling of indices,

N(π̂, Iv) =
{

(i1, i2, . . . , i2tv) ∈ {1, 2, . . . , r}2tv
∣∣ ij = iπ̂v(j), j = 1, 2, . . . , 2tv

}

= N(π̂v).

It follows thus, that if tv > 0,

Γ(π̂, Iv) =





∑

1≤i1,... ,itv≤r
a∗i1aiπv(1)

· · · a∗itv
aiπv(tv)

, if v is even,

∑

1≤i1,... ,itv≤r
ai1a

∗
iπv(1)

· · · aitv
a∗iπv(tv)

, if v is odd,

and hence by Lemma 5.2 (since π̂v is non-crossing),

Γ(π̂, Iv) =

{
ck(π̂v)111B(H), if v is even,

cl(π̂v)−1111B(K), if v is odd.
(5.39)

If tv = 0, then by definition,

Γ(π̂, Iv) =

{
111B(H), if v is even,

111B(K), if v is odd,
=

{
ck(π̂v)111B(H), if v is even,

cl(π̂v)−1111B(K), if v is odd,

(5.40)

with k(π̂∅), l(π̂∅) as defined in (5.26). Combining (5.37),(5.39) and (5.40), it
follows that with h(π̂) given in (5.28), we have

Γ(π̂) = ch(π̂)
∑

(is1 ,... ,is2q )∈N1(π̂)

a∗is1
ais2
· · · a∗i2q−1

ais2q
. (5.41)
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Note finally, that with ρ the permutation introduced in Lemma 5.13(iii), we
have that

N1(π̂) =
{

(i1, i2, . . . , i2q) ∈ {1, 2, . . . , r}2q
∣∣ ij = iρ̂(j), j = 1, 2, . . . , 2q

}

= N(ρ̂),

and therefore

∑

(is1 ,... ,is2q )∈N1(π̂)

a∗is1
ais2
· · · a∗i2q−1

ais2q
=

∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)
.

Inserting this in (5.41), we obtain (5.27). �

5.17 Definition. Let c be a positive number. Then for any p in N0, we define

gc(p) =

{
1
p

∑p
j=1

(
p
j

)(
p
j−1

)
cj , if p ∈ N,

1, if p = 0,
(5.42)

and

hc(p) =

{
1
p

∑p
j=1

(
p
j

)(
p
j−1

)
cj−1, if p ∈ N,

1, if p = 0.
(5.43)

Moreover, for p, q in N0, such that p ≥ q, we put

ν′(c, p, q) =
∑

r0,r1,... ,r2q≥0
r0+r1+···+r2q=p−q

gc(r0)hc(r1)gc(r2)hc(r3) · · · gc(r2q). (5.44)

�

We are now ready to prove the main result of this section.

5.18 Theorem. Let a1, . . . , ar be elements of B(H,K), let c be a positive
number, and assume that

∑r
i=1 a

∗
i ai = c111B(H), and

∑r
i=1 aia

∗
i = 111B(K). Con-

sider furthermore independent elements Y1, . . . , Yr of GRM(n, n, 1
n ), and put

S =
∑r
i=1 ai ⊗ Yi. Then for any positive integer p,

E
[
(S∗S)p

]

=

[
ν′(c, p, 0)111B(H)

+

p∑

q=1

ν′(c, p, q)
( ∑

ρ∈Sirr
q

n−2σ(ρ̂)
∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

)]
⊗ 111n.

(5.45)
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Proof. Let p from N be given. Then for each q in {1, 2, . . . , p}, we define

Sp,q =
{
π ∈ Sp

∣∣ card(IRR(π̂)) = 2q
}
, (5.46)

and

Mq =
∑

π∈Sp,q

n−2σ(π̂)
( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
(5.47)

It follows then by (5.1), that

E
[
(S∗S)p

]
=

[ ∑

π∈Sp

n−2σ(π̂)
( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · ·a∗ipaiπ(p)

)]
⊗ 111n

=

p∑

q=0

Mq ⊗ 111n.

(5.48)

By Lemma 5.10, Sp,0 = Snc
p and Sp,p = Sirr

p . Hence

Mp =
∑

π∈Sirr
p

n−2σ(π̂)
( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
, (5.49)

and by Corollary 5.4(i) and Corollary 1.24,

M0 = gc(p)111B(H) = ν′(c, p, 0)111B(H). (5.50)

To calculate M1,M2 . . . ,Mp−1, we let, for each π in Sp, ρ(π) denote the irre-
ducible permutation ρ associated to π in Lemma 5.13(iii). Then for any q in
{1, 2, . . . , p− 1} and any ρ in Sirr

q , we define

R(p, ρ) = {π ∈ Sp,q | ρ(π) = ρ}.
Then we have the following disjoint union

Sp,q =

•⋃

ρ∈Sirr
q

R(p, ρ),

and therefore

Mq =
∑

ρ∈Sirr
q

∑

π∈R(p,ρ)

n−2σ(π̂)
( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)
. (5.51)

Note here, that for any ρ in Sirr
q , we have by Proposition 5.16 and Lemma 5.15,

∑

π∈R(p,ρ)

n−2σ(π̂)
( ∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

)

=
( ∑

π∈R(p,ρ)

ch(π̂)
)
n−2σ(ρ̂)

( ∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

)
,

(5.52)
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where for each π in R(p, ρ),

h(π̂) = k(π̂0) + (l(π̂1)− 1) + k(π̂2) + · · ·+ (l(π̂2q−1)− 1) + k(π̂2q),

and where π0, π1, . . . , π2q are the permutations introduced in Definition 5.14.
For any ρ in Sirr

q and any π in R(p, ρ), it follows from Proposition 5.11 and
Lemma 5.13, that π̂ can be obtained from ρ̂ in a unique way, by “stuffing
in” the intervals (or empty sets) I0, I1, . . . , I2q , and the corresponding non-
crossing permutations π̂0, π̂1, . . . , π̂2q. Conversely, if π ∈ Sp such that π̂ can
be obtained from ρ̂ by “stuffing in” intervals (or empty sets) J0, J1, . . . , J2q

and corresponding non-crossing permutations η̂0, η̂1, . . . , η̂2q, then, by Propo-
sition 5.12, π ∈ R(p, ρ) and Jj = Ij , ηj = πj , for all j in {0, 1, . . . , 2q}. It
follows thus, that the mapping

π 7→ (π0, π1, . . . , π2q)

is a bijection of R(p, ρ) onto the set of (2q + 1)-tuples (π0, π1, . . . , π2q) of per-
mutations for which there exist t0, t1, . . . , t2q in N0, such that πi ∈ Snc

ti for all i,

and
∑2q

i=0 ti = p− q (here we have used the convention that Snc
0 = S0 = {π∅}).

Using this description of R(p, ρ), it follows that

∑

π∈R(p,ρ)

ch(π̂) =
∑

t0,... ,t2q≥0
t0+···+t2q=p−q

∑

π0∈Snc
t0
,... ,π2q∈Snc

t2q

ck(π̂0)c(l(π̂1)−1)ck(π̂2) · · · ck(π̂2q).

(5.53)

Recall here from Definition 5.17 and Lemma 5.3, that for any t in N,

∑

η∈Snc
t

ck(η̂) = gc(t), and
∑

η∈Snc
t

cl(η̂)−1 = hc(t),

and by (5.26) this formula holds for t = 0 too. Using this in (5.53), it follows
that

∑

π∈R(p,ρ)

ch(π̂) =
∑

t0,t1,... ,t2q≥0
t0+t1+···+t2q=p−q

gc(t0)hc(t1)gc(t2)hc(t3) · · · gc(t2q)

= ν′(c, p, q).

(5.54)

Note, in particular, that the right hand side depends only on p and q, and not
on ρ itself. Combining (5.51),(5.52) and (5.54), it follows that for any q in
{1, 2, . . . , p− 1},

Mq = ν′(c, p, q)
∑

ρ∈Sirr
q

n−2σ(ρ̂)
( ∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · ·a∗iqaiρ(q)

)
. (5.55)

Since ν′(c, p, p) = 1, (5.55) holds for q = p too, by (5.49), and combining this
with (5.48) and (5.50), we obtain, finally, (5.45). �
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5.19 Proposition. Let a1, . . . , ar in B(H,K), c in ]0,∞[ and S =
∑r

i=1 ai ⊗
Yi, be as in Theorem 5.18. Then for any p in N, we have that

∑

π∈Sp

n−2σ(π̂)
∥∥∥

∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

∥∥∥

= ν′(c, p, 0) +

p∑

q=1

ν′(c, p, q)
∑

ρ∈Sirr
q

n−2σ(ρ̂)
∥∥∥

∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

∥∥∥.

Proof. This follows by exactly the same proof as for Theorem 5.18. �

5.20 Example. Let a1, . . . , ar in B(H,K) and c from ]0,∞[ be as in Theo-
rem 5.18.
(a) For p = 1 or p = 2, we have Sp = Snc

p . Hence by (5.1), Corollary 1.24 and
Corollary 5.4(i), we get that

E
[
S∗S

]
= c111B(H)⊗Mn(C), and E

[
(S∗S)2

]
= (c2 + c)111B(H)⊗Mn(C).

This can also easily be obtained directly from (5.1) and (5.2).
(b) For p = 3, card(S3) = 6 and card(Snc

3 ) = 5. The only element of S3 \ Snc
3

is the irreducible permutation π given by

π(1) = 3, π(2) = 1, π(3) = 2.

For this π, σ(π̂) = 1, and it follows then by (5.1) and Corollary 5.4(i), that

E
[
(S∗S)3

]
= (c3 + 3c2 + c)111B(H)⊗Mn(C) +

(
n−2

r∑

i,j,k=1

a∗i aka
∗
jaia

∗
kaj

)
⊗ 111n.

This follows also from Theorem 5.18, because Sirr
1 = Sirr

2 = ∅ and Sirr
3 = {π}.

�

6 The Sequence of Orthogonal Polynomials for the Measure µc

Throughout this section we consider a fixed positive constant c, and elements
a1, . . . , ar of B(H,K), satisfying that

r∑

i=1

a∗i ai = c111B(H) and

r∑

i=1

aia
∗
i = 111B(H).

Moreover, we put

S =

r∑

i=1

ai ⊗ Yi,

where Y1, . . . , Yr are independent elements of GRM(n, n, 1
n ).
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As in Section 3, we let µc denote the probability measure on R, given by

µc = max{1− c, 0}δ0 +

√
(x − a)(b− x)

2πx
· 1[a,b](x) · dx,

where a = (
√
c− 1)2, b = (

√
c+ 1)2.

The asymptotic upper bound for the spectrum of S∗S obtained in Section 4
(in the exact case), was obtained by making careful estimates of the moments
E
[
(S∗S)p

]
, p ∈ N. However, these estimates cannot be used to give good

asymptotic lower bounds for the spectrum of S∗S in the case c > 1. To obtain
such lower bounds, we shall instead consider the operators E

[
P cq (S∗S)

]
, where

(P cq )q∈N0 is the sequence of monic polynomials, obtained by Gram-Schmidt
orthogonalization of the polynomials 1, x, x2, . . . , w.r.t. the inner product

〈f, g〉 =

∫ ∞

0

f(x)g(x) dµc(x), (f, g ∈ L2(R, µc)).

The main result of this section is the equation

E
[
P cq (S∗S)

]
=

[ ∑

ρ∈Sirr
q

n−2σ(ρ̂)
( ∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

)]
⊗111n, (q ∈ N),

where Sirr
q is the set of permutations ρ in Sq, satisfying that

1 6= ρ(1) 6= 2 6= ρ(2) 6= · · · 6= ρ(q)

(cf. Definition 1.16).

6.1 Proposition. Let (P cq )q∈N0 be the sequence of polynomials on R, defined
by the recursion formulas:

P c0 (x) = 1, (6.1)

P c1 (x) = x− c, (6.2)

P cq+1(x) = (x− c− 1)P cq (x)− cP cq−1(x), (q ≥ 1). (6.3)

We then have
(i) For each q in N0, P

c
q (x) is a monic polynomial of degree q, and P cq (x) ∈ R

for all real numbers x.

(ii) P cq (c+ 1 + 2
√
c cos θ) =

c
q
2 sin((q + 1)θ) + c

q−1
2 sin(qθ)

sin θ
, (θ ∈ ]0, π[ ).

(iii)

∫ b

a

P cq (x)P cq′ (x) dµc(x) =

{
cq, if q = q′,

0, if q 6= q′,
(q, q′ ∈ N0).

In particular, (P cq )q∈N0 is the sequence of monic orthogonal polynomials ob-
tained by Gram-Schmidt orthogonalization of 1, x, x2, . . . , in the Hilbert space
L2(R, µc).
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Proof. (i) This is clear from (6.1)-(6.3).
(ii) Consider the sequences (Rcq)q∈N0 and (T cq )q∈N0 of polynomials, given by
the recursion formulas

Rc0(x) = 1, (6.4)

Rc1(x) = x− c− 1, (6.5)

Rcq+1(x) = (x− c− 1)Rcq(x) − cRcq−1(x), (q ≥ 1), (6.6)

respectively

T c0 (x) = 0, (6.7)

T c1 (x) = 1, (6.8)

T cq+1(x) = (x− c− 1)T cq (x) − cT cq−1(x), (q ≥ 1). (6.9)

Note here, that the conditions (6.6) and (6.9) are the same, and therefore, the
sequence (Rq + Tq)q∈N0 satisfies this condition too. Moreover, the sequence
(Rq + Tq)q∈N0 also satisfies (6.1) and (6.2), and it follows thus, that

P cq (x) = Rcq(x) + T cq (x), (q ∈ N0).

Note also, that T c2 (x) = x − c − 1, so that the sequence (T cq+1)q∈N0 satisfies
(6.4)-(6.6), and hence

T cq (x) = Rcq−1(x), (q ∈ N).

Altogether, it follows that

P cq (x) = Rcq(x) +Rcq−1(x), (q ≥ 1), (6.10)

P c0 (x) = Rc0(x). (6.11)

To prove (ii), it suffices therefore to show, that with x = c + 1 + 2
√
c cos θ,

θ ∈ ]0, π[, one has

Rcq(x) =
c

q
2 sin((q + 1)θ)

sin θ
, (q ∈ N0). (6.12)

For q = 0, this is clear from (6.4), and for q = 1, it follows easily from (6.5),
using that sin 2θ = 2 sin θ cos θ. Proceeding by induction, assume now that
p ≥ 1 and that (6.12) has been proved for all q in {0, 1, . . . , p}. Then by (6.6),

Rcp+1(x) =
2
√
c cos θ · c p

2 sin((p+ 1)θ)

sin θ
− c

p+1
2 sin(pθ)

sin θ
,

when x = c+1+2
√
c cos θ, θ ∈ ]0, π[. But 2 cos θ sin((p+1)θ) = sin((p+2)θ)+

sin(pθ), and therefore

Rcp+1(x) =
c

p+1
2 sin((p+ 2)θ)

sin θ
,
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which means that (6.12) holds for q = p+ 1. Thus, by induction, (6.12) holds
for all q in N0, and this concludes the proof of (ii).
(iii) We show first, that for any m,n in N0,

∫ ∞

0

xRcm(x)Rcn(x) dµc(x) =

{
0, if n 6= m,

cm+1, if n = m,
(6.13)

where Rc0, R
c
1, R

c
2, . . . , are the polynomials determined by (6.4)-(6.6). Note for

this, that if c < 1, then the atom for µc at 0, does not contribute to the integral
on the left hand side of (6.13). Hence, for all values of c in ]0,∞[, we have

∫ ∞

0

xRcm(x)Rcn(x) dµc(x) = 1
2π

∫ b

a

Rcm(x)Rcn(x)
√

(x− a)(b− x) dx. (6.14)

By the substitution x = c+ 1 + 2
√
c cos θ, θ ∈ ]0, π[, and by (6.12), the integral

on the right hand side of (6.14) can be reduced to

2c
π

∫ π

0

c
m+n

2 sin((m+ 1)θ) sin((n+ 1)θ) dθ,

which is equal to cm+1δm,n. This proves (6.13).
We show next that

xRcm(x) = P cm+1(x) + cP cm(x), (m ∈ N0). (6.15)

For m = 0, this is clear from (6.1),(6.2) and (6.4), and for m ≥ 1, we get from
(6.6) and (6.10), that

xRcm(x) = Rcm+1(x) + (c+ 1)Rcm(x) + cRcm−1(x) = P cm+1(x) + cP cm(x).

This proves (6.15). Define now

γm,n =

∫ ∞

0

P cm(x)P cn(x) dµc(x), (m,n ∈ N0).

It follows then from (6.15), that

γm+1,n + cγm,n =

∫ ∞

0

xRcm(x)P cn(x) dµc(x), (m,n ∈ N0),

and applying then (6.10),(6.11) and (6.13), we get that

γm+1,n + cγm,n = cm+1(δm,n + δm,n−1), (m ∈ N0, n ∈ N), (6.16)

and

γm+1,0 + cγm,0 = cm+1δm,0, (m ∈ N0). (6.17)
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Since µc is a probability measure, γ0,0 = 1, and using this and induction on
(6.17), it follows that γm,0 = 0 for all m in N. Thus

γ0,n = γn,0 =

{
1, if n = 0,

0, if n ≥ 1.
(6.18)

Consider now a fixed n in N. By (6.16), we have then that

γm+1,n + cγm,n =

{
0, if m ∈ {0, 1, . . . , n− 2},
cn, if m = n− 1.

By induction in m (0 ≤ m ≤ n), we get then, by application of (6.18), that

γm,n =

{
0, if m < n,

cn, if m = n,

and this completes the proof of (iii). �

6.2 Lemma. For any non-negative integers p, q, put

ν(c, p, q) = c−q
∫ b

a

xpP cq (x) dµc(x). (6.19)

We then have
(i) For any p in N0, x

p =
∑p
q=0 ν(c, p, q)P cq (x).

(ii) For any p, q in N0,

ν(c, p, q) ≥ 0, if q ≤ p, (6.20)

ν(c, p, p) = 1, (6.21)

ν(c, p, q) = 0, if q > p. (6.22)

Proof. (i) Consider a fixed p from N0. By Proposition 6.1,
span{P c0 , P c1 , . . . , P cp} is equal to the set of all polynomials of degree less
than or equal to p. In particular we have that xp =

∑p
q=0 γqP

c
q (x), for suitable

complex numbers γ0, . . . , γp (depending on c and p). Applying then the
orthogonality relation in Proposition 6.1(iii), it follows that γq = ν(c, p, q) for
all q in {0, 1, . . . , p}, and this proves (i).
(ii) By (6.1)-(6.3), it follows that

xP c0 (x) = P c1 (x) + cP c0 (x), (6.23)

xP cq (x) = P cq+1(x) + (c+ 1)P cq (x) + cP cq−1(x), (q ≥ 1), (6.24)

so by induction in p, we get that xp(= xpP c0 (x)), can be expressed as a lin-
ear combination of P c0 (x), P c1 (x), . . . , P cp (x), in which all coefficients are non-
negative. By (i) and the linear independence of P c0 (x), P c1 (x), . . . , P cp (x), these
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coefficients are exactly ν(c, p, 0), ν(c, p, 1), . . . , ν(c, p, p), and hence (6.20) fol-
lows.
Note next that (6.21) follows from (i) and the facts that P cp (x) is a monic
polynomial of degree p, whereas P c0 (x), . . . , P cp−1(x) are all of degree at most
p− 1.
Finally, (6.22) follows from (i) and the orthogonality relation in Proposi-
tion 6.1(iii). �

6.3 Lemma. Let ν(c, p, q), p, q ∈ N0, be as in Lemma 6.2. Then for any fixed
q in N0, the power series

∞∑

p=0

ν(c, p, q)tp, (6.25)

converges for all t in the open complex ball B(0, 1
b ), where b = (

√
c + 1)2.

Moreover, the function

Jcq (t) =
∞∑

p=0

ν(c, p, q)tp, (t ∈ B(0, 1
b )),

is for all t in B(0, 1
b ) \ {0}, given by

Jcq (t) =

1− (c− 1)t−
√

(1 − at)(1− bt)
2t

(
1− (c+ 1)t−

√
(1 − at)(1− bt)

2ct

)q
,

(6.26)

where
√· is the principal branch of the complex square-root.

Proof. Consider the Hilbert space L2(R, µc), and let A be the bounded operator
on L2(R, µc), given by

[A(f)](x) = xf(x), (f ∈ L2(R, µc), x ∈ R).

Note that A∗ = A and that sp(A) = supp(µc) ⊆ [0, b]. Thus, letting 111 denote
the identity operator on L2(R, µc), 111− tA is invertible for all complex numbers
t such that |t| < 1

b , and moreover, for such t,

(111− tA)−1 =
∞∑

p=0

tpAp, (norm convergence).

For any t in B(0, 1
b ), we have thus that

∞∑

p=0

ν(c, p, q)tp = c−q
∞∑

p=0

〈xp, P cq 〉tp = c−q
∞∑

p=0

〈ApP c0 , P cq 〉tp

= c−q〈(1 − tA)−1P c0 , P
c
q 〉.
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This shows that the series in (6.25) converges for all t in B(0, 1
b ), and moreover,

that

Jcq (t) = c−q〈(1− tA)−1P c0 , P
c
q 〉, (t ∈ B(0, 1

b )). (6.27)

To prove (6.26), we shall calculate the right hand side of (6.27). For this,
consider for each z in B(0, 1√

c
) the series

∑∞
q=0 z

qP cq , and note that by

Lemma 6.1(iii), this series converges in ‖ · ‖2-norm in L2(R, µc). We may
thus define

ωz =

∞∑

q=0

zqP cq ∈ L2(R, µc), (z ∈ B(0, 1√
c
)). (6.28)

With A as above, it follows now by (6.23) and (6.24), that for any z in
B(0, 1√

c
) \ {0},

Aωz =

∞∑

n=0

znAP cn = cP c0 + P c1 +

∞∑

n=1

zn(cP cn−1 + (c+ 1)P cn + P cn+1)

= (c+ cz)P c0 +

∞∑

n=1

(zn−1 + (c+ 1)zn + czn+1)P cn

= (c+ cz)P c0 + z−1(1 + (c+ 1)z + cz2)

∞∑

n=1

znP cn

=
(
c+ cz − z−1(1 + (c+ 1)z + cz2)

)
P c0 + z−1(1 + (c+ 1)z + cz2)ωz

= −z−1(1 + z)P c0 + z−1(1 + z)(1 + cz)ωz,

where the infinite sums converge in ‖ · ‖2-norm. From this it follows that

(z−1(1 + z)(1 + cz)111−A)ωz = z−1(1 + z)P c0 , (z ∈ B(0, 1√
c
) \ {0}),

and hence that

(
111− z

(1+z)(1+cz)A
)
ωz = 1

1+czP
c
0 , (z ∈ B(0, 1√

c
) \ {−1,− 1

c}). (6.29)

Define now
ϕ(z) =

z

(1 + z)(1 + cz)
, (z ∈ C \ {−1, 1

c}).

Since sp(A) ⊆ [0, b], it follows that (111 − ϕ(z)A) is invertible whenever ϕ(z) /∈
[ 1b ,∞[, and in particular, as long as |ϕ(z)| < 1

b . Note then, that ϕ is analytic
on C \ {−1,− 1

c}, and that ϕ(0) = 0, ϕ′(0) = 1. It follows thus, that we may
choose neighborhoods U and V of 0 in C, such that ϕ is a bijection of U onto
V . We may assume, in addition, that

U ⊆ B(0, 1√
c
) \ {−1,− 1

c}, and V ⊆ B(0, 1
b ).
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For z in U , it follows now from (6.29), that

ωz = 1
1+cz

(
1− ϕ(z)A

)−1
P c0 ,

and hence, by (6.27) and Lemma 6.1(iii),

Jcq
(
ϕ(z)

)
= (1 + cz) · c−q〈ωz, P cq 〉 = (1 + cz)zq, (z ∈ U). (6.30)

It remains to invert ϕ. By solving the equation

t =
z

(1 + z)(1 + cz)
,

w.r.t. z, we find that

ϕ−1(t) =
1− (c+ 1)t±

√
(1− at)(1− bt)

2ct
, (t ∈ V \ {0}),

where, as usual, a = (
√
c−1)2 and b = (

√
c+1)2. Since ϕ−1(t)→ 0 as t→ 0, it

follows that for some neighbourhood V0 of 0, such that V0 ⊆ V , we must have

ϕ−1(t) =
1− (c+ 1)t−

√
(1 − at)(1− bt)

2ct
, (t ∈ V0 \ {0}), (6.31)

where
√· is the principal part of the square root. Hence, we have also that

1 + cϕ−1(t) =
1− (c− 1)t−

√
(1− at)(1 − bt)

2t
, (t ∈ V0 \ {0}). (6.32)

Inserting (6.31) and (6.32) in (6.30), we obtain that (6.26) holds for all t in
V0 \ {0}.
To show that (6.26) actually holds for all t in B(0, 1

b ) \ {0}, note that for all
such t, Re(1−at) > 0 and Re(1−bt) > 0, so that (1−at)(1−bt) ∈ C\ ]−∞, 0].
Hence, with

√· the principal branch of the square root, t 7→
√

(1− at)(1− bt)
is an analytic function of t ∈ B(0, 1

b ). By uniqueness of analytic continuation,
it follows thus, that (6.26) holds for all t in B(0, 1

b ) \ {0}. �

6.4 Lemma. Let gc(p) and hc(p), p ∈ N0, be as in Definition 5.17. Then the
power series

Gc(t) =
∞∑

p=0

gc(p)t
p, (6.33)

and

Hc(t) =

∞∑

p=0

hc(p)t
p, (6.34)

are convergent for all t in B(0, 1
b ), and

Jcq (t) = tqGc(t)
q+1Hc(t)

q, (t ∈ B(0, 1
b )). (6.35)
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Proof. By (5.10), we have

gc(p) =

∫ ∞

0

xp dµc(x), (p ∈ N),

and since gc(0) = 1, the same formula holds for p = 0. Hence gc(p) = ν(c, p, 0),
for all p in N0, so by Lemma 6.3, the series in (6.33) converges for all t in
B(0, 1

b ), and

Gc(t) = Jc0(t) =
1− (c− 1)t−

√
(1 − at)(1− bt)

2t
, (t ∈ B(0, 1

b ) \ {0}).
(6.36)

Since hc(0) = 1 and since hc(p) = 1
cgc(p), for all p in N, the series in (6.34) is

also convergent for all t in B(0, 1
b ), and

Hc(t) = 1 + 1
c (Gc(t)− 1), (t ∈ B(0, 1

c )).

Hence by (6.34)

Hc(t) =
1 + (c− 1)t−

√
(1− at)(1− bt)

2ct
, (t ∈ B(0, 1

b ) \ {0}). (6.37)

By (6.36) and (6.37), we get now for all t in B(0, 1
b ) \ {0},

Gc(t)Hc(t)

=

(
1−

√
(1 − at)(1− bt)

)2 − (c− 1)2t2

4ct2

=
1 + (1 − at)(1− bt)− 2

√
(1− at)(1 − bt)− (c− 1)2t2

4ct2

=
1 + (1 − 2(c+ 1)t+ (c− 1)2t2)− 2

√
(1− at)(1− bt)− (c− 1)2t2

4ct2

=
1− (c+ 1)t−

√
(1− at)(1− bt)

2ct2
.

Combining this with (6.36) and (6.26), it follows that

Jqc (t) = Gc(t)
(
tGc(t)Hc(t)

)q
, (t ∈ B(0, 1

b )),

and the same formula holds trivially for t = 0, by (6.22). This proves (6.35).
�

6.5 Lemma. For all p, q in N0 such that p ≥ q, let ν(c, p, q) be as introduced
in Definition 5.17. Then

ν′(c, p, q) = ν(c, p, q), (p, q ∈ N0, q ≤ p).
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Proof. Recall from Definition 5.17, that for p, q in N0, such that p ≥ q, we have

ν′(c, p, q) =
∑

r0,r1,... ,r2q≥0
r0+r1+···+r2q=p−q

gc(r0)hc(r1)gc(r2)hc(r3) · · · gc(r2q).

Hence ν′(c, p, q) is the coefficient to tp−q in the power series for

Gc(t)Hc(t)Gc(t)Hc(t) · · ·Gc(t), (2q + 1 factors),

and therefore ν′(c, p, q) is the coefficient to tp in the power series for
tqGc(t)

q+1Hc(t)
q. Thus, by Lemma 6.3 and Lemma 6.4, it follows that

ν′(c, p, q) = ν(c, p, q), for all p, q in N0, such that p ≥ q. �

6.6 Theorem. Let H, K be Hilbert spaces, and let a1, . . . , ar be elements of
B(H,K), satisfying that

∑r
i=1 a

∗
i ai = c111B(H) and

∑r
i=1 aia

∗
i = 111B(K), for some

positive real number c. Furthermore, let Y1, . . . , Yr be independent elements
of GRM(n, n, 1

n ), and put S =
∑r

i=1 ai ⊗ Yi. Then for any q in N,

E
[
P cq (S∗S)

]
=

[ ∑

ρ∈Sirr
q

n−2σ(ρ̂)
( ∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

)]
⊗ 111n.

Proof. For each q in N, put

Tq =
∑

ρ∈Sirr
q

n−2σ(ρ̂)
( ∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

)
,

and put T0 = 111B(H). By Theorem 5.18 and Lemma 6.5, it follows then that

E
[
(S∗S)p

]
=

p∑

q=0

ν(c, p, q) · Tq ⊗ 111n, (p ∈ N0). (6.38)

On the other hand, it follows from Lemma 6.2(i), that

E
[
(S∗S)p

]
=

p∑

q=0

ν(c, p, q)E
[
P cq (S∗S)

]
, (p ∈ N0). (6.39)

We prove that

E
[
P cq (S∗S)

]
= Tq ⊗ 111n, (q ∈ N0), (6.40)

by induction in q. Note that (6.40) is trivial for q = 0. Consider then p
from N, and assume that (6.40) has been proved for q = 0, 1, . . . , p− 1. Since
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ν(c, p, p) = 1, by Lemma 6.2(ii), it follows then from (6.39) and (6.38), that

E
[
P cp (S∗S)

]
= E

[
(S∗S)p

]
−
p−1∑

q=0

ν(c, p, q)E
[
P cq (S∗S)

]

= E
[
(S∗S)p

]
−
p−1∑

q=0

ν(c, p, q) · Tq ⊗ 111n

= Tp ⊗ 111n.

Thus, (6.40) holds for q = p, and this completes the proof. �

6.7 Example. By (6.1)-(6.3), it follows that

P c1 (x) = x− c, (6.41)

P c2 (x) = x2 − (2c+ 1)x+ c2, (6.42)

P c3 (x) = x3 − (3c+ 2)x2 + (3c2 + 2c+ 1)x− c3. (6.43)

By Example 5.20, Sirr
p = ∅ if p ∈ {1, 2}, and Sirr

3 = {π}, where π is the
permutation given by π(1) = 3, π(2) = 1, π(3) = 2, so that σ(π̂) = 1. It follows
thus by Theorem 6.6, that

E
[
P c1 (S∗S)

]
= 0,

E
[
P c2 (S∗S)

]
= 0,

E
[
P c3 (S∗S)

]
= n−2

r∑

i,j,k=1

a∗i aka
∗
jaia

∗
kaj .

These three formulas can also easily be derived directly from Example 5.20,
using the formulas (6.41)-(6.43). �

7 An Upper Bound for E
[

exp(−tS∗S)
]
, t ≥ 0

Throughout this section, we consider elements a1, . . . , ar of B(H,K) (for given
Hilbert spaces H and K), satisfying that

r∑

i=1

a∗i ai = c111B(H) and
r∑

i=1

aia
∗
i = 111B(K),

for some constant c in [1,∞[. Moreover, we consider independent elements
Y1, . . . , Yr of GRM(n, n, 1

n ), and put

S =
r∑

i=1

ai ⊗ Yi.
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As in Section 3, we let µc denote the probability measure on R, given by

µc =

√
(x− a)(b − x)

2πx
· 1[a,b](x) · dx,

where a = (
√
c− 1)2 and b = (

√
c+ 1)2. Furthermore, we let (P cq )q∈N0 be the

sequence of monic orthogonal polynomials w.r.t. µc as defined in Section 6. In
particular P c0 ≡ 1.

7.1 Lemma. Let, as above, a = (
√
c− 1)2 and b = (

√
c+ 1)2. Then for any q

in N0,
(i) P cq (x) ≥ P cq (b) > 0, for all x in ]b,∞[.
(ii) |P cq (x)| ≤ P cq (b), for all x in [a, b].
(iii) |P cq (x)| ≤ P cq (2c+ 2− x), for all x in ]−∞, a[.

Proof. We start by proving (ii). If x ∈ [a, b], then x = c + 1 + 2
√
c cos θ, for

some θ in [0, π]. For θ in ]0, π[, we have from Proposition 6.1(ii), that

P cq (c+ 1 + 2
√
c cos θ) =

c
q
2 sin((q + 1)θ) + c

q−1
2 sin(qθ)

sin θ
. (7.1)

Note here that for any k in N0,

sin((k + 1)θ)

sin θ
= e−kθ

(
1 + e2iθ + e4iθ + · · ·+ e2kiθ

)
, (7.2)

so that
∣∣ sin((k+1)θ)

sin θ

∣∣ ≤ k + 1. It follows thus that

|P cq (x)| ≤ c q
2 (q + 1) + c

q−1
2 q, (x ∈]a, b[), (7.3)

and by continuity, (7.3) holds also for x = a and x = b. By (7.2),

limθ→0
sin((k+1)θ)

sin θ = k + 1, for any k in N0, and hence the right hand side
of (7.3) is equal to P cq (b). This proves (ii).
To prove (i), we note first, that by uniqueness of analytic continuation, (7.1)
actually holds for all θ in C \ πZ. If we put θ = iρ, ρ > 0, we get the equation:

P cq (c+ 1 + 2
√
c cosh ρ) =

c
q
2 sinh((q + 1)ρ) + c

q−1
2 sinh(qρ)

sinh ρ
, (ρ ∈]0,∞[),

(7.4)

which covers the values of Pq(x) for all x in ]b,∞[. Note here that for any k in
N0,

sinh((k + 1)ρ)

sinh ρ
= e−kρ

(
1 + e2ρ + e4ρ + · · ·+ e2kρ

)
,

and hence, if k is even,

sinh((k + 1)ρ)

sinh ρ
= 1 + 2 cosh(2ρ) + 2 cosh(4ρ) + · · ·+ 2 cosh(kρ),
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whereas, if k is odd,

sinh((k + 1)ρ)

sinh ρ
= 2 cosh(ρ) + 2 cosh(3ρ) + · · ·+ 2 cosh(kρ),

so in both cases sinh((k+1)ρ)
sin ρ is an increasing function of ρ > 0. It follows thus

from (7.4), that P cq (x) ≥ P cq (b) for all x in ]b,∞[. Moreover, as we saw in the
proof of (ii), P cq (b) > 0. This concludes the proof of (i).
Finally, to prove (iii), we put θ = π + iρ in (7.1), and get for ρ in ]0,∞[, that

∣∣P cq (c+ 1− 2
√
c cosh ρ)

∣∣ =
∣∣∣(−1)qc

q
2 sinh((q + 1)ρ) + (−1)q−1c

q−1
2 sinh(qρ)

sinh ρ

∣∣∣

≤ c
q
2 sinh((q + 1)ρ) + c

q−1
2 sinh(qρ)

sinh ρ

= P cq (c+ 1 + 2
√
c cosh ρ).

This proves (iii). �

7.2 Definition. For each q in N0, we define the function ψcq : R → R, by the
equation

ψcq(t) = c−q
∫ b

a

exp(tx)P cq (x) dµc(x), (t ∈ R). �

7.3 Lemma. Consider the sequence (ψcq)q∈N0 of functions, introduced in Defi-
nition 7.2, and for each p in N0, let, as in Section 6,

ν(c, p, q) = c−q
∫ b

a

xpP cq (x) dµc(x), (p, q ∈ N0).

We then have

(i) ψcq(t) =
∑∞
p=q

tp

p! ν(c, p, q), for all t in R.

(ii)
∑∞
q=0 |ψcq(t)| · |P cq (x)| ≤ exp(|t|x) + exp(|t|(2c+ 2)), for all t in R and all

x in [0,∞[.

(iii) exp(tx) =
∑∞

q=0 ψ
c
q(t) ·P cq (x), for all t in R and x in [0,∞[, and for fixed

t in R, the series converges uniformly in x on compact subsets of [0,∞[.

Proof. (i) By Lemma 6.2(ii), ν(c, p, q) = 0 whenever q > p. Hence (i) follows
from the power series expansion of exp(tx).
(ii) Let β : R→ [b,∞[ be the continuous function defined by:

β(x) =





x, if x > b,

b, if a ≤ x ≤ b,
2c+ 2− x, if x < a,
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It follows then from Lemma 7.1, that

|P cq (x)| ≤ P cq (β(x)), (x ∈ R, q ∈ N0). (7.5)

Recall that xp =
∑p
q=0 ν(c, p, q)P cq (x), for all p in N (c.f. Lemma 6.2(i)). Hence,

for x, t in R, we have that

exp(tx) =
∞∑

p=0

tp

p!x
p =

∞∑

p=0

tp

p!

( p∑

q=0

ν(c, p, q)P cq (x)
)
. (7.6)

Substituting x with β(x) and t with |t| in this formula, and recalling from
Lemma 6.2(ii), that ν(c, p, q) ≥ 0, for 0 ≤ q ≤ p, we get by application of (7.5),

∞∑

p=0

|t|p
p!

( p∑

q=0

ν(c, p, q)|P cq (x)|
)
≤
∞∑

p=0

|t|p
p!

( p∑

q=0

ν(c, p, q)P cq (β(x))
)

= exp(|t|β(x)) <∞.

Hence, we can apply Fubini’s theorem to the double sum in (7.6), and obtain
that

exp(tx) =
∞∑

q=0

( ∞∑

p=q

tp

p! ν(c, p, q)
)
P cq (x), (x, t ∈ R). (7.7)

Similarly we have that

exp(|t|β(x)) =

∞∑

q=0

( ∞∑

p=q

|t|p
p! ν(c, p, q)

)
P cq (β(x)), (x, t ∈ R). (7.8)

Note here that by (i) proved above, we have that,

|ψcq(t)| ≤
∞∑

p=q

|t|p
p! ν(c, p, q). (7.9)

Since β(x) ≤ max{2c+ 2, x} for all x in [0,∞[, (7.5) and (7.7)-(7.9) imply that
for all t in R and x in [0,∞[,

∞∑

q=0

|ψcq(t)| · |P cq (x)| ≤ exp(|t|β(x)) ≤ exp(|t|(2c+ 2)) + exp(|t|x),

and this proves (ii).

(iii) The summation formula in (iii) follows from (i) and (7.7). To prove that
the convergence is uniform in x on compact subsets, we observe that for any
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Q in N,

∣∣∣ exp(tx) −
Q∑

q=0

ψcq(t)P
c
q (x)

∣∣∣ ≤
∞∑

q=Q+1

|ψcq(t)| · |P cq (x)|

≤
∞∑

q=Q+1

( ∞∑

p=q

|t|p
p! ν(c, p, q)P cq (β(x))

)

≤
∞∑

p=Q+1

|t|p
p!

( p∑

q=0

ν(c, p, q)P cq (β(x))
)

=

∞∑

p=Q+1

(|t|β(x))p

p! .

(7.10)

Since β is continuous, and hence bounded on compact sets, it follows readily
from (7.10) that for fixed t in R, the series in (iii) converges uniformly in x on
compact subsets of [0,∞[. �

7.4 Proposition. Consider the sequence (ψcq)q∈N0 of functions, introduced in
Definition 7.2. Then for any t in R such that |t| < n

c , the function ω 7→
exp(tS∗(ω)S(ω)) is integrable in the sense of Definition 3.1, and

E
[

exp(tS∗S)
]

=

∞∑

q=0

ψcq(t)E
[
P cq (S∗S)

]
, (7.11)

where the sum on the right hand side is absolutely convergent in B(Hn).

Proof. We start by proving that the right hand side of (7.11) is absolutely
convergent in B(Hn). Since |ψcq(t)| ≤ ψcq(|t|) by Lemma 7.3(i) and (7.9), it
suffices to consider the case where t ≥ 0.

By Lemma 7.3(i), we have for any t in [0,∞[,

∞∑

q=0

ψcq(t)
∥∥E
[
P cq (S∗S)

]∥∥ =

∞∑

p=0

tp

p!

( p∑

q=0

ν(c, p, q)
∥∥E
[
P cq (S∗S)

]∥∥
)
. (7.12)

Note here, that by Theorem 6.6,

∥∥E
[
P cq (S∗S)

]∥∥ ≤
∑

ρ∈Sirr
q

n−2σ(ρ̂)
∥∥∥

∑

1≤i1,... ,iq≤r
a∗i1aiρ(1)

· · · a∗iqaiρ(q)

∥∥∥,

for any q in N, whereas

∥∥E
[
P c0 (S∗S)

]∥∥ = ‖E(111B(Hn))‖ = 1.
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Hence, by Proposition 5.19, Lemma 6.5 and Proposition 2.7, we have for any
p in N,

p∑

q=0

ν(c, p, q)
∥∥E
[
P cq (S∗S)

]∥∥ ≤
∑

π∈Sp

n−2σ(π̂)
∥∥∥

∑

1≤i1,... ,ip≤r
a∗i1aiπ(1)

· · · a∗ipaiπ(p)

∥∥∥

≤
∑

π∈Sp

n−2σ(π̂)cκ(π̂).

(7.13)

Using now that c ≥ 1, and that κ(π̂) ≤ k(π̂) + 2σ(π̂) (c.f. Proposition 2.10), it
follows that for any p in N,

∑

π∈Sp

n−2σ(π̂)cκ(π̂) ≤
∑

π∈Sp

(
n
c

)−2σ(π̂)
ck(π̂). (7.14)

For p = 0, we note that

p∑

q=0

ν(c, p, q)
∥∥E
[
P cq (S∗S)

]∥∥ = 1. (7.15)

Combining now (7.12)-(7.15), we get that

∞∑

q=0

ψcq(t)
∥∥E
[
P cq (S∗S)

]∥∥ ≤ 1 +
∞∑

p=1

tp

p!

(∑

π∈Sp

(
n
c

)−2σ(π̂)
ck(π̂)

)
. (7.16)

Using then that −2σ(π̂) = k(π̂) + l(π̂)− p− 1, it follows that

∞∑

q=0

ψcq(t)
∥∥E
[
P cq (S∗S)

]∥∥ ≤ 1 +
∞∑

p=1

1
p!

(
ct
n

)p∑

π∈Sp

nk(π̂)
(
n
c

)l(π̂)−1

≤ 1 + ct
∞∑

p=1

1
(p−1)!

(
ct
n

)p−1 ∑

π∈Sp

nk(π̂)−1
(
n
c

)l(π̂)−1
,

(7.17)

where the last equality follows by noting that 1
p! ≤ 1

(p−1)! for all p in N. By

Lemma 3.4, the last quantity in (7.17) is finite whenever 0 ≤ ct
n < 1, and this

shows that the right hand side of (7.11) is absolutely convergent for all t in
]− n

c ,
n
c [, as desired.

It remains now (cf. Definition 3.1) to show, that for any state ϕ on B(Hn),

E
[
ϕ(exp(tS∗S))

]
=

∞∑

q=0

ψcq(t)ϕ
(
E
[
P cq (S∗S)

])
, (t ∈]−nc , nc [). (7.18)
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So consider a fixed t from ] − n
c ,

n
c [ and a fixed state ϕ on B(Hn). Since

the spectrum of S∗(ω)S(ω) is compact for each ω in Ω, it follows then by
Lemma 7.3, that

ϕ
[

exp(tS∗(ω)S(ω))
]

=

∞∑

p=0

ψcq(t)ϕ
[
P cq (Sn(ω)∗Sn(ω))

]
, (7.19)

so we need to show that we can integrate termwise in the sum on the right
hand side. Note for this, that by Lemma 7.3(ii), and the function calculus for
selfadjoint operators on Hilbert spaces,

∞∑

p=0

|ψcq(t)| · |P cq (S(ω)∗S(ω))| ≤ exp(2(c+ 1)|t|)111B(Hn) + exp(|t|S(ω)∗S(ω)),

(7.20)

where |T | = (T 2)
1
2 , for any selfadjoint T in B(Hn). For such T , we have also

that |ϕ(T )| ≤ ϕ(|T |), and hence it follows from (7.20), that

∞∑

p=0

|ψcq(t)| ·
∣∣ϕ
[
P cq (S(ω)∗S(ω))

]∣∣ ≤ exp(2(c+ 1)|t|) + ϕ
[

exp(|t|S(ω)∗S(ω))
]
.

(7.21)

Since E
[
ϕ(exp(|t|S∗S))

]
< ∞, by Proposition 3.2, it follows from (7.21) and

Lebesgue’s theorem on dominated convergence, that we may integrate termwise
in (7.19), and hence obtain (7.18). This concludes the proof. �

In order to obtain the upper bound for E
[

exp(−tS∗S)
]

in Theorem 7.8 below,
we need more precise information about the behavior of the function ψcq(t) for
t < 0.

7.5 Proposition. Consider the sequence (ψcq)q∈N0 of functions, defined in Def-
inition 7.2. Then for any q in N0, and any t in ]0,∞[, we have that

(i) ψcq(t) > 0.

(ii) (−1)qψcq(−t) > 0.

(iii) |ψcq(−t)| ≤ ψc
0(−t)
ψc

0(t) ψ
c
q(t).

Proof. (i) This follows from Lemma 7.3(i), but for completeness we include a
different proof, which will also be needed in the proof of (ii) and (iii). For each
q in N0, we put

ρcq(x) = c−
q
2P cq (x), (x ∈ R).

Then by Proposition 6.1, (ρcq)q∈N0 is an orthonormal basis for L2([a, b], µc). Let
A be the (bounded) operator for multiplication by x in L2([a, b], µc). Then by
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(6.23) and (6.24), the matrix M(A) of A w.r.t. (ρcq)q∈N0 , is given by

M(A) =




c
√
c 0√

c c+ 1
√
c√

c c+ 1
√
c

. . .
. . .

. . .

0




(7.22)

From this, it follows, that for any p in N,

M(Ap)jk > 0, when |j − k| ≤ p,
M(Ap)jk = 0, when |j − k| > p.

Hence, for any t in [0,∞[,

M(exp(tA))jk = δj,k +

∞∑

p=1

tp

p!M(Ap)jk > 0, (j, k ∈ N0).

Since exp(tA) is the operator for multiplication by exp(tx) in L2([a, b], µc), and
since P c0 (x) ≡ 1, we get that

ψcq(t) = c−q
∫ b

a

exp(tx)P cq (x)P c0 (x) dµc(x) = c−
q
2 〈exp(tA)ρcq, ρ

c
0〉

= c−
q
2M(exp(tA))0,q > 0,

(7.23)

and this proves (i).
(ii) To prove (ii), we consider the operator

B = A+ 2P0,

where P0 is the projection onto Cρc0 in B
(
L2([a, b], µc)

)
. Then

M(B) =




c+ 2
√
c 0√

c c+ 1
√
c√

c c+ 1
√
c

. . .
. . .

. . .

0




, (7.24)

so as above, we get that

M(exp(tB))jk > 0, for all j, k in N0. (7.25)

Let U be the unitary operator on L2([a, b], µc), defined by the equation:

Uρcq = (−1)qρcq, (q ∈ N0).
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Then

M(UBU∗) =




c+ 2 −√c 0
−√c c+ 1 −√c

−√c c+ 1 −√c
. . .

. . .
. . .

0




= M(2(c+ 1)111−A).

Hence A = 2(c+ 1)111− UBU∗, and for t in [0,∞[, we have thus that

exp(−tA) = exp(−2(c+ 1)t) exp(tUBU∗) = exp(−2(c+ 1)t)U exp(tB)U∗.

Therefore,

M(exp(−tA))jk = (−1)j+k exp(−2(c+ 1)t)M(exp(tB))jk , (j, k ∈ N0),
(7.26)

so in particular, by (7.25),

(−1)j+kM(exp(−tA))jk > 0, (j, k ∈ N0).

For t in [0,∞[, we note here that

ψcq(−t) = c−q
∫ b

a

exp(−tx)P cq (x)P c0 (x) dµc(x) = c−
q
2M(exp(−tA))q0, (7.27)

and hence it follows that (−1)qψq(−t) > 0, which proves (ii).
To prove (iii), we need the following technical lemma:

7.6 Lemma. Let C and D be bounded positive selfadjoint operators on ℓ2(N0),
and assume that the corresponding matrices (cjk)j,k∈N0 and (djk)j,k∈N0 satisfy
the following conditions:

(a) cjk ≥ 0 for all j, k in N0.
(b) cjk = 0 when |j − k| ≥ 2.
(c) djk = cjk, when (j, k) 6= (0, 0).
(d) d00 ≥ c00.

For ϕ, ψ in ℓ2(N0), we define

[ϕ, ψ]j,k = ϕ(j)ψ(k) − ϕ(k)ψ(j), (j, k ∈ N0).

Consider then furthermore f, g from ℓ2(N0), satisfying that
(e) f(k) ≥ 0 and g(k) ≥ 0 for all k in N0.
(f) [f, g]j,k ≥ 0, for all k, j in N0 such that k > j.

Then for all j, k in N0, such that k > j, we have that
(i) [Cf,Cg]j,k ≥ 0.
(ii) [Df,Cg]j,k ≥ 0.
(iii) [Dnf, Cng]j,k ≥ 0, for all n in N.
(iv) [exp(tD)f, exp(tC)g]j,k ≥ 0, for all t in [0,∞[.
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7.7 Remark. If ϕ, ψ are strictly positive functions in ℓ2(N0), then the state-
ment

[ϕ, ψ]j,k ≥ 0, for all j, k in N0, such that k > j,

is equivalent to the condition that

ϕ(0)

ψ(0)
≥ ϕ(1)

ψ(1)
≥ ϕ(2)

ψ(2)
≥ · · · . �

Proof of Lemma 7.6. Note first that for any ϕ, ψ in ℓ2(N0) and j, k in N0, we
have that [ϕ, ψ]j,k = −[ϕ, ψ]k,j . In particular,

[ϕ, ψ]j,j = 0, (ϕ, ψ ∈ ℓ2(N0), j ∈ N0). (7.28)

Note also that the positivity of C implies that

det

(
cjj cjk
ckj ckk

)
≥ 0, for all j, k in N0, such that j 6= k. (7.29)

To prove (i), consider k, j in N0, such that k > j ≥ 0. We then have

(
Cf
)
(j) =

{
cj,j−1f(j − 1) + cj,jf(j) + cj,j+1f(j + 1), if j ≥ 1,

c0,0f(0) + c0,1f(1), if j = 0,

and since k 6= 0,

(
Cg
)
(k) = ck,k−1g(k − 1) + ck,kg(k) + ck,k+1g(k + 1).

Thus,

[Cf,Cg]j,k =

{∑j+1
l=j−1

∑k+1
m=k−1 cjlckm[f, g]l,m, if j ≥ 1,∑1

l=0

∑k+1
m=k−1 c0lckm[f, g]l,m, if j = 0.

Assume first that k ≥ j + 2. In this case, l ≤ j + 1 ≤ k − 1 ≤ m, for all terms
in the above sums, and thus, by (f) and (7.28), [f, g]l,m ≥ 0. Since clm ≥ 0 for
all l,m in N0 (by (a)), it follows thus that [Cf,Cg]j,k ≥ 0.
Assume next that k = j + 1, and consider first the case j ≥ 1. Then

[Cf,Cg]j,k =

j+1∑

l=j−1

j+2∑

m=j

cjlcj+1,m[f, g]l,m. (7.30)

In 8 of the 9 terms in the sum above, l ≤ m, and hence [f, g]l,m ≥ 0. Only in
the case (l,m) = (j + 1, j), do we have l > m. However, the sum of the two
terms corresponding to (l,m) = (j, j+1) and (l,m) = (j+1, j) is non-negative,
since

cjjcj+1,j+1[f, g]j,j+1 + cj,j+1cj+1,j [f, g]j+1,j

= (cjjcj+1,j+1 − cj,j+1cj+1,j)[f, g]j,j+1,
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which is non-negative by (7.29). Since the remaining 7 terms in the sum on the
right hand side of (7.30) are also non-negative, it follows that [Cf,Cg]j,k ≥ 0.
If j = 0, and k = j + 1 = 1, the same argument can be used to show that

[Cf,Cg]0,1 =

1∑

l=0

2∑

m=0

c0lc1m[f, g]l,m ≥ 0.

This proves (i).
To prove (ii), note first that by (a) and (c), we have

(
Df
)
(j) =

(
Cf
)
(j), if j ≥ 1,

and (
Df
)
(0) =

(
Cf
)
(0) + (d00 − c00)f(0).

Hence, if k > j ≥ 1, we get from (i), that

[Df,Cg]j,k = [Cf,Cg]j,k ≥ 0.

If k > j = 0, then

[Df,Cg]0,k =
(
Df
)
(0)
(
Cg
)
(k)−

(
Df
)
(k)
(
Cg
)
(0)

= [Cf,Cg]0,k + (d00 − c00)f(0)(Cg)(k).

But (d00−c00)f(0) ≥ 0 by (d) and (e), and since also (Cg)(k) =
∑∞
l=0 cklg(l) ≥

0, by (a) and (e), it follows by (i), that also [Df,Cg]0,k ≥ 0. This proves (ii).
Next, (iii) follows from (ii) and induction on n, and from noting (by induction),
that (Dnf)(j), (Cng)(j) ≥ 0 for all n in N and j in N0.
To prove (iv), we let t be a fixed number in [0,∞[, and put

Cn = 111 + t
nC, and Dn = 111 + t

nD, (n ∈ N0).

Then, for all n, Cn and Dn are positive selfadjoint operators on ℓ2(N0), which
also satisfy the requirements (a)-(d). Hence, if f, g ∈ ℓ2(N0) which satisfy (e)
and (f), we conclude from (iii), that

[(
111 + t

nD
)n
f,
(
111 + t

nC
)n
g
]
j,k
≥ 0, when j > k,

and hence, letting n→∞, we get that

[
exp(tD)f, exp(tC)g

]
j,k
≥ 0, when j > k,

as desired. �

End of Proof of Proposition 7.5. Only (iii) in Proposition 7.5 remains to be
proved. Let A,B from B

(
L2([a, b], µc)

)
be as in the first part of the proof of

Proposition 7.5. Since A is the multiplication operator associated to a positive
function on [a, b], and since B ≥ A, both A and B are positive selfadjoint
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operators on L2([a, b], µc). Let C and D be the operators in B
(
ℓ2(N0)

)
corre-

sponding to A and B respectively, via the natural Hilbert space isomorphism
between L2([a, b], µc) and ℓ2(N0), given by the orthonormal basis (ρcq)q∈N0 for
L2([a, b], µc). Then C andD are positive selfadjoint operators and by (7.22) and
(7.24), they satisfy the conditions (a)-(d) of Lemma 7.6. Now, let both f and g
be the first basis vector in the natural basis for ℓ2(N0) (i.e., f(k) = g(k) = δk,0
for all k in N0). Then (e),(f) of Lemma 7.6 are also satisfied, and hence we
obtain from (iv) of that lemma, that for all j, k in N0 such that k > j,

(
exp(tD)f

)
(j)
(

exp(tC)f
)
(k)−

(
exp(tD)f

)
(k)
(

exp(tC)f
)
(j) ≥ 0,

i.e.,
〈

exp(tB)ρc0, ρ
c
j

〉
·
〈

exp(tA)ρc0, ρ
c
k

〉
≥
〈

exp(tB)ρc0, ρ
c
k

〉
·
〈

exp(tA)ρc0, ρ
c
j

〉
.

For j = 0, we get in particular,

M(exp(tB))k,0
M(exp(tA))k,0

≤ M(exp(tB))0,0
M(exp(tA))0,0

, (k ∈ N0). (7.31)

Note here, that by (7.26),

(−1)kM(exp(−tA))k,0 = exp(−2(c+ 1)t)M(exp(tB))k,0 > 0, (k ∈ N0).

Inserting this in (7.31), it follows that

(−1)kM(exp(−tA))k,0
M(exp(tA))k,0

≤ M(exp(−tA))0,0
M(exp(tA))0,0

, (k ∈ N0). (7.32)

By (7.23) and (7.27),

M(exp(±tA))k,0 = c−
k
2

∫ b

a

exp(±tx)P ck (x) dµc(x) = c
k
2ψck(±t), (k ∈ N0).

Hence, (iii) in Proposition 7.5 follows from (7.32). �

7.8 Theorem. Let H and K be Hilbert spaces, and let a1, . . . , ar be elements
of B(H,K) such that

∑r
i=1 a

∗
i ai = c111B(H), and

∑r
i=1 aia

∗
i = 111B(K), for some

constant c in [1,∞[. Consider furthermore independent elements Y1, . . . , Yr of
GRM(n, n, 1

n ), and put S =
∑r

i=1 ai ⊗ Yi. Then for any t in [0, n2c ],

E
[

exp(−tS∗S)
]
≤ exp

(
− (
√
c− 1)2t+ (c+ 1)2 · t2n

)
· 111B(Hn). (7.33)

Proof. Consider a fixed t in [0, n2c ]. By Proposition 7.4 and Proposition 7.5 we
then have

∥∥E
[

exp(−tS∗S)
]∥∥ ≤

∞∑

q=0

|ψcq(−t)| ·
∥∥E
[
P cq (S∗S)

]∥∥

≤ ψc0(−t)
ψc0(t)

∞∑

q=0

ψcq(t)
∥∥E
[
P cq (S∗S)

]∥∥.
(7.34)
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From (7.16) in the proof of Proposition 7.4, we have here that

∞∑

q=0

ψcq(t) ·
∥∥E
[
P cq (S∗S)

]∥∥ ≤
∞∑

p=0

1
p!

(
ct
n

)p∑

π∈Sp

nk(π̂)
(
n
c

)l(π̂)−1

≤
∞∑

p=0

1
p!

(
ct
n

)p ∑

k,l∈N
k+l≤p+1

δ(p, k, l)nk
(
n
c

)l−1
,

where δ(p, k, l) was introduced in (3.6). Applying now Lemma 3.6, we get for
t in [0, n2c ], that

∞∑

q=0

ψcq(t) ·
∥∥E
[
P cq (S∗S)

]∥∥ ≤ exp
(
(n+ n

c )( ctn )2
)∫ b

a

exp
(
n
c ( ctn x)

)
dµc(x)

≤ exp
(
(c+ 1)2 · t2n

)∫ b

a

exp(tx) dµc(x).

Note here, that ψc0(t) =
∫ b
a exp(tx) dµc(x), and hence we get by (7.34), that

∥∥E
[

exp(−tS∗S)
]∥∥ ≤ exp

(
(c+ 1)2 · t2n

)
ψc0(−t)

= exp
(
(c+ 1)2 · t2n

)∫ b

a

exp(−tx) dµc(x).

But exp(−tx) ≤ exp(−ta) = exp(−t(√c + 1)2) for all x in [a, b], and hence it
follows that

∥∥E
[

exp(−tS∗S)
]∥∥ ≤ exp

(
(c+ 1)2 · t2n

)
exp(−(

√
c− 1)2t), (t ∈ [0, n2c ]).

This proves (7.33). �

7.9 Remark. By application of the method of Remark 3.7, it is easy to extend
Theorem 7.8, to the case where

r∑

i=1

a∗i ai = c111B(H), and

r∑

i=1

aia
∗
i = d111B(K),

for constants c, d such that c ≥ d > 0. In this case, one obtains that for t in
[0, n2c ],

E
[

exp(−tS∗S)
]
≤ exp

(
− (
√
c−
√
d)2t+ (c+ d)2 · t2n

)
· 111B(Hn). �
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8 Asymptotic Lower Bound on the Spectrum of S∗nSn in the Exact
Case

Let H and K be Hilbert spaces, and consider elements a1, . . . , ar of B(H,K).
Let A denote the C∗-subalgebra of B(H), generated by the family

{
a∗i aj

∣∣ i, j ∈
{1, 2, . . . , r}

}
. Consider furthermore, for each n in N, independent elements

Y
(n)
1 , . . . , Y

(n)
r of GRM(n, n, 1

n ), and define

Sn =

r∑

i=1

ai ⊗ Y (n)
i , (n ∈ N). (8.1)

In this section, we shall determine (almost surely), the asymptotic behavior of
the smallest element of the spectrum of S∗nSn, under the assumptions that A
is an exact C∗-algebra and that a1, . . . , ar satisfy the condition

r∑

i=1

a∗i ai = c111B(H) and

r∑

i=1

aia
∗
i ≤ 111B(K), (8.2)

for some constant c in [1,∞[. We start, however, by considering the simpler
case, where, instead of (8.2), a1, . . . , ar, satisfy the stronger condition

r∑

i=1

a∗i ai = c111B(H) and
r∑

i=1

aia
∗
i = 111B(K), (8.3)

for some constant c in [1,∞[. Once this simpler case has been handled, we
obtain the more general case by virtue of a dilation result.
As in Section 4, we determine first the asymptotic behavior of the smallest
eigenvalue of Vn, where

Vn =
(
Φ⊗ idn

)
(S∗nSn), (n ∈ N), (8.4)

and Φ: A →Md(C) is a completely positive mapping, for some d in N.

8.1 Lemma. Let Sn, n ∈ N, and Vn, n ∈ N, be as in (8.1) and (8.4), and
assume that a1, . . . , ar satisfy the condition (8.3). Let λmin(Vn) denote the
smallest eigenvalue of Vn (considered as an element of Mdn(C)). Then for any
ǫ in ]0,∞[, we have that

∞∑

n=1

P
(
λmin(Vn) ≤ (

√
c− 1)2 − ǫ

)
<∞.

Proof. The proof is basically the same as the proof of Lemma 4.2; the main
difference being that in this proof we apply Theorem 7.8 instead of Theorem 3.3.
Consequently, we shall not repeat all details in this proof.
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For fixed n in N, and arbitrary t in ]0,∞[, we find that

P
(
λmin(Vn) ≤ (

√
c− 1)2 − ǫ

)

= P
(

exp
(
− tλmin(Vn) + t(

√
c− 1)2 − tǫ

)
≥ 1
)

≤ exp(t(
√
c− 1)2 − tǫ) · E

[
exp

(
− tλmin(Vn)

)]

≤ exp(t(
√
c− 1)2 − tǫ) · E ◦ Trdn

[
exp(−tVn)

]
.

(8.5)

By application of Lemma 4.1(ii), we have here, that

trdn
[

exp(−tVn)
]

= trdn
[

exp
(
− t(Φ⊗ idn)(S∗nSn)

)]

≤ trdn
[(

Φ⊗ idn
)
(exp(−tS∗nSn))

]

= trd ⊗ trn
[(

Φ⊗ idn
)
(exp(−tS∗nSn))

]

= φ⊗ trn
[

exp(−tS∗nSn)
]
,

(8.6)

where φ is the state trd ◦ Φ on A. It follows here from Definition 3.1 and
Theorem 7.8, that

E
[
φ⊗ trn

(
exp(−tS∗nSn)

)]
= φ⊗ trn

(
E
[

exp(−tS∗nSn)
])

≤ exp
(
− t(√c− 1)2 + t2

n (c+ 1)2
)
,

(8.7)

for all t in ]0, n2c ]. Combining now (8.5)-(8.7), it follows that for all t in ]0, n2c ],

P
(
λmin(Vn) ≤(

√
c− 1)2 − ǫ

)

≤ dn · exp(t(
√
c− 1)2 − tǫ) · exp

(
− t(√c− 1)2 + t2

n (c+ 1)2
)

= dn · exp
(
t( tn (c+ 1)2 − ǫ)

)
.

From here, the proof is concluded exactly as the proof of Theorem 4.2. �

8.2 Proposition. Let Sn, n ∈ N, and Vn, n ∈ N, be as in (8.1) and (8.4), and
assume that a1, . . . , ar satisfy the condition (8.3). We then have

lim inf
n→∞

λmin(Vn) ≥
(√
c− 1

)2
, almost surely.

Proof. By Lemma 4.2 and the Borel-Cantelli Lemma (cf. [Bre, Lemma 3.14]),
we have for any ǫ from ]0,∞[, that

P
(
λmin(Vn) ≥ (

√
c− 1)2 − ǫ, for all but finitely many n

)
= 1,

and from this the proposition follows readily. �

The next two lemmas enable us to pass from the situation considered in Propo-
sition 8.2 to the more general situation, where it is only assumed that a1, . . . , ar
satisfy (8.2).
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8.3 Lemma. Let c be a number in [1,∞[, and put q = 2+[c], where [c] denotes
the integer part of c. Then there exist elements x1, . . . , xq in the Cuntz algebra
O2, such that

q∑

i=1

x∗i xi = c111O2 , and

q∑

i=1

xix
∗
i = 111O2 .

Proof. Recall that O2 is the unital C∗-algebra C∗(s1, s2) generated by two
operators s1, s2 satisfying that s∗i sj = δi,j111O2 , i, j ∈ {1, 2}, and that s1s

∗
1 +

s2s
∗
2 = 111O2 . Define then t1, . . . , tq−1 in O2, by the expression

tj =

{
sj−1
2 s1, if j ∈ {1, 2, . . . , q − 2},
sq−2
2 , if j = q − 1.

Then t∗i tj = δi,j111O2 , for all i, j in {1, 2, . . . , q − 1}, and

q−1∑

j=1

tjt
∗
j =

q−3∑

i=0

si2(111O2 − s2s∗2)(si2)∗ + sq−2
2 (sq−2

2 )∗ = 111O2 , (8.8)

(i.e., t1, . . . , tq−1 generates a copy of Oq−1 inside O2). Define now x1, . . . , xq
in O2, by

xi =





( c− 1

q − 2

) 1
2

ti, if i ∈ {1, 2, . . . , q − 1}
(q − 1− c

q − 2

) 1
2

111O2 , if i = q.

Then
q∑

i=1

x∗i xi = (q − 1) · c− 1

q − 2
· 111O2 +

q − 1− c
q − 2

· 111O2 = c111O2 ,

and by (8.8),

q∑

i=1

xix
∗
i =

c− 1

q − 2
· 111O2 +

q − 1− c
q − 2

· 111O2 = 111O2 .

Thus, x1, . . . , xq have the desired properties. �

8.4 Lemma. Let H and K be Hilbert spaces, and let a1, . . . , ar be elements of
B(H,K), such that

∑r
i=1 a

∗
i ai = c111B(H), and

∑r
i=1 aia

∗
i ≤ 111B(K).

Then there exist Hilbert spaces H̃, K̃, s in {r, r + 1, r + 2, . . . } and elements
ã1, . . . , ãs of B(H̃, K̃), such that the following conditions hold:
(i) H̃ ⊇ H and K̃ ⊇ K.

(ii) ãi|H =

{
ai, if 1 ≤ i ≤ r,
0, if r + 1 ≤ i ≤ s.

(iii)
∑s

i=1 ã
∗
i ãi = c111B(H̃) and

∑s
i=1 ãiã

∗
i = 111B(K̃).
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Proof. By Lemma 8.3, we may choose finitely many elements x1, . . . , xq of the
Cuntz algebra O2, such that

∑q
i=1 x

∗
i xi = c111O2 and

∑q
i=1 xix

∗
i = 111O2 . We

assume that O2 is represented on some Hilbert space L, so that x1, . . . , xr ∈
B(L). Define then

H̃ = (H⊗ L)⊕ (K ⊗ L) and K̃ = (K ⊗ L)⊕ (H⊗L).

For Hilbert spaces V ,W , an element v of B(V ,W), and an element y of B(L),
we consider v ⊗ y as an element of B(V ⊗ L,W ⊗ L) in the natural manner.
Moreover, given v11 in B(H ⊗ L,K ⊗ L), v12 in B(K ⊗ L), v21 in B(H ⊗ L)
and v22 in B(K ⊗ L,H ⊗ L), we shall consider the matrix (vij)1≤i,j≤1 as an

element of B(H̃, K̃) in the usual way. With these conventions, consider now the
following elements of B(H̃, K̃),

ãi =

(
ai ⊗ 111B(L) 0

0 0

)
, (i ∈ {1, 2, . . . , r}),

bj =

(
0 (111B(K) −

∑r
i=1 aia

∗
i )

1
2 ⊗ xj

0 0

)
, (j ∈ {1, 2, . . . , q}),

ci,j,k =

(
0 0
0 1√

c
· a∗i ⊗ (xjxk)

)
, (i ∈ {1, 2, . . . , r}, j, k ∈ {1, 2, . . . , q}).

It follows then by direct calculation, that

r∑

i=1

ã∗i ãi +

q∑

j=1

b∗jbj +

r∑

i=1

q∑

j,k=1

c∗i,j,kci,j,k

=

([∑r
i=1 a

∗
i ai
]
⊗ 111B(L) 0

0
[
c(111B(K) −

∑r
i=1 aia

∗
i ) + c

∑r
i=1 aia

∗
i

]
⊗ 111B(L)

)

= c111B(H̃),

and that

r∑

i=1

ãiã
∗
i +

q∑

j=1

bjb
∗
j +

r∑

i=1

q∑

j,k=1

ci,j,kc
∗
i,j,k

=

([∑r
i=1 aia

∗
i + (111B(K) −

∑r
i=1 aia

∗
i )
]
⊗ 111B(L) 0

0
[
1
c

∑r
i=1 a

∗
i ai
]
⊗ 111B(L)

)

= 111B(K̃).

Thus, if we put s = r + q + rq2, and let ãr+1, ãr+2, . . . , ãs, be new names for
the elements in the set {bj | j ∈ {1, . . . , q}} ∪ {ci,j,k | i ∈ {1, . . . , r}, j, k ∈
{1, . . . , q}}, then it follows that ã1, ã2, . . . , ãs satisfy condition (iii).
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Choosing a fixed unit vector ξ in L, we have natural embeddings ιH : H → H̃
and ιK : K → K̃ given by the equations

ιH(h) = (h⊗ ξ)⊕ 0, (h ∈ H),

ιK(k) = (k ⊗ ξ)⊕ 0, (k ∈ K).

This justifies (i), and moreover, it is straightforward to check, that under the
identifications of H with ιH(H) and K with ιK(K), condition (ii) is satisfied.
This concludes the proof. �

8.5 Proposition. Let Sn, n ∈ N, and Vn, n ∈ N, be as in (8.1) and (8.4), and
assume now that a1, . . . , ar satisfy the condition (8.2). Then

lim inf
n→∞

λmin(Vn) ≥
(√
c− 1

)2
, almost surely.

Proof. By Lemma 8.4, we may choose Hilbert spaces H̃, K̃, s in {r, r +
1, . . . , } and elements ã1, ã2, . . . , ãs of B(H,K), such that conditions (i)-(iii)
of Lemma 8.4 are satisfied. If r < s, then for each n in N we choose additional

elements Y
(n)
r+1, . . . , Y

(n)
s of GRM(n, n, 1

n ), such that Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
s are

independent. We then define

S̃n =

s∑

i=1

ãi ⊗ Y (n)
i , (n ∈ N).

Recall from (8.4), that

Vn =
(
Φ⊗ idn

)
(S∗nSn), (n ∈ N),

where Φ: A →Md(C) is a completely positive mapping from the C∗-subalgebra
A of B(H) generated by {a∗i aj | i, j ∈ {1, 2, . . . , r}}, into the matrix algebra
Md(C). By [Pa, Theorem 5.2], there exists a completely positive mapping
Φ1 : B(H)→Md(C) extending Φ. Note that since Φ is unital, so is Φ1.
Consider next the orthogonal projection PH of H̃ onto H. Then the mapping

CPH : b 7→ PHbPH : B(H̃)→ PHB(H̃)PH ≃ B(H),

is unital completely positive. Hence, so is the mapping Φ2 : B(H̃) → Md(C),
given by

Φ2(b) = Φ1(PHbPH) = Φ1 ◦ CPH(b), (b ∈ B(H̃)).

Thus, if we define

Ṽn =
(
Φ2 ◦ idn)(S̃∗nS̃n), (n ∈ N),

then it follows from Lemma 8.4(iii) and Proposition 8.2, that

lim inf
n→∞

λmin(Ṽn) ≥
(√
c− 1

)2
, almost surely. (8.9)
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However, by Lemma 8.4(ii), we have here that

Ṽn =
(
Φ2 ⊗ idn

)[ s∑

i,j=1

ã∗i ãj ⊗
(
Y

(n)
i

)∗
Y

(n)
j

]
=

s∑

i,j=1

Φ2

(
ã∗i ãj

)
⊗
(
Y

(n)
i

)∗
Y

(n)
j

=

s∑

i,j=1

Φ1

(
PHã

∗
i ãjPH

)
⊗
(
Y

(n)
i

)∗
Y

(n)
j =

r∑

i,j=1

Φ1(a∗i aj)⊗
(
Y

(n)
i

)∗
Y

(n)
j

=
r∑

i,j=1

Φ(a∗i aj)⊗
(
Y

(n)
i

)∗
Y

(n)
j = Vn.

Therefore (8.9) yields the desired conclusion. �

It remains now to show that we can replace Vn in Proposition 8.5 by S∗nSn
itself. Before proceeding with this task, we draw attention to the following
simple observation:

8.6 Lemma. For each n in N, let Bn be a unital C∗-algebra, and let bn be
an element of Bn. Then for any R in [0,∞[, the following two conditions are
equivalent:
(i) lim sup

n→∞
‖bn‖ ≤ R.

(ii) lim sup
n→∞

max(sp(bn)) ≤ R, and lim inf
n→∞

min(sp(bn)) ≥ −R.

Proof. This is clear, since, for each n, ‖bn‖ is the largest of the two numbers
max(sp(bn)) and −min(sp(bn)). �

8.7 Theorem. Let a1, . . . , ar be elements of B(H,K), such that
∑r

i=1 a
∗
i ai =

c111B(H) and
∑r

i=1 aia
∗
i ≤ 111B(K), for some constant c in [1,∞[. Assume, in ad-

dition, that the unital C∗-subalgebra A of B(H), generated by the set {a∗i aj |
i, j,∈ {1, 2, . . . , r}}, is exact. Consider furthermore, for each n in N, indepen-

dent elements Y
(n)
1 , . . . , Y

(n)
r of GRM(n, n, 1

n ), and put Sn =
∑r

i=1 ai ⊗ Y
(n)
i ,

n ∈ N. We then have

lim inf
n→∞

min
[
sp(S∗nSn)

]
≥ (
√
c− 1)2, almost surely. (8.10)

Proof. Put E = span{a∗i aj | i, j ∈ {1, 2, . . . , r}}, and note that x∗ ∈ E for
all x in E, and that 111A = c−1

∑r
i=1 a

∗
i ai ∈ E. Thus, E is a finite dimensional

operator system, and since A is exact, it follows thus from Proposition 4.4,
that for any ǫ from ]0,∞[, there exist d in N and a unital completely positive
mapping Φ: A → Md(C), such that

∥∥(Φ⊗ idn
)
(x)
∥∥ ≥ (1− ǫ)‖x‖, (n ∈ N, x ∈Mn(E)). (8.11)

Consider now a fixed ǫ from ]0,∞[, let d, Φ be as described above, and define

Vn =
(
Φ⊗ idn

)
(S∗nSn), (n ∈ N).
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Recall then from Proposition 4.3 and Proposition 8.5, that

lim sup
n→∞

max
[
sp(Vn)

]
≤ c+ 1 + 2

√
c, almost surely,

lim inf
n→∞

min
[
sp(Vn)

]
≥ c+ 1− 2

√
c, almost surely,

and hence that

lim sup
n→∞

max
[
sp
(
Vn − (c+ 1)111dn

)]
≤ 2

√
c, almost surely,

lim inf
n→∞

min
[
sp
(
Vn − (c+ 1)111dn

)]
≥ −2

√
c, almost surely.

By Lemma 8.6, this means that

lim sup
n→∞

∥∥Vn − (c+ 1)111dn
∥∥ ≤ 2

√
c, almost surely. (8.12)

Note here, that since S∗nSn − (c + 1)111A⊗Mn(C) ∈ Mn(E), for all n, it follows
from (8.11), that

∥∥S∗nSn − (c+ 1)111A⊗Mn(C)

∥∥ ≤ (1− ǫ)−1
∥∥(Φ⊗ idn

)[
S∗nSn − (c+ 1)111A⊗Mn(C)

]∥∥
= (1− ǫ)−1

∥∥Vn − (c+ 1)111dn
∥∥,

for all n in N. Hence (8.12) implies that

lim sup
n→∞

∥∥S∗nSn − (c+ 1)111A⊗Mn(C)

∥∥ ≤ (1− ǫ)−1 · 2√c, almost surely.

Since this holds for arbitrary ǫ from ]0,∞[, it follows that actually

lim sup
n→∞

∥∥S∗nSn − (c+ 1)111A⊗Mn(C)

∥∥ ≤ 2
√
c, almost surely.

By Lemma 8.6, this implies, in particular, that

lim inf
n→∞

min
[
sp(S∗nSn)− (c+ 1)

]
≥ −2

√
c, almost surely,

and this proves (8.10). �

8.8 Remark. As for the upper bound (cf. Section 4), Theorem 8.7 does not, in
general, hold without the condition, that the C∗-algebra generated by {a∗i aj |
1 ≤ i, j ≤ r} be exact. In fact, for any c in ]1,∞[, it is possible to choose
a finite set of elements a1, . . . , ar of B(H), for an infinite dimensional Hilbert
space H, such that

r∑

i=1

a∗i ai = c111B(H) and
r∑

i=1

aia
∗
i = 111B(H),
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but at the same time

P
(

0 ∈ sp(S∗nSn), for all but finitely many n
)

= 1,

where Sn =
∑r

i=1 ai ⊗ Y
(n)
i , as in (8.1). The proof of this is, however, much

more complicated than the corresponding proof of the possible violation for the
upper bound (cf. Proposition 4.9(ii)), and it will be presented elsewhere. �

9 Comparison of Projections in Exact C∗-algebras and states on
the K0-group

In [Haa], the first named author proved that quasitraces on exact, unital C∗-
algebras are traces. This result implies the following two theorems

9.1 Theorem. (cf. [Han], [Haa]) If A is an exact, unital, stably finite C∗-
algebra, then A has a tracial state.

9.2 Theorem. (cf. [BR, Corollary 3.4]) If A is an exact, unital C∗-
algebra, then every state on K0(A) comes from a tracial state on A.

The proof given in [Haa] of the fact that quasitraces in exact unital C∗-algebras
are traces, is based on an ultra-product argument, involving ultra products of
finite AW ∗-algebras. The aim of this section is to show that Theorem 9.1 and
Theorem 9.2 can be obtained from the random matrix results of the previous
sections, without appealing to results on quasitraces and AW ∗-algebras.
We start by recapturing some of the standard notions and notation in
connection with comparison theory for projections in C∗-algebras (see e.g.
[Bl1],[Bl2],[Cu] and [Go2]). For a C∗-algebra A, we put

M∞(A) =
⋃

n∈N

Mn(A),

where elements are identified via the (non-unital) embeddings Mn(A) →֒
Mn+1(A), given by addition of a row and a column of zeroes. Given two
projections p, q in M∞(A), we say, as usual, that p and q are (Murray-von
Neumann) equivalent, and write p ∼ q, if there exists a u in M∞(A), such that
u∗u = p and uu∗ = q. We let V (A) denote the set of equivalence classes 〈p〉
of projections p in M∞(A), w.r.t. Murray-von Neumann equivalence, and we
equip V (A) with an order structure and an addition, as follows: For projec-
tions p, q in M∞(A), we write 〈q〉 ≤ 〈p〉 if q ≺ p, i.e., if q is equivalent to a
sub-projection of p. Moreover, we define 〈p〉+〈q〉 to be 〈p′+q′〉, where p′, q′ are
projections in M∞(A), satisfying that p′ ∼ p, q′ ∼ q and p′ ⊥ q′. Finally, for k
in N, we let k〈p〉 denote the equivalence class 〈p〉+ · · ·+ 〈p〉 (k summands).
Recall that for a unital C∗-algebra A, K0(A) is the additive group obtained
from the semi group V (A), via the Grothendieck construction (cf. [Bl1]), and
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that K0(A)+ denotes the range of V (A) under the natural map

ρ : V (A)→ K0(A).

In particular, we have that K0(A) = K0(A)+ −K0(A)+.
For a projection p in M∞(A), we put

[p] = ρ(〈p〉).

Note then, that for projections p, q in M∞(A), [p] = [q] if and only if there
exists a projection r in M∞(A), such that 〈p〉+ 〈r〉 = 〈q〉+ 〈r〉.
The four lemmas 9.3-9.6 below are well known and easy, but since we have not
been able to find precise references in the literature, we have included proofs
of these lemmas.

9.3 Lemma. Let A be a C∗-algebra, and let p, q be projections in A. Then
with I(p) the ideal in A generated by p, the following three conditions are
equivalent:
(i) 〈q〉 ≤ k〈p〉, for some k in N.
(ii) q ∈ I(p).
(iii) q ∈ I(p).

Proof. (i) ⇒ (ii) : Assume that (i) holds, i.e., that there exists k in N and u in
Mk(A), such that

u∗u =

(
q 0
0 0

)
and uu∗ ≤



p 0

. . .

0 p


 .

This implies that u is of the form

u =



u11 0 · · · 0

...
...

. . .
...

uk1 0 · · · 0


 ,

where u11, u21, . . . , uk1 ∈ pAq. It follows thus, that

q =

k∑

j=1

u∗j1uj1 =

k∑

j=1

u∗j1puj1 ∈ I(p),

as desired.
(ii) ⇒ (iii) : This is trivial.
(iii) ⇒ (i) : Assume that (iii) holds. Then there exist k in N and a1, . . . , ak,
b1, . . . , bk in A, such that

∥∥∥
k∑

j=1

ajpbj − q
∥∥∥ < 1. (9.1)
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Thus, by [Go2, 10.7],

(
q 0
0 0

)
≺



p 0

. . .

0 p


 in Mk(A),

i.e., 〈q〉 ≤ k〈p〉. �

9.4 Lemma. Let M be a von Neumann algebra, and let p be a projection in
M. Then any σ-weakly lower semi-continuous trace

τ :
(
pMp

)
+
→ [0,∞],

has an extension to a σ-weakly lower semi-continuous trace τ̃ onM+.

Proof. We can assume that p 6= 0. Choose then a maximal family (pi)i∈I of
pairwise orthogonal projections in M, such that pi ≺ p for all i in I. Then, by
standard comparison theory, it follows that

∑

i∈I
pi = c(p),

where c(p) denotes the central support of p in M. Choose next, for each i in
I, a partial isometry vi in M, such that

v∗i vi = pi and viv
∗
i ≤ p, (i ∈ I).

Define then τ̃ : M+ → [0,∞], by the equation

τ̃ (a) =
∑

i∈I
τ(viav

∗
i ), (a ∈ M+).

Clearly τ̃ is additive, homogeneous and σ-weakly lower semi-continuous. To
show that τ̃ has the trace property, note first that since pvi = vi for all i, we
have also that c(p)vi = vi for all i. Since c(p) is in the center of M, it follows
thus, that for any x in M,

τ̃(xx∗) =
∑

i∈I
τ
(
vixx

∗v∗i
)

=
∑

i∈I
τ
(
c(p)vixx

∗v∗i
)

=
∑

i∈I
τ
(
vixc(p)x

∗v∗i
)

=
∑

i∈I

∑

j∈I
τ
(
(vixv

∗
j )(vjx

∗v∗i )
)
,

and similarly

τ̃ (x∗x) =
∑

j∈I

∑

i∈I
τ
(
(vjx

∗v∗i )(vixv
∗
j )
)
.

But by the trace property of τ on pMp, we have that

τ
(
(vixv

∗
j )(vjx

∗v∗i )
)

= τ
(
(vjx

∗v∗i )(vixv
∗
j )
)
,
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for all i, j, and since all the terms in the above sums are positive, we can
permute their order without changing the sums, and thus obtain

τ̃ (xx∗) = τ̃ (x∗x).

Taken together, we have verified that τ̃ is a σ-weakly lower semi-continuous
trace onM+, and it remains thus to show that τ̃ coincides with τ on

(
pMp

)
+

.

Given a from
(
pMp

)
+

, we have that via
1
2 ∈ pMp, for all i, and therefore

τ̃ (a) =
∑

i∈I
τ
(
(via

1
2 )(a

1
2 v∗i )

)
=
∑

i∈I
τ
(
a

1
2 v∗i via

1
2

)
= τ

(
a

1
2 c(p)a

1
2

)
= τ(a),

as desired. �

9.5 Lemma. Let M be a von Neumann algebra, and let 111 denote the unit of
M. Let furthermore p, q be projections in M, that satisfy the following two
conditions:
(i) 111 ∈ I(p).
(ii) τ(q) ≤ τ(p), for any normal, tracial state τ on M.
Then q ≺ p.

Proof. LetM = eM⊕ (111− e)M, be the decomposition ofM into a finite part
eM and a properly infinite part (111− e)M, by a central projection e. Since any
normal, tracial state onM must vanish on (111−e)M, condition (ii) is equivalent
to the condition

τ(eq) ≤ τ(ep), for any normal tracial state τ on eM.

By comparison theory for finite von Neumann algebras (cf. e.g. [KR, Theo-
rem 8.4.3(vii)]), this condition implies that

eq ≺ ep in eM, (9.2)

By Lemma 9.3, condition (i) implies that there exists a k in N, such that

111⊗ e11 ≺ p⊗ 111k in Mk(M),

where (eij)1≤i,j≤k are the usual matrix units in Mk(C). Therefore, we have
also that

(111− e)⊗ e11 ≺ (111− e)p⊗ 111k in Mk((111− e)M).

At the same time, since 111 − e is a properly infinite projection in M, we have
that

(111− e)⊗ e11 ∼ (111− e)⊗ 111k in Mk((111− e)M).

It follows thus, that

(111− e)q⊗111k ≤ (111− e)⊗111k ∼ (111− e)⊗ e11 ≺ (111− e)p⊗111k in Mk((111− e)M),
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and by [KR, Exercise 6.9.14], this implies that

(111− e)q ≺ (111− e)p in (111− e)M. (9.3)

Combining (9.2) and (9.3), it follows that q ≺ p, as desired. �

9.6 Lemma. LetM be a von Neumann algebra, and let p, q be projections in
M. Then the following two conditions are equivalent
(i) q ≺ p.
(ii) q ∈ I(p), and τ(q) ≤ τ(p) for every σ-weakly lower semi-continuous trace
τ on M+.

Proof. Clearly (i) implies (ii). To show that (ii) implies (i), assume that (ii)
holds. By Lemma 9.3 there exists then a k in N, such that 〈q〉 ≤ k〈p〉, i.e., such
that

q ⊗ e11 ∼ q′ ≤ p⊗ 111k,

for some projection q′ in Mk(M). Consider now the von Neumann algebra

N = Mk(pMp),

with unit 111N = p⊗111k. Set p′ = p⊗ e11. Then p′, q′ are both projections in N ,
and

111N ∈ IN (p′), (9.4)

where IN (p′) is the ideal in N generated by p′.
We show next, that

τ(q′) ≤ τ(p′), for any normal, tracial state τ on N . (9.5)

Indeed, if τ is a normal, tracial state on N , then by Lemma 9.4, the restriction
τ|N+

of τ to N+ can be extended to a σ-weakly lower semi-continuous trace τ̃
on Mk(M)+. Then the mapping

a 7→ τ̃ (a⊗ e11), (a ∈ M+),

is a σ-weakly lower semi-continuous trace on M+, and hence the assumption
(ii) yields that

τ̃ (q ⊗ e11) ≤ τ̃ (p⊗ e11).

Since q′ ∼ q ⊗ e11, p′ = p⊗ e11 and p′, q′ ∈ N , it follows thus that

τ(q′) = τ̃ (q′) = τ̃ (q ⊗ e11) ≤ τ̃(p⊗ e11) = τ̃ (p′) = τ(p′),

which proves (9.5).
Applying now Lemma 9.5, it follows from (9.4) and (9.5), that q′ ≺ p′ in N ,
and hence that

q ⊗ e11 ∼ q′ ≺ p′ = p⊗ e11 in Mk(M),

which implies that q ≺ p in M. �
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9.7 Proposition. Let A be a C∗-algebra, and let p, q be projections in A.
Then the following two conditions are equivalent:
(i) q ≺ p in A∗∗.
(ii) τ(q) ≤ τ(p), for every (norm) lower semi-continuous trace τ on A+.

Proof. (i) ⇒ (ii) : Assume that q ≺ p in A∗∗, and choose u in A∗∗, such that
u∗u = q and uu∗ ≤ p. Then ‖u‖ ≤ 1, and hence by the Kaplansky Density
Theorem, we may choose a net (uβ)β∈B from A, such that ‖uβ‖ ≤ 1, for all
β in B, and uβ → u in the strong (operator) topology.
Define now: vβ = puβq, (β ∈ B), and note that vβ → puq = u in the strong
(operator) topology, so that v∗βvβ → u∗u = q in the weak (operator) topology.
Since ‖vβ‖ ≤ 1 for all β, this implies that actually

v∗βvβ → q in the σ-weak topology.

Note also, that since ‖uβ‖ ≤ 1 for all β,

vβv
∗
β ≤ p, (β ∈ B). (9.6)

Recall now that the σ-weak topology on A∗∗ is the weak* topology i.e., the
σ(A∗∗,A∗)-topology, and hence its restriction to A is the weak topology, i.e.,
the σ(A,A∗)-topology. Since vβ ∈ A for all β, we have thus, that

v∗βvβ → q in the σ(A,A∗)-topology.

Consider then the convex hull K of {v∗βvβ | β ∈ B}. Then q ∈ K−σ(A,A∗),
but since convex sets in a Banach space have the same closure in weak and
norm topology (cf. [KR, Theorem 1.3.4]), it follows that actually q ∈ K−norm.
Hence, we may choose a sequence (wn)n∈N from K, which converges to q in
norm. Then, for any (norm) lower semi-continuous trace τ : A+ → [0,∞],

τ(q) ≤ lim inf
n→∞

τ(wn) ≤ sup
β∈B

τ(v∗βvβ) = sup
β∈B

τ(vβv
∗
β) ≤ τ(p), (9.7)

and this proves (i).
(ii) ⇒ (i) : Assume (ii) holds. We set out to show that condition (ii) in
Lemma 9.6 is satisfied, in the case M = A∗∗. Consider first the function
τ0 : A+ → [0,∞], defined by

τ0(a) =

{
0, if a ∈ IA(p)+,

∞, if a ∈ A+ \ IA(p)+.

Then τ0 is a (norm) lower semi-continuous trace on A+, and hence the as-
sumption (ii) yields that τ0(q) ≤ τ0(p) = 0, which means that q ∈ IA(p)+.
According to Lemma 9.3, this implies that actually q ∈ IA(p) ⊆ IA∗∗(p).
Note next, that for any σ-weakly lower semi-continuous trace τ on (A∗∗)+, the
restriction τ|A+

is a (norm) lower semi-continuous trace on A, and hence, by
the assumption (ii), τ(q) ≤ τ(p).
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Taken together, we have verified that the projections p, q satisfy the condition
(ii) in Lemma 9.6, in the case M = A∗∗, and hence this lemma yields that
q ≺ p in A∗∗, as desired. �

9.8 Corollary. Let A be a C∗-algebra, and let p, q be projections inA. Then
the following two conditions are equivalent:
(i) ∃k ∈ N : k〈q〉 ≤ (k − 1)〈p〉 in V (A∗∗).
(ii) ∃ǫ > 0: τ(q) ≤ (1− ǫ)τ(p), for any (norm) lower semi-continuous trace τ
on A+.

Proof. (i) ⇒ (ii) : Assume that (i) holds, and define, for the existing k, q′ =

q ⊗ 111k and p′ = p⊗
(∑k−1

i=1 eii
)
. Then q′, p′ are projections in Mk(A), and the

assumption (i) implies that

q′ ≺ p′ in Mk(A∗∗). (9.8)

Given now any (norm) lower semi-continuous trace τ on A+, note that the
expression

τk(a) =

k∑

i=1

τ(aii), (a = (aij) ∈Mk(A)+),

defines a (norm) lower semi-continuous trace τ on Mk(A)+. Thus, by Propo-
sition 9.7, (9.8) implies that τk(q′) ≤ τk(p′), i.e., that kτ(q) ≤ (k−1)τ(p). This
shows that (ii) holds for any ǫ in ]0, 1

k ].
(ii)⇒ (i) : Assume that (ii) holds, and choose, for the existing ǫ, a k in N such
that 1

k ≤ ǫ. Define then, for this k, q′ and p′ as above.
Now, for any (norm) lower semi-continuous trace τ on Mk(A)+, the mapping

a 7→ τ(a⊗ e11), (a ∈ A+),

is a (norm) lower semi-continuous trace on A+, and thus the assumption (ii)
yields that

τ(q ⊗ e11) ≤ (1 − ǫ)τ(p⊗ e11) ≤ k−1
k · τ(p ⊗ e11),

and hence that

τ(q′) = k · τ(q ⊗ e11) ≤ (k − 1) · τ(p⊗ e11) = τ(p′).

According to Proposition 9.7, this means that q′ ≺ p′ in Mk(A∗∗)(= Mk(A)∗∗),
which shows that (i) holds. �

9.9 Lemma. Let A be a C∗-algebra, and let p, q be projections in A. Then
the following two conditions are equivalent:
(i) There exists an ǫ in ]0,∞[, such that

τ(q) ≤ (1− ǫ)τ(p), for any (norm) lower semi-continuous trace τ on A+.
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(ii) There exist ǫ in ]0,∞[, r in N and a1, . . . , ar in A, such that

r∑

i=1

a∗i ai = q, and

r∑

i=1

aia
∗
i ≤ (1− ǫ)p.

Proof. The proof follows the ideas of the first section of [Haa].
Note first that (ii) clearly implies (i). To show the converse implication, assume
that (i) holds. Then, by Corollary 9.8, there exists a k in N, such that

q ⊗ 111k ≺ p⊗
(∑k−1

i=1 eii
)

in Mk(A∗∗),

i.e., such that

u∗u = q ⊗ 111k, and uu∗ ≤ p⊗ (
∑k−1

i=1 eii
)
, (9.9)

for some u = (uij)1≤i,j≤k in Mk(A∗∗). For this u, we have then that

k∑

j=1

k∑

i=1

u∗ijuij =
k∑

j=1

(u∗u)jj = kq,

and that
k∑

i=1

k∑

j=1

uiju
∗
ij =

k∑

i=1

(uu∗)ii ≤ (k − 1)p.

Thus, if b1, . . . , bk2 ∈ A∗∗ denote the elements 1√
k
uij , i, j ∈ {1, 2, . . . , k}, listed

in any fixed order, then we have that

k2∑

i=1

b∗i bi = q, and

k2∑

i=1

bib
∗
i ≤ k−1

k p.

Note also, that (9.9) implies that bi ∈ pA∗∗q for all i. Consider then the subset
K of A⊕A, defined by

K =
{(∑r

i=1 c
∗
i ci, g +

∑r
i=1 cic

∗
i

) ∣∣∣ r ∈ N, c1, . . . , cr ∈ pAq, g ∈ (pAp)+
}
.

Then K is clearly closed under addition and multiplication by a non-negative
scalar, and thus K is a convex cone in A⊕A.
Recall next, that the σ-strong∗ topology on a von Neumann algebra M, is
generated by the semi-norms

x 7→ ϕ(x∗x+ xx∗)
1
2 , (ϕ ∈ (M∗)+).

Since the σ-strong∗ continuous functionals onM are also σ-weakly continuous
(i.e., belong toM∗; cf. [Ta, Lemma II.2.4]), any convex set inM has the same
closure in σ-strong∗ and σ-weak topology. In particular it follows that

pAq is σ-strong∗ dense in pA∗∗q, and (pAp)+ is σ-strong∗ dense in (pA∗∗p)+.
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Thus, we may choose a net (cα1 , . . . , c
α
k2 , gα)α∈A in

[
⊕k2

j=1 pAq
]
⊕ (pAp), such

that
• cαi → bi, in the σ-strong∗ topology, for all i in {1, 2, . . . , k2},
• gα ≥ 0, for all α,

• gα → k−1
k p−∑k2

i=1 bib
∗
i , in the σ-strong∗ topology.

It follows then that

lim
α

( k2∑

i=1

(cαi )∗cαi
)

= q, σ-weakly,

and that

lim
α

(
gα +

k2∑

i=1

cαi (cαi )∗
)

= k−1
k p, σ-weakly.

But since the σ-weak topology on A∗∗ is just the weak∗-topology (i.e., the
σ(A∗∗,A∗)-topology), its restriction to A is the weak topology (i.e., the
σ(A,A∗)-topology) on A. It follows thus that

(
q, k−1

k p
)
∈ K−σ(A⊕A,A∗⊕A∗).

But convex sets in a Banach space have the same closure in weak and norm
topology (cf. [KR, Theorem 1.3.4]), so it follows that in fact

(
q, k−1

k p
)
∈ K−norm. (9.10)

Since (1 − δ)−1
(
k−1
k + δ

)
→ k−1

k < 1, as δ → 0, we may choose δ, ǫ in ]0, 1[,
such that

(1 − δ)−1
(
k−1
k + δ

)
= 1− ǫ.

By (9.10), there exist then r in N, c1, . . . , cr in pAq and g in (pAp)+, such that
∥∥∥q −

∑r
i=1c

∗
i ci

∥∥∥ < δ and
∥∥∥k−1

k p− g −
(∑r

i=1 cic
∗
i

)∥∥∥ < δ. (9.11)

The first inequality in (9.11) implies that
∑r

i=1 c
∗
i ci is invertible in the C∗-

algebra qAq. Let h ∈ (qAq)+ denote the inverse of
∑r

i=1 c
∗
i ci in qAq. Since

(1− δ)q ≤
r∑

i=1

c∗i ci ≤ (1 + δ)q,

it follows then that

(1 + δ)−1q ≤ h ≤ (1− δ)−1q. (9.12)

Define now: ai = cih
1
2 , i ∈ {1, 2, . . . , r}. Then

∑r
i=1 a

∗
i ai = q, and moreover,

by (9.12) and the second inequality in (9.11),

r∑

i=1

aia
∗
i =

r∑

i=1

cihc
∗
i ≤ (1 − δ)−1

r∑

i=1

cic
∗
i ≤ (1− δ)−1

(
g +

r∑

i=1

cic
∗
i

)

≤ (1 − δ)−1
(
k−1
k + δ

)
p = (1− ǫ)p.
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Thus, it follows that (ii) holds. �

9.10 Theorem. Let A be an exact C∗-algebra, and let p, q be projections in
A. Assume that there exists ǫ in ]0,∞[, such that

τ(q) ≤ (1 − ǫ)τ(p)

for any (norm) lower semi-continuous trace τ : A+ → [0,∞].
Then there exists n in N, such that

q ⊗ 111n ≺ p⊗ 111n in Mn(A).

Proof. By Lemma 9.9, we get (after multiplying the ai’s from Lemma 9.9(ii)

by (1− ǫ)− 1
2 ), that there exist c in ]1,∞[, r in N and a1, . . . , ar in A, such that

r∑

i=1

a∗i ai = cq, and
r∑

i=1

aia
∗
i ≤ p. (9.13)

We may assume that A is a C∗-subalgebra of B(H) for some Hilbert space
H. Then (9.13) implies that we may consider a1, . . . , ar as elements of
B(q(H), p(H)), and that

r∑

i=1

a∗i ai = c111q(H), and

r∑

i=1

aia
∗
i ≤ 111p(H).

Moreover, the set
{
a∗i aj

∣∣ i, j ∈ {1, 2, . . . , r}
}

is contained in the exact, uni-
tal C∗-algebra qAq. Choosing now, for each n in N, independent elements

Y
(n)
1 , . . . , Y

(n)
r of GRM(n, n, 1

n ), it follows from Theorem 8.7, that with

Sn =

r∑

i=1

ai ⊗ Y (n)
i , (n ∈ N),

we have that

lim inf
n→∞

[
min

{
sp(Sn(ω)∗Sn(ω))

}]
≥
(√
c− 1

)2
, for almost all ω in Ω.

In particular, there exists one(!) ω in Ω, and an n in N, such that Sn(ω)∗Sn(ω)
is invertible in the C∗-algebra Mn(qAq). For this pair (ω, n), we define

u = Sn(ω)
[
Sn(ω)∗Sn(ω)

]− 1
2 ,

where the inverse is formed w.r.t. Mn(qAq). Then u ∈Mn(pAq), and

u∗u = 111q(H) ⊗ 111n = q ⊗ 111n. (9.14)

Moreover, uu∗ ∈Mn

(
B(p(H))

)
, and since u∗u is a projection in Mn

(
B(q(H))

)
,

uu∗ is a projection in Mn

(
B(p(H))

)
, so that

uu∗ ≤ 111p(H) ⊗ 111n = p⊗ 111n. (9.15)

Combining (9.14) and (9.15), we obtain the desired conclusion. �
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9.11 Corollary. If A is an exact, unital and simple C∗-algebra, and p, q are
projections in A, such that p 6= 0 and τ(q) < τ(p) for all tracial states τ on A,
then for some n in N

q ⊗ 111n ≺ p⊗ 111n in Mn(A). (9.16)

Proof. By simplicity of A, τ(p) > 0 for all tracial states τ on A, and hence by
weak* compactness of the set of tracial states on A, there exists ǫ in ]0,∞[,
such that

τ(q) ≤ (1− ǫ)τ(p),

for all tracial states τ onA. By the assumptions onA, A is algebraically simple.
Hence, every non-zero trace τ : A+ → [0,∞] is either equal to +∞ on all of
A+ \{0}, or proportional to a tracial state. Hence we can apply Theorem 9.10.

�

9.12 Remark. In the “inequality” (9.16) in Corollary 9.11, the tensoring with
111n can in general not be avoided. This follows from Villadsen’s result in [Vi]
that there exist nuclear (and hence exact) unital simple C∗-algebras with weak
perforation. Recall that a unital C∗-algebra A has weak perforation, if there
exists x in K0(A), such that x /∈ K0(A)+, but nx ∈ K0(A)+ \ {0}, for some
n in N. To see how Villadsen’s result implies, that we cannot, in general,
avoid tensoring with 111n in (9.16), let A be a unital exact simple C∗-algebra,
and assume that x ∈ K0(A), such that x /∈ K0(A)+ and nx ∈ K0(A)+ \ {0},
for some positive integer n. Write then x in the form x = [p] − [q], where
p, q are projections in Mk(A) for some k in N. By the assumption that nx ∈
K0(A)+ \ {0}, and the simplicity of A, it is not hard to deduce that

(τ ⊗ trk)(p) > (τ ⊗ trk)(q),

for all tracial states τ on A, and hence τ̃ (p) > τ̃ (q) for all tracial states τ̃ on
Mk(A). However, since x /∈ K0(A)+, q cannot be equivalent to a sub-projection
of p. �

9.13 Theorem. Let A be a unital, exact C∗-algebra. Then the following two
conditions are equivalent:
(i) A has no tracial states.
(ii) For some n in N there exist projections p, q in Mn(A), such that

p ⊥ q and p ∼ q ∼ 111A ⊗ 111n.

Proof. Clearly, (ii) implies (i). To show the converse implication, assume that
(i) holds, and consider then the two projections p′, q′ in M2(A) given by

p′ =

(
111A 0
0 0

)
, and q′ =

(
111A 0
0 111A

)
.
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Since A has no tracial states, A∗∗ has no normal tracial states, and hence A∗∗
is a properly infinite von Neumann algebra. Therefore,

〈111A〉 = 4〈111A〉 in V (A∗∗),

which implies that
〈p′〉 = 2〈q′〉 in V

(
M2(A∗∗)

)
.

Hence by Corollary 9.8 and Theorem 9.10, there exists an n in N, such that

q′ ⊗ 111n ≺ p′ ⊗ 111n in M2n(A).

Here, p′ ⊗ 111n ∼
(

111A ⊗ 111n 0
0 0

)
, and thus there exists u in M2n(A), such that

u∗u =

(
111A ⊗ 111n 0

0 111A ⊗ 111n

)
, and uu∗ ≤

(
111A ⊗ 111n 0

0 0

)
. (9.17)

The inequality in (9.17) implies that u has the form

u =

(
u11 u12

0 0

)
,

for suitable u11, u12 from Mn(A). The equality in (9.17) yields then subse-
quently that

u∗11u11 = u∗12u12 = 111A ⊗ 111n, and u∗11u12 = 0.

Defining now
p = u11u

∗
11 and q = u12u

∗
12,

it follows that p, q are orthogonal projections in Mn(A), such that p ∼ q ∼
111A ⊗ 111n. This shows that (ii) holds. �

In particular, Theorem 9.13 implies the validity of Theorem 9.1:

9.14 Corollary. If A is an exact, unital, stably finite C∗-algebra, then A
has a tracial state.

Proof. This is an obvious consequence of Theorem 9.13. �

Consider next an arbitrary unital C∗-algebra A. A function ϕ : V (A) → R is
said to be a state on V (A), if it satisfies the following three conditions:
• ϕ(x) ≥ 0, for all x in V (A).
• ϕ(x + y) = ϕ(x) + ϕ(y), for all x, y in V (A).
• ϕ

(
〈111A〉

)
= 1.

Similarly, a function ψ : K0(A)→ R is said to be a state on K0(A), if it satisfies
the conditions:
• ψ(z) ≥ 0, for all z in K0(A)+.
• ψ(z + w) = ψ(z) + ψ(w), for all z, w in K0(A).
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• ψ
(
[111A]

)
= 1.

The set of states on V (A) (resp. K0(A)) is denoted by S(V (A)) (resp.
S(K0(A))). Note that S(V (A)) and S(K0(A)) are both convex compact sets
in “the topology of pointwise convergence”. Let ρ : V (A) → K0(A) be the
natural map introduced in the beginning of this section. Then it is clear, that
the map ψ 7→ ψ ◦ ρ, ψ ∈ S(K0(A)), gives a one-to-one correspondence between
the states on K0(A) and the states on V (A). Moreover, this map is an affine
homeomorphism of S(K0(A)) onto S(V (A)).

9.15 Lemma. Let A be a unital, exact C∗-algebra, and let p, q be projections
in A, such that

τ(q) ≤ τ(p), for any tracial state τ on A. (9.18)

Then for any k in N, there exists n in N, such that

nk〈q〉 ≤ nk〈p〉+ n〈111A〉.

Proof. Let k from N be given, and consider then the projections p′, q′ in
Mk+1(A) defined by:

p′ = p⊗
(∑k

i=1 eii
)

+ 111A ⊗ ek+1,k+1, and q′ = q ⊗
(∑k

i=1 eii
)
.

Given now an arbitrary non-zero, bounded trace τ on Mk+1(A), note that the
mapping

a 7→ τ(a⊗ e11), (a ∈ A),

is proportional to a tracial state on A. It follows thus from the assumption
(9.18), that τ(q ⊗ e11) ≤ τ(p ⊗ e11), and hence

τ(q′) = k · τ(q ⊗ e11) ≤ k · τ(p ⊗ e11) = k
k+1 · τ(p⊗ 111k+1) ≤ k

k+1 · τ(p′).

Since 111A ⊗ e11 ≺ p′, any unbounded (lower semi-continuous) trace τ on
Mk+1(A) must take the value +∞ at p′, and hence we have also in this case,
that

τ(q′) ≤ k
k+1 · τ(p′).

Applying now Theorem 9.10, it follows that there exists an n in N, such that
n〈q′〉 ≤ n〈p′〉, and hence such that nk〈q〉 ≤ nk〈p〉+ n〈111A〉, as desired. �

Next, we need the following version of the Goodearl-Handelman theorem (see
[Bl2, 3.4.7], [Go1, 7.11] and [BR, Lemma 2.9]).

9.16 Lemma. Let A be a unital C∗-algebra, and consider a convex subset K of
S
(
V (A)

)
, which is closed in “the topology of pointwise convergence”. Assume

furthermore that the following implication holds

∀x, y ∈ V (A) :
[
∀ϕ ∈ K : ϕ(x) ≤ ϕ(y)

]
=⇒

[
∀ϕ ∈ S

(
V (A)

)
: ϕ(x) ≤ ϕ(y)

]
.

(9.19)

Then K = S
(
V (A)

)
.
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Proof. By the one-to-one correspondence between states on K0(A) and states
on V (A), we can find a convex compact subset L of S(K0(A)), such that

K = {ψ ◦ ρ | ψ ∈ L}.
Since K0(A) = ρ(V (A)) − ρ(V (A)), condition (9.19) is equivalent to the con-
dition:

∀z ∈ K0(A) :
[
∀ψ ∈ L : ψ(z) ≥ 0

]
=⇒

[
∀ψ ∈ S(K0(A)) : ψ(z) ≥ 0

]
.

Thus by [Go1, Corollary 7.11], all the extreme points of S(K0(A)) are contained
in L = L. Hence by Krein-Milman’s theorem,

S(K0(A)) ⊆ conv(L) = L,

and therefore L = S(K0(A)), which is equivalent to the equation: K =
S(V (A)). �

9.17 Theorem. Let A be a unital, exact C∗-algebra. Then for any state ϕ on
V (A), there exists a tracial state τ on A, such that

ϕ(〈p〉) = (τ ⊗ Trm)(p), for all projections p in Mm(A), and m in N.
(9.20)

Proof. Let K denote the subset of S
(
V (A)

)
consisting of those states on V (A),

that are given by (9.20) for some tracial state τ on A. Then K is clearly a
convex, compact subset of S

(
V (A)

)
, and hence, by Lemma 9.16, it suffices to

verify that K satisfies condition (9.19). So consider projections p, q in M∞(A).
We may assume that p, q ∈Mm(A), for some sufficiently large positive integer
m. Suppose then that

(τ ⊗ Trm)(q) ≤ (τ ⊗ Trm)(p), for all tracial states τ on A.
Since any tracial state on Mm(A) has the form 1

m · τ ⊗ Trm, for some tracial
state τ on A, it follows then from Lemma 9.15, that for any k in N, there exists
an n in N, such that

nk〈q〉 ≤ nk〈p〉+ n〈111A ⊗ 111m〉.
Hence for any ϕ in S

(
V (A)

)
, and any k in N, we have that

ϕ(〈q〉) ≤ ϕ(〈p〉) + m
k ,

and this shows that K satisfies condition (9.19). �

Using the one-to-one correspondence between states on K0(A) and states on
V (A), Theorem 9.17 gives a new proof, not relying on quasitraces, for the
following

9.18 Corollary. Let A be a unital, exact C∗-algebra. Then any state on
K0(A) comes from a tracial state on A, i.e., for every state ψ on K0(A), there
exists a tracial state τ on A, such that

ψ
(
[p]
)

= (τ ⊗ Trm)(p), for all projections p in Mm(A), and all m in N. �
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Abstract. Let X be a compact complex threefold with the integral
homology of S6 and let Aut(X) be its holomorphic automorphism
group. By [HKP] and [CDP] the dimension of Aut(X) is at most 2.
We prove that Aut(X) cannot be isomorphic to the complex affine
group.
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A classical problem in the theory of complex manifolds concerns the existence
of complex structures on the six-dimensional sphere S6. Using octonions one
can construct almost-complex structures on S6, but they are not integrable,
and in fact no integrable almost-complex structure is known; it is generally
believed that they do not exist, and therefore that S6 provides an example of
almost-complex but non-complex manifold. Examples of this kind are abundant
in (real) dimension 4 (as a consequence of our rather good understanding of
complex surfaces) but are still lacking in higher dimension (as a manifestation
of our rather poor understanding of higher dimensional complex manifolds,
except, of course, algebraic or Kähler ones). The case of S6 is perhaps of
particular interest because a complex structure on S6 would give, by blowing
up a point, an exotic complex structure on the familiar CP 3. Moreover, it was
proved by Borel and Serre in the fifties that S2 and S6 are the only spheres
which admit an almost-complex structure.
Recently, two papers add new insights into this problem. Campana, Demailly
and Peternell prove in [CDP] that a complex threefold X diffeomorphic to S6

has no nonconstant meromorphic function. Huckleberry, Kebekus and Peter-
nell prove in [HKP] that a complex threefold X diffeomorphic to S6 is not
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almost-homogeneous. Due to [CDP], this last result can be reformulated as:
the automorphism group Aut(X) of X has dimension less than or equal to 2
(recall that the automorphism group of a compact complex manifold is a finite
dimensional complex Lie group [Huc]).

Our aim is to pursue the study of Aut(X). Let Aut0(X) be the connected
component of the identity: it is a connected complex Lie group of dimension
≤ 2, and if it is not abelian then it is isomorphic to Affk(C) for some k ∈
N+ ∪ {∞}, where Affk(C) denotes the k-fold covering of the complex affine
group Aff(C). The Lie algebra of Affk(C) is generated by two vectors ξ,
η satisfying [ξ, η] = η, and if k 6= ∞ then ξ is the generator of a subgroup
isomorphic to C∗ (more precisely, C/2πikZ). We shall prove that Aut0(X)
cannot be isomorphic to Affk(C), k ∈ N+; equivalently, if Aut0(X) contains
a C∗-action then Aut0(X) is abelian.

More generally, we shall work under the hypothesis that X is a compact com-
plex threefold with the Z-homology of S6; we shall call such an X a complex
homology sphere. The results of [CDP] and [HKP] are still valid for any com-
plex homology sphere: this is explicit in [CDP] and can be easily checked in
[HKP].

Theorem. Let X be a complex homology sphere. Then the groups Affk(C),
k ∈ N+, do not act faithfully on X.

The main step of the proof is a “reduction” of the fixed point set of a C∗-
action on a complex sphere (incidentally, this furnishes also some simplifications
of sections 7-8 of [HKP]). It has been observed in [HKP] that such a fixed
point set is either a pair of points or a smooth rational curve. We shall prove
that, if the former case occurs, one can find a bimeromorphic transformation
φ : X − − → Y , where Y is still a complex homology sphere, which maps
Aut0(X) isomorphically onto Aut0(Y ) and moreover maps the C∗-action on X
to a C∗-action on Y whose fixed point set is a rational curve. The argument
is the following. Using index type considerations [Bot] we find smooth rational
curves joining the two fixed points, invariant by the C∗-action, and whose
normal bundle is O(−1)⊕O(−1). We perform a bimeromorphic transformation
(a flop [Kol]) centered on one of these curves, giving a new complex homology
sphere and a new C∗-action. A combinatorial argument shows that after a finite
number of steps we arrive at a C∗-action whose fixed point set is a rational
curve, as desired.

Once that reduction of fixed points has been done, the commutativity of
Aut0(X) in presence of C∗-subgroups will be proved by a somewhat algebraic
argument. Assuming (by contradiction) that Aut0(X) is not commutative, we
show that X contains a rational irreducible (singular) surface, invariant by the
C∗-action and containing the stable and unstable manifolds of the fixed point
set. This turns out to be impossible. We notice that one can prove the existence
of such a rational surface even if Aut0(X) is commutative and bidimensional;
however we are not able, in that case, to produce a contradiction and therefore
we do not present here that partial result.
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1. Reduction of fixed points of C∗-actions

Let ρ : C∗ ×X → X be a C∗-action on a complex homology sphere. We will
assume, without loss of generality, that ρ is faithful: ρt 6= id for t 6= 1. We
denote by v = d

dt |t=1ρt its infinitesimal generator. It is a holomorphic vector
field, whose flow is 2πi-periodic, and its zero set coincides with the fixed point
set Fix(ρ) of ρ. It is a classical fact [Huc] that v is linearizable near each point
of Fix(ρ); in particular Fix(ρ) is a smooth complex submanifold of X .
Lemma 1 [HKP]. Fix(ρ) is either a pair of points or a smooth rational curve.
Proof. The set Fix(ρ) coincides with the fixed point set of the S1-action con-
tained in the C∗-action. Therefore, and because X is a Z-homology sphere, we
have that the Z-homology of Fix(ρ) is that of S0 or S2 or S4 [Bor,IV.5.9]. The
first case gives Fix(ρ) = {a, b}, the second one Fix(ρ) = CP 1, and the third
one is excluded because no compact complex surface has the Z-homology of S4

(by the signature formula, for instance). An alternative way to exclude the third
case is the following [HKP]: the adjunction formula and b2(X) = b4(X) = 0 im-
ply that the Euler characteristic of a smooth compact complex surface S ⊂ X
is zero:

c2(S) = c2(X) · S − c1(S) · c1(OX(S)|S) = 0

and so S cannot have the Z-homology of S4. q.e.d.

Let p ∈ Fix(ρ) and let p1, p2, p3 be the eigenvalues of (the linear part of) v at
p. They are integers, and the faithfulness of ρ implies that

GCD(p1, p2, p3) = 1.

Lemma 2. For every i, j ∈ {1, 2, 3}, i 6= j, we have

GCD(pi, pj) = 1.

Proof. Suppose by contradiction that GCD(p1, p2) = n ≥ 2 and let ω be a
primitive n-root of 1. Then the periodic biholomorphism ρω is not the identity
but its fixed point set contains a smooth compact complex surface S with p ∈ S
and TpS = Ep1 ⊕ Ep2 , where Epj is the eigenspace corresponding to pj . As
observed in the proof of lemma 1, the Euler characteristic of S is zero. The
action ρ restricts to S to a nontrivial (and nonfaithful) action whose fixed point
set is Fix(ρ) ∩ S. This set is nonempty (it contains p) and it is either discrete
or a rational curve. In both cases the Poincaré - Hopf formula gives c2(S) > 0,
contradiction. q.e.d.

In particular, if Fix(ρ) = CP 1 (that is, one of the eigenvalues is zero) then
there are only two possibilities for (p1, p2, p3) (up to renumbering and up to
reversing the action): (0, 1, 1) and (0, 1,−1). Let us exclude the first one.
Lemma 3. If Fix(ρ) = CP 1 then the two nonvanishing eigenvalues of v along
Fix(ρ) have opposite sign.
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Proof. This can be proved using the Bott formula [Bot]. However, that formula
is rather complicated in the case of nonisolated fixed points, and so we prefer
to give the following elementary proof. Suppose, by contradiction, that the
eigenvalues of v along Fix(ρ) are (0, 1, 1). Take the quotient of X by the
S1-action contained in the C∗-action. It is easy to see that it is a topological
compact manifoldM of dimension 5, and Fix(ρ) projects onM to an embedded
2-sphere N : near a point of Fix(ρ) the S1-action is the product of the trivial
action on C and the action on C2 tangent to each 3-sphere and inducing there
the Hopf fibration, so that the quotient of each 3-sphere is S2 and the quotient
of the C2 factor is a cone over S2, that is R3. More explicitely, near a point
of Fix(ρ) we can choose local holomorphic coordinates (x, y, z) so that v is
expressed by x ∂

∂x+y ∂
∂y , and then the quotient map is C3 → R3×C, (x, y, z) 7→

(
√
|x|2 + |y|2, xy , z), where R3 is coordinatized by polar coordinates (r, θ) ∈

R+ × CP 1. The 2-sphere N is locally given by {r = 0}. The R∗-action
contained in the C∗-action projects on M to an action generated by a vector
field V vanishing on N , and only there. Up to changing V to −V , the sphere
N is an attractor: locally, in the same coordinates (r, θ, z) as before, we have
V = −r ∂∂r . We see that the Poincaré - Hopf index of v at N is equal to 2, hence
the Euler characteristic of M is also equal to 2. Since M is odd-dimensional,
this is an absurd. q.e.d.

We shall prove the following result.

Proposition 1. Let X be a complex homology sphere and let ρ : C∗×X → X
be a C∗-action whose fixed point set Fix(ρ) is a pair of points {a, b}. Then there
exists a complex homology sphere Y and a bimeromorphism φ : X − − → Y
such that:

i) φ conjugates Aut0(X) to Aut0(Y );

ii) φ conjugates ρ to a C∗-action τ on Y whose fixed point set is a smooth
rational curve.

The bimeromorphism φ will be a composition of elementary bimeromorphisms
that we now describe.

Suppose that X contains a smooth rational curve R whose normal bundle
NR,X is O(−1)⊕O(−1). Let X̃

π→ X be the blow-up of X with center R. The

exceptional divisor D ⊂ X̃ is a rational ruled surface over R, more precisely
D = P (NR,X) = CP 1 × CP 1. Hence there are two rulings on D: the ruling

over R, given by π|D, and a second ruling D
σ→ CP 1 whose fibres are transverse

to the fibres of π|D. The normal bundle of D in X̃ has degree -1 on the fibres
of π|D and also on the fibres of σ. Hence [Moi] we can contract each fibre
of σ to a point: the result is a smooth complex threefold Y and a morphism
π′ : X̃ → Y . The image of D by π′ is a smooth rational curve S with normal
bundle NS,Y = O(−1) ⊕O(−1), and π′ is nothing else than the blow-up of Y
with center S. The bimeromorphism π′ ◦ π−1 : X − − → Y will be called a
flop with center R. It is in fact the simplest example of a flop [Kol].

Lemma 4. Y is a complex homology sphere.
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Proof. It follows from

Hk(Y,Z) = Hk(X̃,Z) = Hk(X,Z) if k 6= 2, 4

Hk(Y,Z)⊕ Z = Hk(X̃,Z) = Hk(X,Z)⊕ Z if k = 2, 4.

q.e.d.

It should be possible to prove also that Y is diffeomorphic to X . In fact, there
should exist a smooth (non holomorphic!) diffeomorphism of X̃, whose support
is localized on a neighbourhood of D, which exchanges the two rulings π|D and
σ, proving the diffeomorphicity of X and Y . Remark that the fundamental
groups of X and Y are isomorphic. If X is diffeomorphic to S6 then it is easy
to see that Y also is diffeomorphic to S6, by classical results in differential
topology (Smale, Kervaire - Milnor,...).
Lemma 5. The flop π′ ◦ π−1 : X − − → Y realizes an isomorphism between
Aut0(X) and Aut0(Y ).
Proof. We simply have to check that for every holomorphic vector field on X
(resp. on Y ) its transform on Y (resp. on X) is still holomorphic. This follows
from the negativity of NR,X and NS,Y : every holomorphic vector field on X
(resp. on Y ) is tangent to R (resp. to S). q.e.d.

In order to do flops, we have to find rational curves with normal bundle O(−1)⊕
O(−1). This will be based on the following remarks.
Let Fix(ρ) = {a, b} and let a1, a2, a3 be the eigenvalues of v at a, b1, b2, b3
those at b. Suppose that |aj | ≥ 2, for some j: then by the same argument
of the proof of lemma 2 there is a ρ-invariant smooth complex curve R ⊂ X ,
with a ∈ R and TaR = Eaj (observe that, by lemma 2, this eigenspace is one-
dimensional). Clearly R is rational and contains a second fixed point, that is
b ∈ R. Moreover, for some i we have TbR = Ebi , and bi = −aj. To fix ideas,
suppose j = i = 1. The normal bundle of R will be computed by the following
formula.
Lemma 6.

NR,X = O(n)⊕O(m)

where n = a2−b2
a1

,m = a3−b3
a1

or n = a2−b3
a1

,m = a3−b2
a1

.
Proof. We consider the restriction of ρ to R and its natural extension to NR,X ,
via the differential. We therefore are in the situation of [Bot]: a holomorphic
vector field (on R) which acts on a vector bundle. Hence the characteristic
numbers of that bundle are localized at zeroes of the vector field, that is at a
and b.
The bundle NR,X has a splitting F1 ⊕ F2 by line bundles which are invariant
by the action: this corresponds to the fact that a C∗-action on a rational ruled
surface (in our case P (NR,X)) has always two disjoint invariant sections. The
fibres (Fi)a, (Fi)b are invariant and their eigenvalues are a2, a3, b2, b3. Hence
there are two possibilities:
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From Bott formula [Bot] we deduce in the first case

c1(F1) =
a2

a1
+
b2
b1

=
a2 − b2
a1

, c1(F2) =
a3 − b3
a1

and in the second case

c1(F1) =
a2 − b3
a1

, c1(F2) =
a3 − b2
a1

.

q.e.d.

Observe that by adjunction formula and c1(X) = 0 we have c1(NR,X) =
−c1(R) = −2 and consequently n+m = −2, i.e.

a1 + a2 + a3 = b1 + b2 + b3.

2. Proof of proposition 1
Let a1, a2, a3 (resp. b1, b2, b3) be the eigenvalues of v at a (resp. at b), with
|a1| ≤ |a2| ≤ |a3|.
First step: from |a1| ≥ 2 to |a1| = 1.
If |a1| ≥ 2 then, as explained before lemma 6, we have three smooth ρ-invariant
rational curves through a and b, each one connecting a and b:

R

R

R

a

a

a b

b

2

b

2

1

3

1

2

3
3

1
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We have bj = −aj for every j = 1, 2, 3 (up to renumbering the eigenvalues at b).
Remark that |a1| ≥ 2 implies |a2|, |a3| ≥ 3 (lemma 2). By lemma 6, the normal
bundle NR2,X is either O(2a1

a2
)⊕O(2a3

a2
) or O(a1+a3

a2
)⊕O(a1+a3

a2
). The former

case is excluded because 2a1

a2
and 2a3

a2
are not integers. The latter case is in fact

O(−1)⊕O(−1), because c1(NR2,X) = −2. Similarly, NR3,X = O(−1)⊕O(−1).

Hence we can perform flops with center R2 or R3. Let us see how a flop with
center R2 transforms the eigenvalues of the C∗-action. After a blow-up π with
center R2 we obtain a C∗-action with four fixed points on the exceptional
divisor, two over a and two over b. The rational curves π−1(a) and π−1(b) are
invariant by the action and their eigenvalues are ±(a1−a3). The blow-down π′

maps these two curves onto a rational curve R′′2 , with eigenvalues ±(a1 − a3):

R

R

R’

R’’
a

a
a

-a

-a-a
π π’

a
-a

-aa 3

a -a

a -a

a

-a
a -a

a -aa
-a

3

2

3

2

1
3

1

2

3

1

1
3

1 3

3 1

3

2

3

1
1 3

1 3 1

On the new complex homology sphere we therefore have a new (faithful) C∗-
action with a fixed point whose eigenvalues are (a1, a3 − a1,−a3). The strict
transform R′3 of R3 has normal bundle O(−1) ⊕ O(−1), again by lemma 6.
Therefore we can perform a second flop with center R′3: we obtain a new
complex homology sphere and a C∗-action with a fixed point whose eigenvalues
are (a1, a1 − a3, a3 − 2a1) = (a1, a2 + 2a1, a3 − 2a1) (recall that a1+a3

a2
= −1,

i.e. a1 + a2 + a3 = 0). Of course, we can reverse the order: a flop with center
R3 followed by a flop with center R′2 produces a C∗-action with a fixed point
with eigenvalues (a1, a2 − 2a1, a3 + 2a1). Remark that these new collections of
eigenvalues still satisfy the GCD condition of lemma 2.

Iterating this process we arrive at a fixed point with eigenvalues (a1, α, β) and
|α| ≤ |a1| (α = a2 + 2na1 or a3 + 2na1 for a suitable integer n). Because
GCD(a1, α) = 1 and |a1| ≥ 2, we have the strict inequalities 0 < |α| < |a1|,
that is the eigenvalue with smallest modulus has modulus strictly smaller that
|a1|. Iterating again we finally arrive at an eigenvalue with modulus equal to
1.

Second step: from |a1| = 1, |a2| ≥ 2 to |a1| = |a2| = 1.

Now we can guarantee only two ρ-invariant rational curves:
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We have bj = −aj for j = 2, 3. We also have |b1| = 1: otherwise |b1| ≥ 2 and
there would be a third ρ-invariant rational curve tangent to Ea1 at a and to
Eb1 at b, giving b1 = −a1, thus |b1| = |a1| = 1, a contradiction.
From |a2| ≥ 2 it follows |a3| ≥ 3 and (lemma 6) the normal bundle NR3,X is
eitherO(a1−b1

a3
)⊕O(2a2

a3
) orO(a1+a2

a3
)⊕O(a2−b1

a3
). As before, the first possibility

is excluded because 2a2

a3
is not an integer. Hence NR3,X = O(a1+a2

a3
)⊕O(a2−b1

a3
).

From c1(NR3,X) = −2 it follows that a1 +2a2−b1 = −2a3. Because |a2| 6= |a3|,
we cannot have b1 = a1 and so we have b1 = −a1. This in turn implies
a1 + a2 + a3 = 0 and NR3,X = O(−1)⊕O(−1).
If |a2| ≥ 3 the same argument applies to R2, and we obtain NR2,X = O(−1)⊕
O(−1). Then we proceed as in the first step: a sequence of flops produces
a C∗-action with a fixed point with eigenvalues (a1, α, β), |α| ≤ |a1|; that is
|α| = |a1| = 1.
If |a2| = 2, from a1 + a2 + a3 = 0, |a1| = 1 and |a3| ≥ 3 we find a2 = 2a1, a3 =
−3a1. It is readily checked that a single flop along R3 produces a C∗-action
with a fixed point with eigenvalues (a1, a1,−2a1).
Third step: the case |a1| = |a2| = 1, |a3| ≥ 2.

R

a

a

a b

3

b

b

2

3

1
1

3

2

We have b3 = −a3. As before, |b1| = |b2| = 1. Up to exchanging b1 and
b2 we obtain NR3,X = O(a1−b1

a3
) ⊕ O(a2−b2

a3
) and a1 − b1 + a2 − b2 = −2a3.

From |a3| ≥ 2 it follows a1 = a2 = −b1 = −b2 and a3 = −2a1, therefore
NR3,X = O(−1) ⊕ O(−1). A flop along R3 gives a C∗-action with a rational
curve of fixed points (and eigenvalues (0, 1,−1)).
Last step. To complete the proof of proposition 1 we need to show that the
case |a1| = |a2| = |a3| = 1 never happens. By the usual argument, if |aj | = 1
for every j then also |bj | = 1 for every j. We now take the Bott formula [Bot]
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for c31(X):
(a1 + a2 + a3)3

a1a2a3
+

(b1 + b2 + b3)3

b1b2b3
= c31(X) = 0.

If |aj | = 1 for every j then the residue (a1+a2+a3)3

a1a2a3
can take only two values:

27 and -1. The same for (b1+b2+b3)3

b1b2b3
. Hence their sum cannot vanish. q.e.d.

Remark: we could use the Bott formula since the beginning of the proof and
not only in the last step, but it turns out that this would give only minor
simplifications (for instance, in the second step we can use the Bott formula
to deduce b1 = −a1 from |b1| = |a1|). It also turns out that the analogous
formula for c1(X) · c2(X) yields no further information. The formula for c3(X)
is equivalent to the Poincaré - Hopf formula and was already used, more or less,
in lemmata 1, 2 and 3. And, of course, all these formulae do not contradict the
existence of a C∗-action with a rational curve of fixed points, with eigenvalues
(0, 1,−1).

The automorphism group is abelian

From now on ρ : C∗ ×X → X will denote a faithful C∗-action on a complex
homology sphere with Fix(ρ) = Z0 a smooth rational curve. Around each
point of Z0 we can choose local coordinates (x, y, z) such that the infinitesimal
generator v is expressed by x ∂

∂x − y ∂
∂y (and Z0 = {x = y = 0}). If we take a

sufficiently small tubular neighbourhood V of Z0 then the sets

W s
V = {p ∈ V |ρt(p) ∈ V ∀t, |t| ≥ 1, and lim

t→∞
ρt(p) = θ+(p) ∈ Z0}

and

Wu
V = {p ∈ V |ρt(p) ∈ V ∀t, |t| ≤ 1, and lim

t→0
ρt(p) = θ−(p) ∈ Z0}

are smooth complex open surfaces, containing Z0 and intersecting transversely
along Z0. In the above local coordinates, W s

V = {x = 0} and Wu
V = {y = 0}.

Suppose now that
dim Aut0(X) = 2.

This means that there exists a second holomorphic vector field w on X , lin-
early independent of v. In fact, w cannot be collinear to v at a generic point
of X , because X has no nonconstant meromorphic function [CDP]. The com-
mutator [v, w] is a linear combination av + bw, a, b ∈ C, since the Lie al-
gebra of holomorphic vector fields on X is two-dimensional, spanned by v
and w. Because the flow of v is 2πi-periodic, one easily sees that if b = 0
then also a = 0: when [v, w] = av, the flows φt (= ρexp t) of v and ψt of
w are related by ψs ◦ φt = φt exp(as) ◦ ψs for every t, s ∈ C, in particular
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φ2πi exp(as) = ψs ◦φ2πi ◦ψ−s = id for every s ∈ C, so that exp(as) is an integer
for every s and therefore a = 0. Hence, up to replacing w by w+ a

b v (if b 6= 0),
we have

[v, w] = bw

where b ∈ Z, again for the 2πi-periodicity of the flow of v. Up to changing v
to −v, we may suppose that b ∈ N.
In this section we shall prove the commutativity of Aut0(X), concluding the
proof of the theorem stated in the introduction.
Proposition 2. Let v, w be holomorphic vector fields on a complex homology
sphere, where v generates a C∗-action. Then v and w commute: [v, w] = 0.
Let us consider the wedge product v ∧ w ∈ H0(X,TX ∧ TX), whose zero
set E ⊂ X is the analytic subset of X where v and w are collinear. Define
O(v ∧ w,W s

V ), resp. O(v ∧ w,Wu
V ), as the vanishing order of v ∧w along W s

V ,
resp. Wu

V . Of course, if W s
V is not contained in E (for instance, if W s

V is not a
piece of a compact analytic subset of X) then O(v ∧w,W s

V ) = 0.
Lemma 7.

O(v ∧ w,W s
V ) = O(v ∧ w,Wu

V ) + b.

Proof. We shall conclude by a local computation. Take p ∈ Z0 and local
coordinates (x, y, z) so that v = x ∂

∂x − y ∂
∂y , w = A ∂

∂x + B ∂
∂y + C ∂

∂z , W s
V =

{x = 0}, Wu
V = {y = 0}. Hence

v ∧ w = (xB + yA)
∂

∂x
∧ ∂

∂y
+ xC

∂

∂x
∧ ∂

∂z
− yC ∂

∂y
∧ ∂

∂z

and we see that

O(v ∧ w,W s
V ) = min{O(A,W s

V ), O(B,W s
V ) + 1, O(C,W s

V )}

O(v ∧ w,Wu
V ) = min{O(A,Wu

V ) + 1, O(B,Wu
V ), O(C,Wu

V )}.
From [v, w] = bw we obtain the following system of equations:





xAx − yAy = (b+ 1)A

xBx − yBy = (b− 1)B

xCx − yCy = bC

Write A(x, y, z) = xhyka(x, y, z), h = O(A,W s
V ), k = O(A,Wu

V ) (i.e., the func-
tions a(0, y, z) and a(x, 0, z) are not identically zero). From the first equation
we obtain:

xax − yay = (b+ 1− h+ k)a

and restricting to {y = 0}:

xax(x, 0, z) = (b+ 1− h+ k)a(x, 0, z)
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that is
ax(x, 0, z)

a(x, 0, z)
=
b+ 1− h+ k

x
.

We deduce that b + 1 − h + k ≥ 0, because a(x, 0, z) is holomorphic and
not identically zero. Restricting to {x = 0} we find the opposite inequality:
b+ 1− h+ k ≤ 0. Hence b+ 1− h+ k = 0, or more explicitely

O(A,W s
V ) = O(A,Wu

V ) + b+ 1.

In a similar way, from the second and the third equations we find

O(B,W s
V ) = O(B,Wu

V ) + b− 1

and
O(C,W s

V ) = O(C,Wu
V ) + b

from which it follows that

O(v ∧ w,W s
V ) = O(v ∧ w,Wu

V ) + b.

q.e.d.

In order to prove proposition 2, suppose now by contradiction that b is strictly
positive. In particular O(v ∧ w,W s

V ) > 0, so that v ∧ w does vanish on W s
V .

In other words, there exists an irreducible component N ⊂ E, dim N = 2,
which contains W s

V . Take the restriction of the C∗-action ρ to N , and take an
equivariant resolution of singularities Ñ → N , over which ρ can be lifted. On
Ñ we therefore have a C∗-action with a rational curve of fixed points (arising
from Z0). It follows from the classification of C∗-actions on compact complex
surfaces [Hau] that Ñ is algebraic (and even rational) and that the closure of
each orbit of the C∗-action is a (possibly singular) rational curve. Returning
to X , we therefore see that for each p ∈ W s

V not only limt→∞ ρt(p) is a single
point on Z0 (as the definition of W s

V claims) but also limt→0 ρt(p) is a single
point, necessarily on Z0, and so the ρ-orbit through p cuts Wu

V . Varying p on
W s
V we also see that the full Wu

V belongs to N . But this contradicts lemma 7:
because O(v ∧w,W s

V ) 6= O(v ∧w,Wu
V ), the sets W s

V and Wu
V cannot belong to

the same irreducible component of E. This contradiction proves proposition 2.
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Abstract. We study the versal unfolding of a vector field of codi-
mension two, that has an algebraically double eigenvalue 0 in the
linearisation of the origin and is equivariant under a representation of
the symmetry group D3. A subshift of finite type is encountered near
a clover of homoclinic orbits. The subshift encodes the itinerary along
the three different homoclinic orbits. In this subshift all those symbol
sequences are realized for which consecutive symbols are different. In
the parameter space we also locate a transcritical, three different Hopf
and two global (homoclinic) bifurcations.
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1 Introduction

A vector field has a Takens-Bogdanov point, if there is a Jordan block

(
0 1
0 0

)

in the linearisation of a steady state and if certain nondegeneracy conditions
are fulfilled. This codimension two degeneracy with its unfolding is a key
to understand several phenomena in dynamical systems (see [17, 3] and text-
books like [13]). Takens-Bogdanov points can also serve as a starting point
for the path following in two-parameter flows of global Hopf bifurcation [6]
and homoclinic orbits [7]. One parameter families of homoclinic orbits are
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created at Takens-Bogdanov points of two-parameter flows. Hence these bifur-
cation points play the same role for the creation of homoclinic orbits in two-
parameter flows as Hopf bifurcation for periodic solutions in one-parameter
flows. Near homoclinic orbits several bifurcations to other bounded solutions
may occur. Thus Takens-Bogdanov points are important organizing centers for
the bifurcation analysis of dynamical systems. Suppose the dynamical system
ẋ = f(x) has constraints given by an equivariance under a symmetry group Γ,
i.e. f(γx) = γf(x), for γ ∈ Γ. Then one often finds complicated bifurcation
diagrams even at simple bifurcations, [11].
Similarly at the Takens-Bogdanov point with D3 symmetry the dynamics are
much richer than in the non-symmetric case. Applications are given to systems
of three coupled oscillators in a ring. The results could be also applied to mode
interactions for pattern formation in convection problems, where solutions with
D3 symmetry exist [12]. We will encounter a subshift of finite type, which is a
novel dynamical feature in a bifurcation problem of dynamical systems defined
by a vector field. Whereas in many bifurcations one can encounter Smale
horseshoes giving rise to a full shift, the existence of a subshift of finite type is
a rare phenomenon.
A subshift σ(xn)n∈Z = (xn+1)n∈Z of finite type on three symbols {1, 2, 3} is
defined on

XA = {(xn)n∈Z|xn ∈ {1, 2, 3}, axn,xn+1 = 1}
where A = (ai,j)i,j∈{1,2,3} is a 3×3 matrix with entries 0 and 1. The topology of
XA is defined as the product topology of the discrete set of symbols {1, 2, 3}. A
subshift of finite type allows only those symbol sequences, for which consecutive
symbols xn, xn+1 are compatible with the transition matrix A. The symmetry
group D3 will act on XA in the following manner

‘flip’: κ((xn)n∈Z) = (κ̃xn)n∈Z with κ̃1 = 1, κ̃2 = 3, κ̃3 = 2
‘rotation’: γ((xn)n∈Z) = (xn + 1 mod 3)n∈Z.

(1)

The bifurcation analysis will be reduced in section 2 to the discussion of a
vector field on R4 ∼= C2, where D3 acts as

‘flip’: κ(v, w) = (v̄, w̄)
‘rotation’: γ(v, w) = (exp(i 2π3 )v, exp(i 2π3 )w).

(2)

A vector field in normal form can be derived. Using additional parameters
(µ1, µ2) to unfold the singularity the normal form is generically given - up to
time reversal - by

v̇ = w (3)

ẇ = µ1v + µ2w + v̄2 − v̄w̄ + [A|v|2 +B|w|2 + C(vw̄ + v̄w)]v +D|v|2w.

A bifurcation diagram describing the complete plane of unfolding parameters is
given in figure 1. The main result of this paper is formulated in theorem 1. It
states the existence of a special form of a horseshoe for an open set of parameter
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Figure 1: Bifurcation diagram in parameter space: transcritical bifurcation of
steady states (bold line), three kind of Hopf bifurcation (dashed lines), two dif-
ferent homoclinic bifurcations (dotted lines) and shift dynamics (shaded area).

values. Later we will rigorously define three Poincaré sections Sin1 , S
in
2 , S

in
3 as

sections along three coexisting homoclinic orbits biasymptotic to the origin. P
will be the return map on Sin1 ∪ Sin2 ∪ Sin3 .

Theorem 1 For 0 < µ2 + 6
7µ1 small, µ1 > 0, there exists an invariant hyper-

bolic Cantor set C ⊂ Sin1 ∪ Sin2 ∪ Sin3 such that the return map P : C → C
induced by the flow of (3) is topological conjugate to the irreducible subshift of

finite type with transition matrix A =




0 1 1
1 0 1
1 1 0


. Here means topological

conjugacy that there exists an homeomorphism τ : C → XA such that τP = στ
on C.

Furthermore P and τ can be chosen to be D3-equivariant, when using the rep-
resentation (2) on C and (1) on XA. C is D3-invariant.

So in fact we have a D3-subshift of finite type as defined in [8]. Neither the
incomplete bifurcation diagram in figure 1 nor theorem 1 depend on the coeffi-
cients A,B,C,D and other higher order terms. In the bifurcation diagram the
lines will be bended to curves by a near-identity diffeomorphism. This is pecu-
liar to the case of D3 symmetry. When the system has some other symmetry
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group like O(2) [4] or D4 [1] many more parameters and several different bifur-
cation diagrams have to be discussed. Thus our analysis can only be a first step
to a general analysis of Dn equivariant Takens-Bogdanov singularities, where
one might hope to encounter the O(2) case as a limit.
The rest of the paper is organized as follows. In section 2 we give the Taylor
expansion near the origin of a generic vector field equivariant under (2) at the
Takens-Bogdanov point, derive a normal form up to third order and unfold it.
We discuss the basic dynamical behavior in section 3, i.e. we analyze steady
states, Hopf bifurcations and the dynamics in invariant subspaces including
homoclinic orbits. The existence of the subshift will be proved in section 4,
where we use a definition of a general horseshoe. In the last section 5 we will
discuss some further numerical studies and applications.

2 D3-equivariant vector fields and normal forms

Before giving a Taylor expansion near the singularity we first use some repre-
sentation theory to justify the representation like in (2). There are in general
two possibilities that a representation space of a compact Lie group Γ admits a
non-diagonalizable Γ-equivariant linearisation A at the origin. Similar to chap-
ter XVI of [11] there must be a Γ-invariant subspace W , that is either of the
form V ⊕V , where V is absolutely irreducible, or that is irreducible but not ab-
solutely irreducible. The second case is not possible for the Takens-Bogdanov

singularity. The linearisation A contains the nilpotent matrix

(
0 1
0 0

)
. Sup-

pose W is irreducible but not absolutely irreducible, then A(W ) = 0 or A(W )
is isomorphic to W [11, Lemma XII.3.4]. But if A|W contains the nilpotent
Jordan block then A : W → A(W ) cannot be an isomorphism. Hence A|W = 0
and this is in contradiction that the Jordan block is non-zero. So we use a repre-
sentation of the form V ⊕V . When choosing for V the standard representation
of D3 on C ∼= R2 we get the representation (2).

Proposition 2 (i) The ring of all D3-invariant germs acting on C⊕C as
in (2) is generated by

s1 = vv̄, s2 = ww̄, s3 = vw̄ + v̄w and

tj = vjw3−j + v̄jw̄3−j , j ∈ {0, . . . , 3}

(ii) The module of D3-equivariant smooth mappings of C ⊕ C → C ⊕ C is
generated by

g0 =

(
v
0

)
, g1 =

(
0
v

)
, g2 =

(
w
0

)
, g3 =

(
0
w

)
and

fj =

(
v̄jw̄2−j

0

)
, hj =

(
0

v̄jw̄2−j

)
, j ∈ {0, 1, 2},
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i.e. all D3-equivariant smooth germs of mappings h : R4 → R4 can be
written in the form h(v, v̄, w, w̄) = p0g0 + p1g1 + p2g2 + p3g3 + q0f0 +
q1f1 + q2f2 + r0h0 + r1h1 + r2h2 where p0, . . . , p3, q0, q1, q2, r0, r1, r2 are
smooth function germs of s1, s2, s3, t0, . . . , t3.

Proof: For polynomials the completeness of the generators can be checked by
lengthy by-hand calculations or by computer algebra, see [9]. These are then by
Poénaru’s theorem also the generators of the module of germs of mappings.✷
Then a general D3-Takens-Bogdanov point has the following Taylor expansion
up to third order with real coefficients a1, b1, . . .:

v̇ = w + a1v̄
2 + b1v̄w̄ + c1w̄

2

+ v(d1vv̄ + e1ww̄ + f1(vw̄ + v̄w))
+ w(g1vv̄ + h1ww̄ + i1(vw̄ + v̄w))

ẇ = a2v̄
2 + b2v̄w̄ + c2w̄

2

+ v(d2vv̄ + e2ww̄ + f2(vw̄ + v̄w))
+ w(g2vv̄ + h2ww̄ + i2(vw̄ + v̄w)).

(4)

First we try to remove as many second order terms as possible, therefore we
choose a general near-identity D3-equivariant coordinate change.

v = v′ + α1v̄
2 + β1v̄w̄ + γ1w̄

2

w = w′ + α2v̄
2 + β2v̄w̄ + γ2w̄

2

We rewrite (4) in the new coordinates and this yields to

v̇′ = w′ + (a1 + α2)v̄′2 + (b1 + β2 − 2α1)v̄′w̄′ + (c1 + γ2 − β1)w̄′2

+ v′(d̃1v
′v̄′ + ẽ1w

′w̄′ + f̃1(v′w̄′ + v̄′w′))
+ w′(g̃1v′v̄′ + h̃1w

′w̄′ + ĩ1(v′w̄′ + v̄′w′))
ẇ′ = a2v̄

′2 + (b2 − 2α2)v̄′w̄′ + (c2 − β2)w̄′2

+ v′(d̃2v
′v̄′ + ẽ2w

′w̄′ + f̃2(v′w̄′ + v̄′w′))
+ w′(g̃2v′v̄′ + h̃2w

′w̄′ + ĩ2(v′w̄′ + v̄′w′))
(5)

where the˜terms depend on the original term, ai, bi, ci and αi, βi, γi for i = 1, 2.
By choosing

α1 =
1

2
(b1 + c2), α2 = −a1, β1 = 0, β2 = c2, γ1 = 0, γ2 = −c1

we can remove all second order terms in the first component and w̄′2 in the
second component in (5). All the third order terms are O(2)-equivariant. Thus
we can use exactly the same coordinate change as Dangelmayr and Knobloch
[4] (after removing the second order terms) without affecting the lower order
terms to get the following simplified system:

v̇ = w

ẇ = Ev̄2 + F v̄w̄ +
[
A|v|2 +B|w|2 + C(vw̄ + v̄w)

]
v + D|v|2w,
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where E = a2, F = b2 + 2a1, A = d̃2, B = d̃2 − g̃1 + f̃1 − 2ĩ2, C = d̃1 + f̃2
and D = d̃1 + g̃2. We use an unfolding to describe the behavior of generic
families of vector fields near the singular point. Even if there is not a general
method to unfold the whole vector field, the linear part can be unfolded by(

0 0
µ1 µ2

)
such that all nearby linear parts can be reached up to conjugation

[2]. After scaling v, w, t and possibly a time-reversal we can set generically
E = 1, F = −1, if the transformed second order terms are nonzero. Then we
get the normal form as in equation (3):

v̇ = w

ẇ = µ1v + µ2w + v̄2 − v̄w̄ + [A|v|2 +B|w|2 + C(vw̄ + v̄w)]v +D|v|2w.

3 Bifurcations

Standard computations show some symmetry breaking bifurcations. Here es-
pecially the behavior inside the flow-invariant fixed point space Fix(κ) =
{(v, w)|κ(v, w) = (v, w)} = {(v, w)|v, w ∈ R} will be considered. The same
dynamics can be encountered in the rotated spaces γFix(κ) and γ2Fix(κ). The
bifurcation inside these planes is a Takens-Bogdanov bifurcation, in which the
origin remains a singular point. This was analyzed by Hirschberg and Knobloch
[14].
In general cubic and quintic terms cannot be neglected in Hopf bifurcation with
D3 symmetry. But in our situation the higher order terms are not important as
long µ1, µ2 are small enough. To see this we have to perform the normal form
calculations including these terms. The terms involving e.g. A,B,C,D are all
of higher order in µ1, µ2 and hence can be neglected in a small neighborhood
of 0 in the µ1, µ2 plane. For illustration we consider a Hopf bifurcation of the
origin at µ2 = 0, µ1 < 0 inside Fix(κ). After calculating a normal form for Hopf
bifurcation like in [13] the direction of branching is determined by the sign of
the term a = − 1

8|µ1|+
2C+D

8 . So the higher order terms can be neglected inside

a neighborhood of (0, 0) in parameter space (µ1, µ2). Similar results hold for
the other bifurcations too. We suppress therefore the dependence on these
terms. They only bend some lines in the bifurcation diagram to curves by a
near-identity diffeomorphism. See also figure 1.

• The only stable feature is the origin for µ1, µ2 < 0.

• For µ1 = 0 there is a transcritical bifurcation of secondary steady state
N1 = (−µ1, 0) and the rotated points N2 = γN1, N3 = γ2N1 each with
isotropy Z2.

• For µ2 = 0, µ1 < 0 the spectrum of the origin is purely imaginary and the
system undergoes a D3-Hopf bifurcation [11], where three different types
of periodic solutions appear (isotropy type Z̃3 for µ2 < 0; solutions of
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isotropy type Z̃2 and inside Fix(κ) of isotropy type Z2 both for µ2 > 0;
all these solutions are of saddle type).

• For µ2 = µ1 < 0 N1, N2, N3 undergo Hopf bifurcations, where the imag-
inary eigenvalues have eigenvectors outside the invariant subspaces and
the solutions have isotropy Z̃2.

• For 0 > µ2 = −µ1 N1, N2, N3 undergo Hopf bifurcations inside the in-
variant subspaces, i.e. the periodic orbit have isotropy Z2.

• For some curve with µ2 ≈ − 6
7µ1, µ1 > 0 there exists an orbit inside Fix(κ)

homoclinic to 0, see [14].

• Similar there are orbits homoclinic to N1, N2, N3 for µ2 ≈ − 1
7µ1, µ1 < 0.

For the homoclinic orbits we have even nearly explicit expressions. Scaling the
equation (3)

τ = ǫt, v = ǫ2x,w = ǫ3y, µ1 = ǫ2ν1, µ2 = ǫ2ν2.

and ˙ = d
dτ give

ẋ = y (6)

ẏ = ν1x+ x̄2 + ǫ(ν2y − x̄ȳ) +O(ǫ2).

Letting ǫ = 0 the system has an explicit homoclinic orbit for ν1 > 0 inside
Fix(κ):

q0(t) =

(
xq(t)
yq(t)

)
=


 − 3ν1

2

(
1− tanh2

(√
ν1
2 t
))

3ν1
2

√
ν1sech2

(√
ν1
2 t
)

tanh
(√

ν1
2 t
)

 .

Using the Melnikov method, see e.g. Guckenheimer and Holmes [13], we can
then compute parameter values for which the homoclinic orbit persists for ǫ > 0
to get the above results.
By symmetry there are homoclinic orbits biasymptotic to the origin inside
the other two invariant fixed point spaces γFix(κ) and γ2Fix(κ) for the same
parameter values too. So there exists a ‘clover’ like structure of homoclinic
orbits, see figure 2.

4 General Horseshoes and Proof of Theorem 1

In this section we prove the existence of the subshift of finite type near the clover
of homoclinic orbits. We will compute a Poincaré map near the homoclinic
orbits with varying unfolding parameters µ1 and µ2. For each of the three
homoclinic orbits we define an ‘in’ and an ‘out’ section, called Sini and Souti

(figure 3). The return map P : Sin1 ∪ Sin2 ∪ Sin3 → Sin1 ∪ Sin2 ∪ Sin3 is discussed
by dividing it into local parts near the steady state, which can be described by

Documenta Mathematica 4 (1999) 463–485



470 Karsten Matthies

1

2

3

Figure 2: A sketch of the clover of homoclinic orbits. The three orbits lie all
in different planes, which intersect only in the origin.

S
in v

Sout
1

1 1

v3

Figure 3: The sections Sout1 and Sin1 at the homoclinic orbit projected to Fix(κ).

its linearisation (lemma 4) and global parts along the homoclinic orbit. This
technique can also be used to analyze several other homoclinic bifurcations, see
for example the textbook [10].

Before we give the technical details of the analysis of P , we describe the ge-
ometric idea: The sections Sini and Souti are cubes in R3. We identify those
regions in Souti , which have a preimage in some Sini under the local maps (see
figure 4). Similarly we compute the regions in Sini , which are mapped by the
local maps to some Souti (see figure 5). The global map P will map the cube
in figure 4 to the cube in figure 5.

For appropriately chosen parameters (µ1, µ2) the slabs marked ‘2’ and ‘3’ in
figure 4 will intersect the slabs ‘2’ and ‘3’ in figure 5. We can then show
that there is a Smale horseshoe in three dimensions in the upper half of the
cube. But because of the symmetry we have three copies of these cubes and
the possible itineraries inside the invariant set are more complicated. In the
figures 4 and 5 the sections of the homoclinic orbit marked ‘1’ in figure 2 are
shown. The trajectories of points in the regions ‘2’ and ‘3’ in figure 4 were in
the sections Sin2 and Sin3 before. In the same way the slabs ‘2’ and ‘3’ in figure
5 are those regions, where the forward orbit will reach the section Sout2 and
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1

3

2

a
a

a2
4

3

Figure 4: The section Sout1 with the images of Sin1 , Sin2 and Sin3 . The line in
the middle is the section with Fix(κ).

Sout3 next. Hence the itineraries, described in the figures 4 and 5, have first a
symbol ‘2’ or ‘3’ then the symbol ‘1’, because they are now at the homoclinic
orbit with symbol ‘1’, and then proceed with ‘2’ or ‘3’. At the other sections
there is the same behavior after following once along the homoclinic loop: The
trajectories of points inside the invariant set will lead to another section and
hence to another symbol. Therefore the subshift described in theorem 1 can
be realized, but no other infinite symbol sequences.
To rigorously prove the existence of the subshift, we describe briefly the notion
of a general horseshoe in R3 following Katok and Hasselblatt [15]. First we
explain the meaning of ‘full intersection’. Then using cone conditions we give
precise meaning to ‘horizontal expansion’ and ‘vertical contraction’. We prove
a technical lemma to justify the complete linearisation near the steady state
before computing the local and global maps.
We will consider a rectangle ∆ = D1 ×D2 ⊂ R⊕R2 = R3 where D1 and D2

are discs. The projections on the components are denoted by π1 (“horizontal”)
and π2 (“vertical”). Let ∆ ⊂ U ⊂ R3 be a rectangle and f : U → R3 be a
diffeomorphism. Then we call a connected component S′ = fS ⊂ ∆ ∩ f∆ full,
if

1. π2(S) = D2,

2. for all z ∈ S, π1|f(S∩(D1×π2(z))) is a bijection onto D1.

The first condition implies that S reaches completely along the vertical direction
and second one that the image of every horizontal fiber in S meets ∆ and
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1

3 2

a

a
a

2
4

1

Figure 5: The section Sin1 where the preimages of Sout1 , Sout2 and Sout3 are the
dotted slabs.

traverses it completely.
Next we introduce cone conditions. A horizontal s-cone Hs

x is defined by Hs
x =

{(u, v) ∈ TxR3|‖v‖ ≤ s‖u‖}, similarly a vertical s-cone V sx by V sx = {(u, v) ∈
TxR

3|‖u‖ ≤ s‖v‖} at x ∈ R3 for some s. A map f preserves a family Hx

of horizontal cones for x ∈ U ⊂ R3, if Dfx(Hx) ⊂ int(Hf(x)) ∪ {0}. It is
called expanding on a horizontal cone family Hx, if ‖Dfxξ‖ ≥ µ‖ξ‖ for ξ ∈ Hx

and some fixed µ > 1. We want to express a contraction property in the
vertical direction, thus we consider f−1 on vertical cone families. It preserves
the vertical cone family Vx, if Df−1

x (Vf(x)) ⊂ int(Vx) ∪ {0} and f−1 expands
them, if ‖Df−1

x ξ‖ ≥ λ−1‖ξ‖ for ξ ∈ Vf(x) and some uniform λ < 1. Then the
appropriate generalization of a Smale horseshoe in higher space dimensions is
given by

Definition 3 [15] Let ∆ ⊂ U ⊂ R3 be a rectangle and f : U → R3 be a
diffeomorphism. ∆ ∩ f(∆) is called a horseshoe if it contains at least two full
components ∆1 and ∆2 such that for ∆′ = ∆1 ∪ ∆2 the following conditions
hold:

1. π2(∆′) ⊂ int(D2) and π1(f−1(∆′)) ⊂ int(D1),

2. D(f|f−1(∆′)) preserves and expands a horizontal cone family on f−1(∆′),

3. D(f−1
|∆′) preserves and expands a vertical cone family on ∆′.

To compute the return map P we will first prove that we can completely lin-
earize the local maps.
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Lemma 4 Suppose that the distinct eigenvalues of the linearisation A at 0

λ1,2 = µ2

2 ±
√

µ2
2

4 + µ1 are not in resonance, i.e. λi − (kλ1 + lλ2) 6= 0 for
k, l ∈ N, k + l > 1. Then there exists a D3-equivariant smooth diffeomorphism
H conjugating the flow Φt of (3) and exp(At) on some neighborhood U of the
origin: HΦt = exp(At)H.

Proof: We consider first the time-one-map Φ1, again the linear part is diago-
nal with eigenvalues eλ1 , eλ2 . For these the non-resonance conditions for maps
expλi 6= exp(kλ1) · exp(lλ2) for k, l ∈ N, k + l > 1 hold. The non-resonance
conditions imply that we can formally remove all terms of algebraic order by
a near-identity coordinate change. This is possible even in a D3-equivariant
setting [11]. So we still have to remove flat terms and discuss convergence. To
remove these flat terms we use a version of Sternberg’s theorem [15, theorem
6.6.7]. The assumptions are fulfilled: The linear part is diagonal and the nor-
mal form which can be achieved by the above coordinate change is a convergent
power series, since it is only linear. The theorem then gives the existence of a
smooth diffeomorphism conjugating Φ1 and its normal form. Thus there exists
a smooth diffeomorphism H1 linearizing Φ1 in a neighborhood of the origin.
Furthermore the construction in [15] can be chosen to preserveD3-equivariance,
when we use invariant cut-off functions. Then the D3-equivariant diffeomor-

phism H =
∫ 1

0
exp(−At)H1Φtdt is the needed conjugacy for the entire flow on

some neighborhood U of 0. This can be seen when using exp(−A)H1Φ1 = H1

exp(−As)HΦs =
∫ 1

0 exp(−A(t+ s))H1Φt+sdt =
∫ s+1

s exp(−Au)H1Φudu

= H −
∫ s
0

exp(−Au)H1Φudu+
∫ s+1

1
exp(−Au)H1Φudu

= H −
∫ s
0

exp(−A(u + 1))H1Φu+1du +
∫ s+1

1
exp(−Au)H1Φudu

= H✷

Now we can compute the map P . After the coordinate change of the lemma the
local maps are given by a linear flow. Then the stable and unstable manifolds
coincide with the stable and unstable eigenspaces. To carry out the analysis
we use again the scaled coordinates x = x1 + ix2, y = y1 + iy2 ∈ C for some
ǫ > 0 small. We know the homoclinic orbits explicitly by section 3 up to
perturbations of order O(ǫ). While neglecting terms of order O(ǫ2) the system
in C2 is given by equation (6).
Local maps: To compute the local maps we use a basis of eigenvectors of the

linearized system: For the eigenvalue λ1 = ǫν2
2 +

√
ǫ2ν2

2

4 + ν1 > 0 we choose

v1, v2 and for the eigenvalue λ2 = ǫν2
2 −

√
ǫ2ν2

2

4 + ν1 < 0 the vectors v3, v4. The

original basis of R4 ∼= C2 is given by (x1, y1, x2, y2).

v1 = (1 + λ2
1)−

1
2 (1, λ1, 0, 0)T , v2 = (1 + λ2

1)−
1
2 (0, 0, 1, λ1)T ,

v3 = (1 + λ2
2)−

1
2 (1, λ2, 0, 0)T , v4 = (1 + λ2

2)−
1
2 (0, 0, 1, λ2)T .

A vector a ∈ R4 is then denoted as a = a1v1 + a2v2 + a3v3 + a4v4. The
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eigenvectors v1 and v3 span Fix(κ). The section Sout1 is then defined by

a1 = −c and max{|a2|, |a3|, |a4|} < δ

with c small and 0 < δ ≪ c such that the section is completely inside U , where
the flow is linearized. Sin1 is given by

a3 = −c and max{|a1|, |a2|, |a4|} < δ.

We will also use rotated coordinate systems with basis vectors v′l = γvl and
v′′l = γ2vl with coefficients a′l, a

′′
l . Thus we can define the sections of the rotated

homoclinic orbits.

Sout2 : a′1 = −c,max{|a′2|, |a′3|, |a′4|} < δ
Sout3 : a′′1 = −c,max{|a′′2 |, |a′′3 |, |a′′4 |} < δ
Sin2 : a′3 = −c,max{|a′1|, |a′2|, |a′4|} < δ
Sin3 : a′′3 = −c,max{|a′′1 |, |a′′2 |, |a′′4 |} < δ

First we compute P locl , l ∈ {1, 2, 3}. The flow of the linear system is given by

Φt(a) = a1v1e
λ1t + a2v2e

λ1t + a3v3e
λ2t + a4v4e

λ2t, (7)

similarly in the primed versions for the rotated coordinate systems. Starting
at a vector a ∈ Sin1 ∪ Sin2 ∪ Sin3 with P locl (a) ∈ Sout1 (i.e. especially a1 < 0),
the time t = (ln c

|a1| )/λ1 is needed to reach the Sout1 section. Then P locl (a1v1 +

a2v2 + a3v3 + a4v4)

= (−cv1 + a2

∣∣∣∣
c

a1

∣∣∣∣ v2 + a3

∣∣∣a1

c

∣∣∣
|λ2|
λ1

v3 + a4

∣∣∣a1

c

∣∣∣
|λ2|
λ1

v4) (8)

with |λ2|
λ1

= 1 + 18
49ǫ

2ν1 + 6
7ǫ
√

9
49ǫ

2ν2
1 + ν1 +O(ǫ3).

To understand the geometry of the local maps we compute how the preimage of
the ‘out’-sections Soutl , l ∈ {1, 2, 3} intersects the ‘in’-sections Sinl , l ∈ {1, 2, 3}
and how the images of Sinl intersect the ‘out’-sections Soutl . We start with the
preimage of Sout1 intersected with Sin1

Sin1,1

= Sin1 ∩ P loc1

−1
(Sout1 )

= {(a1, a2, a3, a4)|a3 = −c,max{|a1|, |a2|, |a4|} < δ}

∩ {(a1, a2, a3, a4)|a1 < 0,max{|a2|
∣∣∣∣
c

a1

∣∣∣∣ , |a3|
∣∣∣a1

c

∣∣∣
|λ2|
λ1

, |a4|
∣∣∣a1

c

∣∣∣
|λ2|
λ1 } < δ}

= {(a1, a2, a3, a4)| − δ < a1 < 0, |a2| < δ
∣∣∣a1

c

∣∣∣ , a3 = −c, |a4| < δ}.

This is the slab with label ‘1’ infigure 5. Then the image of Sin1 inside Sout1 is
given by Sout1 ∩ P loc1 (Sin1 ) = P loc1 (Sin1,1)

= {(a1, a2, a3, a4)|a1 = −c, |a2| < δ,−δ
|λ2|
λ1 < a3 < 0, |a4| <

δ

c
|a3|}.
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This set is the slab with label ‘1’ in figure 4. To determine the images
P loc2 (Sin2 ) ∩ Sout1 and P loc3 (Sin3 ) ∩ Sout1 we have just to rotate a part of the
coordinate system. Inside the stable eigenspace (v3, v4) is changed to (v′3, v

′
4)

and (v′′3 , v
′′
4 ) respectively. Equation (7) holds for each eigenspace independently.

Thus the restrictions are essentially the same as for Sout1 ∩ P loc1 (Sin1 ) just with
a′3, a

′
4 and a′′3 , a

′′
4 instead of a3, a4. Hence the slab Sout1 ∩P loc1 (Sin1 ) has just to be

rotated by 2π/3 and 4π/3 inside the (v3, v4) plane to get Sout1 ∩ P loc2 (Sin2 ) and
Sout1 ∩ P loc3 (Sin3 ). A sketch of section Sout1 with the images of Sinl , l ∈ {1, 2, 3}
is given in figure 4.
Next we will compute the preimage of Sout2 and Sout3 under P loc1 to get the
structure of Sin1 . When we use a rotated coordinate system (v′1, v

′
2) instead of

(v1, v2) inside the unstable eigenspace, the time t = (ln c
|a′1|

)/λ1 is needed to

reach Sout2 . This yields to

P loc1 (a′1v
′
1 + a′2v

′
2 − cv3 + a4v4)

= (−cv′1 + a′2

∣∣∣∣
c

a′1

∣∣∣∣ v
′
2 − c

∣∣∣∣
a′1
c

∣∣∣∣

|λ2|
λ1

v3 + a4

∣∣∣∣
a′1
c

∣∣∣∣

|λ2|
λ1

v4).

So the preimage of Sout2 under P loc1 is just Sin1,1 rotated by 2π/3 inside the
unstable eigenspace. And finally for the preimage of Sout3 the coordinate system
has to be rotated by 4π/3 in the unstable eigenspace. The section Sin1 with the
preimages of Soutl , l ∈ {1, 2, 3} is drawn in figure 5.

Global maps: Next we approximate P glol : Soutl → Sinl by an Taylor ex-
pansion using the linearisation along the homoclinic orbit. This approxima-
tion is valid by a general perturbation argument for hyperbolic sets, when
we choose the size of the cubes δ small enough. We get a constant term
of the global map when considering the splitting of the homoclinic orbit.
The point (−c, 0, 0, 0) ∈ Sout1 is inside Fix(κ), hence it will be mapped to
Sin1 ∩ Fix(κ). Thus the constant term is the distance of the stable and unsta-
ble manifolds inside Fix(κ). Using [13, Eq.(4.5.11)] this distance is given by

d(ν2, ǫ) = ǫM(ν2)
‖f(q)‖ + O(ǫ2), with Melnikov functional M(ν2) and vector field f

on Fix(κ). For our system this is d(ν2) = ǫ 4
5c

√
ν1(ν2 + 6

7ν1).
In (x1, y1, x2, y2) coordinates the linearisation along the homoclinic solution for
ǫ > 0 is given by B = D(x,y)f|(x(t),y(t)) =



0 1 0 0
ν1 + 2x1(t)− ǫy1(t) ǫ(ν2 − x1(t)) 0 0

0 0 0 1
0 0 ν1 − 2x1(t) + ǫy1(t) ǫ(ν2 + x1(t))


 ,

(9)
where x1(t), y1(t) are the non-zero components of the homoclinic orbit. This
means that we have to solve the non-autonomous linear differential equation
ξ̇ = Bξ. We use the block diagonal structure of the matrix. The first block
describes the behavior inside the invariant subspace Fix(κ) and the second
block the orthogonal complement Fix(κ)⊥.
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In the first block we are interested in the initial values ξ0 = a3v3 inside Sout1 .
One solution of the variational equation inside Fix(κ) is given by q̇0(t) for
ǫ = 0. Letting q0(0) ∈ Sout1 and q0(T ) ∈ Sin1 , then ‖q0(0)‖ = ‖q0(T )‖ by
symmetry. The vectors ξ0, q̇0(0) restricted to Fix(κ) are a fundamental system.
The Wronskian W of this system is constant by Liouville’s theorem: Ẇ =
trace(B|Fix(κ))W = 0 . Therefore, as q̇0(0) = kv1 and q̇0(T ) = kv3, the

projection of ξ0(T ) onto v1 is a3. By smooth dependence on parameters this

yields to P glo1 (a3v3) = (1 +O(ǫ))a3v1.
In the second block we consider initial values ξ1 = a2v2 and ξ2 = a4v4. First

assume that ǫ = 0. As (ν1 − 2x1(t)) > ν1 > 0 and ξ
(1)
1 (0), ξ

(2)
1 (0) > 0 hold, the

two components ξ
(1)
1 (t) and ξ

(2)
1 (t) are increasing. The global map also expands

this vector for ǫ > 0 by the smooth dependence on the parameter ǫ for finite
time. Hence in linear approximation we get P glo1 (a2v2) = a2(α1v2 +α2v4) with
α2

1 + α2
2 ≥ 1. Furthermore

α1 ≥ 0.9|α2| (10)

holds because the coefficients of the solution are positive in the x2, y2 coordi-
nates. Applying Liouville’s theorem again for ǫ = 0, the second initial vector
is mapped to P glo1 (a4v4) = a4(β1v2 +β2v4) with α1β2−α2β1 = 1. Again ǫ > 0
will give perturbations of type 1 + O(ǫ), which we will suppress by still using
the same notation.
Full Map: We now consider only those points which are mapped under the
local maps from Sin1 ∪ Sin2 ∪ Sin3 to Sout1 . When we use (v1, v2, v3, v4) as a
coordinate system for all three ‘in’-sections then the composed mapping is
given by

P glo1 ◦ P locl : Sinl → Sin1 , l ∈ {1, 2, 3}



a1

a2

a3

a4


 7→




4ǫ
5c

√
ν1(6

7ν1 + ν2) + (1 +O(ǫ))a3

∣∣a1

c

∣∣1+ 6
7 ǫ
√
ν1

α1a2| ca1
|+ β1a4

∣∣a1

c

∣∣1+ 6
7 ǫ
√
ν1

−c
α2a2| ca1

|+ β2a4

∣∣a1

c

∣∣1+ 6
7 ǫ
√
ν1



(11)

Now we can use this to determine the return map P : Sin1 ∪ Sin2 ∪ Sin3 →
Sin1 ∪Sin2 ∪Sin3 , where it is defined. Because of the symmetry the maps P glo2 ◦P locl

and P glo3 ◦ P locl are related to (11) by simple rotations of whole R4. When

changing to the rotated coordinates, the maps P glo2 ◦ P locl and P glo3 ◦ P locl are
given by equation (11) with ai replaced by a′i and a′′i . Therefore it is enough to
consider a reduced map P̃ just as a map from one section Sin to itself. We just
have to change the original labels ‘1’, ‘2’ and ‘3’ in the Sin2 and Sin3 sections.
We will use a labeling relative to our position and call our position ‘1’, the next
homoclinic orbit in the direction of the rotation is called ‘2’ and the other one
‘3’.
Proof of theorem 1: The existence of a horseshoe for this reduced map
P̃ will be shown. Analyzing the implications for the full map will prove the
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theorem. The conditions of definition 3 will be checked for the map:

P̃ : Sin → Sin




a1

a2

a4


 7→




4ǫ
5c

√
ν1(6

7ν1 + ν2) + (1 +O(ǫ))|a1|
∣∣a1

c

∣∣ 67 ǫ
√
ν1

α1a2| ca1
|+ β1a4

∣∣a1

c

∣∣1+ 6
7 ǫ
√
ν1

α2a2| ca1
|+ β2a4

∣∣a1

c

∣∣1+ 6
7 ǫ
√
ν1


 . (12)

The horizontal direction is α1v2 + α2v4 and the vertical directions are v1 and
v4. Using these as a new basis with coefficients ζ1, ζ2 and ζ3 we define ∆ as
the product of discs with radii 2δ in ζ1 for D1 and δ in (ζ2, ζ3) for D2 with
the further restriction δ

6 < ζ2 <
δ
3 . This means we choose a coordinate system

such that we can ignore any rotation of figure 4 under the global mapping to
figure 5, even if |α2| is not small. This can be done, because we estimated
α1 ≥ 0.9|α2| in (10). We just have to change the labels from a2 to ζ1, a1 to ζ2
and a4 to ζ3. As above we denote the rotated coordinates by ζ′i and ζ′′i . The
rectangle is given in figure 6. We choose the distance of splitting d = δ

6 . The

two full components ∆1 and ∆2, which have to be contained in ∆∩ P̃ (∆), are
the two top dotted slabs in figure 6.
We consider the preimages of these two slabs under the original return map
P , i.e. we are interested in the preimages of ∆1,∆2 ⊂ Sin1 under P glo1 ◦ P loc2,3 .

Then we get (P glo1 ◦ P loc2 )−1(∆1) =

Γ̃1 = {(ζ1, ζ2, ζ′3) ∈ γ ·∆|0 < −ζ2 < 2δ, |ζ1| ≤ δ
∣∣∣∣
ζ2
cα1

∣∣∣∣} ⊂ γ∆ ⊂ Sin2

and similarly (P glo1 ◦ P loc3 )−1(∆2) =

Γ̃2 = {(ζ1, ζ2, ζ′′3 ) ∈ γ2 ·∆|0 < −ζ2 < 2δ, |ζ1| ≤ δ
∣∣∣∣
ζ2
cα1

∣∣∣∣} ⊂ γ2∆ ⊂ Sin3 .

As we identified the three sections in this analysis of P̃ , we deal with Γ1 and
Γ2, which are contained in the slabs with labels 2 and 3 in figure 6. The further
restrictions are due to the possible additional expanding of the global map, i.e.
the slabs are defined by

Γ1 = γ−1Γ̃1 = {(ζ′′1 , ζ′′2 , ζ3) ∈ ∆|0 < −ζ′′2 < 2δ, |ζ′′1 | ≤ δ
∣∣∣∣
ζ′′2
cα1

∣∣∣∣}. (13)

Γ2 = γ−2Γ̃2 = {(ζ′1, ζ′2, ζ3) ∈ ∆|0 < −ζ′2 < 2δ, |ζ′1| ≤ δ
∣∣∣∣
ζ′2
cα1

∣∣∣∣}, (14)

After relabeling we have ∆1 = P̃ (Γ1) and ∆2 = P̃ (Γ2): The slab Γ1 is mapped

by P loc1 to Sout3 and then by P glo3 , because of our relabeling it will be the
slab coming from Sout2 , hence it is the dotted slab with label 2 and therefore
∆1 = P̃ (Γ1). In the same manner we get ∆2 = P̃ (Γ2).
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D2

ζ3

ζ2

∆rectangle

1

2

3

D

ζ1

1

d

1

3

2

Γ Γ

∆

∆2

1

1 2

Figure 6: The section Sin with rectangle ∆ = D1×D2 including ∆1,2 = P̃ (Γ1,2)

So we can now check the conditions in the definition of the horseshoe. The two
components ∆1 = P (Γ1) and ∆2 = P (Γ2) are full: π2(Γi) = D2 for i = 1, 2,
because we can choose ζ3 freely and ζ′2 < 0 (respective ζ′′2 ) freely with |ζ′1|
(respective ζ′′1 ) small inside ∆, i.e. we get all wanted ζ2 > 0 in the definition
of Γi. For all ζ ∈ Γi the restriction π1|f(Γi∩(D1×π2(ζ))) is a bijection onto D1.
When we vary ζ1 for any given z = (a1, α1ζ1, α2ζ1 + a4) ∈ Γi then P is affine
linear (see (12)) and the projection π1 to the ζ1 component is injective, which
is the a2 component in P . It is also surjective onto D1, because the restrictions
on a2 inside Γi ((14) and (13)) were given such that the maximal modulus of
the a2 component is δ in the image.
Next we check the first condition in definition 3. π2(∆′) ⊂ int(D2) holds
because of the contraction in the a1 = ζ2 and ζ3 component when choosing
6
7ν1 + ν2 small enough. The ζ3 component is given by

∣∣∣∣∣(α1ζ3 − α2ζ1)

∣∣∣∣
ζ2
c

∣∣∣∣
1+ 6

7 ǫ
√
ν1
∣∣∣∣∣≪ δ.

The other condition π1(P−1∆′) ⊂ int(D1) also holds, because |ζ1| ≤ |ζ′′1 |/2 +
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√
3|ζ′′2 |/2 and ζ′1, ζ

′
2 and ζ′′1 , ζ

′′
2 are small enough by the definition of Γ1 and Γ2

(see (14),(13)).
Finally we have to check the cone conditions, for which we need the lineari-
sations of P̃ and P̃−1. Suppressing all factors 1 + O(ǫ) these are given in the
original (a1, a2, a4) coordinates by DP̃x(a1, a2, a4) =




−
∣∣a1

c

∣∣ 67 ǫ
√
ν1

0 0

α1a2
c
a2
1
− β1a4

∣∣a1

c

∣∣ 67 ǫ
√
ν1

α1

∣∣∣ ca1

∣∣∣ β
∣∣a1

c

∣∣1+ 6
7 ǫ
√
ν1

α2a2
c
a2
1
− β2a4

∣∣a1

c

∣∣ 67 ǫ
√
ν1

α2

∣∣∣ ca1

∣∣∣ β2

∣∣a1

c

∣∣1+ 6
7 ǫ
√
ν1


 (15)

and if (a1, a2, a4) = P̃−1(z) then DP̃−1
x (z) = (DP̃x(a1, a2, a4))−1 is




−
∣∣∣ ca1

∣∣∣
6
7 ǫ
√
ν1

0 0

−a2

a1

∣∣∣ ca1

∣∣∣
1− 6

7 ǫ
√
ν1
a2 β2

∣∣a1

c

∣∣ −β
∣∣a1

c

∣∣

−a4

∣∣∣ ca1

∣∣∣
1+ 6

7 ǫ
√
ν1

−α2

∣∣∣ ca1

∣∣∣
1+ 6

7 ǫ
√
ν1

α
∣∣∣ ca1

∣∣∣
1+ 6

7 ǫ
√
ν1



. (16)

Changing to the new ζ coordinates, we can easily check the cone conditions:
The matrix DP̃ (ζ2, ζ1, ζ3) is given by




−
∣∣∣ ζ2c
∣∣∣
6
7 ǫ
√
ν1

0 0

ζ1
α1

c

ζ2
2

−(α1ζ3−α2ζ1)
β1
α1

∣∣ ζ2
c

∣∣ 67 ǫ
√

ν1
α1

∣∣ c
ζ2

∣∣+ α2
α1

∣∣ ζ2
c

∣∣1+ 6
7

ǫ
√

ν1 β1
α1

∣∣ ζ2
c

∣∣1+ 6
7

ǫ
√

ν1

−(α1ζ3−α2ζ1)
∣∣ ζ2

c

∣∣ 67 ǫ
√

ν1
α2

∣∣ ζ2
c

∣∣1+ 6
7

ǫ
√

ν1
∣∣ ζ2

c

∣∣1+6
7

ǫ
√

ν1




(17)
and DP̃−1 by




−
∣∣∣ cζ2
∣∣∣
6
7 ǫ
√
ν1

0 0

−
∣∣∣ cζ2
∣∣∣
6
7 ǫ
√
ν1

ζ1
ζ2α2

1

∣∣∣ ζ2cα1

∣∣∣ − β1

α1

∣∣∣ ζ2c
∣∣∣

(
α2ζ1

c −α1(α1ζ3−α2ζ1))
∣∣ c

ζ2

∣∣1+ 6
7

ǫ
√

ν1 −α2

∣∣ c
ζ2

∣∣1+ 6
7

ǫ
√

ν1
α2

1

∣∣ c
ζ2

∣∣1+ 6
7

ǫ
√

ν1
+β1α2

∣∣ ζ2
c

∣∣


 .

(18)

Now it is straightforward to see, that the term α1

∣∣∣ cζ2
∣∣∣ is the largest entry in

the matrix (17). Then it preserves horizontal cones with constant e.g. s =
0.3 and expands them with expansion rate µ = α1

c
2δ > 1. Similar we see,

that α2
1

∣∣∣ cζ2
∣∣∣
1+ 6

7 ǫ
√
ν1

is the leading term of the last two lines in (18). Hence it

preserves vertical cones with constants s = 0.3 and expands them with constant

λ−1 for λ = 2 δc

6
7 ǫ
√
ν1
< 1.

By Katok and Hasselblatt [15, p.274] we have the existence of an invariant
hyperbolic Cantor set for the reduced map P̃ , such that the dynamics are
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topological conjugate to the shift on two symbols for this reduced map. Then
for the complete return map P there exists the shift of finite type with the
transition matrix of the theorem: if an orbit is near the loop l in the present,
then as the shift is on the symbols 2 and 3 the next loop in the itinerary has
to be l + 1 mod 3 or l + 2 mod 3. Similarly the previous one was l + 1 mod 3
or l + 2 mod 3. Thus possible sequences (xn)n∈Z have the form xn 6= xn+1.
The realization of all these sequences are guaranteed by the existence of the full
shift on two symbols for P̃ . Proposition 6.5.3 in [15] gives then even persistence
under small C1 perturbations i.e. for an open set in parameter space. Hence we
can include higher order terms. This also verifies the linear approximation of
the global maps, for which all equivariant higher order terms can be neglected.

It remains to check the symmetry properties of C, P and τ . The sections Sink
are related by symmetry: Sin2 = γSin1 and Sin3 = γ2Sin1 . Furthermore Sin1 is
κ-invariant and Sin3 = κSin2 . Then P loc is equivariant, because the linearizing
diffeomorphism is D3-equivariant. The global part is equivariant under rotation
γ by construction. It is equivariant under κ by the following argument:

κ−1P gloκx = κ−1Φt(κx)(κx) = Φt(κx)(x)

P glox = Φt(x)(x)

As the times t(κx) and t(x) are both close to the time needed of the homoclinic
orbits from the ‘out’ section to the ‘in’ section, we get t(κx) ≈ t(x). As
Φt(x)(x),Φt(κx)(x) ∈ Sink for the same k, we get t(x) = t(κx). Hence P glo and
P are equivariant. Then C = ∩∞n=−∞P

n(∪i=1,2,3S
in
i ) is D3 invariant, because

Pn is equivariant and ∪i=1,2,3S
in
i is invariant. If x ∈ C and x = Pn(an) with

an ∈ Sinxn
, then τ(x) = (xn)n∈Z and the equivariance of τ can be easily checked

using the representations (2) and (1). ✷

5 Discussion

In this section we give a more complete bifurcation diagram of the Takens-
Bogdanov point with D3-symmetry, using numerical studies of the normal form
equations. Then we will describe an application to coupled oscillators.

A major drawback in all further numerical studies is that there are not any
stable dynamic features except the origin for some parameter values (µ1, µ2 <
0). Therefore all direct simulations will not give much insight. Some conjectures
about the periodic solutions created at Hopf bifurcations are possible using the
path-following program AUTO [5].

The dynamics are fully understood in the invariant plane Fix(κ) by [14], see
also [16]. There are two branches of periodic orbits starting from the D3-Hopf
bifurcation of 0 and the Hopf of N1 at µ2 = −µ1, µ1 > 0. These branches do
not undergo any folds and end at the homoclinic orbit. The global behavior
of the other branches of periodic solutions are analyzed using AUTO. These
branches of periodic solutions outside Fix(κ) seem to break down at the clover
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1

2

3

Figure 7: A periodic orbit with sequence 1213 of isotropy type Z̃2 of the branch
coming from the D3-Hopf. Parameter values are near the existence of the ho-
moclinic clover. A projection on the v plane is shown, the crosses denote steady
states. The trajectory of periodic orbit was approximated by integrating the
differential equation starting at points, which described the periodic solution
for AUTO.

structure of homoclinic orbits. Probably they are some of the periodic orbits
of the subshift:

• The periodic solutions with isotropy type Z̃2 coming from the D3-Hopf
bifurcation have period 4 created by the sequences 1213, 2321 and 3132,
see figure7.

• The solutions coming from the Hopf bifurcation of N1,2,3 at µ2 = µ1, µ1 <
0 seem to have period 2, see figure 8.

• Even if the author could not pick up the Z̃3 periodic solutions starting
at the D3-Hopf bifurcation for path-following with AUTO. We might
conjecture that this branch also ends at the homoclinic clover. They are
probably of period 3 with sequences 123 and 132.
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2

3

Figure 8: A periodic solution with sequence 23 with isotropy type Z̃2 on the
branch coming from the Hopf bifurcation of N1.

The entire horseshoe does persist for some parameter by a general perturbation
argument for hyperbolic sets. It remains an open question how long for example
the other periodic orbits created by the horseshoe persist. This will probably
involve even more complicated bifurcations.

We will consider an application to three coupled oscillators following Fiedler
[6]. The system is given by

ẋi = f(xi) +D(xi−1 + xi+1 − 2xi) (mod 3), i = 1, 2, 3, (19)

where xi ∈ Rk and D = diag(d1, . . . , dk). This system is equivariant under
permutations of x1, x2 and x3. The symmetry group is isomorphic to D3. If
we have a homogeneous solution, it will stay homogeneous under the evolution
of time. We change to (x, y, z) coordinates where

x = x1 + x2 + x3, y = x1 − x2, z = x2 − x3.

Documenta Mathematica 4 (1999) 463–485



Takens-Bogdanov Point with D3 Symmetry 483

In the new coordinate system we then have:

ẋ = f(
x+ z + 2y

3
) + f(

x+ z − y
3

) + f(
x− y − 2z

3
)

ẏ = f(
x+ z + 2y

3
)− f(

x+ z − y
3

)− 3Dy

ż = f(
x+ z − y

3
)− f(

x− y − 2z

3
)− 3Dz (20)

We consider the homogeneous equilibrium (x0, x0, x0) with linearisation
f ′(x0) = A. In the new coordinates the equilibrium is (3x0, 0, 0). Its Jaco-
bian in the entire system is given by the block diagonal matrix diag(A,A −
3D,A− 3D).
We choose k = 2 and for f the dynamics of the Brusselator as an easy example.
It gives some insight into the possible behavior of chemical oscillator. So f =
(f1, f2) is given by f1(ξ1, ξ2) = a− (b+ 1)ξ1 + ξ21ξ2, f2(ξ1, ξ2) = bξ1− ξ21ξ2 with

a, b > 0, the equilibrium is x0 = (a, ba ) and A =

(
b− 1 a2

−b −a2

)
. We choose

D = 1
3

(
λ1 0
0 λ2

)
. Then A− 3D has a double eigenvalues 0 if

det(A− 3D) = λ1λ2 + λ1a
2 − λ2(b− 1) + a2 = 0

trace(A− 3D) = b− 1− a2 − λ1 − λ2 = 0

The solution is given by (λ1, λ2) = (b − 1 − a
√
b,−a2 + a

√
b), the diffusion

constants λ1, λ2 are positive and therefore somehow realistic for a < b−1√
b

. So

this D3-equivariant system has a Takens-Bogdanov point since there is a double
zero eigenvalue and A−3D 6= 0. We apply our bifurcation analysis for Takens-
Bogdanov points with D3-symmetry to this problem. It will be valid on a
four-dimensional center manifold which is tangent to the subspace spanned by
y and z.
As trace(A) > trace(A − 3D) = 0 holds for λ1 + λ2 > 0, the matrix A has at
least one eigenvalue with positive real part. Hence all dynamical features will be
unstable if we consider the entire system. We could stabilize the system when
using negative diffusion rates. But still all branching solutions have unstable
directions due to the Takens-Bogdanov point making them inaccessible for
direct numerical simulation.
The origin will still correspond to the homogeneous solution even after the
needed coordinate changes. Then an interpretation of a D3-Hopf bifurcation in
a ring of three coupled oscillators is given in [11, XVII.4]. The three different
types of periodic solutions give different waveforms, phase shifts and resonances
for the three cells. We furthermore expect near the bifurcation point the exis-
tence of inhomogeneous steady state solutions with two cells being in the same
state. The periodic solutions coming from the Hopf bifurcations of these fixed
points oscillate around these inhomogeneous steady states. In the first type
two cells are in phase and in the other type two cells have a phase shift of
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π. The periodic solutions collapse at the homoclinic orbits, since by moving
in parameter space parts of the periodic orbits reach a state very close to the
homogeneous equilibrium. For these parameter values the system is already
‘chaotic’ because of the existence of shift dynamics. When the solution follows
one of the loops of the ‘clover’ structure it has nearly a Z2 symmetry, i.e. two
cells have nearly the same state. Hence within the shift dynamics we have
arbitrary changes of two out of three cells being nearly in phase. The structure
of our subshift forces the system to change to another pair of cells being in
phase after some time. Because of the unstable directions of the hyperbolic
structure this behavior is only observable as a transient motion to infinity or
to some stable solutions far away from the Takens-Bogdanov point.
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Abstract. A flat complex vector bundle (E,D) on a compact Rie-
mannian manifold (X, g) is stable (resp. polystable) in the sense of
Corlette [C] if it has no D-invariant subbundle (resp. if it is the D-
invariant direct sum of stable subbundles). It has been shown in [C]
that the polystability of (E,D) in this sense is equivalent to the exis-
tence of a so-called harmonic metric in E. In this paper we consider
flat complex vector bundles on compact Hermitian manifolds (X, g).
We propose new notions of g-(poly-)stability of such bundles, and of g-
Einstein metrics in them; these notions coincide with (poly-)stability
and harmonicity in the sense of Corlette if g is a Kähler metric, but
are different in general. Our main result is that the g-polystability
in our sense is equivalent to the existence of a g-Hermitian-Einstein
metric. Our notion of a g-Einstein metric in a flat bundle is moti-
vated by a correspondence between flat bundles and Higgs bundles
over compact surfaces, analogous to the correspondence in the case of
Kähler manifolds [S1], [S2], [S3].

1991 Mathematics Subject Classification: 53C07

1 Introduction.

Let X be an n-dimensional compact complex manifold. If X admits a Kähler
metric g, then it is known by work of in particular Simpson [S1],[S2],[S3] that
there exists an canonical identification of the moduli space of polystable (or
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semisimple) flat bundles on X with the moduli space of g-polystable Higgs-
bundles with vanishing Chern classes on X . This identification has been used
in showing that certain groups are not fundamental groups of compact Kähler
manifolds. The construction uses the existence of canonical metrics, called
g-harmonic in the case of flat bundles, and g-Einstein in the case of Higgs
bundles.
For flat bundles, the equivalence of semisimplicity and the existence of a g-
harmonic metric holds on compact Riemannian manifolds [C]. Furthermore,
the equivalence of g-polystability and the existence of a g-Einstein metrics for
Higgs bundles should generalize to the case of Hermitian manifolds as in the
case of holomorphic vector bundles, using Gauduchon metrics. Nevertheless,
an identification as above cannot be expected for general compact Hermitian
manifolds, since it should imply restrictions on the fundamental group, but
every finitely presented group is the fundamental group of a 3-dimensional
compact complex manifold by a theorem of Taubes [T].
In the case of compact complex surfaces, however, things are different. We show
that for an integrable Higgs bundle (E, d′′) with vanishing real Chern numbers
and of g-degree 0 with g-Einstein metric h on a compact complex surface X
with Hermitian metric g, there is an canonically associated flat connection D
in E, again of g-degree 0, such that h is what we call a g-Einstein metric for
(E,D), and that the converse is also true. Furthermore, this correspondence
preserves isomorphism types and hence descends to a bijection between moduli
spaces.
The notion of a g-Einstein metric in a flat bundle makes sense in higher di-
mension, too, is equivalent to g-harmonicity in the case of a Kähler metric, but
different in general, and we show that the existence of such a metric in a flat
bundle (E,D) is equivalent to the g-polystability of this bundle in the sense
that E is the direct sum of D-invariant g-stable flat subbundles. Here we call a
flat bundle (E,D) g-stable if every D-invariant subbundle has g-slope larger(!)
than the g-slope of (E,D). g-stability of a flat bundle is equivalent to its sta-
bility (in the sense of Corlette) in the Kähler case, but a weaker condition in
general: A stable bundle is always g-stable, but the tangent bundles of certain
Inoue surfaces are examples of g-stable bundles which are not stable.
We expect that for a non-Kähler surface with Hermitian metric g, there is a
natural bijection between the moduli space of g-polystable Higgs bundles, with
vanishing Chern numbers and g-degree, and the moduli space of g-polystable
flat bundles with vanishing g-degree. In the last section we consider the special
case of line bundles on surfaces. Here the stability is trivial, and the existence
of Einstein metrics is easy to show, so we get indeed the expected natural
bijection between moduli spaces of line bundles of degree 0. We further show
how this can be extended (in a non-natural way) to the moduli spaces of line
bundles of arbitrary degree; this extension argument works in fact for bundles
of arbitrary rank once the correspondence for degree 0 has been established.

Acknowledgments. The author wishes to thank A. Teleman for the sug-
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gestion to study the relation between flat connections and Higgs operators on
Hermitian manifolds, and for several useful hints. Discussions with him and
Ch. Okonek have been of considerable help in preparing this paper.
The author was supported in part by EC-HCM project AGE ”Algebraic Ge-
ometry in Europe”, contract no. ERBCHRXCT 940557.

2 Preliminaries.

Let X be a compact n-dimensional complex manifold, and E −→ X a differ-
entiable Cr-vector bundle on X . We fix the following
Notations:
Ap(X) (resp. Ap,q(X)) is the space of differentiable p-forms (forms of type
(p, q)) on X .
Ap(E), Ap,q(E) are the spaces of differential forms with values in E.
A(E) is the space of linear connections D in E. For a connection D ∈ A(E)
we write D = D′ +D′′, where D′ is of type (1,0) and D′′ of type (0,1).
A(E, h) ⊂ A(E) is the subspace of h-unitary connections d in E, where h is a
Hermitian metric in E. We write d = ∂ + ∂̄, where ∂ is of type (1,0) and ∂̄ of
type (0,1).
Af (E) := { D ∈ A(E) | D2 = 0 } is the subset of flat connections.
Ā(E) is the space of semiconnections ∂̄ of type (0,1) in E (i.e. ∂̄ is the (0,1)-
part of some D ∈ A(E) ).
H(E) := { ∂̄ ∈ Ā(E) | ∂̄2 = 0 } is the subset of integrable semiconnections or
holomorphic structures in E.
A′′(E) := Ā(E) ⊕A1,0(EndE) = { d′′ = ∂̄ + θ | ∂̄ ∈ Ā(E), θ ∈ A1,0(EndE) }
is the space of Higgs operators in E.
H′′(E) := { d′′ ∈ A′′(E) | (d′′)2 = 0 } is the subset of integrable Higgs operators.
Often the same symbol is used for a connection, semiconnection, Higgs operator
etc. in E and the induced operator in EndE.
Two connections D1, D2 ∈ A(E) are isomorphic, D1

∼= D2, if there exists a
differentiable automorphism f of E such that f◦D1 = D2◦f, which is equivalent
to D(f) = 0, where D is the connection in EndE induced by D1 and D2, i.e.
D(f) = D2 ◦ f − f ◦ D1. In the same way the isomorphy of semiconnections
resp. Higgs operators is defined.
If a Hermitian metric h in E is given, then a superscript ∗ means adjoint with
respect to h.

For D = D′ + D′′ there are unique semiconnections δ′h,δ′′h of type (1,0), (0,1)
respectively such that D′ + δ′′h and δ′h +D′′ are h-unitary connections. Define
δh := δ′h + δ′′h ; then dh := 1

2 (D + δh) is h-unitary, and Θh := D − dh =
1
2 (D − δh) is a h-selfadjoint 1-form with values in EndE. Let dh = ∂h + ∂̄h
be the decomposition in the parts of type (1,0) and (0,1), and let θh be the
(1, 0)-part of Θh; then it holds

D = dh + Θh = ∂h + ∂̄h + θh + θ∗h.
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The map

Ih : A(E) −→ A′′(E), Ih(D) := d′′h := ∂̄h + θh ∈ A′′(E)

is bijective; the inverse is given as follows. For d′′ = ∂̄ + θ ∈ A′′(E) let ∂h be
the unique semiconnection of type (1, 0) such that the connection dh := ∂h + ∂̄
is h-unitary, and define Θ := θ + θ∗. Then

I−1
h (d′′) = Dh := dh + Θ ∈ A(E).

Remark 2.1 i) In general, if D1, D2 ∈ A(E) are isomorphic, then Ih(D1)
and Ih(D2) are not isomorphic, and vice versa.
ii) Dh = dh+θ+θ∗ is not h-unitary unless θ = 0, but the connections dh−θ+θ∗

and dh + θ − θ∗ are.
iii) Any metric h′ in E is of the form h′ = f · h , i.e. h′(s, t) = h(f(s), t),
where f is a h-selfadjoint and positive definite. For a connection D it is easy
to show that the operator δh·f associated to D and f · h is given by δh·f =
f−1 ◦ δh ◦ f = δh + f−1 ◦ δh(f), so it holds

d′′f ·h = d′′h +
1

2
f−1 ◦ δ′′h(f)− f−1 ◦ δ′h(f)

= d′′h +
1

2
f−1 ◦ ∂̄h(f)− 1

2
f−1 ◦ θ∗h(f)− 1

2
f−1 ◦ ∂h(f) +

1

2
f−1 ◦ θh(f).

Conversely, for a given Higgs operator d′′ one verifies

Df ·h = Dh + f−1 ◦ ∂h(f) + f−1 ◦ θ(f).

In particular, if f is constant then the two maps Ih and If ·h coincide.

Definition 2.2 i) Gh := (d′′h)2 is called the pseudocurvature of D with respect
to h.
ii) Fh := D2

h is called the curvature of d′′ with respect to h.

Remark 2.3 i) Obviously it holds: Ih(D) is an integrable Higgs operator if
and only if Gh = 0, and I−1

h (d′′) is a flat connection if and only if Fh = 0.
ii) For i = 1, 2, let Ei be a differentiable complex vector bundle on X with Her-
mitian metric hi and connection Di. Let h be the induced metric and D the
induced connection in Hom(E1, E2). Denote by Gi,h resp. Gh the pseudocurva-
ture of Di resp. D with respect to hi resp. h. Then for f ∈ A0(Hom(E1, E2))
it holds Gh(f) = G2,h ◦ f − f ◦G1,h.
Similarly, the curvature Fh of the Higgs operator induced in Hom(E1, E2) by
Higgs operators d′′i in the Ei is given by Fh(f) = F2,h ◦ f − f ◦ F1,h.
iii) If D is a connection, then D2 is the curvature of d′′h with respect to h, and
if d′′ is a Higgs operator, then (d′′)2 is the pseudocurvature of Dh with respect
to h. This trivially follows from the bijectivity of Ih.
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Lemma 2.4 i) For D ∈ A(E) let D = dh + Θh = ∂h + ∂̄h + θh + θ∗h be
the decomposition induced by h as above. If D is flat, then it holds δ2h = 0,
dh(Θh) = 0, i.e. ∂h(θh) = ∂̄h(θ∗h) = ∂h(θ∗h) + ∂̄h(θh) = 0, and furthermore
d2
h = −Θh ∧Θh.

ii) For d′′ = ∂̄ + θ ∈ A′′(E) let ∂h, dh and Dh be as above, and write d′h :=
∂h + θ∗.
If d′′ is integrable, then it holds (d′h)2 = 0 , i.e. ∂2

h = ∂h(θ∗) = θ∗ ∧ θ∗ = 0 ,
d2
h = [∂h, ∂̄], and hence Fh = d2

h + [θ, θ∗] + ∂h(θ) + ∂̄(θ∗).

Proof: i) For D = D′ +D′′ ∈ Af (E) it holds

0 = ∂∂h(s, t)

= h((D′)2(s), t) − h(D′(s), δ′′h(t)) + h(D′(s), δ′′h(t)) + h(s, (δ′′h)2(t))

= h(s, (δ′′h)2(t))

for all s, t ∈ A0(E), i.e. (δ′′h)2 = 0. Similarly one sees (δ′h)2 = 0 = δ′hδ
′′
h + δ′′hδ

′
h,

yielding δ2h = 0. We conclude

dh(Θh) =
1

4
[D + δh, D − δh] = 0,

and

0 = D2 = (dh + Θh)2 = d2
h + dh(Θh) + Θh ∧Θh = d2

h + Θh ∧Θh.

ii) For d′′ = ∂̄ + θ ∈ H′′(E) and dh = ∂h + ∂̄ it is well known that ∂2
h = 0, and

hence d2
h = [∂h, ∂̄]. Furthermore, for all s, t ∈ A0(E) it holds

h(∂h(θ∗)(s), t)

= h(∂h ◦ θ∗(s), t) + h(θ∗ ◦ ∂h(s), t)

= ∂h(θ∗(s), t) + h(θ∗(s), ∂̄(t))− h(∂h(s), θ(t))

= ∂h(s, θ(t)) + h(s, θ ◦ ∂̄(t)) − h(∂h(s), θ(t))

= h(∂h(s), θ(t)) + h(s, ∂̄ ◦ θ(t)) + h(s, θ ◦ ∂̄(t))− h(∂h(s), θ(t))

= h(s, ∂̄(θ)(t)) = 0,

and

h(θ∗ ∧ θ∗(s), t) = −h(s, θ ∧ θ(t)) = 0;

this shows ∂h(θ∗) = 0 = θ∗ ∧ θ∗.
Now let g be a Hermitian metric in X , and denote by ωg the associated (1, 1)-
form on X , by Λg the contraction by ωg, and by ∗g the associated Hodge-∗-
operator.
Recall that in the conformal class of g there exists a Gauduchon metric g̃, i.e.
a metric satisfying ∂̄∂(ωn−1

g̃ ) = 0; g̃ is unique up to a constant positive factor
if n ≥ 2 ([G] p. 502, [LT] Theorem 1.2.4).
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There is a natural way to define a map

degg : H(E) −→ R,

called g-degree, with the following properties (see [LT] sections 1.3 and 1.4):
- If g is a Gauduchon metric, and ∂̄ ∈ H(E) is a holomorphic structure, then
degg(∂̄) is given as follows: Choose any Hermitian metric h in E, and let d
be the Chern connection in (E, ∂) induced by h, i.e. the unique h-unitary
connection in E with (0, 1)-part ∂̄. Then

degg(∂̄) :=
i

2π

∫

X

tr(d2) ∧ ωn−1
g =

i

2nπ

∫

X

trΛgd
2 · ωng =

i

2nπ

∫

X

trΛg[∂̄, ∂] · ωng .

- If g is arbitrary, then there is a unique Gauduchon metric g̃ in the conformal
class of g such that degg = degg̃ .

The g-slope of ∂̄ is

µg(∂̄) :=
degg(∂̄)

r
,

where r is the rank of E.

If D = D′ + D′′ is a flat connection, then it holds (D′′)2 = 0, so D′′ is a
holomorphic structure. We define the g-degree and g-slope of D as

degg(D) := degg(D
′′), µg(D) := µg(D

′′).

Similarly, for an integrable Higgs operator d′′ = ∂̄ + θ it holds ∂̄2 = 0, and we
define

degg(d
′′) := degg(∂̄), µg(d

′′) := µg(∂̄).

Observe that in all three cases the g-degrees (resp. slopes) of isomorphic oper-
ators are the same.

Remark 2.5 Suppose that g is a Kähler metric, i.e. d(ωg) = 0. Then the g-
degree is a topological invariant of the bundle E, completely determined by the
first real Chern class c1(E)R ∈ H2(X,R). In particular, since all real Chern
classes of a flat bundle vanish, it holds degg(D) = 0 for every flat connection
D in E. On the other hand, if e.g. X is a surface admitting no Kähler metric
and g is Gauduchon, then every real number is the g-degree of a flat line bundle
on X ([LT] Proposition 1.3.13).

Lemma 2.6 If g is a Gauduchon metric, then for any metric h in E it holds:
i) If D is a flat connection, then

degg(D) = − i

nπ

∫

X

trΛgGh · ωng ,
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where Gh is the pseudocurvature of d′′ with respect to h.
ii) If d′′ is an integrable Higgs operator, then

degg(d
′′) =

i

2nπ

∫

X

trΛgFh · ωng ,

where Fh is the curvature of d′′ with respect to h.

Proof: i) Observe that ΛgGh = Λg∂̄h(θh) . The Chern connection in (E,D′′)
induced by h is D′′ + ∂h − θh = D − 2θh, and it holds

trΛg(D − 2θh)2 = −2trΛg((∂̄ + θ∗)(θ) = −2trΛg(Gh + [θ, θ∗]) = −2trΛg(Gh),

so the claim follows by integration.
ii) Lemma 2.4 implies trΛgFh = trΛgd

2
h; again the claim follows by integration.

3 Einstein metrics and stability for flat bundles.

We fix a Hermitian metric g in X ; the associated volume form is volg := 1
n!ω

n
g ,

and the g-volume of X is Volg(X) :=
∫
X

volg. We further fix a Hermitian metric

h in E, and denote by |. | the pointwise norm on forms with values in E (and
associated bundles) defined by h and g.
Let D ∈ Af (E) be a flat connection in E, and write D = d+Θ = ∂+ ∂̄+θ+θ∗

as in section 1. Let d′′h = Ih(D) = ∂̄ + θ ∈ A′′(E) be the Higgs operator
associated to D, and Gh = (d′′h)2 its pseudocurvature. From ΛgGh = Λg∂̄h(θh)
and Lemma 2.4 we deduce

(iΛgGh)∗ = −iΛg((∂̄(θ))∗) = −iΛg∂(θ∗) = iΛg∂̄(θ) = iΛgGh,

so iΛgGh is selfadjoint with respect to h.

Remark 3.1 It also holds iΛgGh = i
2Λg(∂̄(Θ) − ∂(Θ)) , which in the case of

a Kähler metric g equals 1
2d
∗(Θ), where d∗ is the L2-adjoint of d = ∂ + ∂̄.

Definition 3.2 h is called a g-Einstein metric in (E,D) if iΛgGh = c · idE
with a real constant c, which is called the Einstein constant.

Lemma 3.3 Let h be a g-Einstein metric in (E,D), and g̃ = ϕ · g conformally
equivalent to g. Then there exists a g̃-Einstein metric h̃ in (E,D) which is
conformally equivalent to h.

Proof: g̃ = ϕ · g implies Λg̃ = 1
ϕ · Λg. From Remark 2.1 iii) it follows

that for f ∈ C∞(X,R) it holds Gef ·h = Gh − 1
4 ∂̄∂(f) · idE . Hence the condi-

tion iΛgGh = c · idE implies iΛg̃Gef ·h = ( cϕ − 1
4P (f)) · idE , where P := iΛg̃∂̄∂.

Since C∞(X,R) = imP ⊕ R ([LT] Corollary 2.9), there exists an f such that
c
ϕ − 1

4P (f) is constant.
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Lemma 3.4 If iΛgGh = c · idE with c ∈ R, then it holds:
i) c = − π

(n−1)!·Volg(X) · µg(D) if g is Gauduchon.

ii) degg(D) = 0 if and only if c = 0.

Proof: i) is an immediate consequence of Lemma 2.6.
ii) If g is Gauduchon, then this follows from i). If g is arbitrary, then let g̃ = ϕ · g
be the Gauduchon metric in its conformal class such that degg = degg̃ . Now
we have

iΛgGh = 0⇐⇒ iΛg̃Gh = 0⇐⇒ degg̃(D) = 0⇐⇒ degg(D) = 0.

Remark 3.5 i) If two flat connections D1,D2 are isomorphic via the automor-
phism f of E, i.e. if D2 ◦ f − f ◦D1 = 0, and if h is a g-Einstein metric in
(E,D1), then f∗h is a g-Einstein metric in (E,D2) with the same Einstein
constant.
ii) By Remark 2.3, a necessary condition for d′′h = Ih(D) to be an integrable
Higgs operator is that h is a g-Einstein metric for D with Einstein constant
c = 0, so in particular degg(D) = 0. On the other hand it holds d2 = −Θ ∧ Θ
(Lemma 2.4), and, if d′′h is integrable, θ ∧ θ = 0 implying θ∗ ∧ θ∗ = 0 . This
gives tr(d2) = −tr[θ, θ∗] = 0, which implies degg(d

′′
h) = 0.

iii) For complex vector bundles on compact Riemannian manifolds (X, g),
Corlette defines a g-harmonic metric for a flat connection by the condition
d∗(Θ) = 0 ([C]). If X is complex and g is a Kähler metric, then the g-degree
of any flat connection vanishes, so in this context g-harmonic is the same as
g-Einstein (see Remarks 2.5 and 3.1), but in general the two notions are dif-
ferent.

Now we prove a useful Vanishing Theorem.

Proposition 3.6 Let D be a flat connection in E, and h a g-Einstein metric
in (E,D) with Einstein constant c.
If c > 0, then the only section s ∈ A0(E) with D(s) = 0 is s = 0.
If c = 0, then for every section s ∈ A0(E) with D(s) = 0 it holds ∂̄(s) = θ(s) =
0 and ∂(s) = θ∗(s) = 0, so in particular d′′h(s) = 0 .

Proof: D(s) = 0 is equivalent to

∂(s) = −θ(s), ∂̄(s) = −θ∗(s); (1)

this implies

∂̄∂h(s, s) = −h(∂̄ ◦ θ(s), s)− h(θ(s), θ(s)) + h(∂̄(s), ∂̄(s))− h(s, ∂ ◦ θ∗(s)). (2)

The assumption that h is g-Einstein means iΛg∂̄(θ) = iΛgGh = c · idE , which is
equivalent to iΛg∂(θ∗) = −c·idE since (iΛg∂̄(θ))∗ = −iΛg(∂̄(θ)∗) = −iΛg∂(θ∗);
these relations can be rewritten as

iΛg∂̄ ◦ θ = −iΛgθ ◦ ∂̄ + c · idE , iΛg∂ ◦ θ∗ = −iΛgθ∗ ◦ ∂ − c · idE . (3)
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Using (1) and (3) we get

iΛgh(∂̄ ◦ θ(s), s) = −iΛgh(θ ◦ ∂̄(s), s) + c · |s|2 = iΛgh(∂̄(s), θ∗(s)) + c · |s|2
= −iΛgh(∂̄(s), ∂̄(s)) + c · |s|2 = |∂̄(s)|2 + c · |s|2,

and similarly
iΛgh(s, ∂ ◦ θ∗(s)) = |θ(s)|2 + c · |s|2,

so (2) implies

iΛg∂̄∂h(s, s) = −2
(
|∂̄(s)|2 + |θ(s)|2 + c · |s|2

)
.

Since the image of the operator iΛg∂̄∂ on real functions contains no non-zero
functions of constant sign ([LT] Lemma 7.2.7), this gives s = 0 in the case
c > 0, and if c = 0 we get ∂̄(s) = θ(s) = 0, implying ∂(s) = θ∗(s) = 0 because
of (1).

The following corollary will be used later in the context of moduli spaces.

Corollary 3.7 For i = 1, 2 let Di ∈ Af (E) be a flat connection, hi a g-
Einstein metric in (E,Di), and d′′i := Ihi(Di) ∈ A′′(E) the associated Higgs
operator. If D1 and D2 are isomorphic via the automorphism f of E, then d′′1
and d′′2 are isomorphic via f , too.

Proof: Let h be the metric in EndE = E∗ ⊗ E induced by the dual metric
of h1 in E∗ and h2 in E, and D the connection in EndE defined by D(f) =
D2 ◦ f − f ◦D1 for all f ∈ A0(EndE). Then D is flat of g-degree 0 since D1

and D2 are flat of equal degree, and h is a g-Einstein metric in (EndE,D)
with Einstein constant c = 0 (compare Remark 2.3). Furthermore, the Higgs
operator d′′ in EndE defined by d′′(f) = d′′2 ◦ f − f ◦ d′′1 equals Ih(D). Hence
Proposition 3.6 implies that an automorphism f of E with D(f) = 0 also
satisfies d′′(f) = 0.

If F ⊂ E is a D-invariant subbundle of E, then it is obvious that flatness of D
implies flatness of D|F , and hence the following definition makes sense.

Definition 3.8 A flat connection D in E is called g-(semi)stable iff for ev-
ery proper D-invariant subbundle 0 6= F ⊂ E it holds µg(D|F ) > µg(D)
(µg(D|F ) ≥ µg(D)). D is called g-polystable iff E = E1 ⊕ E2 ⊕ . . . ⊕ Ek is a
direct sum of D-invariant and g-stable subbundles Ei with µg(D|Ei) = µg(D)
for i = 1, 2, . . . , k.

Remark 3.9 i) Let D be a flat connection in E, and 0 6= F ⊂ E a proper
D-invariant subbundle. Then g-stability of D implies µg(D|F ) > µg(D) and
hence the g-instability of the holomorphic structure D′′ in E (in the sense of
e.g. [LT]) since F is a D′′-holomorphic subbundle of E.
ii) Suppose that g is a Kähler metric; then degg(D) = 0 for every flat connec-
tion D (Remark 2.5). Hence a flat connection D in E is
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- always g-semistable,
- g-stable if and only if E has no proper non-trivial D-invariant subbundle,
- g-polystable if E is a direct sum of D-invariant g-stable subbundles.
This means that g-(poly-)stability on a Kähler manifold coincides with (poly-
)stability in the sense of Corlette [C].
iii) It is obvious that stability in the sense of Corlette always implies g-stability,
but at the end of this section we will give an example of a g-stable bundle which
is not stable in the sense of Corlette.

Definition 3.10 A flat connection D in E is simple if the only D-parallel
endomorphisms f , i.e. those with DEnd(f) = D ◦ f − f ◦ D = 0, are the
homotheties f = a · idE , a ∈ C.

Let D be a flat connection in E, 0 6= F ⊂ E a D-invariant subbundle, and Q :=
E/
F the quotient with natural projection π : E −→ Q. Then D induces a flat

connection DQ in Q such that DQ◦π = π◦D. In particular, F is a holomorphic
subbundle of (E,D′′), and D′′Q is the induced holomorphic structure in Q.
Since the g-degree of a flat connection D by definition equals the g-degree
of the associated holomorphic structure D′′, it follow degg(D) = degg(D1) +
degg(DQ). Hence as in the case of holomorphic bundles one verifies (compare
[K] Chapter V)

Proposition 3.11 i) A flat connection D in E is g-(semi)stable if and only

if for every D-invariant proper subbundle 0 6= F ⊂ E with quotient Q = E/
F

it holds µg(DQ) < µg(D) (resp. µg(DQ) ≤ µg(D).)
ii) Let (E1, D1) and (E2, D2) be g-stable flat bundles over X with µg(D1) =
µg(D2). If f ∈ A0(Hom(E1, E2)) satisfies D2 ◦ f = f ◦D1, then either f = 0
or f is an isomorphism.
iii) A g-stable flat connection D in E is simple.

Next we prove the first half of the main result of this section.

Proposition 3.12 Let D be a flat connection in E, and h a g-Einstein metric
in (E,D) with Einstein constant c; then D is g-semistable. If D is not g-stable,
then D is g-polystable; more precisely, E = E1⊕E2⊕. . .⊕Ek is a h-orthogonal
direct sum of D-invariant g-stable subbundles such that µg(D|Ei) = µg(D) for
i = 1, 2, . . . , k. Furthermore, h|Ei is a g-Einstein metric in (Ei, D|Ei) with
Einstein constant c for all i, and the direct sum is invariant with respect to the
Higgs operator d′′h = Ih(D).

Proof: First we consider the case when g is a Gauduchon metric. Let 0 6=
F ⊂ E be a D-invariant proper subbundle of rank s; then E = F ⊕F⊥, where
F⊥ is the h-orthogonal complement of F . With respect to this decomposition,
we write operators as 2× 2 matrices, so D has the form

D =

(
D1 A
0 D2

)
,
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where D1 = D|F and D2 is a flat connection in F⊥. We use notations as in
section 2; it is easy to see that the operator δ associated to D by h has the
form

δ =

(
δ1 0
A∗ δ2

)
,

where the δi are the operators associated to the Di by h. Similarly it holds

∂̄ =
1

2
(D′′ + δ′′) =

1

2

(
D′′1 + δ′′1 A′′

A′∗ D′′2 + δ′′2

)
=

(
∂̄1

1
2A
′′

1
2A
′∗ ∂̄2

)
,

and

θ =
1

2
(D′ − δ′) =

(
D′1 − δ′1 A′

−A′′∗ D′2 − δ′2

)
=

(
θ1

1
2A
′

− 1
2A
′′∗ θ2

)
,

where A′ resp. A′′ is the part of A of type (1, 0) resp. (0, 1). This implies

∂̄(θ) = [∂̄, θ]

=

(
∂̄1(θ1) + 1

4 (A′ ∧A′∗ −A′′ ∧A′′∗) ∗
∗ ∂̄2(θ2) + 1

4 (A′∗ ∧A′ −A′′∗ ∧A′′)

)
,

hence

c · idE = iΛgGh

=

(
iΛgG1,h + i

4Λg(A
′ ∧A′∗ −A′′ ∧A′′∗) ∗

∗ iΛgG2,h + i
4Λg(A

′∗ ∧A′ −A′′∗ ∧A′′)

)
,(4)

and thus

sc = tr(iΛgG1,h +
i

4
Λg(A

′ ∧A′∗ −A′′ ∧A′′∗)) = itrΛgG1,h +
1

4
|A|2 .

Using Lemma 2.6 and Lemma 3.4 we conclude

µg(D1) = − i

snπ

∫

X

trΛgG1,h · ωng ≥ −
c(n− 1)!

π
Volg(X) = µg(D); (5)

this prove that D is g-semistable.
If D is not g-stable, then there exists a subbundle F as above such that equality
holds in (5), which implies A = 0. This means not only that F⊥ is D-invariant,
too, with D|F⊥ = D2, but also that

iΛgG1,h = c · idF , iΛgG2,h = c · idF⊥

by (4). Hence the restriction of h to F resp. F⊥ is g-Einstein for D1 resp.
D2, and it holds µg(D1) = µg(D) = µg(D2) by Lemma 3.4. Furthermore, the
D-invariance of F means that the inclusion i : F →֒ E is parallel with respect
to the flat connection in Hom(F,E) induced by D1 and D. Using Remark 2.3
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and Proposition 3.6 as in the proof of Corollary 3.7, we conclude that i is
also parallel with respect to the associated Higgs operator, i.e. that F is d′′h-
invariant; the same argument works for F⊥. If D1 and D2 are stable, then we
are done; otherwise the proof is finished by induction on the rank.

Now let g be arbitrary, let g̃ be the Gauduchon metric in its conformal class
with degg = degg̃, and let h̃ be a g̃-Einstein metric in the conformal class of

h, which exists by Lemma 3.3; then the theorem holds for g̃ and h̃. Since g
and g̃ define the same degree and slope, and hence stability, it follows that D
is g̃-semistable. If D is not g-stable, then there exists a D-invariant proper
subbundle F as above with µg̃(D1) = µg(D1) = µg(D) = µg̃(D). Note that the

h-orthogonal complement F⊥ of F is also the h̃-orthogonal complement, since
h and h̃ are conformally equivalent. Hence, using g̃ and h̃ we conclude as above

that D =

(
D1 0
0 D2

)
with respect the decomposition E = F ⊕ F⊥; now we

can proceed as in the Gauduchon case.

Another consequence of Proposition 3.6 is

Proposition 3.13 Let D be a simple flat connection in E. If a g-Einstein
metric in (E,D) exists, then it is unique up to a positive scalar.

Proof: Let h1,h2 be g-Einstein metrics in (E,D), and c ∈ R the Einstein
constant. There are differentiable automorphisms f and k of E, selfadjoint
with respect to both h1 and h2, such that f = k2 and h2(s, t) = h1(f(s), t) =
h1(k(s), k(t)) for all s, t ∈ A0(E). Since D is simple it suffices to showD(f) = 0.

We define a new flat connection D̃ := k ◦D ◦ k−1. In what follows, operators
δ, d, Θ etc. with a subscript i are associated to D by the metric hi, without a
subscript they are associated to D̃ by h1. One verifies

δ2 = f−1 ◦ δ1 ◦ f, δ = k−1 ◦ δ1 ◦ k = k ◦ δ2 ◦ k−1,

implying

d =
1

2
(D̃ + δ) = k ◦ d2 ◦ k−1,Θ =

1

2
(D̃ − δ) = k ◦Θ2 ◦ k−1

and hence

iΛgGh1 = iΛg∂̄(θ) = ik ◦ Λg ∂̄2(θ2) ◦ k−1 = ik ◦ ΛgG2,h2 ◦ k−1 = c · idE ,

so h1 is a g-Einstein metric in (E, D̃). It follows that h1 induces a g-Einstein
metric with Einstein constant 0 for the flat connection D̃End(.) = .◦D−D̃◦ . in
EndE. By definition it holds D̃End(k) = 0, so Proposition 3.6 implies d̃End(k) =
0. Since δ̃End = 2d̃End − D̃End, it follows

0 = δ̃End(k) = k ◦ δ1 − δ ◦ k = k ◦ δ1 − k−1 ◦ δ1 ◦ k2 = k−1 ◦ (f ◦ δ1 − δ1 ◦ f) ,
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implying δ1,End(f) = 0, where δ1,End is the operator on EndE induced by D
and h1. But this is equivalent to δ′1,End(f) = 0 and δ′′1,End(f) = 0 , and taking
adjoints with respect to h1 we get

0 = (δ′1,End(f))∗ = D′′End(f), 0 = (δ′′1,End(f))∗ = D′End(f),

i.e. DEnd(f) = 0.

Let (E,D), (Ẽ, D̃) be flat bundles with g-Einstein metrics h, h̃. Let E =
k⊕
i=1

Ei

and Ẽ =
l⊕
i=1

Ẽi be the orthogonal, invariant splittings given by Proposi-

tion 3.12. We write Di := D|Ei , D̃i := D̃|Ẽi
, hi := h|Ei , h̃i := h̃|Ẽi

. Using
Propositions 3.11 and 3.13 one verifies

Corollary 3.14 If there exists an isomorphism f ∈ A0(Hom(E, Ẽ)) satisfy-
ing f ◦ D = D̃ ◦ f, then it holds k = l, and, after renumbering of the sum-
mands if necessary, there are isomorphisms fi ∈ A0(Hom(Ei, Ẽi)) such that
fi ◦Di = D̃i ◦ f and f∗(hi) = h̃i.

The following result is the converse of Proposition 3.12.

Proposition 3.15 Let (E,D) a g-stable flat bundle over X. Then there exists
a g-Einstein metric for (E,D).

Sketch of proof: The proof is very similar to the one for the existence of a
g-Hermitian Einstein metric in a g-stable holomorphic vector bundle as given
in Chapter 3 of [LT]. Therefore we will be brief, leaving it to the reader to fill
in the necessary details.
First observe that by Lemma 3.3 we may assume that g is a Gauduchon metric.
For any metric h in E it holds

Gh = ∂̄h(θh) =
1

4
[D′′ + δ′′h, D

′ − δ′h] = −1

4
[D′′, δ′h] +

1

4
[D′, δ′′h ]

since D2 = δ2h = 0. Observe that [D′′, δ′h] resp. [D′, δ′′h] is the curvature of the
h-unitary connection D′′ + δ′h resp. D′ + δ′′h.
Fix a metric h0 in E, and let δ = δ′+δ′′, d = ∂+ ∂̄, Θ = θ+θ∗ be the operators
associated to D = D′+D′′ and h0 as in section 2. Consider for an h0-selfadjoint
positive definite endomorphism f of E and ε ∈ [0, 1] the differential equation

Lε(f) := K0− i

4
ΛgD

′′(f−1 ◦ δ′(f)) +
i

4
ΛgD

′(f−1 ◦ δ′′(f))− ε · log(f) = 0, (6)

where K0 := iΛg∂̄(θ) − c · idE = − i
4Λg([D

′′, δ′] − [D′, δ′′]) − c · idE , and c is
the constant associated to a possible g-Einstein metric for (E,D). The metric
f · h0, defined by f · h0(s, t) := h0(f(s), t) for sections s, t in E, is g-Einstein if
and only if L0(f) = 0.
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The term T1 := iΛgD
′′(f−1 ◦ δ′(f)) (associated to the unitary connection

d1 := δ′ + D′′ ) in equation (6) is of precisely the same type as the term
T0 := iΛg∂̄(f−1 ◦ ∂0(f)) (associated to the unitary connection d0 = ∂0 + ∂̄ )
in equation (∗∗) on page 62 in [LT], and the term T2 := −iΛgD′(f−1 ◦ δ′′(f))
(associated to the unitary connection d2 := D′ + δ′′ ) is almost of this type;
e.g. the trace of all three terms equals iΛg∂̄∂(tr(log f), and the symbols of the

differential operators d
df T̂i, where T̂i(f) := f ◦ Ti(f), are equal, too. Therefore

most of the arguments in [LT] can easily be adapted to show first that for a
simple flat connection D equation (6) has solutions fε for all ε ∈ (0, 1], which
satisfy det fε ≡ 1, and which converge to a solution f of L0(f) = 0 if the
L2-norms of the fε are uniformly bounded. (There are two places where one
has to argue in a slightly different way: In the proof of the analogue of [LT]
Lemma 3.3.1, one uses the Laplacian ∆D = D∗ ◦D instead of ∆∂̄ , and in the
proof of the analogue of [LT] Proposition 3.3.5 the sum ∆d1 + ∆d2 of the two
Laplacians associated to d1 and d2 instead of just one.)
Then, under the assumptions that rkE ≥ 2 and that the L2-norms of the fε
are unbounded, one shows that for suitable εi −→ 0, ρ(εi) −→ 0, the limit

π := idE − lim
σ−→0

(
lim
i−→∞

ρ(εi) · fεi

)σ

exists weakly in L2
1, and satisfies in L1 π = π∗ = π2 and

(idE − π) ◦D(π) = 0. (7)

This implies (idE−π)◦D′′(π) = 0, so π defines a weakly holomorphic subbundle
F of the holomorphic bundle (E,D′′) by a theorem of Uhlenbeck and Yau (see
[UY], [LT] Theorem 3.4.3). F is a coherent subsheaf of (E,D′′), a holomorphic
subbundle outside an analytic subset S ⊂ X of codimension at least 2, and π
is smooth on X \ S. Therefore (7) implies that F|X\S is in fact a D-invariant
subbundle of E|X\S , which extends to a D-invariant subbundle F of E by the
Lemma below. Again using arguments as is [LT], one finally shows that F
violates the stability condition for (E,D).

Lemma 3.16 Let X be a differentiable manifold, E a differentiable vector bun-
dle over X, and D a flat connection in E. Let S ⊂ X be a subset such that
X \S is open and dense in X, and with the following property: For every point
x ∈ S and every open neighborhood U of x in X there exists an open neighbor-
hood x ∈ U ′ ⊂ U such that U ′ \ S is path-connected.
Then every D-invariant subbundle F of E|X\S extends to a D-invariant sub-
bundle F of E.

Proof: For every x ∈ S choose an open neighborhood x ∈ U ⊂ X such that
U \ S is path connected and (E|U , D) ∼= (U × V, d), where V is a vector space
and d the trivial flat connection. Since F is D-invariant and U \ S is path
connected, it holds

(F|U\S , D) ∼= ((U \ S)×W,d),
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where W ⊂ V is a constant subspace. Define F over U by F |U :∼= U ×W ;
then the topological condition on S implies that this is well defined on S, and
hence gives a D-invariant extension F of F over X .

The following main result of this section is a direct consequence of Proposi-
tions 3.12 and 3.15.

Theorem 3.17 A flat connection D in E admits a g-Einstein metric if and
only if it is g-polystable.

As for stable vector bundles and Hermitian-Einstein metrics, the gauge theo-
retic interpretation of our results is as follows. The group

GC := A0(GL(E))

of differentiable automorphisms of E acts on A(E) by D · f = f−1 ◦D ◦ f, so

A(E)/
GC

is the moduli space of isomorphism classes of connections in E. Observe that
flatness, simplicity and g-stability are preserved under this action. Fix a metric
h in E; then it holds:

Corollary 3.18 The following two statements for a flat connection D are
equivalent:
i) D is g-stable.
ii) D is simple, and there is a connection D0 in the GC-orbit through D such
that h is g-Einstein for D0.

The essential uniqueness of a g-Einstein metric (Proposition 3.13) implies that
the connection D0 in ii) is unique up to the action of the subgroup

G := A0(U(E, h)) ⊂ GC

of h-unitary automorphisms. This means that the moduli space

Mst
f (E) = { D ∈ Af (E) | D is g − stable }/

GC

of isomorphism classes of g-stable flat connections in E coincides with the
quotient

{ D ∈ Af (E) | D is simple and h is g − Einstein for D }/G .

Example: We now give the promised example of a flat bundle which is g-
stable, but not stable in the sense of Corlette.
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An Inoue surface of type S±N is the quotient of H×C by an affine transformation
group G generated by

g0(w, z) := (αw,±z + t),

gi(w, z) := (w + ai, z + biw + ci), i = 1, 2,

g3(w, z) := (w, z + c3),

with certain constants α, ai, bi, c3 ∈ R, c1, c2 ∈ C (see [P] p. 160). Since the
second Betti number of S±N vanishes, the degree map

degg : Pic(S±N ) −→ R

associated to a Gauduchon metric g is, up to a positive factor, independent
of the chosen metric g. In particular, all Hermitian metrics g define the same
notion of g-stability ([LT] Remark 1.4.4 iii)).

The trivial flat connection d on H × C induces a flat connection D in the
tangent bundle E := TS±

N
. A D-invariant sub-line bundle of E is in particular

a holomorphic subbundle, so it defines a holomorphic foliation of S±N . Ac-
cording to [B] Théorème 2, there is precisely one such foliation, namely the
one induced by the G-invariant vertical foliation (i.e. with leaves {w} × C) of
H × C. The corresponding trivial line bundle L0 on H × C is d-invariant, so
it descends to a unique D-invariant subbundle L of E; this shows that E is
not stable in the sense of Corlette. Observe that L has factors of automorphy
χ(gi) = ±1, i = 0, 1, 2, 3, so the standard flat metric in L0 defines a metric h
in L such that the associated Chern connection in (L,D′′|L) is flat; this implies
µg(D|L) = degg(D|L) = 0. On the other hand, the g-degree, and hence the g-
slope, of E is negative by [P] Proposition 4.7; this implies the g-stability of E
since L is the only D-invariant proper subbundle of E.

4 Einstein metrics and stability for Higgs bundles.

Again we fix Hermitian metrics g in X and h in E.

Let d′′ = ∂̄ + θ ∈ A′′i (E) be an integrable Higgs operator,

Dh = I−1
h (d′′) = d+ Θ = ∂ + ∂̄ + θ + θ∗ ∈ A(E)

the connection associated to d′′ as in section 2, and Fh = D2
h its curvature.

Definition 4.1 h is called a g-Einstein metric in (E, d′′) if and only if
Kh := iΛgFh = c · idE with a real constant c, the Einstein constant.

Lemma 4.2 Let h be a g-Einstein metric in (E, d′′), and g̃ = ϕ · g conformally
equivalent to g. Then there exists a g̃-Einstein metric h̃ in (E, d′′) which is
conformally equivalent to h.
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Proof: From Remark 2.1 iii) it follows that for f ∈ C∞(X,R) it holds
Fef ·h = Fh + ∂̄∂(f) · idE . Using this, the proof is analogous to that of Lem-
ma 3.3.

Notice that since d′′ is integrable it holds (compare Lemma 2.4)

Kh = iΛg(d
2 + [θ, θ∗]) = iΛg([∂, ∂̄] + [θ, θ∗])

where d = ∂ + ∂̄. An immediate consequence of Lemma 2.6 and Lemma 4.2 is
(compare the proof of Lemma 3.4)

Lemma 4.3 If iΛgFh = c · idE with c ∈ R, then it holds:
i) c = 2π

(n−1)!·Volg(X) · µg(d′′) if g is Gauduchon.

ii) degg(d
′′) = 0 if and only if c = 0.

Remark 4.4 (compare Remark 3.5)
i) If two integrable Higgs operators d′′1 ,d′′2 are isomorphic via the automorphism
f of E, i.e. if d′′2 ◦ f − f ◦ d′′1 = 0, and if h is a g-Einstein metric in (E, d′′1 ),
then f∗h is a g-Einstein metric in (E, d′′2 ), and the associated Einstein constants
are equal.
ii) By Remark 2.3, a necessary condition for Dh = Ih(d′′) to be a flat connection
is h to be Einstein with Einstein constant c = 0, so in particular degg(d

′′) = 0.

On the other hand, the Chern connection in (E,D′′h) is ∂−θ+ ∂̄+θ∗, so the g-
degree of Dh is obtained by integrating trΛg[∂̄+θ∗, ∂−θ] which equals trΛg[∂̄, ∂]
since d′′ is integrable (Lemma 2.4 ii)). If Dh is flat, we furthermore have
d2 = −Θ ∧Θ (Lemma 2.4 i)), implying tr[∂̄, ∂] = 0 and hence degg(Dh) = 0.

In analogy with the case of Hermitian-Einstein metrics in holomorphic vector
bundles, the following vanishing theorem holds.

Proposition 4.5 Let h be a g-Einstein metric in (E, d′′) with Einstein con-
stant c.
If c < 0, then the only section s ∈ A0(E) with d′′(s) = 0 is s = 0.
If c = 0, then for every section s ∈ A0(E) with d′′(s) = 0 it holds Dh(s) = 0.

Proof: For s ∈ A0(E), d′′(s) = 0 is equivalent to ∂̄(s) = 0 = θ(s). This im-
plies

c · |s|2 = c · h(s, s) = h(Kh(s), s) = iΛg
(
h(∂̄∂(s), s) + h(θ∗(s), θ∗(s))

)
. (8)

We have
iΛg∂̄∂h(s, s) = iΛg

(
h(∂̄∂(s), s)− h(∂(s), ∂(s))

)

since ∂̄(s) = 0, and using (8) we get

iΛg∂̄∂h(s, s) = c · |s|2 − |∂(s)|2 − |θ∗(s)|2.

Now the claim follows as in the proof of Proposition 3.6.

The proof of the following corollary is analogous to that of Corollary 3.7.
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Corollary 4.6 For i = 1, 2 let d′′i ∈ A′′i (E) be an integrable Higgs operators,
hi a g-Einstein metric in (E, d′′i ), and Di := I−1

hi
(d′′i ) ∈ A(E) the associated

connection. If d′′1 and d′′2 are isomorphic via the automorphism f of E, then
D1 and D2 are isomorphic via f , too.

Let d′′ = ∂̄ + θ be an integrable Higgs operator in E. A coherent subsheaf F
of the holomorphic bundle (E, ∂̄) is called a Higgs-subsheaf of (E, d′′) iff it is
d′′-invariant. For the definition of the g-degree and g-slope of a coherent sheaf
see [LT].

Definition 4.7 An integrable Higgs operator d′′ in E is called g-(semi)stable
iff for every coherent Higgs-subsheaf F of (E, d′′) with 0 < rkF < rkE it holds
µg(F) < µg(E) ( µg(F) ≤ µg(E) ). d′′ is called g-polystable iff E is a direct
sum E = E1 ⊕ E2 ⊕ . . .⊕ Ek of d′′-invariant and g-stable subbundles Ei with
µg(d

′′|Ei = µg(d
′′) for i = 1, 2, . . . , k.

Definition 4.8 An integrable Higgs operator d′′ in E is called simple iff for
every f ∈ A0(EndE) with d′′ ◦ f = f ◦ d′′ it holds f = a · idE with a ∈ C.

As in the case of stable vector bundles or flat connections, (semi)-stability can
equivalently be defined using quotients of E; again it follows

Lemma 4.9 i) A g-stable integrable Higgs operator in E is simple.
ii) Let d′′1 , d

′′
2 be g-stable integrable Higgs operators in bundles E1, E2 on X

such that µg(d
′′
1 ) = µg(d

′′
2) . If f ∈ A0(Hom(E1, E2)) satisfies d′′2 ◦ f = f ◦ d′′1 ,

then either f = 0 or f is an isomorphism.

Furthermore, using arguments similar to those in the proof of Proposition 3.13,
we get the following consequence of Proposition 4.5.

Proposition 4.10 Let d′′ be a simple integrable Higgs operator in E. If a
g-Einstein metric in (E, d′′) exists, then it is unique up to a positive scalar.

The proof of the next result is a straightforward generalization of that in
the Kähler case [S2] (just as for the proof of the corresponding statement for
Hermite-Einstein metrics in vector bundles, see [LT]).

Proposition 4.11 Let d′′ be an integrable Higgs operator in E, and h
a g-Einstein metric in (E, d′′) with Einstein constant c; then d′′ is g-
semistable. If d′′ is not g-stable, then d′′ is g-polystable; more precisely,
E = E1 ⊕ E2 ⊕ . . .⊕ Ek is an h-orthogonal direct sum of d′′-invariant and g-
stable subbundles such that µg(d

′′|Ei) = µg(d
′′) for i = 1, 2, . . . , k . Further-

more, h|Ei is a g-Einstein metric in (Ei, d
′′|Ei) with Einstein constant c for all

i, and the direct sum is invariant with respect to the connection Dh = I−1
h (d′′).
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Let d′′, d̃′′ be integrable Higgs operators in bundles E, Ẽ with g-Einstein met-

rics h, h̃. Let E =
k⊕
i=1

Ei and Ẽ =
l⊕
i=1

Ẽi be the orthogonal, invariant split-

tings given by Proposition 4.11. We write d′′i := d′′|Ei , d̃
′′
i := d̃′′|Ẽi

, hi := h|Ei ,

h̃i := h̃|Ẽi
.

As in the previous section (but now using Lemma 4.9 and Proposition 4.10) we
deduce

Corollary 4.12 Suppose that there exists an isomorphism
f ∈ A0(Hom(E, Ẽ)) satisfying f ◦ d′′ = d̃′′ ◦ f. Then it holds k = l, and,
after renumbering of the summands if necessary, there are isomorphisms
fi ∈ A0(Hom(Ei, Ẽi)) such that fi ◦ d′′i = d̃′′i ◦ f and f∗(hi) = h̃i.

Remark 4.13 We expect that the existence of a g-Einstein metric for a g-
stable Higgs operator d′′ can be proved by solving (again using the continuity
method as in [LT]) the differential equation

Kh + iΛgd
′′(f−1 ◦ d′(f)) = c · idE

for a positive definite and h-selfadjoint endomorphism f of E, where h is a
suitable fixed metric in E.

5 Surfaces.

In this section we consider the special case n = 2, i.e. where X is a compact
complex surface; again we fix a Hermitian metric g in X . In this case, the real
Chern numbers c21(E), c2(E) ∈ H4(X,R) ∼= R can be calculated by integrating
the corresponding Chern forms of any connection in E, independently of the
chosen metric g. In particular, if E admits a flat connection, then these Chern
numbers vanish.

Proposition 5.1 Suppose that D ∈ Af (E) is a flat connection of g-degree 0,
and that h is a g-Einstein metric in (E,D). Then it holds Gh = 0. In particular,
the Higgs operator d′′h associated to D and h is integrable with degg(d

′′
h) = 0,

and h is a g-Einstein metric for (E, d′′h).

Proof: (see [S2]) For ǫ > 0 we define a new connection Bǫ := d+ 1
ǫ θ + ǫθ∗,

and Fǫ := B2
ǫ . Observe that n = 2 implies F 2

ǫ = 1
ǫ2∇4

ǫ , where ∇ǫ = d′′h + ǫd′.
The vanishing of the Chern numbers of E implies

∫
X

trF 2
ǫ = 0, and hence

∫
X

tr∇4
ǫ = 0 for all ǫ > 0. Taking the limit ǫ→ 0 it follows

∫

X

trG2
h = 0. (9)
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Write Gh = G1,1 + G2, where G1,1 is the component of the 2-form Gh of type
(1, 1). Then it holds

∗gG1,1 = −G1,1, ∗gG2 = G2; (10)

the first equation is a consequence of ΛgGh = 0, which follows from the assump-
tion and Lemma 3.4. On the other hand, it holds Gh = ∂̄2 + ∂̄(θ) + θ ∧ θ, so
Lemma 2.4 implies

G1,1 = ∂̄(θ) = ∂(θ∗)∗ = −∂̄(θ)∗ = −G∗1,1, (11)

and

G2 = ∂̄2 + θ ∧ θ = −θ∗ ∧ θ∗ − θ ∧ θ = (θ ∧ θ + θ∗ ∧ θ∗)∗ = G∗2. (12)

(11) and (12) combined with (10) give ∗gG∗h = Gh, so from (9) it follows

0 =

∫

X

trG2
h =

∫

X

tr(Gh ∧ ∗gG∗h) =

∫

X

|Gh|2volg,

implying (d′′h)2 = Gh = 0. Hence d′′h is integrable, degg(d
′′
h) vanishes (Re-

mark 3.5), and h is g-Einstein for (E, d′′)h) because the curvature of d′′h with
respect to h equals D2 = 0.

Proposition 5.2 Suppose that c21(E) = c2(E) = 0, that d′′ is an integrable
Higgs operator of g-degree 0, and that h is a g-Einstein metric in (E, d′′).
Then it holds Fh = 0. In particular, the connection Dh associated to d′′ and h
is flat with degg(Dh) = 0, and h is a g-Einstein metric for (E,Dh).

Proof: Define F1,1 := d2 + [θ, θ∗], F2 := ∂(θ) + ∂̄(θ∗); then Fh = F1,1 + F2.
Observe that F1,1 is of type (1,1) because d is a unitary connection in
the holomorphic bundle (E, ∂̄). Since degg(d

′′) = 0, Lemma 4.3 implies
0 = ΛgFh = ΛgF1,1, hence it holds ∗gF1,1 = −F1,1 and ∗gF2 = F2. On the
other hand, it is easy to see that F ∗1,1 = −F1,1 and F ∗2 = F2 . Combining these
relations we get ∗gF ∗h = Fh. Since c21(E) resp. c2(E) are obtained by integrating
− 1

4π2 (trFh)2 resp. − 1
8π2 ((trFh)2 − tr(F 2

h )), we get

0 =

∫

X

tr(F 2
h ) =

∫

X

tr(Fh ∧ ∗gF ∗h ) = ‖Fh‖2,

implying D2
h = Fh = 0. Hence Dh is flat, degg(Dh) vanishes (Remark 4.4), and

h is g-Einstein for (E,Dh) because the pseudocurvature of Dh with respect to
h equals (d′′)2 = 0.

Remark 5.3 The above proposition implies in particular the following: Sup-
pose that c21(E) = c2(E) = 0; if there exists an integrable Higgs operator d′′ in
E with g-degree 0 admitting a g-Einstein metric, then the real Chern class
c1(E)R ∈ H2(X,R) vanishes, because there is a flat connection in E.
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We define Af (E)0g to be the space of D ∈ Af (E) of g-degree 0 such that there
exists a g-Einstein metric in (E,D), and A′′i (E)0g to be the space of d′′ ∈ A′′i (E)
of g-degree 0 such that there exists a g-Einstein metric in (E, d′′). By Re-
mark 3.5 and Remark 4.4, the two moduli sets

Mf (E)0g := Af (E)0g
/

isomorphy of connections

and

M′′(E)0g := A
′′
i (E)0g

/
isomorphy of Higgs operators

are well defined. The main result of this section is

Theorem 5.4 There is a natural bijection

I :Mf (E)0g −→M′′(E)0g .

Proof: First observe that we may assume that the real Chern classes of E
vanish, since otherwise both spaces are empty (see Remark 5.3).

Let D be a flat connection in E with g-degree 0, and h a g-Einstein metric
in (E,D). By Proposition 5.1, the associated Higgs operator d′′h = Ih(D) is
integrable with g-degree 0, and h is a g-Einstein metric in (E, d′′h). We will
show that the map I defined by I([D]) := [d′′h] is well defined and bijective.

Suppose that D, D̃ ∈ Af (E)0g are isomorphic via the automorphism f of E;

then f∗h is g-Einstein in (E, D̃) (Remark 3.5), the Higgs-operator d̃′′ associ-
ated to D̃ and f∗h is isomorphic to d′′ via f (Corollary 3.7), and f∗h is a
g-Einstein metric in (E, d̃′′) (Remark 4.4). To prove that I is well defined
it thus suffices to show that two different g-Einstein metrics h, h̃ for a fixed
D ∈ Af (E)0g produce isomorphic Higgs operators d′′h, d

′′
h̃
. For this consider the

D-invariant and h- resp. h̃-orthogonal splittings E =
k⊕
i=1

Ei resp. E =
l⊕
i=1

Ẽi

associated to h resp. h̃ by Proposition 3.12. According to Corollary 3.14 (with
E = Ẽ, D = D̃, f = idE ) it holds k = l, and we may assume that there are
isomorphisms fi : (Ei, Di, hi) −→ (Ẽi, D̃i, h̃i) of flat bundles of g-degree 0 with
g-Einstein metrics, where Di := D|Ei , D̃i := D|Ẽi

, hi := h|Ei , h̃i := h̃|Ẽi
. This

means in particular that the Higgs operator d′′i in Ei associated to Di and hi
is isomorphic via fi to the Higgs operator d̃′′i in Ẽi associated to D̃i and h̃i.
Hence d′′h = d′′1 ⊕ . . . d′′k is isomorphic to d′′

h̃
= d̃′′1 ⊕ . . .⊕ d̃′′k via the isomorphism

f := f1 ⊕ . . .⊕ fk.
In the same way, but using Proposition 5.2 and the results of section 4, one
shows that there is a well defined map from M′′(E)0g to Mf (E)0g, associating
to the class of an integrable Higgs operator d′′ with g-Einstein metric h the
class of the connection Dh = I−1

h (d′′); this obviously is an inverse of I.
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6 Line bundles on non-Kähler surfaces.

Isomorphism classes of flat complex line bundles (L,D) on a manifold X are
parametrized by H1(X,C∗). On the other hand, an integrable Higgs operator
d′′ = ∂̄ + θ in a complex line bundle L consists of a holomorphic structure ∂̄ in
L and a holomorphic 1-form θ on X (the condition θ ∧ θ = 0 now is trivial).
Furthermore, two integrable Higgs operators d′′1 and d′′2 in L are isomorphic if
and only if the two holomorphic line bundles (L, ∂̄1) and (L, ∂̄2) are isomorphic
and θ1 = θ2. Hence, the space parametrizing isomorphism classes of integrable
Higgs operators is H1(X,O∗)⊕H0(X,Ω1(X)) = Pic(X)⊕H1,0(X). In partic-
ular, the moduli sets Mf(L)0g and M′′(L)0g defined in the previous section are
subsets of H1(X,C∗) resp. Pic(X)⊕H1,0(X).

Lemma 6.1 Let L be a complex line bundle on X, and g a Hermitian metric
in X. Then every flat connection in L and every integrable Higgs operator in
L admits a g-Einstein metric.

Proof: Let h0 be fixed metric in L, then every metric is of the form
hf = ef · h0 with f ∈ C∞(X,R). Let D be a flat connection in L; then hf
is a g-Einstein metric for D if and only if it is a solution of the equation
iΛgGh0 − i

2Λg ∂̄∂(f) = c with a real constant c. Such a solution exists by [LT]
Corollary 7.2.9. A similar argument works for integrable Higgs operators.

From now on let X be a surface, and g a fixed Hermitian metric in X . Then
the map degg : Pic(X) −→ R is a morphism of Lie groups ([LT] Proposition
1.3.7; recall that degg = degg̃ for some Gauduchon metric g̃). We define

H1(X,C∗)f := { [(L,D)] ∈ H1(X,C∗) | degg(D) = 0 },

Pic(X)T := { [(L, ∂̄)] ∈ Pic(X) | c1(L)R = 0 },
and

Pic(X)f := ker(degg |Pic(X)T ).

Observe that Pic(X)f can be identified with the set of isomorphism classes of
line bundles admitting a flat unitary connection ([LT] Proposition 1.3.13).
Theorem 5.4 and Lemma 6.1 imply

Proposition 6.2 There is a natural bijection

I1 : H1(X,C∗)f −→ Pic(X)f ×H1,0(X).

If X admits a Kähler metric, i.e. if the first Betti number of b1(X) is even,
then degg is a topological invariant for every metric g ([LT] Corollary 1.3.12 i)).

Hence in this case it holds H1(X,C∗)f = H1(X,C∗) and Pic(X)f = Pic(X)T ,
and I1 is the natural bijection from the moduli space of isomorphism classes of
flat line bundles to the moduli space of integrable Higgs operators in line bun-
dles with vanishing first real Chern class, which (e.g. by the work of Simpson)
already is known to exist for a Kähler metric g.
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So let us assume that b1(X) is odd. Then degg |Pic0(X) : Pic0(X) −→ R is
surjective, and it holds

Pic(X)T/
Pic(X)f

∼= Pic0(X)/
Pic0(X)f

∼= R

([LT] Corollary 1.3.12 and Proposition 1.3.13). We will show that I1 extends
to a (non-natural) bijection from H1(X,C∗) to Pic(X)T ×H1,0(X) in this case,
too.

Lemma 6.3 There is a bijection i : Pic(X)T −→ Pic(X)f × R such that the
diagram

Pic(X)T
degg−−−→ R

i ↓ ‖

Pic(X)f × R proj.−−−−→ R

commutes.

Proof: degg |Pic0(X) is surjective, so we can choose L1 := [(L1, ∂̄1)] ∈ Pic0(X)

with degg(L1) = degg(∂̄1) = 1, and a class α ∈ H1(X,O) such that L1 = π(α)

where π : H1(X,O) −→ Pic0(X) is the natural surjection. For λ ∈ R define

Lλ := π(λ · α);

then degg(Lλ) = λ since degg ◦π : H1(X,O) −→ R is linear. Now define i by

i(L) := (L ⊗ L− degg(L), degg(L));

then it is obvious that the inverse of i is given by (L, λ) 7→ L ⊗ Lλ, and that
the diagram above commutes.

In the proof of a similar statement for H1(X,C∗) we will use

Lemma 6.4 The natural map

l1 : H1(X,C∗) −→ Pic(X)T , l1([(L,D)]) := [(L,D′′)].

is surjective, i.e. a holomorphic structure ∂̄ in a differentiable line bundle L on
X is the (0,1)-part of a flat connection if and only if the real first Chern class
c1(L)R vanishes.

Proof: Pic(X)f is naturally identified with H1(X,U(1)), such that the inclu-
sion Pic(X)f →֒ Pic(X) becomes the injection k1 : H1(X,U(1)) →֒ H1(X,O∗)
([LT] p. 38). Observe that k1 is the composition of the natural map
H1(X,U(1)) −→ H1(X,C∗) and l1, so it holds

Pic(X)f = im(k1) ⊂ im(l1).
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Each component of Pic(X)T contains a component of Pic(X)f ([LT] Remark
1.3.10), hence for each component

Picc(X) := { [(L, ∂̄)] ∈ Pic(X) | c1(L)Z = c } ⊂ Pic(X)T

there exists a class [(Lc, Dc)] ∈ H1(X,C∗) such that l1([(Lc, Dc)]) ∈ Picc(X).
Define H1(X,C∗)0 := { [(L,D)] ∈ H1(X,C∗) | c1(L)Z = 0 }. The commuta-
tive diagram with exact rows

0 −→ Z −→ C exp−−−→ C∗ −→ 0

‖ ↓ ↓

0 −→ Z −→ O exp−−−→ O∗ −→ 0

induces the commutative diagram

H1(X,C) −→ H1(X,C∗)0

h1 ↓ ↓ l1

H1(X,O) −→ Pic0(X)

with surjective horizontal arrows. Since X is a surface, the left vertical arrow
h1 is also surjective ([BPV] p. 117), hence l1 maps H1(X,C∗)0 surjectively
onto Pic0(X). Now it is easy to see that every element of Picc(X) ⊂ Pic(X)T

is of the form l1([(Lc ⊗ L,Dc ⊗D)]) for some [(L,D)] ∈ H1(X,C∗)0.

Lemma 6.5 There is a bijection j : H1(X,C∗) −→ H1(X,C∗)f × R such that
the diagram

H1(X,C∗)
deg′

g−−−→ R

j ↓ ‖

H1(X,C∗)f × R proj.−−−−→ R

commutes, where deg′g := degg ◦l1 is the map associated to the g-degree of flat
connections.

Proof: Choose L1 ∈ Pic0(X), α ∈ H1(X,O) as in the proof of Lemma 6.3,
and a class β ∈ H1(X,C) with h1(β) = α. Let π′ : H1(X,C) −→ H1(X,C∗)
be the map induced by exp : C −→ C∗, and define L′1 := π′(β) ∈ H1(X,C∗).
Since the diagram

H1(X,C) π′−−→ H1(X,C∗)

h1 ↓ ↓ l1

H1(X,O) −→ Pic(X)T
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commutes, it holds deg′g(L′1) = 1. The rest of the proof is as for Lemma 6.3.

We conclude

Theorem 6.6 The composition

Ī : H1(X,C∗) j−→ H1(X,C∗)f × R I1×idR−−−−−→ H1,0(X)× Pic(X)f × R

idH1,0(X)×i−1

−−−−−−−−−−→ H1,0(X)× Pic(X)T

is a bijective extension of the map I1, and preserves the g-degree.

We finish with the obvious remark that the map l1 : H1(X,C∗) −→ Pic(X)T

in general does not coincide with the composition of Ī and projection onto
Pic(X)T .
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Abstract. It is shown that the class of exact groups, as defined in
a previous paper, is closed under various operations, such as passing
to a closed subgroup and taking extensions. Taken together, these
results imply, in particular, that all almost-connected locally compact
groups are exact. The proofs of the permanence properties use a result
relating the exactness of sequences of maps in which corresponding
algebras are strongly Morita equivalent. The statement of this result
is based on a notion of reduced twisted crossed product for covariant
systems which are twisted in the sense of Green. The theory of these
reduced twisted crossed products and the proof of the exactness result
are given in the first part of the paper.
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1. Introduction.

Given a locally compact group G, let C∗G be the category whose objects are
the pairs (A,α) consisting of a C*-algebra A and a continuous action α of G
on A, and whose maps are the G-equivariant *-homomorphisms between C*-
algebras with continuous G-actions. Following [KW], the group G is said to be
C*-exact (or just exact) if the reduced crossed product functor A→ A⋊α,r G,
for (A,α) ∈ C∗G, is short-exact. To be more precise, G is exact if and only
if, whenever (I, α), (A, β) and (B, γ) are elements of C∗G and there is a G-
equivariant short exact sequence

0 // I
ι // A

q // B // 0,

of maps, the corresponding sequence

0 // I ⋊α,r G
ιr // A⋊β,r G

qr // B ⋊γ,r G // 0
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of reduced crossed products is exact. This is equivalent to saying that for
(A,α) ∈ C∗G, if I is an αG-invariant ideal of A, then the quotient (A ⋊α,r

G)/(I ⋊α|,r G) is canonically isomorphic to (A/I) ⋊α̇,r G, where α| and α̇ are
the restriction and quotient actions of G on I and A/I, respectively.

We introduced group exactness in [KW], primarily as a criterion for the
continuity of crossed products of continuous bundles of C*-algebras. Given a
continuous bundle A = {A,X,Ax} over a locally compact Hausdorff space X
with a continuous fibre-preserving action α of a group G on the bundle C*-
algebra A, it is not in general clear that the reduced crossed product bundle
A ⋊α,r G = {A ⋊α,r G,X,Ax ⋊αx,r G} is continuous, though we know of no
instance where continuity fails. One of the main results in [KW] is that, for a
given G, A ⋊α,r G is continuous for all pairs (A, α) if and only if G is exact.
It is thus of some importance to know which groups are exact, and it is this
problem which is addressed in this paper.

The most basic question is whether, in fact, all locally compact groups are
exact. We have so far not been able to resolve this question even in the discrete
case, and to the best of our knowledge the exactness of arbitrary discrete groups
remains a significant open problem. What we are able to show is that the class
of exact groups is closed under various operations such as passing to closed
subgroups and taking extensions. Moreover groups possessing closed exact
subgroups of finite covolume or which are cocompact are themselves exact.
Using these permanence results we can show that groups from a wide class,
including, in particular, all connected groups, are exact.

To prove these results we use adaptations of a number of techniques from
the theory of induced representations of C*-algebras. Originally formulated by
Rieffel to give an interpretation of Mackey’s theory of induced representations
of groups in terms of C*-algebras, this theory has been developed by P. Green
[Gr] and others to give powerful techniques for handling crossed products of
C*-algebras. The main tools that we use to prove the permanence results are
imprimitivity theorems asserting strong Morita equivalences between various
C*-crossed products by a group G on the one hand and by a closed subgroup H
of G on the other. These results all follow either from Green’s generalisation to
crossed products of Rieffel’s imprimitivity theorem [Gr, §2], or from Raeburn’s
symmetric generalisation of Green’s theorem [Rae, Theorem 1.1]. We shall use
Green’s notion of a twisted action of a group G on a C*-algebra [Gr] to prove
that exactness is preserved on taking extensions.

Let N be a closed normal subgroup of G and suppose that (A,α) ∈ C∗G.
Using α to denote also the restriction α|N , G has a canonical continuous action
γ on A ⋊α N , and there is a canonical homomorphic embedding τ : N →
U(A ⋊α N), where U(A ⋊α N) is the unitary group of the multiplier algebra
M(A⋊αN). The map τ , which is an example of a twisting map, satisfies various
compatibility conditions relative to γ (see §2). The system {A ⋊α N,G, γ, τ}
is an example of a twisted covariant system in the sense of Green.

In general a twisted covariant system {A,G, α, τ} consists of a continuous
action α of G on A and a continuous group monomorphism τ from a closed
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normal subgroup N of G into the unitary group U(A) of the multiplier alge-
bra M(A) satisfying the aforementioned compatibility conditions. There is a
natural idea of a twist-preserving covariant pair of representations of a twisted
covariant system and the full twisted crossed product A ⋊α,τ G is defined as
the unique quotient of the usual full crossed product A⋊αG which is universal
for the representations obtained as the integrated forms of the twist-preserving
covariant pairs of representations of {A,G}. If (γ, τ) is the twisted action of
the previous paragraph, the crossed products (A⋊α|N N) ⋊γ,τ G and A⋊α G
are canonically *-isomorphic, by [Gr, §1]. By a result of Echterhoff [Ech, The-
orem 1], if {B,G,N, α, τ} is a twisted covariant system, there is an associated
covariant system {C,G/N, β} such that the twisted crossed product B⋊α,τG is
strongly Morita equivalent to the ordinary crossed product C⋊β (G/N). Com-
bining these results, one finds that, with A, G, α and N as above, A⋊α|N N is
strongly Morita equivalent to C ⋊β (G/N), where C = (C0(G/N)⊗A) ⋊∆α G,
∆α being the diagonal action of G on C0(G/N)⊗A ∼= C0(G/N,A), and β is a
certain action of G/N on C.

An analogous result for reduced crossed products is used in §5 to show
that an extension of an exact group by an exact group is exact. This requires
the definition, for a given a twisted covariant system {A,G, α, τ}, of a reduced
twisted crossed product A ⋊α,τ,r G, which reduces to the ordinary reduced
crossed product if the twisting is trivial, that is, if N = {1}. Although there
are definitions of twisted reduced crossed products in the literature for twisted
actions coming from cocycles, so far as we are aware none has been given
hitherto for twisted actions in the sense of Green. Using the reduced twisted
crossed product we show that A⋊α,rG is strongly Morita equivalent to (A⋊α,r

N) ⋊γ,τ,r G for a suitable twisted action (γ, τ) of G on A ⋊α,r N . In fact our
result is sharper, in that the Morita equivalence we establish is functorial in A
in a certain sense.

The other permanence results are also proved using analogues for reduced
crossed products of known imprimitivity theorems for full crossed products. In
order to unify our techniques as much as possible, we give a general imprimitiv-
ity theorem in §2 which covers all the cases we need. This section also contains
a brief review of twisted covariant systems, full twisted crossed products and
other relevant background material. We define the reduced twisted crossed
product in §3, and deduce imprimitivity results for reduced crossed products
that parallel those for full crossed products in §2. These results are the basis
of the proofs of the permanence properties mentioned above, which are estab-
lished in §§4 and 5. The permanence properties are applied in §6 to show that
groups of various types are exact.

During the writing of this paper we have benefited from discussions with
a number of people. We should particularly like to thank Etienne Blanchard,
Siegfried Echterhoff and George Skandalis for valuable comments and observa-
tions. We also have pleasure in thanking the following for support:

The EPSRC for a Visiting Fellowship for the first author to visit Glasgow.

The DFG for supporting a visit by the second author to Berlin.
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Gert Pedersen for invitations to visit Copenhagen, and the Danish Re-
search Council for supporting these visits.

The Volkswagen Stiftung for a Research in Pairs Fellowship at the Math-
ematisches Forschungsinstitut, Oberwolfach.

The second author would like to express his gratitude to Etienne Blanchard
and his colleagues at the Université d’Aix-Marseille II at Luminy for inviting
him to visit Luminy.

2. Imprimitivity results for full twisted crossed products.

In this section we recall the basic ideas of Green’s theory of twisted group ac-
tions and state some of the imprimitivity results which will be used in later
sections to prove the permanence results. Most of this material is a straightfor-
ward generalisation of [Gr,§§1,2], but we have found it necessary to make some
aspects of the theory which are not immediately accessible in Green’s treatment
more explicit. Throughout the paper all groups will be assumed locally com-
pact. Our notation follows that of [KW], for the most part. For each locally
compact group G, mG will denote a particular left Haar measure on G and ∆G

the modular function. For (A,α) ∈ C∗G, the full and reduced crossed products
of A by G are denoted by A⋊α G and A ⋊α,r G, respectively. If (B, β) ∈ C∗G,
and θ : A→ B is a completely positive G-equivariant map, then θu and θr will
denote the canonical extensions of the map f → θ(f);Cc(G,A) → Cc(G,B),
where (θ(f))(s) = θ(f(s)) for s ∈ G, to completely positive maps

A⋊α G→ B ⋊β G

and
A⋊α,r G→ B ⋊β,r G,

respectively. If {π, V } is a covariant pair of representations of the covariant
system {A,G, α}, then π ⋊ V will denote the corresponding integrated form
representation of the full crossed product A⋊α G.

Let G be a locally compact group, let H be a closed subgroup of G and let
(A,α) ∈ C∗H . Recall that the C*-algebra Ind(A,α) is the *-subalgebra of the
C*-algebra Cb(G,A) of bounded continuous A-valued functions on G consisting
of those functions f such that

αh(f(xh)) = f(x)

for h, x ∈ H , so that the function x → ||f(x)|| is constant on left cosets of H ,
and such that the associated continuous function on G/H given by

xH → ||f(x)||

is in C0(G/H). As is easily seen, Ind(A,α) is closed in Cb(G,A), and is, more-
over, the bundle algebra of a continuous bundle of C*-algebras on G/H with
constant fibre A. In general this bundle is nontrivial, though if the action α
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extends to an action of G on A, then the bundle is isomorphic to the triv-
ial bundle on G/H with fibre A. In fact when α is defined on all of G, an
automorphism ν of Cb(G,A) is defined by

(ν(f))(s) = αs(f(s)).

For f ∈ Ind(A,α), x ∈ G and h ∈ H , (ν(f))(xh) = αx((f)(x)), so that ν(f)
is constant on left cosets of H . If we identify ν(f) with the corresponding
function in C0(G/H,A), the restriction of ν to Ind(A,α) gives an isomorphism
νA of Ind(A,α) onto C0(G/H,A).

A continuous action α̃ of G on Ind(A,α) is given by

(α̃g(ψ))(s) = ψ(g−1s).

If α is defined on all of G, for ψ ∈Ind(A,α), g, s ∈ G,

(ν(α̃g(ψ)))(s) = αs((α̃g(ψ))(s)) = αs(ψ(g−1s)) = (∆α
g (ν(ψ)))(s),

where ∆α is the diagonal action of G on C0(G/H,A) given by

(∆α
g (f))(s) = αg(f(g−1s))

for f ∈ C0(G/H,A). Thus νA is an equivariant isomorphism between the
covariant systems {Ind(A,α), G, α̃} and {C0(G/H,A), G,∆α}.

Let E0 and B0 be the *-algebrasCc(G,Ind(A,α)) and B0 = Cc(H,A), with
the convolution products relative to the actions α̃ and α, respectively, and let
X0 = Cc(G,A). The algebras E0 and B0 are taken to have the C*-norms and
positive cones resulting from their canonical embeddings in Ind(A,α) ⋊α̃ G
and A ⋊α H , respectively. The linear space X0 is given an E0–B0 bimodule
structure and E0- and B0-valued inner products as follows. For f ∈ E0, g ∈ B0,
and x, y ∈ X0, fx, xg, 〈x, y〉E0 and 〈x, y〉B0 are defined by

(fx)(r) =

∫

G

f(s, r)x(s−1r)dmG(s)

(xg)(r) =

∫

H

δ(t)αt(x(rt)g(t−1))dmH(t)

〈x, y〉E0(s, r) =

∫

H

∆G(rs−1t)αt(x(rt)y(s−1rt)∗)dmH(t)

〈x, y〉B0(t) = δ(t)

∫

G

x(s)∗αt(y(st))dmG(s),

where δ(t) = ∆G(t)1/2/∆H(t)1/2. It is easily checked that fx, xg ∈ X0,
〈x, y〉E0 ∈ E0 and 〈x, y〉B0 ∈ B0. The map (f, x) → fx is a left action of
E0 on X0 and is the integrated form of the covariant pair of left actions of
Ind(A,α) and G on X0 given by

(ψx)(r) = ψ(r)x(r)

(sx)(r) = x(s−1r)
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(ψ ∈ Ind(A,α), s ∈ G, x ∈ X0). The map (x, g) → xg is a right action of B0

on X0 and is the integrated form of the covariant pair of right actions of A and
H on X0 given by

(xa)(r) = x(r)a

(xt)(r) = ∆G(t)−1/2∆H(t)−1/2αt−1(x(rt−1))

(a ∈ A, t ∈ H, x ∈ X0).
The following theorem generalises [Gr, Proposition 3] and [Rie1, §7]. It

is straightforward, if rather tedious, to write out a proof along the lines of
those of [Gr] and [Rie1], though, as Siegfried Echterhoff has pointed out to
us, the result is a corollary of Raeburn’s more general symmetric imprimitivity
theorem [Rae, Theorem 1.1, special case 1.5]. We are grateful to Echterhoff for
drawing our attention to the latter, and also for showing us how the result can,
alternatively, be deduced directly from Green’s original imprimitivity theorem.

Theorem 2.1 With the structure defined above, X0 is an E0–B0 equivalence
(or imprimitivity) bimodule.

Remark If the action α is actually defined on the whole of G, so that the
covariant systems {Ind(A,α), G, α̃} and {C0(G/H,A), G,∆α} are equivariantly
isomorphic, it is straightforward to verify that the E0–B0 equivalence bimodule
X0 is isomorphic to the Cc(G,C0(G/H,A))–Cc(H,A) equivalence bimodule
constructed by Green in [Gr], and that Theorem 2.1 reduces to [Gr,Proposition
3].

Let || ||u be the universal C*-norm on Cc(H,A). If XA is the completion

of X0 with respect to the norm x → ||〈x, x〉B0 ||1/2u , the action of B0 extends
canonically to a right action of its completion A ⋊α H on XA. Moreover the
left action of E0 on X0 extends to a left action on XA by bounded operators,
the operator norm on E0 being a C*-norm, generally incomplete. If E is the
completion of E0 with respect to this norm, there is a canonical left action
of E on XA extending that of E0, and XA is an E–(A ⋊α H) equivalence
bimodule [Rie2]. The C*-algebra E is a quotient of the full crossed product
Ind(A,α) ⋊α̃ G. In Corollary 2.2 we shall show that the kernel of the quotient
map is trivial, so that E ∼= Ind(A,α) ⋊α̃ G canonically. Since the proofs of
the corollary and other later results use induced representations, we review the
inducing process briefly.

Let A and B be strongly Morita equivalent pre-C*-algebras (i.e. normed
*-algebras whose norms satisfy the C*-condition but are not necessarily com-
plete), and let X be an A–B equivalence bimodule. If π is a contractive *-
representation of B on a Hilbert space H, then the corresponding induced
representation Xπ acts contractively and non-degenerately on the Hilbert
space XH obtained by completing X ⊗B H with respect to the semi-norm∑
xi ⊗ ξi → ||(π(〈xi, xi〉B)ξi|ξi)||1/2 and for a ∈ A,

Xπ(a)(x ⊗ ξ) = ax⊗ ξ (x ∈ X, ξ ∈ H).
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Let X∗ be the B–A equivalence bimodule dual to X . Thus X∗ is the image of
X by an antilinear bijection x→ x∗ such that

λ̄x∗ = (λx)∗, bx∗ = (xb∗)∗, x∗a = (a∗x)∗

for λ ∈ C, a ∈ A, b ∈ B and x ∈ X , and the B- and A-valued inner products
on X∗ are given by

〈x∗, y∗〉B = 〈y, x〉B , 〈x∗, y∗〉A = 〈y, x〉A

for x, y ∈ X . If σ is a contractive representation of A on a Hilbert space K,
then X∗

σ is a contractive representation of B. The A–A equivalence bimodules
X ⊗B X∗ and A are isomorphic, and likewise there is an isomorphism between
the B–B equivalence bimodules X∗ ⊗A X and B. It follows that there are
unitary equivalences X∗

(Xπ) ∼= π and X(X
∗
σ) ∼= σ for any non-degenerate

representations π and σ of B and A, respectively, so that there is a bijective
correspondence between the equivalence classes of non-degenerate representa-
tions of A and B. In the rest of the paper all representations will be assumed
non-degenerate.

If A and B are actually C*-algebras, by [Rie1] there are bijective cor-
respondences between (i) ideals of A, (ii) closed A–B-invariant subspaces of
X and (iii) ideals of B. If Y is a closed A–B-invariant subspace of X , the
corresponding ideals of A and B are

AY = span{< y, x >A: x ∈ X, y ∈ Y }
BY = span{< x, y >B: x ∈ X, y ∈ Y },

respectively. In the opposite direction, if I and J are ideals in B and A,
respectively, then the corresponding A–B-invariant subspaces of X are

YI = XI = span{xz : x ∈ X, z ∈ I}

and

JY = JX = span{zx : z ∈ J, x ∈ X}.
These correspondences clearly respect inclusion. When necessary we shall say
that I and J correspond via X . It is straightforward to verify that if π is a
representation of B, then the ideals kerX π and kerπ of A and B, respectively,
correspond via X. In particular, Xπ is faithful if and only if π is faithful.

Corollary 2.2 The operator norm on E0 is the the universal C*-norm
coming from the canonical embedding of E0 in Ind(A,α) ⋊α̃ G, and XA is
canonically an (Ind(A,α) ⋊α̃ G)–(A⋊α H) equivalence bimodule.

Proof: Let {π, U} be a covariant pair of representations of the system {A,H, α}
on a Hilbert spaceH. Writing X for XA, let Xπ and XU denote the restrictions
of the induced representation X(π ⋊ U) to Ind(A,α) and G, respectively. We
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shall say that the covariant pair {Xπ,X U} is induced from the pair {π, U}.
Similarly, given a covariant pair {σ, V } of representations of {Ind(A,α), G, α̃},
we obtain a covariant pair {X∗

σ,X
∗
U} of representations of {A,H}. By the

above discussion, the pairs {π, U} and {X∗
(Xπ),X

∗
(XU)} are unitarily equiv-

alent, as are the pairs {σ, V } and {X(X
∗
σ),X (X

∗
V )}.

Now let {π, U} and {σ, V } be universal covariant pairs for {A,H, α}
and {Ind(A,α), G, α̃}, respectively. Replacing {π, U} and {σ, V } by the pairs
{π⊕X∗

σ, U ⊕X∗
V } and {σ⊕X π, V ⊕X U}, respectively, we can assume, since

the inducing process respects direct sums, that

σ =X π, V =X U, π =X∗
σ, U =X∗

V.

Now the representation σ ⋊ V of Ind(A,α) ⋊α̃ G is universal, hence faithful.
Also, the representation X(π ⋊ U) of E has restrictions σ and V to Ind(A,α)
and G, respectively. This implies that σ ⋊ V factorises via the quotient map
Ind(A,α) ⋊α̃ G→ E, which implies that the quotient map is injective, so that
Ind(A,α) ⋊α̃ G ∼= E as required. ✷

Remark If {π, U} is any universal covariant pair of representations of
{A,H, α}, then π⋊U is a faithful representation of A⋊αH , and so XA(π⋊U)
is a faithful representation of Ind(A,α) ⋊α̃ G. Thus {XAπ,XA U} is universal
for {Ind(A,α), G, α̃}.

Let G be a locally compact group with closed normal subgroup N . For
(A,α) ∈ C∗G a twisting map for N is a strictly continuous homomorphism τ of
N into the unitary group U(A) of M(A) such that for n ∈ N, s ∈ G,

τ(n)aτ(n)−1 = αn(a)

and

τ(sns−1) = αs(τ(n)).

The pair (α, τ) is called a twisted action of of G on A relative to N , and,
provided A is nonzero, {A,G, α, τ} is referred to as a twisted covariant system.
A covariant pair of representations {π, V } of {A,G} on a Hilbert space H is
τ-covariant or twist-preserving if

π̄(τ(n)) = Vn

for n ∈ N , where π̄ denotes the canonical extension of π to the multiplier
algebra M(A).

Let Iτ be the closed, two-sided ideal
⋂
{π,V } ker(π ⋊ V ) of the full crossed

product A⋊αG, where the supremum is over all τ -covariant pairs of represen-
tations of {A,G, α}. The full twisted crossed product A⋊α,τG is the C*-algebra
(A⋊α G)/Iτ . It has the universal property that if {π, V } is a τ -covariant pair
of representations of {A,G, α}, then Iτ ⊆ ker(π ⋊ V ), so that π ⋊ V is the
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composition of a representation π ⋊τ V of A ⋊α,τ G with the quotient map
A⋊α G→ A⋊α,τ G.

Although it is not made explicit in [Gr], for a given twisted covariant sys-
tem {A,G, α, τ} it is always possible to find a twist-preserving covariant pair
of representations {π, V } with π faithful. In §3 we shall construct for a given
faithful representation π of A on a Hilbert space H a τ -covariant pair of rep-
resentations {πα,τ , λτ} of {A,G, α, τ} on a Hilbert space L2

τ (G,H) canonically
associated with π with πα,τ faithful. In the case when N is trivial, this pair
reduces to the usual regular pair {πα, λG}. It follows that we can find a faithful
representation π of A⋊α,τ G on a Hilbert space H, with restrictions {πA, πG}
to {A,G} such that πA is injective and for a ∈ A, g ∈ G, πA(a) and πG(g) are
multipliers of π(A⋊α,τ G). If we identify A⋊α,τ G with its image under π and
the multiplier algebra M(A⋊α,τ G) with a *-subalgebra of the weak closure of
this image, πA and πG are respectively a *-monomorphism of A and a group
homomorphism of G with kernel contained in N into M(A⋊α,τ G). With these
identifications, πA and πG are independent of π, and will be referred to as
the canonical morphisms. It then follows that for any faithful representation
of A ⋊α,τ G, πA is injective. A twisted covariant pair {π, V } will be called
universal if the representation π ⋊τ V of A⋊α,τ G is faithful.

Now let G be a locally compact group with a closed normal subgroup N
and let H be a closed subgroup of G containing N . If (A,α) ∈ C∗H , let τ : N →
M(A) be a twisting map for N . A homomorphism τ̃ : N → U(Ind(A,α)) is
defined by

(τ̃ (n)ψ)(s) = τ(s−1ns)ψ(s) (ψ ∈ Ind(A,α)).

It is straightforward to verify that {Ind(A,α), G, α̃, τ̃} is a twisted covariant
system relative to N .

Proposition 2.3 Let {π, V } be a covariant pair of representations of the
covariant system {A,H, α, τ} on a Hilbert space H. The pair {XAπ,XA V } is
τ̃ -covariant if and only if the pair {π, V } is τ -covariant.

Proof: Let π̃ =XA π and U =XA V . For n ∈ N , f, g ∈ Cc(G,A) ⊆ XA and
ξ, η ∈ H,

(
Un(f ⊗ ξ)

∣∣g ⊗ η
)

=
(
π(〈g, nf〉B)ξ

∣∣η
)

=

∫

H

(
π(〈g, nf〉B(t))Vtξ

∣∣η
)
dmH(t)

=

∫

H

∫

G

δ(t)
(
π(g(s)∗αt(f(n−1st)))Vtξ

∣∣η
)
dmG(s) dmH(t)

=

∫

G

∫

H

δ(t)
(
π(g(s)∗αt(f(s(s−1n−1st))))Vtξ

∣∣η
)
dmH(t) dmG(s)

Documenta Mathematica 4 (1999) 513–558



522 Kirchberg and Wassermann

t→s−1nst

=

∫

G

∫

H

δ(t)
(
π(g(s)∗αs−1nst(f(st)))Vs−1nsVtξ

∣∣η
)
dmH(t) dmG(s)

(Since ∆G|N = ∆H |N = ∆N , N being a normal subgroup)

=

∫

G

∫

H

δ(t)
(
π(g(s)∗)Vs−1nsπ(αt(f(st)))Vtξ

∣∣η
)
dmH(t) dmG(s)

and(
τ̃ (n)f ⊗ ξ

∣∣g ⊗ η
)

=

∫

G

∫

H

δ(t)
(
π(g(s)∗αt(τ(t−1s−1nst)f(st)))Vtξ

∣∣η
)
dmH(t) dmG(s)

=

∫

G

∫

H

δ(t)
(
π(g(s)∗)π̄(τ(s−1ns))π(αt(f(st)))Vtξ

∣∣η
)
dmH(t) dmG(s).

If the pair {π, V } is τ -covariant, it follows that
(
Un(f ⊗ ξ)

∣∣g ⊗ η
)

=
(
τ̃(n)f ⊗ ξ

∣∣g ⊗ η
)
,

so that Un = π̃(τ̃ (n)), which means that the pair {π̃, U} is τ̃ -covariant. If,
conversely, {π̃, U} is τ̃ -covariant, then

(
Un(f ⊗ ξ)

∣∣g ⊗ η
)

=
(
τ̃(n)f ⊗ ξ

∣∣g ⊗ η
)
,

and, by the above calculations,
∫

G

∫

H

δ(t)
(
π(g(s)∗)(Vs−1ns − π̄(τ(s−1ns)))π(αt(f(st)))Vtξ

∣∣η
)
dmH(t) dmG(s)=0

(∗).
Let a, b ∈ A, let ε > 0 and let V be a symmetric compact neighbourhood of
the identity in G such that for s, t ∈ V2

∣∣(π(b∗)(Vs−1ns−π̄(τ(s−1ns)))π(αt(a))Vtξ
∣∣η
)
−
(
π(b∗)(Vn−π̄(τ(n)))π(a)ξ

∣∣η
)∣∣≤ε.

Letting h be a continuous positive function with support in V such that
∫

G

∫

H

δ(t)h(s)h(st) dmH(t) dmG(s) = 1

and taking f and g to be the functions s→ h(s)a and s→ h(s)b, respectively,
a simple calculation shows that the difference between π(b∗)(Vn− π̄(τ(n)))π(a)
and the integral on the left-hand side of (∗) has modulus less than or equal to
ε. Since ε is arbitrary, this implies that

π(b∗)(Vn − π̄(τ(n)))π(a) = 0

for a, b ∈ A, so that π̄(τ(n)) = Vn, by the nondegeneracy assumption on π,
which implies that the pair {π, V } is τ -preserving. ✷
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Let Iτ be the kernel of the canonical quotient map A⋊α H → A⋊α,τ H .

If Ĩ is the ideal of Ind(A,α) ⋊α̃ G corresponding to Iτ via XA, let Eτ be the
quotient (Ind(A,α) ⋊α̃ G)/Ĩ. Then XA,τ = XA/XAIτ is an Eτ–(A ⋊α,τ H)
equivalence bimodule. The following theorem generalises [Gr,Corollary 5].

Theorem 2.4 The C*-algebra Eτ is canonically isomorphic to Ind(A,α)⋊α̃,τ̃

G and XA,τ is an (Ind(A,α) ⋊α̃,τ̃ G)–(A ⋊α,τ H) equivalence bimodule.

Proof: The proof is very similar to that of Corollary 2.2. Let {π, V } and
{σ, U} be universal twist-covariant pairs of representations of {A,H, α, τ} and
{Ind(A,α), G, α̃, τ̃}, respectively. Then {σ, U} is unitarily equivalent to the
pair {XA(X

∗
Aσ),XA (X

∗
AU)} and, by Proposition 2.3, the pairs {XAπ,XA V } and

{X∗
Aσ,X

∗
A U} are τ̃ - and τ -covariant, respectively. Replacing {π, V } and {σ, U}

by {π⊕X∗
A σ, V ⊕X∗

A U} and {σ⊕XA π, U ⊕XA V }, respectively, we can assume
that the pair of representations of {Ind(A,α), G, α̃, τ̃} induced from {π, V } is
universal. By our earlier discussion the ideal Ĩ is the kernel of the representation
(XAπ)⋊ (XAV ), which is the kernel of the canonical quotient map Ind(A,α)⋊α̃

G→Ind(A,α)⋊α̃,τ̃ G. It follows that XA,τ is an (Ind(A,α)⋊α̃,τ̃ G)–(A⋊α,τH)
equivalence bimodule. ✷

Remarks 2.5 1. It follows, by reasoning similar to that of the remark
following the proof of Corollary 2.2, that if {π, V } is any universal τ -covariant
pair of representations of {A,H, α, τ}, then the τ̃ -covariant pair {XAπ,XA V }
is universal for {Ind(A,α), G, α̃, τ̃}.

2. Suppose that H = N , so that α is a continuous action of N on A, and
that τ : N → U(A) is a twisting map. The pair of homomorphisms {id, τ} of
{A,N}, where id : A→M(A) is the canonical embedding, is τ -covariant. If we
represent M(A) faithfully on a Hilbert space in such a way that the restriction
of the representation to A is non-degenerate, we can regard this pair of maps
as a τ -covariant pair of representations, and the integrated form of {id, τ} is a
*-homomorphism Φ of A⋊α,τ N into M(A). For f ∈ Cc(N,A),

Φ(f) =

∫

N

f(n)τ(n) dmN (n) ∈ A.

It follows, by taking limits, that Φ(A⋊α,τ N) ⊆ A, and, by considering f with
suitably small support containing the identity of N , that the image of Φ is
dense in A. Thus Φ(A⋊α,τ N) = A.

Let {π, V } be a τ -covariant pair of representations of the twisted system
{A,N, α, τ} on a Hilbert space H. Then π̄(τ(n)) = Vn for n ∈ N and for
f ∈ Cc(N,A),

(π ⋊ V )(f) =

∫

N

π(f(n))π̄(τ(n)) dmN (n)

= π

(∫

N

f(n)τ(n) dmN (n)

)

= π(Φ(f)).
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Thus π ⋊ V = π ◦ Φ. If {π, V } is a universal pair for {A,N, α}, then π ⋊τ V
and π are faithful. This implies that Φ is an isomorphism, i.e. A⋊α,τ N ∼= A.
If π is a representation of A, then {π, π̄ ◦ τ} is a τ -covariant pair for {A,N}
and π ⋊ (π̄ ◦ τ) = π ◦ Φ. If π is faithful, this implies that the pair {π, π̄ ◦ τ} is
universal for {A,N, α}.

3. The reduced twisted crossed product.

Let G be a locally compact group and let (A,α) ∈ C∗G. Let N be a closed
normal subgroup of G and let {π, V } be a covariant pair of representations of
{A,N, α|N} on a Hilbert space H such that π ⋊ V is a faithful representation
of the full crossed product A⋊α|N N . If we identify A⋊α|N N with its image
under π⋊V , a twisted action (γ, τ) of G on A×αN relative to N is defined by

γs

(∫

N

π(f(t))Vt dmN (t)

)
= Vs

(∫

N

π(f(t))Vt dmN (t)

)
V −1
s

=

∫

N

∆G(s)

∆G/N (sN)
π(αs(f(s−1ts))Vt dmN (t)

for f ∈ Cc(N,A) and s ∈ G, and

τ(n) = Vn (n ∈ N)

(cf. [Ech, proof of Theorem 1, et seq.]). This twisted action has the fundamental
property that there is a natural isomorphism

A⋊α G ∼= (A⋊α N) ⋊γ,τ G

[Gr]. In §5 we shall need an analogous isomorphism with A⋊α,r G on the left
and A ⋊α,r N on the right. To formulate such a result we give a definition of
reduced twisted crossed product appropriate to the present context. Although
there are various definitions of reduced twisted crossed product in the literature
for cocycle twistings, our definition seems to be new.

For the definition we require a twisted version of the left regular repre-
sentation of a crossed product, which we construct as follows. Let π be a not
necessarily faithful representation of A on a Hilbert spaceH and let Cc(G,H, τ)
be the set of those continuous H-valued functions f on G whose supports have
relatively compact image in G/N and which satisfy

π̄(τ(n))f(s) = f(sn−1) (∗)

(or, equivalently, π̄(τ(s−1ns))(f(ns)) = f(s)) for s ∈ G,n ∈ N . For f ∈
Cc(G,H, τ) the nonnegative-valued real function s → ||f(s)|| is constant on
each coset of N , and if we denote the common value on the coset sN by
||f(sN)||, the function sN → ||f(sN)|| is in Cc(G/N,R). Let

||f ||τ2 =

(∫

G/N

||f(sN)||2dmG/N (sN)

)1/2

.
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Then || ||τ2 is a norm on Cc(G,H, τ) and the completion L2
τ (G,H) is a Hilbert

space. It is not difficult to see that L2
τ(G,H) is precisely the family of equiva-

lence classes modulo null sets of H-valued measurable functions f on G satis-
fying (∗) and such that

(∫

G/N

||f(sN)||2dmG/N (sN)

)1/2

<∞.

For a ∈ A, ξ ∈ L2
τ (G,H) and g, s ∈ G let

(πα,τ (a)ξ)(s) = π(αs−1(a))ξ(s)

and
(λτ,gξ)(s) = ξ(g−1s).

It is readily checked that πα,τ (a)ξ and λτ,gξ are in L2
τ (G,H), so that πα,τ and

λτ are representations of A and G, respectively. When necessary we shall write
λGτ to make it clear which group is involved.

Lemma 3.1 1. The pair {πα,τ , λτ} is τ -covariant. If π is faithful, so is πα,τ .

2. If λ̇ denotes the representation ofG on L2(G/N) obtained by composing
the quotient map G→ G/N with the left regular representation of G/N , then
{πα,τ ⊗1L2(G/N), λτ ⊗ λ̇} is a τ -covariant pair of representations of {A,G, α, τ}
which is unitarily equivalent to the pair {πα,τ ⊗ 1L2(G/N), λτ ⊗ 1L2(G/N)}.

3. If {π, V } is a τ -covariant pair of representations of {A,G, α, τ} on a
Hilbert space H, then {π ⊗ 1L2(G/N), V ⊗ λ̇} is a τ -covariant pair which is
unitarily equivalent to the pair {πα,τ , λτ}.

Proof: 1. It follows readily from the definitions that, for a ∈ A and g ∈ G,

λτ,gπα,τ (a)λ−1
τ,g = πα,τ (αg(a)),

so that {πα,τ , λτ} is a covariant pair for (A,α). Also, if n, s ∈ N , ξ ∈
Cc(G,H, τ),

(λτ,nξ)(s) = ξ(n−1s)

= π̄(τ(s−1ns))ξ(s)

= π̄(αs−1(τ(n)))ξ(s)

= (π̄α,τ (τ(n))ξ)(s),

i.e. {πα,τ , λτ} is τ -preserving.
For f ∈ Cc(G,H) let f̄ be given by

f̄(s) =

∫

N

π̄(τ(m))f(sm)dmN (m).
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Then

f̄(sn−1) =

∫

N

π̄(τ(m))f(sn−1m)dmN (m)

=

∫

N

π̄(τ(n))π̄(τ(n−1m))f(sn−1m)dmN (m)

= π̄(τ(n))f̄ (s).

Also, if supp f ⊆ C for some compact subset C of G, then supp f̄ ⊆ CN , so
that f̄ is in L2

τ (G,H).
Suppose that π is faithful. Let a be a nonzero element of A and let ξ ∈ H

such that π(a)ξ 6= 0. For ε > 0 let C be a compact neighbourhood of the
identity e in G such that ||τ(m−1)ξ − ξ|| ≤ ε for m ∈ C ∩ N . Taking f a
continuous nonnegative-valued real function on G with support in C−1 such
that

∫
N f(n)dmN (n) = 1 and defining F ∈ Cc(G,H) by F (s) = f(s)ξ,

||(πα,τ (a)F̄ )(e)− π(a)ξ|| = ||
∫

N

f(m)π(a)(π(τ(m))ξ − ξ)dmN (m)||

≤ sup
n∈C∩N

||π(a)(π(τ(n))ξ − ξ)||
∫

N

f(m−1)dmN (m)

≤ ε||a||

which implies, since ε is arbitrary and π is faithful, that πα,τ (a) 6= 0, i.e. πα,τ
is faithful.

2. Regarding elements of L2
τ (G,H) ⊗ L2(G/N) as equivalence classes of

H-valued functions on G× (G/N), it is straightforward to show that a unitary
operator U on L2

τ (G,H)⊗ L2(G/N) is defined by

(Uξ)(r, sN) = ξ(r, r−1sN).

Then
U(πα,τ (a)⊗ 1)U∗ = πα,τ (a)⊗ 1

and
U(λτ,g ⊗ 1)U∗ = λτ,g ⊗ λ̇gN ,

for a ∈ A and g ∈ G, i.e. U implements the stated equivalence.

3. For ξ ∈ Cc(G/N,H) let Wξ be the H-valued function on G given by

(Wξ)(s) = Vs−1ξ(sN).

Then for n ∈ N

(Wξ)(sn−1) = Vns−1ξ(sN)

= (π̄(τ(n))Wξ)(s),

so that Wξ ∈ L2
τ (G,H). It is also immediate that ||Wξ||τ2 = ||ξ||2, the

latter norm being that on L2(G/N,H). Thus W extends to an isometry
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of L2(G/N,H) into L2
τ (G,H). For ξ ∈ L2

τ (G,H) the H-valued function
s→ Vsξ(s) on G is constant on each coset of N . Letting W1ξ be the H-valued
function on G/N given by

(W1ξ)(sN) = Vsξ(s),

W1 is an isometry from L2
τ (G,H) to L2(G/N,H), and W1 = W−1. Hence W

is bijective. Moreover

(λτ,gWξ)(s) = (Wξ)(g−1s)

= Vs−1Vgξ(g
−1sN)

= Vs−1 ((Vg ⊗ λ̇g)ξ)(sN)

= (W (Vg ⊗ λ̇g)ξ)(s)

and

(πα,τ (a)Wξ)(s) = π(αs−1 (a))Vs−1ξ(sN)

= Vs−1π(a)ξ(sN)

= (W (π(a) ⊗ 1)ξ)(s).

This shows that the pairs {π ⊗ 1L2(G/N), V ⊗ λ̇} and {πα,τ , λτ} are unitarily
equivalent.

✷

By analogy with the untwisted case, we would like to define the reduced
twisted crossed product A⋊α,τ,r G to be the image of A ⋊α G under the rep-
resentation πα,τ ⋊ λτ , where π is some faithful representation of A. First,
however, it is necessary to show that the resulting quotient of A⋊αG does not
depend on the choice of π. This is achieved in what follows by showing that,
for a given π, the τ -covariant pair {πα,τ , λGτ } is obtained by inducing the rep-
resentation π of A ∼= A⋊α,τ N to M(Ind(A,α|N) ⋊α̃,τ̃ G) via the equivalence
bimodule XA of §2 and composing the induced representation with canonical
morphisms from A and G into this multiplier algebra.

Let H be a closed subgroup of G containing N , let {A,α} ∈ C∗H and
let Ind(A,α) be the associated C*-algebra defined in §2. Let π be a faithful
representation of A on H and for ψ ∈ Ind(A,α) and ξ ∈ L2

τ (G,H) let

(π̃α,τ (ψ)ξ)(s) = π(ψ(s))ξ(s).

Then

((π̃α,τ (ψ)ξ)(sn−1) = π(ψ(sn−1))π̄(τ(n))ξ(s)

= π̄(τ(n))π(αn−1 (ψ(sn−1)))ξ(s)

= π̄(τ(n))π(ψ(s))ξ(s)

= π̄(τ(n))((π̃α,τ (ψ)ξ)(s),
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so that π̃α,τ (ψ)ξ ∈ L2
τ (G,H), and π̃α,τ is a representation of Ind(A,α) on

L2
τ (G,H). For g ∈ G,

(λGτ,gπ̃α,τ (ψ)λGτ,g−1ξ)(s) = π(ψ(g−1s))ξ(s)

= (π̃α,τ (α̃g(ψ))ξ)(s),

so that {π̃α,τ , λGτ } is a covariant pair of representations of the covariant system
{Ind(A,α), G, α̃}. The proof of Lemma 3.1 (1) shows that

λGτ,n = ¯̃πα,τ (τ̃ (n))

for n ∈ N , which implies that the pair {π̃α,τ , λGτ } is τ̃ -covariant.

Proposition 3.2 The τ̃ -covariant pair of representations of
{Ind(A,α), G, α̃, τ̃} induced from the τ -covariant pair of representations
{πα,τ , λHτ } of {A,H, α, τ} via the equivalence bimodule XA of §2 is unitarily
equivalent to the pair {π̃α,τ , λGτ }.

Proof: We shall also assume, as we may, that the left Haar measures mG, mH ,
mN and mG/N have been chosen so that

∫

G

f(s) dmG(s) =

∫

G/N

∫

N

f(sn) dmN (n)dmG/N (sN) (1)

and ∫

H

g(t) dmH(t) =

∫

H/N

∫

N

g(tn) dmN (n)dmH/N (sN) (2)

for f ∈ Cc(G), g ∈ Cc(H).
For f, g ∈ X0 = Cc(G,A) and ξ, η ∈ L2

τ (H,H), we calculate the inner
product (f ⊗ ξ|g ⊗ η) in XAL2

τ (H,H). To prevent the notation becoming too
cumbersome, we regardH as an M(A)-module via π̄, so that, for a ∈M(A) and
ζ ∈ H, aζ will denote (π̄(a))ζ, and similarly regard L2

τ (H,H) as an M(A⋊αH)-

module via πα,τ ⋊ λHτ . Then

(f ⊗ ξ|g ⊗ η)

= (〈g, f〉B0ξ|η)

=

∫

H/N

∫

H

∫

G

δ(t)∆G(s)−1
(
αr−1(g(s−1)∗)αr−1t(f(s−1t))ξ(t−1r)

∣∣η(r)
)

×dmG(s)dmH(t)dmH/N (rN)

=

∫

H/N

∫

H

∫

G

δ(t)∆G(s)−1
(
αr−1t(f(s−1t))ξ(t−1r)

∣∣αr−1(g(s−1))η(r)
)
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×dmG(s)dmH(t)dmH/N (rN)

t→rt
s→rs

=

∫

H/N

∫

H

∫

G

δ(t)δ(r)∆G(r)−1∆G(s)−1

×
(
αt(f(s−1t))ξ(t−1)

∣∣αr−1(g(s−1r−1))η(r)
)

×dmG(s)dmH(t)dmH/N (rN)

s→s−1

=

∫

H/N

∫

H

∫

G

δ(t)δ(r)∆G(r)−1
(
αt(f(st))ξ(t−1)

∣∣αr−1(g(sr−1))η(r)
)

×dmG(s)dmH(t)dmH/N (rN)

=

∫

H/N

∫

H

∫

G/N

∫

N

δ(t)δ(r)∆G(r)−1

×
(
αt(f(smt))ξ(t−1)

∣∣αr−1(g(smr−1))η(r)
)

×dmN(m)dmG/N (sN)dmH(t)dmH/N (rN)

(by (1))

t→m−1t
=

∫

H/N

∫

H

∫

G/N

∫

N

δ(m)−1δ(t)δ(r)∆G(r)−1

×
(
αm−1t(f(st))ξ(t−1m)

∣∣αr−1(g(smr−1))η(r)
)

×dmN(m)dmG/N (sN)dmH(t)dmH/N (rN)

m→m−1

=

∫

H/N

∫

H

∫

G/N

∫

N

δ(t)δ(r)∆G(r)−1∆N (m)−1

×
(
αmt(f(st))ξ(t−1m−1)

∣∣αr−1(g(sm−1r−1))η(r)
)

×dmN(m)dmG/N (sN)dmH(t)dmH/N (rN)

(since δ(m) = 1 for m ∈ N)

=

∫

H/N

∫

H

∫

G/N

∫

N

δ(t)δ(r)∆G(r)−1∆N (m)−1

×
(
τ(m)αt(f(st))τ(m−1)ξ(t−1m−1)

∣∣αr−1(g(sm−1r−1))τ(m)η(rm)
)
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×dmN(m)dmG/N (sN)dmH(t)dmH/N (rN)

=

∫

H/N

∫

H

∫

G/N

∫

N

δ(t)δ(r)∆G(rm)−1

×
(
αt(f(st))ξ(t−1)

∣∣αm−1r−1(g(sm−1r−1))η(rm)
)

×dmN(m)dmG/N (sN)dmH(t)dmH/N (rN)

=

∫

G/N

∫

H

∫

H

δ(t)δ(r)∆G(r)−1
(
αt(f(st))ξ(t−1)

∣∣αr−1(g(sr−1))η(r)
)

×dmH(t)dmH(r)dmG/N (sN)

(by (2))

r→r−1

=

∫

G/N

∫

H

∫

H

δ(t)δ(r)
(
αt(f(st))ξ(t−1)

∣∣αr(g(sr))η(r−1)
)

×dmH(t)dmH(r)dmG/N (sN).

Let T (f ⊗ ξ) be the A-valued function on G given by

(T (f ⊗ ξ))(s) =

∫

H

δ(t)αt(f(st))ξ(t−1) dmH(t).

Then

T (f ⊗ ξ)(sn−1) =

∫

H

δ(t)αt(f(sn−1t))ξ(t−1) dmH(t)

=

∫

H

δ(t)αnt(f(st))ξ(t−1n−1) dmH(t)

= τ(n)((T (f ⊗ ξ))(s)),

since δ(n) = 1 for n ∈ N , and if K1 is the support of f in G and K2 is the
support of ξ in H , then the support of T (f ⊗ ξ) is contained in the set K1K2.
The latter set has relatively compact image in G/N since the same is true of
K2 and K1 is compact. It follows that T (f ⊗ ξ) ∈ Cc(G,H, τ). By the above
calculation, T is an isometric linear map from a dense subspace of XAL2

τ (H,H)
into L2

τ (G,H). Standard arguments involving partitions of unity show that the
image of T is dense in L2

τ (G,H). Thus T has an extension to an isometry U
from XAL2(H,H) onto L2

τ (G,H).

Documenta Mathematica 4 (1999) 513–558



Permanence Properties of C*-exact Groups 531

For ψ ∈ Ind(A,α), f ∈ X0, ξ ∈ H and g, s ∈ G,

[T (ψf ⊗ ξ)](s) =

∫

H

γ(t)αt(ψ(st)f(st))ξ(t−1) dmH(t)

= ψ(s)(T (f ⊗ ξ))(s)
= [π̃α,τ (ψ)(T (f ⊗ ξ))](s)

and

[T (gf ⊗ ξ)](s) =

∫

H

γ(tαt(f(g−1st))ξ(t−1) dmH(t)

= [λτ,g(T (f ⊗ ξ))](s),

from which it follows that U implements the desired unitary equivalence. ✷

In the following corollary we assume that H = N , so that α is an action
of N on A by inner automorphisms.

Corollary 3.3 If the representation π is faithful, then the integrated form
representation π̃α,τ ⋊τ̃ λτ of Ind(A,α) ⋊α̃,τ̃ G is faithful.

Proof: By Proposition 3.2, π̃α,τ ⋊τ̃ λτ is the representation of Ind(A,α) ⋊α̃,τ̃ G
induced from the representation π ⋊τ λ

N
τ of A ⋊α,τ N via XA. The Hilbert

space L2
τ (N,H) is just the space of continuous H-valued functions f such that

f(n) = π̄(τ(n−1))f(e)

for n ∈ N , with norm ||f(e)||, and the map f → f(e) is an isometry of L2
τ (N,H)

onto H. This map implements a unitary equivalence between the τ -covariant
pairs {πα,τ , λNτ } and {π, π̄ ◦ τ}. By Remark 2.5 (2), the latter pair is uni-
versal for {A,N, α, τ}, since π is faithful. Hence {πα,τ , λNτ } is universal for
{A,N, α, τ}, so that πα,τ ⋊τ λ

N
τ is a faithful representation of A⋊τ N (∼= A, by

Remark 2.5 (2)). Since faithful representations induce faithful representations,
the result follows. ✷

We are now ready to define the reduced twisted crossed product. Let G
be a locally compact group with a closed normal subgroup N . Let (A,α) ∈ C∗G
and let τ : N → U(A) be a twisting map relative to α. Let π be a faithful
representation of A on a Hilbert space H. Letting E = Ind(A,α|N), we note in
passing that by the discussion of §2 the pair (E, α̃) is G-equivariantly isomor-
phic to C0(G/N,A) with G acting by left translation. By Corollary 3.3, the
representation π̃α,τ ⋊τ̃ λτ of E ⋊α̃,τ̃ G on L2

τ (G,H) is faithful, and hence so is
its canonical extension π̃α,τ ⋊τ̃ λτ to M(E ⋊α̃,τ̃ G). Identifying M(E ⋊α̃,τ̃ G)
with its image under π̃α,τ ⋊τ̃ λτ , for a ∈ A, ψ ∈ E and ξ ∈ L2

τ (G,H),

(πα,τ (a)π̃α,τ (ψ)ξ)(s) = π(αs−1 (a))π(ψ(s))ξ(s)

= (π̃α,τ (aψ)ξ)(s),
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where aψ is the element of E given by

(aψ)(s) = αs−1(a)ψ(s).

For f ∈ Cc(G,E) and a ∈ A, let af be the element of Cc(G,E) given by
(af)(s) = af(s). Then

πα,τ (a)(π̃α,τ ⋊τ̃ λτ )(f) = πα,τ (a)

∫

G

π̃α,τ (f(s))λτ,s dmG(s)

=

∫

G

π̃α,τ (af(s))λτ,s dmG(s)

= (π̃α,τ ⋊τ̃ λτ )(af)

∈ Ind(A,α) ⋊α̃,τ̃ G,

and, by taking limits of sequences of such f , it follows that πα,τ (a)(π̃α,τ ⋊τ̃

λτ )(x) ∈ E ⋊α̃,τ̃ G for all x ∈ E ⋊α̃,τ̃ G. Similarly, if g ∈ G and ψ ∈ E, let gψ
be the element of E given by

(gψ)(s) = αg(ψ(g−1s)),

and for f ∈ Cc(G,E) let gf be the element of Cc(G,E) such that (gf)(s) =
gf(s). A similar calculation shows that λτ,g multiplies E ⋊α̃,τ̃ G. There are
thus canonical homomorphisms π0 and λ0 from A and G into M(E ⋊α̃,τ̃ G)
given by

π0(a)f = af, λ0(g)g = gf

for f ∈ Cc(G,E). Moreover πα,τ = (π̃α,τ ⋊τ̃ λτ )◦π0 and λτ = (π̃α,τ ⋊τ̃ λτ )◦λ0,
from which it follows that π0 is an isomorphism, and {π0, λ0} is a τ -covariant
pair.

Definition 3.4 The reduced twisted crossed product A⋊α,τ,r G is the image
of A⋊α G in M(Ind(A,α|N) ⋊α̃,τ̃ G) under the *-homomorphism π0 ⋊ λ0.

In the next proposition we consider the natural class of mappings between
twisted covariant systems with respect to given G and N . Let {A,G, α, τ}
and {B,G, β, τ ′} be two such systems and let θ : A → B be a G-equivariant
*-homomorphism. We shall say that θ is twist-equivariant (with respect to τ
and τ ′) if θ(τ(n)a) = τ ′(n)θ(a) for n ∈ N and a ∈ A.

Proposition 3.5 1. Let π be a representation of A on a Hilbert space
H. Then the representation πα,τ ⋊τ λτ of A ⋊α,τ G is the composition of
a representation πα,τ ⋊τ,r λτ of A ⋊α,τ,r G with the canonical quotient map
A⋊α,τ G→ A⋊α,τ,r G. If π is faithful, then so is πα,τ ⋊τ,r λτ .

2. Let {A,G, α, τ} and {B,G, β, τ ′} be twisted covariant systems with
respect to the closed normal subgroup N of G, and let θ : A → B be a *-
homomorphism which is twist-equivariant with respect to the given actions and

Documenta Mathematica 4 (1999) 513–558



Permanence Properties of C*-exact Groups 533

twisting maps. Then there is a unique *-homomorphism θN,r : A ⋊α,τ,r G →
B ⋊β,τ ′,r G such that the diagram

A⋊α G
θu //

��

B ⋊β G

��
A⋊α,τ,r G

θN,r // B ⋊α,τ ′,r G

commutes, the vertical arrows denoting the canonical *-homomorphisms. The
morphism θN,r is injective (resp. surjective) if and only if θ is injective (resp.
surjective). If Im θ is an ideal of B, then Im θN,r is an ideal of B ⋊β,τ ′,r G.

Proof: 1. This follows immediately from the factorisations πα,τ = (π̃α,τ ⋊τ̃ λτ )◦
π0 and λτ = (π̃α,τ ⋊τ̃ λτ )◦λ0, and the fact that, if π is faithful, then π̃α,τ ⋊τ̃ λτ
is a faithful representation of M(Ind(A,α) ⋊α̃,τ̃ G).

2. If {π, V } is a τ ′-covariant pair of representations of {B,G, β}, then
{π ◦ θ, V } is a covariant pair of representations of {A,G, α} on a Hilbert space
H, and for n ∈ N and a ∈ A,

(π ◦ θ)(τ(n))(π ◦ θ)(a) = π(θ(τ(n)a))

= π(τ ′(n))(π ◦ θ)(a).

If θ is surjective, this shows that (π ◦ θ)(τ(n)) = Vn, so that the pair {π◦θ, V } is
τ -covariant. By part 1, there is a canonical *-epimorphism θN,r : A⋊α,τ,rG→
B ⋊β,τ ′,r G such that

(π ⋊τ ′,r V ) ◦ θN,r = (π ◦ θ) ⋊τ,r V, (∗)

where (π ◦ θ) ⋊τ,r V and π ⋊τ ′,r V are the representations of A ⋊α,τ,r G and
B ⋊β,τ ′,r G associated with π ◦ θ and π, respectively.

If, on the other hand, θ is injective, let H1 be the closure in H of π(θ(A))H
and let E be the projection onto H1. Then by the covariance condition, EVg =
VgE for g ∈ G. Letting Wg = EVg|H1, the above identity implies that

(π ◦ θ)(τ(n)) = WnE

for n ∈ N . Defining σ by σ(a) = π(θ(a))|H1, it follows that {σ,W} is a τ -
covariant pair for {A,G, α, τ}. It is easily seen that the images of A⋊αG under
the representations (π ◦ θ) ⋊ V and σ ⋊W are isomorphic. If π is faithful, so
is σ, and the latter image is canonically isomorphic to A ⋊α,τ,r G by part 1.
This implies that there is a canonical *-monomorphism θN,r : A ⋊α,τ,r G →
B ⋊β,τ ′,r G for which (∗) holds.

Combining these two cases, the existence of θN,r satisfying (∗) for arbitrary
θ follows. The commutativity of the given diagram is a simple consequence of
(∗). ✷
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We return now to the general situation where N is a closed normal sub-
group of G, H is a closed subgroup of G containing N , (A,α) ∈ C∗H and
τ : N → U(A) is a twisting map relative to α. Let XA be the (Ind(A,α)⋊α̃G)–
(A ⋊α H) equivalence bimodule constructed in §2, and let π be a faithful
representation of A on a Hilbert space H. The kernel Jτ,r of the canon-
ical quotient map A ⋊α H → A ⋊α,τ,r H is the kernel of the representa-
tion πα,τ ⋊ λHτ . By Proposition 3.2 the representation of Ind(A,α) ⋊α̃ G
induced from this representation via XA is the integrated form of the pair
{π̃α,τ , λGτ }. Let I be the kernel of this representation. By Lemma 3.1, the
τ̃ -covariant pair {π̃α,τ ⊗ 1L2(G/N), λ

G
τ ⊗ 1L2(G/N)} is unitarily equivalent to

the pair {π̃α,τ ⊗ 1L2(G/N), λ
G
τ ⊗ λ̇}, which is in turn unitarily equivalent to

the pair {(π̃α,τ )α̃,τ̃ , λτ}. Since π, and hence π̃α,τ , are faithful, the kernel of
the integrated form of the pair {(π̃α,τ )α̃,τ̃ , λτ} is the ideal Iτ̃ ,r, the kernel of
the canonical *-homomorphism from Ind(A,α) ⋊α̃ G to Ind(A,α) ⋊α̃,τ̃ ,r G, by
Proposition 3.5 (1). It follows that that I coincides with Iτ̃ ,r and corresponds
to Jτ,r via XA. By [Rie2] XA,τ,r = XA/XAJτ,r is an (Ind(A,α) ⋊α̃,τ̃ ,r G)–
(A⋊α,τ,rH) equivalence bimodule. In fact, XA,τ,r is obtained from the E0–B0

equivalence bimodule X0 = Cc(G,A) of §2 by completing with respect to the
semi-norm f → ||(πα,τ ⋊ λHτ )(< f, f >B)||1/2. This proves

Theorem 3.6 The C*-algebras Ind(A,α)⋊α̃,τ̃ ,rG and A⋊α,τ,rH are strongly
Morita equivalent via the equivalence bimodule XA,τ,r.

Remark 3.7 When H = N , it follows by Remark 2.5 (2) that if π is a
faithful representation of A, the pair {πα,τ , λNτ } is universal for {A,N}, and the
kernels of the canonical quotient maps of A⋊αN onto A⋊α,τN and A⋊α,τ,rN
coincide. Since these kernels correspond via XA to the kernels of the canonical
quotient maps of Ind(A,α)⋊α̃G onto Ind(A,α)⋊α̃,τ̃ G and Ind(A,α)⋊α̃,τ̃ ,rG,
respectively, the latter kernels coincide, and there is a canonical isomorphism

Ind(A,α) ⋊α̃,τ̃ G ∼= Ind(A,α) ⋊α̃,τ̃ ,r G.

Specialising to the case where A = C, N = {1}, we recover the well known
isomorphism

C0(G) ⋊λ G ∼= C0(G) ⋊λ,r G,

where λ is the action of G on C0(G) by left translation. As is well-known, the
reduced crossed product on the right-hand side is isomorphic to the space of
compact operators on L2(G).

If (A,α), (B, β) ∈ C∗H , and θ : A → B is an H-equivariant *-homomorphism,

an associated *-homomorphism θ̃ :Ind(A,α)→Ind(B, β) is defined by

(θ̃(f))(h) = θ(f(h)).

Let (A,α) ∈ C∗H and let I be an αH -invariant ideal of A. If ι : I → A and
q : A → A/I denote the inclusion and quotient maps, respectively, then ι and
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q are equivariant when I has the restriction action α|I and A/I the quotient
action α̇.

Lemma 3.8 The sequence

0 // Ind (I, α|) ι̃ // Ind (A,α)
q̃ // Ind (A/I, α̇) // 0

is exact.

Proof: If f ∈ ker q̃, then

0 = (q̃(f))(h) = q(f(h))⇒ f(h) ∈ I

for h ∈ H , i.e. f ∈Ind(I, α|). ✷

Let (A,α) ∈ C∗H and let τ : N → U(A) be a twisting map relative to α. If
I is an αH -invariant ideal of A, there are unital *-homomorphisms ῑ : M(I)→
M(A) and q̄ : M(A) → M(A/I) given by ῑ(u)x = ux and q̄(u)q(a) = q(ua)
which extend ι and q, respecively. Twisting maps τI and τA/I relative to the
restriction action α|I and the quotient action α̇ are given by τI = ῑ ◦ τ and
τA/I = q̄ ◦ τ , respectively, relative to which ι and q are twist-equivariant. To
simplify the notation, we write τ for both τI and τA/I . By the same token,
there are twisting maps relative to N , which will be denoted by τ̃ , on Ind(I, α|)
and Ind(A/I, α̇), relative to which the induced morphisms ι̃ and q̃ are twist-
equivariant.

The following theorem is the main technical result for §§4 and 5.

Theorem 3.9 The sequence

0 // I ⋊α|,τ,r H
ιN,r // A⋊α,τ,r H

qN,r // (A/I) ⋊α̇,τ,r H // 0 (∗)

is exact if and only if the sequence

0 // Ind(I, α|) ⋊α̃|,τ̃ ,r G
ι̃N,r // Ind(A,α) ⋊α̃,τ̃ ,r G

q̃N,r // Ind(A/I, α̇) ⋊ ˜̇α,τ̃,r G // 0 (∗∗)

is exact.

Proof: Let BI , BA and BA/I denote the three C*-algebras in (∗) and EI , EA
and EA/I the three C*-algebras in (∗∗). Let J and J̃ be the kernels of the
homomorphisms qN,τ : BA → BA/I and q̃N,τ̃ : EA → EA/I . Let J = ker qN,τ
and J̃ = ker q̃N,τ̃ . Identifying BI and EI with their images in BA and EA
under the embeddings ιN,τ and ι̃N,τ̃ , respectively, it follows by Proposition 3.5
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that BI ⊆ J and EI ⊆ J̃ . To prove the proposition it suffices to show that the
ideals BI and J of BA correspond to the ideals EI and J̃ , respectively, of EA
via the equivalence bimodule XA,τ,r.

The natural embedding of Cc(G, I) in Cc(G,A) extends to an embedding
of the EI–BI equivalence bimodule XI,τ,r as an EI–BI submodule X of XA,τ,r.
It follows readily from the definitions that X is the norm closed linear span of
both XA,τ,rBI and EIXA,τ,r, from which it follows that EI and BI correspond
via XA,τ,r.

Let σ be a faithful representation of A/I on a Hilbert space H, and let
π = σ ◦ q. By Propositions 3.2 and 3.5, the representation of EA induced
from the representation π ⋊τ,r λ

H
τ of BA via XA,τ,r is unitarily equivalent to

π̃α,τ ⋊τ̃ ,r λ
G
τ̃ . Since

π ⋊τ,r λ
H
τ = (σ ⋊τ,r λ

H
τ ) ◦ qN,r

and
π̃α,τ ⋊τ̃ ,r λ

G
τ̃ = (σ̃α̇,τ ⋊τ̃ ,r λ

G
τ̃ ) ◦ q̃N,r

the images of π ⋊τ,r λ
H
τ and π̃α,τ ⋊τ̃ ,r λ

G
τ̃ are canonically isomorphic to BA/I

and EA/I and their kernels are J and J̃ , respectively. By the discussion in §2
it follows that J and J̃ correspond via XAτ,r. Since correspondence of ideals

respects inclusion, this implies that J = BI if and only if J̃ = EI , i.e. (∗) is
exact if and only if (∗∗) is exact. ✷

In §5 we shall consider a continuous action α of H on A which extends to
a continuous action, also denoted by α, of G on A, and such that the ideal I is
αG-invariant, so that α| and α̇ also extend to continuous actions α| and α̇ of G
on I and A/I, respectively. As noted in §2, there are then natural isomorphism

θI : Ind(I, α|)→ C0(G/H, I),

θA : Ind(A,α)→ C0(G/H,A),

and
θA/I : Ind(A/I, α̇)→ C0(G/H,A/I).

A twisting map τ̃ : N →M(C0(G/H,A)) is defined by

(τ̃ (n)f)(sH) = τ(n)f(gH) (f ∈ C0(G/H,A)).

Relative to this twisting map and that on Ind(A,α), the map θA is twist
equivariant. Defining twisting maps τ̃ : N → M(C0(G/H, I)) and τ̃ : N →
M(C0(G/H,A/I)) similarly, the maps θI and θA/I are twist-equivariant, and
it follows straightforwardly that the diagram

0 // Ind(I, α|)

θI

��

ι̃ // Ind(A,α)

θA

��

q̃ // Ind(A/I, α̇)

θA/I

��

// 0

0 // C0(G/H, I)
id⊗ι // C0(G/H,A)

id⊗q // C0(G/H,A/I) // 0
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commutes (we have identified C0(G/H,A) with C0(G/H) ⊗ A, etc., in the
bottom row to define the horizontal maps). Taking reduced twisted crossed
products by G, we obtain a commutative diagram

0

��

0

��
Ind(I, α|) ⋊α̃,τ̃ ,r G //

��

C0(G/H, I) ⋊∆α,τ̃ ,r G

��
Ind(A,α) ⋊α̃,τ̃ ,r G //

��

C0(G/H,A) ⋊∆α,τ̃ ,r G

��
Ind(A/I, α̇) ⋊ ˜̇α,τ̃,r G //

��

C0(G/H,A/I) ⋊∆α̇,τ̃ ,r G

��
0 0

Since the maps denoted by the horizontal arrows are bijections, by Proposition
3.5 (2), the left-hand column is exact if and only if the same is true of the
right-hand column. The following corollary is now an immediate consequence
of Theorem 3.9.

Corollary 3.10 The sequence

0 // I ⋊α|,τ,r H
ιN,r // A⋊α,τ,r H

qN,r // (A/I) ⋊α̇,τ,r H // 0

is exact if and only if the sequence

0 // (C0(G/H, I) ⋊∆α|,τ̃ ,r G
(id⊗ι)N,r// (C0(G/H,A) ⋊∆α,τ̃ ,r G

(id⊗q)N,r // (C0(G/H,A/I)) ⋊∆α̇,τ̃ ,r G // 0

is exact.

4. Closed subgroups.

Throughout this section H will denote a closed subgroup of the locally compact
group G. The following theorem is the first of the two main results of this
section.

Theorem 4.1 If G is exact, then so is H .
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Proof: Let (A,α) ∈ C∗H and let I be an αH -invariant ideal of A. By Lemma
3.8, the associated sequence

0→ Ind(I, α|)→ Ind(A,α)→ Ind(A/I, α̇)→ 0

is exact. Since G is exact, the corresponding sequence

0→ Ind(I, α|) ⋊α̃,r G→ Ind(A,α) ⋊α̃,r G→ Ind(A/I, α̇) ⋊ ˜̇α,r G→ 0

is exact. By Theorem 3.9, the sequence

0 // I ⋊α|,r H
ιr // A⋊α,r H

qr // (A/I) ⋊α̇,r H // 0

is exact. Since (A,α) and I are arbitrary, this implies the exactness of H . ✷

For the rest of the section we assume that G is σ-compact and H is exact.
By [Bo, Chap. VII, §2, Th. 2] there is a Borel measure on G/H which is quasi-
invariant for the action of G on H given by left translation, though in general
it is not possible to find a measure which is actually invariant for this action. If
an invariant Borel probability measure on G/H exists, H is said to have finite
covolume in G. We shall assume that this is the case for the rest of this section.

Let (A,α) ∈ G∗G and let ᾱ denote the canonical extension of α to a con-
tinuous action of G on the multiplier algebra M(A). The natural embedding
of A in M(A) is G-equivariant relative to this action and the corresponding
crossed product map is an embedding of A⋊α,r G as an ideal of M(A) ⋊ᾱ,r G.
It follows that there is a canonical *-homomorphism

M(A) ⋊ᾱ,r G→M(A⋊α,r G)

extending the natural embedding of A ⋊α,r G in M(A ⋊α,r G). This *-
homomorphism is, in fact, an embedding. To see this, let π be a faithful
representation of A on a Hilbert space H. Then πα ⋊r λ is a faithful represen-
tation of A⋊α,r G on H⊗L2(G) which extends to a faithful representation of
M(A ⋊α,r G) on H⊗ L2(G). Let π̄ be the canonical extension of π to M(A).
Then π̄ is a faithful representation of M(A) on H and π̄ᾱ⋊r λ is a faithful rep-
resentation of M(A)⋊ᾱ,rG on H⊗L2(G). If we identify M(A⋊α,rG) with its
image on H⊗L2(G), the above *-homomorphism M(A)⋊ᾱ,rG→M(A⋊α,rG)
is just the *-monomorphism π̄ᾱ ⋊r λ.

Let (A,α) ∈ C∗G and let EA = (C0(G/H)⊗A) ⋊∆α,r G. Replacing (A,α)
by the pair (C0(G/H)⊗A,∆α) in the argument of the previous paragraph, we
get a canonical embedding

κ : M(C0(G/H)⊗A) ⋊∆̄α,r G→M(EA),

where ∆̄α is the canonical extension of the diagonal action ∆α toM(C0(G/H)⊗
A). If π is the embedding a→ 1⊗a ofA in M(C0(G/H)⊗A), π is G-equivariant
and the corresponding crossed product map

πr : A⋊α,r G→M(C0(G/H)⊗A) ⋊∆̄α,r G
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is an embedding. Let ΦA denote the embedding

κπr : A⋊α,r G→M(EA).

If I is an αG-invariant ideal of A, and q : A → A/I is the quotient map,
associated with the *-homomorphism q̃ = id⊗ q : C0(G/H)⊗A→ C0(G/H)⊗
(A/I) is the surjective crossed product *-homomorphism

q̃r : EA → EA/I .

This map extends to a *-homomorphism M(EA)→M(EA/I), also denoted by
q̃r, which need not be surjective.

Lemma 4.2 q̃rΦA = ΦA/Iqr.

Proof: Let π and λ be the canonical embeddings of C0(G/H) ⊗ A and G
in M(EA), respectively, and let π̄ be the embedding of M(C0(G/H) ⊗ A) in
M(EA) obtained by extending π as above. Then for a ∈ Cc(G,A),

ΦA(a) =

∫

G

π̄(1⊗ a(s))λs ds.

The linear span of the subset
{∫

G

π(f ⊗ b(t))λs ds : f ∈ C0(G/H), b ∈ Cc(G,A)

}

of EA is dense in EA, and for a, b ∈ Cc(G,A), f ∈ C0(G/H),

q̃r(ΦA(a))q̄r(

∫

G

π(f ⊗ b(t)λt dt) = q̃r(ΦA(a)

∫

G

π(f ⊗ b(t)λt dt)

= q̄r(

∫

G

∫

G

π(f ⊗ a(s)αs(b(t)))λst ds dt)

=

∫

G

∫

G

π(f ⊗ q(a(s))q(αs(b(t))))λst ds dt

= ΦA/I(q(a))q̄r(

∫

G

π(f ⊗ b(t)λt dt).

Thus q̃rΦA = ΦA/Iq. ✷

Lemma 4.3 For f ∈ C0(G/H) and a ∈ A⋊α,r G, π̄(f ⊗ 1)ΦA(a) ∈ EA.

Proof: By the continuity of ΦA, it is enough to check this for a in the dense
subset Cc(G,A) of A⋊α,r G. Then

π̄(f ⊗ 1)ΦA(a) =

∫

G

π(f ⊗ a(s))λs ds ∈ EA.

✷
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Fix an invariant probability measure µ on G/H . The map P : C0(G/H)⊗
A→ A given by

P (f ⊗ a) =

(∫

G/H

f dµ

)
a

is completely positive, contractive and G-equivariant. The corresponding com-
plete contraction Pr : EA → A⋊α,r G is given by

Pr(

∫

G

π(f ⊗ a(s))λs ds) =

(∫

G

f dµ

)
a

for f ∈ C0(G/H), a ∈ Cc(G,A).

Lemma 4.4 (i) For f ∈ C0(G/H) and a ∈ A⋊α,r G,

Pr(π̄(f ⊗ 1)ΦA(a)) =

(∫

G

f dµ

)
a.

(ii) Pr(EI) ⊆ I ⋊α|,r G.

Proof: (i) If a ∈ Cc(G,A),

π̄((f ⊗ 1)ΦA(a)) =

∫

G

π(f ⊗ a(s))λs ds

and

Pr(π̄((f ⊗ 1)ΦA(a)) =

(∫

G

f dµ

)
a,

by the definition of Pr. The identity for general a now follows by the continuity
of ΦA and Pr.

(ii) This is immediate from the definition of Pr.

Theorem 4.5 Let G be a σ-compact group. If G has a closed exact subgroup
H which has finite covolume in G, then G is exact.

Proof: Let µ be an invariant probability measure on G/H . We must show that
if A is a C*-algebra with an action α of G and I is an αG-invariant ideal of A
with quotient map q : A→ A/I, then ker qr ⊆ I ⋊α,r G.

Let x ∈ ker qr. By Lemma 4.2, if f ∈ C0(G/H),

q̄r(π̄(f ⊗ 1)ΦA(x)) = π̄(f ⊗ 1)q̄r(ΦA(x)) = Φ̄A/I(qr(x)) = 0,

and so π̄(f ⊗ 1)ΦA(x) ∈ ker q̄r. Since H is exact, the sequence

0→ I ⋊α|,r H → A⋊α,r H → (A/I) ⋊α̇,r H → 0
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is exact. By Corollary 3.10, the sequence

0→ EI → EA → EA/I → 0

is exact, so that ker q̄r = EI . Thus π̄(f ⊗ 1)ΦA(x) ∈ EI and

(∫

G

f dµ

)
x = Pr(π̄(f ⊗ 1)ΦA(x)) ∈ I ⋊α|,r G,

by Lemma 4.4 (ii). Since G is σ-compact, there is a compact subset K of G
such that µ(K) 6= 0. Choosing f ∈ C0(G/H) such that f(g) = 1 for g ∈ K, it
follows that

∫
G f dµ 6= 0, which implies that x ∈ I ⋊α|,r G, as required. ✷

5. Extension of an exact group by an exact group.

The main result of this section is

Theorem 5.1 Let G be a locally compact group and let N be a closed normal
subgroup of G. If N and G/N are exact, then G is exact.

Let N be a closed normal subgroup of G and let (A,α) ∈ C∗G. As indicated
at the beginning of §3, there are a twisted action (γα, τ) of G on A⋊αN relative
to N canonically associated with α and a natural isomorphism A ⋊α G ∼=
(A⋊α N) ⋊γα,τ G. If {π, U} is a universal covariant pair of representations of
the system {A,G, α} on a Hilbert space H and A ⋊α N is identified with its
image under the representation π ⋊ U to B(H), γα and τ are given by

γαs (x) = UsxUs−1

and
τn = Un

for x ∈ A⋊α N , s ∈ G and n ∈ N . That γα and τ have the stated properties
follows from the proof of the reduced case, which is given in the following
proposition. We define a twisted action of G on the reduced crossed product
A⋊α,r N with analogous properties.

By Lemma 3.1 (3), the restriction of the representation (π⊗1)⋊r (U⊗λG)
on H⊗L2(G) to A⋊α,rN is faithful. Identifying A⋊α,rN with its image under
this representation, an action γα,r of G on A⋊α,r N is given by

γα,rs (x) = (Us ⊗ λs)x(Us−1 ⊗ λs−1)

for x in A⋊α,r N and s ∈ G, and a twisting map τ ′ is given by

τ ′(t) = Ut ⊗ λt

for t ∈ N . It is immediate that the canonical quotient map A⋊αN → A⋊α,rN
is twist-equivariant relative to this action and twisting.
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Proposition 5.2 There is an isomorphism ΦA : (A ⋊α,r N) ⋊γα,r,τ ′,r G →
A⋊α,r G which is natural in the sense that if {B,G, β} is another G-covariant
system and θ : A → B is a G-equivariant *-homomorphism with associated
homomorphisms

θr : A⋊α,r G→ B ⋊β,r G

and
θ̃ : (A⋊α,r N) ⋊γα,r,τ ′,r G→ (B ⋊β,r N) ⋊γβ,r,τ ′,r G,

then ΦB θ̃ = θrΦA, i.e. the diagram

(A⋊α,r N) ⋊γα,r,τ ′,r G
θ̃ //

ΦA

��

(B ⋊β,r N) ⋊γβ,r,τ ′,r G

ΦB

��
A⋊α,r G

θr // B ⋊β,r G

commutes.

Proof: Let{π, U} be a covariant pair of representations of {A,G, α} on the
Hilbert spaceH with π faithful. The crossed product A⋊α,rN can be identified
with the C*-algebra generated by the operators on H⊗ L2(G) of form

∫

G

(π(a(n)) ⊗ 1)(Un ⊗ λn)dmN (n)

for a ∈ Cc(N,A). By Lemma 3.1 (3), (A ⋊α,r N) ⋊α,τ ′,r G can be identified
with the C*-algebra (in fact the closed linear span) generated by the set {Tf :
f ∈ Cc(G×N,A)} of operators on H⊗ L2(G)⊗ L2(G/N), where

Tf =

∫

G

∫

N

(π(f(s, n)) ⊗ 1⊗ 1)(Un ⊗ λn ⊗ 1)(Us ⊗ λs ⊗ λ̇sN )dmN (n)dmG(s)

=

∫

G

∫

N

(π(f(n−1s, n))⊗ 1⊗ 1)(Us ⊗ λs ⊗ λ̇sN )dmN (n)dmG(s)

∈ A⋊α,r G

for f ∈ Cc(G×N,A), A⋊α,r G being identified here with its image under the

integrated form representation of the pair {π ⊗ 1 ⊗ 1, U ⊗ λ ⊗ λ̇} (which is
unitarily equivalent to the pair {(π ⊗ 1)⊗ 1, (U ⊗ λ̇)⊗ λ}).

Let g ∈ Cc(N) be a nonnegative real-valued function such that

∫

N

g(n)dmN (n) = 1,

let a ∈ Cc(G,A) and let f ∈ Cc(G×N,A) be given by

f(s, n) = a(s)g(n).
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Choosing g with support in a suitable neighbourhood of the identity of N , the
operator of the above form corresponding to this f can be made to approximate

∫

G

(π(a(s)) ⊗ 1⊗ 1)(Us ⊗ λs ⊗ λ̇sN )dmG(s)

arbitrarily closely in norm. Thus if we define ΦA on {Tf : f ∈ Cc(G ×N,A)}
by

ΦA(Tf ) =

∫

G

∫

N

(π(f(n−1s, n))⊗ 1)(Us ⊗ λs)dmN (n)dmG(s),

ΦA extends uniquely to a *-isomorphism of (A⋊α,rN)⋊γα,r,τ ′,rG onto A⋊α,rG.
The naturalness of ΦA is a straightforward consequence of this definition. ✷

Combes [Co] introduced a notion of Morita equivalence for actions of a
locally compact group G. Let (A,α), (B, β) ∈ C∗G and let X be a B–A equiv-
alence bimodule. A continuous action u of G on X is a set of bijective linear
isometries {us : s ∈ G} of X such that the map s→ us is strongly continuous
and for each s

us(x < y, z >A) = us(x) < us(y), us(z) >A

for x, y, z ∈ X . The actions β and α, or more accurately the pairs (B, β) and
(A,α), are Morita equivalent if there is a continuous action u of G on X such
that for each s,

αs(< x, y >A) =< us(x), us(y) >A

and
βs(< x, y >B) =< us(x), us(y) >B

for x, y ∈ X . When (A,α) and (B, β) are Morita equivalent, there are Morita
equivalences between A⋊αG and B⋊βG, and between A⋊α,rG and B⋊β,rG,
by [Co, §3].

Echterhoff [Ech] has extended this idea to twisted actions as follows. Let
N be a closed normal subgroup of G and let (α, τ) and (β, σ) be twisted actions
of G on A and B, respectively, relative to N . Then (β, σ) and (α, τ) are Morita
equivalent relative to the pair (X,u) if u satisfies the above identities and also

unx = σnxτ
−1
n

for n ∈ N and x ∈ X . Moreover, if {A,G, α, τ} and {B,G, β, σ} are Morita
equivalent, then A⋊α,τG is Morita equivalent to B⋊β,σG [Ech, p.174, Remark
2]. We shall show the corresponding result for the reduced crossed products.

Although the arguments that follow involving Morita equivalence could be
expressed solely in terms of equivalence bimodules, we have found it easier to
bring out some of the functorial aspects of the proof using the equivalent idea
of a linking algebra, due to Brown, Green and Rieffel [BGR], which we now
briefly recall. If C is a nonzero C*-algebra, a projection p ∈ M(C) is full if
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the linear span of the set CpC = {xpy : x, y ∈ C} is dense in C. Suppose
that p, q ∈ M(C) are full projections such that p + q = 1, and let A = pCp,
B = qCq and X = pCq. If we define A- and B- valued inner products on X by

< x, y >A= xy∗, < x, y >B= x∗y

and let A and B act on X by left and right multiplication, respectively, then X
becomes an A–B equivalence bimodule. Conversely, if A and B are C*-algebras
andX is anA–B equivalence bimodule, then we can find a C*-algebraC, known
as a linking algebra for A and B, and full projections p, q ∈ M(C) such that
p+q = 1, A ∼= pCp, B ∼= qCq and such that X and pCq are isomorphic as A–B
equivalence modules. Passage from X to the corresponding C is functorial, in
a sense to be made precise in what follows.

Let IMP be the category whose objects are triples {A,B,X} consisting of
a Morita equivalent pair of C*-algebras A,B and an A–B equivalence bimodule
X . Given two such triples {A,B,X} and {A1, B1, X1}, a map between them
is a triple {φ, ψ, ω}, consisting of *-homomorphisms φ : A→ A1, ψ : B → B1,
and a linear map ω : X → X1 satisfying

ω(ax) = ψ(a)ω(x), ω(xb) = ω(x)φ(b),

ω(x) < ω(y), ω(z) >B1=< ω(x), ω(y) >A1 ω(z),

< ω(x), ω(y) >A1= φ(< x, y >A), < ω(x), ω(y) >B1= ψ(< x, y >B)

for a ∈ A, b ∈ B and x, y, z ∈ X . Given two pairs A,A1 and B,B1 of C*-
algebras, *-homomorphisms φ : A → A1 and ψ : B → B1 will be said to be
Morita equivalent if there is an ω : X → X1 such that {φ, ψ, ω} is a map in
IMP. This is consistent with the definition of Morita equivalence for actions
when φ and ψ are automorphisms of A and B, respectively.

Let A and B be Morita equivalent C*-algebras and let X be an A–B
equivalence bimodule. To see that the associated linking algebra is related to
X functorially, we recall its construction (cf. [BGR, proof of Theorem 1]). Let
X∗ be the B–A equivalence bimodule conjugate to X . There is a conjugate
linear bijection x→ x∗;X → X∗ such that

bx∗ = (xb∗)∗, x∗a = (a∗x)∗, < x∗, y∗ >A=< y, x >A, < x∗, y∗ >B=< y, x >B

for a ∈ A, b ∈ B and x, y ∈ X . For x, y ∈ X let x∗y and xy∗ be the elements
< x, y >A and < x, y >B of A and B, respectively. The set of matrices

C = {
[
a x
y∗ b

]
: a ∈ A, b ∈ B, x, y ∈ X},

with matrix addition and multiplication, is a *-algebra. Moreover X ⊕ B has
left and right actions of C and B, respectively, and C- and B-valued inner
products can be defined in such a way that X ⊕B becomes a C–B equivalence
bimodule. A norm on X⊕B is defined in terms of the B-valued inner product
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on X and the norm of B relative to which the associated C*-norm on C is
complete. The projections

p =

[
1 0
0 0

]
, q =

[
0 0
0 1

]

are in M(C), are both full, and A ∼= pCp and B ∼= qCq. Moreover pCq and X
are isomorphic as A–B equivalence bimodules. Let {A,B,X}, {A1, B1, X1} be
objects of IMP and let {φ, ψ, ω} : {A,B,X} → {A1, B1, X1} be a morphism. If
C and C1 are the linking algebras constructed from {A,B,X} and {A1, B1X1},
respectively, by this procedure, a *-homomorphsim φ = Φ{φ, ψ, ω} : C → C1

is defined by

Φ{φ, ψ, ω}(
[
a x
y∗ b

]
) =

[
φ(a) ω(x)
(ω(y))∗ ψ(b)

]
.

Then Φ(p) = p, Φ(q) = q, Φ|pCp = ψ and Φ|qCq = φ. Let LINK be the
category whose objects are triples {C, p, q} consisting of a C*-algebra C with
full projections p, q ∈ M(C) such that p + q = 1. If {C, p, q} and {C1, p1, q1}
are objects of LINK, a morphism θ from {C, p, q} → {C1, p1, q1} is a a *-
homomorphism C → C1 such that θ(px) = p1θ(x) for x ∈ C. Writing
C{A,B,X} for the linking algebra constructed from the triple {A,B,X}, the
map {A,B,X} → C{A,B,X} is a functor from IMP to LINK giving an equiva-
lence of categories.

For strongly Morita equivalent C*-algebras A and B, the order-preserving
correspondence between the ideals of A and B described in §2 can be expressed
elegantly in terms of C. If I is an ideal of A or B, then IC , the ideal of C
generated by I, is just the closure of the linear span of the set CIC. If I is an
ideal of C, let

IA = pIp, IB = qIq.

Then IA = I ∩ pCp = I ∩ A and IB = I ∩ qCq = I ∩ B, and it follows easily
from the fullness of p and q that for any ideal I of C, I = (IA)C = (IB)C . For
any ideal I of A, I = (IC)A, and similarly for B. The map I → (IC)B is thus
an order-preserving bijection from the ideals of A to the ideals of B.

Lemma 5.3 Let {A,B,X}, {A1, B1, X1} ∈ IMP, and let {φ, ψ, ω} :
{A,B,X} → {A1, B1, X1} be a morphism. Then kerψ corresponds to kerφ
under the above bijection.

Proof: If Φ : C{A,B,X} → C{A1,B1,X1} is the *-homomorphism corresponding to
{φ, ψ, ω}, then x ∈ ker Φ∩A⇔ φ(x) = 0⇔ x ∈ kerφ. Hence kerφ = ker Φ∩A.
Similarly kerψ = ker Φ ∩ B. Thus kerφ, ker Φ and kerψ are corresponding
ideals. ✷

Let {A,G, α, σ} and {B,G, β, τ} be Morita equivalent twisted covariant
systems relative to a pair (X,u) consisting of an A–B equivalence bimodule X
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with an action u of G, with twisting relative to the normal subgroup N of G.
Then for each s ∈ G, {αs, βs, us} is a map in IMP, in fact an automorphism
of {A,B,X}. If Γs denotes the corresponding automorphism of the linking
algebra C = C{A,B,X}, then

Γs(

[
a x
y∗ b

]
) =

[
αs(a) usx
(usy)∗ βs(b)

]
.

It is immediate that s→ Γs is a continuous action of G on C{A,B,X}, Γ fixes p
and q, Γ|A = α and Γ|B = β. For n ∈ N

κn =

[
σn 0
0 τn

]

is in M(C) and the map κ : n→ κn is a twisting map for the action Γ.
The canonical embedding of C in M(C ⋊Γ G) extends to an embedding

of M(C) in M(C ⋊Γ G), where x ∈ M(C) is identified with the element of
M(C ⋊Γ G) which sends f in Cc(G,C) to xf . With this identification, p and
q are in M(C ⋊Γ G), are full projections for C ⋊Γ G, and there are canonical
isomorphisms

p(C ⋊Γ G)p ∼= A⋊α G, q(C ⋊Γ G)q ∼= B ⋊β G,

by [Co, §6]. In fact, if π0 : C →M(C ⋊Γ G) and U0 : G→M(C ⋊ΓG) are the
canonical embeddings and A is identified with pCp, then {π0|A,U0} is a covari-
ant pair of representations of {A,G, β}, and the integrated form of this pair is a
*-homomorphism θA : A⋊αG→M(C⋊ΓG). The image of A⋊αG under θα is
just p(C⋊ΓG)p. To see that θA is injective, let {π, U} be a universal covariant
pair of representations of {A,G, α} on a Hilbert space H. By the equivariant
form of Stinespring’s theorem, there are a Hilbert space K containing H and a
covariant pair of representations {π1, U1} of {C,G,Γ} on K such that π̄1(p) is
the projection onto H and the pair {π̄1(p)(π1|B)π̄1(p), π̄1(p)U1π̄1(p)} is a co-
variant pair of representations of {A,G, α} unitarily equivalent to π⋊U . Then
π̄1(p) ((π1 ⋊ U1) ◦ θA) π̄1(p) is unitarily equivalent to π ⋊ U , which is faithful.
Thus θA is faithful.

The canonical quotient map qC : C ⋊Γ G → C ⋊Γ,κ,r G extends to a *-
homomorphism q̄C : M(C ⋊Γ G) → M(C ⋊Γ,κ,r G), and the covariant pair
{q̄C ◦ (π0|B), q̄C ◦ U} of homomorphisms of {A,G, α} is twist-preserving. It
follows by Lemma 3.1 that qC ◦ θA has a factorisation qC ◦ θA = θ̄A ◦ qA, where
qA : A⋊αG→ A⋊α,σ,rG is the quotient map and θ̄A : A⋊α,σ,rG→ C⋊Γ,κ,rG
is a *-isomorphism with image p̄(C ⋊Γ,κ,rG)p̄, where p̄ is the projection q̄C(p).
Applying analogous considerations to the crossed products involving B, we
obtain *-monomorphisms

θB : B ⋊β G→ q(C ⋊Γ G)q

and
θ̄B : B ⋊β,σ,r G→ q̄(C ⋊Γ,κ,r G)q̄
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such that qC ◦ θB = θ̄B ◦ qB , where q̄ = q̄C(q). Since the fullness of the
projections p and q for C ⋊Γ G implies the fullness of p̄ and q̄ for C ⋊Γ,κ,r G,
we obtain

Proposition 5.4 If {A,G, α, τ} and {B,G, β, σ} are Morita equivalent
twisted covariant systems relative to N , then the C*-algebras A ⋊α,τ,r G and
B ⋊β,σ,r G are strongly Morita equivalent. Moreover the diagram

A⋊α G
qA //

θA

��

A⋊α,τ,r G

θ̄A

��
C ⋊Γ G

qC // C ⋊Γ,κ,r G

B ⋊β G
qB //

θB

OO

B ⋊β,σ,r G

θ̄B

OO

commutes, so that the *-homomorphisms qA and qB are Morita equivalent.

If {A,G, α, τ} is a twisted covariant system relative to N , then there is an
action β of G on EA = C0(G/N,A) ⋊∆α,τ̃ G such that the twisted covariant
systems {A,G, α, τ} and {EA, G, β, 1N} are Morita equivalent, where 1N is the
trivial twisting map n→ 1 ∈M(B) [Ech, Theorem 1].

An equivalence bimodule YA giving this Morita equivalence is obtained by
applying the mapping {νA, id, ᾱ} of IMP to the triple {Ind(A,α)⋊α̃G,A,XA}
of §2, with H = N , where νA : Ind(A,α) → C0(G/N,A) is the map isomor-
phism of §2 and (ᾱ(x))(s) = αs(x(s)) for x ∈ Cc(G,A). Letting X1 = Cc(G,A),
E0 = Cc(G,C0(G/N,A))) and B0 = Cc(N,A), with the convolution products
relative to the actions ∆α and α, respectively, the algebras E0 and B0 having
the C*-norms and positive cones coming from their canonical embeddings in
C0(G/N,A) ⋊∆α G and A⋊αN , respectively, the resulting E0–B0 equivalence
bimodule structure on X1 is given by

(fx)(r) =

∫

G

f(s, rN)αs(x(s−1r))dmG(s)

(xg)(r) =

∫

H

x(rt)αrt(g(t−1))dmH(t)

〈x, y〉E0(s, rN) =

∫

H

∆G(s−1rt)x(rt)αs(y(s−1rt)∗)dmH(t)

〈x, y〉B0(t) = δ(t)

∫

G

αs−1(x(s)∗y(st))dmG(s).

The action β of G on EA is given on an element f of the dense *-subalgebra
Cc(G,C0(G/N,A)) of EA by

(βs(f))(r, tN) = f(r, tsN),
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where f is considered as a function on G× (G/N), and an action u of G on X1

is given by
(usx)(t) = ∆G(s)∆G/N (s)−1/2x(ts).

Recalling that, by Remark 2.5 (2), there is a canonical isomorphism A ∼=
A ⋊α,1n N , the equivalence bimodule YA is then obtained by completing X1

with respect to the norm x → || < x, x >A ||1/2 and extending the left and
right actions to EA and A, respectively, by continuity.

Before proving Theorem 5.1 we require one further observation. Let β be
a twisted action of G on a C*-algebra D relative to N with trivial twisting map
1N , so that βn = idD for n ∈ N . Then an action β̄ of G/N on D is given by

β̄sN (x) = βs(x).

The analogue of the following result for full twisted crossed products is implicit
in [Ech].

Lemma 5.5 There is an isomorphism ΨD : D ⋊β̄,r (G/N) → D ⋊β,1N ,r G
which is natural in the sense that, if {D,G, β, 1N} and {D1, G, β1, 1N} are
twisted covariant systems and θ : D1 → D is a G-equivariant twist-preserving
*-homomorphism, then the diagram

D1 ⋊β̄1,r (G/N)
θr // D ⋊β̄,r (G/N)

D1 ⋊β1,1N ,r G

ΨD1

OO

θN,r // D ⋊β,1N ,r G

ΨD

OO
(∗)

commutes, where the horizontal maps are the *-homomorphisms corresponding
canonically to θ.

Proof: Let π0 : D → M(D ⋊β̄,r (G/N)) and λ0 : G/N → M(D ⋊β̄,r (G/N))

be the canonical monomorphisms. If λ̇0 denotes the composition of λ0 with
the quotient homomorphism G→ G/N , and M(D ⋊β̄,r (G/N)) is represented
faithfully on some Hilbert space H, the pair {πo, λ0} is a covariant pair of
representations of the system {D,G, β} which is twist-covariant for the twisting
map 1N . The representation π0 ⋊1n λ0 of D⋊β,1N G in M(D⋊β̄,r (G/N)) has
imageD⋊β̄,r(G/N), and, by Proposition 3.5 (1), has a factorisation π0⋊1Nλ0 =
ψD ◦ q, where ψD is a *-homomorphism from D ⋊β,1N ,r G onto D ⋊β̄,r (G/N)
and q : D ⋊β,1N G → D ⋊β,1N ,r G is the canonical quotient map. Since π0 is
faithful, ψD is injective.

If θ : D1 → D is a G-covariant twist-preserving *-homomorphism, let
θ̄N,r = ψ−1

D θrψD1 . By the definition of ψD and ψD1 , the diagram

D1 ⋊β1 G

��

θu // D ⋊β G

��
D1 ×β1,1N ,r G

θ̄N,r // D ⋊β,1N ,r G
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commutes, where the vertical arrows are the canonical quotient maps. By
Proposition 3.5 (2), θ̄N,r = θN,r, from which the commutativity of (∗) is im-
mediate. ✷

Proof of Theorem 5.1. Assume that N and G/N are exact. Let
(I, α|), (A,α), (B, α̇) ∈ C∗G and let ι : I → A and q : A → B be G-equivariant
*-homomorphisms such that im ι = ker q, i.e. such that the sequence

0 // I
ι // A

q // B // 0 (1)

is exact. To prove the theorem we must show that the sequence

0 // I ⋊α|,r G
ιr // A⋊α,r G

qr // B ⋊α̇,r G // 0 (2)

is exact. In what follows we shall identify I with its image in A.

Since N is exact, the sequence

0 // I ⋊α|,r N
ιr // A⋊α,r N

qr // B ⋊α̇,r N // 0 (3)

is exact. Let IN = I ⋊α|,r N , AN = A⋊α,r N and BN = B⋊α̇,r N . By Propo-
sition 5.2 and the discussion preceding it, there are N -twisted actions (γI , τ),
(γA, τ) and (γB, τ) of G on IN , AN and BN , respectively, and isomorphisms

ΦI : IN ⋊γI ,τ,r G→ I ⋊α|,r G,

ΦA : AN ⋊γA,τ,r G→ A⋊α,r G

and

ΦB : BN ⋊γB ,τ,r G→ B ⋊α̇,r G

such that the diagram

0 // IN ⋊γI ,τ,r G
ιN,r //

ΦI

��

AN ⋊γA,τ,r G
qN,r //

ΦA

��

BN ⋊γB,τ,r G //

ΦB

��

0

0 // I ⋊α|,r G
ιr // A⋊α,r G

qr // B ⋊α̇,r G // 0

commutes, where ιN,r and qN,r are the crossed product homomorphisms corre-
sponding to the *-homomorphisms ιr|IN and qr|AN , then latter G-equivariant
and twist preserving relative to the twisted actions on IN , AN and BN , as
follows readily from the definitions. The exactness of (2) is thus equivalent to
that of the sequence

0 // IN ⋊γI ,τ,r G
ιτ,r // AN ⋊γA,τ,r N

qτ,r // BN ⋊γB,τ,r N // 0 (4)
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By Corollary 3.10, AN and EA = (C0(G/N,AN ) ⋊∆γ ,τ̃ G are Morita
equivalent via the EA–AN equivalence bimodule obtained by completing X0 =
Cc(G,An) with respect to the seminorm || || given by

||x|| = || < x, x >AN ||1/2.

Letting CA = C{A,B,X}, we identify EA with pCAp and AN with qCAq. If βA
is the action of G on EA defined earlier such that (βA, 1N) is Morita equivalent
to (γA, τ) via (XA, uA), where uA is the canonically defined action of G on XA,
let (ΓA, κ) be the corresponding twisted action of G on CA. We define XI , XB,
CI , CB, βI , βB, ΓI and ΓB similarly. If qX : Cc(G,AN ) → Cc(G,BN ) is the
natural map given by

(qX(f))(s) = qr(f(s)),

for s ∈ G, then

||qX(f)|| = || < qX(f), qX(f) >BN ||1/2 = ||qr(< f, f >)AN ||1/2 ≤ ||f ||.

If ιX : Cc(G, IN ) → Cc(G,AN ) is defined similarly starting from ι, since ιr :
IN → AN is an isometric embedding, the same is true of ιX . It follows that
ιX and qX extend to an isometric embedding of XI in XA and a contraction of
XA onto XB, respectively, which we will still denote by ιX and qX . Identifying
XI with its image in XA we get a corresponding embedding ιC : CI → CA. It
is straightforward to verify that the diagram

EI
ιE //

��

EA

��
CI

ιC // CA

IN

OO

ιr // AN

OO

commutes. Similarly the surjection qX gives rise to a *-epimorphism qC : CA →
CB given by

qC(

[
b x
y∗ a

]
) =

[
qE(b) qX(x)
qX(y)∗ qr(a)

]
.

Again it is routine to verify that the diagram

EA
qE //

��

EB

��
CA

qC // CB

AN

OO

qr // BN

OO
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commutes. All the maps in these two diagrams are twist-preserving relative to
the respective twistings for each algebra. Hence if we take the twisted crossed
products of all the algebras by G, we get commuting diagrams

EI ⋊βI ,1N ,r G
(ιE)r //

��

EA ⋊βA,1N ,r G

��
CI ⋊ΓI ,κ,r G

(ιC)r // CA ⋊ΓA,κ,r G

IN ⋊γI ,τ,r G

OO

ιr // AN ⋊γA,τ,r G

OO

and

EA ⋊βA,1N ,r G

��

(qE)r // EB ⋊βB,1N ,r G

��
CA ⋊ΓA,κ,r G

(qC)r // CB ⋊ΓB ,κ,r G

AN ⋊γA,τ,r G

OO

qr // BN ⋊γB ,τ,r G

OO

In these diagrams the vertical arrows denote the embedding maps resulting
from the identifications EI ⋊βI ,1N ,r G = p(CI ⋊ΓI ,κ,r G)p, IN ⋊γI ,τ,r G =
q(CI ⋊ΓI ,κ,rG)q, etc. From the left-hand diagram it is apparent that the ideals
EI ⋊βI ,1N ,r G of EA ⋊βA,1N ,r G and IN ⋊γI ,τ,r G of AN ⋊γA,τ,r G correspond.
From the right-hand diagram the *-homomorphisms (qE)r and qr are seen to be
Morita equivalent, so that, by Lemma 5.3, their kernels are corresponding ideals
of EA⋊βA,1N ,rG and AN⋊γA,τ,rG, respectively. Thus ker(qE)r = EI⋊βI ,1N ,rG
if and only if ker qr = IN ⋊γI ,τ,rG, that is, the sequence (4) is exact if and only
if the sequence

0 // EI ⋊βI ,1N ,r G
(ιE)r // EA ⋊βA,1N ,r G

(qE)r // EB ⋊βB,1N ,r G // 0

(5)
is exact.

Lemma 5.5 implies that the sequence (5) is exact if and only if the sequence

0 // EI⋊β̄I ,r(G/N)
(ιE)r // EA⋊β̄A,r(G/N)

(qE)r // EB⋊β̄B,r(G/N) // 0

(6)
is exact.

Since the sequence (3) is exact by assumption, the sequence

0 // EI
ιE // EA

qE // EB // 0

is exact, by Corollary 3.10. Since G/N is exact by assumption, this implies
that the sequence (6) is exact, from which the exactness of the sequences (5),
(4) and (2) follow successively. Hence G is exact. ✷

6. Examples of exact groups.

a. Amenable Groups. The following result is essentially well-known.

Proposition 6.1 Let G be an amenable locally compact group. Then G is
exact.
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Proof: Let (A,α) ∈ C∗G, and let I be an αG-invariant ideal of A, so that the
sequence

0→ I → A→ (A/I)→ 0

is exact. Then the diagram

0 // I ⋊α| G //

��

A⋊α G //

��

(A/I) ⋊α̇ G //

��

0

0 // I ⋊α|,r G // A⋊α,r G // (A/I) ⋊α̇,r G // 0

is commutative, where the vertical arrows are the canonical *-homomorphisms,
and the top row is exact. Since G is amenable, the canonical *-homomorphisms
A ⋊α G → A ⋊α,r G, etc., are injective, from which it follows that the lower
row of the diagram is exact. Hence G is exact. ✷

b. Discrete subgroups of semisimple Lie groups. Our goal here is to
show that the discrete groups SLn(Z) are exact for n = 1, 2, . . ., though we
shall, in fact, prove a more general result. The following fact is undoubtedly
known, although we lack a reference.

Proposition 6.2 Let A and B be Morita equivalent C*-algebras. Then A is
nuclear if and only if B is nuclear.

Proof: Let (C, e, f) be a linking algebra for A and B, so that e, f are full
projections in M(C) such that e + f = 1, A ∼= eCe and B ∼= fCf . Let C∗∗

be represented as a von Neumann algebra on a Hilbert space H. If we regard
M(C) as canonically embedded in C∗∗, the fullness conditions imply that e and
f have central support 1 in C∗∗, from which it follows that e(C∗∗)′e ∼= (C∗∗)′ ∼=
f(C∗∗)′f . Now A∗∗ ∼= eC∗∗e and A is nuclear if and only if A∗∗ is injective.
Since a von Neumann algebra is injective if and only if its commutant is, it
follows that A is nuclear if and only if (C∗∗)′, and hence C∗∗, are injective.
Since by the same reasoning B is nuclear if and only if C∗∗ is injective, the
result follows. ✷

We believe that the Morita equivalence technique used in the proof of the
next proposition is essentially due to Alain Connes (unpublished), though we
lack a precise attribution.

Proposition 6.3 Let G be a locally compact group which has a closed
amenable subgroup H such that G/H is compact. Then any closed discrete
subgroup of G is exact.

Proof: Assume first that H and K are just closed subgroups of G, and
let A = C0(G/K). The continuous action of G on G/K by left multi-
plication gives rise to a continuous action α of G on A. Restricting α to
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H , the algebras C0(G/H,A) ⋊∆α,r G ∼= C0((G/H) × (G/K)) ⋊∆,r G and
A⋊α,rH ∼= C0(G/K)⋊α,rH are Morita equivalent, by Theorem 3.6, where ∆ is
the action of G on C0((G/H)× (G/K)) arising from the diagonal left action of
G on (G/H)×(G/K). Interchanging H and K, it follows that C0(G/K)⋊α,rH
and C0(G/H)⋊β,rK are Morita equivalent, where β is the action of K coming
from left multiplication on G/H .

Now assume that H is amenable, G/H is compact and K is discrete.
Then C0(G/H) = C(G/H) and C∗r (K) ⊆ C(G/H) ⋊β,r K canonically.
Also C0(G/K) ⋊α,r H , being a crossed product of a nuclear C*-algebra
by an amenable group, is nuclear. This implies, by Proposition 6.2, that
C(G/H) ⋊β,r K is nuclear, so that C∗r (K) is exact, so that, by the equiva-
lence of exactness for K and C∗r (K) [KW, Theorem 5.2], K is exact. ✷

Corollary 6.4 Any closed discrete subgroup of a connected semisimple Lie
group is exact.

Proof: Let G be a connected semisimple Lie group. The centre Z of G is
discrete, and, applying the Iwasawa decomposition [Kn], G = KAN , where
K, A and N are connected closed subgroups of G, Z ⊆ K, K/Z is compact,
N is nilpotent, and A is abelian. Moreover A normalises N and AN is a
connected solvable Lie group. Since AN has a composition series with abelian
quotients, it follows that AN , and hence ZAN , are amenable, and G/ZAN is
homeomorphic to K/Z. The result now follows from Theorem 6.3. ✷

c. Closed linear groups. Since SLn(R) is semisimple [Kn] and contains
SLn(Z) as a closed discrete subgroup, it is an immediate consequence of Corol-
lary 6.4 that SLn(Z) is exact for n = 1, 2, . . .. In fact the group SLn(Z) is a lat-
tice in SLn(R), i.e. a closed discrete subgroup of finite covolume [Rag,Theorem
10.5], so that SLn(R) is exact by Theorem 4.5.

Proposition 6.5 For n ∈ N any closed subgroup of GLn(R) is exact.

Proof: The determinant gives a continuous homomorphisms of GLn(R) onto
the multiplicative groups R \ {0} with kernel SLn(R). Thus GLn(R) is an
extension of an exact group by an abelian group, hence is exact by Proposition
6.1 and Theorem 5.1. The result now follows by Theorem 4.5. ✷

d. Connected locally compact groups.

Proposition 6.6 Any connected real semisimple Lie group is exact.

Proof: Let G be a connected semisimple Lie group with centre Z and Lie al-
gebra g. If Ad is the adjoint representation of G on g, we have a Lie group
isomorphism G/Z ∼= Ad(G), and Ad(G) coincides with Aut0(g), the connected
component of the identity of the Lie group Aut(g) [Kn]. Since the latter group
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is a closed subgroup of GL(g), and g is finite-dimensional, it follows by Propo-
sition 6.5 that G/Z is exact. Since Z is abelian, hence exact, the result now
follows by Theorem 5.1. ✷

An alternative proof of this proposition follows by the technique of §4,
since, by a deep theorem of Borel [Rag, Theorem 14.1], any connected non-
compact semisimple Lie group contains a lattice.

Proposition 6.7 Any connected real Lie group is exact.

Proof: Let G be a connected Lie group with Lie algebra g. If rad g is the radical
of g, rad g is a solvable ideal of g and g/rad g is semisimple. If R is the closed
normal subgroup of G with Lie algebra rad g, then R is solvable, hence exact, by
earlier discussion, and G/R has Lie algebra g/rad g. Thus G/R is semisimple,
hence exact by Proposition 6.6, and the result follows using Theorem 5.2. ✷

Theorem 6.8 Any connected locally compact group is exact.

Proof: Let G be a connected locally compact group. By [MZ, Theorem 4.6] G
has a closed normal compact subgroup K such that G/K is a real Lie group.
Since G/K is connected, it is exact by Proposition 6.7. The result now follows
by Theorem 5.2, since K, being amenable, is exact. ✷

Recall that a locally compact group G is almost-connected if the quotient
group G/G0 of G by the connected component G0 of the identity is compact.
The following corollary is an immediate consequence of Proposition 6.1, Theo-
rem 6.8 and Theorem 5.1.

Corollary 6.9 Any almost-connected group is exact.

e. Exactness of certain discrete groups. By [KW, Theorem 5.2], a
discrete group G is exact if and only if C∗r (G) is exact. For certain groups G,
C∗r (G) can be explicitly embedded as a C*-subalgebra of a nuclear C*-algebra.
For these groups, C∗r (G), being subnuclear, is exact, so that G is exact. Two
classes for which C∗r (G) is known to be subnuclear are (a) the free groups
and (b) the hyperbolic groups. The case of free groups was treated in [KW,
Corollary 5.3], where it was shown, using a celebrated construction of Choi,
that if G is a free group on at most countably many generators, then C∗r (G)
can be embedded as a C*-subalgebra of the Cuntz algebra O2. Very recently
Dykema [D] has shown that a reduced amalgamated free product of exact C*-
algebras is exact. Since C∗r (Z) is abelian, hence nuclear, and C∗r (FΛ), where FΛ

is the free group on the set Λ, is the reduced free product of copies of C∗r (Z)
indexed by Λ, Dykema’s result together with our result just cited gives a new
proof that free groups are exact. If G is a hyperbolic group, Adams [Ad] has
shown that the natural action α of G on its Gromov boundary ∂G is amenable,
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which implies that the crossed product C(∂G) ⋊α,r G is nuclear. Since G is
discrete, C∗r (G) is a closed subalgebra of C(∂G) ⋊α,r G, hence exact. Germain
[Ger] has recently given a concise and fairly simple proof of Adams’ amenability
result.

7. Concluding Remarks.

1. After we had completed most of this paper, Georges Skandalis pointed out
that Corollary 6.9 can be obtained more directly by a different route. The
various structure results used above together imply that if G is an almost
connected group, then G contains a closed amenable subgroup H such that
G/H with the quotient topology is compact. Corollary 6.9 is then an immediate
consequence of Proposition 6.1 and the following theorem, which is closely
related to Theorem 4.1, and has a similar, though simpler, proof.

Theorem Let G be a locally compact group with a closed exact subgroup
H . If G/H is compact, then G is exact.

Proof: Let (A,α) ∈ C∗G and let I be an αG-invariant ideal of A. If θ : A →
C0(G/H) ⊗ A ∼= C0(G/H,A) is the embedding a → 1 ⊗ a, let ΦA denote the
crossed product map

ΦA : A⋊α G→ C0(G/H,A) ⋊∆α,r G.

Then ΦA is an embedding, and if corresponding embeddings

ΦI : I ⋊α|,r G→ C0(G/H, I) ⋊∆α,r G

and
ΦA/I : (A/I) ⋊α̇,r G→ C0(G/H,A/I) ⋊∆α̇,r G

are defined similarly, then the diagram

0

��

0

��
I ⋊α|,r G //

��

φI //

��

C0(G/H, I) ⋊∆α,r G

��
A⋊α,r G //

��

ΦA //

��

C0(G/H,A) ⋊∆α,r G

��
(A/I) ⋊α̇,r G //

��

ΦA/I //

��

C0(G/H,A/I) ⋊∆α̇,r G

��
0 0
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commutes. Since H is exact, Corollary 3.10 implies, just as in the proof of
Theorem 4.5, that the right-hand column is exact. If x is in the kernel of the
quotient map A⋊α,r G→ (A/I) ⋊α̇,r G, it follows that ΦA(x) is in the kernel
of the quotient map

C0(G/H,A) ⋊∆α,r G→ C0(G/H,A/I) ⋊∆α̇,r G,

which is C0(G/H, I) ⋊∆α,r G. Thus

ΦA(x) ∈ (A⋊α,r G) ∩ (C0(G/H, I) ⋊∆α,r G).

Let {eµ} be a bounded approximate identity for I. If we identify 1 ⊗ eµ
with its image in M((C0(G/H, I) ⋊∆α,r G) under the canonical embedding
of M(C0(G/H,A)) discussed in §4, it is readily checked that for each µ,
(1 ⊗ eµ)y ∈ ΦA(I ⋊α|,r G) for y ∈ ΦA(A ⋊α,r G), and limµ(1 ⊗ eµ)z = z
for z ∈ C0(G/H, I) ⋊∆α,r G. Then

ΦA(x) = lim
µ

(1 ⊗ eµ)x ∈ ΦA(I ⋊α|,r G),

which shows that x ∈ I ⋊α|,r G. Thus the left-hand column of the above
diagram is exact, which implies that G is exact. ✷

2. If G is a locally compact group, the quotient G/G0 by the connected
component G0 of the identity is a totally disconnected group. By Corollary
6.9, G0 is exact. If G/G0 is exact, it then follows, by Theorem 5.1, that G is
exact. Thus to resolve the question of whether all locally compact groups are
exact, it is enough to consider only totally disconnected groups. Our feeling is
that if there if there are groups which are not exact, then there will probably
be a discrete example.

3. In [KW, Lemma 2.5] we showed that a group which has an increasing
family of exact open subgroups with union the whole group is itself exact. We
have been unable to show that exactness is preserved under general inductive
limits. Likewise, we do not know if exactness is preserved on passing to a
quotient. If this were the case, then all discrete groups would be exact, since
any discrete group is a quotient of a free group, which is exact, as noted in §5
(e).

Added note: The Referee has informed us that, in a recent preprint [Y], Guo-
liang Yu has studied a combinatorial property, property A, of discrete groups
which is preserved under semi-direct products. It seems that property A is for-
mally stronger than C*-exactness, but we only became aware of [Y] in Septem-
ber 1999, and have not yet studied all possible connections with our results.
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Abstract. In contrast to the usual Lipschitz seminorms associated to
ordinary metrics on compact spaces, we show by examples that Lipschitz
seminorms on possibly non-commutative compact spaces are usually not
determined by the restriction of the metric they define on the state space,
to the extreme points of the state space. We characterize the Lipschitz
norms which are determined by their metric on the whole state space as
being those which are lower semicontinuous. We show that their domain
of Lipschitz elements can be enlarged so as to form a dual Banach space,
which generalizes the situation for ordinary Lipschitz seminorms. We
give a characterization of the metrics on state spaces which come from
Lipschitz seminorms. The natural (broader) setting for these results is
provided by the “function spaces” of Kadison. A variety of methods for
constructing Lipschitz seminorms is indicated.

1991 Mathematics Subject Classification: Primary 46L87; Secondary
58B30, 60B10

In non-commutative geometry (based on C∗-algebras), the natural way to spec-
ify a metric is by means of a suitable “Lipschitz seminorm”. This idea was first
suggested by Connes [C1] and developed further in [C2, C3]. Connes pointed
out [C1, C2] that from a Lipschitz seminorm one obtains in a simple way an
ordinary metric on the state space of the C∗-algebra. This metric generalizes

1The research reported here was supported in part by National Science Foundation Grant
DMS–96–13833.
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the Monge–Kantorovich metric on probability measures [KA, Ra, RR]. In this
article we make more precise the relationship between metrics on the state
space and Lipschitz seminorms.
Let ρ be an ordinary metric on a compact space X . The Lipschitz seminorm,
Lρ, determined by ρ is defined on functions f on X by

(0.1) Lρ(f) = sup{|f(x)− f(y)|/ρ(x, y) : x 6= y}.

(This can take value +∞.) It is known that one can recover ρ from Lρ by the
relationship

ρ(x, y) = sup{|f(x)− f(y)| : Lρ(f) ≤ 1}.
But a slight extension of this relationship defines a metric, ρ̄, on the space
S(X) of probability measures on X , by

(0.2) ρ̄(µ, ν) = sup{|µ(f)− ν(f)| : Lρ(f) ≤ 1}.

This is the Monge–Kantorovich metric. The topology which it defines on S(X)
coincides with the weak-∗ topology on S(X) coming from viewing it as the
state space of the C∗-algebra C(X). The extreme points of S(X) are identified
with the points of X . On the extreme points, ρ̄ coincides with ρ. Thus the
relationship (0.1) can be viewed as saying that Lρ can be recovered just from
the restriction of its metric ρ̄ on S(X) to the set of extreme points of S(X).
Suppose now that A is a unital C∗-algebra with state space S(A), and let L
be a Lipschitz seminorm on A. (Precise definitions are given in Section 2.)
Following Connes [C1, C2], we define a metric, ρ, on S(A) by the evident
analogue of (0.2). We show by simple finite dimensional examples determined
by Dirac operators that L may well not be determined by the restriction of ρ
to the extreme points of S(A).
It is then natural to ask whether L is determined by ρ on all of S(A), by a
formula analogous to (0.1). One of our main theorems (Theorem 4.1) states
that the Lipschitz seminorms for which this is true are exactly those which are
lower semicontinuous in a suitable sense.
For ordinary compact metric spaces (X, ρ) it is known that the space of Lip-
schitz functions with a norm coming from the Lipschitz seminorm is the dual
of a certain other Banach space. Another of our main theorems (Theorem 5.2)
states that the same is true in our non-commutative setting, and we give a
natural description of this predual. We also characterize the metrics on S(A)
which come from Lipschitz seminorms (Theorem 9.11).
We should make precise that we ultimately require that our Lipschitz semi-
norms be such that the metric on S(A) which they determine gives the weak-∗
topology on S(A). An elementary characterization of exactly when this hap-
pens was given in [Rf]. (See also [P].) This property obviously holds for finite-
dimensional C∗-algebras. It is known to hold in many situations for commuta-
tive C∗-algebras, as well as for C∗-algebras obtained by combining commutative
ones with finite dimensional ones. But this property has not been verified for
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many examples beyond those. However in [Rf] this property was verified for
some interesting infinite-dimensional non-commutative examples, such as the
non-commutative tori, and I expect that eventually it will be found to hold in
a wide variety of situations.
Actually, we will see below that the natural setting for our study is the broader
one of order-unit spaces. The theory of these spaces was launched by Kadison
in his memoir [K1]. For this reason it is especially appropriate to dedicate this
article to him. (In [K2] Kadison uses the terminology “function systems”, but
we will follow [Al] in using the terminology “order-unit space” as being a bit
more descriptive of these objects.)
On the other hand, most of the interesting constructions currently in view
of Lipschitz seminorms on non-commutative C∗-algebras, such as those from
Dirac operators, or those in [Rf], also provide in a natural way seminorms on all
the matrix algebras over the algebras. Thus it is likely that “matrix Lipschitz
seminorms” in analogy with the matrix norms of [Ef] will eventually be of
importance. But I have not yet seen how to use them in a significant way, and
so we do not deal with them here.
Let us mention here that a variety of metrics on the state spaces of full matrix
algebras have been employed by the practitioners of quantum mechanics. A
recent representative paper where many references can be found is [ZS]. We will
later make a few comments relating some of these metrics to the considerations
of the present paper.
The last three sections of this paper will be devoted to a discussion of the great
variety of ways in which Lipschitz seminorms can arise, even for commutative
algebras. We do discuss here some non-commutative examples, but most of our
examples are commutative. I hope in a later paper to discuss and apply some
other important classes of non-commutative examples. Some of the applica-
tions which I have in mind will require extending the theory developed here to
quotients and sub-objects.
Finally, we should remark that while we give here considerable attention to
how Dirac operators give metrics on state spaces, Connes has shown [C2] that
Dirac operators encode far more than just the metric information. In particular
they give extensive homological information. But we do not discuss this aspect
here.
I thank Nik Weaver for suggestions for improvement of the first version of this
article, which are acknowledged more specifically below.

1. Recollections on order-unit spaces

We recall [Al] that an order-unit space is a real partially-ordered vector space,
A, with a distinguished element e, the order unit, which satisfies:

1) (Order unit property) For each a ∈ A there is an r ∈ R such that
a ≤ re.

2) (Archimedean property) If a ∈ A and if a ≤ re for all r ∈ R+, then
a ≤ 0.
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For any a ∈ A we set

‖a‖ = inf{r ∈ R+ : −re ≤ a ≤ re}.

We obtain in this way a norm on A. In turn, the order can be recovered from
the norm, because 0 ≤ a ≤ e iff ‖a‖ ≤ 1 and ‖e− a‖ ≤ 1. The primary source
of examples consists of the linear spaces of all self-adjoint elements in unital
C∗-algebras, with the identity element serving as order unit. But any linear
space of bounded self-adjoint operators on a Hilbert space will be an order-unit
space if it contains the identity operator. We expect that this broader class of
examples will be important for the applications of metrics on state spaces.
We will not assume that A is complete for its norm. This is important for us
because the domains of Lipschitz norms will be dense, but usually not closed,
in the completion. (The completion is always again an order-unit space.) This
also accords with the definition in [Al].
By a state of an order-unit space (A, e) we mean a continuous linear functional,
µ, onA such that µ(e) = 1 = ‖µ‖. States are automatically positive. We denote
the collection of all the states of A, i.e. the state space of A, by S(A). It is a
w∗-compact convex subset of the Banach space dual, A′, of A.
To each a ∈ A we get a function, â, on S(A) defined by â(µ) = µ(a). Then
â is an affine function on S(A) which is continuous by the definition of the
w∗-topology. The basic representation theorem of Kadison [K1, K2, K3] (see
Theorem II.1.8 of [Al]) says that for any order-unit space the representation
a → â is an isometric order isomorphism of A onto a dense subspace of the
space Af(S(A)) of all continuous affine functions on S(A), equipped with the
supremem norm and the usual order on functions (and with e clearly carried to
the constant function 1). In particular, if A is complete, then it is isomorphic
to all of Af(S(A)).
Thus we can view the order-unit spaces as exactly the dense subspaces con-
taining 1 inside Af(K), where K is any compact convex subset of a topological
vector space. This provides an effective view from which to see many of the
properties of order-unit spaces. Most of our theoretical discussion will be car-
ried out in the setting of order-unit spaces andAf(K), though our examples will
usually involve specific C∗-algebras. We let C(K) denote the real C∗-algebra
of all continuous functions on K, in which Af(K) sits as a closed subspace.

It will be important for us to work on the quotient vector space Ã = A/(Re).
We let ‖ ‖∼ denote the quotient norm on Ã from ‖ ‖. This quotient norm
is easily described. For a ∈ A set

max(a) = inf{r : a ≤ re}
min(a) = sup{r : re ≤ a},

so that ‖a‖ = (max(a)) ∨ (−min(a)). Then it is easily seen that

‖ã‖∼ = (max(a)−min(a))/2.

Documenta Mathematica 4 (1999) 559–600



Metrics on State Spaces 563

2. The radius of the state space

Let A be an order-unit space. Since the term “Lipschitz seminorm” has some-
what wide but imprecise usage, we will not use this term for our main objects
of precise study (which we will define in Section 5). Almost the minimal re-
quirement for a Lipschitz seminorm is that its null-space be exactly the scalar
multiples of the order unit. We will use the term “Lipschitz seminorm” in this
general sense. We emphasize that a Lipschitz seminorm will usually not be
continuous for ‖ ‖.
Let L be a Lipschitz seminorm on A. For µ, ν ∈ S(A) we can define a metric,
ρL, on S(A) by

ρL(µ, ν) = sup{|µ(a)− ν(a)| : L(a) ≤ 1}
(which may be +∞). Then ρL determines a topology on S(A). Eventually
we want to require that this topology agrees with the weak-∗ topology. Since
S(A) is weak-∗ compact, ρL must then give S(A) finite diameter. We examine
this latter aspect here, in part to establish further notation.
It is actually more convenient for us to work with “radius” (half the diameter),
since this will avoid factors of 2 in various places. We would like to use the
properties of order-unit spaces to express the radius in terms of L in a somewhat
more precise way than was implicit in [Rf] in its more general context. The
following considerations [Al] will also be used extensively later.
As in [Rf] and in the previous section, we denote the quotient vector space

A/(Re) by Ã, with its quotient norm ‖ ‖∼. But in addition to this norm, the

quotient seminorm L̃ from L is also a norm on Ã, since L takes value 0 only
on Re.
The dual Banach space to Ã for ‖ ‖∼ is just A′0, the subspace of A′ consisting
of those λ ∈ A′ such that λ(e) = 0. We denote the norm on A′ dual to ‖ ‖
still by ‖ ‖. The dual norm on A′0 is just the restriction of ‖ ‖ to A′0. If
we view A as a dense subspace of Af(K) ⊆ C(K), then by the Hahn–Banach
theorem λ extends (not uniquely) to C(K) with same norm. There we can take
the Jordan decomposition into disjoint non-negative measures. Note that for
positive measures their norm on C(K) equals their norm on A, since e ∈ A.
Thus we find µ, ν ≥ 0 such that λ = µ − ν and ‖λ‖ = ‖µ‖ + ‖ν‖. But
0 = λ(e) = µ(e) − ν(e) = ‖µ‖ − ‖ν‖. Consequently ‖µ‖ = ‖ν‖ = ‖λ‖/2. Thus
if ‖λ‖ ≤ 2 we have ‖µ‖ = ‖ν‖ ≤ 1. If ‖λ‖ < 2 set t = ‖µ‖ < 1, and rescale µ
and ν so that they are in S(A). Then

λ = tµ− tν = µ− (tν + (1− t)µ).

Now (tν + (1 − t)µ) is no longer disjoint from µ, but we have obtained the
following lemma, which will be used in a number of places.

2.1 Lemma. The ball D2 of radius 2 about 0 in A′0 coincides with {µ − ν :
µ, ν ∈ S(A)}.
Notice that if there is an a ∈ A such that L(a) = 0 but a /∈ Re, then from this
lemma we can find µ, ν ∈ S(A) such that (µ−ν)(a) 6= 0, so that ρL(µ, ν) = +∞.

Documenta Mathematica 4 (1999) 559–600



564 Marc A. Rieffel

Thus our standing assumption that there is no such a serves to reduce the
possibility of having infinite distances. But it does not eliminate this possibility,
as seen by the example of the algebra of smooth (or Lipschitz) functions of
compact support on the real line, with constant functions adjoined, and with
the usual Lipschitz seminorm.

2.2 Proposition. With notation as earlier, the following conditions are equiv-
alent for an r ∈ R+:
1) For all µ, ν ∈ S(A) we have ρL(µ, ν) ≤ 2r.
2) For all a ∈ A we have ‖ã‖∼ ≤ rL∼(ã).

Proof. Suppose that condition 1 holds. Let a ∈ A and λ ∈ D2. Then by the
lemma λ = µ− ν for some µ, ν ∈ S(A). Thus

|λ(a)| = |(µ− ν)(a)| ≤ L(a)ρL(µ, ν) ≤ L(a)2r.

Since λ(e) = 0, thus inequality holds whenever a is replaced by a+se for s ∈ R.
Thus condition 2 holds.
Conversely, suppose that condition 2 holds. Then for any µ, ν ∈ S(A) and
a ∈ A with L(a) ≤ 1 we have

|µ(a)− ν(a)| = |(µ− ν)(a)| ≤ 2‖ã‖∼ ≤ 2r.

Thus ρL(µ, ν) ≤ 2r as desired. �

Of course, we call the smallest r for which the conditions of this proposition
hold the radius of S(A).
We caution that just because a metric space has radius r, it does not follow
that there is a ball of radius r which contains it, as can be seen by considering
equilateral triangles in the plane. We remark that just because ρL gives S(A)
finite radius, it does not follow that ρL gives the weak-∗ topology. Perhaps the
simplest example arises when A is infinite dimensional and L(a) = ‖ã‖∼.

3. Lower semicontinuity for Lipschitz seminorms

Let L be any Lipschitz seminorm on an order-unit space A. (We will not at
first require that it give S(A) finite diameter.) We would like to show that L
and ρL contain the same information, and more specifically that we can recover
L from ρL as being the usual Lipschitz seminorm for ρL. By this we mean the
following. Let ρ be any metric on S(A), possibly taking value +∞. Define Lρ
on C(S(A)) by

(3.1) Lρ(f) = sup{|f(µ)− f(ν)|/ρ(µ, ν) : µ 6= ν},

where this may take value +∞. Let Lipρ = {f : Lρ(f) < ∞}. We can
restrict Lρ to Af(S(A)). In general, few elements of Af(S(A)) will be in Lipρ.
However, on viewing the elements of A as elements of Af(S(A)), we have:
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3.2 Lemma. Let L be a Lipschitz seminorm on A with corresponding metric
ρL on S(A). Then A ⊆ LipρL , and on A we have LρL ≤ L , in the sense that
LρL(a) ≤ L(a) for all a ∈ A.

Proof. For µ, ν ∈ S(A) and a ∈ A we have

|â(µ)− â(ν)| = |µ(a)− ν(a)| ≤ L(a)ρL(µ, ν).

�

For later use we remark that if L and M are Lipschitz seminorms on A and if
M ≤ L, then ρM ≥ ρL in the evident sense.
We would like to recover L on A from ρL by means of formula (3.1). However,
the seminorms defined by (3.1) have an important continuity property:

3.3 Definition. Let A be a normed vector space, and let L be a seminorm on
A, except that we permit it to take value +∞. Then L is lower semicontinuous
if for any sequence {an} in A which converges in norm to a ∈ A we have
L(a) ≤ lim inf{L(an)}. Equivalently, for one, hence every, t ∈ R with t > 0,
the set

Lt = {a ∈ A : L(a) ≤ t}
is norm-closed in A.

3.4 Proposition. Let A be an order-unit space, and let ρ be any metric on
S(A), possibly taking value +∞. Define Lρ on C(S(A)) by formula (3.1).
Then Lρ is lower semicontinuous. Consequently, the restriction of Lρ to any
subspace of C(S(A)), such as A or Af(S(A)), will be lower semicontinuous.

Proof. When we view Lρ as a function of f , the formula (3.1) says that Lρ is
the pointwise supremum of a collection of functions (labeled by pairs µ, ν with
µ 6= ν) which are clearly continuous on C(S(A)) for the supremum norm. But
the pointwise supremum of continuous functions is lower semicontinuous. �

3.5 Example. Here is an example of a Lipschitz seminorm L whose metric
can be seen to give S(A) the weak-∗ topology, but which is not lower semicon-
tinuous. Let I = [−1, 1], and let A = C1(I), the algebra of functions which
have continuous first derivatives on I. Define L on A by

L(f) = ‖f ′‖∞ + |f ′(0)|.
For each n let gn be the function defined by gn(t) = n|t| for |t| ≤ 1/n, and

gn(t) = 1 elsewhere. Let fn(t) =
∫ t
−1
gn(s)ds. Then the sequence {fn} con-

verges uniformly to the function f given by f(t) = t + 1. But L(fn) = 1 for
each n, whereas L(f) = 2.

A substantial supply of examples of lower semicontinuous seminorms can be
obtained from the W ∗-derivations of Weaver [W2, W3]. These derivations will
in general have large null spaces, and the seminorms from them need not give
the weak-∗ topology on the state space. But many of the specific examples of
W ∗-derivations which Weaver considers do in fact give the weak-∗ topology. In
terms of Weaver’s terminology, which we do not review here, we have:
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3.6 Proposition. Let M be a von Neumann algebra and let E be a normal
dual operator M -bimodule. Let δ : M → E be a W ∗-derivation, and denote
the domain of δ by L, so that L is an ultra-weakly dense unital ∗-subalgebra
of M . Define a seminorm, L, on L by L(a) = ‖δ(a)‖E. Then L is lower
semicontinuous, and L1 = {a ∈ L : L(a) ≤ 1} is norm-closed in M itself.

Proof. Let {an} be a sequence in L which converges in norm to b ∈M . To show
that L is lower semicontinuous, it suffices to consider the case in which {an} is
contained in L1. Then the set {(an, δ(an))} is a bounded subset of the graph
of δ for the norm max{‖ ‖M , ‖ ‖E}. Since the graph of a W ∗-derivation is
required to be ultra-weakly closed, and since bounded ultraweakly closed sub-
sets are compact for the ultra-weak topology, there is a subnet which converges
ultra-weakly to an element (c, δ(c)) of the graph of δ. Then necessarily c = b,
so that b ∈ L, and δ(b) is in the ultra-weak closure of {δ(an)}. Consequently
L(b) = ‖δ(b)‖ ≤ 1. �

Because of the importance of Dirac operators, it is appropriate to verify lower
semicontinuity for the Lipschitz seminorms which they determine. This is close
to a special case of Proposition 3.6, but does not require any kind of complete-
ness, nor an algebra structure on A.

3.7 Proposition. Let A be a linear subspace of bounded self-adjoint operators
on a Hilbert space H, containing the identity operator. Let D be an essentially
self-adjoint operator on H whose domain, D(D), is carried into itself by each
element of A. Assume that [D, a] is a bounded operator on D(D) for each
a ∈ A (so that [D, a] extends uniquely to a bounded operator on H). Define L
on A by L(a) = ‖[D, a]‖. Then L is lower semicontinuous.

Proof. Let {an} be a sequence in A which converges in norm to a ∈ A. Suppose
that there is a constant, k, such that L(an) ≤ k for all n. For any ξ, η ∈ D(D)
with ‖ξ‖ = 1 = ‖η‖ we have

〈[D, a]ξ, η〉 = 〈aξ,Dη〉 − 〈Dξ, aη〉 = lim〈[D, an]ξ, η〉.

But |〈[D, an]ξ, η〉| ≤ k for each n, and so ‖[D, a]‖ ≤ k. �

We remark that the Lipschitz seminorms constructed in [Rf] by means of actions
of compact groups are easily seen to be lower semicontinuous.

4. Recovering L from ρL

In this section we show that a lower semicontinuous Lipschitz seminorm L
can be recovered from its metric ρL. But before showing this we would like
to emphasize the following point. Let (X, ρ) be an ordinary compact metric
space, with A the algebra of its Lipschitz functions, with Lipschitz seminorm
L. Then S(A) consists of the probability measures on X , and the points of X
correspond exactly to the extreme points of S(A). The restriction of ρL to the
extreme points is exactly ρ. Thus when one says that one can recover L from
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the metric ρ, one is saying that one can recover L from the restriction of ρL on
S(A) to the extreme points of S(A). However, for the more general situation
which we are considering, it will be false in general that we can recover L from
the restriction of ρL to the extreme points of S(A). Simple explicit examples
will be given in Section 7.
One of the main theorems of this paper is:

4.1 Theorem. Let L be a lower semicontinuous Lipschitz seminorm on an
order-unit space A, and let ρL denote the corresponding metric on S(A), pos-
sibly taking value +∞. Let LρL be defined by formula (3.1), but restricted to
A ⊆ Af(S(A)). Then

LρL = L.

Theorem 4.1 is an immediate consequence of the following theorem, since we
saw that lower semicontinuity coincides with L1 being norm closed.

4.2 Theorem. Let L be any Lipschitz seminorm on an order-unit space A,
and let ρL denote the corresponding metric on S(A). Let LρL be defined by
formula (3.1), but restricted to A ⊆ Af(S(A)). Then {a ∈ A : LρL(a) ≤ 1}
coincides with the norm closure, L̄1, of L1 in A. In particular, LρL is the
largest lower semicontinuous seminorm smaller than L, and ρLρL

= ρL.

Proof. (An idea leading to this proof, which is simpler than my original proof,
was suggested to me by Nik Weaver.) On A′ we define the seminorm, L′ , dual
to L, by

L′(λ) = sup{|λ(a)| : L(a) ≤ 1}.

Note that L′ takes value +∞ on any λ for which λ(e) 6= 0, and very possibly

on some elements of A′0 as well. But at any rate we have the following key
relationship:

4.3 Lemma. For µ, ν ∈ S(A) we have ρL(µ, ν) = L′(µ− ν).

Proof.

L′(µ− ν) = sup{|(µ− ν)(a)| : L(a) ≤ 1}
= sup{|µ(a)− ν(a)| : L(a) ≤ 1} = ρL(µ, ν).

�

Because L1 is already convex and balanced, the bipolar theorem [Cw] says
that L̄1 is exactly the bipolar of L1. Thus we just need to show that {a ∈
A : LρL(a) ≤ 1} is the bipolar of L1. Now it is clear that the unit L′-ball
in A′ is exactly the polar [Cw] of L1. This provides the last of the following
equivalences. Let a ∈ A. Then:
LρL(a) ≤ 1 exactly if |µ(a)− ν(a)| ≤ ρL(µ, ν) for all µ, ν ∈ S(A) ,
exactly if |λ(a)| ≤ L′(λ) for all λ ∈ D2 (by Lemma 4.3 and Lemma 2.1),
exactly if |λ(a)| ≤ 1 for all λ ∈ A′ with L′(λ) ≤ 1,
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exactly if a is in the prepolar of {λ : L′(λ) ≤ 1} (by definition [Cw]),
exactly if a is in the bipolar of L1.

It is clear that LρL is lower semicontinuous, that it is the largest such seminorm
smaller than L, and that it gives the same metric. �

Note in particular that if L gives S(A) finite diameter, or the weak-∗ topology,
then so does LρL .

We remark that a sort of dual version of Theorem 4.1 can be found later in
Theorem 9.7.

We have the following related considerations. Suppose again that L is a Lip-
schitz seminorm on an order-unit space A. Let Ā denote the completion of
A for ‖ ‖, and let L̄1 denote now the closure of L1 in Ā rather than just in
A. Let L̄ denote the corresponding “Minkowski functional” on Ā obtained by
setting, for b ∈ Ā,

L̄(b) = inf{r ∈ R+ : b ∈ rL̄1}.

Since there may be no such r, we must allow the value +∞. With this under-
standing, L̄ will be a seminorm on Ā. It is easily seen that L̄(b) ≤ 1 exactly if
b ∈ L̄1, and that L̄ is lower semicontinuous because L̄1 is closed.

Up to this point we did not require lower semicontinuity of L. It’s import is
given by:

4.4 Proposition. Let L be a lower semicontinuous Lipschitz seminorm on an
order-unit space A. Let L̄ on Ā be defined as above. Then L̄ is an extension
of L, that is, for a ∈ A we have L̄(a) = L(a). Furthermore, ρL̄ = ρL.

Proof. Suppose that a ∈ A and L(a) = 1. Then a ∈ L1 ⊆ L̄1 and so clearly
L̄(a) ≤ 1. Conversely, if L̄(a) ≤ 1, then a ∈ L̄1. Thus there is a sequence
{an} in L1 which converges to a, with L(an) ≤ 1 for every n. From the lower
semicontinuity of L it follows that L(a) ≤ 1. Finally, for µ, ν ∈ S(A) we have

ρL̄(µ, ν) = sup{|µ(a)−ν(a)| : a ∈ L̄1} = sup{|µ(a)−ν(a)| : a ∈ L1} = ρL(µ, ν).

�

Note in particular that if L gives S(A) finite diameter, or the weak-∗ topology,
then so does L̄. However, in general L̄ need not be a Lipschitz seminorm. For
example, let A be the algebra of real polynomials viewed as functions on the
interval [0, 2], and let L be the usual Lipschitz seminorm but defined using only
points in [0, 1].

4.5 Definition. We will call L̄ the closure of L. We will say that a Lipschitz
seminorm is closed if L = L̄ (on the subspace where L̄ is finite), or equivalently,
if L1 is complete for the metric from ‖ ‖.

Then Proposition 4.4 says that for most purposes we can assume that L is
closed if convenient.
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Suppose now that L is a Lipschitz seminorm on A which is closed. On A we
can define a new norm, |‖ ‖|, by

|‖a‖| = ‖a‖+ L(a).

It is easily verified that A is complete for this new norm. Suppose that A is a
∗-algebra and ‖ ‖ is a C∗-norm (this can be weakened). Suppose further that
L is a closed Lipschitz seminorm on A which satisfies the Leibniz inequality.
Then the new norm is a normed-algebra norm, and so A becomes a Banach
algebra for the new norm. In Sections 10 and 11 we will indicate many examples
of Lipschitz seminorms satisfying the Leibniz inequality. This provides a rich
class of examples of Banach algebras which merit study (even in the cases when
they are commutative) along the lines considered in [BCD, J, W1].

5. The pre-dual of (Ã, L̃)

It has been shown in an increasing variety of situations that the space of Lip-
schitz functions with a suitable Lipschitz norm is isometrically isomorphic to
the dual of some Banach space. Some of the history of this phenomenon is
sketched in the notes at the end of chapter 2 of [W1], or more briefly in [W2].
Within the non-commutative setting, Weaver shows in Proposition 2 of [W2]
that the domains of W ∗-derivations (as defined there) are dual spaces. How-
ever, his W ∗-derivations can have large null spaces, and they need not give
the weak-∗ topology on S(A). Nevertheless, Weaver’s approach applies to the
non-commutative tori, and gives them the same space of Lipschitz elements as
the approach of the present paper (when combined with [Rf]). In fact, Weaver
shows in [W3] that for the non-commutative tori one can also define Lipα, and
that Lipα is actually the second dual of lipα when α < 1.
To show within our setting that the space of Lipschitz elements is the dual of a
Banach space, we need to assume that ρL gives the weak-∗ topology on S(A).
As before, let L1 = {a : L(a) ≤ 1}. From theorem 1.8 of [Rf] we know that

ρL will give the weak-∗ topology on S(A) exactly if the image of L1 in Ã is
totally bounded for ‖ ‖∼. Equivalently, by theorem 1.9 of [Rf], L must give
S(A) finite radius, and for one, hence all, t ∈ R with t > 0, the set

Bt = {a : L(a) ≤ 1 and ‖a‖ ≤ t}
must be totally bounded in A for ‖ ‖. We remark that this implies that if
{an} is a sequence (or net) in A converging pointwise on S(A) to a ∈ A, and
if there is a constant k such that ‖an‖ ≤ k and L(an) ≤ k for all n, then an
converges to a in norm. This is because {an} is contained in kB1 whose closure
in the completion Ā of A is compact. Let b be any norm limit point of {an} in
Ā. Then a subsequence of {an} converges in norm to b. But it still converges
pointwise on S(A) to a. Consequently b = a, and a is the only norm limit point
of {an}.
We now have in view all the requirements on Lipschitz seminorms which we
need for our present purposes. So we now define what we expect is the correct
way to specify metrics on compact non-commutative spaces:
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5.1 Definition. Let A be an order-unit space. By a Lip-norm on A we mean
a seminorm, L, on A (taking finite values) with the following properties:

1) For a ∈ A we have L(a) = 0 if and only if a ∈ Re.
2) L is lower semicontinuous.

3) {a ∈ A : L(a) ≤ 1} has image in Ã which is totally bounded for ‖ ‖∼.

We remark that it is easily checked that the closure (Definition 4.5) of a Lip-
norm is again a Lip-norm.
Within the present setting the fact that the space of Lipschitz elements is a
dual Banach space takes the following form (which requires the Lip-norm to be
closed).

5.2 Theorem. Let A be an order-unit space, and let L be a Lip-norm on A
which is closed. Let K = {ã ∈ Ã : L̃(ã) ≤ 1}, so that K is a compact (convex)

set for ‖ ‖∼. Then (Ã, L̃) is naturally isometrically isomorphic to the dual
Banach space of Af0(K), the Banach space of continuous affine functions on

K which take value 0 at 0 ∈ Ã, with the supremum norm.

Proof. Let L1 and Bt be as defined as above. Because L is closed, the totally
bounded sets Bt are complete for ‖ ‖, and so are compact. From the finite

radius considerations of Section 2 the image of L1 in Ã will coincide with the
image of Bt for sufficiently large t. Hence the image of L1 in Ã is compact for
‖ ‖∼, not just totally bounded. But the image of L1 is exactly K as defined
in the statement of the theorem.
We can now argue as in the proof of proposition 1 of [W4]. We include the
argument here in a form specific to our particular situation.
Let V = Af0(K), as defined in the statement of the theorem. Then from lemma
4.1 of [K3] each element of V extends to a linear functional (not necessarily

continuous for ‖ ‖∼) on Ã. But we still view V as equipped with the uniform
norm ‖ ‖∞ from C(K), for which V is complete. Then for any f ∈ V we have

‖f‖∞ = sup{f(ã) : ã ∈ K} = sup{f(ã) : L̃(ã) ≤ 1}.

Consequently ‖ ‖∞ is just the dual norm to the norm L̃ on Ã. But V will

usually be much smaller than the entire dual Banach space of (Ã, L̃) because
of the requirement that if f ∈ V then f is continuous on K.
We let V ′ denote the dual Banach space to V . We have the evident mapping
σ from Ã to V ′ defined by σ(ã)(f) = f(ã). Use of the Hahn–Banach theorem
shows that Af0(K) separates the points of K, and from this we see that σ is

injective. Furthermore |σ(ã)(f)| = |f(ã)| ≤ ‖f‖∞L̃(ã), and so ‖σ‖ ≤ 1 for

the norm L̃ on Ã. In particular, σ(K) ⊆ (V ′)1, the unit ball of V ′. From
the definitions of σ and V we see immediately that σ is continuous from K
to (V ′)1 with its weak-∗ topology from V . Since K is compact, σ(K) must be
compact for the weak-∗ topology. If σ(K) were not all of (V ′)1, there would
be a ϕ0 ∈ (V ′)1 and a weak-∗ continuous linear functional separating ϕ0 from
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σ(K). But every weak-∗ linear functional comes from V . Thus there would be
an f ∈ V such that

f(ã) ≤ 1 < ϕ0(f)

for every ã ∈ K. But the first inequality means that ‖f‖∞ ≤ 1, and so the
second inequality means that ‖ϕ0‖ > 1, contradicting the assumption that
ϕ0 ∈ (V ′)1. Thus σ(K) = (V ′)1. Consequently σ is an isometric isomorphism

of (Ã, L̃) with V ′. �

We remark that, if desired, we can make A itself into the dual of a Banach
space, in a non-canonical way, as follows. Let r be the radius of (A, L), and let
µ be any fixed state of A. Define an actual norm, Lµ, on A by

Lµ(a) = max{|µ(a)|/r, L(a)}.

Let L̃µ be the quotient of Lµ on Ã. It is clear that L̃µ ≥ L̃. But for any given

a ∈ A we can find α ∈ R such that ‖a−α‖ ≤ rL̃(ã), by the definition of radius.
Then

|µ(a− α)| ≤ ‖a− α‖ ≤ rL̃(ã),

while L(a− α) = L̃(ã). Consequently L̃µ(ã) ≤ L̃(ã), so that, in fact, L̃µ = L̃.

Thus (A, Lµ) has (Ã, L̃) as quotient space. The quotient map splits by the

isometric map ã 7→ a−µ(a). Since (Ã, L̃) is isometrically isomorphic to a dual
Banach space, it follows easily that (A, Lµ) is also.
See also section 2 of [H], which gives a slightly different approach because the
norm on Lipρ is slightly different from that implicit here.
Let K and V = Af0(K) be as in the statement of Theorem 5.2. As in Section 2,

the dual of (Ã, ‖ ‖∼) is A′0. By the finite diameter condition and Proposition

2.2 each λ ∈ A′0 defines a continuous linear functional on (Ã, L̃). Each such
functional is clearly continuous on K for its topology from ‖ ‖∼. Thus each

λ ∈ A′0 defines an element of V , and so we obtain a linear map from A′0 into
V . From Theorem 5.2 the norm ‖ ‖∞ on V from C(K) coincides with the

dual norm L′ from (Ã, L̃). We have the following addition to Theorem 5.2.

5.3 Proposition. The image of A′0 in Af0(K) is dense in Af0(K) for its
norm ‖ ‖∞ = L′.

Proof. Let ϕ be any continuous linear functional on V which is 0 on the image

of A′0. From Theorem 5.2 every continuous linear functional on V comes from
an element of Ã. If ã is the element of Ã corresponding to ϕ, we then have

λ(ã) = 0 for all λ ∈ A′0, which implies that ã = 0 so that ϕ ≡ 0. It follows

from the Hahn–Banach theorem that the image of A′0 is norm dense in V . �

6. Extreme points

Let L be a Lipschitz seminorm on an order-unit space A, and let ρL be the
corresponding metric on S(A). Let E denote the set of extreme points of S(A).
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Then E need not be a closed subset of S(A), but S(A) is the closed convex
hull of E by the Krein–Milman theorem. Of course ρL restricts to a metric
on E. We will give explicit examples in the next section to show that even
when L is a Lip-norm the restriction of ρL to E does not determine ρL or L.
Nevertheless, we can try to use the restriction of ρL to define a new Lipschitz
seminorm, Le, on A, by

Le(a) = sup{|ε(a)− η(a)|/ρL(ε, η) : ε, η ∈ E, ε 6= η}.

6.1 Proposition. With the above definition, Le is a lower semicontinuous
Lipschitz seminorm on A, and it is the smallest such on A whose metric on
S(A) agrees on E with that of L. If L is a Lip-norm then so is Le.

Proof. From Theorem 4.2 it is clear that we can assume that L is lower semi-
continuous. From Theorem 4.1 we know that any lower semicontinuous Lip-
schitz seminorm, say L1, is recovered from its metric by a supremum as above,
but ranging over all of S(A) rather than just over E. Thus if the metric for
L1 agrees with ρL on E, we must have Le ≤ L1. By using the argument in
the proof of Proposition 3.4 it is easily seen that Le is lower semicontinuous.

Suppose that Le(a) = 0 for some a ∈ A. Recall that D2 = {λ ∈ A′0 : ‖λ‖ ≤ 2}.
6.2 Lemma. The convex hull of {ε− η : ε, η ∈ E, ε 6= η} is dense in D2 for
the weak-∗ topology.

Proof. From Lemma 2.1 we know that any element of D2 can be expressed
as µ − ν for µ, ν ∈ S(A). By the Krein–Milman theorem each of µ, ν can be
approximated arbitrary closely in the weak-∗ topology by convex combinations
from E, say

∑
αjεj and

∑
βkηk. But the difference of such combinations can

be expressed as ∑
(αjβk)(εj − ηk).

�

From this lemma it is clear that if Le(a) = 0 then L(a) = 0, and thus a ∈ Re.
Also, it is easy to see that ρLe agrees with ρL on E.
Finally, we must show that if L is a Lip-norm then the image of K0 = {a :

Le(a) ≤ 1} in Ã is totally bounded for ‖ ‖∼. Notice that this image is larger
than that for L, so we can not immediately apply the corresponding fact for L.
Let Ē denote the closure of E in S(A). It is clear that the supremum defining
Le could just as well be taken over Ē, and so Le on A is just the Lipschitz
norm for the metric ρL restricted to Ē. Thus K0 can be viewed as contained
in {f ∈ C(Ē) : Le(f) ≤ 1}, and the latter has totally bounded image in
C(Ē)/Re since it consists of Lipschitz functions for a metric and Ē is compact.
Thus K0 has totally bounded image in C(Ē)/Re. But the restriction map
from Af(S(A)) to C(Ē) is isometric for ‖ ‖∞ since Ē contains the extreme
points. (See Theorem II.1.8 of [Al]. We are dealing here with Kadison’s smallest
separating representation.) It follows easily that K0 has totally bounded image

in Ã as needed. �
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We remark that if F is any subset of S(A) which contains E, then we can use
F instead of E to define a Lip-norm LF just as we defined Le above. Then we
will have

Le ≤ LF ≤ L

in the evident sense, with reverse inequalities for the corresponding metrics.
Suppose that A is a dense ∗-subalgebra of a C∗-algebra, Ā, and that L is a Lip-
norm on A, with corresponding metric ρL on S(A). As above let E denote the
set of extreme points of S(A). Assume first that A is commutative. Then E is
compact and Ā ∼= C(E). Assume that L = Le. Then L is the usual Lipschitz
norm coming from the metric on the compact set E obtained by restricting ρL
to E. But in this case we know that L must then satisfy the Leibniz rule

L(ab) ≤ L(a)‖b‖+ ‖a‖L(b).

It is thus natural to ask the general question:

6.3 Question. What conditions on a Lip-norm L on a general unital C∗-
algebra imply that L satisfies the Leibniz rule?

In the next section we will see examples of Lip-norms which do not satisfy
L = Le and yet satisfy the Leibniz rule.

7. Dirac operators and ordinary finite spaces

Connes has shown [C1, C2, C3] that for a compact Riemannian (spin) man-
ifold all the metric information is contained in the Dirac operator. This led
him to suggest that for “non-commutative spaces”, metrics should be specified
by some analogue of Dirac operators. We explore here some aspects of this
suggestion for finite-dimensional commutative C∗-algebras, i.e. ordinary finite
spaces. This will clarify some of the considerations of the previous sections.
Here and throughout all the rest of this paper, when we say that an operator D
is a “ Dirac” operator, this is not meant to indicate any particular properties
of D, but rather is meant to indicate how D is employed, namely to define a
Lipschitz seminorm.

Let X be a finite set, and let A = C(X). In order to remain fully in the setting
of the previous sections we take C(X) to consist only of real-valued functions.
But in the present commutative situation this is not so important because,
unlike the non-commutative case, if one does not know the algebra structure,
the norm for complex-valued functions is still given by a simple formula in
terms of the norm for real-valued functions. (See e.g. lemma 14 of [W2].)
Consequently we will be a bit careless here about this distinction.
We will suppose that A has been faithfully represented on a finite-dimensional
complex Hilbert space H. We suppose given on H an operator D (the “Dirac”
operator). It is usual to take D to be self-adjoint. But we find it slightly more
convenient to take D to be skew-adjoint. The two choices are related by a
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multiplication by i, and give the same metric results. Following Connes, we
define a seminorm, L, on A by

L(a) = ‖[D, a]‖,

where [ , ] denotes the usual commutator of operators, and the norm is the
operator norm. We want L to be a Lip-norm. Thus we require that if [D, a] = 0
then a ∈ CI. Because we are in a finite-dimensional setting, L is continuous
for ‖ ‖∞, and indeed is a Lip-norm on A.
From L we obtain a metric, ρL, on the space S(A) of probability measures on
X , as well as on its set of extreme points, which is identified with X itself. We
now give a very simple example to show that ρL on S(A) need not agree with
the metric obtained from ρL on X .

7.1 Example. Consider a three-dimensional commutative C∗-algebra, A, rep-
resented faithfully on a three-dimensional Hilbert space. Thus we can identify
A with the algebra of diagonal matrices in the full matrix algebra M3 = M3(C).
We will consider Dirac operators of a special form which facilitates calculation,
namely matrices D in M3(C) of the form

D =




0 0 α
0 0 β
−α −β 0




where α > 0 and β > 0. We will also restrict to those f ∈ A which are real,
and denote the three values (or diagonal entries) of f by (f1, f2, f3). Because
D is skew-symmetric, [D, f ] is a real symmetric matrix, whose eigenvalues thus
are real. In fact, we have

[D, f ] =




0 0 α(f3 − f1)
0 0 β(f3 − f2)

α(f3 − f1) β(f3 − f2) 0


 .

Because of this special form, the eigenvalues are easily calculated, and one finds
that

L(f) = ‖[D, f ]‖ = (α2(f3 − f1)2 + β2(f3 − f2)2)1/2.

It is clear from this that if L(f) = 0 then f is a constant function. Thus L
defines a Lip-norm on A.
We now proceed to calculate the corresponding metric on S(A). We first cal-

culate the dual norm, L′, on A′0, the dual space of Ã, with notation as in the

previous sections. We identify A′0 with real diagonal matrices of trace 0, paired

with A via the trace. For λ ∈ A′0 we denote its components by λ = (λ1, λ2, λ3).
Of course

L′(λ) = sup{|〈f, λ〉| : L(f) ≤ 1}.
Now both |〈f, λ〉| and L(f) are unchanged if we add a constant function to
f . Thus for the supremum defining L′(λ) we can assume that f3 = 0 always.
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Furthermore, we know that λ3 = −(λ1 +λ2). Thus we need only deal with the
first two components of f and λ. We do this without changing notation. Then
we see that

L′(λ) = sup{|f1λ1 + f2λ2| : α2f2
1 + β2f2

2 ≤ 1}.
But this is just the norm of a functional on a suitable Hilbert space. Specifically,
let l2(w) be the Hilbert space of functions on a 2-point space with weight
function w given by (α2, β2). Then

f1λ1 + f2λ2 = f1(λ1/α
2)α2 + f2(λ2/β

2)β2,

and in this form the norm of the functional is the length of the vector in l2(w)
defining it. This gives

L′(λ) = ((λ1/α
2)2α2 + (λ2/β

2)2β2)1/2

= (λ2
1/α

2 + λ2
2/β

2)1/2.

We now apply this to obtain the metric on S(A). If µ, ν ∈ S(A), then for the
evident notation

ρL(µ, ν) = L′(µ− ν) = ((µ1 − ν1)2/α2 + (µ2 − ν2)2/β2)1/2.

Let X denote the maximal ideal space of A. We identify its 3 points with the
3 extreme points of S(A), and label them, corresponding to the coordinates in
A, by δ1, δ2, δ3. Then from the above formula for ρL we find that the metric
on X is given by:

ρL(δ1, δ2) = (1/α2 + 1/β2)1/2

ρL(δ1, δ3) = 1/α

ρL(δ2, δ3) = 1/β.

Define γ by ρL(δ1, δ2) = 1/γ. Let Le denote the ordinary Lipschitz norm on A
coming from this metric on X . Then

Le(f) = max{|f1 − f2|γ, |f1 − f3|α, |f2 − f3|β}.

Clearly Le is quite different from L. From Theorem 4.1 we know that the
metrics on S(A) will thus be quite different, even though they agree on the
extreme points. This is, of course, also easily seen by direct calculations.

We now make some observations in preparation for the next section. It is well-
known [W1, W2] that the Lipschitz seminorms L = Lρ from ordinary metrics
on a metric space X have a nice relation to the lattice structure of (real-valued)
C(X), namely

L(f ∨ g) ≤ L(f) ∨ L(g).
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We remark that for the L of the above example this inequality fails. For
instance, with notation as above, let f = (1, 0, 0) and g = (0, 1, 0), so that
f ∨ g = (1, 1, 0). Then we see that

L(f) = α, L(g) = β, while L(f ∨ g) = (α2 + β2)1/2.

(This is related to the counterexample following theorem 16 of [W2].)
However, it is not difficult to check that the above L does satisfy the weaker
inequality

L(f ∨ 0) ≤ L(f).

In fact, one can prove that this holds for any choice of skew-adjoint D for the
above A. To find a counterexample for this weaker inequality one must take
A to be 4-dimensional. I have not found a systematic way of constructing
a counterexample there, but some examination of what is needed, followed
by some experimentation with MATLAB yields the following (and related)
example:

D =




0 4 −1 0
−4 0 2 −2
1 −2 0 −4
0 2 4 0




and f = (4, 2, 0,−1).
We remark that ordinary Lipschitz norms on compact metric spaces can all be
easily obtained by means of Dirac operators. I pointed this out in a lecture in
1993, and the details are indicated after the proof of proposition 8 of [W2]. See
also the discussion for graphs which we will give toward the end of Section 11.

8. A characterization of ordinary Lipschitz seminorms

Let X be a compact space, let ρ be a metric on X (giving the topology of X),
and let L denote the corresponding ordinary Lip-norm on C(X) (permitted to
take value +∞). As just mentioned in the last section, it is well-known [W1,
W2] and easy to prove that L relates nicely to the lattice structure of C(X) by
means of the inequality

L(f ∨ g) ≤ L(f) ∨ L(g).

In Weaver’s more general setting of domains of W ∗-derivations he proves this
inequality for W ∗-derivations of Abelian structure. (See lemma 12 of [W2].)
We show here that the above inequality exactly characterizes the Lip-norms
which are the ordinary Lipschitz seminorms coming from ordinary metrics on
X .
We remark that we never assume here that our Lip-norms satisfy the Leibniz
inequality for the algebra structure, namely

L(fg) ≤ L(f)‖g‖+ ‖f‖L(g).
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But ordinary Lipschitz seminorms do satisfy this inequality. Thus one conse-
quence of this section is that the above lattice inequality implies the Leibniz
inequality. On the other hand, the Lip-norm from any “Dirac” operator will
satisfy the Leibniz inequality, but can easily fail to satisfy the lattice inequality,
as we saw by examples in the previous section. Thus the lattice inequality is
much stronger than the Leibniz inequality.
However we should point out that for Dirac operators on compact spin Rie-
mannian manifolds, in spite of their being defined by means of various partial
derivatives and spinors, the corresponding Lip-norms do satisfy the lattice in-
equality. This is because Connes shows [C1, C2, C3] that the Lip-norms which
those Dirac operators define coincide with the ordinary Lip-norms for the or-
dinary metrics on the manifolds determined by the Riemannian metrics.
Recall that for us C(X) consists of real-valued functions.

8.1 Theorem. Let X be a compact space, let A be a dense subspace of C(X)
containing the constant functions, and let L be a Lip-norm on A. Let L̄ denote
the closure of L, viewed as defined on all of C(X) as in the discussion before
Proposition 4.4, and thus permitted to take value +∞. Then the following
conditions are equivalent:

1. The Lip-norm L is the restriction to A of the usual Lipschitz seminorm
corresponding to a metric on X (namely the metric ρL).

2. For every f, g ∈ C(X) we have

L̄(f ∨ g) ≤ L̄(f) ∨ L̄(g).

The following lemma is somewhat parallel to lemma 13 of [W2]. For later use
we state it in slightly greater generality than needed immediately.

8.2 Lemma. Let A be a dense subspace of C(X) containing the constant func-
tions, and closed under the finite lattice operations (i.e. if f, g ∈ A then
f ∨ g ∈ A). Let L be a Lip-norm on A which satisfies the inequality

L(f ∨ g) ≤ L(f) ∨ L(g)

for all f, g ∈ A. Let L̄ be the closure of L, defined on all of C(X), permitted to
take value +∞. Let F be a bounded subset of A for which there is a constant,
k, such that L(f) ≤ k for all f ∈ F . Let g = sup{f ∈ F}. Then g ∈ C(X)
and L̄(g) ≤ k.
Proof. Let {gα} be the net of suprema of finite subsets of F . Then {gα} is
contained in A, and converges up to f pointwise. By the hypothesis on L we
have L(gα) ≤ k for all α. Thus we have

|gα(x)− gα(y)| ≤ kρL(x, y)

for all α and all x, y ∈ X ; that is, {gα} is equicontinuous. We can thus apply
the Ascoli theorem [Ru] to conclude that the net {gα} has a subnet which

Documenta Mathematica 4 (1999) 559–600



578 Marc A. Rieffel

converges uniformly. But the limit of this subnet must be g, and so g must
be continuous. Furthermore, from the lower semicontinuity of L̄ we must have
L̄(g) ≤ k. �

Proof of Theorem 8.1. As indicated above, it is basically well-known, and not
hard to verify, that condition 1 implies condition 2. Suppose conversely that
condition 2 holds. For any x ∈ X let ρxL be the continuous function on X
defined by ρxL(y) = ρL(x, y). Set Sx = {f ∈ A : f(x) = 0, L(f) ≤ 1}. Since
L(f) is unchanged when a constant function is added to f , or when f is replaced
by −f , the definition of ρL can be rewritten as

ρxL(y) = sup{f(y) : f ∈ Sx}.

This means that ρxL = supSx. But Sx is a bounded set in A by the finite
radius considerations. Thus we can apply the above lemma to conclude that
L̄(ρxL) ≤ 1. Suppose that L̄(ρxL) = c < 1. Then L̄((1/c)ρxL) = 1, and so from
the definition of ρL we obtain

(1/c)|ρxL(x)− ρxL(y)| ≤ ρL(x, y),

for all y ∈ X , that is,

ρL(x, y) ≤ cρL(x, y)

for all y ∈ X , which is impossible (unless X has only one point, which we now
do not permit). Thus L̄(ρxL) = 1.
Much as in Section 6, let Le denote the ordinary Lip-norm on C(X) (permitting
value +∞) corresponding to the restriction of ρL as metric on X . (Recall that
X is identified with the extreme points of S(A).) As seen in Proposition 6.1,
Le ≤ L̄. We now show that Le = L̄ because of the inequality in the hypotheses
of our theorem (and its extension in Lemma 8.2). Let f ∈ C(X), and suppose
that Le(f) ≤ 1. Thus

|f(x)− f(y)| ≤ ρL(x, y)

for all x, y ∈ X . In particular

f(x)− ρL(x, y) ≤ f(y).

For each x ∈ X define hx ∈ C(X) by

hx(y) = f(x)− ρL(x, y).

Then the above inequality says that hx ≤ f for each x. But it is clear that
hx(x) = f(x). Thus f = sup{hx : x ∈ X}. Then from the considerations of
the previous paragraph we see that L̄(hx) = 1 for all x. Thus by Lemma 8.2
we have L̄(f) ≤ 1. It follows that L̄ = Le as desired. �
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8.3 Corollary. Let X be a compact space, and let A be a dense subspace
of C(X) which contains the constant functions and is closed under the finite
lattice operations. Let L be a Lip-norm on A, and suppose that

L(f ∨ g) ≤ L(f) ∨ L(g)

for all f, g ∈ A. Then L is the restriction to A of the ordinary Lip-norm on
C(X) corresponding to the metric ρL on X.

Proof. Let f, g ∈ C(X). Then from Lemma 8.2 we see immediately that

L̄(f ∨ g) ≤ L̄(f) ∨ L̄(g).

We can thus apply Theorem 8.1 to obtain the desired conclusion. �

One way of viewing Theorem 8.1 is that it characterizes the Lip-norms on
commutative C∗-algebras which come from the corresponding metric on the
extreme points of S(A). It would be interesting to have a corresponding charac-
terization for non-commutative C∗-algebras, and for general order-unit spaces.

9. Lip-norms from metrics on S(A)

It is natural to ask which metrics on S(A) arise from Lip-norms on A. We
obtain here a characterization of such metrics. Many of the steps work for
arbitrary convex sets, and so at first we will work in that setting. Thus we let
V be any vector space over R, and we let K be any convex set in V which spans
V . Much as above, let D2 = K−K. Note that not only is D2 convex, but it is
also balanced, in the sense that if λ ∈ D2 and if t ∈ [−1, 1], then tλ ∈ D2. To
see this, note that if λ ∈ D2 then clearly −λ ∈ D2, so we only need consider
t ≥ 0. But

t(µ− ν) = µ− (tν + (1 − t)µ),

which is in D2 by the convexity of K. Let V 0 = RD2. Then V 0 is a vector
subspace of V . In the setting where K = S(A) we know that V 0 is a proper
subspace of V . Let M be a norm on V 0. Then we can define a metric, ρ, on
K by ρ(µ, ν) = M(µ− ν). We want to characterize the metrics which arise in
this way.
The most natural property to expect is that ρ be convex (in each variable),
that is:

9.1 Definition. We say that a metric ρ on K is convex if for every µ, ν1, ν2 ∈
K and t ∈ [0, 1] we have

ρ(µ, tν1 + (1 − t)ν2) ≤ tρ(µ, ν1) + (1− t)ρ(µ, ν2).

The metrics coming from norms on V 0 are convex because

µ− (tν1 + (1− t)ν2) = t(µ− ν1) + (1− t)(µ− ν2).
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Given a metric ρ on K, our strategy will be to try to use ρ to define a norm,
M , on V 0 by first defining it on D2. Specifically, for λ ∈ D2 we would like to
set

M(λ) = ρ(µ, ν)

for λ = µ − ν with µ, ν ∈ K. But we need to know that this is well-defined.
That is, we need to know that if µ, ν, µ′, ν′ ∈ K and if µ − ν = µ′ − ν′, then
ρ(µ, ν) = ρ(µ′, ν′). This can be rewritten in terms of midpoints so as to appear
a bit closer to considerations of convexity, namely, that if

(9.2) (µ+ ν′)/2 = (µ′ + ν)/2

then ρ(µ, ν) = ρ(µ′, ν′). This clearly holds for the metrics coming from norms.
One finds an attractive geometrical interpretation when one draws a picture of
this relation.

9.3 Definition. We say that a metric ρ on K is midpoint-balanced if whenever
equation (9.2) above holds, it follows that ρ(µ, ν) = ρ(µ′, ν′).

Let us now assume that ρ is midpoint-balanced. Then M on D2 is well-defined
as above. We wish to extend it to a norm on V 0. For this to be possible we
first must have the property that if t ∈ R, |t| ≤ 1, and if λ ∈ D2, then M(tλ) =
|t|M(λ). Now from the definition of M it is clear that M(−λ) = M(λ). Thus
it suffices to treat the case in which t ≥ 0. If λ = µ− ν, then

tλ = t(µ− ν) = µ− (tν + (1− t)µ),

so that by the definition of M we have M(tλ) = ρ(µ, tν + (1 − t)µ). From
convexity, ρ(µ, tν+(1− t)µ) ≤ tρ(µ, ν). But also tλ = (tµ+(1− t)ν)−ν, which
gives a similar inequality. Then from the triangle inequality and convexity we
have

ρ(µ, ν) ≤ ρ(µ, tν + (1 − t)µ) + ρ(tν + (1− t)µ, ν)

≤ tρ(µ, ν) + (1− t)ρ(µ, ν) = ρ(µ, ν).

Thus the inequalities must be equalities, and we obtain:

9.4 Lemma. Let ρ be a metric on K which is convex and midpoint balanced.
Define M on D2 as above using ρ. Then for any µ, ν ∈ S(A) and t ∈ [0, 1] we
have

ρ(µ, tν + (1 − t)µ) = tρ(µ, ν),

and for any λ ∈ D2 and t ∈ [−1, 1] we have

M(tλ) = |t|M(λ).

Next, we need that M is subadditive on D2. This means that if λ, λ′ ∈ D2 and
if λ+λ′ ∈ D2, then M(λ+λ′) ≤M(λ)+M(λ). Let λ = µ−ν, λ′ = µ′−ν′. Then
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λ+λ′ = (µ+µ′)− (ν+ ν′). Assuming that ρ is convex and midpoint-balanced,
we obtain from Lemma 9.4 that

M(λ+ λ′) = 2M((λ+ λ′)/2).

Now (λ + λ′)/2 = (µ + µ′)/2 − (ν + ν′)/2, and (µ + µ′)/2, (ν + ν′)/2 ∈ S(A).
Thus

M((λ+ λ′)/2) = ρ((µ+ µ′)/2, (ν + ν′)/2),

and we see that what we need is:

9.5 Definition. We say that a metric ρ on K is midpoint concave if for any
µ, ν, µ′, ν′ ∈ K we have

ρ((µ+ µ′)/2, (ν + ν′)/2) ≤ (1/2)(ρ(µ, ν) + ρ(µ′, ν′)).

Again one finds an attractive geometrical interpretation when one draws a
picture of this inequality. From the discussion above we now know that:

9.6 Lemma. Let ρ be a metric on K which is convex, midpoint balanced, and
midpoint concave. Define M on K as above. If λ, λ′ ∈ D2 and if λ+ λ′ ∈ D2,
then

M(λ+ λ′) ≤M(λ) +M(λ′).

9.7 Theorem. Let ρ be a metric on the convex subset K of V , and let V 0 =
RD2 = R(K − K). Then there is a norm, M , on V 0 such that ρ(µ, ν) =
M(µ − ν) for all µ, ν ∈ K, if and only if ρ is convex, midpoint balanced, and
midpoint concave. The norm M is unique.

Proof. The uniqueness is clear since V 0 = R(K−K). We have seen above that
the conditions on ρ are necessary. We now show that they are sufficient. We
let M be defined on D2 = K −K as above. For any λ ∈ V 0 there is a t > 0
such that tλ ∈ D2. We want to extend M to V 0 by setting

M(λ) = t−1M(tλ).

From Lemma 9.4 it is easily seen that M is well-defined, and furthermore that
M(sλ) = |s|M(λ) for all s ∈ R and λ ∈ V 0. The subadditivity of M then
follows easily from Lemma 9.6. �

We now want to apply the above ideas to S(A) for an order-unit space A. Note

that the V 0 of just above is then the A′0 of earlier. We will need the following
theorem, which does not involve the above ideas.
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9.8 Theorem. Let A be an order-unit space, and let M be a norm on A′0.
Define a metric, ρ, on S(A) by

ρ(µ, ν) = M(µ− ν).

If the ρ-topology coincides with the weak-∗ topology on S(A), then

M = (Lρ)
′

on A′0.
Proof. Since Lipρ is a subspace ofC(S(A)), we can setAL = (Lipρ)∩Af(S(A)).
Note that AL need not be contained in A unless A is complete. Initially it is
not clear how big AL is. Parallel to our earlier notation, let V denote the

normed space A′0 with norm M . Note that V need not be complete. Let V ′

denote the Banach space dual of V , with dual norm M ′. Fix any ν0 ∈ S(A).
For any ϕ ∈ V ′ define a function, τ(ϕ), on S(A) by

τ(ϕ)(µ) = ϕ(µ− ν0).

Then for µ, ν ∈ S(A) we have

|τ(ϕ)(µ) − τ(ϕ)(ν)| = |ϕ(µ− ν)| ≤M ′(ϕ)M(µ− ν) = M ′(ϕ)ρ(µ, ν).

Thus τ(ϕ) ∈ Lipρ and Lρ(τ(ϕ)) ≤M ′(ϕ). In particular, τ(ϕ) is continuous on
S(A) since ρ gives the weak-∗ topology. Furthermore it is easily seen that τ(ϕ)
is affine on S(A). Thus τ(ϕ) ∈ AL. Consequently τ is a norm-non-increasing
linear map from (V ′,M ′) to (AL, Lρ). Let τ̃ denote τ composed with the map

from AL to ÃL. Then it is easily seen that τ̃ does not depend on the choice of
ν0. We now need:

9.9 Lemma. Let Ā = Af(S(A)), the completion of A for ‖ ‖, so that AL ⊆
Ā. Then AL is dense in Ā.

Proof. Since Re ⊆ AL, it suffices to show that ÃL is dense in Ā∼. Let λ ∈
D2 ⊆ A′0 = (Ā∼)′. Suppose that λ(AL) = 0. Let λ = µ− ν with µ, ν ∈ S(A).
For any ϕ ∈ V ′ we have τ(ϕ) ∈ AL, so

0 = λ(τ(ϕ)) = µ(τ(ϕ)) − ν(τ(ϕ)) = ϕ(µ− ν0)− ϕ(ν − ν0) = ϕ(λ).

Since this is true for all ϕ ∈ V ′, it follows that λ = 0. Since D2 spans A′0,
an application of the Hahn–Banach theorem now shows that AL is dense on
Ā. �

Now let f ∈ AL. We seek to define a linear functional, σ(f), on A′0 related to
the σ in the proof of Theorem 5.2. We first try to define σ on D2 by

σ(f)(λ) = f(µ)− f(ν),
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where λ = µ − ν for µ, ν ∈ S(A). But we need to show that σ(f) is well-
defined. We argue much as we did before Definition 9.3. If also λ = µ1− ν1 for
µ1, ν1 ∈ S(A), then (µ + ν1)/2 = (µ1 + ν)/2. But these are elements of S(A)
and so

f((µ+ ν1)/2) = f((µ1 + ν)/2).

But from the fact that f is affine it now follows that

f(µ)− f(ν) = f(µ1)− f(ν1).

Thus σ(f) is well-defined on D2. We now need to know that σ(f) is “linear” on
D2. The proof that σ(f)(tλ) = tσ(f)(λ) for t ∈ [−1, 1] is similar to the proof of
Lemma 9.4. The proof that σ(f)(λ+ λ1) = σ(f)(λ) + σ(f)(λ1) if λ+ λ1 ∈ D2

is similar to the argument just before Definition 9.5. The proof that σ(f) then

extends to a linear functional on A′0 is similar to the arguments in the proof
of Theorem 9.7. For λ = µ− ν with µ, ν ∈ S(A) we have

|σ(f)(λ)| = |f(µ)− f(ν)| ≤ Lρ(f)ρ(µ, ν) = Lρ(f)M(µ− ν) = Lρ(f)M(λ).

It follows that σ(f) ∈ V ′ and M ′(σ(f)) ≤ Lρ(f). Thus σ is a norm-non-
increasing linear map from (AL, Lρ) to (V ′,M ′). Note that the constant func-
tions are in the kernel of σ, so that σ determines a norm-non-increasing linear
map from (ÃL, L̃ρ) to (V ′,M ′). But for f ∈ AL we have

τ(σ(f))(µ) = σ(f)(µ− ν0) = f(µ)− f(µ0).

Consequently τ̃ (σ̃(f̃)) = f̃ . Similarly, for ϕ ∈ V ′ and λ = µ− ν we have

σ̃(τ̃ (ϕ))(λ) = τ(ϕ)(µ) − τ(ϕ)(ν) = ϕ(µ − ν0)− ϕ(ν − ν0) = ϕ(λ),

so that σ̃(τ̃ (ϕ)) = ϕ. Thus σ̃ and τ̃ are inverses of each other. Since they are
norm-non-increasing, we obtain:

9.10 Lemma. The map τ̃ is an isometric isomorphism of (V ′,M ′) onto
(AL, Lρ), with inverse σ̃.

We can now complete the proof of Theorem 9.8. Since AL is dense in Ā by
Lemma 9.9, for any λ ∈ V ′ we have

(Lρ)
′(λ) = sup{λ(τ̃ (ϕ)) : Lρ(τ̃ (ϕ)) ≤ 1} = sup{ϕ(λ) : M ′(ϕ) ≤ 1} = M(λ).

�

Putting together the various pieces of this section, we obtain:

9.11 Theorem. Let A be an order-unit space, and let ρ be a metric on S(A)
which gives the weak-∗ topology. Then ρ comes from a Lip-norm L on A via
the relation

ρ(µ, ν) = L′(µ− ν)

if and only if ρ is convex, midpoint balanced, and midpoint convex.

Nik Weaver has suggested to me the following alternative treatment of the
material of this section. Let V , K, and V 0 be as at the beginning of this
section.
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9.12 Definition. We say that a metric ρ on K is linear if for every µ, ν ∈ K,
every v ∈ V 0, and every t ∈ R+ such that µ+ tv and ν + v are in K we have

ρ(µ, µ+ tv) = tρ(ν, ν + v).

It is easily seen that if ρ comes from a norm on V 0 then ρ is linear. Conversely,
if ρ is linear, define a norm, M , on V 0 by

M(v) = ρ(µ, µ+ tv)/t

for any µ ∈ K and any t ∈ R+ such that µ + tv ∈ K. One checks that M is
well-defined and is indeed a norm. Furthermore, ρ comes from M .
Weaver also points out that if V is a locally convex topological vector space
and if K is compact, then for a suitable definition of ρ being compatible with
the topology, one can show that when ρ is linear and compatible, then K
is isometrically isomorphic to S(Af(K)) when the latter is given the metric
coming from the Lipschitz seminorm on Af(K) coming from ρ.
It is not clear that examples will come up where it is actually useful to apply
the considerations of this section in order to obtain Lip-norms. Until such
examples arise, it will not be clear whether my version or Weaver’s will be the
more useful.

10. Musings on metrics

Since the theory in the previous sections worked for order-unit spaces, which
need not be algebras, the Leibniz inequality played no significant role there.
Indeed, even when one has an algebra, I have not seen how to make effective
use of the Leibniz inequality. Nevertheless, most constructions of Lipschitz
seminorms which I have seen in the literature seem to provide ones which do
satisfy the Leibniz inequality. We will briefly explore here a variety of such
constructions, and the relationships between them. Our interest will be on
seeing general patterns, and we will not try to deal carefully with the many
technical issues which arise. Thus we will be less precise than in the previous
sections.
A very natural way to look for Lipschitz seminorms, closely related to Weaver’s
W ∗-derivations [W2], goes as follows. Let A be a unital algebra and let (Ω, d)
be a first-order differential calculus for A. Thus Ω (which is also often denoted
Ω1) is an A-A-bimodule, and d is an Ω-valued derivation on A, that is, a linear
map from A into Ω which satisfies the Leibniz identity

d(ab) = (da)b + a(db).

We do not require that the range of d generates Ω. Suppose now that A is in
fact a normed algebra, and that we have a bimodule norm, N , on Ω (for the
norm ‖ ‖ on A), that is, a norm such that

N(aωb) ≤ ‖a‖N(ω)‖b‖
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for a, b ∈ A and ω ∈ Ω. Define a seminorm L on Ω by

L(a) = N(da).

It is easily seen that L satisfies the Leibniz inequality. Since d1 = 0, we have
L(1) = 0. Of course, without further hypotheses the null-space of L may be
much bigger. (We should mention that not all seminorms satisfying the Leibniz
inequality can be constructed in this way—see the discussion in [BC].)
There is a universal first-order differential calculus for any unital algebra A
[Ar, C2]. We approach this in a way which emphasizes more than usual those
differential calculi which are inner, since at least conceptually that is what
Dirac operators give, as we will see shortly. We form the algebraic tensor
product

Ωu1 = A⊗A,
with bimodule structure defined as usual by a(b ⊗ c)d = ab⊗ cd. We define d
by

da = 1⊗ a− a⊗ 1.

10.1 Definition. A first-order calculus (Ω, d) is inner if there is a ω0 ∈ Ω
such that

da = ω0a− aω0.

Then the calculus (Ωu1 , d) defined above is inner, with ω0 = 1 ⊗ 1. Note that
here ω0 may not be in the sub-bimodule generated by the range of d. This is
an indication of why we do not require this generation property. It is simple
to verify:

10.2 Proposition. The inner first-order calculus (Ωu1 , d, 1 ⊗ 1) is univer-
sal among inner first-order differential calculi over A, in the sense that if
(Ω′, d′, ω′0) is any other inner first-order differential calculus, then there is a bi-
module homomorphism Φ : Ωu1 → Ω′ such that Φ(da) = d′a and Φ(1⊗ 1) = ω′0.
In particular,

Φ(a⊗ b) = aω′0b

for a, b ∈ A. If Ω′ is generated by ω′0 as bimodule, then Φ is surjective, so that
Ω′ is a quotient of Ωu1 .

10.3 Proposition. Any first-order differential calculus is contained in an in-
ner first-order calculus.

Proof. Let (Ω, d) be a first-order calculus. Set Ω̄ = Ω ⊕ A as left A-module,
set d̄a = da⊕ 0, and set ω̄0 = 0⊕ 1. We must extend the right action of A on
Ω to a right action on Ω̄ such that d̄a = ω̄0a − aω̄0. Thus it is clear that we
must set (0 ⊕ 1)a = ω̄0a = da⊕ 0 + aω̄0 = da⊕ a, and so

(ω, b)a = (ωa+ bda, ba).

It is simple to check that this gives the desired structure. �
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Now let Ωu denote the sub-bimodule of Ωu1 generated by the range of d, and so
spanned by elements of the form

adb = a⊗ b− ab⊗ 1.

Let (Ω′, d′) be a first-order differential calculus which is not inner. Expand it
to an inner calculus by the construction of the previous proposition, and then
restrict Φ of that proposition to Ωu. It is clear from the construction that Φ
will carry Ωu into Ω′, where Ω′ is viewed as a sub-bimodule of its expansion.
We obtain in this way:

10.4 Proposition. The calculus (Ωu, d) is universal among all first-order dif-
ferential calculi over A, in the sense that if (Ω′, d′) is any other first-order
differential calculus, then there is a bimodule homomorphism Φ : Ωu → Ω such
that Φ(da) = d′a. If Ω′ is generated by the range of d′ as bimodule, then Φ is
surjective, so that Ω′ is a quotient of Ωu.

We notice that if (Ω, d) is any first-order differential calculus and ifN is any sub-
bimodule of Ω, then we obtain a calculus (Ω/N , d′) where d′ is the composition
of d with the canonical projection of Ω onto Ω/N . However, unlike the universal
calculus, there may now be many more elements a for which da = 0 beyond
the scalar multiples of 1.
Let us examine briefly what the above looks like when A = C(X) for a compact
space X . Then Ωu1 (= A ⊗A) is naturally viewed as a dense sub-bimodule, in
fact subalgebra, of C(X ×X). The bimodule actions are, of course,

(fF )(x, y) = f(x)F (x, y), (Ff)(x, y) = F (x, y)f(y),

and ω0 = 1⊗ 1 is the constant function 1, so that d is given by

(df)(x, y) = f(y)− f(x).

Then Ωu is spanned by the fdg, where

(fdg)(x, y) = f(x)(g(y)− g(x)).

Thus the elements of Ωu take value 0 on the diagonal, ∆, of X × X , and
consequently Ωu ⊆ C∞(X×Xr ∆). In fact it is easy to see that Ωu is a dense
subalgebra of C∞(X ×X r ∆).
Let ρ be an ordinary metric on X (giving the topology of X). View ρ as
a strictly positive function on X × X r ∆, and let γ = ρ−1. Then γ is a
continuous function on X ×X r ∆, but γ is unbounded if X is not finite. Let
C(X ×Xr ∆) denote the algebra of continuous possibly-unbounded functions
on X×X r ∆. Then C(X ×X r ∆) can be viewed as the algebra of operators
affiliated with the C∗-algebra C∞(X×Xr∆) in the sense studied by Baaj [Ba]
and Woronowicz [Wo]. In an evident way C(X ×X r ∆) is an A-A-bimodule,
containing γ.
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There are now two routes which we can take. One is to consider the inner-
derivation, dγ , defined by γ. Thus

(dγf)(x, y) = γ(x, y)f(y)− f(x)γ(x, y) = (f(y)− f(x))/ρ(x, y).

Then we can consider bimodule norms, possibly taking value +∞, on C(X ×
X r ∆), as a way to obtain Lipschitz norms on A. The other route is to use
γ (or ρ) to directly define norms on C∞(X ×X r ∆). For the first route the
most obvious norm is the supremum norm, which leads to the usual definition
of the Lipschitz seminorm for a metric space.
However, we choose to explore further the second route. (But most of what
we find will have a fairly evident reinterpretation in terms of the first route.)
There is a large variety of ways to obtain bimodule norms on C∞(X×Xr ∆).
The one which gives the usual definition of the Lipschitz seminorm for a metric
is clearly

N(F ) = ‖γF‖∞,
permitted to take value +∞. But here are some others. Let m be any positive
(finite) measure on X , and assume that m ×m restricted to X × X r ∆ has
as support all of X ×X r ∆. Then one can consider all of the Lp-norms for
m×m. If one wants to put γ (or ρ) explicitly into the picture, one can consider
the measure γ(m ×m), although this just represents the choice of a different
measure. Note that if f is an ordinary Lipschitz function for ρ, then γdf is
a bounded function on X × X r ∆, so that ‖γdf‖p,m×m is finite. Thus the
subalgebra of elements of A for which this Lipschitz seminorm is finite is dense
in A.
To explore further possibilities, let us for simplicity assume that X is finite.
Then Ωu1 = C(X×X) can be viewed as the algebra of all matrices whose entries
are indexed by elements of X ×X . The left and right actions of A on Ωu1 can
be viewed as coming from embedding A as the diagonal matrices and using
left and right matrix multiplication. Then ω0 is the matrix with a 1 in each
entry. On A we keep the supremum norm, but on the matrix algebra Ωu1 we can
consider any A-A-bimodule norm. Let B denote Ωu1 viewed as matrix algebra,
and equipped with the usual C∗-algebra norm. View Ωu1 as a B-B-bimodule in
the evident way. Then we can consider B-B-bimodule norms on Ωu1 . Any such
will in particular be an A-A-bimodule norm. But there has been extensive
study of the possible B-B-bimodule norms on Ωu1 . They are commonly called
“symmetric norms”, and among the best known are the Schatten p-norms,
which include the Hilbert–Schmidt norm and the trace norm. These have,
of course, also been extensively studied for operators on infinite dimensional
Hilbert spaces, and play a fundamental role in Connes’ theory of integration
on non-commutative spaces. (See [C2] Chapter IV and its Appendix D. A
nice treatment of the finite case can be found in [Bh].) From every symmetric
norm we obtain a Lip-norm on A (since A is finite-dimensional). This does
not exhaust the possibilities, as there is no necessity to restrict to symmetric
norms in order to get A-A-bimodule norms.
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All of the above discussion has been for the universal differential calculus. We
get many more possibilities by using other differential calculi. We continue
to concentrate on the case of A = C(X) with X compact. Now sub-A-A-
bimodules of C(X ×X), when closed in the supremum norm, will be ideals of
C(X×X), and the quotient can be identified with C(W ) for some closed subset
W of X × X . We can restrict df to W . But some condition must be placed
on W if we want to ensure that df |W = 0 only if f is a constant function. For
this purpose it is convenient to assume, to begin with, that W contains the
diagonal ∆ and is symmetric about ∆, that is, if (x, y) ∈ W then (y, x) ∈ W .
Given x ∈ X we define the W -neighborhood of x to be the (closed) set of those
y ∈ X such that (x, y) ∈ W . By the W -component of x we mean the smallest
closed subset of X which contains the W -neighborhood of each of its points.
If df |W = 0, then f is constant on the W -component of each point. Thus a
sufficient condition under which df |W = 0 will imply that f is constant, is that
the W -component of each point is all of X . If X is a finite set, then W r∆ can
be viewed as consisting of the directed edges for a graph whose vertices are the
points of X . Then the above condition becomes the condition that this graph
is connected in the usual sense. If X is not discrete, it is usual to require that
W is a neighborhood of ∆. Then each W -neighborhood of a point will be an
ordinary (closed) neighborhood, and so the W -component of each point will
be both closed and open. In particular, if X is connected it will be true that
df |W = 0 implies that f is constant.
We remark that if W is a neighborhood of ∆ and is symmetric about ∆, and
if we set Ω = C(W ), then the first order calculus (Ω, d) obtained as above
is the typical degree-one piece of the complexes (Ω∗W , d) used in defining the
Alexander–Spanier cohomology of X . The higher-degree pieces are defined
similarly but in terms of Xn for various n. The Alexander–Spanier cohomology
is then obtained by taking a limit of the homology of these complexes as W
shrinks to ∆. Essentially this view can be seen in lemma 1.1 of [CM], where
smooth functions on a manifold are used, and in Section 1 of [MW], where
continuous functions are used.
Suppose now that Ω = C(W ) as above, but assume now for simplicity that
W and ∆ are disjoint (with W no longer required closed). Let d be defined
by df = df |W , and assume that if df = 0 then f is a scalar multiple of 1. To
obtain a Lipschitz seminorm on A we again just need to put a bimodule norm
on Ω. The method which is closest to the usual Lipschitz norm is to specify a
nowhere zero function γ on W and set

L(f) = ‖γdf‖∞

(on W , allowing value +∞). In this context however, if we set ρ = γ−1, it no
longer makes much sense to ask that the triangle inequality hold for ρ. About
the most that is reasonable is to ask that ρ, hence γ, be positive, and that
γ(x, y) = γ(y, x) for (x, y) ∈ W , x 6= y. This is a situation which has been
widely studied. Entire books [Ra, RR] have been written about the problem
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of finding the corresponding distance between two probability measure on X ,
often under the heading of “the mass transportation problem”. The function
ρ is then often called a “cost function”. We should clarify that when ρ is not
a metric we are dealing here with mass transportation “with transshipment
permitted” [RR], not the original Monge–Kantorovich [KA] mass transporta-
tion problem, which does not permit transshipment, and may well not yield a
metric. When transshipment is permitted and ρ is not a metric on X , the cor-
responding metric on S(X) is called the Kantorovich–Rubenstein metric [KR1,
KR2]. For a fascinating survey of some recent developments concerning the
original Monge–Kantorovich problem see [Ev].
When X is a finite set andW is viewed as specifying edges for a graph which has
X as set of vertices, the cost function ρ is naturally interpreted as assigning
lengths to the edges (though we will see a quite different interpretation in
Section 12). Then the metric on X coming from Lρ is the usual path-length
distance on the graph. There has been much study of how to compute this
path-length distance efficiently for large graphs. We remark that if one prefers
to have ρ defined on all of X ×X one can simply set it equal to +∞ on any
(x, y), x 6= y, which is not an edge.
We remark that in the context of cost functions on compact sets there may well
be no non-constant functions for which the Lipschitz seminorm is finite. As
one example let X be the unit interval [0, 1], and set ρ(x, y) = |x− y|2. This is,
in effect, because we permit transshipment — the original Monge–Kantorovich
problem is quite interesting for this particular cost function, as shown in [Ev].
It is just that the minimal cost of moving one probability measure directly to
another does not then give a metric on probability measures, because it may
be less costly to use two or more moves.
There is a variety of other bimodule norms, such as Lp-norms, which one can
use for various differential calculi, and these give a wide variety of metrics on
probability measures [Ra]. A particularly deep application of such norms, for
the case of graphs, and involving explicitly Connes ideas of non-commutative
metrics, appears in [Da]. (I thank Nik Weaver for bringing this paper to my
attention.)
Let us now discuss briefly the case in which we have A = Mn, a full matrix
algebra. As mentioned much earlier, one natural Lip-norm on A is just L =
‖ ‖∼. Now A′ can be identified by means of the normalized trace, τ , with A
itself, but equipped with the trace-norm. Then A′0, as in our earlier notation,
consists of the matrices with trace 0. Of course, S(A) is identified with the
positive matrices of normalized trace 1. With this identification, we have

ρL(µ, ν) = trace(|µ− ν|).

This is exactly one of the metrics listed (with references) in the introduction
to [ZS]. Another one listed there uses the Hilbert–Schmidt norm instead of the
trace norm. Listed also is a variety of other metrics on S(Mn) which have
appeared in various applications. But I have not checked whether they come
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from Lip-norms. There has also been much study of the differential geometry of
S(Mn) for a variety of Riemannian metrics, especially the “monotone metrics”,
which are closely related to operator monotone functions. Two very recent
articles which contain many references to previous work on this topic are [Di,
S]. But the emphasis of most of this work is not on the ordinary metric which a
Riemannian metric induces on S(Mn), but rather on the differential geometric
aspects. There is also study of the volume form which is induced, and on
associated probabilistic aspects. For recent related study going in the direction
of non-commutative entropy see [LR].

11. Dirac operators and differential calculi

We continue our comments of the previous section, but here we focus on how
Dirac operators fit into the picture. Let A be a unital ∗-algebra equipped with
a C∗-norm (perhaps not complete), and let π be a faithful representation of A,
that is, an isometric ∗-homomorphism of A into the algebra B(H) of bounded
operators on a Hilbert space H. Let D be an essentially self-adjoint, possibly
unbounded, operator on H, and assume that π(a) carries the domain of D into
itself for each a ∈ A, and that on this domain [D,π(a)] is a bounded operator,
and so extends uniquely to a bounded operator on H. Then, following Connes,
we set

L(a) = ‖[D,π(a)]‖.
As we did earlier, it is natural to require that [D,π(a)] = 0 only when a is a
scalar multiple of 1. Many important examples of this situation are now known.
But in general it seems difficult to ascertain whether the corresponding metric
on states gives the weak-∗ topology, though this has been shown for certain
examples in [Rf]. See also [W2, W3, W5], where the sets Bt defined at the
beginning of Section 3 are shown to be totally bounded, in fact compact, for
various examples. We do not deal with this question here, but rather try to
relate the bimodule picture to the Dirac picture. One direction is apparent.
We view B(H) as an A-A-bimodule by setting

aT b = π(a)Tπ(b).

Then, although D is only affiliated with B(H), conceptually we use the inner
derivation which D defines, so that

da = Dπ(a)− π(a)D = [D,π(a)].

(This, of course, is the starting point for Connes’ non-commutative differential
calculus [C2].) We then note that the operator norm on B(H) is an A-A-
bimodule norm, and so upon setting

L(a) = ‖[D,π(a)]‖

we obtain a Lipschitz norm, which we showed to be lower semicontinuous in
Proposition 3.8.
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But suppose we are given instead some first order differential calculus (Ω, d)
and a bimodule norm on Ω so that we obtain the corresponding Lipschitz norm
L. Can we also obtain L from a Dirac operator? For this to be possible we
must have L(a∗) = L(a), and L must be lower semicontinuous. As mentioned
earlier, L must also fit into a family of “matrix Lipschitz seminorms”. These
conditions are probably not enough in general, though I have not tried to find
a counterexample. But the following superficial comments help to give some
perspective. (In most of the considerations which follow the algebra structure
on A is only used in order to get the Leibniz inequality. Thus much of what
follows actually works for order-unit spaces.)
We saw in Proposition 10.3 that we can extend (Ω, d) to obtain an inner first-
order calculus. In analogy with this idea, suppose that we can realize Ω as
a subspace of B(H) for some Hilbert space H, in such a way that the norm
on Ω is the operator norm, and the bimodule structure is given by two ∗-
representations, π1 and π2, of A on H, so that

aωb = π1(a)ωπ2(b)

for a, b ∈ A and ω ∈ Ω. Suppose further that there is a possibly-unbounded
essentially self-adjoint operator, D0, on H, such that π1(a) and π2(a) carry the
domain of D0 into itself, and such that

da = D0π2(a)− π1(a)D0,

which in particular must be a bounded operator. Set L(a) = ‖da‖. This is not
exactly the Dirac operator setting, but it is not difficult to convert it into that
setting. To arrange matters so that we have only one representation, we let
π = π1 ⊕ π2 on H⊕H and set

D1 =

(
0 D0

0 0

)
.

Then we find that
L(a) = ‖[D1, π(a)]‖.

But of course D1 is not self-adjoint. We fix this in the traditional way by again
doubling the Hilbert space, with representation π ⊕ π of A, and setting

D =

(
0 D∗1
D1 0

)
.

The corresponding Lipschitz norm is L(a)∨L(a∗), but from the self-adjointness
of D one can check that we actually get back L.
Anyway, we are left with

11.1 Question. For an order-unit space A, or a ∗-algebra A with C∗-norm,
how does one characterize those Lip-norms on A which come from the Dirac
operator construction?
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Even for finite-dimensional commutative C∗-algebras it is not clear to me what
the answer is.
As mentioned earlier, a Dirac operator also gives seminorms on all of the matrix
algebras over A, so that one can speak of this family as a “matrix Lipschitz
norm”, in the spirit of [Ef]. Thus a related problem is to characterize these
structures.
Of course a given metric on S(A) may come from several fairly different Dirac
operators. For example, suppose that we have a compact space X , and a closed
neighborhood W of the diagonal ∆ of X × X , together with a cost function
ρ on W , just as in the previous section. As discussed there, we can use ρ
together with the first-order calculus determined by W to define a Lipschitz
norm on C(X). (Further hypotheses are needed for it to be a Lip-norm on
a dense subalgebra of C(X).) Then by the procedure discussed earlier in the
present section we can pass to a Dirac operator. But that procedure enlarged
the Hilbert space because a first-order differential calculus usually involves two
representations rather than one. We will now show that there is an alternative
method which does not enlarge the Hilbert space. This is a mild generalization
of my lecture comments for metric spaces mentioned earlier, whose details
are indicated on page 274 of [W2]. As earlier, let m be a measure on X of
full support, and consider m × m on W r ∆. Form the Hilbert space H =
L2(W r ∆,m×m). We consider only the representation π of A = C(X) on H
defined by

(πfξ)(x, y) = f(x)ξ(x, y).

(This is, of course, essentially the left action on the bimodule for W .) Define
an operator, F , on H by the flip

(Fξ)(x, y) = ξ(y, x).

Because we are using a product measure, the operator F is self-adjoint and
unitary. Define an (unbounded) positive operator, P , on H by

(Pξ)(x, y) = ξ(x, y)/ρ(x, y).

Because we assume that ρ(x, y) = ρ(y, x) for all (x, y) ∈ W , the operators F
and P commute. We define the Dirac operator by

D = PF,

so that F is the phase of D and P = |D|. Informal calculation shows that for
any f ∈ C(X) we have

([D,πf ]ξ)(x, y) = ((f(y)− f(x))/ρ(x, y))ξ(y, x),

so that

L(f) = ‖[D,πf ]‖ = sup{|f(y)− f(x)|/ρ(x, y) : (x, y) ∈W}.
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Of course, further hypotheses must be placed on ρ in order for this to give a
Lip-norm. But the right-hand side of the above equality is the usual definition
of a Lipschitz norm in this situation, especially in contexts such as graph theory.
It will coincide with what one obtains in the corresponding bimodule approach.
Notice that the resulting distance between two points x, y ∈ X can easily be
strictly smaller than ρ(x, y) (if (x, y) happens to be in W ).
For an interesting alternative (but closely related) method of obtaining the
usual distance on a graph (including infinite graphs) from a cost function,
by means of Dirac operators, see theorem 7.2 of [Da]. Furthermore, in [Da]
other very interesting and quite different Dirac operators associated to cost
functions on graphs are discussed in some detail, and used to obtain improved
estimates for heat kernels on graphs. They can be described in terms of first-
order differential calculi and Laplace operators along much the same lines as we
used in Section 10. Much of this is explicit in [Da], and we will not elaborate
on it here.
We should mention here that very interesting examples of Dirac operators as-
sociated with non-commutative variants of sub-Riemannian manifolds appear
in the second example following axiom 4′ of [C3], and in [W5].

12. Resistance distance

We conclude with an appealing class of examples which do not fit into the
previous framework of differential calculi, and for which the Lip-norm does
not satisfy the Leibniz identity. These examples come from graphs with “cost
functions” on the edges, but now the graph is interpreted as an electrical circuit
with resistances on the edges, whose values are given by the cost function.
These examples have been extensively studied [DS, Kl, KlR, KZ], but I have
not seen earlier mention of the corresponding metric on probability measures
which we will define here. It is not clear to me whether this metric is more
than a curiosity.
All of the discussion here can be carried out for infinite graphs, along the lines
discussed extensively in [DS], but for simplicity we only discuss finite graphs
here. The examples also have a fine alternative interpretation in terms of
random walks [DS]. Our term “resistance distance” is taken from the title of
[KlR].
The set-up, as indicated above, is a finite graph with set X of vertices, together
with strictly positive real numbers rxy = ryx assigned to each (undirected)
edge. We interpret these numbers as resistances. We assume throughout that
the graph is connected. Given x, y ∈ X , x 6= y, we can imagine putting a
voltage difference across x and y, adjusted so that one unit of current flows
in at x and out at y. Then Ohm’s law says that the “effective resistance” is
equal to the required voltage difference. We denote this effective resistance by
ρ(x, y). It is, in fact, a metric on X . The only reference I know for this is [KlR,
K, KZ], but my friends in probability theory tell me that within the context of
random walks rather than resistances this is well-known, even if no reference
comes to mind.
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Suppose now that µ and ν are general probability measures on X . Although it
does not seem so intuitively obvious, we will see shortly that we can establish
voltages on the points of X such that unit total current flows into the circuit,
with the amount flowing in at each point x given by µx, while unit total current
flows out of the circuit, with the amount at each point given by ν (with the
evident interpretation when the supports of µ and ν are not disjoint). For the
analysis of this situation it is useful to define a function, c, on the edges, by
cxy = 1/rxy. This is commonly called the “conductance”. It is convenient to
extend c to all of X×X by setting cxy = 0 if (x, y) is not an edge (or if y = x).
Let f ∈ C(X), interpreted as voltages applied to the points of X . We let df be
defined as earlier for the universal calculus (or for the calculus corresponding
to the edges). We let ∇f denote the resulting flow inside the circuit. By Ohm’s
law the flow (before electrons were discovered) from x to y is given by

(∇f)(x, y) = (f(x) − f(y))cxy = −c(df),

where by c(df) we mean the pointwise product of functions. Note that ∇f is a
function on directed edges, with

(∇f)(x, y) = −(∇f)(y, x)

(and value 0 if (x, y) is not an edge).
Suppose now that ω is any function on directed edges such that ω(x, y) =
−ω(y, x). We interpret ω(x, y) as giving the magnitude of a current from x to
y. (To be more realistic we should require 0 circulation, but we will have no
need to impose this requirement.) To sustain this current, we will in general
have to insert (or extract) current at various vertices. We let div(ω)(x) denote
the current which must be inserted at x. By Kirchhoff’s laws we have

div(ω)(x) =
∑

y

ω(x, y).

Note that because ω(x, y) = −ω(y, x), we will have

∑

x

div(ω)(x) = 0,

which accords with the fact that the total amount of current inserted must be
0.
Suppose now that f ∈ C(X) and that we set ω = ∇f . We see from above that
the currents which must be inserted to sustain the voltages given by f must be

div(∇f),

which we denote by ∆f . To accord with our earlier notation, we let A′0 denote
the signed measures, λ, on X for which 〈1, λ〉 = 0. The discussion of the

previous paragraph can be interpreted as saying that ∆f ∈ A′0.
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Suppose now that we are given λ ∈ A′0. Can we find f such that ∆f = λ?
Note that since ∆1 = 0, we know that f will not be unique, but rather that,
as usual with potential functions, we can expect f to be unique only up to
a constant function. To proceed further we must more carefully analyze the
operator ∆ in the traditional way [DS, K]. For f ∈ C(X) we have

(∆f)(x) =
∑

y

(∇f)(x, y)

=
∑

y

(f(x)− f(y))cxy = f(x)
∑

y

cxy −
∑

y

f(y)cxy.

Let D denote the diagonal matrix with diagonal entries

Dxx =
∑

y

cxy.

If we view f as a column vector, we see that

∆f = (D − C)f.

From the Peron–Frobenius theorem and the fact that our graph is connected,
it follows that the kernel of ∆ consists exactly of the constant functions. If we
permit ourselves to confuse vector spaces a bit, we see that ∆ is self-adjoint
with respect to the standard inner-product on column vectors. Thus it carries
the orthogonal complement, H, of the constant functions into itself, and it is
invertible on H. Consequently, for every λ ∈ A′0 we can find a unique f ∈ H
such that ∆f = λ. We will write this as f = ∆−1λ, where we view ∆ as
restricted to H so that it is invertible there.
Suppose now that x and y are fixed points of X , and that λ = δx − δy, where
δx denotes the δ-measure at x. Thus we are inserting one unit of current at x
and extracting it at y. Let f = ∆−1λ. According to our earlier comments, the
effective resistance from x to y, ρ(x, y), is given by f(x)− f(y) = (∆−1λ)(x)−
(∆−1λ)(y). It is now easy to see why ρ is a metric, along the lines given in
[KlR]. If z is any other point of X , let

g = ∆−1(δx − δz), h = ∆−1(δz − δy).

Clearly f = g + h, so

ρ(x, y) = g(x)− g(y) + h(x)− h(y).

But simple considerations show that g must take its maximum and minimum
values at x and z, so that

g(x)− g(y) ≤ g(x)− g(z) = ρ(x, z).
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Similarly h(x) − h(y) ≤ ρ(x, z). The triangle inequality for ρ follows.
But we are interested more generally in the effective resistance between µ and
ν where µ and ν are arbitrary probability measures, and it is not even clear
how this should be defined. (It does not seem natural just to use the Monge–
Kantorovich metric from ρ.) In view of our earlier considerations we should

form λ = µ− ν, and so we need an appropriate norm on A′0, and this should
be the dual norm of a Lip-norm, say L, on C(X), probably defined by means
of a norm on Ωu. The dual norm, L′, should be such that if λ = δx − δy,
then L′(λ) = (∆−1λ)(x)− (∆−1λ)(y). But as remarked above, ∆−1λ takes its
maximum and minimum values at x and y. Thus a norm which will meet this
requirement is

L′(λ) = 2‖∆−1λ‖∼∞,
where ‖ ‖∼∞ is as defined in Section 1. To find L on C(X) we use the self-

adjointness of ∆ to calculate, for g ∈ C(X) and any λ ∈ A′0,

〈g, λ〉 = 〈g,∆∆−1λ〉 = 〈∆g,∆−1λ〉.

The supremum over λ such that 2‖∆−1λ‖∼∞ ≤ 1 is the same as the supremum
of

〈(1/2)∆g, h〉
over h such that ‖h̃‖∼∞ ≤ 1. But we saw earlier that this gives just the restriction

to A′0 of the dual norm for ‖ ‖∞ on C(X), which is the L1-norm. Thus we
see that we must set

L(g) = (1/2)‖∆g‖1 = (1/2)
∑

x

|(∆g)(x)|

= (1/2)
∑

x

∣∣∣∣∣
∑

y

(g(x)− g(y))cxy

∣∣∣∣∣ = (1/2)
∑

x

∣∣∣∣∣
∑

y

dg(x, y)cxy

∣∣∣∣∣ .

This is certainly rather different from the usual Lip-norms for metrics on finite
sets. The above expression suggests that we define a seminorm, N , on Ωu by

N(ω) = (1/2)
∑

x

∣∣∣∣∣
∑

y

ω(x, y)cxy

∣∣∣∣∣ ,

so that we have
L(g) = N(dg).

Reversal of the earlier calculation shows that the dual norm is the L′ considered
above, so that we obtain the desired ρ(µ, ν). However N will not usually be a
bimodule norm, so that we are not fully in the context of the previous sections,
and L need not satisfy the Leibniz inequality.
I must admit that I see no particularly natural interpretation for L(g), nor for
ρ(µ, ν), even if we call the latter “effective resistance”. If g were interpreted as
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giving voltages on X , then L(g) would be half the sum of the absolute values of
the currents inserted or extracted from the circuit, and thus exactly the sum of
the currents inserted into the circuit (disregarding the currents extracted). But
I do not see why it is natural to give g such an interpretation as voltages. If one
goes back to the effective resistance between two points, then it is easily seen
that this is equal to the energy dissipated by the circuit when one unit of current
is inserted. This suggests using the dissipated energy in the more general case
of arbitrary probability measures µ and ν. But the energy dissipated along
any edge varies as the square of the current, and one can see by examples
that this causes the triangle inequality to fail. One does obtain a metric if
one uses the square-root of the dissipated energy, but this does not give the
correct value for the effective resistance between two points. These possibilities
are not far from the Lipschitz norm used right after lemma 4.1 of [Da] to
define the metric denoted there by d3. This Lipschitz norm can be interpreted
as the supremum over the points x of X of the square roots of the energy
dissipations in all the edges beginning at x. Perhaps the discussion of Dirichlet
spaces given in section 6 of [W6], or the “twisted bimodule structure” and
corresponding differential discussed beginning on page 149 of [Me] in connection
with Hudson’s treatment of discrete flows and stochastic differential equations,
could be used to shed more light on this. Or perhaps some of the stopping
rules or mixing times considered for Markov chains, as discussed in [LW], are
relevant.

Finally, we remark that it would be interesting to study resistance distance in
the continuous case, for example for thin plates of resistance metal of various
shapes.
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[KlR] Klein, D. J. and Randić, M., Resistance distance, MR 94d:94041, J.
Math. Chem. 12, no. 1-4 (1993), 81–95.

[KZ] Klein, D. J. and Zhu, H.-Y., Distances and volumina for graphs, MR
99f:05032, J. Math. Chem. 23, no. 1-2 (1998), 179–195.

[LR] Lesniewski, A. and Ruskai, M. B., Monotone Riemannian metrics
and relative entropy on non-commutative probability spaces, math-
ph/9808016..

[LW] Lovász L. and Winkler, P., Mixing times, Microsurveys in Discrete
Probability (Princeton, NJ), Amer. Math. Soc., Providence, RI, 1997,
pp. 85–133.

[Me] Meyer, P.-A., Quantum probability for probabilists, MR 94k:81152, Lec-
ture Notes in Math., 1538, Springer-Verlag, Berlin (1993).

[MW] Moscovici, H. and Wu, F.-B., Index theory without symbols, MR
96g:58184, Contemp. Math. 167 (1994), Amer. Math. Soc., Provi-
dence, RI, 304–351.
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1 Introduction, results, and easy proofs

1.1 Aim. Cumulants are certain functionals of probability measures. This
paper attempts to explain more precisely what they are by characterizing them
through their most useful properties. For simplicity, only the one-dimensional
case of probability measures on R is treated. There the most familiar exam-
ples of cumulants are the expectation and the variance. Our results yield, in
particular, new descriptions of the roles played by these latter two functionals
in probability theory.

1.2 Guide. The definition of cumulants is recalled in Subsection 1.4 below,
as formula (4). The useful properties of cumulants, referred to above, are the
homomorphism property (5) and their transformation behaviour under affine
mappings, (14). The relation between cumulants and moments is recalled in
Subsection 1.5.

Subsection 1.6 introduces topologies on the domains of definition of the cumu-
lants, with the aim of formulating regularity assumptions in our theorems and
corollaries. That some regularity assumptions are actually necessary, at least
in the results 1.8 – 1.12, is demonstrated in 1.20.

Theorem 1.8, characterizing the continuous characters of the semigroup
Prob∞(R), is the main result of the present paper. Its natural forerunner
from the literature, namely the theorem of Halász, is recalled in 1.10 below as
a special case of Corollary 1.9.

Another corollary of Theorem 1.8, and perhaps the most interesting result
of this paper, is the characterization of the finite linear combinations of cu-
mulants as the continuous, R-valued, and convolution-additive functionals of
probability measures, stated in Theorem 1.11 and Corollary 1.12. Such results
were conjectured by Kemperman (1972). By restricting the functionals to be
[0,∞[ -valued, we arrive at a characterization of the variance in 1.14. [A related
result of Martin Diaz (1977) is discussed in 1.22.]

Our next results, 1.17 and 1.18, are spezializations of 1.8 and 1.11 to scale
equivariant functionals, the definition of which being recalled in 1.16.

As a further corollary, we obtain in 1.19 a characterization of the expectation as
the only nontrivial continuous functional homomorphic with respect to additive
and multiplicative convolutions.

Historical and etymological remarks on cumulants are given in Subsection 1.21.

Subsection 1.22 discusses some further references related to the present work.

Easy proofs are given immediately after the statement of a result in Section
1. The only difficult proof of this paper, needed for the “only if” part of our
main result 1.8, is the content of Section 2. Its basic technical tool, refining
the convolution quotient representation theorem for signed measures of Ruzsa
& Székely (1983, 1985, 1988), is supplied in Subsection 2.5.
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1.3 Some notation and conventions. The positive integers are denoted
by N, the nonnegative ones by N0.

If X is a set equipped with a σ-algebra A, we let Prob(X ) denote the set
of all probability measures defined on A. The real line R is understood to
be equipped with its Borel σ-algebra. The convolution of P,Q ∈ Prob(R) is
denoted by P ∗Q. We write δa for the Dirac measure concentrated at a ∈ R,
and δ := δ0 for the one concentrated at zero. For the image measure of a
probability measure P under a measurable function f , we use the notation
f�P . We write supp P for the support [= minimal closed set of probability
one] of a P ∈ Prob(R).

Prob(R) will mainly be considered as a semigroup with respect to convolution.
Homomorphisms of a semigroup [below always a sub-semigroup of Prob(R)]
into the multiplicative group T of complex numbers of absolute value one will
be called characters, homomorphisms into the additive group R will be called
additive functions.

1.4 Cumulants. We present below the usual introduction of cumulants and
their most important properties. For P ∈ Prob(R), let P̂ denote its Fourier
transform or characteristic function, defined by

P̂ (t) :=

∫
eitx dP (x) (t ∈ R). (1)

The most important reason for considering Fourier transforms of probability
measures is multiplicativity with respect to convolution:

(P ∗Q)̂ (t) = P̂ (t) · Q̂(t) (P,Q ∈ Prob(R), t ∈ R). (2)

Let log denote the usual logarithm defined on, say, {z ∈ C : |z − 1| < 1}. Let

P ∈ Prob(R). Then P̂ is continuous with P̂ (0) = 1, so that log ◦P̂ is defined
in some P -dependent neighbourhood of zero. Now put

Probr(R) :=

{
P ∈ Prob(R) :

∫
|x|r dP (x) <∞

}
(r ∈ N0), (3)

and assume that r ∈ N and P ∈ Probr(R). Then P̂ and thus log ◦P̂ is r times
continuously differentiable in the neighbourhood of zero introduced above, and
the number

κr(P ) := i−r
(
Dr log ◦P̂

)
(0) (4)

is called the rth cumulant of P . [Readers wondering about this strange name
are referred to Subsection 1.21.] It is easy to show that the cumulants are real-
valued functionals. Their most important property, which obviously follows
from (2) and (4), is additivity with respect to convolution:

κr(P ∗Q) = κr(P ) + κr(Q) (r ∈ N, P,Q ∈ Probr(R)) . (5)
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In other words: For each r ∈ N, (Probr(R), ∗) is a semigroup on which κr is an
additive function.

1.5 Examples, expression in terms of moments. The two most familiar
examples of cumulants are the mean µ and the variance σ2, since

κ1(P ) = µ(P ) :=

∫
xdP (x) (P ∈ Prob1(R)),

κ2(P ) = σ2(P ) :=

∫
(x− µ(P ))2 dP (x) (P ∈ Prob2(R)).

These formulas are special cases of the relation between cumulants and the
moments

µr(P ) :=
∫
xr dP (x) = i−r(DnP̂ )(0) (r ∈ N0, P ∈ Probr(R)).

One possibility of expressing this relation is to use the recursion

µr+1 =

r∑

l=0

(
r

l

)
µr−lκl+1 (r ∈ N0), (6)

which is easily proved using the Leibniz rule for the differentiation of a product
and the representation of the moments as derivatives: For P ∈ Probr+1(R) put

ϕ := P̂ and ψ := logϕ, in a neighbourhood of zero, and compute Dr+1ϕ =
Dr(ϕ ·Dψ) =

∑r
l=0

(
r
l

)
(Dr−lϕ) · (Dl+1ψ), evaluate the extreme left and right

hand sides at zero, and divide by ir+1, to arrive at (6). Since the coefficients
of µr+1 and κr+1 in (6) are both one, it follows by induction that

κr = µr + polynomial without constant term in µ1, . . . , µr−1 (r ∈ N), (7)

and that corresponding relations hold when µ and κ are interchanged. Various
explicit fomulas derived from these relations and some examples of actual com-
putations of cumulants may be found in Chapter 3 of Kendall, Stuart & Ord
(1987). We merely note here two further examples, for convenience rewritten
in terms of centered moments,

κ3(P ) =

∫
(x− µ(P ))3 dP (x) (P ∈ Prob3(R)),

κ4(P ) =

∫
(x− µ(P ))4 dP (x)− 3

(
σ2(P )

)2
(P ∈ Prob4(R)).

As one might suspect on seeing these formulas, the variance κ2 is the only
nonnegative cumulant. [This fact follows easily from 1.13 below, as can be seen
from the proof of 1.14.]
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1.6 Topologies on some subsets of Prob(R). One of our aims is to
show that every “reasonable” homomorphism from (Probr(R), ∗) into (R,+)
is a linear combination of cumulants of order at most r. This is the content
of Corollary 1.12, where “reasonable” is specified to mean “continuous”. To
this end we introduce here on each Probr(R) a topology. In order to make
the continuity assumption in Corollary 1.12 weak, we have to choose a strong
topology on Probr(R). We take the one induced by the weighted total variation
metric dr defined by

dr(P,Q) :=

∫
(1 + |x|r) d|P −Q|(x) (P,Q ∈ Probr(R)). (8)

We further consider

Prob∞(R) :=
⋂

r∈N0

Probr(R),

which is the largest set of probability measures on which every cumulant is
defined. We topologize Prob∞(R) by the family of metrics (dr : r ∈ N0).

1.7 Lemma. a) Each κr|Probr(R) is continuous with respect to dr.

b) Let r ∈ N and c ∈ ]0,∞[. Then there exists a sequence (Pn) in Prob∞(R)
with

lim
n→∞

dr−1(Pn, δ) = 0, (9)

lim
n→∞

κl(Pn) = 0 (l = 1, . . . , r − 1), (10)

lim
n→∞

κr(Pn) = c. (11)

Proof. a) The functionals (µl : l = 1, . . . , r) are obviously continuous with
respect to dr, and (7) shows in particular that κr is a polynomial function of
them.

b) We may restrict attention to those n ∈ N with cn−r ≤ 1 and put Pn :=
(1 − cn−r)δ + cn−rδn. Then Pn ∈ Prob∞(R), and dr−1(Pn, δ) = c

n yields
(9). By part a), (9) implies (10). Finally, (11) follows from µl(Pn) = cnl−r

(l = 1, . . . , r) and (7).

1.8 Theorem (continuous characters of Prob∞(R)). A function
χ|Prob∞(R) is a continuous character iff

χ(P ) = exp(i
∑

l∈N

clκl(P )) (P ∈ Prob∞(R)) (12)

holds for some finitely supported sequence of real numbers (cl : l ∈ N). The
latter, if existent, is uniquely determined by χ.
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Proof. The proof of the “only if” part is the content of Section 2. The “if”
part follows trivially from 1.7 a) and (5).

Finally suppose that we have (12) and an analogous representation of χ in-
volving another finitely supported sequence (c̃l : l ∈ N). Then the sequence
(dl) := (cl − c̃l) yields an analogous representation of the constant character 1.
Suppose that not all dl vanish. Put r := min {l : dl 6= 0} and apply 1.7 b) with
c := π/|dr|. Then 1 = exp(i

∑r
l=1 dlκl(Pn)) → exp(±iπ) = −1 for n → ∞.

This contradiction shows that we must have dl = 0 for every l ∈ N, as was to
be proved.

1.9 Corollary. Let r ∈ N0. A function χ|Probr(R) is a continuous char-
acter iff (12) holds with cl = 0 for l > r, and with Probr(R) in place of
Prob∞(R).

Proof. Again, the “if” part follows from from 1.7 a) and (5). To prove “only
if”: Let χ|Probr(R) be a continuous character. Then, by 1.8, its restriction
χ|Prob∞(R) fulfils (12) for some finitely supported sequence (cl). Assume
that cl 6= 0 for some l > r. Put r̃ := min {l ∈ N : cl 6= 0}. Choose (Pn)
according to 1.7 b) with r̃ in place of r and with c := π/|cr̃|. Then, since
r < r̃, we have Pn → δ with respect to dr. On the other hand, we have
χ(Pn)→ −1 6= 1 = χ(δ). This contradiction to the continuity of χ shows that
we must have cl = 0 for l > r. It follows that the right hand side of (12)
is defined and continuous on Probr(R). Since Prob∞(R) is obviously dense in
Probr(R), this implies that (12) also holds with Probr(R) in place of Prob∞(R).

1.10 Theorem of Halász. The last corollary yields in particular a theorem
of Halász, presented on page 132 of Ruzsa & Székely (1988), which reads:

1 is the only character of Prob(R) continuous with respect to weak
convergence.

In fact, the special case r = 0 of our Corollary 1.9 is slightly stronger, since our
continuity assumption refers to a stronger topology on Prob(R).

1.11 Theorem (additive functions on Prob∞(R)). A function
κ|Prob∞(R)→ R is continuous and additive iff

κ(P ) =
∑

l∈N

clκl(P ) (P ∈ Prob∞(R)) (13)

holds for some finitely supported family of real numbers (cl : l ∈ N). The latter,
if existent, is uniquely determined by κ.
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Proof. The “if” part and the uniqueness of (cl) follows via multiplication by
i and subsequent exponentiation from the corresponding statements in 1.8.

To prove the “only if” part, let κ|Prob∞(R)→ R be continuous and additive.
Put

χ(P ) := exp(iκ(P )) (P ∈ Prob∞(R)).

Then χ satisfies the hypothesis of Theorem 1.8, and hence can be represented
as in (12). This implies

κ(P ) = η(P ) +
∑

l

clκl(P ) (P ∈ Prob∞(R)),

where η|Prob∞(R) → 2πZ. Since η must be additive, η(δ) = 0. Since η
must be continuous and Prob∞(R) is convex, η(Prob∞(R)) must be connected.
[Here we have used the obvious fact that for P,Q ∈ Prob∞(R) the function
[0, 1] ∋ t 7→ tP + (1− t)Q ∈ Prob∞(R) is continuous.] Thus η = 0.

1.12 Corollary. Let r ∈ N0. A function κ|Probr(R) → R is continuous
and additive iff (13) holds with cl = 0 for l > r and with Probr(R) in place of
Prob∞(R).

Proof. Deduce 1.12 from 1.9, by arguing as in the proof of 1.11. Alternatively,
deduce 1.12 from 1.11 by arguing as in the proof of 1.9.

1.13 Lemma (cumulants of Bernoulli distributions). For r ∈ N, let
fr|[0, 1]→ R be defined by

fr(p) := κr((1 − p)δ0 + pδ1) (p ∈ [0, 1]).

Then, for each r, fr is a polynomial function of degree r with r simple zeros in
[0, 1].

Proof. It is known [for example, from Kendall, Stuart & Ord (1987), exercise
5.1] that

fr+1(p) = p · (1− p) · f ′r(p) (r ∈ N, p ∈ [0, 1]),

where the prime denotes differentiation with respect to p. Since f1(p) = p for
p ∈ [0, 1], the claim follows by an induction argument, using Rolle’s theorem
and the fact that f ′r has at most r − 1 zeros, counting multiplicity.

1.14 A characterization of the variance. A function κ|Prob∞(R)→
[0,∞[ is continuous and additive iff κ = cκ2 for some c ∈ [0,∞[.

Proof. The “if” claim is trivial. To prove “only if”, we may by Theorem
1.11 start from the representation (13). Inserting there P = δa with a ∈ R, we
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see that the assumption κ ≥ 0 forces c1 = 0. Thus, except for the trivial case
κ = 0, we have

κ(P ) =
r∑

l=2

clκl(P ) (P ∈ Prob∞(R))

for some r ≥ 2 with cr 6= 0. Suppose now that r ≥ 3. Then we may, by
the lemma 1.13, choose a Bernoulli distribution P0 = (1 − p)δ0 + pδ1 with
crκr(P0) < 0. It follows that κ(P ) < 0 for P := (x 7→ ax)�P0 with a > 0
sufficiently large, using (14) below. This contradiction proves our claim.

1.15 Affine equivariance of cumulants. The second most important
property of the cumulants is their behaviour under affine transformations: For
r ∈ N, P ∈ Probr(R) and a, b ∈ R, we have

κr((x 7→ ax+ b)�P ) =

{
aκ1(P ) + b (r = 1),
arκr(P ) (r ≥ 2).

(14)

In particular, each cumulant is affinely equivariant in the sense of the following
definition and, by a trivial specialization, also scale equivariant.

1.16 Definition (equivariance). a) Let X be a set and T be a set of
functions from X into X . A function ϕ|X is called equivariant, with respect to
T , if we have the implication

x, y ∈ X , ϕ(x) = ϕ(y), T ∈ T =⇒ ϕ(T (x)) = ϕ(T (y)). (15)

b) For a, b ∈ R define Ta,b|Prob(R)→ Prob(R) by

Ta,b(P ) := (x 7→ ax+ b)�P (P ∈ Prob(R))

and put T := {Ta,b : a, b ∈ R}. Let P ⊂ Prob(R) satisfy the implication P ∈
P , T ∈ T =⇒ T (P ) ∈ P . Then a function ϕ|P is called affinely equivariant if
it is equivariant with respect to T , in the sense of part a).

c) We define a function ϕ|P to be scale equivariant if it satisfies the definition
given in b) above, but with b = 0 and a > 0 in the definition of T .

1.17 Theorem (equivariant continuous characters of Prob∞(R)).
A function χ|Prob∞(R) is a scale equivariant continuous character iff

χ(P ) = exp(icκr(P )) (P ∈ Prob∞(R)) (16)

for some r ∈ N and some c ∈ R.

Proof. The “if” part is trivial. To prove “only if”: Define Sa(P ) := (x 7→
ax)�P for P ∈ Prob(R) and a ∈ ]0,∞[. For λ ∈ ]0,∞[, let Pλ denote the
Poisson distribution with expectation λ. Then

κl(Sa(Pλ)) = alλ (l ∈ N, a, λ ∈ ]0,∞[). (17)
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Now let χ|Prob∞(R) be a scale equivariant continuous character. Applying
1.8, we get (12) for some finitely supported sequence (cl : l ∈ N), and we have
to show that there is at most one l ∈ N with cl 6= 0. Using (17), (12) yields in
particular

χ(Sa(Pλ)) = exp(iλp(a)) (a, λ ∈ ]0,∞[) (18)

where p is the polynomial function defined by

p(a) :=
∑

l∈N

cla
l (a ∈ C).

Now assume, to get a contradiction, that there are at least two l ∈ N with
cl 6= 0. Then for arbitrary a1, a2 ∈ ]0,∞[ with a1 6= a2 and arbitrary λ1, λ2 6= 0,
there exists a number b ∈ ]0,∞[ with

λ1p(ba1)− λ2p(ba2) /∈ 2πZ. (19)

[Proof: Assume without loss of generality that a1 < a2. If our claim is false,
then the rational function C ∋ z 7→ R(z) := p(a1z)/p(a2z) is constant. But by
our assumption on p, ̺ := sup {|z| : z ∈ C, p(z) = 0} > 0. In view of 0 < a1 <
a2, it is obvious that R has a zero, namely on the circle {|z| = ̺/a1}. Hence
R ≡ 0 and thus p ≡ 0, a contradiction.]

Now choose specifically a1, a2 ∈ ]0,∞[ with a1 6= a2 in such a way that p(a1) ·
p(a2) > 0. Choose λ1, λ2 ∈ ]0,∞[ with

λ1p(a1) = λ2p(a2), (20)

choose b as in (19), and put Qk := Sak
(Pλk

) for k = 1, 2. Then (18) and (20)
yield χ(Q1) = χ(Q2), whereas (18) also yields χ(Sb(Qk)) = χ(Sbak

(Pλk
)) =

exp(iλkp(bak)) for k = 1, 2, so that (19) implies χ(Sb(Q1)) 6= χ(Sb(Q2)), in
contradiction to the scale equivariance of χ.

1.18 Theorem (scale equivariant additive functions on Prob∞(R)).
A function κ|Prob∞(R)→ R is continuous, additive, and scale equivariant, iff
there exist r ∈ N and c ∈ R such that κ = cκr.

Proof. Proceed as in the proof of the “only if” part of Theorem 1.11, but use
equivariance of χ and 1.17 in place of 1.8.

1.19 A characterization of the expectation. Notation: In this sub-
section only, we write P ⊞Q for the usual convolution P ∗Q of P,Q ∈ Prob(R),
and P ⊡Q for the multiplicative convolution of P,Q ∈ Prob(R), that is, the
distribution of X · Y with X,Y being independent random variables with dis-
tributions P,Q.
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Theorem. Let κ|Prob∞(R)→ R be continuous. Then we have both

κ(P ⊞Q) = κ(P ) + κ(Q), (21)

κ(P ⊡Q) = κ(P ) · κ(Q) (22)

for P,Q ∈ Prob∞(R), iff either κ = κ1 or κ = 0.

Proof. The “if” part is obvious. So assume that κ is continuous and satisfies
(21) and (22). By applying (22) to Q = δa, for every a ∈ ]0,∞[, we see that
κ is scale equivariant. Hence (21) and Corollary 1.18 yield κ = cκr for some
c ∈ R and some r ∈ N. Choose P ∈ Prob∞(R) with κr(P ) 6= 0, for example P
= Poisson distribution with parameter 1. Insert this P and Q = δ1 into (22),
use κ = cκr, and divide by κr(P ). The result is c = c2κr(δ1). If r ≥ 2, then
κr(δ1) = 0, hence c = 0 and thus κ = 0. If r = 1, then κr(δ1) = 1, hence either
again c = 0 and κ = 0, or c = 1 and thus κ = κ1.

1.20 “Counterexamples”. Examples a) and b) below show that the con-
tinuity assumptions in 1.8 – 1.12 can not be omitted without substitute. Both
a) and b) should be regarded as pathological. On the other hand, the examples
in c) show that not only 1.8 – 1.12, but also 1.14 and, using (23), also 1.17 and
1.18 receive non-pathological counterexamples if the continuity assumption is
dropped and if the domain of definition of the functionals is taken to be to
small. Concerning 1.8 – 1.12, we may also refer to example d), suggested to
me by I.Z. Ruzsa, where the domain of definition of κ could be thought of as
being not much smaller than Prob∞(R).

a) By the axiom of choice, there exists a discontinuous additive function
f |R → R. Now κ(P ) := f(µ(P )) defines a discontinuous additive function
κ|Prob1(R)→ R.

b) [Ruzsa & Székely (1988), pp. 122-123, 2.3 and 2.4] construct, using the axiom
of choice, a homomorphism κ from (Prob(R), ∗) into (R,+) which extends the
expectation κ1 defined on the subsemigroup Prob1(R). They also show that
each such κ assumes negative values for some P with support in [0,∞[. It
follows that the κ constructed is a discontinuous additive function from Prob(R)
into R.

c) On the semigroup

Probc(R) := {P ∈ Prob(R) : supp P compact} ⊂ Prob∞(R)

we obtain an additive and nonnegative functional, normalized here as to satisfy
additionally condition ii) from 1.22 below, by each of the following definitions:

κ(P ) :=
1

2
· (max supp P −min supp P ) (P ∈ Probc(R)), (23)

κ(P ) :=
log P̂ (i) + log P̂ (−i)

2 log cos i
(P ∈ Probc(R)). (24)
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[In (24), we use of course the definition (1) with C in place of R.]

d) Consider the semigroup

P :=
{
P ∈ Prob∞(R) : P̂ holomorphic near zero

}
⊂ Prob∞(R).

Let (al : l ∈ N) be any sequence of real numbers satisfying al = O(εl), for every
ε > 0. Then

κ(P ) :=
∞∑

l=1

al
l!
κl(P ) (P ∈ P) (25)

defines an additive function on P . [To see that the series in (25) always con-

verges, observe that log ◦P̂ is now holomorphic in some P -dependent neigh-
bourhood of zero, so that its Taylor series

∑∞
l=1 κl(P ) · (iz)l/l! converges for

|z| sufficiently small.]

1.21 Some early history and etymology. Cumulants were apparently
first introduced by T.N. Thiele [1838-1910] under the name of “half-invariants”.
Hald (1981) describes, on pages 7-10, Thiele’s contributions and their insuffi-
cient acknowledgement by K. Pearson and R.A. Fisher. According to Hald,
cumulants are first defined in the book Thiele (1889). [This I did not check.
Hald’s formula (4.1), claimed to be Thiele’s definition, is, up to an obvious
misprint, the now well-known recursion (6), determining κr+1 as a polynomial
in the moments µl.] In a later and more accessible version of his book, Thiele
(1903) essentially gives definition (4). Hald (1998) contains a much more com-
prehensive early history of cumulants.

Later authors, such as Craig (1931) and Wishart (1929), refer to the cumu-
lants as “semi-invariants of Thiele”, while Fisher (1929-30), on page 200 of his
paper, simply calls them “semi-invariants”, without bothering to name Thiele.
But Wishart and Fisher, who obviously new about each others work before
publication, prefer to use the new term “cumulative moment functions” in-
stead. The reason for adopting this term is hinted at in Fisher’s paper: On
page 199, he gives an interesting although perhaps not quite precise defini-
tion of rather general “moment functions” of populations, roughly speaking
by polynomial estimability, which seems at any rate to be intended to include
polynomial functions of finitely many ordinary moments, and hence in partic-
ular cumulants. On page 202, Fisher then refers to a “cumulative property”
of the logarithm of the Laplace transform which, expressed in terms of the
cumulants, is just condition (5). Thus the the adjective “cumulative” refers,
in this context, to a homomorphism condition. In particular, it is not used
to distinguish a concept related to probability measures from a corresponding
concept related to probability densities, as would often be the case in the older
statistical literature.
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Finally, “cumulative moment function” was abbreviated to ”cumulant” by
Fisher & Wishart (1931-32) and Fisher (1932), with Hotelling (1933) claim-
ing to have suggested this name, which quickly became the standard one in the
english language literature. The first publication having the word “cumulant”
in its title seems to be the paper by Cornish & Fisher (1937), who repeat the
definition, but already Haldane (1937), page 136, uses “cumulants” without
definition or reference.

Readers generally interested in the history of probabilistic or statistical terms
are referred to David (1995, 1998) as a useful starting point.

1.22 Related work not discussed above. The following papers have
some relation with the present one.

Craig (1931) states on page 160 a forerunner of our Corollary 1.18. Where we
assume mere continuity of κ, Craig assumes in particular that κ is a polynomial
function of some finite number of moments µl. His treatment is not quite
rigorous: For example, no domain of definition of κ is specified, his conclusion
is κ = κr for some r [instead of the correct conclusion κ = cκr for some r and
c], and a proof is offered only for the case where κ is a polynomial function of
µ1, . . . , µ4.

Savage (1971) characterizes moments and more general expectations of expo-
nential polynomials as functionals κ satisfying, on the one hand, conditions like
κ(P ∗Q) = T (κ(P ), κ(Q)) with T unspecified and, on the other hand, having
a representation κ(P ) =

∫
f dP with f unspecified. His first assumption is

more liberal than our homomorphism assumptions, but his second assumption
is rather restrictive, excluding for example every cumulant κr with r ≥ 2. Thus
the work of Savage is incomparable to the present one.

Martin Diaz (1977), Teorema 4, states a characterization of the vari-
ance which may be formulated as follows. We temporarily put P :=
{P ∈ Prob(R) : supp P finite}.
Theorem (Martin Diaz) Let κ|P → [0,∞[ and assume:

i) For every n ∈ N, the map

Rn ×
{
p ∈ ]0, 1]n :

n∑

i=1

pi = 1

}
∋ (x, p) 7→ κ(

n∑

i=1

piδxi)

is partially continuous in the two variables x and p.

ii) κ(δ1) = 0, κ(1
2 (δ−1 + δ1)) = 1.

iii) If we put κ(X) := κ(P ) for every random variable X with distribution
P ∈ P, then

κ(
n∑

i=1

Xi) =
n∑

i=1

κ(Xi)
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whenever the Xi are pairwise independent random variables, on a com-
mon probability space, with distributions belonging to P.

Then κ = κ2.

We observe that the word “pairwise” renders the third assumption rather con-
fining. But without this word, a counterexample would be obtained by re-
stricting to P either κ from (23) or (24). These examples may be regarded
as negative solutions to the problem stated in Martin Diaz (1977) on page 96,
while our result 1.14 may be regarded as a kind of positive solution.

Good (1979) speculates about the existence of a useful notion of “fractional

cumulants”, perhaps to be defined via fractional differentiation of log ◦P̂ in
analogy to (4). Such a definition, if possible, should lead to an additive function
on Prob∞(R), and Theorem 1.11 could be taken as an indication that it will
not lead to anything new and useful.

Heyer (1981) reviews, among other topics, axiomatic approaches to expectation
and variances for probability measures on compact groups, referring to earlier
publications of himself and of Maksimov, in particular Maksimov (1980). Al-
though somewhat similar in spirit to the present paper, there is no overlap in
the results obtained.

Characterizations of the variance not referring to the semigroup structure of
Prob(R) have been provided by Bomsdorf (1974), by Gil Alvarez (1983), and
by Kagan & Shepp (1998). The former two are somewhat similar to the char-
acterization of the Shannon entropy by Fadeev’s axioms, as presented in Rényi
(1970), page 548.

2 The main proof

2.1 Further notation and conventions. The proof of the “only if” part
of Theorem 1.8, given in 2.8 below, is prepared by the introduction of an
auxiliary topological vector space H in 2.2 and the identification of its dual H′
in 2.3. We will use some tools from functional and Fourier analysis as explained
in Rudin (1991). In particular, we assume as known the spaces C∞(R), D(R),
D′(R) with their usual topologies. We depart from the conventions of Rudin
(1991) in that here a topological vector space is not necessarily assumed to be
Hausdorff.

We let U denote the set of all open symmetric neighbourhoods of 0 ∈ R. For
U ∈ U , a function h|U → C is called hermitean if

h(t) = h(−t) (t ∈ U).

2.2 The space H of germs of hermitean C∞ functions vanishing at
zero. We consider

X := {h ∈ C∞(R) : h hermitean, h(0) = 0}
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as a topological vector space over R, with the topology inherited from the usual
topology of C∞(R). We further consider the vector subspace

N := {h ∈ X : ∃U ∈ U with h|U = 0}
of X , and form the quotient topological vector space

H := X/N.

For h ∈ X , we write [h] for the equivalence class H ∈ H with h ∈ H . It
easy to see, though for our purposes unnecessary to check, that N is not
closed, so that H is not Hausdorff. Since C∞(R) is metrizable, H is pseudo-
metrizable, and a sequence (Hj : j ∈ N) converges to 0 ∈ H iff there exist
hj ∈ Hj with hj → 0 ∈ X . [Proof: The discussion in Sections 1.40, 1.41
of Rudin (1991) applies with obvious changes, necessitated by the nonclosed-
ness of our N . In particular, if d is some tranlation-invariant metric for X ,
the formula ̺([h1], [h2]) := inf {d(h1 − h2, g) : g ∈ N} defines a translation-
invariant pseudo-metric ̺ for H. And if ([hj ]) : j ∈ N) is a sequence in H with
lim ̺([hj ], [0]) = 0, we may choose gj ∈ N with d(hj , gj) ≤ 2̺([hj], [0]) + j−1,

yielding h̃j := hj − gj ∈ [hj ] with h̃j → 0.]

The value at zero of the derivatives DlH(0) of a H ∈ H, occuring below, is
defined in the obvious way.

2.3 The dual H′ of H. A function Λ|H is an R-valued, continuous, and R-
linear functional iff there exists an n ∈ N0 and a finite sequence of real numbers
(cl : 1 ≤ l ≤ n) such that

Λ(H) =

n∑

l=1

cl · i−l(DlH)(0) (H ∈ H). (26)

Proof. The “if” claim is obviously true. To prove “only if”: Let Λ|H → R
be continuous and R-linear. Define S|D(R)→ R by

S(ϕ) := Λ([
1

2

(
ϕ− ϕ(0) +

ˇ
ϕ− ϕ(0)

)
]) (ϕ ∈ D(R)),

where ψ̌(t) := ψ(−t). It is obvious that S is well-defined and R-valued, as well
as continuous and R-linear. It follows that the functional T |D(R)→ C defined
by

T (ϕ) := S(ϕ)− iS(iϕ) (ϕ ∈ D(R))

is continuous and C-linear, that is, a distribution ∈ D′(R). It is easily checked
that T has support contained in {0}. Hence, by Rudin (1991), Theorem 6.24
d) and Theorem 6.25, there is an n ∈ N0 and a sequence of complex numbers
(bl : 0 ≤ l ≤ n) such that

T (ϕ) =

n∑

l=0

bl ·
(
Dlϕ

)
(0) (ϕ ∈ D(R)).
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Since S = Re T , we get for H = [h] ∈ H, using the hermitean property of h
and h(0) = 0,

Λ(H) = S(h)

= Re T (h)

=

n∑

l=1

Re (bl ·
(
Dlh

)
(0))

=

n∑

l=1

Re (bli
l) · i−l

(
Dlh

)
(0),

and thus (26) with cl = Re (bli
l).

2.4 Convergence in Prob∞(R). Let P be an element of and (Pj) be a net
in Prob∞(R). Then limPj = P , in the topology of Prob∞(R), iff limPj = P
with respect to total variation distance and

lim
j

∫
xl dPj(x) =

∫
xl dP (x) (l ∈ N). (27)

Proof. Let first w be any nonnegative measurable function on a measurable
space X . Let P,Q ∈ Prob(X ) with

∫
w d(P +Q) <∞, and fix a > 0. Then

∫
w d|P −Q| ≤

∫
w · (w ≤ a) d|P −Q|+

∫
w · (w > a) d(P +Q)

=

∫
w · (w ≤ a) d|P −Q|+ 2

∫
w · (w > a) dP

+

∫
w d(Q− P )−

∫
w · (w ≤ a) d(Q− P )

≤ 2

∫
w · (w ≤ a) d|P −Q|+ 2

∫
w · (w > a) dP

+

∫
w dQ−

∫
w dP.

Now let (Pj) be a net in Prob(X ) with
∫
w dPj <∞ for every j. The preceding

inequality shows that lim
∫
w d|P − Pj | = 0 if both lim

∫
1 d|P − Pj | = 0 and

lim
∫
w dPj ≤

∫
w dP . Applied to X = R and w(x) = 1 + x2n, for each n ∈ N,

the “if” part follows. The “only if” part is trivial.

2.5 Quotients of characteristic functions. Let

ϕ ∈ Φ := {ϕ ∈ D(R) : ϕ(0) = 1, ϕ hermitean}.

a) There exist P,Q ∈ Prob∞(R) with

ϕQ̂ = P̂ . (28)
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b) Let (ϕj) be a net in Φ with limϕj = ϕ in the D(R)-topology. Then we may

choose Pj , Qj ∈ Prob∞(R) with ϕjQ̂j = P̂j and

limPj = P, limQj = Q in Prob∞(R). (29)

Remark. As said before in 1.2, this basic tool of the present paper is a
refinement of a theorem of Ruzsa & Székely. In particular, most of the following
proof of part a) is as in Ruzsa & Székely (1988), pages 126-127.

Proof. We will calculate in

M1(R) := set of all bounded complex measures on R,

which is well known to be a Banach algebra, with convolution ∗ as multiplica-
tion and norm ‖ · ‖ defined by

‖µ‖ :=

∫
1 d|µ| (µ ∈M1(R)), (30)

|µ| := total variation measure of µ.

For a µ ∈M1(R), its Fourier transform is the continuous function µ̂ defined by

µ̂(t) :=

∫
eitx dµ(x) (t ∈ R).

We assume as known properties of the Fourier transform as explained, for ex-
ample, in Chapter 7 of Rudin (1991). All elements of M1(R) actually occuring
below will in fact belong to

M1
∞(R) :=

{
µ ∈M1(R) :

∫
|x|l d|µ|(x) <∞ (l ∈ N0)

}
.

For µ ∈M1
∞(R), we have µ̂ ∈ C∞(R).

a) We have ϕ = µ̂ with µ ∈M1
∞(R), µ real, µ(R) = 1. [Apply Theorem 7.7 of

Rudin (1991).]

Choose α, β ∈ [0,∞[ and R ∈ Prob∞(R) with

‖(µ− δ) ∗R‖ = α < β (31)

and

R∗2 ≥ βR. (32)

[For example, if R is any centered normal distribution, then (32) is true with
β = 2−1/2, and for R sufficiently flat (31) is true as well. Alternatively, we may
take β = 2−1 and for R a sufficiently flat uniform distribution on an interval
[−a, a].]
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Put

S := β−1|(µ− δ) ∗R|, (33)

Q := (1− α

β
)R∗2 ∗

∞∑

k=0

S∗k, (34)

P := µ ∗Q. (35)

Since S is a sub-probability measure with ‖S‖ = S(R) = α/β < 1, the series
in (34) is convergent in M1(R), and Q ∈ Prob(R). Also P (R) = 1 and, easily
verified,

(1− α

β
)−1P = µ ∗R∗2 ∗

∞∑

k=0

S∗k

= R∗2 +R∗2 ∗ (µ− δ + S) ∗
∞∑

k=0

S∗k,

where, using (32) and (33),

R∗2 ∗ (µ− δ + S) ≥ R ∗ (R ∗ (µ− δ) + βS)

≥ 0.

Hence P ≥ 0 and thus P ∈ Prob(R).

By 0 ≤ S ≤ β−1(|µ|+ δ)∗R, S ∈M1
∞(R). Hence Ŝ ∈ C∞(R). Since (34) shows

that

Q̂(t) = (1 − α

β
) · (R̂(t))2 · (1 − Ŝ(t))−1 (t ∈ R), (36)

and since also R̂ ∈ C∞(R), it follows that Q̂ ∈ C∞(R). Since (35) implies

(28), P̂ is C∞ as well, at least in some neighbourhood of zero. Since P,Q are
probability measures, it follows that P,Q ∈ Prob∞(R). [Compare, for example,
Feller (1971), page 528, problem 15.]

b) We continue to use the notation of the above proof of part a). Let, addi-
tionally, µj denote the element of M1

∞(R) with ϕj = µ̂j , and

αj := ‖(µj − δ) ∗R‖.

By Theorem 7.7 of Rudin (1991), we have limµj = µ in the Schwartz space
S(R). It follows that

limµj = µ with respect to the norms ‖ · ‖k (k ∈ N0), (37)

where

‖ν‖k :=

∫
(1 + |x|k) d|ν|(x) (k ∈ N0, ν ∈M1

∞(R)).
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The particular case k = 0 implies limµj = µ with respect to the norm ‖ · ‖
from (30), hence limαj = α. We may and do assume that αj < β in what
follows. Put Sj := β−1|(µj − δ) ∗ R|, Qj := (1 − (αj/β))R∗2 ∗∑∞k=0 S

∗k
j , and

Pj = µj ∗Qj . Then Qj, Pj ∈ Prob∞(R) with ϕjQ̂j = P̂j , and what remains to
be shown is (29).

By (37),

limSj = S with respect to the norms ‖ · ‖k (k ∈ N0). (38)

Using (38) and the definition of Qj , Pj , we get limQj = Q and limPj = P with

respect to ‖ ·‖. From (38) we also get lim Ŝj = Ŝ in C∞(R). Since we have (36)

with αj replacing α, Q̂j replacing Q̂, and Ŝj replacing Ŝ, we may conclude that

lim Q̂j = Q̂ in C∞(R). By ϕjP̂j = Q̂j , we deduce lim P̂j |U = P̂ |U in C∞(U),
for some neighbourhood U of zero. Hence we have in particular (27) and the
corresponding statement for (Qj), so that we reach (29) via 2.4.

2.6 Lemma. Let χ|Prob∞(R) be a character, not necessarily continuous. If
P1, P2, Q1, Q2 ∈ Prob∞(R), and if there exists an U ∈ U with

P̂1(t)Q̂2(t) = P̂2(t)Q̂1(t) (t ∈ U),

then

χ(P1)

χ(Q1)
=

χ(P2)

χ(Q2)
. (39)

Proof. There exists an R ∈ Prob∞(R) with supp R̂ ⊂ U . Thus P̂1Q̂2R̂ =

P̂2Q̂1R̂ everywhere, so that we successively get

P1 ∗Q2 ∗R = P2 ∗Q1 ∗R,
χ(P1)χ(Q2)χ(R) = χ(P2)χ(Q1)χ(R),

and hence (39).

2.7 From χ to a linear functional Λ. Let χ|Prob∞(R) be a continuous
character. Then there exists a Λ ∈ H′ with

χ(P ) = exp(iΛ(log ◦[P̂ ])) (P ∈ Prob∞(R)). (40)

Here log ◦[P̂ ] of course denotes the element ofH containing the functions h ∈ X
satisfying

h(t) = log P̂ (t) (t ∈ U)

for some U ∈ U with U ⊂
{
t ∈ R : |P̂ (t)− 1| < 1

}
.
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Proof. Follows from Steps 1-5 below.

Step 1: Construction of a function X |H. Let H ∈ H. Then we may
define X(H) ∈ T by the construction leading to (42) below, and this definition
is independent of the choices of h, U , ω, P , Q made along the way.

Proof. Choose h ∈ H . Define ψ ∈ C∞(R) by

ψ(t) := exp(h(t)) (t ∈ R). (41)

Choose U ∈ U with compact closure and choose ω ∈ D(R) real and symmetric
with ω|U = 1. Define ϕ ∈ D(R) by

ϕ(t) := ω · ψ.

Then ϕ is hermitean with ϕ(0) = 1, and hence satisfies the assumptions of 2.5.
So we may choose P,Q ∈ Prob∞(R) satisfying (28), and put

X(H) :=
χ(P )

χ(Q)
. (42)

To show that this definition is independent of the choices made along the
way, consider two choices (hi, Ui, ωi, Pi, Qi), for i ∈ {1, 2}, yielding two val-
ues Xi(H). There exists a V ∈ U with ϕ1|V = ϕ2|V . Hence (28) applied to

ϕi, Pi, Qi implies P̂1/Q̂1 = P̂2/Q̂2 on U := V ∩ {t : ϕ1(t) 6= 0}, so that Lemma
2.6 yields X1(H) = X2(H).

Step 2: The relation between X and χ. For P ∈ Prob∞(R),

χ(P ) = X(log ◦[P̂ ]).

Proof. Changing notation, let P1 ∈ Prob∞(R). Put H := log ◦[P̂1]. Referring
to Step 1 and its notation, let us denote one choice for the computation of
X(H) by (h, U, ω, P2, Q2), with (ψ, ϕ) accordingly defined. Then ϕ = P̂1 in

some Ũ ∈ U . With Q1 := δ it follows that P̂1Q̂2 = P̂2Q̂1 in Ũ . Hence (42),
Lemma 2.6, and χ(δ) = 1, successively yield

X(H) =
χ(P2)

χ(Q2)
=

χ(P1)

χ(Q1)
= χ(P1).

Step 3: The function X |H → T defined in Step 1 is a character, with respect
to addition in H.

Proof. We have to prove that

X(H1 +H2) = X(H1) ·X(H2) (H1, H2 ∈ H).
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So let H1, H2 ∈ H. Choose (Ui, hi, Vi, ωi, Pi, Qi) and define (ψi, ϕi) as in Step
1 to calculate X(Hi) for i ∈ {1, 2}. Then we may use the choice

(h1 + h2, U1 ∩ U2, ω1 · ω2, P1 ∗ P2, Q1 ∗Q2),

leading to ψ = ψ1 · ψ2 and ϕ = ϕ1 · ϕ2, to compute X(H1 +H2). The result is

X(H1 +H2) = χ(P1 ∗ P2) · (χ(Q1 ∗Q2))−1

= χ(P1) · χ(P2) · (χ(Q1) · χ(Q2))−1

= X(H1) ·X(H2).

Step 4: Continuity. X is continuous.

Proof. Since H is pseudometrizable, it suffices to consider any given conver-
gent sequence (Hj : j ∈ N), with limHj = H . There exist h ∈ H , hj ∈ Hj ,
such that

limhj = h in C∞(R).

Starting from the present h, choose and define, respectively, ψ, U , and ω as in
Step 1 around equation (41). Analogously, define ψj and then ϕj , using the
same U and ω as for ψ, ϕ. Then limϕj = ϕ in D(R). Now apply part b) of
2.5 to choose P,Q, Pj , Qj with the properties stated there. Then, using Step 1
and the continuity of χ,

X(Hj) =
χ(Pj)
χ(Qj)

→ χ(P )
χ(Q) = X(H).

Step 5: There exists a Λ ∈ H′ with X = exp ◦(iΛ).

Proof. This is always true whenever H is a topological R-vectorspace with
dual H′, and X |H a continuous character, with respect to the additive group
of H. See section (23.32.a) on page 370 of Hewitt & Ross (1979) for a proof
assuming, and using, that H is additionally Hausdorff. For the general case,
needed here, apply the special case to the Hausdorff quotient space of H, ob-
tained by identifying points h1, h2 ∈ H iff h2−h1 belongs to the closure of {0}.

2.8 Proof of the “only if” part of Theorem 1.8. Let χ|Prob∞(R) be
a continuous character. Then there exists a linear functional Λ as in 2.7. By
2.3, Λ has a representation as in (26). Inserting this representation into (40)
and applying the definition (4) yields (12).
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Abstract. The Grassmannians of lines in projective N -space,
G(1, N), are embedded by way of the Plücker embedding in the pro-

jective space P(
∧2 CN+1). Let H l be a general l-codimensional linear

subspace in this projective space.

We examine the geometry of the linear sections G(1, N)∩H l by study-
ing their automorphism groups and list those which are homogeneous
or quasihomogeneous.
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0 Introduction

Complete intersections in projective space have been studied extensively from
many points of view. A natural generalisation is the study of complete inter-
sections in Grassmannians. The first case that presents itself is the case of
intersections with linear spaces. Indeed, there is an extensive literature on the
simplest case, the Grassmannian of lines in the 3-space, where intersections
are known as linear complexes and congruences of lines. L. Roth has stud-
ied the rationality of linear sections of Grassmannians of lines in general. If
they are smooth and if the dimension of the intersection is greater than half
the dimension of the Grassmannian, then they are rational. R. Donagi deter-
mined the cohomology and the intermediate Jacobian of some linear sections
of Grassmannians of lines.

In this paper we study the linear sections from the point of automorphism
groups. Let G(1, N) be the Grassmann variety of lines in projective N -space,
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canonically embedded in P(
∧2CN+1) and let H l be an l-codimensional linear

subspace in this space. For general H l we determine the automorphism groups
for G(1, N) ∩H , G(1, N) ∩H2, G(1, 4) ∩H3, and G(1, 5) ∩H3. In the second
case we find for example:

Theorem 3.5 For N = 2n−1 ≥ 5 the automorphism group of G(1, N)∩H2 has
SL(2,C)n/{1,−1} as a normal subgroup and the quotient group is isomorphic
to the permutation group S(3) for n = 3, to Z/2Z×Z/2Z for n = 4, and trivial
otherwise.

We believe that apart from trivial cases these are the only general linear sections
where automorphism groups of positive dimension appear. Extensive computer
checks seem to confirm this.

In particular we prove that the automorphism groups of G(1, 2n)∩H , G(1, 4)∩
H2, G(1, 5)∩H2, G(1, 6)∩H2, and G(1, 4)∩H3 are quasihomogeneous – those
of G(1, 2n− 1)∩H and G(1, 3)∩H2 are even homogenous – whereas all others
are not.

As to our methods, in our proofs the rich geometry of the Grassmannian plays
a decisive role. Otherwise, we mainly use well known tools like multilinear
algebra, Lefschetz theorems, vanishing theorems etc.

We are indebted to E. Opdam and A. Pasquale for useful remarks. The first
author also thanks the Stieltjes Institut of Leiden University for financial sup-
port.

1 Preliminary

The Grassmannian G(1, N) of lines in PN is embedded by way of the Plücker

embedding into P(
∧2 CN+1)

G(1, N) −→ P(
∧2CN+1)

span {v, w} 7−→ P(v ∧ w).

We denote by H l an l-codimensional linear subspace of P(
∧2 CN+1). Roth [R]

examined the geometry of the general linear sections of the Grassmannians and
found

Theorem 1.1 For a general H l with 0 ≤ l ≤ 1/2 dim G(1, N) = N − 1 the
intersection with the Grassmannians, G(1, N) ∩H l, is rational.

In this article we continue this study by describing the automorphism groups
of these sections. As for the notation, given a subvariety Y of a variety X we
define Aut(Y,X) to be the automorphisms of X that induce automorphisms of
Y , i.e.

Aut(Y,X) = {ϕ ∈ Aut(X) | ϕ(Y ) ⊆ Y }.
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Recall that the automorphism group of the Grassmannian itself is computed
in two steps, see e.g. [H, 10.19]. First one shows that all automorphisms are

induced by automorphisms of P(
∧2 CN+1), i.e.

Aut(G(1, N)) ∼= Aut(G(1, N),P(
∧2CN+1)).

Then one proves that for N 6= 3 the right hand side group is isomorphic to
PGL(N + 1,C) via

PGL(N + 1,C) −→ Aut(G(1, N),P(
∧2CN+1))

P(T ) 7−→ (P(
∑
vi ∧ wi) 7→ P(

∑
Tvi ∧ Twi)) .

For the linear sections of the Grassmannians we follow the same outline. The
first step is the following theorem and its corollary; the second step will be
done separately for the different cases in the next sections.

Theorem 1.2 For N ≥ 4 and a general linear subspace H l ⊂ P(
∧2 CN+1)

of codimension l ≤ 2N − 5 the linear section G(1, N) ∩ H l spans H l and its
automorphisms are induced by automorphisms of H l, i.e.

Aut(G(1, N) ∩H l) = Aut(G(1, N) ∩H l, H l)

Proof. We will abbreviate G(1, N) by G. We want to prove that G∩H l spans

H l, i.e. for G ∩H l ⊂ P(
∧2 CN+1)

h0(G ∩H l,O(H)) = dim
∧2CN+1 − l.

This is known for l = 0. For l ≥ 1 we take the long exact sequence associated
to the restriction sequence tensored by O(H)

0→ H0(G ∩H l−1,O) = C→ H0(G ∩Hl−1,O(H))→ H0(G ∩Hl,O(H))→
→ H1(G ∩Hl−1,O) = 0.

Looking at the dimensions we get

h0(G ∩H l,O(H)) = h0(G ∩H l−1,O(H))− 1,

and the claim follows by induction.
Now we show that all automorphisms of G∩H l are induced by automorphisms
of H l. This follows if we can show that all divisors of G ∩H l are induced by
divisors of H l, i.e.

Pic(G ∩H l) = Pic(H l) = Z ·H,
because then the projective embedding of G ∩H l given by the sections in the
line bundle O(H) is equivariant for all automorphisms of G ∩H l

To see this, note that by the Lefschetz hyperplane section theorem

Z ·H = H2(G,Z) = H2(G ∩H,Z) = . . . = H2(G ∩H l,Z)
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for 0 ≤ l ≤ 2N − 5. From the exponential sequence

0→ ZG∩Hl → OG∩Hl → O∗G∩Hl → 0

we get as a part of the associated long exact sequence

. . .→ H1(G ∩H l,O)→ H1(G ∩H l,O∗)→ H2(G ∩H l,Z) = Z ·H → 0

and therefore
Pic(G ∩H l) = H1(G ∩H l,O∗) = Z ·H

as soon as we know that H1(G ∩H l,O) = 0.

This is well known for l = 0. For l ≥ 1 we look at the restriction sequence

0→ OG∩Hl−1(−H)→ OG∩Hl−1 → OG∩Hl → 0

and take its associated long exact sequence

. . .→ H1(G ∩H l−1,O(−H))→ H1(G ∩H l−1,O)→ H1(G ∩H l,O)→
→ H2(G ∩H l−1,O(−H))→ . . .

The right and left cohomology groups are trivial for l ≤ 2N − 4 by Kodaira’s
vanishing theorem, so

0 = H1(G,O) = H1(G ∩H,O) = . . . = H1(G ∩H l,O). ✷

Corollary 1.3 For N ≥ 4 and a general linear subspace H l ⊂ P(
∧2 CN+1)

of codimension l ≤ N − 2

Aut(G(1, N) ∩H l) = Aut(G(1, N) ∩H l,P(
∧2CN+1)) ∩Aut(H l,P(

∧2CN+1)).

This is also true for G(1, 4) ∩H3.

Proof. The special case of G(1, 4) ∩H3 will be dealt with in Section 7.
In view of the theorem we need only to show that an automorphism of G(1, N)∩
H l can be extended to an automorphism of G(1, N), which is always linear and
fixes the linear subspace H l because G(1, N) ∩H l spans H l. To do so we will
study the linear subspaces of G(1, N) ∩H l.
The linear subspaces of the Grassmannian G(1, N) are the following Schubert
cycles:

1. Let p ∈ PN be a point and K ⊂ PN a linear subspace of dimension k that
contains the point p then

{L ∈ G(1, N) | p ∈ L ⊆ K} ⊂ G(1, N)

is a (k − 1)-dimensional subspace and these form a

dim PN + dim G(k − 1, N − 1) = N + k(N − k)

dimensional family Fk−1.
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2. Let E ⊂ PN be a plane then

{L ∈ G(1, N) | L ⊆ K} ⊂ G(1, N)

is a plane in G(1, N) and these form a

dim G(1, N) = 3(N − 2) = 3N − 6

dimensional family F ′2.

Let d = dim
∧2 CN+1 − 1. For the variety of 2-planes F2 (and analogously for

F ′2) we consider the incidence correspondence

{(E, h) ∈ F2 ×G(d− l, d) | E ⊂ h} ⊂ F2 ×G(d− l, d).

The fibre above any point h ∈ G(d − l, d) is exactly the set of 2-planes of

F2 on G(1, N) ∩ h, which we denote by F̃2. From this correspondence we see

immediately that for general H l either F̃2 is empty or F̃2 consists of some
components of the same dimension (Stein factorisation). The same argument

applied to F ′2 yields F̃ ′2. Since for N ≥ 4 dimF2 6= dimF ′2 we thus find that if

F̃2 and F̃ ′2 are not both empty, then dim F̃2 6= dim F̃ ′2.

Now any automorphism of G(1, N) ∩ H l is linear, so we conclude that any

automorphism of G(1, N)∩H l transforms F̃2 resp. F̃ ′2 onto itself. For dimension
6= 2 there are only linear spaces of type 1, so we can state:

Any automorphism ϕ of G(1, N) ∩H l permutes the linear spaces of type 1.

Next, let p ∈ PN and Lp the (N − 1)-dimensional linear subspace of G(1, n)
consisting of the lines through p. From l ≤ N−2 we see e = dim(Lp∩H l) ≥ 1.
Since H l is general, for almost all points of PN this dimension is exactly e. Now,
and this is the crucial remark, ϕ(Lp∩H l) being of type 1, is contained in exactly
one Lq, q ∈ PN . Attaching q to p we obtain for almost all p ∈ PN a map to PN .
If the dimension of Lp0 ∩H l is bigger than the minimum, then this map can
still be defined at p0 in exactly the same way. We claim that this is continuous
at p0. This can be seen by considering a general sequence of points on PN , say
p1, p2, . . ., converging to p0 with dim(Lpi∩H l) minimal and applying the crucial
remark twice. The map from PN to PN thus obtained has an inverse and is
holomorphic, so it is a linear automorphism of PN . This automorphism induces
an automorphism of G(1, N) for which it is easily verified that it coincides with
ϕ on G(1, N) ∩H l. ✷

It is tempting to assume that the groups Aut(G(1, N),P(
∧2 CN+1)) and

Aut(H l,P(
∧2 CN+1)) in Aut(P(

∧2 CN+1)) intersect transversally. Then the
dimension of Aut(G(1, N) ∩H l) could be computed as

dim Aut(G(1, N) ∩H l) = dim Aut(G(1, N))− codim Aut(H l,P(
∧2 CN+1))

= (N + 1)2 − 1− l
((
N+1

2

)
− l
)
.
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And we would find the following non-finite groups:

dim Aut(G(1, N) ∩H) = (N2 + 3N + 2)/2

dim Aut(G(1, N) ∩H2) = N + 4

dim Aut(G(1, 4) ∩H3) = 3.

Unfortunately, the intersection is not always transversal. Our computation of
the automorphism groups will show the following dimensions for N ≥ 4:

dim Aut(G(1, N) ∩H) = (N2 + 3N + 2)/2

dim Aut(G(1, N) ∩H2) =

{
N + 4 for N even
3(N + 1)/2 for N odd

dim Aut(G(1, 4) ∩H3) = 3

dim Aut(G(1, 5) ∩H3) = 1.

We conjecture that these are the only non-finite groups. For N + 2 ≤ l the
canonical bundle K = O(−N − 1 + l) is positive on G(1, N) ∩ H l, and this
conjecture can be proved by Serre’s duality theorem and Kodaira’s vanishing
theorem:

dim Aut(G ∩H l) = h0(G ∩H l,Θ) = h2N−2−l(G ∩H l,KΩ1) = 0

A proof for the remaining cases 3 ≤ l ≤ N + 1 seems difficult. For N ≤ 10
and all l we verified the conjecture for the automorphisms induced by auto-
morphisms of the Grassmannian by computer computations.

With this Theorem and its Corollary our task of determining the automor-
phisms of G(1, N) ∩ H l has been immensely simplified. All we need to

do is to find the projective transformations of Aut(G(1, N),P(
∧2 CN+1)) =

PGL(N + 1,C) such that their induced action on P(
∧2 CN+1)∗ preserves H l.

To express this in algebraic terms we identify (
∧2 CN+1)∗ with

∧2
(CN+1)∗. If

a particular basis of CN+1 is chosen,
∧2(CN+1)∗ as antisymmetric forms on

CN+1 can also be identified with the antisymmetric matrices of size N + 1. In
concrete terms, if (e0, . . . , eN ) is a basis of CN+1 and Eij ∈ M(N + 1,C) the
matrix, which has a 1 in the position (i, j) but is otherwise zero, then

(∧2CN+1
)∗

−→ Antisym(N + 1,C)

∑
i,j λij(ei ∧ ej)∗ 7−→ 1

2

∑
i,j λij(Eij − Eji).

In these terms a line l = p∧ q ∈ G(1, N) is in the hyperplane H ∈ P(
∧2 CN+1)

iff for a corresponding antisymmetric matrix A ∈ Antisym(N + 1,C) with
P(A) = H we have tpAq = 0.
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Further, the action of PGL(N + 1,C) on P(
∧2 CN+1), which was given for

P(T ) ∈ PGL(N + 1,C) by

P
(∧2CN+1

)
−→ P

(∧2CN+1
)

P(
∑
vi ∧ wi) 7−→ P(

∑
Tvi ∧ Twi),

induces the following action on the dual space

P(Antisym(N + 1,C)) −→ P(Antisym(N + 1,C))

P(A) 7−→ P(tT−1AT−1).

Hence an l-codimensional linear subspace H l ⊆ P(
∧2 CN+1) which is dually

given by P(span {A1, . . . , Al}) is preserved under T iff every hyperplane con-
taining H l is mapped to another hyperplane containing H l, i.e.

tT−1 (
∑
λiAi)T

−1 ∈ span {A1, . . . , Al} for all λi ∈ C

⇐⇒ tT−1AiT
−1 ∈ span {A1, . . . , Al} for i = 1 . . . l.

We conclude

Corollary 1.4 For N ≥ 4, 0 ≤ l ≤ N − 2 and a general H l ⊂ P(
∧2 CN+1)

given by P(span {A1, . . . , Al}) ⊂ P(Antisym(N+1,C)) the automorphism group
of G(1, N) ∩H l is

{P(T ) ∈ PGL(N + 1,C) | tT−1AiT
−1 ∈ span {A1, . . . , Al} ∀i}.

In the following sections we will compute the automorphism groups using this
Corollary. In the course of the computations we will use geometric arguments
for which it is essential to know if a hyperplane H ⊂ P(

∧2 CN+1) is tangent to
G(1, N) or not. We recall the basic facts together with their short proofs.

Proposition 1.5 For any line l0 ∈ G(1, N) the Schubert cycle

σ := {l ∈ G(1, N) | l ∩ l0 6= ∅} ⊆ G(1, N)

lies inside the tangent space Tl0G(1, N) ⊆ P(
∧2 CN+1) and spans it.

Proof. Let l ∈ σ, p ∈ l ∩ l0, q ∈ l0 \ {p} and r ∈ l \ {p} then

C −→ G(1, N)

λ 7−→ p ∧ (q + λr)

is a line in σ ⊂ G(1, N) through l0 and l. Therefore it is contained in the
tangent space Tl0G(1, N), in particular l ∈ Tl0G(1, N).

We choose a basis (e0, . . . , eN ) of CN+1 such that l0 = P(e0 ∧ e1). The 2N − 1
points P(e0∧ e1), P(e0 ∧ ei), P(e1∧ ei) for i = 2 . . .N lie in σ ⊂ Tl0G(1, N) and
are projectively independent, hence they span Tl0G(1, N). ✷
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Corollary 1.6 Let H = P(A) ∈ P(
∧2 CN+1)∗ be a hyperplane and l0 ∈

G(1, N) a line then

Tl0G(1, N) ⊆ H ⇐⇒ l0 ⊆ kerA.

Proof. By the Proposition Tl0G(1, N) ⊆ H is equivalent to σ ⊆ H . If we use
the same basis of CN+1 as in the proof of the proposition, this means that

P((λe0 + µe1) ∧ v) ∈ H for all (λ:µ) ∈ P1, v ∈ CN+1

⇐⇒ t(λe0 + µe1)Av = 0 for all (λ:µ) ∈ P1, v ∈ CN+1

⇐⇒ l0 ⊆ kerA. ✷

Corollary 1.7 The dual variety G(1, N)∗ ⊂ P(
∧2 CN+1)∗ of the Grassman-

nian variety G(1, N) consists of matrices of corank ≥ 2 for N odd resp. corank
≥ 3 for N even.

For N odd it is an irreducible hypersurface of degree (N + 1)/2; for N even it
is a 3-codimensional subvariety.

Proof. By the last corollary H = P(A) ∈ P(
∧2 CN+1)∗ is tangential to G(1, N)

iff corankA ≥ 2. Recall that an antisymmetric matrix has even rank. So, for
N odd the matrix A ∈ Antisym(N + 1,C) has corank ≥ 2 iff detA = 0. But
again since A is antisymmetric, detA is the square of the irreducible Pfaffian
polynomial PfA [B, 5.2], which therefore defines G(1, N)∗.

For N even corankA ≥ 2 is equivalent to corankA ≥ 3. We compute the
dimension of G(1, N)∗ following Mumford [M] and find

dim

(
space of A with
dim kerA = 3

)
= dim G(3, N + 1) + dim

∧2 CN+1/C3

= 3(N − 2) + (N − 2)(N − 3)/2

= (N2 +N − 6)/2

=⇒ codim G(1, N)∗ = (N + 1)N/2− (N2 +N − 6)/2 = 3. ✷

2 G(1, 2n− 1) ∩H

Let the hyperplane H ∈ P(
∧2 C2n) be given by an element A ∈ (

∧2 C2n)∗,
which we identify with its corresponding antisymmetric matrix. If H is general,
A will be a matrix of full rank. This may be taken as the definition of a general
H . We will assume from now on that H is general.

The line system G(1, 2n − 1) ∩ H in P2n−1 does not lead to obvious special
points in the P2n−1. Through every point p ∈ P2n−1 passes a P2n−3 of lines,
namely

p ∧ q ∈ G(1, 2n− 1) with q ∈ ker tpA.
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For n ≥ 3 we can compute the automorphism group of G(1, 2n− 1) ∩H with
the help of Theorem 1.2 and its Corollaries. It consists of elements P(T ) ∈
PGL(2n,C) = Aut(G(1, 2n−1)) such that P(T ) as an element of PGL(

∧2 C2n)
preserves H , i.e.

tT−1AT−1 = λA for suitable λ ∈ C∗.

We may choose coordinates on P2n−1 such that

A =

(
0 −En

En 0

)
.

Then by definition

Sp(2n,C) = {T ∈ GL(2n,C) | tT−1AT−1 = A},

and we have an isomorphism

{T ∈ GL(2n,C) | ∃λT ∈ C∗ : tT−1AT−1 = λTA}/C∗ −→ Sp(2n,C)/{1,−1}

C∗ · T 7−→ ± 1√
λT
T.

Therefore we see

Proposition 2.1 The automorphism group of G(1, 2n− 1) ∩H for a general

H ⊂ P(
∧2 CN+1) is Sp(2n,C)/{1,−1}. Its action on G(1, 2n − 1) ∩ H is

homogeneous.

Proof. The missing case of G(1, 3) ∩ H can be found in [FH, p. 278]. The
transitivity of the action follows from Witt’s theorem [Br, 12.31]. ✷

3 G(1, 2n− 1) ∩H2

A 2-codimensional linear subspace L = H2 of P(
∧2 C2n) can be thought of as

the pencil of hyperplanes containing it. So it gives a line L∗ = P(λA− µB) ⊂
P(
∧2 C2n)∗. We identify again (

∧2 C2n)∗ with the antisymmetric matrices of
size 2n. The line L∗ intersects the dual Grassmannian G(1, 2n − 1)∗, which
consists of antisymmetric matrices of rank ≤ 2n − 2 and is a hypersurface of
degree n by Corollary 1.7, in at most n points. For the moment a line L∗, and
hence L, will be called general if it has n points of intersection, Hi = P(λiA−
µiB) ∈ L∗, i = 1 . . . n, with the dual Grassmannian. These hyperplanes Hi are
tangent to the Grassmannian G(1, 2n− 1) at the points li := ker(λiA−µiB) ∈
G(1, 2n− 1) by Corollary 1.6. Therefore we get n exceptional lines l1, . . . , ln in
P2n−1.

The intersection of the Grassmannian with its tangent hyperplane Hi contains
all lines that intersect li, because these lines are already contained in the in-
tersection G(1, 2n− 1) ∩ TliG(1, 2n− 1) by Proposition 1.5.
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So, any line through a point p ∈ li will be in the subspace L ⊂ P(
∧2 C2n) as

soon as it is contained in any other hyperplane H ∈ L∗ \ {Hi}. This gives
one linear restriction to lines through p, so that there is at least a P2n−3 of
lines through the points of the lines li. In contrast, through a general point of
P2n−1 \

⋃
li there is only a P2n−4 of lines. In fact, we have

Proposition 3.1 The points of the lines l1, . . . , ln are characterized by the
property that through each of them passes a P2n−3 of lines, i.e.

{
p ∈ P2n−1

through p passes a P2n−3

of lines of G(1, 2n− 1) ∩ L

}
=
⋃
li.

Furthermore, the lines l1, . . . , ln span the whole P2n−1.

This may easily be seen if we write the pencil of hyperplanes L∗ in its normal
form.

Proposition 3.2 (Donagi[D]) Given a pencil of hyperplanes L∗ = P(λA −
µB) ⊂ P(

∧2 C2n)∗ such that the line L∗ intersects the Pfaffian hypersurface in
n different points. Then there is a basis of C2n such that

A =




J 0
. . .

0 J


 and B =




λ1J 0
. . .

0 λnJ


 with J =

(
0 −1
1 0

)
.

The points (λ1 : 1), . . . , (λn : 1) ∈ P1
∼= L∗ are unique up to a projective trans-

formation of P1.

Proof of Proposition 3.1. The hyperplane Hi = P(λiA − µiB) has, written as
an antisymmetric matrix, the kernel li = span {e2i−1, e2i} which means it is
tangent to G(1, 2n − 1) at li. All lines of G(1, 2n − 1) ∩ L through the point
p are given by p ∧ q with tpAq = tpBq = 0. In order to have a P2n−2 of lines
through p, the linear forms tpA and tpB must be linear dependent, i.e. there
are λ, µ ∈ C with

0 = λtpA− µtpB = tp(λA− µB).

Therefore p is in the kernel of a matrix of the pencil, but these kernels are the
lines l1, . . . , ln, so p is contained in one of them. ✷

Knowing the exceptional lines l1, . . . , ln, one can immediately give some lines
which are in the line system.

Proposition 3.3 Any line in P2n−1 which intersects two exceptional lines is
an element of the line system G(1, 2n− 1) ∩ L.

The exceptional lines themselves are not in the line system.
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Proof. If a line l intersects li and lj, it lies – as a point of the Grassmannian
G(1, 2n− 1) – in Hi and Hj , hence in L = Hi ∩Hj .

Assume that the exceptional line l1 is an element of G(1, 2n−1). By Proposition
3.1 the lines through a point p ∈ l1 sweep out a hyperplane. This hyperplane
contains the line l1 by assumption and the other exceptional lines l2, . . . , ln by
the first part of this proposition. But this contradicts the second statement of
Proposition 3.1. ✷

Remark 3.4 From Proposition 3.2 we also see that any position of the n points
of the line L∗ is possible. In particular, we may call a line general if the position
of the points is general in the sense needed below.

Using this geometric description we can determine the automorphisms of
G(1, 2n − 1) ∩ L. For the moment we restrict ourselves to n ≥ 3 in order
to be able to use Theorem 1.2. By this Theorem and its Corollaries we can
view an automorphism of G(1, 2n− 1) ∩ L as an element P(T ) of PGL(2n,C).
To make the notation simpler, we will write only T for P(T ) if no confusion
can result. Since the points of the exceptional lines are characterized by the
property of Proposition 3.1, T must map the union of the lines li ⊂ P2n−1 onto
itself. Permutations of the lines may occur, but – as we will presently see – not
all permutations are possible.

If we view the automorphism T as an element of Aut(L,P(
∧2C2n)), it inter-

changes the hyperplanes containing L, i.e. it induces a projective transforma-
tion of the line L∗ ⊂ P(

∧2 C2n). Naturally, the transformation of L∗ must
preserve the union of points of intersection of L∗ with the dual Grassmannian,
which determine the lines li. Now, if a transformation of P2n−1 permutes the
lines li, then the induced transformation of L∗ must permute the corresponding
points of L∗ in the same way.

Since not every permutation of four or more points on a line can be induced by
a projective transformation, not all permutations are possible. In fact, if the
points are in general position, we get the following subgroups of the permutation
groups:

n subgroup of S(n)

3 S(3)

4 {(1 2 3 4), (2 1 4 3), (3 4 1 2), (4 3 2 1)} ∼= Z/2Z× Z/2Z

≥ 5 {id}
On the other hand, any permutation σ ∈ S(n) of the points on L∗ that is
induced by a projective transformation ϕ of L∗ can be induced by an automor-
phism of G(1, 2n− 1) ∩ L. To see this, let us write L∗ in its normal form and
define T ∈ GL(2n,C) as

T (e2i) := e2σ(i) and T (e2i−1) := e2σ(i)−1.
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This transformation permutes the lines in the prescribed way, and as an auto-
morphism of P(

∧2 C2n) it fixes L since the transformed line L∗ is

tT−1


λ




J 0
. . .

0 J


− µ




λ1J 0
. . .

0 λnJ





T−1

= λ




J 0
. . .

0 J


− µ




λσ−1(1)J 0
. . .

0 λσ−1(n)J


 .

Changing the parametrisation of the line by ϕ we get back the old parametri-
sation of the line L∗ by the definition of ϕ. So this T is an automorphism of
G(1, 2n− 1) ∩ L that induces the permutation of lines we started with.

Now we can restrict our attention to transformations that do not permute
the lines since we can obtain every permutation by composing with one of the
transformations from above. A transformation leaving all the lines individually
fixed has the form

T =




t1 0
. . .

0 tn


 with t1, . . . , tn ∈ GL(2,C).

This T will fix the line system G(1, 2n− 1)∩L in P2n−1 iff it preserves L∗, i.e.
for all λ, µ ∈ C there exists α, β ∈ C such that

tT−1(λA − µB)T−1 = αA+ βB.

It is sufficient to check this for (λ, µ) = (1, 0) and (0,−1). Since

tT−1AT−1 =




det t−1
1 J 0

. . .

0 det t−1
n J




tT−1BT−1 =




λ1 det t−1
1 J 0

. . .

0 λn det t−1
n J




this is equivalent to the question if there exist α, β, γ, δ ∈ C with

(det t−1
1 , . . . ,det t−1

n ) = α(1, . . . , 1) + β(λ1, . . . , λn)

(λ1 det t−1
1 , . . . , λn det t−1

n ) = γ(1, . . . , 1) + δ(λ1, . . . , λn).
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It follows

−γ(1, . . . , 1) + (α− δ)(λ1, . . . , λn) + β(λ2
1, . . . , λ

2
n) = 0

=⇒ α = δ, β = γ = 0

=⇒ det t1 = . . . = det tn.

We normalize by det t1 = 1, i.e. t1, . . . , tn ∈ SL(2,C). Then only T and
−T ∈ GL(2n,C) give the same element in PGL(2n,C). So that as a group
the automorphisms of G(1, 2n − 1) ∩ L that do not permute the exceptional
lines are isomorphic to SL(2,C)n/{1,−1}.
Altogether we get

Theorem 3.5 For n ≥ 3 the automorphism group of the intersection of
G(1, 2n− 1) with a general 2-codimensional linear subspace of P(

∧2 C2n) has
SL(2,C)n/{1,−1} as a normal subgroup and the quotient group is isomorphic
to the permutation group S(3) for n = 3, to Z/2Z×Z/2Z for n = 4, and trivial
otherwise.

The automorphism group is isomorphic to the subgroup of PGL(2n,C) that
consists of the elements

Pσ ·




t1 0
. . .

0 tn


 with t1, . . . , tn ∈ SL(2,C)

where Pσ is the identity for n ≥ 5 and otherwise defined by

Pσ(e2i) = e2σ(i)

Pσ(e2i−1) = e2σ(i)−1

for σ ∈
{

S(n) if n = 3

{(1 2 3 4), (2 1 4 3), (3 4 1 2), (4 3 2 1)} if n = 4.

For the sake of completeness we recall the classical case of G(1, 3) ∩H2.

Remark 3.6 The automorphism group of G(1, 3)∩H2 is an extension of Z/2Z
by PGL(2,C)× PGL(2,C). It acts homogeneously on G(1, 3) ∩H2.

Proof. The Grassmannian G(1, 3) is a smooth quadric in P(
∧2 C4) ∼= P5.

Therefore G(1, 3)∩H2 is a smooth quadric in P3. Hence it is isomorphic to the
Segre variety P1×P1 in P3. The automorphism group of P1×P1 is generated by
PGL(2,C)×PGL(2,C) together with the automorphism that exchanges the P1s.
All the automorphisms extend to P3. Obviously, the group acts transitively on
P1 × P1. ✷
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For the rest of this section we consider the question if the action of the other
automorphism groups is quasihomogeous on the corresponding line system, i.e.
if there is an open orbit.

This cannot be the case for n ≥ 7 since then the dimension of the line system
G(1, 2n− 1) ∩H2, 2(2n− 2)− 2 = 4n− 6, is larger than the dimension of the
automorphism group, 3n.

For n = 3 the action is quasihomogeneous. To see that one can adjust the
(λ1, λ2, λ3) in the normal form of the line system to (1, 0,−1) by a projec-
tive transformation and compute the stabiliser of the line (1 : 0 : 1 : 0 : 1 : 0) ∧
(1 : 1 : 1 :−2 : 1 : 1) by hand or computer and see that it is 3-dimensional. So the
dimension of its orbit is 3 · 3 − 3 = 6, which is just the dimension of the line
system.

For n = 4, 5, 6 the group does not act quasihomogenously anymore. For this
one computes again the dimension of the stabiliser of a general line. Since the
group acts transitively on P2n−1 \

⋃
Li, we may restrict our attention to lines

through one of those points, e.g. (1 : 0 : . . . : 1 : 0). Using a computer one sees
that the stabilizer of a general line through this point has again dimension 3.
Hence the orbit has dimension 3n− 3, which is less then the dimension of the
line system, 4n− 6.

4 G(1, 5) ∩H3

Let L = H3 ⊂ P(
∧2 C6) be a general 3-codimensional subspace. With our

usual identification of (
∧2 C6)∗ with the antisymmetric matrices Antisym(6,C)

its dual plane L∗ = P(λA + µB + vC) ⊂ P(
∧2 C6)∗ intersects the dual Grass-

mannian G(1, 5)∗, which consists of matrices of rank ≤ 4 and is a hypersurface
of degree 3 by Corollary 1.7, in an irreducible cubic C∗. By Corollary 1.6 a
point (λ :µ : ν) ∈ C∗ corresponds to the hyperplane h(λ :µ :ν) = P(λA+µB+νC)
that is tangent to the Grassmannian at the point

l(λ:µ:ν) := ker(λA + µB + νC) ⊂ P5.

In analogy to the former case we have

Lemma 4.1
{
p ∈ P5

∣∣∣∣
through p passes a P2

of lines of G(1, 5) ∩ L

}
=

⋃

(λ:µ:ν)∈C∗

l(λ:µ:ν) ⊂ P5

Proof. Since by definition the lines in G(1, 5)∩L that contain p are p∧ q with
tpAq = tpBq = tpCq = 0, we see that

through p passes at least a P2 of lines of G(1, 5) ∩ L
⇐⇒ tpA, tpB, tpC are linear dependent

⇐⇒ ∃(λ :µ : ν) ∈ P2 with tp(λA+ µB + νC) = 0

⇐⇒ p ∈ ker(λA+ µB + νC) = l(λ:µ:ν).
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We also note that there cannot be a P3 of lines of G(1, 5) ∩ L through a point
p. Because if there were one, then dim span {tpA, tpB, tpC} = 1, i.e. there exist
two points (λ :µ : ν), (λ′ :µ′ : ν′) ∈ P2 with

tp(λA+ µB + νC) = tp(λ′A+ µ′B + ν′C) = 0.

It follows that all the matrices

(αλ + βλ′)A+ (αµ+ βµ′)B + (αν + βν′)C for all (α :β) ∈ P1

have a non-trivial kernel. Hence the line (αλ+ βλ′ :αµ+ βµ′ :αν + βν′) must
lie in L∗ ∩ G(1, 5)∗ = C∗. But this is a contradiction since the cubic C∗ is
irreducible. ✷

Proposition 4.2 The lines l(λ:µ:ν) ⊂ P5 with (λ :µ : ν) ∈ C∗ do not intersect
each other.

Proof. Assume that the line l(λ:µ:ν) intersects the line l(λ′:µ′:ν′) in the point p,
i.e.

p ∈ ker(λA + µB + νC) ∩ ker(λ′A+ µ′B + ν′C) 6= 0.

Then

p ∈ ker((αλ+ βλ′)A+ (αµ + βµ′)B + (αν + βν′)C) 6= 0 for all (α :β) ∈ P1,

and the line (αλ+βλ′ :αµ+βµ′ :αν+βν′) must be contained in the irreducible
cubic C∗, which is a contradiction. ✷

Let us again derive a normal form:

Proposition 4.3 For a general plane L∗ = P(λA + µB + νC) ⊂ P(
∧2 C6)∗

there exists a choice of bases of L∗ and C6 such that

A =




0 −1

01 0
0 −1
1 0

0 00 0 0




B =




0 0

00 0
0 −1
1 0

0 −10 1 0




C =




0 0 −α 0 −γ 0
0 0 0 −α −δ −γ
α 0 0 −1 −β 0
0 α 1 0 0 −β
γ δ β 0 0 0
0 γ 0 β 0 0



.
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Remark 4.4 It is also possible to derive a more symmetric normal form where
all three matrices look like C only with the 0−1

1 0 block moved along the diagonal,
but this is not more useful for our computations.

Proof of proposition 4.3. We may assume that the line P(λA + µB) ⊂ L∗ is
a general line. By Proposition 3.2 there exists a choice of coordinates (corre-
sponding to λ1 = 0, λ2 = 1, λ3 = ∞) such that A and B are of the required
form. Further, if we change the coordinates of C6 by transformations of the
type

T =




t1 0 0
0 t2 0
0 0 t3


 t1, t2, t3 ∈ SL(2,C),

then A and B will stay the same by Theorem 3.5.

We write the matrix C as

C =




c1J −tC21 −tC31

C21 c2J −tC32

C31 C32 c3J


 with

J =

(
0 −1
1 0

)
; c1, c2, c3 ∈ C

C21, C31, C32 ∈ M(2,C).

We may assume that c1 = c3 = 0, c2 = 1, otherwise we replace C by the matrix
1/(c2− c1− c3)(C− c1A− c3B). This is possible since c2− c1− c3 6= 0, because
C is general. So C looks like

C =




0 −tC21 −tC31

C21 J −tC32

C31 C32 0


 .

The generality of C ensures that the matrices C21 and C32 are invertible, so

T =




1
αC21 0 0

0 E2 0

0 0 1
β
tC32


 with

α =
√

detC21

β =
√

detC32

is of the above mentioned type and transforms C into

C′ := tT−1CT−1 =




0 −αE2 −tC
αE2 J −βE2

C βE2 0


 with C := αβC−1

32 C31C
−1
21 .

This matrix will be transformed under

T =




t−1 0 0
0 tt 0
0 0 t−1


 with t ∈ SL(2,C)
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into

tT−1C′T−1 =




0 −αE2 −tttCt
αE2 J −βE2

ttCt βE2 0


 .

So, all that remains to show is: Given a general matrix C ∈ M(2,C) there is a
matrix t ∈ SL(2,C) such that

ttCt =

(
γ δ
0 γ

)
.

If

C =

(
c11 c12

c21 c22

)
and t =

(
1 − c21c11
0 1

)

then

C
′

= ttCt =

(
c11 c12 − c21
0 detC

c11

)

and an additional transformation by

t =




4
√

detC√
c11

0

0
√
c11

4
√

detC




takes C into the desired form

ttC
′
t =

( √
detC c12 − c21
0

√
detC

)
. ✷

Remark 4.5 In terms of this coordinates the cubic C∗ ⊂ L∗ is given as

λ2µ+ µ2λ+ λµν − (γ2 + β2)λν2 − (α2 + γ2)µν2 + (αβδ − γ2)ν3.

One checks that the cubic is smooth for general α, β, γ, δ.

Now we start to determine the automorphism group of G(1, 5) ∩ L. A given
automorphism

ϕ ∈ Aut(G(1, 5) ∩ L) = Aut(L,P(
∧2C6)) ∩Aut(G(1, 5),P(

∧2C6))

induces a dual automorphism ϕ∗ on the dual projective space P(
∧2 C6))∗ that

preserves L∗ and the dual Grassmannian G(1, 5)∗, i.e.

ϕ∗ ∈ Aut(L∗,P(
∧2C6)∗) ∩Aut(G(1, 5)∗,P(

∧2C6)∗).
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In particular, ϕ∗ induces a projective transformation of L∗ preserving C∗. But
a smooth cubic has only finitely many automorphisms that are induced by a
projective linear transformation [BK, 7.3].

To find all automorphisms of G(1, 5) ∩ L that induce the identity on L∗, we
look for the T ∈ PGL(6,C) such that

tT−1(λA + µB + νC)T−1 ∈ C · (λA+ µB + νC) for all λ, µ, ν ∈ C.

It suffices to check this for (λ, µ, ν) = (1, 0, 0), (0, 1, 0), and (0, 0, 1). If we
normalize the representation of T in GL(6,C) by detT = 1, we know from the
previous section that tT−1AT−1 = C ·A and tT−1BT = C ·B is equivalent to

T =




t1 0 0
0 t2 0
0 0 t3


 with t1, t2, t3 ∈ SL(2,C).

Furthermore, we compute

tT−1CT−1 =




0 −α tt−1
1 t−1

2 −tt−1
1

(
γ 0
δ γ

)
t−1
3

α tt−1
2 t−1

1 0 −β tt−1
2 t−1

3

tt−1
3

(
γ δ
0 γ

)
t−1
1 β tt−1

3 t−1
2 0


 ,

so that tT−1CT−1 = ϑ · C iff t1 = 1
ϑ
tt−1

2 = t3 =: t and

tt−1

(
γ δ
0 γ

)
t−1 = ϑ

(
γ δ
0 γ

)
.

Because of det t1 = det t2 = 1, ϑ must be either 1 or -1. Setting

t =

(
a b
c d

)
=⇒ t−1 =

(
d −b
−c a

)

the last condition together with det t = 1 requires that the following polyno-
mials vanish:

(d2 + c2 − ϑ)γ − dcδ, (db + ac)γ − (ϑ− ad)δ

(db+ ac)γ − bcδ, (b2 + a2 − ϑ)γ − baδ, ad− bc− 1

The Gröbner basis of the ideal generated by these polynomials with respect to
the lexicographical order γ > δ > a > b > c > d can be computed for ϑ = 1 as

γa+ δc− γd, b+ c, ad+ c2 − 1,

so that

t =

(
a γ

δ (a− d)
γ
δ (d− a) d

)
with det t = 1.
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For ϑ = −1 we get as the Gröbner basis

δ, a+ d,−c+ b, d2 + c2 + 1.

Since in the general case δ 6= 0, this gives no further automorphisms.

The one-dimensional subgroup of PGL(2,C) consisting of elements like t above

acts on P1 with the two fixed points (−δ ±
√
δ2 − 4γ2 : 2γ). Hence it is

conjugate to the one-dimensional subgroup of PGL(2,C) that acts on P1 with
the fixed points 0 and∞. Now this subgroup consists of the invertible diagonal
matrices of PGL(2,C), so it is isomorphic to C∗. Therefore we have shown

Theorem 4.6 The component of the automorphism group of G(1, 5)∩H3 con-
taining the identity is isomorphic to C∗. The quotient of Aut(G(1, 5)∩H3) by
this component is a subgroup of the finite group of projective automorphisms of
a smooth cubic in P2.

5 G(1, 2n) ∩H

The hyperplane H is given by an element A ∈ (
∧2 C2n+1)∗ which can be

thought of as an antisymmetric matrix of size 2n + 1. Since antisymmetric
matrices have an even rank, the general H corresponds to an A of rank 2n.
The one dimensional kernel of A as a point of P2n is called the center c of H .

The center plays a special role in the geometry of the line system G(1, 2n)∩H
in P2n.

Proposition 5.1 Every line through the center of the line system G(1, 2n)∩H
is in the line system. The center is the only point with this property.

Moreover, if the line l 6∋ c belongs to the line system, so does every line in the
plane spanned by the line l and the center c.

Proof. The line c ∧ p through the center will be in the line system if tcAp = 0.
But c is the kernel of A, so this is true. On the other hand, if c is a point
such that every line through it belongs to the line system, then tcAp = 0 for
all p ∈ P2n. Hence c must be in the kernel of A, and therefore c = c.

Let the line l = p ∧ q be in the line system. All the lines in the plane spanned
by l and c – except the lines through c itself – can be written as

(αp+ βc) ∧ (λq + µc) for (α : β), (λ : µ) ∈ P1.

These will be in the line system since

(αtp+ βtc)A(λq + µc) = αλtpAq + αµtpAc+ βλtcAq + βµtcAc

= αλtpAq = 0.
✷
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Let us for a moment look at the projection P(C2n+1/c) of P2n from the center
c. This projection maps all lines in a plane through the center – except the
lines through c itself – to only one line. Hence we get a codimension one line
system inside P2n−1. In fact, it is of the form G(1, 2n− 1) ∩H , which is most
easily seen in coordinates. We choose a basis (e0, . . . , e2n) of C2n+1 such that
the hyperplane H is given by the matrix

A =




0 −En

En 0

0
...
0

0 · · · 0 0


 ∈ Antisym(2n+ 1,C).

The center of H is c = P(e2n). So the projected line system is G(1, 2n−1)∩H ,
where H is given by the matrix A with the last row and column deleted.

This description helps to determine the automorphism group of G(1, 2n) ∩H .

First of all, any of the automorphism must – as a transformation T ∈ PGL(2n+
1,C) – preserve the center, i.e. Tc = c. Therefore it induces a transformation
T of the projected space P(C2n+1/c). This induced transformation T has to
preserve the projected line system G(1, 2n− 1) ∩H . Since this case has been
treated in Section 2, we know that if we normalize T by detT = 1, then
T ∈ Sp(2n,C). Therefore T must have been of the form

T =




T

0
...
0

a0 · · · a2n−1 b


 with

T ∈ Sp(2n,C)
ai ∈ C
b ∈ C∗.

One immediately checks that tT−1AT = A, so that the automorphism group
as a subset of PGL(2n+ 1,C) consists of all elements of the above type. Since
we normalized T , we have up to multiplication by −1 an unique representative
in the class of PGL(2n+ 1,C).

A small computation shows that

N :=








E2n

0
...
0

a0 · · · a2n−1 1


 | ai ∈ C




⊂ Aut(G(1, 2n) ∩H)

is a normal subgroup which is isomorphic to (C2n,+).

Collecting everything together we have

Proposition 5.2 The automorphism group of G(1, 2n) ∩H for a general hy-

perplane H ⊂ P(
∧2 C2n+1) is an extention of Sp(2n,C) × C∗/{1,−1} by
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(C2n,+) and is isomorphic to the group








T

0
...
0

a0 · · · a2n−1 b




T ∈ Sp(2n,C)
ai ∈ C
b ∈ C∗




/{1,−1}.

The action of the automorphism group on the line system is described by the
following

Proposition 5.3 The action of the automorphism group of G(1, 2n) ∩H on
the lines of G(1, 2n) ∩H has two orbits:

1. the lines containing the center c

2. the lines that do not.

Proof. Since all the automorphisms preserve the center any orbit will be con-
tained in these two sets.

First we show that the lines containing c form one orbit. For two lines c ∧ p
and c ∧ q, we may assume p, q ∈ P(C2n× 0). Take a T ∈ Sp(2n,C) that maps
p to q. The trivial extention of T to T ∈ SL(2n+ 1,C) will take c ∧ p to c ∧ q.
The other lines will form the second orbit since any line not containing the
center can be pushed into the hyperplane P(C2n× 0) by a transformation with
an element of the normal subgroup N . There one can use the transitive action
of the Aut(G(1, 2n − 1) ∩ H) subgroup to show that all these lines can be
mapped onto each other. ✷

6 G(1, 2n) ∩H2

Let L = H2 be a 2-codimensional linear subspace of P(
∧2 C2n+1). We want

to study the linear line system G(1, 2n) ∩ L. To L corresponds the line

L∗ = P(λA − µB) ⊂ P(
∧2 C2n+1)∗ of the hyperplanes H(λ:µ) = P(λA − µB)

containing L. We identify as always (
∧2 C2n+1)∗ with the antisymmetric ma-

trices Antisym(2n+ 1,C). The locus of antisymmetric matrices of corank 3 in
Antisym(2n + 1,C) is 3-codimensional by Corollary 1.7. Therefore a line L∗

may be called general if it does not intersect it. Hence for the general line L∗

the antisymmetric matrices λA− µB corresponding to the hyperplanes H(λ:µ)

have all corank 1. So each of the hyperplane sections G(1, 2n) ∩H(λ:µ) has a
unique center c(λ:µ) ∈ P2n by Proposition 5.1. These centers play an important
role in the geometry of G(1, 2n) ∩ L.

Proposition 6.1 The centers c(λ:µ) are those points of P2n through which
there passes a P2n−2 of lines of the line system G(1, 2n) ∩ L. Through all the
other points of P2n passes only a P2n−3 of lines.
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Proof. The lines of the line system through a point p ∈ P2n are p ∧ q with
tpAq = tpBq = 0. So we need to show that tpA and tpB are linear dependent
iff p is a center of a hyperplane H(λ:µ). Now tpA and tpB are linear dependent
precisely if there exists a (λ :µ) ∈ P1 with 0 = λtpA− µtpB = tp(λA− µB), i.e.
p is the kernel of λA− µB, which is by definition the center of H(λ:µ). ✷

Remark 6.2 Any line that contains two centers is a member of the line system
G(1, N) ∩ L.

Proof. If the line contains the centers c(α:β) and c(λ:µ), it is contained in
the hyperplanes H(α:β) and H(λ:µ) by Proposition 5.1 and therefore in their
intersection L = H(α:β) ∩H(λ:µ). ✷

Next we want to know more about the curve c(λ:µ).

Proposition 6.3 Let A, B be two antisymmetric matrices of size 2n+ 1 such
that every non-zero linear combination of them has corank 1. Then the map

c : P1 −→ P2n

(λ :µ) 7−→ ker(λA− µB)

is a parametrisation of a rational normal curve of degree n.

Proof. (compare [SR, X,4.3] for n = 2.) First we show that the map is injective.
If it is not, there are two points of P1 with the same image. We may assume
that this is the case for (1 : 0) and (0 : 1), i.e. A and B have the same kernel,
say e0. Writing A and B in a basis with e0 as first element, we have

A =




0 · · · 0
...
0

Ã


 and B =




0 · · · 0
...
0

B̃


 with Ã, B̃ ∈ Antisym(2n,C).

Since det(λÃ − µB̃) is a homogeneous polynomial of degree 2n, there exist a

(λ′ :µ′) ∈ P1 with det(λ′Ã−µ′B̃) = 0. But then λ′A−µ′B has corank at least
two, which contradicts our assumption.

Secondly, we proof that the map is of maximal rank everywhere. If it is not,
we may assume that it is not maximal at (1 : 0). Restricting to the chart λ = 1,
this means c′(0) = 0. Now from

(A− µB)c(µ) = 0

=⇒ Ac′(µ) −Bc(µ)− µBc′(µ) = 0

=⇒ Ac′(0)−Bc(0) = 0

Bc(0) = 0 follows. Therefore A and B have the same kernel c(0), and we are
back in the above chain of arguments.
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Finally, we have to show that the embedding c is of degree n. For this we
give an explicit form of the map. Recall [B, 5.2] that the determinant of an
antisymmetric matrix C = (cij) of size 2n is the square of the irreducible
Pfaffian polynomial Pf C,

Pf C :=
∑

σ

sgn (σ)cσ(1)σ(2) . . . cσ(2n−1)σ(2n),

where σ runs through all permutations S(2n) with σ(2i − 1) < σ(2i) for i =
1 . . . n and σ(2i) < σ(2i+ 2) for i = 1 . . . n− 1.

Let ci(λ :µ) denote (−1)i-times the Pfaffian of the matrix λA − µB with the
i-th row and column deleted. Then the ci(λ :µ) are irreducible polynomials of
degree n and by a straightforward but messy computation one can check that
(c0(λ :µ) : . . . : c2n(λ :µ)) is the kernel of λA−µB. Therefore c = (c0 : . . . : c2n),
which shows that c is a degree n embedding of P1. ✷

After we have determined the special points in P2n of the line system G(1, 2n)∩
L, we are nearly ready to compute its automorphism group. It remains to give
a normal form for the line L∗ ⊂ P(

∧2 C2n+1) to make computations easier.
This normal form was found by Donagi [D, 2.2]. But he did not give a proof
for it since his main interest was lines in P2n−1 and not in P2n. So we give the
proof here.

Proposition 6.4 Let L∗ be a line in P(
∧2 C2n+1)∗ such that the antisym-

metric matrices corresponding to the points of L∗ have all corank 1. Then
there exists a basis (e0, . . . , e2n) of C2n+1 such that the line can be taken as
L∗ = P(λA− µB) with the matrices

A =




0 −En

En 0

0
...
0

0 · · · 0 0


 and B =




0
0
...
−En

0 · · · 0 · · · 0

En
...
0

0



.

Proof. Let A and B any two matrices of L∗ in an arbitrary basis. We will
adjust the basis in three steps to achieve the required form for A and B.

1st Step: We know that the map

c : P1 −→ P2n

(λ :µ) 7−→ ker(λA− µB)

is a parametrisation of a rational normal curve of degree n. Modulo projective
transformations of P1 and P2n such parametrisations are all the same. So we

Documenta Mathematica 4 (1999) 623–664



646 J. Piontkowski and A. Van de Ven

can pick a basis of P1 and n+1 linear independent vectors en, . . . , e2n of C2n+1

such that
c : P1 −→ P2n

(λ :µ) 7−→ P

(
n∑
i=0

λiµn−ien+i

)
.

Extending (en, . . . , e2n) to a basis (e0, . . . , e2n) of C2n+1 and denoting by
a0, . . . , a2n resp. b0, . . . , b2n the columns of A resp. B, the fact that c(λ :µ) is
the kernel of λA− µB for all (λ :µ) ∈ P1 has the following consequences for A
and B:

(λA− µB)

(
n∑
i=0

λiµn−ien+i

)
= 0

=⇒
n∑
i=0

λi+1µn−ian+i −
n∑
i=0

λiµn+1−ibn+i = 0

=⇒ −µn+1bn +
n−1∑
i=0

λi+1µn−i(an+1 − bn+i+1) + λn+1a2n = 0

=⇒ bn = 0, a2n = 0, an+i = bn+i+1 for i = 0 . . . n− 1. (∗)

We claim that this implies:

an+i,n+j = 0 for i, j = 0 . . . n.

Indeed, for 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1 we have using (∗)

an+i,n+j = bn+i,n+j+1 = −bn+j+1,n+i = −an+j+1,n+i−1 = an+i−1,n+j+1.

This shows that the an+i,n+j are all the same for i + j = const, in particular
an+i,n+j = an+j,n+i. On the other hand, by the antisymmetricity of A we have
an+i,n+j = −an+j,n+i, and the claim follows.

Using (∗) again we know that A and B look in our basis like

A =




Ã −tM
M 0

0
...
0

0 · · · 0 0


 and B =




B̃
0
...
−tM

0 · · · 0 · · · 0

M
...
0

0




with Ã, B̃ ∈ Antisym(n,C) and M ∈ GL(n,C).

2nd Step: Here we will improve the choice of (e0, . . . , en−1) to achieve Ã = 0
and M = En. We claim:

Let an antisymmetric matrix A ∈ Antisym(2n + 1,C) of rank 2n and linear
independent vectors en, . . . , e2n ∈ C2n+1 with teiAej = 0 for n ≤ i, j ≤ 2n and
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Ae2n = 0 be given. Then (en, . . . , e2n) can be extended to a basis (e0, . . . , e2n)
of C2n+1 such that in this basis A is given as

A =




0 −En

En 0

0
...
0

0 · · · 0 0


 .

The proof is by induction. The statement is trivial for n = 0. Assuming the
claim for n− 1, we prove it for n. Let W :=

⋂n
i=1 ker ten+iA, then there exists

an e0 ∈ W with tenAe0 = 1. If not, we would have W = W ∩ker tenA and with
e2n ∈ kerA

dim span {tenA, . . . , te2nA} = dim span {ten+1A, . . . ,
te2n−1A} ≤ n− 1,

which contradicts rankA = 2n.

Set V := ker te0A∩ ker tenA, then dim V = 2(n− 1) + 1 and en+1, . . . , e2n ∈ V .
Therefore the induction hypothesis can be applied to A|V . Together with
te0Aen = 1 and te0Av = tenAv = 0 for v ∈ V this implies the stated form of
the matrix.

So up to now A and B look like

A =




0 −En

En 0

0
...
0

0 · · · 0 0


 B =




B̃
0
...
−En

0 · · · 0 · · · 0

En
...
0

0



.

3rd Step: We adjust the vectors (e0, . . . , en−1) so that B̃ = 0 and A stays the
same.

We note that a transformation of C2n+1 by

T =




En 0

t En

0
...
0

0 · · · 0 1




−1

with t ∈ Sym(n,C)

does not change A since

tT−1AT−1 = tT−1(AT−1) =




En t

0 En

0
...
0

0 · · · 0 1






−t −En

En 0

0
...
0

0 · · · 0 0


= A.

If we denote by t resp. |t ∈ M(n× n,C) the matrix that we obtain by deleting
the first row resp. column of t and adding a row of zeroes below resp. a
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column of zeroes on the right side, we can write down the transformation of B
as follows:

tT−1BT−1 = tT−1(BT−1) =




En t

0 En

0
...
0

0 · · · 0 1







B̃ − t 0
...
−En

0 · · · 0 · · · 0

En
...
0

0




=




B̃ − t+ |t 0
...

−En

0 · · · 0 · · · 0

En
...
0

0



.

So to finish this step, we need to show that every antisymmetric matrix B̃ =
(bij) ∈ Antisym(n,C) can be written as t − |t for a symmetric matrix t ∈
Sym(n,C). The entries of t− |t are

(ti+1,j − ti,j+1)ij

where tn+1,i := ti,n+1 := 0 for all i = 1 . . . n. Obviously, t−|t is antisymmetric.
We set t1i := ti1 := 0 for i = 1 . . . n and define recursively for j from n down
to 2

ti+1,j := ti,j+1 + bij for i = 1 . . . j − 1.

Then by the symmetry of t the whole matrix t is defined and t− |t = B ✷

For the linear system in normal form the rational curve of centers has the
parametrisation

c(λ :µ) = ker(λA − µB) = ker




−λ µ

0
. . .

. . .
−λµ

λ

−µ . . .
. . . λ 0
−µ




= (0 : . . . : 0 :µn :µn−1λ : . . . :λn).

The P2n−2 of lines through a center c(λ:µ) is given by

c(λ:µ) ∧ q where q ∈ P2n with tc(λ:µ)Aq = tc(λ:µ)Bq = 0,
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i.e. q must be an element of the hyperplane h(λ:µ) ∈ P∗2n

h(λ:µ) = ker tc(λ:µ)A ∩ tc(λ:µ)B

= ker

(
µn µn−1λ · · · µλn−1 0 · · · 0

µn−1λ µn−2λ2 · · · λn 0 · · · 0

)

= ker
(
µn−1 µn−2λ · · · λn−1 0 · · · 0

)
.

So the hyperplanes h(λ:µ), which are traced out by the P2n−2 of lines through
the centers, give rise to a rational normal curve of degree n− 1 in the space of
hyperplanes containing the center curve. That the hyperplanes h(λ:µ) contain
the center curve could already be seen from the Remark 6.2, by which h(λ:µ)

must contain any line connecting c(λ:µ) with any other point of the center curve.

Now we are ready to study the automorphism group of G(1, 2n) ∩ L.

Any automorphism T ∈ Aut(G(1, 2n) ∩ L) ⊆ PGL(2n+ 1,C) has to map the
center curve onto itself and also the projective space P ∼= Pn spanned by the
center curve onto itself. It is known [H, 10.12] that the group of automorphisms
of Pn fixing a rational normal curve of degree n is isomorphic to PGL(2,C). If
the rational normal curve is given by

c : P1 −→ Pn
(λ :µ) 7−→ (µn :µn−1λ : . . . :λn),

this isomorphism PGL(2,C) ∼= Aut(c,Pn) maps

t =

(
a b
c d

)
∈ PGL(2,C)

to tn+1 ∈ PGL(n+ 1,C) where tn+1 is the unique matrix such that

tn+1




µn

µn−1λ
...
λn


 =




(dµ+ cλ)n

(dµ+ cλ)n−1(bµ+ aλ)
...

(bµ+ aλ)n


 ;

for example

t2 =

(
d c
b a

)
t3 =




d2 2cd c2

bd ad+ bc ac
b2 2ab a2


 .

Applying this to the center curve restricts the form of the transformation T to

T =

( ∗ 0

∗ tn+1

)
.
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We know further that if T maps c(λ:µ) to c(aλ+bµ:cλ+dµ), then it must map the
hyperplane h(λ:µ) to h(aλ+bµ:cλ+dµ). Therefore it induces also an automorphism
on the rational curve h of degree n − 1 in the dual projective space (P2n/P )∗

of hyperplanes containing P . Hence T must be of the form

T =




α tt−1
n 0

∗ tn+1


 with α ∈ C∗.

We make the following claim:

T =




tt−1
n 0

0 tn+1


 ∈ PGL(2n+ 1,C)

is an automorphism of the linear system G(1, 2n) ∩ L.

Proof. We need to check that for every t ∈ PGL(2,C)

tT−1(λA− µB)T−1 ∈ span {A,B}

for all λ, µ ∈ C. Since PGL(2,C) is a group, this is equivalent to the statement
that for every t ∈ PGL(2,C)

tT (λA− µB)T ∈ span {A,B}

for all λ, µ ∈ C. Because of the linearity it is enough to do this for (λ, µ) = (1, 0)
and (0,−1). Denoting by tn+1 resp. tn+1 the matrix tn+1 with the first resp.
last row deleted, we compute:

tT (AT ) =



t−1
n 0

0 ttn+1







0 −tn+1

tt−1
n

0···0 0


=




0 −t−1
n tn+1

t(t−1
n tn+1) 0




tT (BT ) =



t−1
n 0

0 ttn+1







0 −tn+1

0···0
tt−1
n

0


=




0 −t−1
n tn+1

t(t−1
n tn+1) 0



.

So, if we show

tn+1 = d
(
tn

0
0

)
+ c

(
0
0tn
)

=⇒ t−1
n tn+1 = d

(
En

0
0

)
+ c

(
0
0En

)

tn+1 = b
(
tn

0
0

)
+ a

(
0
0tn
)

=⇒ t−1
n tn+1 = b

(
En

0
0

)
+ a

(
0
0En

)
,
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where 0
0 stands for adding a column of zeroes, then

tTAT = dA+ cB

tTBT = bA+ aB.

To show the equality for tn+1 note that on the one hand tn+1 is the unique
matrix with

tn+1




µn

µn−1λ
...
λn


 =




(dµ+ cλ)n

(dµ+ cλ)n−1(bµ+ aλ)
...

(dµ+ cλ)(bµ+ aλ)n−1




and on the other hand



(dµ+ cλ)n

(dµ+ cλ)n−1(bµ+ aλ)
...

(dµ+ cλ)(bµ+ aλ)n−1


 = (dµ+ cλ)




(dµ+ cλ)n−1

(dµ+ cλ)n−2(bµ+ aλ)
...

(bµ+ aλ)n−1




= (dµ+ cλ)tn




µn−1

µn−2λ
...

λn−1


 = dtn




µn

µn−1λ
...

µλn−1


+ ctn




µn−1λ
µn−2λ2

...
λn




=
(
d
(
tn

0
0

)
+ c

(
0
0tn
))




µn

µn−1λ
...
λn


 .

Of course, the proof for tn+1 = b
(
tn

0
0

)
+ a

(
0
0tn
)

is analogous. ✷

Given any automorphism of the line system G(1, 2n) ∩ L we can compose it
with one of the above automorphisms such that the composition fixes the center
curve pointwise. So, we can focus our attention to automorphisms of the last
type.

Lemma 6.5 All automorphisms of G(1, 2n)∩L that fix the center curve point-
wise are of the form

T =

(
αEn 0
S En+1

)
with α ∈ C∗, S ∈M((n+ 1)× n,C),

where the matrix S ∈ M((n+ 1)× n,C) has the same entries along the minor
diagonals, i.e. sij = skl for i+ j = k + l.

As a group these matrices are isomorphic to the semi direct product C2n ⋉ C∗,
(s, α) · (s′, α′) = (α′s+ s′, αα′).
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Proof. We need only to check the property of S and the group structure. T is
an automorphism iff

tT−1AT−1, tT−1BT−1 ∈ span {A,B}.

The inverse of T is

T−1 =

(
1
αEn 0

− 1
αS En+1

)
.

Now if S resp. S ∈ M(n × n,C) denote the matrix S with the first resp. last
row deleted, then

tT−1(AT−1) =

(
1
αEn − 1

α
tS

0 En+1

)



1
αS −En
1
αEn 0

0
...
0

0 · · · 0 0




=




1
α2 (S − tS) − 1

αEn
1
αEn 0

0
...
0

0 · · · 0 0




tT−1(BT−1) =

(
1
αEn − 1

α
tS

0 En+1

)



1
αS

0
...
−En

0 · · · 0 · · · 0

1
αEn

...
0

0




=




1
α2 (S − tS)

0
...
− 1
αEn

0 · · · 0 · · · 0

1
αEn

...
0

0



.

Therefore T is an automorphism iff S = tS and S = tS. In other words

sij = sji
si+1,j = sj+1,i

for 1 ≤ i, j ≤ n,

so
sij = sji = s(j−1)+1,i = si+1,j−1

for j > 1 and i < n, hence sij = skl for i+ j = k + l.

The statement about the group action follows from

(
αEn 0
S En+1

)(
α′En 0
S′ En+1

)
=

(
αα′En 0
α′S + S′ En+1

)
. ✷
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Collecting the results we have

Theorem 6.6 The automorphism group of G(1, 2n) ∩ L is an extention of
PGL(2,C) by the semi direct product C2n ⋉ C∗.

It is isomorphic to the matrix subgroup of PGL(2n+ 1,C) given by
(
αEn 0
S En+1

)(
tt−1
n 0
0 tn+1

)

where α ∈ C∗, S ∈ M((n + 1) × n,C) with sij = skl for i + j = k + l and
tn ∈ Aut(h,Pn−1) resp. tn+1 ∈ Aut(c,Pn) are the transformations that are
induced by the PGL(2,C) action on the rational normal curve h ⊂ Pn−1 resp.
c ⊂ Pn.

Proof. It remains to show that the automorphism fixing the center curve point-
wise form a normal subgroup, but that can be easily computed. ✷

Remark 6.7 An automorphism of G(1, 2n)∩L is determined by its action on
the lines intersecting the center curve.

In contrast to that, the line system, i.e. the position of the line L∗ ⊂
P(
∧2 C2n+1)∗, is not determined by these lines, as a simple dimension count

shows. Giving these lines is equivalent to giving the two rational curves c ⊂ P2n

and h ⊂ P2n/P ∼= Pn−1 and a correspondence between them, so that we have
the following dimension count

(2(2n+ 1)− 4) + (2n− 4) + 3 < dim G(1,P(
∧2C2n+1)) = 2

((
2n+ 1

2

)
− 2

)
.

Proof of the remark. We need to show that only the identity fixes these lines
one by one. First a transformation T that fixes the lines must fix the center
curve, hence by the Lemma 6.5 it is of the form

T =

(
αEn 0
S En+1

)
.

We compute the induced action T̃ of T on {l ∈ G(1, 2n) ∩ L | c(0:1) ∈ l}, the
P2n−2 of lines through c(0:1) = en. A line l ∈ G(1, 2n) through c(0:1) will be in
the line system G(1, 2n)∩L iff it lies in the hyperplane h(0:1) = ker(1 : 0 : . . . : 0).
Therefore the P2n−2 of lines through en is given by

en ∧ x with x ∈ P(span {e1, . . . , en−1, en+1, . . . , e2n}).

Using (e1 ∧ en, . . . , en−1 ∧ en, en+1 ∧ en, . . . , e2n ∧ en) as a basis, the induced

action T̃ is

T̃ =

(
αEn−1 0

|S En

)
.
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Here |S denotes the matrix S with the first row and column deleted. In order

to have T̃ = E2n−1, we must have α = 1 and |S = 0.

The same computation for the lines through c(1:0) = e2n yields α = 1 and
S| = 0 from which S = 0 and the remark follow. ✷

For the rest of the section we analyze the action of the automorphism group
on the line system G(1, 2n) ∩ L. We start with G(1, 4) ∩ L.

Proposition 6.8 The action of Aut(G(1, 4)∩L) on the lines has four orbits:

1. tangents of the center conic

2. secants of the center conic

3. lines through the center conic that do not lie in the plane of the center
conic

4. lines that do not intersect the plane of the center curve.

Proof. Since any automorphism maps the center conic onto itself, it is clear by
the geometric description that all the mentioned lines lie in different orbits.

Any line in the plane P of the center conic intersects the conic twice, so by
the Remark 6.2 it is a member of the line system. Since the automorphism
group acts like Aut(c, P ) ∼= PGL(2,C) on the plane P , the first two orbits are
obvious.

To see that the lines of 3) form one orbit, we have to exhibit an automorphism
that given two lines of 3) maps one onto the other. Since the PGL(2,C) part of
the automorphism group acts transitively on the center conic, we may assume
that both lines pass through the same point of the center conic, say e2 =
c(0:1). Now the induced action T̃ of an automorphism T fixing the center conic
pointwise on the P2 of lines through e2 was computed in the proof of the Remark
6.7 as

T̃ =




α 0 0
f 1 0
g 0 1


 with α ∈ C∗; f, g ∈ C.

These transformations act transitively on P2 \ P(span {ẽ1, ẽ2}), where the line
P(span {ẽ1, ẽ2}) corresponds to the lines through e2 that lie in the plane of the
center conic.

The lines of 4) are all the remaining lines since there are no lines that intersect
the plane P of the center conic but not the conic c itself. This is clear because
the P1 of lines through a point p ∈ P \ c is formed by the lines through p in
the plane P , so there can be no other line.

Finally, we have to show that the lines of 4) form one orbit. By a small
computation one checks that Aut(G(1, 4)∩L) ⊂ PGL(5,C) acts transitively on
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P4 \P . So, it suffices to show that the line e0 ∧ e1 can be mapped to any other
line through e0 by an automorphism. Any of these lines can be written as

e0 ∧ (e1 + βe4) with β ∈ C,

and the automorphism

T =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 β 0 0 1




will take e0 ∧ e1 to it. ✷

Proposition 6.9 The automorphism group acts quasihomogeneously on
G(1, 6) ∩H2.

Proof. For this it is enough to show that the stabiliser of the line l = e0 ∧ e2 is
a 2-dimensional subgroup since then

dim Orbit(l) = dim Aut(G(1, 6) ∩H2)− dim Stab(l) = 10− 2 = 8
= dim G(1, 6) ∩H2.

If we normalize the t ∈ PGL(2,C) by det t = 1, every T ∈ Aut(G(1, 6) ∩H2)
can be written by the Theorem 6.6 as

T =




α 0
α 0

0 α
e f g 1

0f g h 1
g h i 1
h i j 0 1




(
tt−1

3 0
0 t4

)

with tt−1
3 =




a2 −ab b2

−2ac ab+ cd −2bd
c2 −cd d2


 .

To compute the stabilizer we start by looking only at the first three entries of

Te0 = (αa2,−2αac, αc2, . . .)

Te2 = (αb2,−2αbd, αd2, . . .).

Since we must have Te0, T e2 ∈ l, ac = bd = 0 follows. By det t = ad − bc = 1
we have the two possibilities b = c = 0, d = a−1 and a = d = 0, c = −b−1. We
examine only the first case, the second being similar. Now we have

Te0 = a2(α, 0, 0, e, f, g, h)

Te2 = a2(0, 0, α, g, h, i, j).
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From Te0, T e2 ∈ l we conclude e = f = g = h = 0 resp. g = h = i = j = 0.
Therefore, including the case (a = d = 0, c = −b−1), the stabilizer of l is

Stab(l) =








αa2

0 0
αa−2

a−3

a−1

0 a
a3




,




0 αb2

0 0
αb−2 0

−b−3

b−1

0 −b
b3 0








. ✷

Proposition 6.10 For n ≥ 4 the action of the automorphism group on
G(1, 2n) ∩H2 is not quasihomogeneous.

Proof. We project the P2n from the space P of the center curve onto
P2n/P ∼= Pn−1. This projects the lines of G(1, 2n) ∩ H2 not intersecting
P surjectively onto the lines G(1,P2n/P ) of P2n/P . The automorphisms of
G(1, 2n) ∩ H2 induce automorphisms of P2n/P . As matrices these are the
upper left n × n matrices of the matrices of Theorem 6.6, i.e. they are of
the form tt−1

n . So, as a group this induced automorphism group is isomor-
phic to Aut(h∗,P2n/P ) ∼= PGL(2,C). If Aut(G(1, 2n) ∩ H2) acts quasiho-
mogeneously, then Aut(h∗,P2n/P ) would have to act quasihomogeneously on
G(1,P2n/P ) ∼= G(1, n− 1), but this contradicts

dim PGL(2,C) = 3 < dim G(1, n− 1) = 2n− 4. ✷

7 G(1, 4) ∩H3

Let L = H3 be a general 3-codimensional subspace of P(
∧2 C5) ∼= P9. To L cor-

responds the plane L∗ = P(λA+µB+νC) ⊆ P(
∧2 C5)∗ of hyperplanes contain-

ing L. Since the locus of antisymmetric matrices of corank 3 is 3-codimensional
in P(

∧2 C5)∗ by Corollary 1.7, L∗ does not contain any. Therefore to each of
the hyperplanes H(λ:µ:ν) ⊂ L corresponds a unique center c(λ:µ:ν) ∈ P4. In
complete analogy to the last case we get

Lemma 7.1 The centers c(λ:µ:ν) are those points of P4 through which there
passes a P1 of lines of the line system G(1, 4)∩L. Through all the other points
passes a unique line.

Proposition 7.2 The map of centers

c : L∗ ∼= P2 −→ P4

(λ : µ : ν) 7−→ c(λ:µ:ν) = ker(λA + µB + νC)

is an embedding of P2 in P4 of degree 2, i.e. its image is a smooth projected
Veronese surface.
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Remark 7.3 Any line that contains three centers is in the line system.

Proof. Let c(p0), c(p1) and c(p2) with p0, p1, p2 ∈ L∗ be the three centers on
the line l. By the definition of the centers we have l ∈ Hpi . Since c maps lines
in L∗ onto conics in P4, the three points p0, p1, p2 do not lie on a line, hence
they span L∗. So l ∈ Hp0 ∩Hp1 ∩Hp2 = L. ✷

From the statements we get a complete picture of the lines of G(1, 4) ∩H3 in
P4. We define the trisecant variety Tri(X) of a variety X ⊆ PN by:

Tri(X) := {l ∈ G(1, N) | #(X ∩ l) ≥ 3}

Then we have

Corollary 7.4 (Castelnuovo) G(1, 4) ∩ L is the trisecant variety of the
smooth projected Veronese surface Im c ⊂ P4.

Proof.(see [C] or [SR, X, 4.4]) By the remark above the trisecant variety is
contained in the irreducible variety G(1, 4) ∩ L. So it is enough to show that
both varieties have the same dimension. The Lemma 7.1 together with the
Proposition 7.2 shows that there is an unique line of G(1, 4) ∩ L through a
general point of P4 and that G(1, 4) ∩ L is the closure of such lines. The
same statement for the trisecant variety is classical [SR, VII,3.2]. Hence both
varieties have dimension three. ✷

The general trisecant intersects the projected Veronese surface Im c in three
different points. Their inverse image under c are triples of points in P2 that
have to fulfill some conditions since there is only a 3-dimensional family of
these triples. To see what these conditions are, we recall some facts about the
Veronese surface [H].

The Veronese surface V is the image of the embedding

υ : P2 = P(C3) −→ P(Sym2C3)

P(v) 7−→ P(v · v) .

Its secant variety consists of the points of P(Sym2C3) that are the product of
two vectors of C3,

Sec(V ) =
{
P(v · w) | v, w ∈ C3 \ {0}

}
.

The projected Veronese surface will be smooth – like in our case – iff the center
of projection P is not in the secant variety.

An intersection of the Veronese surface V with a hyperplane H ∈ P(Sym2C3)∗

gives the conic υ−1(V ∩ H) ⊂ P2 which is described by the equation H if
we identify P(Sym2C3)∗ with the polynomials of degree 2 modulo C∗. The
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conics that we get as hyperplane sections of the projected Veronese surface are
precisely the conics that we get as hyperplane sections of the Veronese surface
by hyperplanes that contain the projection center P . So these conics fulfill
one linear condition given by P . We view P ∈ P(Sym2C3) as a conic C∗P in
P∗2. Since P does not lie in the secant variety of the Veronese surface, P is
not the product of two elements of C3, hence C∗P is not the union of two lines.
Therefore it is smooth. We denote the dual conic of C∗P by CP ⊂ P2.

Now, three different points of the projected Veronese surface Im c ⊂ P4 lie on
a line, the trisecant, iff any hyperplane that contains two of them contains all
three. Under the inverse of the embedding c that means the following on the
P2:

Three different points of P2 are the inverse image c−1(l) of a trisecant l of the
projected Veronese surface Im c iff all conics that fulfill the linear condition
given by P (or equivalently by CP ) and pass through two of the points pass
through all three of them.

The propositions in the appendix tell us that these triples of points are the
vertices of the non-degenerated polar triangles of the conic CP . By a continuity
argument the trisecants that are tangent to Im c at one point and intersect it
in another correspond to the degenerated polar triangles, and the trisecants
that intersect Im c in only one point “with multiplicity three” correspond to a
triple point on the conic CP . We also see that there are no 4-secants. Since
if there is one, there would be four points in P2 such that any three of them
build a different polar triangle. But this is impossible because a polar triangle
is already determined by two of its vertices.

With this geometric description it is easy to compute the automorphism group
of G(1, 4)∩H3. By Theorem 1.2 any automorphism is induced by a projective
linear transformation of H3. Hence it maps the P1’s of lines of Lemma 7.1
onto themselves and induces thereby an automorphism of the set of centers,
the projected Veronese surface Im c. Since the G(1, 4) ∩ H3 consists of the
trisecants of Im c, this automorphism determines the original automorphism of
G(1, 4) ∩H3.

In order to complete the proof of Corollary 1.3 we have to show that the
automorphism of the projected Veronese surface Im c ⊂ P4 is induced by one
of P4. Since c is the composition of the Veronese map v and the projection
πP : P5 → P4, we consider the situation in the P5. Since Im c ∼= P2

∼= v(P2)
and Aut(P2) ∼= Aut(v(P2),P5) [H, 10.9], the automorphism of Im c induces an
automorphism of P5. We know further that the automorphism of Im c maps the
trisecants of Im c onto themselves. In the P5 this means that it preserves the
planes that contain the projection center P and three points of the Veronese
surface, so it must fix their common intersection, the projection center P .
Hence the automorphism descends onto the P4.
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Now under the inverse of the embedding c, the automorphism of Im c preserv-
ing the trisecants corresponds to an automorphism of P2 preserving the polar
triangles of the conic CP ⊂ P2. Such an automorphism of P2 maps the degen-
erated polar triangles onto themselves. In particular, it maps the tangents to
the conic CP onto themselves. Therefore it has to fix the conic CP .

So we have seen how an automorphism of G(1, 4) ∩ L induces an unique auto-
morphism of P2 fixing CP , hence an automorphism of CP since Aut(CP ,P2) ∼=
Aut(CP ) ∼= PGL(2,C).

On the other hand, any projective linear transformation of P2 that fixes the
conic CP preserves the polar triangles of CP . Therefore it induces via the
embedding c an automorphism of the projected Veronese surface Im c that
preserves triples of points that lie on a line. So it defines an automorphism of
the trisecants of Im c, which is the same as an automorphism of G(1, 4) ∩ L.

We summarize:

Theorem 7.5 The automorphism group of G(1, 4) ∩ H3 is isomorphic to
PGL(2,C).

The description of the orbits of this automorphism group follows immediately.

Proposition 7.6 The action of Aut(G(1, 4) ∩ H3) on the linear system
G(1, 4) ∩H3 has three orbits:

1. trisecants of the projected Veronese surface that intersect it in three points

2. trisecants that are tangent to the projected Veronese surface at one point
and intersect it in another

3. trisecants that intersect the projected Veronese surface in only one point
“with multiplicity three”.

Proof. By what was said above, this is equivalent to the classical statement
that the action of group Aut(CP ,P2) on the polar triangles has three orbits:
the non-degenerated triangles, the degenerated ones and the triple points on
CP . ✷

8 Appendix: Polar Triangles

Here we prove the needed propositions about polar triangles. The whole ap-
pendix may be seen as a modern exposition of [SF, 348]. First we recall the
basic definitions.

Let CA be a smooth conic in P2, which is given by the quadratic equation
txAx = 0, where A ∈ GL(3,C) is a symmetric, invertible matrix. Then CA
induces a polarity P by

P : P2 −→ P∗2
P(x) 7−→ P(txA) .
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For a point p ∈ P2 the line P (p) is called the polar of p and p the pole of P (p).

A polar triangle is given by three points, at least two of which are different,
such that the polar of each point contains the other two points, i.e. (p, q, r)
is a polar triangle if tpAq = tqAr = trAp = 0. The sides of the triangle are
the polars of the points. In the non-degenerated case when all three points are
different, the three points cannot lie on a line and therefore span the whole P2.
In the degenerated case, (p, p, q), p lies on the conic and q on the tangent to
the conic at the point p. The sides are the polar of q and twice the tangent.
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Degenerated polar triangle

Proposition 8.1 Let CA = {x ∈ P2 | txAx = 0} be a smooth conic and C∗A =
{x ∈ P∗2 | txA−1x = 0} its dual conic. Further, let CB = {x ∈ P2 | txBx = 0}
be a conic such that

2∑

i,j=0

aijbij = 0 (∗)

where A−1 = (aij), B = (bij) ∈ Sym(3,C). Finally, let (p, q, r) be a polar
triangle of CA then:

If two of the three points p, q, r lie on the conic CB , then also the third.

In the case of a degenerate polar triangle, (p, p, q), the condition that CB con-
tains p twice means that CB contains p and CB is either singular in p or its
tangent in b is the polar of q.

Proof. One can show that all the properties in the statement of the proposition
are independent of the choice of coordinates, so we may pick nice ones. We have
to distinguish between the two cases of the polar triangle being degenerated or
not. We treat the case of the non-degenerated polar triangle first.
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By a suitable choice of coordinates we may assume that p = (1 : 0 : 0), q =
(0 : 1 : 0) and r = (0 : 0 : 1). Then the assumption that (p, q, r) is a polar triangle
of CA translates into

tpAq = tqAr = trAp = 0⇐⇒ a01 = a12 = a02 = 0.

By a scaling of the coordinates we can achieve that a00 = a11 = a22 = 1,
so that CA = {x ∈ P2 | x2

0 + x2
1 + x2

2 = 0}. Then the condition (∗) reads
b00 + b11 + b22 = 0. If the two points p and q are on the conic CB, we have
tpBp = b00 = 0 and tqBq = b11 = 0. By (∗) we see 0 = b22 = trBr, i.e. the
third point r lies also on the conic CB.

Now we treat the case of the degenerated polar triangle (p, p, q). We choose
coordinates such that CA = {x ∈ P2 | x2

0 + x2
1 + x2

2 = 0} and p = (1 : i : 0). The
point q 6= p must lie on the tangent to CA. So it has coordinates q = (λ : iλ : 1),
and its polar is spanned by p and (1 : 0 :−λ). Now using the assumptions

b00 + b11 + b22 = 0 (∗)
p ∈ CB ⇐⇒ tpBp = 0⇐⇒ b00 + 2ib01 − b11 = 0, (∗∗)

we have to show

q ∈ B ⇐⇒ CB singular in p or TpCB = polar of q.

We rewrite this as

tqBq =

t


λ
iλ
1


B




λ
iλ
1


 = 0⇐⇒ tpB




1
0
−λ


 =

t


1
i
0


B




1
0
−λ


 = 0.

But this is true since −2 times the left hand side plus (λ2 + 1) times (∗∗) plus
(∗) gives the right hand side. ✷

Now we prove the converse of the last proposition.

Proposition 8.2 Given a smooth conic CA = {x ∈ P2 | txAx = 0}

B :=



CB = {x ∈ P2 | txBx = 0}

∣∣∣∣∣∣

2∑

i,j=0

aijbij = 0





is a four dimensional family of conics. Let p, q, r ∈ P2 be three points, at least
two of which are different, with the property that if two of them lie on a conic
CB ∈ B then also the third.

Then (p, q, r) is a polar triangle of CA.
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Proof. We will show that if (p, q, r) is not a polar triangle then there exits a
CA ∈ B for which this property is violated. We have to treat several cases.

First let the three points be all different, then they cannot lie on a line. Because
if they would, the conics in the at least two dimensional family

Bp,q := {CB ∈ B | p, q ∈ CB}
of conics of B passing through p and q must split off the line through the three
points. If we pick coordinates such that this line is given by {x2 = 0}, then
Bp,q must be

Bp,q = {V(x2(λ0x0 + λ1x1 + λ2x2)) | (λ0 :λ1 :λ2) ∈ P2} .
This means that the conics CB with the matrices

B =




0 0 b02
0 0 b12
b02 b12 b22


 with b02, b12, b22 ∈ C

are all in B. Hence the matrix A−1 must be of the type

A−1 =




a00 a01 0
a01 a11 0
0 0 0


 with a00, a01, a11 ∈ C,

but this contradicts the invertibility of A−1.

Now since p, q, r span the P2 we may pick coordinates such that p = (1 : 0 : 0),
q = (0 : 1 : 0) and r = (0 : 0 : 1). That (p, q, r) is not a polar triangle of CA means
that tpAq = a01 6= 0, tqAr = a12 6= 0 or trAp = a02 6= 0. Assuming detA = 1
we conclude that not all of the a01 = a02a12 − a01a22, a02 = a01a12 − a02a11

and a12 = a01a02 − a00a12 can be zero. If for example a02 6= 0, then

B =




0 0 −a11

0 2a02 0
−a11 0 0




gives a conic CB ∈ B that contains the points p and q, but not r.

Now let us look at the case where two of the points p, q, r are the same. The
points (p, p, q) will not form a polar triangle if tpAp 6= 0 or tpAq 6= 0.

For the case tpAp 6= 0 we pick coordinates such that A is the identity matrix
and p = (1 : 0 : 0). Let

B =








0 −q2 q1
−q2 0 0
q1 0 0


 for q0 6= 0 or q21 + q22 6= 0




0 0 1
0 1 ±i
1 ±i −1


 for q = (0 : 1 :±i),
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then CB is a conic of B that contains p and q, but is smooth in p, and its
tangent in p is not the polar of q, so it does not contain p twice.

Finally, if tpAp = 0 and tpAq 6= 0, we pick coordinates such that A is the
identity matrix and p = (1 : i : 0). Let

B =








−2i 2 iq0 − 2q1
2 2i −iq1

iq0 − 2q1 −iq1 0


 for q = (q0 : q1 : 1)




0 0 1
0 0 0
1 0 0


 for q2 = 0,

then we are in the same situation as above. ✷
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Abstract. We undertake here a more detailed study of the structure
and basic properties of the symmetric enveloping algebra M ⊠

eN

Mop as-

sociated to a subfactor N ⊂ M , as introduced in [Po5]. We prove
a number of results relating the amenability properties of the stan-
dard invariant of N ⊂ M ,GN,M , its graph ΓN,M and the inclusion
M ∨ Mop ⊂ M ⊠

eN

Mop, notably showing that M ⊠
eN

Mop is amenable

relative to its subalgebra M ∨ Mop iff ΓN,M (or equivalently GN,M ) is
amenable, i.e., ‖ΓN,M‖2 = [M : N ]. We then prove that the hyperfinite-
ness of M ⊠

eN

Mop is equivalent to M being hyperfinite and ΓN,M being

amenable. We derive from this a hereditarity property for the amenabil-
ity of graphs of subfactors showing that if an inclusion of factors Q ⊂ P is
embedded into an inclusion of hyperfinite factors N ⊂M with amenable
graph, then its graph ΓQ,P follows amenable as well. Finally, we use the
symmetric enveloping algebra to introduce a notion of property T for in-
clusions N ⊂M , by requiring M ⊠

eN

Mop to have the property T relative

to M ∨Mop. We prove that this property doesn’t in fact depend on the
inclusion N ⊂ M but only on its standard invariant GN,M , thus defining
a notion of property T for abstract standard lattices G.

1991 Mathematics Subject Classification: Primary: 46L37, secondary:
46L40

0. Introduction

LetN ⊂M be an inclusion of type II1 factors with finite Jones index, [M : N ] <
∞, and extremal. In short, its symmetric enveloping von Neumann algebra
M ⊠

eN

Mop is the unique (up to isomorphism) type II1 factor S, generated by

mutually commuting copies of M , Mop that satisfy M ′∩S = Mop, Mop′∩S =
M and by a projection eN which implements, at the same time, both the trace
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preserving expectation EN of M onto N and the trace preserving expectation
ENop of Mop onto Nop.

One can construct this factor by first taking the C∗-algebra S0 generated on
the Hilbert space L2(M) by the operators of left and right multiplication by
elements in M and by the orthogonal projection of L2(M) onto L2(N), then
proving that there exists a unique trace τ on this C∗-algebra and then defining
M ⊠

eN

Mop to be the type II1 von Neumann factor obtained via the Gelfand-

Naimark-Segal representation for (S0, τ), i.e., M ⊠
eN

Mop def
= πτ (S0). This con-

struction doesn’t in fact depend on the (binormal) representation of the triple
(N ⊂M, eN ,M

op ⊃ Nop) that one starts with: any M −M bimodule with an
eN -type projection on it, instead of L2(M), will do, provided certain obvious
compatibility conditions for the commutants are satisfied.

The following exemple of symmetric enveloping algebras is quite relevant: if
N ⊂ M is an inclusion associated to a finitely generated discrete group G
and an outer action σ of G on a type II1 factor P (see e.g., 5.1.5 in [Po2])
then (M ∨Mop ⊂ M ⊠

eN

Mop) is isomorphic to (P ⊗̄P op ⊂ P ⊗̄P op ⋊σ⊗σop G).

In general, one has an interpretation of the symmetric enveloping inclusion
M ∨ Mop ⊂ M ⊠

eN

Mop that is very much the same as this crossed product

situation.

The symmetric enveloping algebra M ⊠
eN

Mop and the inclusions M ∨Mop ⊂
M ⊠

eN

Mop were introduced in ([Po5]) in order to provide an additional tool

for studying subfactors of finite index. It proved to be particularily useful for
relating the analysis aspects of the theory of subfactors to its combinatorial
features.

We undertake here a more detailed study of these objects and use them to
get more insight into the structure of subfactors, notably proving a number of
results on the amenability and the property T for subfactors N ⊂ M and for
their associated combinatorial invariants: the standard graph ΓN,M and the
standard invariant GN,M .

Thus, we prove that GN,M is amenable (by definition this means that its graph
ΓN,M is amenable, i.e., it satisfies the Kesten-type condition ‖ΓN,M‖2 = [M :
N ]) if and only if M ⊠

eN

Mop is amenable relative to M ∨Mop in the sense of

[Po8]. In fact, we establish a few more additional equivalent characterizations of
the amenability for ΓN,M : a Følner type condition; a local Shannon-McMillan-
Breiman type condition; a local bicommutation condition; a characterization
in terms of the representations of N ⊂M .

We then study the amenability in the special case of subfactors N ⊂ M for
which the algebras N,M involved are assumed amenable (or, equivalently, by
Connes theorem [C1], hyperfinite) type II1 factors. The key result along this
line shows that the algebra M ⊠

eN

Mop is itself amenable if and only if both

GN,M and the single algebras N,M are amenable.
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Again, some other characterizations of this situation are proved, notably an
”injectivity”-type condition requiring N ⊂ M to be the range of a norm
one projection from its standard representation, or, equivalently, to be the
range of a norm one projection from any of its (smooth) representations.
Also, it is proved equivalent to an Effros-Lance type condition, requiring
S0 = C∗(M, eN ,M

′) ⊂ B(L2(M)) to be a simple C∗-algebra . We call an
inclusion of factors N ⊂M satisfying any of these conditions an amenable in-
clusion. While proving all these results we also show that if N ⊂M is amenable
(i.e., N,M are hyperfinite and ΓN,M is amenable) then there exists a choice of
a tunnel of subfactors M ⊃ N ⊃ P1 ⊃ P2..., obtained by taking downward ba-
sic constructions for certain induced-reduced algebras in the Jones tower (the
choice being dictated by information contained in the standard invariant GN,M )
such that the relative commutants P ′k ∩ N ⊂ P ′k ∩M exhaust N ⊂ M . This
shows in particular that amenable subfactors are completely classified by their
standard invariants GN,M (see also [Po16]).
Next we derive the result that we regard as the most significant application
of the methods developed in this paper, showing that the amenability in the
category of inclusions of factors with finite Jones index N ⊂ M , with ”mor-
phisms” given by commuting square embeddings between such inclusions, is a
hereditarity property. In the case one takes degenerate inclusions N = M we
recover Connes’ hereditarity result for single hyperfinite type II1 factors ([C1]).
In terms of graphs, the result states that if an extremal inclusion of hyperfinite
factors N ⊂M has amenable graph then any of its sub-inclusions Q ⊂ P (i.e.,
Q ⊂ P is embedded in N ⊂ M as a commuting square) has amenable graph.
It should be noted that the embedding of Q ⊂ P into N ⊂M does not require
[P : Q] = [M : N ], nor that [M : P ] < ∞ ! This hereditarity property for
the amenability of graphs is somewhat surprising and there is little that could
appriorically predict it. It only holds true within the class of hyperfinite subfac-
tors, as if we drop the amenability assumption on the ambient single algebras
M involved it is no longer valid, in general.

Indeed, it is proved in ([Po7]) that given any abstract standard λ- lattice G and
any of its sublattices G0 ⊂ G, there exist subfactorsN ⊂M and N0 ⊂M0 and a
commuting square inclusion of N0 ⊂M0 into N ⊂M , such that GN,M = G and
GN0,M0 = G0. But any standard λ-lattice G contains the Temperley-Lieb-Jones
standard λ-lattice with graph A∞, which is never amenable if λ−1 > 4. Thus
if G is taken to be amenable, for instance to have finite depth, then N ⊂ M
has amenable graph while N0 ⊂ M0, which is embedded into it, doesn’t. The
reason is, of course, that in the examples of subfactors N ⊂M constructed in
([Po7]) the algebras N,M involved are not hyperfinite.
One consequence of the hereditarity result is that, for instance, one cannot
embed subfactors Q ⊂ P of index α > 4 that are contructed by commuting
squares of finite dimensional algebras like in ([Sc], [We]) and having graph

ΓQ,P equal to A∞ (note that by [H1] ΓQ,P = A∞ if α < (5 +
√

13)/2) into
hyperfinite subfactors of finite depth and index > α. Also, by ([H2]) there

exists a subfactor of index α = (5 +
√

13)/2, constructed from commuting

Documenta Mathematica 4 (1999) 665–744



668 Sorin Popa

squares of finite dimensional algebras and having graph A∞, which thus, by
our result, cannot be embedded into Haagerup’s finite depth subfactor of same
index (5 +

√
13)/2 ([H1]).

Our last application to the symmetric enveloping algebra approach is the con-
sideration of a notion of property T for standard lattices. Thus, we prove that
if a standard lattice G is given then M ⊠

eN

Mop has the property T relative to

M∨Mop, in the sense of ([A-D],[Po8]), for some N ⊂M for which GN,M = G, if
and only if it has this property for any subfactor N ⊂M for which GN,M = G.
If G satisfies these conditions then we say that G has the property T. Note
that this definition does not require the ambient factors involved to have the
property T in the sense of Connes ([C4,5]). On the other hand, if G is a stan-
dard lattice coming from a discrete group G as described above, then G has
the property T if and only if the group G has the property T in the classi-
cal sense of Kazhdan. Thus, our notion generalizes this notion, from discrete
groups to the larger class of group-like objects G. Our main result in this di-
rection shows that if a sublattice G0 of a standard lattice G has the property
T then G has the property T. As a consequence it follows that, generically,
the Temperley-Lieb-Jones standard lattices with graph A∞ do not have the
property T.

Although we only work with type II1 factors, many of the considerations in this
paper can be suitably carried over to subfactors of type III (see the remarks
1.10.3◦, 2.2.2◦, 2.5.2◦). The corresponding symmetric enveloping type III fac-
tors may prove to be a useful tool in the analysis of the Jones-Wassermann
subfactors coming from representations of loop groups ([Wa], [Xu]). In a dif-
ferent direction, it would be interesting to relate the symmetric enveloping
algebra associated to an extremal II1 subfactor to Jones’ affine Hecke algebra
associated with that subfactor ([J3,4]). An explicit description of the symmet-
ric enveloping algebras coming from certain special classes of subfactors ([BiH],
[BiJ]) would certainly be most illuminating for getting some insight on this and
other related problems.

The paper is organized in 9 Sections. In the first section we introduce the
C∗-analogues of the symmetric enveloping algebras, needed in order to obtain
the necessary universality properties and the functoriality of the von Neumann
construction. A key ingredient for these considerations is the relative Dixmier
property for subfactors of finite index, that we prove in the Appendix A.1.

In Sec. 2 we define the actual symmetric enveloping type II1 factors (2.1, 2.2)
and symmetric enveloping inclusions and prove their basic properties (2.6, 2.7,
2.9, 2.10). Also, we define a more general class of enveloping inclusions, in which
to two given subfactors N ⊂ M and Q ⊂ P having the same higher relative
commutant picture one associates their concatenation inclusion M ∨ P op ⊂
M ⊠P op (2.5.1◦). We end that section by introducing a notion of index [G : G0]
for sublattices G0 of standard lattices G (2.11, 2.12).

In Sec. 3 we discuss the example of symmetric enveloping algebras associated
to subfactors coming from discrete groups acting outerly on factors, case in
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which it becomes an actual crossed-product algebra. In Sec. 4 we prove that
even for general inclusions N ⊂ M the corresponding symmetric enveloping
algebras look very much like crossed products (4.5). Also, we prove some
decomposition properties for such algebras, showing for instance that when
N,M are hyperfinite then, regardless of whether M ⊠

eN

Mop is hyperfinite or

not, it is a thin factor, i.e., M ⊠
eN

Mop = spR1R2, for some suitable hyperfinite

subfactors R1, R2 (4.3). Also, we prove a general ergodicity property for the
higher relative commutants of a subfactor which is quite useful in applications
(4.8, 4.9).
In Sec. 5 and 6 we relate the amenability properties of GN,M ,ΓN,M and (M ∨
Mop ⊂ M ⊠

eN

Mop), obtaining a number of equivalent characterizations of the

amenability for standard lattices and graphs (5.3, 6.1, 6.3, 6.4).
In Sec. 7 we discuss the case when M ⊠

eN

Mop is hyperfinite, proving this equiv-

alent to the amenability of N ⊂ M and to various other properties of the
representation theory of N ⊂ M (7.1). For instance, we show that for hy-

perfinite subfactors it is enough that the universal graph Γu,rfN,M be amenable

for ΓN,M to follow amenable (7.6). We also prove here the hereditarity prop-
erty for amenable inclusions (7.5). The proof uses the characterization of the
amenability for N ⊂ M by the hyperfiniteness condition on M ⊠

eN

Mop, a fact

that roughly reduces the argument to Connes’ hereditarity of hyperfiniteness
for single type II1 factors. Sec.8 contains the proof of the Effros-Lance type
characterization of amenability (8.1).
Finally, in Sec. 9 we introduce the property T for standard lattices and prove
some results about this notion.
For most notations and general technical background we refer the reader to
([Po2,4,7]). More specific references are made in the text. For the reader’s
convenience we included an Appendix which, besides the already mentioned
relative Dixmier property for subfactors of finite index, contains a generalized
version of Connes’ joint distribution trick needed in the proof of the Følner
condition for graphs.
The results on amenability in this paper were presented by the author in lec-
tures and seminars, during 1991-1997. A more formal announcement of these
results, with sketches of proofs, appeared in [Po5], while a couple of statements
on the equivalence of the definition of amenability with representations and
the Kesten condition, respectively Følner condition, were already announced
in [Po2], resp. [Po4]. A rather complete discussion of the role of amenability
within the overall classification of subfactors, with a presentation of most of
the results in this paper (including the ones on the property T) appeared in
[Po11].
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1. Symmetric Enveloping C∗-Algebras

In this and the next section we discuss the definition and basic properties of
the symmetric enveloping algebras (C∗ in this section and von Neumann in
the next) associated to an extremal inclusion of factors with finite index, as
introduced in [Po5]. The statements below are similar to the ones in §1 of [Po5],
but the proofs, that are only briefly sketched there, are given here in details.

So let N ⊂M be an inclusion of type II1 factors with finite Jones index, [M :
N ] < ∞, which we assume to be extremal, i.e., [pMp : Np] = [M : N ]τ(p)2,
∀ p ∈ P(N ′ ∩M).

We denote byM ⊂M1 = 〈M, eN 〉 the (abstract) basic construction for N ⊂M ,
eN being the projection implementing the trace preserving conditional expec-
tation EN of M onto N .

We first construct the universal C∗-algebra generated by mutually commuting
copies of M , Mop and an eN -like projection implementing the expectations
EN , ENop on them.

A representation (π, π′) of (N ⊂ M, eN ,M
op ⊃ Nop) is a pair of uni-

tal ∗-representations π : M1 → B(H), π′ : Mop
1 → B(H) such that

[π(M), π′(Mop)] = 0, π(eN ) = π′(eopN ). Two such representations, (π1, π
′
1)

on H1 and (π2, π
′
2) on H2, are equivalent if there exists a unitary U : H1 → H2

such that Uπ1(x)U∗ = π2(x), Uπ′1(x)U∗ = π′2(x), ∀ x ∈M1. A representation

(π, π′) on H is cyclic if ∃ξ ∈ H such that Alg(π(M1), π′(Mop
1 ))ξ = H.

Note that if (π, π′) is a representation on H then there exists a representation

(π̄, π̄′) on the conjugate Hilbert space H̄ defined by π̄(x) = π′(x∗op), π̄′(xop) =

π(x∗), x ∈M1, where T 7→ T̄ denotes the antiisomorphism from B(H) to B(H̄)
implemented by the conjugation H ∋ ξ 7→ ξ̄ ∈ H̄.

We denote by Ĉ the set of all equivalence classes of cyclic representants of
(N ⊂ M, eN ,M

op ⊃ Nop) and by C a set of chosen representations for Ĉ such
that if (π, π′) ∈ C then (π̄, π̄′) ∈ C.

1.1. Proposition. There exists a unital C∗-algebra U with unital embeddings
j : M1 →֒ U , j′ : Mop

1 →֒ U such that

a) [j(M), j′(Mop)] = 0,

b) j(eN ) = j′(eopN ).

and such that given any other unital C∗-algebra U0 with unital embeddings
j0 : M1 →֒ U0, j

′
0 : Mop

1 →֒ U0 satisfying a), b) (with (j′, j′0) instead of (j, j′)),
there exists a unital ∗-algebra morphism π : U → U0 such that

(∗) π(j(x)) = j0(x), π(j′(xop)) = j′0(xop), ∀ x ∈M1.

Moreover, U is unique (up to an isomorphism (∗)) with these properties. Also,
U is generated as a C∗-algebra by j(M), j′(Mop), j(eN ) (= j′(eopN )) and it has
a unique antiautomorphism op such that j(x)op = j′(xop), (j′(xop))op = j(x),
∀ x ∈M1 (so in particular j(eN )op = j′(eopN )op = j(eN )).
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Proof. Put

U def
= C∗

({
⊕

(π,π′)∈C
π(x),

⊕
(π,π′)∈C

π′(yop) | x, y ∈M1

})
,

j(x)
def
=

⊕
(π,π′)∈C

π(x), j′(xop)
def
=

⊕
(π,π′)∈C

π′(xop), x ∈M1.

U , j, j′ this way defined clearly satisfy a), b), and (∗) and the uniqueness is
then trivial. Then we can define op on U by:

U ∋ ⊕
(π,π′)∈C

π(x) 7→ ⊕
(π,π′)∈C

π̄′(x∗op) ∈ U

U ∋ ⊕
(π,π′)∈C

π′(xop) 7→ ⊕
(π,π′)∈C

π̄(x∗) ∈ U

Q.E.D.

1.2. Definition. We denote by C∗u,max(M, eN ,M
op) the C∗-algebra U con-

structed in 1.1 and call it the universal symmetric enveloping C∗-algebra. Also

we denote by C∗u,bin(M, eN ,M
op)

def
= C∗max(M, eN ,M

op)/ ∩ kerπ, where the

intersection is over all representations π of C∗max(M, eN ,M
op) for which π(M),

π(Mop) are von Neumann algebras and call it the universal binormal sym-
metric enveloping C∗-algebra associated with N ⊂ M (and the trace pre-
serving expectation). We still denote by j, j′ the embeddings of M1, Mop

1

into C∗u,bin(M, eN ,M
op) resulting from the composition of the embeddings into

C∗u,max(M, eN ,M
op) with the quotient map. Note that, with the notations in

the proof of 1.1, if we let Cubin = {(π, π′) ∈ C | π(M), π′(Mop) are von Neumann
algebras}, then C∗u,bin(M, eN ,M

op) can alternatively be defined as

C∗
({

⊕
Cu
bin

π(x),
⊕
Cu
bin

π′(yop) | x, y ∈M1

})

with
j(x) =

⊕
Cu
bin

π(x), j′(xop) =
⊕
Cu
bin

π′(xop).

Since (π, π′) ∈ Cubin implies (π̄, π̄′) ∈ Cubin, it follows that op implements an
antiautomorphism on C∗u,bin(M, eN ,M

op), still denoted op, satisfying j′(xop) =

j(x)op, j′(xop)op = j(x).

In addition, C∗u,bin(M, eN ,M
op) satisfies the following universality property:

1.3. Proposition. Given any binormal representation (πo, π
′
0) of (N ⊂

M, eN , M
op ⊃ Nop) on a Hilbert space H0 there exists a unital ∗-representation

π : C∗u,bin(M, eN ,M
op) → B(H0) such that π(j(x)) = π0(x), π′(j′(xop)) =

π′0(xop), ∀ x ∈ M1. Moreover, C∗u,bin(M, en,M
op) has a faithful repre-

sentation π̃ such that π̃(M), π̃(Mop) are von Neumann algebras. Also,
C∗u,bin(M, eN ,M

op) with the embeddings j, j′ is unique (up to isomorphism)
satisfying these properties.

Proof. Trivial. Q.E.D.
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1.4. Lemma. Let N ⊂ M
e1⊂ M1

e2⊂ M2 ⊂ · · · be the Jones tower for N ⊂ M ,

with e1 = eN , and M
e0⊃ N

e−1⊃ N1 ⊃ · · · be a choice of a tunnel. Let S0 be
a unital C∗-algebra with unital ∗-embeddings j0 : M1 → S0, j

′
0 : Mop

1 → S0,
such that [j0(M), j′0(Mop)] = 0, j0(eN ) = j′0(eN ). Then j0, j

′
0 extend uniquely

to ∗-embeddings of
⋃
n≥1

Mn,
⋃
n≥1

Mop
n into S0, still denoted by j0, j

′
0, such that

j0(en+2) = j′0(eop−n), j′0(eopn+2) = j0(e−n), n ≥ 0.

Proof. Trivial by the abstract characterization of the basic contruction in
([PiPo2]. [Po2]). Q.E.D.

1.5. Lemma. Let · · ·
e−1⊂ N

e0⊂ M
e1⊂ M1 ⊂ · · · , S0, j0, j

′
0 be like in 1.4. Then

we have

Alg(j0(M1), j′0(Mop
1 )) = Alg(j0(M), j0(eN) = j′0(eN ), j′0(Mop))

=
⋃
n

sp j′0(Mop)j0(Mn)j′0(Mop)

=
⋃
n

sp j0(M)j′0(Mop
n )j0(M)

=
⋃
n

sp j′0(Mop)j0(M)j0(fn−n)j0(M)j′0(Mop),

where fn−n is the Jones projection for Nn−1 ⊂ M ⊂ Mn obtained as a
scalar multiple of the word of maximal length in e−n+2, . . . , e0, e1, . . . , en (cf.
[PiPo2]) and it satisfies j0(fn−n) = j′0((fn−n)op). Similarly, for any i ∈ Z we
have

Alg(j0(M), j0(eN ), j′0(Mop)) =
⋃
n

sp j′0(Mop
i )j0(Mn)j′0(Mop

i ),

where Mi = N−i−1 for i ≤ −1, M0 = M , M−1 = N .

Proof. It is sufficient to show that
⋃
n

sp j′(Mop)j(M)j(fn−n)j(M)j(Mop)

is an algebra. If we denote by f0
−2n the Jones projection for N2n−1 ⊂ Nn−1 ⊂

M and by f2n
0 the one for M ⊂ Mn ⊂ M2n, as in [PiPo2], then we have

Mn = spMfn−nM , M = spNn−1f
0
−2nNn−1 so that we get:

j′(Mop)j(M)j(fn−n)j(M)j′(Mop)j(fn−n)j(M)j′(Mop)

⊂ sp j′(Mop)j(M)j(fn−n)(j(f0
−2n)j(Nn−1))(j′(Nop

n−1)j′((f0
−2n)op)j′(Nop

n−1))

· j(fn−n)j(M)j′(Mop)

= sp(j′(Mop)j′(Nop
n−1))(j(M)j(Nn−1))(j(fn−n)j(f0

−2n)j′((f0
−2n)op)j(fn−n))

· (j(Nn−1)j(M))(j′(Nop
n−1)j′(Mop))

= sp j′(Mop)J(M)j(f2n
−2n)j(M)j′(Mop)

in which we used that [j(Nn−1), j(fn−n)] = 0, [j′(Nop
n−1), j(fn−n)] = 0 and f2n

−2n =

λ−nfn−nf
2n
0 f0
−2nf

n
−n, j(f2n

0 ) = j′((f0
−2n)op), λ = [M : N ]−1. Q.E.D.
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1.6. Corollary. Let · · · ⊂ N1

e−1⊂ N
e0⊂ M

e1⊂ M1 ⊂ · · · , fn−n be as
in 1.5. Then C∗u,max(M, eN ,M

op) (respectively C∗u,bin(M, en,M
op)) is gener-

ated, as a C∗-algebra, by j(M), j(fn−n) = j′(fn−n), j′(Mop) and there exists a
natural isomorphism of C∗u,max(M, eN ,M

op) (respectively C∗u,bin(M, eN ,M
op))

onto C∗(M, eNn−1,M
op) (respectively C∗bin(M, eNn−1 ,M

op)), taking the canon-
ical images of the elements in M , Mop in one algebra into the corresponding
canonical images in the other algebra and j(fn−n) onto j(eNn−1).

Proof. Trivial by definitions and 1.5. Q.E.D.

1.7. Lemma. With the notations of 1.4 and 1.5, assume in addition that
j0(M), j0(eN ) = j′0(eN), j′0(Mop) generate S0 as a C∗-algebra, and that the
following condition is satisfied:

(∗) j0(M ′ ∩Mk) ⊂ j′0(Mop), ∀k ≥ 1

Then j0(Mi)
′ ∩S0 = j′0(Mop

−i), (j′0(Mop
i

))′ ∩S0 = j0(M−i), ∀ i ∈ Z, and for all

k, i in Z one has j0(M ′i ∩Mk) = j0(Mi)
′ ∩ j0(Mk) = j′0(Mop

−i) ∩ (j′0(Mop
−k))′ =

j′0((Mop
−k)′ ∩Mop

−i). Also, if x ∈ M ′−n ∩Mn and x′ denotes the canonical con-
jugate of x (= Jx∗J) ([Po2]), then j0(x′) = j′(xop). Moreover, for each i ∈ Z
there exist unique conditional expectations E+

i : S0 → j0(Mi)
′ ∩ S0 = j′0(Mop

−i),
E−i : S0 → j′0(Mop

i )′ ∩ S0 = j0(M−i) such that E+
i (j0(x)) = j0(EM ′

i∩Mn
(x)),

E−i (j′0(xop)) = j′0(EM ′
i∩Mn

(x)op), ∀ x ∈ Mn, n ≥ i, which satisfy E+
i =

E+
i (j0(u) · j0(u∗)), E−i = E−i (j′0(uop) · j′0(uop)∗), ∀ u ∈ U(Mi).

Proof. Since j0(M ′ ∩Mk) ⊂ Mop and [j0(Mk), j′0(Mop
−k] = 0, it follows that

j0(M ′ ∩Mk) ⊂ j′0(Mop
−k)′ ∩ j′0(Mop) = j′0(Mop

−k
′ ∩Mop). But the two finite

dimensional algebras involved in this inclusion have the same dimension, so
they actually follow equal. By averaging over unitaries in Mi it then follows
that j0(M ′i ∩Mk) ⊂ j′0(Mop), ∀i ≥ 1, giving in a similar way j0(M ′i ∩Mk) =

j′0(Mop
−k
′ ∩ Mop

−i). Then by duality isomorphisms these equalities follow for
arbitrary i, k ∈ Z.

By the relative Dixmier property for subfactors of finite index (see the Appen-
dix, A.1), if for x ∈Mn we denote CMi(x) = con{uxu∗ | u ∈ U(Mi)}∩M ′i∩Mn

then CMi(x) = {EM ′
i∩Mn

(x)} and ∀ x1, . . . , xk ∈Mn, ∀ ε > 0, ∃ u1, . . . , um ∈
U(Mi) such that

∥∥∥∥∥
1

m

m∑

l=1

ulxju
∗
l − EM ′

i∩Mn
(xj)

∥∥∥∥∥ < ε, j = 1, 2, . . . , k.

Since, by 1.5 we have

Alg(j0(M1), j′0(Mop
1 )) =

⋃
n

sp j′0(Mop
−i)j0(Mn)j′0(Mop

−i),
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which is dense in S0, it follows that

j0(Mi)
′ ∩ S0 =

⋃
n
j′0(Mop

−i)j0(M ′i ∩Mn)j′0(Mop
−i)

=
⋃
n
j′0(Mop

−i)j
′
0((Mop

−n)′ ∩ (Mop
−i))j

′
0(Mop

−i)

= j′0(Mop
−i).

Also, it follows that if T =
∑
l j
′
0(yop

1,l)j0(xl)j
′
0(op2,l), for some y1,l, y2,l ∈ M−i,

xl ∈ Mn, and we denote by Ci,S0(T ) = con{j0(u)T j0(u∗) | u ∈ U(Mi)} ∩
(j0(Mi))

′ ∩ S0, then

Ci,S0(T ) =

{
∑

l

j′0(yop
1,l)j0(EM ′

i∩Mn
(xl))j

′
0(yop

2,l)

}

is a single point set. Also, Ci,S0(αT1 + βT2) ⊂ αCi,S0 (T1) + βCi,S0(T2) and
1 ≥ T ≥ 0 implies 1 ≥ T ′ ≥ 0, ∀ T ′ ∈ Ci,S0(T ). It follows that

Alg{j0(M1), j′0(Mop
1 )} ∋ T =

∑

l

j′0(yop
1,l)j0(xl)j

′
o(y

op
2,l)

7→
∑

l

j′0(yop
1,l)j0(EM ′

i∩Mn
(xl))j

′
0(yop

2,l) ∈ (j0(Mi))
′ ∩ S0 = j′0(Mop

−i)

is a well defined positive linear norm one projection onto j′0(Mop
−i) and the rest

of the statement is then clear by continuity. Q.E.D.

1.8. Definition. We denote C∗max(M, eN ,M
op)

def
= C∗u,max(M, eN ,M

op)/ ∩
kerπ, where the intersection is over all smooth representations π of
C∗u,max(M, eN ,M

op), i.e., representations satisfying the following smooth-
ness condition (or axiom):

(∗) π(j(M ′ ∩Mi)) ⊂ π(j′(Mop)), i ∈ N.

Note that by 1.7 this condition actually implies π(j(M ′k ∩Mi)) = π(j′(Mop
−i
′ ∩

Mop
−k)), ∀i, k ∈ Z.

We call C∗max(M, eN ,M
op) the symmetric enveloping C∗-algebra associated

with N ⊂ M . Similarly, we put C∗bin(M, eN ,M
op)

def
= C∗u,bin(M, eN ,M

op)/ ∩
kerπ, where the intersection is over all representations π of C∗u,bin(M, eN ,M

op)

such that π(j(M)), π(j′(Mop)) are von Neumann algebras and such that ax-
iom (∗) is satisfied. We call it the binormal symmetric enveloping C∗-algebra
associated with N ⊂ M . Note that, since B(L2(M)), with the representation
of M and Mop as operators of left and right multiplication by elements in M
and eN = projL2(N) ∈ B(L2(M)), does satisfy the condition (∗), both these
symmetric enveloping C∗-algebras are non-degenerate.
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We still denote by j, j′ the canonical embeddings of M1, Mop
1 in

C∗max(M,eN,M
op) and C∗bin(M, eN ,M

op). Note that the same argument
as in 1.2 shows that the antiautomorphism op on C∗u,max(M, eN ,M

op) (re-
spectively op on C∗u,bin(M, eN ,M

op)) implements an antiautomorphism, still

denoted by op, on C∗max(M, eN ,M
op) (resp. op on C∗bin(M, eN ,M

op)).
Also, by universality properties of C∗u,max(M, eN ,M

op) and C∗u,bin(M, eN ,M
op)

and the definitions, it follows that given any C∗-algebra S0 generated by copies
of M , Mop, eN satisfying 1.1 a), b), such that the corresponding tunnel-towers
{Mi}i, {Mop

j }j (cf. 1.4) satisfy the smoothness axiom 1.8 (∗), there exists

a natural ∗-morphism of C∗max(M, eN ,M
op) onto S0 carrying j(Mi), j

′(Mop
j )

onto the corresponding images of Mi, M
op
j (⊂ S0). If in addition S0 ⊂ B(H0)

is so that the images of M , Mop are weakly closed, then this morphism factors
to a ∗-morphism of C∗bin(M, eN ,M

op).
The above can be regarded as the universality property satisfied by
C∗max(M, eN , Mop) and C∗bin(M, eN ,M

op). Moreover, as a consequence of
the prior results and definitions, if we denote by S either of these two algebras,
then the following properties hold true:
1.9.1. j(Mi)

′ ∩ S = j′(Mop
−i), j

′(Mop
−i)
′ ∩ S = j(Mi), ∀ i ∈ Z.

1.9.2. If x ∈M ′−n ∩Mn and x′ denotes the canonical conjugate of x (= Jx∗J)
then j(x′) = j′(xop).
1.9.3. There exist unique conditional expectations E−i : S → j(M−i),
E+
i : S → j′(Mop

−i) such that E−i (j′(xop)) = j′(EM ′
i∩Mn

(x)op), E+
i (j′(x)) =

j(EM ′
i∩Mn

(x)), ∀ x ∈ Mn, n ≥ i. Also, these expectations satisfy E−i =

E−i (j′(uop) · j′(uop∗)), E+
i = E+

i (j(u) · j(u∗)), ∀ u ∈ U(Mi).
1.9.4. C∗max(M, eNn−1,M

op) (resp. C∗bin(M, eNn−1 ,M
op)) naturally identifies

with C∗max(M, eN ,M
op) (resp. C∗bin(M, eN ,M

op)), as in 1.6.

1.10. Remarks. 1◦. Note that the smoothness condition 1.8 (∗) is redundant
if M ′ ∩Mn = Alg{1, e1, e2, ..., en}, ∀n, i.e., in the case the graph of N ⊂ M is
of the form ΓN,M = An for some n ≤ ∞.
2◦. In the case S0 ⊂ B(H) is so that j0(M), j′0(Mop) are von Neumann
algebras (e.g., if S0 = C∗bin(M, eN ,M

op)) then one can give another proof to
Lemma 1.7, which doesn’t use the relative Dixmier property, as follows: if M
is weakly separable (i.e., M has separable predual) then take R ⊂ M to be
a hyperfinite subfactor such that R′ ∩M∞ = M ′ ∩M∞ (cf. [Po2,9]), so in

particular R′∩Mn = M ′∩Mn, ∀ n (here M∞ = ∪Mn
w

as usual). Then denote
by Φ the conditional expectation of B(H) onto j0(R)′ ∩ B(H), obtained by
averaging over a suitable amenable subgroup of U(R). Then clearly Φ|S0 = E+

0

and the other expectations are obtained similarly. If M is not separable one can
still apply [Po2,9] to get that ∀ B ⊂ ∪j(Mn) countably generated, ∃ R ⊂ M
such that ER′∩Mn(B) = EM ′∩Mn(B), ∀ n, and the rest of the proof is then
similar.
3◦. The considerations in this section are easily seen to cary over to the case
when instead of an extremal inclusion of type II1 factors N ⊂ M (with trace
preserving expectation) we take an extremal inclusion of factors of type III,
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N ⊂M ([Po3]). However, in this more general case, some adjustements of the
argument in 1.7 are needed, depending on the nature of the inclusion. Then,
if E denotes the expectation of minimal index of M onto N , an argument
similar to 2◦ above can be used to prove the existence of a unique conditional
expectation E0 from C∗bin(M, eN ,Mop) onto its C∗-subalgebra generated by
M and Mop.

2. Symmetric Enveloping type II1 Factors

2.1. Theorem. There exists a unique trace state tr on C∗max(M, eN ,M
op)

and the corresponding ideal trace Itr = {x ∈ C∗max(M, eN ,M
op) | tr(x∗x) = 0}

is the unique maximal ideal in C∗max(M, eN ,M
op). In particular, there exists

a unique state τ0 on each quotient C∗-algebra S0 of C∗max(M, eN ,M
op) (in

particular on C∗bin(M, eN ,M
op)) and its ideal is the unique maximal ideal of

S0.

Proof. By the uniqueness properties of the expectations E+
i , i ∈ Z, of a C∗-

algebra S0 generated by j0(M1), j′0(Mop
1 ) onto j′0(Mop

−i) like in 1.6, it follows

that E+
i = E

j′0(Mop)

j′0(Nop
i−1)
◦ E+

0 . Let τ be the trace on j0(M) and τ ′ the trace on

j′0(Mop) and define τ0 = τ ′ ◦ E+
0 on S0. Since E

j′0(Mop)

j′0(Nop
i−1)

is τ ′ preserving, we

have for i ≥ 0, x ∈ S0:

τ0(x) = τ ′(E+
0 (x)) = τ ′

(
E
j′0(Mop)

j′0(Nop
i−1)

(E+
0 (x))

)
= τ ′ ◦ E+

i (x).

If k ≥ i, u ∈ U(j0(Mi)), x ∈ j0(Mk), y′, y′′ ∈ j′0(Nop
i−1) then we have:

τ0(uy′xy′′u∗) = τ0(y′uxu∗y′′) = τ ′(E+
i (y′uxu∗y′′)) = τ ′(y′E+

i (uxu∗)y′′)

= τ ′(y′Ej0(M ′
i∩Mk)(uxu

∗)y′′) = τ ′(y′E+
i (x)y′′) = τ ′(E+

i (y′xy′′))

= τ0(y′xy′′).

Thus, by 1.6 it follows that τ0(uTu∗) = τ0(T ), ∀ T ∈ S0, ∀ u ∈ U(Mi). Also,
if u′ ∈ j′0(Mop) is a unitary element and x ∈ j0(Mk), y′, y′′ ∈ j′0(Mop) then we
get:

τ0(u′y′xy′′u′
∗
) = τ ′(E+

0 (u′
∗
y′xy′′u′)) = τ ′(u′y′E+

0 (x)y′′u′
∗
)

= τ ′(y′E+
0 (x)y′′) = τ ′(E ′0(y′xy′′)) = τ0(y′xy′′).

This shows that τ0(u′Tu′∗) = τ0(T ), ∀ T ∈ S0, ∀ u′ ∈ U(j′0(Mop)), by virtue
of 1.6. Since the centralizer of τ0 is an algebra and it contains both U(j0(Mi)),
U(j′0(Mop)), with i ≥ 1, τ0 has all S0 = C∗(j0(Mi), j

′
0(Mop)) in its centralizer,

thus, it is a trace.
If τ1 is another trace on S0 and (πτ1 ,Hτ1 , Eτ1) is the corresponding GNS con-

struction, then let S0 = πτ1(S0)
w

. Since the unit ball of πτ1(Mk) is complete
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in the norm given by ‖πτ1(x)ξτ1‖ (because the unit ball of j0(Mk) is complete
in the norm τ1(x∗x)1/2, by the uniqueness of the trace on the factor Mk) it

follows that πτ1(Mk) = πτ1(Mk). Thus, for x ∈ j0(Mk), y′, y′′ ∈ j′0(Mop) we
get:

τ1(y′xy′′) = 〈Eπτ1 (j0(M))′∩S0
(πτ1(y′xy′′))ξτ1 , ξτ1〉

= 〈(πτ1 (y′)Eπτ1 (j0(M))′∩S0
(πτ1(j0(x))πτ1 (y′′)ξτ1 , ξτ1〉

= 〈πτ1(y′Ej0(M ′∩Mk)(x)y′′)ξτ1 , ξτ1〉
= τ ′(y′Ej0(M ′∩Mk)(x)y′′)

= τ0(y′xy′′).

with the last part following from the uniqueness of the trace on j′0(Mop).
This shows that S0 has a unique trace τ0 and also that if I0 ⊂ S0 is a two sided
closed proper ideal then S1 = S0/I0 has a trace, which thus composed with
the quotient map gives the trace on S0. Thus, I0 ⊂ Iτ0 , so Iτ0 is the unique
maximal ideal of S0. Q.E.D.

2.2. Remarks. 1◦. Let

C∗min(M, eN ,M
op)

def
= C∗max(M, eN ,M

op)/Itr (≃ πtr(C
∗
max(M, eN ,M

op))),

where Itr is the trace ideal (= maximal ideal) of C∗max(M, eN ,M
op) corre-

sponding to the unique trace tr, as given by 2.1. From the previous theo-
rem and its proof if follows that C∗min(M, eN ,M

op) is simple, has a unique
trace, still denoted tr, and has the Dixmier property, i.e., con{uxu∗ | u ∈
U(C∗min(M, eN ,M

op))} ∩ C1 = {tr(x)1}, ∀ x ∈ C∗min(M, eN ,M
op). In fact, by

2.1 any C∗-algebra S0 generated by mutually commuting copies of M , Mop

and a projection eN such that N ⊂ M
eN⊂ Alg(M, eN ) and Nop ⊂ Mop

eN⊂
Alg(Mop, eN) are basic constructions and such that the smoothness condition
1.8 (∗) is satisfied, has a unique trace tr, Itr is its unique maximal ideal and
S0/Itr = C∗min(M, eN ,M

op).
Also it should be noted that if N = M then C∗max(M, eN ,M

op) coincides with
M ⊗

max
Mop, C∗bin(M, eN ,M

op) with M ⊗
bin

Mop (as considered in [EL]) and

C∗min(M , eN ,M
op) with M ⊗

min
Mop.

2◦. Let N ⊂ M be an extremal inclusion of von Neumann factors of type
III, with the conditional expectation of minimal index E , as in 1.10.3◦. The
construction analoguous to 2.1 is then as follows: one first considers the expec-
tation E0 given by 1.10.3◦; one takes a normal faithful state ϕ onM such that
ϕ ◦ E = ϕ; instead of the trace tr, one defines a state ψ on C∗bin(M, eN ,Mop)
by ψ = (ϕ⊗ ϕop) ◦ E0.

2.3. Corollary.

S = πtr(C
∗
max(M, eN ,Mop))

w ≃ πtr(C
∗
bin(M, eN ,Mop))

w
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is a type II1 factor with embeddings πtr ◦ j : M1 → S, πtr ◦ j′ : Mop
1 → S and

an antisymmetry op such that
a) [πtr(j(M)), πtr(j

′(Mop))] = 0
b) πtr(j(eN )) = πtr(j

′(eN ))
c) S = vN(πtr(j(M)), πtr(j(eN )), πtr(j

′(Mop)))
d) πtr(j(x))op = πtr(j

′(xop)), ∀ x ∈M , πtr(j(eN ))op = πtr(j(eN )).
Moreover, if S0 is another type II1 factor with embeddings j0 : M1 → S0,
j′0 : Mop

1 → S0 satisfying conditions a), b) (with j0 instead of πtr ◦ j and
j′0 instead of πtr ◦ j′) and such that j0(M ′ ∩ Mn) ⊂ j′0(Mop), ∀n ≥ 1, then
there exists a unique isomorphism σ of S into S0 such that j0 = σ ◦ πtr ◦ j,
j′0 = σ ◦ πtr ◦ j′. And if in addition S0 = vN(j0(M), j0(eN ), j′0(Mop)), then σ
is onto.

Proof. Trivial by 2.1. Q.E.D.

2.4. Definition. We denote by M ⊠
eN

Mop the type II1 factor S =

πtr(C
∗
max(M, eN , Mop)) in the previous corollary and call it the symmetric

enveloping type II1 factor associated with N ⊂ M . Also, we call M ∨Mop ⊂
M ⊠

eN

Mop the symmetric enveloping inclusion associated with N ⊂M . We will

identify M , eN , Mop with their corresponding canonical images in M ⊠
eN

Mop,

more generally we will identify Mn, Mop
n , en with their canonical images via

πtr ◦ j, πtr ◦ j′ (cf 1.4), whenever some tunnel for N ⊂M is chosen. We’ve seen
in 2.3 that M ⊠

eN

Mop has an antisymmetry op and that it satisfies a universality

and uniqueness property. Also, from now on we will use the notation τ for the
unique trace on the factor M ⊠

eN

Mop (as in fact for any generic factor).

2.5. Remarks. 1◦. As one can see from 2.1-2.3, the symmetric enveloping type
II1 factor M ⊠

eN

Mop associated to an inclusion N ⊂M can be constructed out

of any C∗-algebra S0 generated by copies of M and Mop, satisfying M ′ ∩S0 =
Mop, and by a projection eN , implementing the expectations EN on M and
ENop on Mop: just put M ⊠

eN

Mop to be the completion of the algebra S0/I0

in the strong topology given by its unique trace, I0 being the maximal ideal
of S0 or, alternatively, the ideal corresponding to the unique trace on S0. In
particular, M ⊠

eN

Mop = C∗(M, eN , JMMJM )/I0. But one can also construct

M ⊠
eN

Mop by defining directly the Hilbert space of its standard representation.

In order to show this, we will in fact consider a more general construction. Thus,
let N ⊂ M and Q ⊂ P be extremal inclusions with the same extended higher
relative commutant picture (or extended standard invariant), i.e., →̃GN,M =
tilde→ GQ,P = {Aij}i,j∈Z. The concatenation algebra associated to these two
inclusions is then the unique (up to isomorphism) type II1 factor S generated
by commuting copies of M , P op and by a projection e, implementing both EN
and EQop , such that M ′ ∩ S = P op. This algebra is denoted by M ⊠

eN =eQ

P op
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(or simply M ⊠P op, when no confusion is possible). Its uniqueness follows the
same way as the uniqueness of M ⊠

eN

Mop above. To prove its existence, we

consider the following construction: Take {mj}j∈J to be be an orthonormal
basis of A−∞,∞ over A−∞,0 ∨A0,∞ and identify A−∞,0 ∨A0,∞ with its image
in M⊗̄P op (through the choice of tunnels in M and P ); note that the mj ’s can
be chosen of bounded norm and such that the set of indices J can be written as
∪nJn, where each Jn is finite and such that

∑
j∈Jn

mjM ∨Mop is a M ∨Mop-

bimodule of finite dimension (equivalently,
∑

j∈Jn
mjP ∨ P op is a P ∨ P op-

bimodule of finite dimension) See 4.5 below for how to get these mj ’s. Then

let Hn def
=
∑

j∈Jn
mjL

2(M ∨ P op) and H def
= ∨nHn, the scalar product on H

being defined by 〈mjξ,miη〉 = 〈EA−∞,0∨A0,∞(m∗imj)ξ, η〉, ∀ξ, η ∈ L2(M∨P op).
Finally, we letM,P op and e = eN = eP op act onH as follows: M (and similarily
P op) acts on each Hn by multiplication to the left, according to the relations
Mmi ⊂

∑
j∈Jn

mj(M ∨ A0,∞), ∀i ∈ Jn, with the latter vector space being
identified with a subset of Hn; e acts also by multiplication to the left, by
regarding H as a left A−∞,∞ module in the obvious way and letting e = e1.
Then M ⊠

eN =eQ

P op is simply the von Neumann algebra generated by M,P op, e1

on H.

It is easy to check that these actions of M,P op, e on H are well defined, that
they satisfy M ′ ∩ C∗(M, e, P op) = P op, exe = EN (x)e, eye = EP op (y)e, for

x ∈M, y ∈ P op, and that 〈 · 1̂, 1̂〉 defines a trace on C∗(M, e, P op). This shows
the existence of the concatenation algebra.

Note that, by using the same proofs as for M ⊠
eN

Mop, it follows that the con-

catenation algebra has similar properties as the ones the symmetric enveloping
algebras are shown to have in this section and in Sec. 4. Obviously, when
(Q ⊂ P ) ≃ (N ⊂ M) this algebra coincides with the symmetric enveloping
type II1 factor associated with N ⊂M .

Note that any extremal hyperfinite subfactor N ⊂ R gives rise to a canonical
non-separable concatenation algebra as follows: Let ω be a free ultrafilter on
N and denote by Rω the corresponding ultrapower algebras associated to the
hyperfinite factor R. Then (R′ ∩ Rω)′ ∩ Rω = R and more generally (N ′k ∩
Rω)′ ∩Rω = Nk, ∀k, where R ⊃ N ⊃ N1 ⊃ ... is a tunnel for R ⊃ N (cf. [C1]).
Thus, if we denote P 0 = R′∩Rω and Q0 to be the downward basic construction
for P 0

1 = N ′∩Rω ⊃ R′∩Rω = P 0 and put (Q ⊂ P ⊂ P1) ≃ (Q0 ⊂ P 0 ⊂ P 0
1 )op

then N ⊂ M and Q ⊂ P have the same higher relative commutant pictute
(extended standard invariant) and the von Neumann algebra S generated by
R and P op

1 = N ′ ∩ Rω is isomorphic to the concatenation of (N ⊂ R) and
(Q ⊂ P ) (see also Remark 2.11, 1◦ in [Po3], with caution to the obvious typos
there...).

2◦. For an extremal inclusion of type III factors N ⊂ M like in
1.10.3◦, 2.2.2◦, one defines its symmetric enveloping von Neumann algebra
as πψ(C∗bin(M, eN ,Mop)). It is easy to see that this algebra does not in fact
depend on the normal faithful state ϕ, with ϕ = ϕ ◦ E , taken on M.
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The next proposition summarizes the main properties of the factor M ⊠
eN

Mop

and its canonical subalgebras:

2.6. Proposition. M ⊠
eN

Mop with its subalgebras Mi, M
op
i projections ek,

i, j, k ∈ Z, and antisymmetry op satisfy the conditions:
a) [M,Mop] = 0;

b) eop1 = e1 = eN , eopn = e−n+2, n ∈ Z, and · · · ⊂ N1

e−1⊂ N
e0⊂ M

e1⊂ M1

e2⊂
M2 ⊂ · · · is a Jones tower-tunnel for N ⊂ M , where M0 = M , M−1 = N ,
M−n = Nn−1, n ≥ 2.
c)
⋃
n≥1

MiM
op
n Mi =

⋃
n≥1

Mop
j MnM

op
j = Alg(M, eN = e1,M

op), ∀ i, j ∈ Z and

it is a dense ∗-subalgebra in M ⊠
eN

Mop.

d) M ′j ∩M ⊠
eN

Mop = Mop
−j and (Mop

j )′ ∩M ⊠
eN

Mop = M−j, ∀ j ∈ Z.

Proof. Clear by 1.9 and the definition of M ⊠
eN

Mop. Q.E.D.

The bicommutant relations in d) above can actually be taken as an abstract
characterization of the symmetric enveloping algebra:

2.7. Proposition. Let N ⊂ M be an extremal inclusion and S be a type II1
von Neumann algebra containing M . If (M ′∩S ⊂ N ′∩S) ≃ (Mop ⊂Mop

1 ), and
S is generated by M and N ′ ∩ S then M ∨M ′ ∩ S ⊂ S is naturally isomorphic
to M ∨Mop ⊂M ⊠

eN

Mop

Proof. Let e0 ∈M be a Jones projection for N ⊂M and {mj}j an orthonormal
basis of N over N1 = {e0}′ ∩N such that one of the mj ’s equals 1. For x ∈ S
define E(x) = Σjmje0xe0m

∗
j ∈ S. Note that if x ∈ M ′ ∩ S then mj and e0

commute with x so E(x) = x. Also, if x ∈ N ′∩S then for each y ∈M we have

yE(x) = y
∑

j

mje0xe0m
∗
j = λ−1

∑

i,j

mie0E
M
N (e0m

∗
i ymje0)xe0m

∗
j

= λ−1
∑

i,j

mie0xE
M
N (e0m

∗
i ymje0)e0m

∗
j =

∑

i

mie0xe0m
∗
i y = E(x)y

showing that [E(x), y] = 0. Thus E(x) ∈ M ′ ∩ S. This shows that E is a
norm one projection of N ′ ∩ S onto M ′ ∩ S so by Tomiyama’s theorem it is a
conditional expectation. Also, if x ∈ N ′ ∩ S then we have

τ(E(x)) = τ(Σjmje0xe0m
∗
j ) = τ(xe0Σjm

∗
jmje0)

= Σjτ(xe0E
N
N1

(m∗jmj)) = Σjτ(EN ′
1∩S(xe0E

N
N1

(m∗jmj))) = λ−1τ(xe0) = τ(x)

Thus E is trace preserving as well, so it must coincide with the unique trace
preserving expectation of N ′∩S onto M ′∩S. Also, from the definition of E(x),
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if x ∈ N ′ ∩ S then e0xe0 = E(x)e0. Thus, if e1 ∈ N ′ ∩ S is a Jones projection
for (M ′ ∩ S ⊂ N ′ ∩ S) = (Mop ⊂Mop

1 ) then e0e1e0 = λe0. But

τ(e0)−1 = [M : N ] = [Mop : Nop] = [Mop
1 : Mop] = τ(e1)−1,

so that τ(e0) = τ(e1). Together with e0e1e0 = λe0, this implies that e1e0e1 =
λe1. Thus, if x, y ∈ N then e1(xe0y)e1 = λxye1 = EMN (xe0y)e1, showing that
e1 implements the conditional expectation EMN . But, by its definition, e1 also
implements the conditional expectation of M ′ ∩ S onto {e1}′ ∩ (M ′ ∩ S).
Since we also have the isomorphism (M ′∩S ⊂ N ′∩S) ≃ (Mop ⊂Mop

1 ), which in
turn implements an isomorphism ({e1}′∩M ′∩S ⊂M ′∩S ⊂ N ′∩S) ≃ (Nop ⊂
Mop ⊂Mop

1 ), 2.3 applies to yield (M ∨M ′∩S ⊂ S) ≃ (M ∨Mop ⊂M ⊠
eN

Mop)

. Q.E.D.

Note that from the above proposition and [Po2] it follows that if M is hyper-
fnite and the graph ΓN,M of N ⊂ M is strongly amenable (see [Po2] for the
definitions) then the inclusion M ∨Mop ⊂ M ⊠

eN

Mop is isomorphic to the in-

clusion M ∨M ′∩M∞ ⊂M∞. The inclusions M ∨M ′∩M∞ ⊂M∞ for N ⊂M
hyperfinite with finite depth, i.e., with finite (thus strongly amenable) graph,
were considered and extensively studied by Ocneanu ([Oc], see also [EvKa]).
Note that if M is an arbitrary type II1 factor and N ⊂ M is a subfactor of
finite depth and we denote by Q ⊂ P the standard model N st ⊂ M st then
GQ,P = GN,M and M ∨M ′ ∩M∞ ⊂M∞ naturally identifies with the ”concate-
nation” inclusion considered in 2.5.1◦, i.e., with M ∨ P op ⊂M ⊠P op.
The next lemma provides some useful localization properties relating the Jones
projections, the relative commutants and the antiisomorphism op. They are
reminiscent of some well known facts (see e.g., [PiPo1] page 83, [Bi1] page
205).

2.8. Lemma. Let N ⊂ M be an extremal inclusion, N ⊂ M
eN⊂ M1 its basic

construction and op the canonical antiautomorphism of N ′ ∩M onto M ′ ∩M1

(so xop = JMx
∗JM , x ∈ N ′ ∩M).

a) If x ∈ N ′∩M then xeN = xopeN and xop is the unique element y′ ∈M ′∩M1

such that y′eN = xeN .
b) eNxy

opeN = τ(xy)eN and τ(xyopeN) = λτ(xy), ∀ x, y ∈ N ′ ∩M , where
λ = [M : N ]−1.
c) If q ∈ P(N ′ ∩M), q 6= 0, then Nqqop ⊂ qMqqop ⊂ qqopM1qq

op is a basic
construction with Jones projections equal to

τ(q)−1qqopeNqq
op = τ(q)−1qeNq = τ(q)−1qopeNq

op.

d) EM∨M ′∩M1(eN ) = λ
∑

i,j,k τ(fkjj)
−1fkijf

k
ji

op
, where {fkij} is a matrix unit for

N ′ ∩M .

Proof. a) If y ∈ M̂ then eN (ŷ) = ÊN (y) so that

xeN (ŷ) = ̂xEN (y) = ÊN (y)x = xopeN (ŷ).
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The uniqueness is clear because y′eN = 0 implies eNy
′∗y′eN = 0 so that

ENop(y′∗y′) = 0, thus y′ = 0.
b) By a) we have

eNxy
opeN = eNxyeN = EN (xy)eN = EN ′∩N (xy) = τ(xy)eN ,

whenever x, y ∈ N ′ ∩M . The second part is then trivial.
c) Since

qqopB(L2(M))qqop = B(L2(qMq))

and

(Nqqop) ∩ qqopB(L2(M))qqop = qqopM1qq
op,

it follows that

Nqqop ⊂ qMqqop ⊂ qqopM1qq
op

is a basic construction. Also, if e = τ(q)−1qqopeNqq
op then by a) we have

e = τ(q)−1qeNq = τ(q)−1qopeNq
op.

Also, the range of e = τ(q)−1qqopeNqq
op is clearly

L2(Nq) = L2(qNq) = qL2(N)q = L2(N)q

and so, since e is a projection we get e = projL2(N)q = projL2(Nqqop) as an

element in B(L2(qMq)).
d) To prove this it is sufficient to show that τ(xyopeN ) = τ(xyopa), ∀ x, y ∈
N ′ ∩M , where a = λ

∑
i,j,k τ(fkjj)

−1fkijf
k
ji

op
. It is then enough to check this

for x = fk
′

rs , y = fk
′′

s′r′ . For the left hand side, by b) we have:

τ(fk
′

rsf
k′′
s′r′

op
eN) = λδk′k′′δss′δrr′τ(fk

′
rr).

For the right hand side we have:

τ(fk
′

rsf
k′′
s′r′

op
a) = λ

∑

i,j,k

τ(fkjj)
−1τ(fkijf

k
ji

op
fk

′
rsf

k′′
s′r′

op
)

= λ
∑

i,j,k

τ(fk
′

rr)
−1δkk′δkk′′δjrδjr′τ(fkis)τ(fkis′ )

= λτ(fk
′

rr)−1δk′k′′δrr′δss′τ(fk
′

ss )2

= λδk′k′′δss′δrr′τ(fk
′

rr).

Q.E.D.
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2.9. Proposition. Let N ⊂ M be an extremal inclusion of type II1 factors.
Then we have
a) M ⊠

eNn−1

Mop naturally identifies with M ⊠
eN

Mop, by letting eNn−1 7→ fn−n.

b) The inclusion M1∨Nop ⊂M ⊠
eN

Mop naturally identifies with the reduced by

eop1 of the symmetric enveloping inclusion of M ⊂M1, M1∨Mop
1 ⊂M1 ⊠

eM

Mop
1 .

More generally, Mn∨Nop
n−1 ⊂M ⊠

eN

Mop is isomorphic to the reduced by (fn−n)op

of Mn ∨Mop
n ⊂Mn ⊠

eM

Mn.

c) If p ∈ P(N ′ ∩M) and we denote by L ⊂ K the inclusion Np ⊂ pMp then
K ⊠

eL

Kop is naturally embedded in M ⊠
eN

Mop as the weakly closed ∗-subalgebra

generated by ppop(M ∨Mop)ppop and by

e′L
def
= σ(p)−1ppopeNpp

op.

Also, the ientity of this algebra is ppop.
d) If T ⊂ S denotes the symmetric enveloping inclusion associated with N ⊂M
and T0 ⊂ S0 the symmetric enveloping inclusion associated with some other
extremal inclusion of type II1 factors N0 ⊂M0, then the symmetric enveloping
inclusion associated with N⊗̄N0 ⊂M⊗̄M0 is naturally isomorphic to T ⊗̄T0 ⊂
S⊗̄S0.

Proof. a) Is clear by 1.6, 1.9.4 and 2.4.
b) follows then immediately, from 2.1, 2.3 and the fact that
(fn−n)opMop

n (fn−n)op = Nop
n−1(fn−n)op ≃ Nop

n−1.
To prove c) note that if π is the canonical representation of C∗(M, eN , JMJ)
into M ⊠

eN

Mop then the C∗-algebra generated by ppop(M ∪ Mop)ppop and

e′L is the image under π of C∗(pJpJ(M ∪ JMJ)pJpJ, pJpJeNpJpJ) which
naturally identifies with the C∗-algebra generated by K, JKKJK and
eL in B(L2(K)), where L = Np ⊂ pMp = K. Since this repre-
sentation of C∗u,max(K, eL,K

op) is smooth, it follows that π implements
a smooth representation of C∗u,max(K, eL,K

op) into ppop(M ⊠
eN

Mop)ppop.

Since the latter has a trace, it follows by 2.1, 2.2 that K ⊠
eL

Kop =

(C∗(ppopMppop, e′L, pp
opMopppop))

w ⊂M ⊠
eN

Mop.

d) follows trivially from any of the characterizing universality properties of the
symmetric enveloping algebras (e.g., from 2.7). Q.E.D.

2.10. Proposition. Let N ⊂M be an extremal inclusion of type II1 factors.
a) If Q ⊂ N is an extremal subfactor of N then M ⊠

eN

Mop is unitally embedded

as a subfactor of M ⊠
eQ

Mop, by taking eN 7→
∑
jmjeQm

∗
j (=

∑
jm
∗
j
opeQm

op
j ),

where {mj}j is a orthonormal basis of N over Q. Moreover, if there exists a
tunnel M ⊃ N ⊃ N1 ⊃ · · · for N ⊂M such that Nk ⊂ Q for some k, then this
unital embedding is in fact an equality.

Documenta Mathematica 4 (1999) 665–744



684 Sorin Popa

b) If Q ⊂ P is an extremal inclusion of factors embedded in N ⊂ M as a
commuting square, such that [P : Q] = [M : N ] and P ′∩Pn ⊂M ′∩Mn, ∀ n then
P ⊠
eQ

P op is unitally embedded in M ⊠
eN

Mop, by taking P →֒ M , P op →֒ Mop

and eQ 7→ eN . Also, P ⊠
eQ

P op ⊂ M ⊠
eN

Mop has finite index iff P ⊂ M has

finite index, with the estimate [M ⊠
eN

Mop : P ⊠
eQ

P op] ≤ [M : P ]2. Moreover,

if P ′ ∩ Pn = M ′ ∩ Mn, then this embedding implements the nondegenerate
commuting square:

M ∨Mop ⊂ M ⊠
eN

Mop

∪ ∪
P ∨ P op ⊂ P ⊠

eQ

P op.

Proof. a) It is easy to check by direct computation that

eN =
∑

j

mjeQm
∗
j =

∑

j

(JmjJ)eQ(Jm∗jJ)

in B(L2(M)), so a) follows from 2.2-2.6. The last part of a) then follows from
2.7 a) and the first part.
b) To prove the first part we only need to show that the representation of
C∗u,bin(P, eQ, P

op) in M ⊠
eN

Mop satisfies the faithfulness condition 1.8 (∗), i.e.,

we need to show that P ′ ∩ Pn = Qop
n−1
′ ∩ P op, ∀ n. By 2.1–2.4, it is suffi-

cient to check this equality in a representation of C∗bin(M, eN ,M
op), and we’ll

choose C∗(M, eN , JMJ) ⊂ B(L2(M)) to do this. Let eMP ∈ B(L2(M)) be the
orthogonal projection of L2(M) onto L2(P ). Note that all the elements in
C∗(P, eN , JMPJM ) ⊂ B(L2(M)) commute with eMP and that if x ∈ JMJ then
x ∈ JPJ iff [x, eMP ] = 0. Now, if x ∈ P ′ ∩ Pn then x ∈M ′ ∩ Pn by hypothesis,
so x ∈ JMJ ∩ Pn. Also, [x, eMP ] = 0, because Pn ⊂ C∗(P, eN , JPJ). Thus,
x ∈ JPJ ∩ Pn. But Pn ⊂ Mn = JNn−1J

′ ∩ B(L2(M)) ⊂ JQn−1J
′. Thus,

x ∈ JPJ ∩ (JQn−1J)′. This proves the first part of b).
Further on, assume [M : P ] < ∞ and take {mj}j to be a finite orthonor-
mal basis of M over P . Note that M ⊠

eN

Mop = sp(M ∨Mop)vN{ej}j∈Z and

P ⊠
eQ

P op = sp(P ∨ P op)vN{ej}j∈Z, with {ej}j ⊂ P∞ being the Jones projec-

tions for a tower-tunnel for Q ⊂ P (see 4.1, 4.2), and thus for N ⊂ M as
well. Since M ∨Mop = Σi,jmim

∗op
j P ∨ P op it thus follows that M ⊠

eN

Mop =

Σi,jmim
∗op
j P ⊠

eQ

P op, showing that M ⊠
eN

Mop is a finitely generated left module

over P ⊠
eQ

P op, with the estimate [M ⊠
eN

Mop : P ⊠
eQ

P op] ≤ [M : P ]2 as a bonus.

For the last part, we have that
⋃
n

spP opPnP
op is so-dense in P ⊠

eQ

P op

and writing Pn as spPfn−nP we get EM∨Mop (P ⊠
eQ

P op) = sp
⋃
n

((P ∨
P op)EM∨Mop (fn−n)(P ∨P op)). But since P ′ ∩Pn = M ′ ∩Mn and Q′n−1 ∩P =
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N ′n−1 ∩ M , ∀ n, it follows that EM∨Mop (fn−n) = EP∨P op(fn−n), proving the
desired commuting square condition. Q.E.D.

Let us end this section by considering a notion of index for sublattices of stan-
dard λ-lattices (see [Po7] for the definition of abstract standard lattices and
for the notations and results used hereafter). We relate this notion with the
content of this section by showing that the index of a sublattice coincides with
the index of a certain canonically associated inclusion of symmetric enveloping
type II1 factors. This latter result will be used in Sections 5 and 8.

2.11. Definition. Let G = (Aij)0≤i≤j be a standard λ-lattice and G0 =

(A0
ij)0≤i≤j a sublattice. We define the index of G0 in G by [G : G0]

def
=

limn→∞ IndEA0n

A0
0n

= IndE
A0,∞
A0

0,∞
, where Ind(E) denotes as usual the index

([PiPo1]) of the conditional expectation E and Ai,∞ = ∪nAin, A0
i,∞ = ∪nAin.

Let us make right away some comments on this definition. By (1.1.6 in [Po3]),
if {mj}j is an orthonormal basis of A0,∞ over A0

0,∞ (apriorically made up of

square summable operators) then ‖Σjmjm
∗
j‖ = IndE

A0,∞
A0

0,∞
. But both A1,∞ ⊂

A0,∞ and A0
1,∞ ⊂ A0

0,∞ are λ-Markov inclusions (see 1.1.5 in [Po2] for the
definition), so the commuting square embedding of the latter into the former
is nondegenerate (1.5,1.6 in [Po2]). Thus, by (1.6 in [Po2]) any orthonormal
basis of A1,∞ over A0

1,∞ is an orthonormal basis of A0,∞ over A0
0,∞. Thus,

in the above we may assume that {mj}j lies in A1,∞. On the other hand, if
bounded, Σjmjm

∗
j belongs to the center of A0,∞ (see e.g. 1.1.5 in [Po3]), thus

Σjmjm
∗
j ∈ Z(A0,∞) ∩ A1,∞ = Z(A0,∞) ∩ Z(A1,∞). But by (Corollary 1.4.2

in [Po2]) this latter intersection is in fact equal to the scalar multiples of the
identity. Thus, Σjmjm

∗
j ∈ C1. Altogether, this shows that we may as well

take [G : G0]
def
= ‖Σjmjm

∗
j‖ = Σjmjm

∗
j , {mj}j being an arbitrary orthonormal

basis of Ai,∞ over A0
i,∞, for some i ≥ 0. The next proposition gives more ways

to look at this index.

2.12. Proposition. Let G be a standard λ-lattice with a sublattice G0. Let
Q0 be a non-atomic finite von Neumann algebra with a faithful trace and
NG(Q0) ⊂ MG(Q0), respectively NG0(Q0) ⊂ MG0(Q0) be the associated ex-
tremal inclusions of type II1 factors having G, respectively G0 as standard in-
variants, given by the universal construction in ([Po7]). Let

NG(Q0) ⊂ MG(Q0)

∪ ∪
NG0(Q0) ⊂ MG0(Q0).

be the corresponding commuting square like in ([Po7]). Then we have

[G : G0] = [MG(Q0) : MG0(Q0)] = [S : S0],
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where S and respectively S0 denote the symmetric enveloping algebras of
NG(Q0) ⊂MG(Q0) and respectively NG0(Q0) ⊂MG0(Q0).

Proof. Recall from [Po7] that MG∞(Q0) identifies with the free product with
amalgamation Q0⊗̄A1,∞ ∗A1,∞A0,∞, with MG0∞ (Q0) identifying with the subal-

gebra generated by Q0 and A0
0,∞. By the resulting commuting square relations

for these inclusions (see [Po7], pages 435 and 438), it follows that any orthonor-
mal basis of A1,∞ over A0

1,∞ is an orthonormal basis of Q0⊗̄A1,∞ ∗A1,∞ A0,∞
over Q0⊗̄A0

1,∞∗A0
1,∞

A0
0,∞, thus of MG∞(Q0) over MG0∞ (Q0). But the commuting

square embedding of MG0(Q0) ⊂MG(Q0) into MG0∞ (Q0) ⊂MG∞(Q0) is nonde-
genarate (cf. [Po7]), so that in the end, if {mj} denotes an orthonormal basis
of A1,∞ over A0

1,∞, we get [MG(Q0) : MG0(Q0)] = [MG∞(Q0) : MG0∞ (Q0)] =
Σjmjm

∗
j = [G : G0].

Finally, from the universality properties of the symmteric enveloping algebras
and the definition of NG(Q0) ⊂ MG(Q0) and NG0(Q0) ⊂ MG0(Q0), we see
that, if we denote by N ⊂ M and N0 ⊂ M0 these two inclusions then S0 ⊂ S
identifies with the inclusion Q0⊗̄Nop

0 ∗Nop
0
Mop

0 ⊂ Q0⊗̄Nop ∗Nop Mop. But

from the above we have that any orthonormal basis of Nop over Nop
0 will be

an orthonormal basis of S over S0. Q.E.D.

3. A Class of Examples

Let Q be a type II1 factor and σ1, . . . , σn a n-tuple of automorphisms of Q. Let
N ⊂M be the locally trivial inclusion of factors associated with σ1, . . . , σn (see
e.g. [Po2] ), i.e., M = Q⊗Mn+1(C), N = {∑n

i=0 σi(x)⊗eii | x ∈ Q ≃ Q⊗C1},
where σ0 = idQ and {eij}0≤i,j≤n is a matrix unit for Mn+1(C).
We still denote by σi the automorphism of M = Q ⊗ Mn+1(C) defined by
σi(x ⊗ ekl) = σi(x) ⊗ ekl, ∀ x ∈ Q, 0 ≤ k, l ≤ n. Denote by G the
discrete group generated by σ1, . . . , σn in Aut(M)/Int(M). Also, we let
σ : G → Aut(M)/Int(M) be the corresponding faithful G-kernel. Then note
that the faithful G-kernel σ⊗σop on M⊗̄Mop has vanishing H3(G,T) cohomol-
ogy obstruction ([J5]), so that it can be viewed as a (properly outer) cocycle
action of G on M⊗̄Mop.
In this section we show that, with the above notations, we have

(M ∨Mop ⊂M ⊠
eQ

Mop) ≃ (M⊗̄Mop ⊂ (M⊗̄Mop) ⋊σ⊗σop G),

in which the cross product is associated with the cocycle action σ ⊗ σop as
in (4.1 of [J5]). Since by the previous sections M ∨Mop ⊂ M ⊠

eQ

Mop is the

(weak closure of the) quotient of C∗(M,JMJ) ⊂ C∗(M, eN , JMJ), it will be
sufficient to study this latter inclusion of algebras.
So let Ui be the unitary element acting on L2(M, τ), defined on the dense subset

M̂ ⊂ L2(M, τ) by Ui(x̂) = σ̂i(x), x ∈M , 0 ≤ i ≤ n. Note that UixU
∗
i = σi(x),

∀ x ∈ M , 0 ≤ i ≤ n, and [J, Ui] = 0. In particular, since σi(ekl) = ekl,
0 ≤ k, l ≤ n, we also have [Ui, ekl] = 0, [Ui, JeklJ ] = 0, ∀ i, k, l.
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3.1. Lemma.

a) eN =
1

n+ 1

n∑

i,j=0

UjU
∗
i ejiJejiJ .

b) Uj = (n+ 1)

n∑

k,l=0

JeljJekjeNe0kJe0lJ .

Proof. a) If x =
∑
xij ⊗ eij ∈ Q⊗Mn+1(C) = M , then

ÊN (x) =
1

n+ 1

∑

i,j

(σjσ
−1
i (xii)⊗ ejj )̂ =

1

n+ 1

n∑

i,j=0

UjU
∗
i ejiJejiJ(x̂)

proving the first formula.

b) By a) we have ejjeNJe00J =
1

n+ 1
Ujej0Jej0J , so that Uje00Je00J = (n+

1)e0jJe0jJejjeNJe00J . Thus we get

Uj =

n∑

k,l=0

ek0Jel0J(Uje00Je00J)Je0lJe0k = (n+ 1)

n∑

k,l=0

ekjJeljJeNJe0lJe0k.

Q.E.D.

3.2. Corollary. C∗(M, eN , JMJ) = C∗(M, {Ui}i≤n, JMJ). In fact,

C∗(Mn+1(C), eN , JMn+1(C)J) = C∗(Mn+1(C), {Ui}0≤i≤n, JMn+1(C)J).

Proof. Trivial by the previous lemma. Q.E.D.

Describing M ∨ Mop ⊂ M ⊠
eN

Mop as a cross product is now an imme-

diate consequence of the previous lemma and of 2.1, once we notice that
Uj(xJy

∗J)U∗j = σi(x)Jσi(y
∗)J . To write the corresponding isomorphism in

more specific terms, denote by ui the image of Ui in M ⊠
eN

Mop (cf. 2.1) and

by gi the image of σi as an element of the group G.

3.3 Theorem. There exists a unique isomorphism γ, of (M ∨ Mop ⊂
M ⊠

eN

Mop) onto (M⊗̄Mop ⊂M⊗̄Mop ⋊σ⊗σop G), satisfying:

a) γ(xyop) = x⊗ yop, x, y ∈M .

b) ugi

def
= γ(ui) are unitary elements in the cross product M⊗̄Mop ⋊σ⊗σop G

which implement the automorphism σ ⊗ σop(gi), 0 ≤ i ≤ n.

c) γ(eN ) =
1

n+ 1

n∑

i,j=0

ugju
∗
gi
eji ⊗ eopij .

d) γ−1(ugj ) = uj = (n+ 1)

n∑

k,l=0

ekje
op
jl eNe0ke

op
l0 , 0 ≤ j ≤ n.

Proof. Trivial by 2.1 and 3.1. Q.E.D.
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In the next section we will see that even for arbitrary extremal subfactors
N ⊂ M the resulting inclusion M ∨Mop ⊂ M ⊠

eN

Mop can be interpreted as a

’cross-product’-type structure.

3.4 Remarks. 1◦. As one knows (see e.g. 5.1.5 in [Po2]), the standard invari-
ant GN,M of the above locally trivial subfactor N ⊂ M only depends on the
cohomology obstruction in H3(G,T) ([J5]) of the corresponding G-kernel σ on
Q. Thus, if we take another G-kernel σ′, on another type II1 factor Q′ but
with the same H3(G,T)-obstruction as σ, and denote the similar locally triv-
ial inclusion (corresponding to the same generators of G) by N ′ ⊂ M ′, then
GN ′,M ′ = GN,M and we can thus consider the concatenation algebra 2.5.1◦ as-
sociated with these two inclusions. Then M ∨M ′op ⊂M ⊠M ′op is isomorphic
to a cocycle cross product M⊗̄M ′op ⊂ (M⊗̄M ′op) ⋊σ⊗σ′op G.
2◦. Let G = (Aij)0≤i≤j be the standard λ-lattice associated to the locally
trivial subfactor N ⊂M , constructed from the automorphisms σ1, ..., σn acting
on the factor Q as above, with G denoting the group generated by the σi’s in
Aut(Q)/Int(Q) (and with the corresponding generators denoted hereafter by
g1, ..., gn). Let G0 = (A0

ij)i,j be a sublattice of G with the property that A0
01 is

a maximal abelian subalgebra of A01. Note that this amounts to saying that G0

has same ”generators” but possibly lesser ”relations” than G. Now take Q0 to
be an arbitrary finite von Neumann algebra without atoms. With Q0 as ”initial
data”, do the universal construction [Po7] of subfactors NG(Q0) ⊂ MG(Q0)
and NG0(Q0) ⊂ MG0(Q0) with higher relative commutants picture given by G
respectively G0, like at the end of Sec. 2, thus obtaining the non-degenerate
commuting square of inclusions:

NG(Q0) ⊂ MG(Q0)

∪ ∪
NG0(Q0) ⊂ MG0(Q0).

One can then show that the above algebras and the inclusions involved can be
alternatively described in terms of the following objects:
a). A type II1 factor Q′ with a faithful G kernel σ′ on it such that if N ⊂ M
denotes the locally trivial subfactor constructed out of this G-kernel and the
generators g1, ..., gn, like at the beginning of this section, then (N ⊂ M) ≃
(NG(Q0) ⊂MG(Q0));
b). An irreducible regular (in the sense of [D1]) subfactor Q′0 ⊂ Q′, a group
G0 with generators g′1, ..., g

′
n and a G0-kernel σ′0 on Q′0 such that if N0 ⊂ M0

denotes the associated locally trivial subfactor, constructed from this G0-kernel
and the generators g′1, ..., g

′
n, like at the beginning of this section, then (N0 ⊂

M0) ≃ (NG0(Q0) ⊂MG0(Q0));
c). A group morphism ρ of G0 onto G such that ρ(g′i) = gi and such that if
H = ker(ρ) denotes the corresponding kernel group then H is isomorphic to
NQ′(Q′0)/U(Q′0) (so that Q′ is a cocycle cross-product of Q′0 by H), in such
a way that if we denote by {uh}h∈H a set of unitaries in NQ′(Q′0) that give
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a cross-section for H then, modulo perturbations by inner automorphisms,
σ′ and σ′0 are related as follows: σ′(ρ(g′))(uha′0) = uhgh−1σ′0(g′)(a′0), ∀a′0 ∈
Q′0, h ∈ H, g′ ∈ G0.
Moreover, through these identifications, N0 ⊂ M0 is embedded in N ⊂ M by
the inclusion M0 = Q′0⊗Mn+1(C) ⊂ Q′⊗Mn+1(C) = M , and the correspond-
ing commuting square is isomorphic to the above commuting square.
Thus, in this exemple the sublattice G0 of the lattice G (which was associated
to the group G) corresponds to a ”covering” group G0 of the group G. Note
that, with these identifications, we have that the index of G0 in G equals the
order of the group H , [G : G0] = |H |.
Finally, let us see what the symmetric enveloping algebras become in this case:
if we extend the atomorphisms σ′(g), σ′0(g′) to M,M0 by putting them to act
as the identity on Mn+1(C), then the symmetric enveloping algebras S, S0 of
N ⊂ M respectively N0 ⊂ M0, and the corresponding inclusion S0 ⊂ S (cf.
2.10, b)), are given by

S0 = M0⊗̄Mop
0 ⋊σ′

0⊗σ′
0
op G0 ⊂M⊗̄Mop ⋊σ′⊗σ′op G = S

with the inclusion being described similarily to c).

4. Thinness and Quasi-Regularity Properties

We’ve already seen that sp
⋃
n
MMop

n M = sp
⋃
n
MopMnM

op is a ∗-subalgebra

which is dense in M ⊠
eN

Mop in the weak (or strong) operator topology. Let

{en}n∈Z be the Jones projections for the Jones tunnel-tower · · ·N1 ⊂ N ⊂
M ⊂ M1 ⊂ · · · , with eN = e1, as in Sections 1–2, and denote by P the
von Neumann algebra they generate in M ⊠

eN

Mop. Fix n ≥ 0 and choose an

orthonormal basis {mj}j of M over Nn−1 that belongs to vN{ek}k≤0 ⊂ P and
an orthonormal basis {mn

k}k of Mn over M that belongs to vN{ek}k≤n ⊂ P .
Thus we have

MMop
n M ⊂M

(
∑

k

Mopmn
k

op

)
∑

j

Nn−1m
∗
j


 =

∑

j,k

MMopNn−1m
n
k

opm∗j

=
∑

j,k

MMopmn
k

opm∗j ⊂ spMMopP.

Thus we obtain sp
⋃
n
MMop

n M ⊂ sp(M ∨ Mop)P . Similarly, since
∑

j,kMmn
k

opm∗j ⊂ M∞, we get sp
⋃
n
MMop

n M ⊂ spMopM∞, giving us

the following:

4.1. Proposition. With the above notations we have:

S
def
= M ⊠

eN

Mop = sp(M ∨Mop)P = spM∞M
op

= sp(M ∨Mop)(Alg{fn−n}n)(M ∨Mop)
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the closure being taken in either of the wo, so or ‖ ‖2 topologies in S.

Proof. Since sp(M∨Mop)P , M∞Mop and sp(M∨Mop)(Alg{fn−n}n)(M∨Mop)
contain sp

⋃
n
MMop

n M , which is a dense ∗-subalgebra in S = M ⊠
eN

Mop, we are

done. Q.E.D.

Note that if M is hyperfinite then M ∨Mop, Mop, M∞ are all hyperfinite.
Thus, in this case M ⊠

eN

Mop can be written as a “product” of two hyperfi-

nite subfactors. Recall from ([Po5]) that such situation is singled out by the
following:

4.2. Definition. A type II1 factor S for which there exist two hyperfinite
type II1 subfactors R1, R2 ⊂ S such that S = spR1R2, the closure being taken
in ‖ ‖2, is called a thin type II1 factor.

With this terminology the above observation takes the form:

4.3. Corollary. If N ⊂ M is a extremal inclusion of hyperfinite type II1
factors then S = M ⊠

eN

Mop is a thin type II1 factor.

From the above, the previous section and Connes’ fundamental theorem ([C1])
we can already conclude:

4.4. Corollary. If N ⊂M is an inclusion of factors associated to a faithful
G-kernel σ on a hyperfinite type II1 factor R like on Section 3, where G is a
finitely generated discrete group, then M ⊠

eQ

Mop ≃ R ⊗ Rop ⋊σ⊗σop G is thin

but it is hyperfinte iff G is amenable.

More precise statements along these lines will be obtained in Sec.5 and 7. Let
us note now that the Hilbert space Kn obtained as the closure of

(spMopMnM
op)̂ = (spMMop

n M )̂

in L2(M ⊠
eN

Mop, τ) is invariant to multiplication from left and right by both

M and Mop, thus by T = M ∨Mop. Thus Kn is a T -T bimodule.
Since spMMop

n M = sp
∑
j,kmkm

∗
j
opfn−n MMop = sp

∑
j,kMMopfn−nm

op
j m

∗
k,

it follows that Kn has finite dimension both as a left and as a right T module.
Thus, if pn is the orthogonal projection of L2(S, τ) onto Kn the pn commutes
with the operators of left and right multiplication by elements in T , i.e., pn ∈
T ′ ∩ 〈S, T 〉. Also, since

⋃
n
Kn = L2(S, τ), we have pn ր 1 and the above shows

that Tr pn < ∞, ∀ n, where Tr = Tr〈S,T 〉 denotes the unique trace on 〈S, T 〉
satisfying Tr(eT ) = 1.
Thus, T ′∩〈S, T 〉 is generated by finite projections of 〈S, T 〉 and the inclusion of
factors Tpn ⊂ pn〈S, T 〉pn has finite index for all n. Since T ′∩S = C1 (cf. 2.3),
by (1.8 in [PiPo1]) we can already conclude that Tr p ≥ 1, ∀ p ∈ T ′ ∩ 〈S, T 〉 (so
in particular T ′ ∩ 〈S, T 〉 is atomic) and that the multiplicity of any minimal
projection p in T ′ ∩ 〈S, T 〉 is ≤ Tr p.
In fact we have the following more precise statement:
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4.5. Theorem. Let N ⊂ M be an extremal inclusion of type II1 factors and
denote S = M ⊠

eN

Mop, T = M ∨Mop ⊂ S.

a) If {Hk}k∈K denotes the set of irreducible M -M bimodules corresponding to
the set of even vertices of the standard graph ΓN,M of N ⊂M then L2(S, τ) is

isomorphic as a T -T bimodule with
⊕
k∈K
Hk⊗̄H̄kop

and Kn with
⊕
k∈Kn

Hk⊗̄H̄kop

(in which T ≃M⊗̄Mop).
b) If L2(S, τ) is identified with

⊕
k∈K
Hk⊗̄H̄kop

as in a) and sk denotes the

orthogonal projection of L2(S, τ) onto its direct summand Hk⊗̄H̄kop
then sk

is a minimal projection in T ′ ∩ 〈S, T 〉, pn =
∑

k∈Kn
sk and T ′ ∩ 〈S, T 〉 =

vN{sk}k∈K ≃ ℓ∞(K). Moreover, (Tr sk)2 = [sk〈S, T 〉sk : Tsk] = v4
k, where

~v = (vk)k∈K is the standard vector giving the weights at the even vertices of
ΓN,M .
c) The antiautomorphism op on S leaves T invariant and thus implements an
antiautomorphism on 〈S, T 〉, still denoted by op. We have (T ′ ∩ 〈S, T 〉)op =
T ′ ∩ 〈S, T 〉, the projection sopk coincides with JSskJS and the corresponding

bimodule is (Hk⊗̄H̄kop
)− = H̄k⊗̄Hop

k .

Proof. Let k ∈ K1 and choose q = qk ∈ N ′1 ∩M to be a minimal projection
in the direct summand labeled by k. Denote v′q = (λτ(q))1/2qqope1e0e

op
0 and

vq = λ−2EN ′∩M1(v′q). Note that f = v′qv
′
q
∗ is the Jones projection for the

irreducible inclusion qopqN1 ⊂ qopqMq ⊂ qopqM2qq
op (cf. 2.8.b) and 2.8.c)).

Note also that by applying twice the ”push down lemma” (1.2 in [PiPo1]) and
using the above definitions we get:

vqe
op
0 e0 = λ−2EN ′∩M1(v′q)e

op
0 e0

= λ−1EN ′∩M2(λ−1EN ′
1∩M1

(v′q)e
op
0 )e0 = λ−1EN ′∩M2(v′q)e0 = v′q,

implying that:

vqe0e
op
0 v∗q = v′qe0e

op
0 v′q

∗
= v′qv

′
q
∗

= f ≤ qopq.

Step I. We first prove that L2(spMvqM) ≃ Hk and that L2(spMopvqM
op) ≃

H̄op
k . Indeed, since eop0 = e2, by the definition of Hk we have Hk =

L2(
∑

jmjM), where {mj}j ⊂ M1 = 〈M, e1〉 (⊂ M ⊠
eN

Mop) are so that

{mje
op
0 m

∗
j}j are mutually orthogonal projections with

∑
jmje

opm∗j = qop ∈
M ′ ∩M2. Since vq ∈ M1 and vqe

op
0 = qopvqe

op
0 , it follows that vq ∈

∑
mjM .

Thus MvqM ⊂ ∑
jmjM , so that L2(spMvqM) ⊂ Hk. Since Hk is irre-

ducible and L2(spMvqM) is a M -M bimodule, we actually have the equality
L2(spMvqM) = Hk.
To prove the second isomorphism, note that given any T − T (resp. M −M)
bimodule H ⊂ L2(S, τ), its conjugate T − T (resp. M − M) bimodule H̄
can be identified with (H)∗ = {ξ∗ | ξ ∈ H} and its opposite T op − T op (resp.
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Mop−Mop) bimoduleHop can be identified with (H)op = {ξop | ξ ∈ H} (all this
is trivial by the definitions). As a consequence, we also have H̄op ≃ ((H)∗)op.
By taking into account that (v∗q )op = vq and that M∗ = M , from the iso-

morphism L2(spMvqM) ≃ Hk and the above remark it thus follows that
L2(spMopvqM

op) ≃ H̄op
k as well.

Step II. We now prove that Hk⊗̄H̄op
k ≃ L2(spMMopvqMMop). To see this,

by Step I it is sufficient to prove that there exists α ∈ C such that:

〈x1x
op
2 vqy1y

op
2 , x3x

op
4 vqy3y

op
4 〉 = α〈x1vqy1, x3vqy3〉〈xop

2 vqy
op
2 , xop

4 vqy
op
4 〉,

∀ xi, yj ∈M , 1 ≤ i, j ≤ 4. By denoting a = x∗3x1, b = y1y
∗
3 , c = x2x

∗
4, d = y∗4y2,

it follows that it is sufficient to prove that

〈avqb, c∗opvqd∗op〉 = α〈avqb, vq〉〈copvqdop, vq〉,

∀ a, b, c, d ∈ M . Writing b = b1e0b2, d = d1e0d2 for b1,2, d1,2 ∈ N and using
that

〈avqb, c∗opvqd∗op〉 = 〈b2ab1vqe0, d∗op2 c∗opd∗op1 vqe
op
0 〉,

〈avqb, vq〉 = 〈b2ab1vqe0, vq〉,
〈copvqdop, vq〉 = 〈dop

1 copdop
2 vqe

op
0 , vq〉,

by putting a for b2ab1 and c for d2cd1, it follows that we only need to check
that:

〈avqe0, c∗opvqeop0 〉 = α〈avqe0, vq〉〈copvqeop0 , vq〉,
∀ a, c ∈M . But

〈avqe0, c∗opvqeop0 〉 = τ(acopvqe0v
∗
q ) = τ(acopf)

and also

〈avqe0, vq〉 = 〈avqe0, vqe0〉 = τ(avqe0v
∗
q ) = λ−1τ(avqe0e

op
0 v
∗
q )

= λ−1τ(af),

and similarily 〈copvqeop0 , vq〉 = λ−1τ(copf), where f = vqe0e
op
0 v∗q is the Jones

projection for the irreducible inclusion N1qq
op ⊂ qMqqop ⊂ qopqM2qq

op. Since
EM∨Mop (f) = v−2

k qqop (where ~v = (vk)k∈K is the standard vector as usual),
we have τ(acopf) = α0τ(aq)τ(copqop), ∀ a, c ∈M , for some constant α0 ∈ R+.
Also, we have τ(af) = α1τ(aq), τ(copf) = α1τ(copqop), ∀ a, c ∈ M for some
constant α1 ∈ R+. This ends the proof.

Step III. We next show that

L2(spMMope1MMop) =
∑

k∈K1

L2(spMMopvqk
MMop).
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To see this let q′ ∈ N ′1 ∩M be a minimal projection in the same simple di-
rect summand as q and u ∈ U(N ′1 ∩ M) such that u∗qu = q′. Let v′′ =
λ−1EM1(uopvqu

∗op) ∈ N ′ ∩M1 and note that v′′eop0 v
′′∗ = uop(vqe

op
0 v∗q )u∗op ≤

q′op. By the same reasoning as in Step I, it follows that L2(spMv′′M) =
L2(
∑

jm
′
jM), where {m′j}j ⊂ M1 is an orthonormal system such that∑

m′je
op
0 m

′∗
j = q′op. But v′′ ∈ spMMopvqM

opM , because uopvqu
∗op ∈

spMopvqM
op and EM1(uopvqu

∗op) = λ
∑

j b
op
j (uopvqu

∗op)b∗opj ∈ spMopvqM
op

as well, where {b∗j}j is an orthonormal basis of N over N1.

Thus we have spMMopvqM
opM ⊃ spMMopvq′MMop, ∀ q′ chosen this

way. Thus, if {mk
j }j ⊂ M1 is a orthonormal system such that

∑
jm

k
j e

op
0 m

k
j

is the central support of qop in M ′ ∩ M2 then spMop(
∑

jm
k
jM)Mop =

spMMopvqM
opM . Summing up over k and using that

∑
k

∑
jm

k
jM = M1 =

spMe1M , the statement follows.

Step IV. We now derive that

L2(spMMopfn−nMMop) ≃ ⊕
k∈Kn

Hk⊗̄H̄op
k

and then

L2

(
M ⊠

eN

Mop

)
=
⊕
k∈K
Hk⊗̄H̄op

k .

To see this, note first that Hk⊗̄H̄op
k ≃ Hk′⊗̄H̄

op
k′ if and only if Hk ≃ H′k. This

fact follows immediately by interpreting Hk as irreducible representation of
M ⊗Mop, according to Connes’ alternative view on correspondences (see [C4],
[Po8]).
Since by Steps II and III we have ∨k∈K1Hk⊗̄H̄op

k = L2(spMMope1MMop),
with Hk⊗̄H̄op

k mutually nonisomorphic, the first part of the statement follows

for n = 1. By using this fact for Nn−1 ⊂ M
fn
−n⊂ Mn, n ≥ 1, we get it for

any n ≥ 1. The last part is now clear, since ∪nspMMopfn−nMMop is dense in
M ⊠

eN

Mop.

Step V. We finally show that if sk denotes the minimal projection in T ′∩〈S, T 〉
labeled by k ∈ K then Tr sk = v2

k. This fact can be checked directly by using a
similar strategy as in Step III. Instead, we will use the following more elegant
argument: Since

v4
k = (Tr〈S,T 〉sk)(TrT ′sk) = (Tr〈S,T 〉sk)(Tr〈S,T 〉JSskJS)

(cf. [J1]), we only need to show that T ′ ∩ 〈S, T 〉 ∋ sk 7→ JSskJS ∈ T ′ ∩ 〈S, T 〉
is Tr〈S,T 〉-preserving.
To see this note that since op acts on S leaving T invariant, it implements
a Tr〈S,T 〉-preserving anti-automorphism on 〈S, T 〉, thus a Tr〈S,T 〉-preserving
automorphism on the commutative algebra T ′ ∩ 〈S, T 〉. Moreover, if we put
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skL
2(S, τ) = L2(spTvqT ) as in Steps I and II and use that vop

q = v∗q , then we
have

sopk L
2(S, τ) = (L2(spTvqT ))op

= L2(spT opvop
q T

op) = L2(spTvop
q T ) = L2(spTv∗qT )

= L2(spT ∗v∗qT
∗) = L2(spTvqT )∗ = JSskJSL

2(S, τ)

Thus, sopk = JSskJS so that Tr(sk) = Tr(sopk ) = Tr(JSskJS). Q.E.D.

Note that the above theorem agrees with the exemples in Section 3. Indeed, if
σ ∈ Aut(P ) is an automorphism of a type II1 factor P and Hσ = L2(σ) denotes
the P−P bimodule associated with σ as in [Po8] then an easy calculation shows
that H̄σop

= Hσop .

4.6. Corollary. Let N ⊂ M be an extremal inclusion. Then N ⊂ M has
finite depth if and only if [M ⊠

eN

Mop : M ∨ Mop] < ∞. Moreover if these

conditions are satisfied then M ∨Mop has finite depth in M ⊠
eN

Mop.

Proof. With the notations used in 4.5 and its proof, if we assume that N ⊂M
has finite depth then K is finite so that by 4.5 we have dim(S′ ∩ 〈S, T 〉) < ∞
and each of the local indices is finite. But then, by Jones’ formula ([J1]), it
follows that [S : T ] <∞.
Conversely, if [S : T ] <∞ then dim(S′ ∩ 〈S, T 〉) <∞, so that K follows finite,
i.e., N ⊂M has finite depth.
Moreover, we see from 4.5 that if [S : T ] <∞ then the set of all T−T irreducible
bimodules generated by L2(S, τ) under Connes’ tensor product (fusion) are
contained in the set of bimodules {Hk⊗̄H̄k′op}k,k′∈K and is thus finite, i.e.,
T ⊂ S has finite depth. Q.E.D.

4.7. Remark. As mentioned before, if M is hyperfinite and N ⊂ M is a
subfactor of finite depth then by ([Po15]) we have M ∨ Mop ⊂ M ⊠

eN

Mop

is isomorphic to the inclusion M ∨ M ′ ∩ M∞ ⊂ M∞ of [Oc]. This latter
inclusion was already shown to have finite depth in [Oc] and in fact all its
standard invariant (paragroup) has been calculated ([Oc], see also [EvKa]). In
particular, for this class of symmetric enveloping inclusions, part b) of 4.5 can
be recovered from ([Oc]). If N ⊂ M is a finite depth subfactor with M not
necessarily hyperfinite, then it is imediate to see that M ∨Mop ⊂ M ⊠

eN

Mop

has the same standard invariant (paragroup) as P ∨ P op ⊂ P ⊠
eQ

P op where

Q ⊂ P denotes the standard model for N ⊂ M , which is thus an inclusion
of hyperfinite factors. Thus, for any N ⊂ M with finite depth the standard
invariant (paragroup) of M ∨Mop ⊂ M ⊠

eN

Mop can be recovered from these

results.
Theorem 4.5 shows that in the case (T ⊂ S) = (M ∨Mop ⊂ M ⊠

eN

Mop) then

L2(S, τ) is spanned by T−T bimodules which are finitely generated both as left
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and right T -modules. Equivalently, T ⊂ S is such that T ′ ∩ 〈S, T 〉 is generated
by finite projections of 〈S, T 〉. Inclusions T ⊂ S verifying this latter condition
are called discrete in [ILP]. We’ll introduce here a new terminology for such
subfactors based on the former, more intrinsic characterization.

4.8. Definition. Let T ⊂ S be an irreducible inclusion of type II1 factors. We

denote by qNS(T )
def
= {x ∈ S | ∃ x1, x2, . . . , xn ∈ S such that xT ⊂ ∑n

i=1 Txi
and Tx ⊂∑n

i=1 xiT }. We call qNS(T ) the quasi-normalizer of T in S.

Note that the condition “xT ⊂∑Txi, Tx ⊂
∑
xiT ” is equivalent to “TxT ⊂

(
∑n

i=1 Txi) ∩ (
∑n

i=1 xiT )” and also to “spTxT is finitely generated both as
left and as a right T -module.” It then follows readily that sp(qNS(T )) is a

∗-algebra. Thus P
def
= sp(qNS(T )) = qNS(T )′′ is a subfactor of S containing T .

Note also that L2(P ) = ∨{H | H ⊂ L2(P ), H is a T -T bimodule, dim(TH) <
∞, dim(HT ) < ∞} and that the orthogonal projection eP , of L2(S) onto
L2(P ), satisfies eP = ∨{f ∈ T ′ ∩ 〈S, T 〉 | Trf <∞, TrJSfJS <∞}. All these
facts are just reformulations of some results in [PiPo1] and [ILP], but can also
be proved as exercises.
The terminology we wanted to introduce is then as follows:

4.9. Definition. Let T ⊂ S be an irreducible inclusion. If qNS(T )′′ = S,
we say that T is quasi-regular in S. From the above remarks we see that an
irreducible inclusion T ⊂ S is discrete (as defined in [ILP]) iff T is quasi-regular
in S.

Thus, from 4.5 it follows that if N ⊂ M is an extremal inclusion of type II1
factors then M ∨Mop is quasi-regular in M ⊠

eN

Mop. Note that, even more,

we showed that each irreducible T -T bimodule in L2(S) (where T = M ∨
Mop, S = M ⊠

eN

Mop) has multiplicity 1 and its (finite) dimension as a left T

module coincides with its dimension as a right T -module. Thus, our symmetric
enveloping inclusions have very similar properties to the inclusions given by
cross-products of factors by outer actions of discrete groups.
We wanted to emphasize even more this aspect by choosing the terminology
“quasi-normalizer”, “quasi-regular” in analogy with Dixmier’s notions of “nor-
malizer” and “regularity” for an irreducible subfactor ([D1]). This is particu-
larily justified by noticing that exemples of quasi-regular subfactors T ⊂ S can
be obtained by requiring S to be generated by unitary elements u such that
uTu∗ is included in T and has finite index in it (see the Appendix in [ILP] for
a concrete exemple of such a situation).
Let us end this section with a result showing that the extended sequence of
Jones projections in a tunnel-tower associated to a subfactor N ⊂M has a cer-
tain general ergodicity property with respect to the higher relative commutants
that is very useful in applications (see e.g. 2.2 and 2.3 in [GePo]). We’ll refer
to this result as the Ergodicity Theorem for Higher Relative Commutants.

4.10. Theorem. Let N ⊂ M be a subfactor with finite index (but not
necessarily extremal). Let {Mj}j∈Z be a tunnel-tower for N ⊂ M , where
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M0 = M,M−1 = N , and {ej}j∈Z be its corresponding Jones projections. De-

note Aij = M ′i ∩Mj and A−∞,i =
⋃
n≤iAni, A−∞,∞ =

⋃
iA−∞,i. Then we

have:
a) {ej}′j∈Z ∩A−∞,∞ = C. In particular, A−∞,∞ is a factor.

b) If M has separable predual then the tunnel {Mj}j≤0 can be chosen such that
{ej}′j≤k ∩Mn ⊂ A−∞,n, ∀k ≤ n in Z.

c) If N ⊂ M is extremal and its tunnel is chosen to satisfy condition b) then
{ej}′j∈Z ∩M ⊠

eN

Mop = C.

Proof. a). Let θ be the trace preserving automorphism on A−∞,∞ imple-
mented by the duality isomorphism (1.5 of [PiPo1] or 1.3.3 of [Po2]), i.e.,
θ satisfies θ(Aij) = Ai+2,j+2, θ(ek) = ek+2, ∀i, j, k ∈ Z, with θ|Aij

be-

ing defined as the restriction to M ′i ∩ Mj = Mα
i
′ ∩ Mα

j of σ′ij : (Mi ⊂
Mi+1 ⊂ ... ⊂ Mj)

α → (Mi+2 ⊂ ... ⊂ Mj+2), where σ′ij((xrs)r,s) =

λi−j+1
∑

r,smrei+2ei+3...ej+2xrsej+2...ei+2m
∗
s, in which {mr}r is an orthonor-

mal basis of vN{en}n≤i+1 over vN{en}n≤i and λ−1 = [M : N ].
We first show that this automorphism satisfies the identity θ(z)ej+2 = zej+2

for all z ∈ {ek}′k≤j ∩ A−∞,j . To this end let ε > 0 and i ≤ j be so that

‖EAij (z) − z‖2 < ε. Put z0 = EAij (z) ∈ {ei+2, ..., ej}′ ∩ Aij . From the above
local formula for θ we have

ej+2θ(z0)ej+2 = λi−j+1ej+2(
∑

r

mrei+2...ej+2z0ej+2...ei+2m
∗
r)ej+2

= λi−j+3
∑

r

mrei+2...ej(z0ej+2)ej ...ei+2m
∗
r

=
∑

r

mr(z0ei+2ej+2)m∗r = (
∑

r

mr(z0ei+2)m∗r)ej+2.

By taking into account that the orthonormal basis {mr}r can be taken to be
made up of no more than [M : N ] + 1 elements, we thus get the estimates:

‖θ(z)ej+2 − zej+2‖2
≤ ‖θ(z)− θ(z0)‖2 + ‖z − z0‖2 + ‖eJ+2θ(z0)ej+2 − z0ej+2‖2

≤ 2ε+ ‖Σrmr(z0ei+2)m∗rej+2 − z0ej+2‖2
≤ 2ε+

∑

r

‖[mrei+2, z0]‖2

≤ 2ε+ ([M : N ] + 1)2ε.

Letting ε tend to 0, we get the desired identity.
Now to prove part a) of the statement let z ∈ vN{en}′n∈Z∩A−∞,∞ with τ(z) = 0
and take z0 = EA−∞,j (z) for some j. Note that τ(z0) = 0 as well. For such a
z0, and in fact for any z0 in vN{en}′n≤j ∩A−∞,j , we then have the estimates:

‖(z − z0)ej+2‖22 = τ((z − z0)∗(z − z0)ej+2)
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= τ(E{el}′l≥j+2
∩A−∞,∞((z − z0)∗(z − z0)ej+2))

= τ((z − z0)∗(z − z0)E{el}′l≥j+2
∩A−∞,∞(ej+2)) = λ‖z − z0‖22,

in which we used that by Jones ergodicity theorem we have
E{el}′l≥j+2

∩A−∞,∞(ej+2) = λ1.

Since z0ej+2 = θ(z0)ej+2, we get similarily:

‖(z − z0)ej+2‖22 = ‖(z − θ(z0))ej+2‖22

= τ((z − θ(z0)∗(z − θ(z0))ej+2)

= τ(E{el}′l≤j+2
∩A−∞,∞((z − θ(z0))∗(z − θ(z0))ej+2))

= τ((z − θ(z0))∗(z − θ(z0))E{el}′l≤j+2
∩A−∞,∞(ej+2))

= λ‖z − θ(z0)‖22,
in which we used the fact that θ(z0) commutes with vN{el}l≤j+2 and that by
Jones ergodicity theorem we have E{el}′l≤j+2

∩A−∞,∞(ej+2) = λ1.

Altogether, the above shows that ‖z − z0‖2 = ‖z − θ(z0)‖2 and by applying
this recursively n times we get ‖z − z0‖2 = ‖z − θn(z0)‖2, ∀n ≥ 1.
On the other hand θn(Aij) = Ai+2n,j+2n and so, if n is so that 2n > j − i
then τ(z1θ

n(z1)) = τ(z1)2, ∀z1 ∈ Aij , showing that θ is mixing on A−∞,∞ =⋃
i,j Aij . Thus, for z0 ∈ A−∞,j with τ(z0) = 0 we have

lim
n→∞

‖z0 − θn(z0)‖22 = 2‖z0‖22.

Since ‖z0−θn(z0)‖2 ≤ ‖z0−z‖2 +‖z−θn(z0)‖2 and since for z ∈ vN{en}′n∈Z∩
A−∞,∞ we proved that ‖z − z0‖2 = ‖z − θn(z0)‖2, ∀n ≥ 1, in which z0 =
E−∞,j(z), it follows that for each j we have the estimate:

2‖z0‖22 = lim
n→∞

‖z0 − θn(z0)‖22 ≤ 4‖z − z0‖22.

Now, letting j tend to infinity we get ‖z − z0‖2 tend to 0 and ‖z0‖2 tend to
‖z‖2, which from the above estimate forces z = 0. This ends the proof of a).
b). Let {xn}n≥1 ⊂ M be a sequence of elements dense in the unit ball of M
in the so-topology. We construct recursively a sequence of integers 0 < k1 <
k2 < ... and a tunnel M ⊃ N ⊃ N1... ⊃ Nk1 ⊃ ... ⊃ Nkn ⊃ ... for N ⊂ M
such that if {en}n≤0 are the corresponding Jones projections and we denote by
Bn = Alg{ej}−kn+1≤j≤−kn−1−1 then we have:

‖EB′
n∩M (xj)− EN ′

kn−1
∩M (xj)‖2 < 2−n, ∀j ≤ n

Assume we have this up to some n. By ([Po1]) there exists a hyperfinite
subfactor R ⊂ Nkn such that ER′∩M (x) = EN ′

kn
∩M (x), ∀x ∈ M . On the other
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hand, by Jones ergodicity theorem, we can regard R as being generated by
a sequence of Jones λ-projections ej indexed over the integers ≤ −kn − 1.
Thus, there will exist a sufficiently large kn+1 such that if we denote Bn+1 =
Alg{ej}−kn+1+1≤j≤−kn−1 then

‖EB′
n+1∩M (xj)− EN ′

kn
∩M (xj)‖2 < 2−n−1, ∀j ≤ n+ 1.

Now choose a Jones projection e−kn for Nkn ⊂ Nkn−1 such that it commutes
with ej ∈ Bn+1 for j ≤ −kn−2 and such that it satisfies the Jones-Temperley-
Lieb relation for j = −kn − 1 (see the proof of 4.4 on page 33 of [Po15]), i.e.,
e−kne−kn−1e−kn = λe−kn , and then simply define the corresponding tunnel
Nkn ⊃ Nkn+1 ⊃ ... ⊃ Nkn+1 as given by these newly chosen Jones projections
ej with −kn+1 + 1 ≤ j ≤ −kn.

Thus, if we take An = ∪m≥nBm ⊂ vN{ej}j≤−kn−1 then it follows from the

above that EA′
n∩M (x) ∈ ∪kN ′k ∩M for all x ∈ {xj}j and thus by density for

all x ∈M . Thus even more so vN{ej}′j≤−m ∩M ⊂ ∪kN ′k ∩M for m = kn and
thus in fact for all m ≥ 0.
Finally, if x ∈ Mn for some n ≥ 0 then for any ε > 0 there exists k ≤ 0
and x′ ∈ sp((Alg{ej}k≤j≤n)M) such that ‖x − x′‖2 < ε. But then x′′ =

E{el}′l≤k−2
∩Mn

(x′) belongs to sp((Alg({ej}k≤j≤n)∪iN ′i ∩M) which in turn is

icluded into ∪iN ′i ∩Mn and we have:

‖E{el}′l≤k−2
∩Mn

(x) − x′′‖2 = ‖E{el}′l≤k−2
∩Mn

(x− x′)‖2 ≤ ‖x− x′‖2 ≤ ε.

Letting ε go to 0 and j to −∞ we get

lim
j→−∞

E{el}′l≤j−2
∩Mn

(x) = EA−∞,n(x), ∀x ∈Mn

This ends the proof of b) and c) follows then imediately, by taking into account
that

⋃
n spMMop

n M is dense in M ⊠
eN

Mop and applying a) and b). Q.E.D.

4.11. Corollary. Let N ⊂ M be an extremal inclusion of type II1 factors
with separable preduals. There exists a choice of a tunnel {Mj}j≤0 for N ⊂M
such that if we denote Mn = (M−n)op

′ ∩M ⊠
eN

Mop, n ≥ 1, M∞ = ∪nMn,

Mop
∞ = ∪nMop

n and A−∞,∞ = ∪nM ′−n ∩Mn then M∞,Mop
∞ ⊂ M ⊠

eN

Mop

satisfy the conditions:
a) spM∞Mop

∞ = M ⊠
eN

Mop.

b) M∞ ∩Mop
∞ = A−∞,∞ and EM∞EMop

∞ = EA−∞,∞.
c) A′−∞,∞ ∩M ⊠

eN

Mop = C1.

Proof.. Conditions a) and b) are actually valid for any choice of the tunnel
while 4.9 clearly implies c). Q.E.D.
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5. Relating the Amenability Properties
of ΓN,M , GN,M and (M ∨Mop ⊂ M ⊠

eN

Mop)

In [Po8] one considers a notion of relative amenability for inclusions of finite von
Neumann algebras T ⊂ S by requiring the existence of norm one projections
from 〈S, T 〉 onto S, equivalently of Connes-type S-hypertraces on 〈S, T 〉. In
the case S = T ⋊G for some discrete group G this condition on the inclusion
T ⊂ S is equivalent to the amenability of the group G.

As we have seen in the previous section, when T = M ∨Mop ⊂M ⊠
eN

Mop = S,

for N ⊂ M a locally trivial subfactor associated to some faithful G-kernel σ,
with G a finitely generated discrete group, then (T ⊂ S) ≃ (T ⊂ T ⋊σ⊗σop

G). Thus, the relative amenability of the inclusion T ⊂ S is equivalent in
this case to the amenability of G. On the other hand, one of the equivalent
characterizations of the amenability of G is Kesten’s condition requiring that
the Cayley graph of G, Γ, corresponding to some finite, self-adjoint set of
generators g0 = 1, g1, . . . , gn, satisfies ‖Γ‖ = n+ 1.

Recalling from [Po2,5] that the standard graph of a subfactor ΓN,M is called
amenable if it satisfies the Kesten-type condition ‖ΓN,M‖2 = [M : N ] and
that its standard invariant GN,M is called amenable if ΓN,M is amenable, and
noticing that for the locally trivial subfactor N ⊂ M corresponding to the
above (G; g0, . . . , gn;σ) the Cayley graph Γ coincides with the standard graph
ΓN,M , while [M : N ] = (n+ 1)2, it follows that in this case the amenability of
G (thus, the relative amenability of T ⊂ S) is equivalent to the amenability of
GN,M .

We prove in this section that in fact even for arbitrary extremal subfactors of
finite index N ⊂ M the relative amenability condition on T = M ∨Mop ⊂
M ⊠

eN

Mop = S is equivalent to the amenability of the standard lattice GN,M .

Along the lines, we will obtain some other related characterizations of the
amenability of GN,M , thus of ΓN,M .

Before stating the result, recall some terminology and notations from [Po2].

So let (N E⊂M) =
⊕

((N ⊗P op)∗∗
(E⊗id)∗∗

⊂ (M ⊗P op)∗∗), the sum being taken
over all isomorphism classes of type II1 factors P that can be embedded with
finite index in some amplification of M , i.e., factors P that are weakly stably
equivalent to M in the sense of 1.4.3 in [Po8] (like for instance P = M). Then

take first the atomic part of this inclusion, (N E⊂M)at, and next the binormal

part of the latter inclusion, ((N E⊂ M)at)bin (i.e., the largest direct summand
in which both M and P op sit as von Neumann algebras), which we denote by

N u
Eu

⊂ Mu, and call the universal atomic (binormal) representation of N ⊂M .
Also, the inclusion graph (or matrix) of N u ⊂ Mu is denoted by ΓuN,M and

called the universal graph (or matrix) of N ⊂M .

Finally one defines (N st
Est⊂ Mst) to be the minimal direct summand of N u ⊂
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Mu (or, equivalently, of (N E⊂ M)at) containing the standard representation
of M ⊗Mop, B(L2(M)) and call it the standard representation of N ⊂ M . It
is easy to see (cf. e.g., [Po2]) that the commuting square embedding

N st
Est⊂ Mst

∪ ∪
N ⊗Mop

E⊗id⊂ M ⊗Mop

can be identified with the embedding

⊕
ℓ∈L
B(Kℓ)

Est⊂ ⊕
k∈K
B(Hk)

∪ ∪
N ⊗Mop

E⊗id⊂ M ⊗Mop

in which {Hk}k∈K (respectively, {Kℓ}ℓ∈L) is the list of all irreducible M -
M (resp. N -M) bimodules appearing as direct summands in L2(Mj), j =
0, 1, 2, . . . , and M ⊗Mop (resp, N ⊗Mop) is represented on each Hk (resp.
Kℓ) by operators of left and right multiplication by elements in M (respectively,
right multiplication by elements in N and right multiplication by elements in
M). Moreover, the inclusion matrix (or graph) for

N st ⊂ ⊕
ℓ∈L
B(Kℓ) ⊂

⊕
k∈K
B(Hk) =Mst

(which is thus a direct summand of the universal graph ΓuN,M) is given

by (ΓN,M )t, while Est is the unique expectation that preserves the trace
Tr on Mst =

⊕
k∈K
B(Hk) given by the weight vector ~v = (vk)k∈K , with

vk = dim(MHkM )1/2.
Finally, note that N ⊂M is in fact embedded in the smaller inclusion

N st,f def
:= (1⊗Mop)′ ∩ N st E

st,f

⊂ (1⊗Mop)′ ∩Mst def
=:Mst,f

where Est,f is the restriction of Est to Mst,f.

5.1. Definition. The commuting square embedding:

N st,f
Est,f⊂ Mst,f

∪ ∪
N

EN⊂ M

is called the finite (or reduced) standard representation of N ⊂M .
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5.2. Lemma. N st,f, Mst,f are finite type II1 von Neumann algebras with
atomic centers Z(N st,f) = Z(N st) ≃ ℓ∞(L), Z(Mst,f) = Z(Mst) ≃ ℓ∞(K).
Moreover, the inclusion N st,f ⊂Mst,f is a matricial inclusion having inclusion
matrix (or graph) (ΓN,M )t. Also, Est,f is the unique conditional expectation of
Mst,f onto N st,f preserving the trace Tr onMst,f given by the weights {v2

k}k∈K
on the center Z(Mst,f) ≃ ℓ∞(K).

Proof. The first part is trivial, by the definition of N st,f ⊂ Mst,f and the
properties of N st ⊂ Mst. Then the last part is an immediate consequence of
the first part and of 2.7 in [PiPo2]. Q.E.D.

5.3. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) GN,M is amenable.
1′) ΓN,M is amenable, i.e., ΓN,M satisfies the Kesten type condition ‖ΓN,M‖2 =
[M : N ].
2) (ΓN,M , ~v) satisfies the Følner-type condition: ∀ ε > 0, ∃F ⊂ K finite such
that ∑

k∈∂F
v2
k < ε

∑

k∈F
v2
k,

where

∂F = {k ∈ K \ F | ∃ k0 ∈ F such that (ΓN,MΓt
N,M )kk0 6= 0}.

3) There exists a state ψ0 on ℓ∞(K) ≃ T ′ ∩ 〈S, T 〉 such that ψ0 ◦ E has S =
M ⊠

eN

Mop in its centralizer, where E is the unique Tr-preserving conditional

expectation of 〈S, T 〉 onto T ′ ∩ 〈S, T 〉.
4) M ⊠

eN

Mop is amenable relative to M ∨Mop.

5) There exists a norm one projection from (N st,f
Est,f⊂ Mst,f) onto (N

EN⊂ M).

5′) There exists a (N ⊂M)-hypertrace on (N st,f
Est,f⊂ Mst,f).

Proof. 1)⇐⇒ 1′) is clear by the definitions.
To prove 1′) =⇒ 2) let Φ = λV −1ΓΓtV , where V is the diagonal matrix over K
with entries (vk)k∈K . Note that Φ defines a bounded positive linear operator

from P
def
= T ′ ∩ 〈S, T 〉 ≃ ℓ∞(K) into itself such that Φ(1) = 1. Note also that

the trace Tr on P inherited from 〈S, T 〉 has weights (v2
k)k∈K as a measure on

K, i.e., if b ∈ P ≃ ℓ∞(K) then

‖b‖1,Tr =
∑

k∈K
|bk|v2

k.

For a, b : K → C, at least one of which has finite support, we denote 〈a, b〉 =∑
k∈K ak b̄k. For each b ∈ P ≃ ℓ∞(K) with finite support we then have:

Tr(Φ(b)) = 〈Φ(b), V 2(1)〉 = 〈b, λV ΓΓtV −1V 2(1)〉
= 〈b, λV ΓΓtV (1)〉 = 〈b, V 2(1)〉 = Tr(b).
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Thus Tr ◦ Φ = Tr. In particular, by Kadison’s inequality, this implies
‖Φ(a)‖2,Tr ≤ ‖a‖2,Tr, ∀ a ∈ L2(T,Tr).
Since ‖λΓΓt‖ = 1, it follows that ∀ δ > 0 ∃ F0 ⊂ K finite such that T0 =

F0(λΓΓt)F0 satisfies 1 ≥ ‖T0‖ ≥ 1 − δ2/2. By the classical Perron-Frobenius
theorem applied to T0 (which is a finite symmetric matrix with nonnegative
entries) it follows that there exists b0 ∈ ℓ∞(K) ≃ P , supported in the set F0,
with b0(k) ≥ 0, ∀ k, and 〈b0, b0〉 = 1, such that T0b0 ≥ (1 − δ2/2)b0. Thus,
λΓΓtb0 ≥ (1− δ2/2)b0.

Let then b
def
= V −1(b0) ∈ ℓ∞(K) ≃ P and note that

‖b‖22,tr = 〈V −1(b0), V 2V −1(b0)〉 = 〈b0, b0〉 = 1.

Moreover, we have:

‖Φ(b)− b‖22,Tr ≤ 2− 2Tr(Φ(b)b)

= 2− 2〈λV −1ΓΓt(b0), V (b0)〉
= 2− 2〈λΓΓt(b0), b0〉
≤ 2− 2(1− δ2/2) = 2δ2/2 = δ2.

Thus ‖b− Φ(b)‖2,Tr < δ and ‖Φ(b)‖2,Tr ≥ 1− δ, while ‖b‖2,Tr = 1.
By Theorem A.2 it follows that if δ < 10−4 then there exists a finite spectral
projection e of b such that ‖Φ(e)− e‖2,Tr < δ1/4‖e‖2,Tr.
In particular we have:

‖(1− e)Φ(e)‖22,Tr ≤ ‖(1− e)Φ(e)‖22,Tr + ‖e− eΦ(e)‖22,Tr

= ‖e− Φ(e)‖22,Tr < δ1/4‖e‖22,Tr.

Let F ⊂ K be the support set of e ∈ ℓ∞(K) ≃ P . By the first 3 lines of the
proof of Lemma 3.2 on page 281 of [Po3], we have v−1

k vk0 ≥ λ for all k0, k ∈ K
for which (ΓΓt)kk0 6= 0. Thus we have

(Φ)kk0 = λv−1
k vk0

∑

l∈L
aklak0l ≥ λ2,

forall k, k0 ∈ K for which the entry (k, k0) of Φ is nonzero. In particular, this
shows that Φ(e)(1 − e) ≥ λ2χ∂F , where χ∂F ∈ ℓ∞(K) is the characteristic
function of ∂F ⊂ K. Thus we have

λ4
∑

k∈∂F
v2
k = ‖λ2χF ‖22,Tr

≤ ‖(1− e)Φ(e)‖22,Tr < δ1/4‖e‖22,Tr

= δ1/4
∑

k∈F
v2
k.
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Thus, if ε > 0 was given and we take δ = (λ4ε)4 then

∑

k∈∂F
v2
k < ε

∑

k∈F
v2
k

thus proving 1′) =⇒ 2).
Proof of 2) =⇒ 3). By 2), for each ε = 2−n there exisits a finite subset Fn ⊂ K
such that ∑

k∈∂Fn

v2
k < 2−n

∑

k∈Fn

v2
k

or, equivalently,


 ∑

k∈ΓΓtFn

v2
k −

∑

k∈Fn

v2
k


 < 2−n

∑

k∈Fn

v2
k.

Let fn ∈ T ′ ∩ 〈S, T 〉 ≃ ℓ∞(K) be the support projection of Fn. Let ω be a free
ultrafilter on N ≃ K and define ψ0 on ℓ∞(K) ≃ T ′ ∩ 〈S, T 〉 by

ψ0 = lim
n→ω

Tr(·fn)/Trfn.

Let ψ
def
= ψ0 ◦ E and note that ψ = limn→ω Tr(·fn)/Trfn on 〈S, T 〉 as well.

Note that for each n we have that Tr(·fn)/Trfn has T in its centralizer and it
is a normal state on 〈S, T 〉. Since T ′ ∩ S = C this implies that Tr(·fn)/Trfn
coincides with the trace τ when restricted to S. Thus, ψ|S = τ and ψ has T in
its centralizer. Let us show that ψ also has eN in its centralizer. To do this, it
is sufficient to prove that

lim
n→∞

(‖fneN − eNfn‖1,Tr/Trfn) = 0.

Let f ′n ∈ T ′ ∩ 〈S, T 〉 ≃ ℓ∞(K) be the support projection of Fn ∪ ∂Fn and note
that we have

lim
n→∞

(‖f ′n − fn‖1,Tr/Trfn) = lim
n→∞

(
∑

k∈∂Fn

v2
k/
∑

k∈Fn

v2
k

)
= 0.

Also, we have

‖fneN − eNfn‖1,Tr ≤ ‖eNfn − f ′neNfn‖+ 2‖f ′n − fn‖1,Tr.

So, to prove that [eN , ψ] = 0, it is in fact sufficient to prove that f ′neNfn =
eNfn, ∀ n. We will show that, more generally, we have sF ′eNsF = eNsF ,
∀ F ⊂ K, where F ′ = F ∪ ∂F and sF =

∑
k∈F sk, sF ′ =

∑
k∈F ′ sk. To this

end, it is clearly sufficient to do it for single element sets F = {k1}. It then
amounts to show that if k2 ∈ K \ F ′, then sk2eNsk1 = 0. By the proof of 4.5
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we thus need to show that if k1, k2 ∈ Kn−1 for some n, with k2 /∈ {k1} ∪ ∂{k1}
and we take a minimal projection qi in the direct summand labeled by ki in
N ′2n−1 ∩M , for each i = 1, 2, then we have MMopvq2 ⊥ e1MMopvq1MMop,
where e1 = eN and vqi = EN ′

n−1∩Mn
(qiq

op
i f

n
−nf

0
−2nf

2n
0 ), i = 1, 2.

Before proving this, note that for such q1, q2 we have q2eNq1 = 0 and in fact
q2(N ′2n−1 ∩M1)q1 = 0. Now, if we take x1,2 ∈ M , y1,2 ∈ Mop, x, x0 ∈ Nn−1,
y, y0 ∈ Nop

n−1, then we get

τ(v∗q2y
op
0 yop

2 xx2e1x1y
op
1 vq1x0f

0
−2nxy

opf2n
0 yop

0 )

= τ(EN ′
n−1∩Mn

(f2n
0 f0
−2nf

n
−nq2q

op
2 )yop

0 yop
2 xx2e1x1x0y

op
1 yop

·EN ′
n−1∩Mn

(q1q
op
1 fn−nf

2n
0 f0
−2n)f0

−2nf
2n
0 ).

Taking the conditional expectation onto N ′2n−1 ∩ (M ⊠
eN

Mop) and denoting

Y op
1 = yop

0 yop
2 ∈ Mop, Y op

2 = yop
1 yop ∈ Mop, X ′ = EN ′

2n−1
(xx2e1x1x0) ∈

N ′2n−1 ∩M1, we thus obtain that the above is equal to:

τ(f2n
0 f0
−2nf

n
−nq

op
2 q2Y

opX ′Y op
2 q1q

op
1 fn−nf

2n
0 f0
−2n)

= τ(f2n
0 f0
−2nf

n
−nq

op
2 Y op

1 (q2X
′q1)Y op

2 qop1 fn−n)

= 0

in which we first used that vqif
0
−2nf

2n
0 = qiq

op
i f

n
−nf

2n
0 f0
−2n and then we used

that q2X
′q1 = 0.

Since the elements of the form x0f
0
−2nx with x, x0 ∈ Nn−1 span all M , this

finishes the proof of the fact that eN is in the centralizer of ψ. Since ψ is
equal to the trace on S = M ⊠

eN

Mop and has in its centralizer the weakly dense

∗-subalgebra generated by T = M ∨Mop and eN in S, by [C3] it follows that
ψ has all S in its centralizer. This ends the proof of 2) =⇒ 3).
The proof of 3) =⇒ 4) is then trivial, since the relative amenability of T =
M ∨Mop ⊂ M ⊠

eN

Mop = S merely requires the existence of a state on 〈S, T 〉
which has S in its centralizer, while condition 3) provides very special such
states.
To prove 4) =⇒ 5) we need the following lemma.

5.4. Lemma. Let M0 = vN(M ∪ JSMJS), N0 = vN(N ∪ JSMJS) and Φ0 :
B(L2(S)) → B(L2(S)) be defined by Φ0(T ) = λ

∑
jm

op
j Tm

op
j
∗
, where {mop

j }j
is an orthonormal basis of Mop

1 over Mop and λ = [M : N ]−1 as usual. Then
Φ0(M0) = N0, E0 = Φ0|M0 is a conditional expectation and in fact

N0

E0⊂ M0

∪ ∪
N

EN⊂ M
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is a commuting square embedding of N ⊂ M , which is isomorphic to the
standard representation of N ⊂ M . Moreover, if N f

0 = JSMJ ′S ∩ N0 ⊂
JSMJ ′S ∩M0 =Mf

0, then

N f
0

Ef0⊂ Mf
0

∪ ∪
N ⊂ M

is a commuting square embedding isomorphic to the finite standard representa-
tion of N ⊂M .

Proof. By construction, we see that N0 ⊂ M0 is a direct summand of (N ⊗
Mop)∗∗

(E⊗id)∗∗

⊂ (M⊗Mop)∗∗. Also, since N0 ⊂ (Mop
1 ∪JSMopJS)′∩B(L2(S)),

we have

M′0 ∩N0 ⊂ (M ∪ JSMJS)′ ∩ (Mop
1 ∪ JSMopJS)′

= vN(M ∪Mop
1 ∪ JSMJS ∪ JSMopJS)′ ∩ B(L2(S))

= (M ⊠
eN

Mop ∪ JS(M ∨Mop)JS)′

= JS((M ∨Mop)′ ∩M ⊠
eN

Mop)JS = C1.

Thus Z(M0) ∩ Z(N0) = C. But if p0 denotes the projection of L2(S) onto
L2(M) then clearly p0M0p0 =M0p0 is isomorphic to B(L2(M)) as a M⊗Mop

representation. Thus, N0 ⊂ M0 must in fact coincide with N st ⊂ Mst. The
last part is now clear, since this isomorphism sends 1 ⊗ Mop onto JSMJS .
Q.E.D.

Proof of 4) =⇒ 5)⇐⇒ 5′). The equivalence of 5) and 5′) was proved in [Po2],
the argument being identical to Connes’ single algebra analogue statement.
Let us then prove 4) =⇒ 5′). So let ψ be a S-hypertrace on 〈S, T 〉 = JSTJ

′
S ∩

B(L2(S)). Since T = M ∨Mop andM0 ⊂ JSMopJ ′S ∩B(L2(S)) (we’ve already
noticed this in the above lemma) it follows that

Mf
0 = (JSMJS)′ ∩M0 ⊂ (JS(vN(M ∪Mop))JS)′ ∩ B(L2(S))

= (JSTJS)′ ∩ B(L2(S)) = 〈S, T 〉.

Thus ψ restricts to a state φ on Mf
0 which has M in its centralizer (since ψ

has S in its centralizer and S contains M).

Note now that if T ∈Mf
0 then

ψ(eNT ) = ψ(uop(eNT )uop∗) = ψ((uopeNu
op∗)T ), ∀ uop ∈ U(Mop).

Averaging by unitaries in U(Mop) and using that con{uopeNu
op∗ | uop ∈

U(Mop)} ∩ C1 = {λ1} (see the Appendix A.1), it follows that

ψ(eNT ) = λψ(T ) = λφ(T ).
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But eN ∈ S is in the centralizer of ψ so

ψ(eNT ) = ψ(eNTeN) = ψ(E0(T )eN).

By the same argument as above, the latter equals

λψ(E0(T )) = λφ(E0(T )).

Thus φ = φ ◦ E f
0 showing that φ is a (N ⊂ M)-hypertrace on N f

0

Ef0⊂ Mf
0 thus

on N st,f
0

Est,f0⊂ Mst,f
0 , proving 5′).

Proof of 5′) =⇒ 1). Since N stf
0

Estf0⊂ Mst,f
0 has inclusion matrix (ΓN,M )t and

the trace Tr on Mst,f defined in 5.2 is preserved by Est,f , it follows by the
general result in [Po13] that ‖ΓN,M‖2 = ‖Γt

N,M‖2 = [M : N ].
This ends the proof of the theorem. Q.E.D.

5.5 Remarks. 1◦. Of all the equivalent characterisations of amenability for
standard graphs, the Kesten-type amenability condition ‖ΓN,M‖2 = [M : N ]
seems to remain the easiest to check in practice. For instance, it immediately
implies that if [M : N ] ≤ 4 then ΓN,M is amenable, and it is the condition
that was used by Bisch and Haagerup to construct many examples of infi-
nite depth subfactors with amenable graphs, by taking compositions between
a fixed point algebra inclusion and a cross product inclusion, corresponding to
actions of finite groups ([BiH]). Nevertheless, each of the other equivalent char-
acterizations of amenability provided in [Po2-5] and in this paper has its own
role in understanding various combinatorial and functional analytical aspects
of this concept. The main interest in this notion of amenability comes from the
fact that the hyperfinite subfactors having amenable graphs are precisely those
that can be recovered from their standard invariants and are thus, in particu-
lar, completely classified by this invariant (see 7.1, 7.2 later in this paper, and
also [Po16]).
2◦. Note that in the proof of the Følner condition 5.3.2 for ΓN,M , from the
Kesten-type condition ‖ΓN,M‖2 = [M : N ] (taken as the definition of the
amenability for a graph) we do not actually use the fact that ΓN,M is stan-
dard, i.e., the fact that it comes from a subfactor. Indeed, the proof goes the
same for any weighted bipartite graph (see [Po14] for more comments on this).
However, by using the ergodicity property 4.8 of the standard invariant and of
its subalgebra generated by the Jones projections, one can prove an interesting
sharper Følner type condition for standard graphs. This will be discussed in a
forthcoming paper.

5.6 Corollary. (a). Let G be a standard λ-lattice and G0 a sublattice. If G0

is amenable then G is amenable. Conversely, if [G : G0] <∞ and G is amenable
then G0 is amenable.
(b). Let Gk = {Akij}i,j≥0 be standard λk-lattices with corresponding graphs
ΓGk

= Γk, k = 1, 2. Let G denote the system of finite dimensional algebras
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Aij
def
= A1

ij ⊗A2
ij , i, j ≥ 0, with the tensor product trace. Then G is a standard

λ1λ2- lattice, its graph Γ is naturally identified with the tensor product of the
graphs Γk (regarded as matrices) and we have that G is amenable if and only
if both G1 and G2 are amenable.

Proof. (a). The first part follows trivially from the (Kesten-type) definition of
amenability, since G0 ⊂ G implies ‖ΓG‖ ≥ ‖ΓG0‖. The second part follows from
2.11, 5.3.4 and [Po8].
(b). The first part follows imediately from the axiomatization of standard
lattices in [Po7]. The second part follows from the definition of the amenability,
because we have ‖Γ‖ = ‖Γ1‖‖Γ2‖, so that (λ1λ2)−1 = ‖Γ‖2 iff λ−1

1 = ‖Γ1‖2
and λ−1

2 = ‖Γ2‖2. Note that, by using 2.9.d) and [Po8], this part is an imediate
consequence of 5.3.1 as well. Q.E.D.

6. Some More Characterizations of
the Amenability for ΓN,M and GN,M

In this section we prove several more equivalent characterizations of the
amenability for standard graphs and lattices, which clarify some of the re-
sults and ideas of the approach to amenability in [Po2,12]. We mention that,
while related in spirit with the rest of the paper, the present section will not
make explicit use of the symmetric enveloping algebras. So, in this respect, it
can be regarded as a digression.
To state the first result, recall that if B ⊂ A is an inclusion of von Neumann
subalgebras of an ambient type II1 factor then H(A | B) denotes its Connes-
Størmer relative entropy. By [PiPo1], if N ⊂ M is an extremal inclusion of
type II1 factors then H(M | N) = ln([M : N ]). Also, if N ⊂M ⊂M1 ⊂ · · · is
the Jones tower associated to N ⊂M then

H(M ′ ∩Mk+1 |M ′ ∩Mk) ≤ H(Mk+1 |Mk) = ln([Mk+1 : Mk]) = ln([M : N ]),

for all k ≥ 0. More generally, if p is a projection in M ′ ∩Mk then by [PiPo1]
we have

H(p(M ′ ∩Mk+1)p |p(M ′ ∩Mk)p)

≤ H(pMk+1p | pMkp) = ln([pMk+1p : pMkp])

= ln([Mk+1 : Mk]) = ln([M : N ]) = H(M | N).

Similarly, if N st ⊂ M st denotes as usual the “model” inclusion generated by
the higher relative commutants, as in [Po2], then the same remark as above
shows that H(pM stp | pN stp) ≤ H(M | N), ∀ p ∈ P(N st).
The result that follows states that this “upper bound” for the “local relative
entropies” is attained precisely when GN,M (equivalently ΓN,M) is amenable.
Since H(pM ′ ∩Mk+1p | pM ′ ∩Mkp) also represents the conditional entropy
from step k to step k + 1 of the restriction to the support set of p (in K or
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L) of the random walk on the graph Γ ◦ Γt ◦ Γ ◦ Γt · · · , for Γ = ΓN,M , with
transition probabilities determined by v = (vk)k∈K , this maximality condition
on the entropy can be interpreted as a local Shanon-McMillan-Breimann type
condition, in the same spirit as 5.3.5 in [Po2].

6.1. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent.
1) GN,M is amenable.
2) ∀ ε > 0, ∃ n ≥ 1 and p ∈ P(M ′ ∩Mn) such that

‖E(pM ′∩Mn+1p)′∩(pM ′∩Mn+2p)(en+2p)− λp‖2 < ε‖p‖2.

3) ∀ ε > 0, ∃ p ∈ P(N st
1 ) such that

‖EpNstp′∩pMstp(e0p)− λp‖2 < ε‖p‖2.

4)
lim
k

sup
p∈P(M ′∩Mk)

H(pM ′ ∩Mk+1p | pM ′ ∩Mkp)

= H(M | N) = ln([M : N ]).

5)
sup

p∈P(Nst)

H(pM stp | pN stp) = H(M | N).

Proof. First of all, note that since by [Po2] we have that ΓN,M is amenable if
and only if ΓM,M1 is amenable, it is suficient to prove the above equivalences
in the case n is even in condition 2) and the k’s are taken odd in condition 4).
1) =⇒ 2). If GN,M is amenable then by 5.3 its graph ΓN,M verifies the Følner
condition 5.3.2). Thus, ∀ ε > 0, ∃ F ⊂ K finite non-empty such that

∑

k∈∂F
v2
k < (ε/2)

∑
v2
k.

Let n0 ≥ 1 be such that F ′
def
= F ∪ ∂F is included in Kn, ∀ n ≥ n0.

For each n ≥ n0 let {pnk}k∈Kn be the list of minimal central projections of
M ′ ∩M2n. Note that ∀ k ∈ K we have

lim
n→∞

dim(M ′ ∩M2np
n
k ) =∞.

Let δ > 0. Let {mk}k∈F ′ be positive integers such that

(∗)
∣∣∣∣
mk

mk′
− vk
vk′

∣∣∣∣ < δmin{vr/v′r | r, r′ ∈ F ′}, ∀ k, k′ ∈ F ′.

Fix n ≥ n0 large enough such that

dim(M ′ ∩M2np
n
k ) ≥ m2

k, ∀ k ∈ F ′.
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Then for each k ∈ F ′ choose qk ∈ P(M ′ ∩ M2np
n
k ) such that dim(qkM

′ ∩
M2nqk) = m2

k. Let p
def
=
∑

k∈F ′ qk. We will show that, for δ > 0 small enough,
p satisfies condition 2).
To this end denote by G = ΓtF ′ the set of simple summands of pM ′ ∩M2n+1p
and by {q̄l}l∈G the corresponding minimal central projections. Let also
{sk}k∈F ′ , {tl}l∈G denote the traces of the minimal projections in pM ′ ∩M2np
and respectively pM ′ ∩M2n+1p.
Thus, if Γ = (akl)k∈K,l∈L then for each k ∈ F , l ∈ G with akl 6= 0 we have
tl = λ

∑
k′∈K ak′lsk′ = λ

∑
k′∈F ′ ak′lsk′ . Also, if we denote by n2

l = dim(q̄lM
′∩

M2n+1q̄l) and m′2k = dim(q′kM
′ ∩M2n+2q

′
k), where {q′k}k∈F ′′ , F ′′ = F ′ ∪ ∂F ′,

are the minimal central projections of pM ′∩M2n+2p, then nl =
∑

k′∈F ′ ak′lmk′

and m′k =
∑

k′′∈F ′ bkk′′mk′′ , where (bkk′ )k,k′∈K = ΓΓt.

From (∗) it follows that for k ∈ F and l ∈ G with akl 6= 0 we have the estimates:

∣∣∣∣
tl
sk
− nl
m′k

∣∣∣∣ =

∣∣∣∣∣λ
∑

k′∈F ′

ak′lsk′/sk −
∑

k′∈F ′

ak′lmk′

/ ∑

k′′∈F ′

bkk′′mk′′

∣∣∣∣∣

≤
∣∣∣∣∣λ
∑

k′∈F ′

ak′lsk′/sk −
∑

k′∈F ′

ak′lsk′
/ ∑

k′′∈F ′

bkk′′sk′′

∣∣∣∣∣+ f(δ)

=

∣∣∣∣∣λ
∑

k′∈F ′

ak′lsk′/sk −
∑

k′∈F ′

ak′lsk′/λ
−1sk

∣∣∣∣∣+ f(δ)

= f(δ)

where f(δ)→ 0 as δ → 0 and in which we used that for k ∈ F we have

(ΓΓt(sk′′)k′′∈F ′)k = λ−1sk.

With these estimates in mind recall that, with the above notations, we have
(see e.g. Sec.6 in [PiPo1]):

E(pM ′∩M2n+1p)′∩(pM ′∩M2n+2p)(e2n+2p) =
∑

k∈F ′′, l∈G
(τ(q′k q̄l)

2/a2
klτ(q′k)τ(q̄l))q̄lq

′
k

=
∑

k∈F ′′, l∈G
(λsknl/m

′
ktl)q̄lq

′
k.

But from the above estimates we see that for all k ∈ F and l ∈ G with akl 6= 0
we have:

|λsknl/m′ktl − λ| < f ′(δ)

where f ′(δ)→ 0 as δ → 0.
This would finish the proof if we could show that the trace of the sum of the
projections q̄lq

′
k for l ∈ G and k ∈ F ′′ \ F is small with respect to the trace
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of p. To show this, it is sufficient to show that
∑

k∈F ′′−F τ(q′k) is small with
respect to τ(p). To this end, note first that we have

∑

k∈F
τ(q′k) =

∑

k∈F
λm′ktk = λ

∑

k∈F

(
∑

k′′∈F ′

bkk′′mk′′

)
tk

≥ λ
∑

k∈F

∑

k′′∈F ′

bkk′′mktk′′ − λδ
∑

k∈F, k′′∈F ′

bkk′′mktk

≥
∑

k∈F
τ(qk)− λ−2δ

∑

k∈F
τ(qk)

in which we first used (∗) and then the fact that
∑

k′′∈K bkk′′ ≤ λ−3, ∀ k ∈ K
(see e.g., [Po3], page 281). Thus we get:

∑

k∈F ′′−F
τ(q′k) =

∑

k∈F ′′

τ(q′k)−
∑

k∈F
τ(q′k)

= τ(p) −
∑

k∈F
τ(q′k) ≤ τ(p)−

∑

k∈F
τ(qk) + λ−2δ

∑

k∈F
τ(qk)

≤
∑

k′∈∂F
τ(qk′ ) + λ−2δτ(p).

But by applying (∗) again we also have

∑

k′∈∂F
τ(qk′ )

/
τ(p) =

∑

k′∈∂F
τ(qk′ )

/ ∑

k∈F ′

τ(qk) ≤
∑

k′∈∂F
τ(qk′ )

/∑

k∈F
τ(qk)

=
∑

k′∈∂F
mk′sk′

/∑

k∈F
mksk =

∑

k′∈∂F

(
sk′
/∑

k∈F

mk

mk′
sk

)

≤ (1− δ)−1
∑

k′∈∂F

(
sk′
/∑

k∈F

vk
vk′
· sk
)

= (1− δ)−1
∑

k′∈∂F
v2
k′

/∑

k∈F
v2
k < (1− δ)−1ε/2.

Altogether we get:

‖E(pM ′∩M2n+1p)′∩(pM ′∩M2n+2p)(e2n+2p)− λp‖22
≤ f ′(δ)2τ(p) + λ−2δτ(p) + ((1 − δ)−1ε2/2)τ(p)

= (f ′′(δ) + ε2/2)τ(p).

Thus, if δ is chosen sufficiently small to make f ′′(δ) < ε2/2 then the above is
majorized by ε2τ(p), thus finishing the proof of 1) =⇒ 2).

Documenta Mathematica 4 (1999) 665–744



Symmetric Enveloping Algebras 711

Now, 2)⇐⇒ 3) is trivial by the definition of N st ⊂M st. Also 4⇐⇒ 5) is clear
from the continuity properties of the relative entropy under commuting square
conditions ([PiPo1]).
Then 2) =⇒ 4) follows from (4.2 in [PiPo1]).
Finally, to prove 4) =⇒ 1), recall from [PiPo2] that if B ⊂ A is an inclusion
of finite dimensional algebras with inclusion matrix T then Ind(EBA ) ≥ ‖T ‖2 ≥
exp(H(B | A)). Since the inclusion matrix T of pM ′∩M2n+1p ⊂ pM ′∩M2n+2p
is a restriction of ΓN,M , we have

‖ΓN,M‖2 ≥ ‖T ‖2 ≥ exp(H(pM ′ ∩M2n+2p | pM ′ ∩M2n+1p)).

Thus, if the right hand side term can be made arbitrarily close to exp(H(M |
N)) = [M : N ] then we obtain ‖ΓN,M‖2 = [M : N ], i.e., GN,M follows
amenable. Q.E.D.

6.2. Notation. We denote by M̃ the bicommutant of M in its enveloping
algebra M∞, i.e., M̃ = (M ′∩M∞)′∩M∞. Similarily we put Ñ = (N ′∩M∞)′∩
M∞ and more generally M̃i = (M ′i∩M∞)′∩M∞, i ∈ Z, {Mi}i∈Z being as usual
a Jones tunnel-tower for N ⊂M and M0 = M,M−1 = N,M−n = Nn−1, n ≥ 2.

Note that there exists a unique conditional expectation Ẽ from M̃ onto Ñ
defined by Ẽ(X) = λΣjmjXm

∗
j , for X ∈ M̃ , {mj}j being any orthonormal

basis of N ′ ∩M∞ over M ′ ∩ M∞ (e.g., an orthonormal basis of vN{ek}k≥1

over vN{ek}k≥2 will do, as the definition of Ẽ is anyway easily seen to be

independent of the choice of {mj}j) and that Ẽ is implemented by e1, i.e.,

e1Xe1 = Ẽ(X)e1 (see Sec. 2.2 in [Po2] or 6.9 in [Po6]). The inclusion Ñ
Ẽ⊂ M̃

is in fact homogeneous λ-Markov in the sense of (1.2.3 and 1.2.11 of [Po3]) and
we have a non-degenerate commuting square

Ñ
Ẽ⊂ M̃

∪ ∪
N

EN⊂ M

It should also be noted that, while Ẽ(Y1e0Y2) = λY1Y2, ∀Y1,2 ∈ Ñ (this relation

can in fact be taken as the definition of Ẽ), in general Ẽ is not trace preserving.
In fact, one can easily show (see the proof of 6.4 hereafter) that it is trace

preserving if and only if M̃ = M , i.e., when the bicommutant relation holds
true, (M ′ ∩M∞)′ ∩M∞ = M , equivalently when ΓN,M is strongly amenable
(cf. 5.3.1 in [Po2]).
The Jones tower-tunnel of the above commuting square is obtained by defining
the conditional expectations Ẽi from M̃i−1 onto M̃i−2 in a similar manner with

Ẽ.

Recalling from ([Po2]) that a representation N E⊂ M of N ⊂ M is smooth if

N ′ ∩Mn ⊂ N ′ ∩Mn, ∀n, note that by its construction, Ñ ⊂ M̃ is obviously a
smooth representation of N ⊂M .
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6.3. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) ΓN,M is amenable.

2) There exists a (possibly singular) trace ψ on M̃ such that ψ ◦ Ẽ = ψ.

3) There exists a norm one projection of Ñ
Ẽ⊂ M̃ onto N ⊂M .

4) If
N ⊂ M
∪ ∪
N ⊂ M

is a smooth representation of N ⊂ M such that there exists a norm one pro-
jection of M onto M (equivalently, a M -hypertrace on M), then there exists

a norm one projection of N E⊂ M onto N ⊂ M (equivalently, a N ⊂ M -

hypertrace on N E⊂M).
5) For any smooth representation of N ⊂ M into an inclusion of type II1 von

Neumann algebras N E⊂M, there exists a norm one projection of N E⊂M onto

N ⊂M (equivalently, a N ⊂M -hypertrace on N E⊂M).

Proof. 1) =⇒ 2) By Theorem 6.1 (see condition 6.1.3) applied to M ⊂M1 and

the anti-isomorphism between N st
1 ⊂ N st

e0⊂M st and M ′ ∩M∞ ⊂ N ′ ∩M∞
e0⊂

N ′1 ∩M∞, it follows that there exist projections pn ∈M ′ ∩M∞ such that

‖E(pnN ′∩M∞pn)′∩(pnN ′
1∩M∞pn)(e0pn)− λpn‖2/‖pn‖2 ≤ 2−n, ∀ n.

We then define on M∞ the state ϕ
def
= limn→ω τ(pn)−1τ( · pn). Note that, since

pn ∈M ′∩M∞, we have [pn, (M
′∩M∞)′∩M∞] = 0, in other words [pn, M̃ ] = 0.

Thus, [ϕ, M̃ ] = 0, in particular ϕ|M̃ is a trace. Moreover, by noting that
τ( · pn) = τ(EpnBpn( · )pn) for any von Neumann subalgebra B ⊂ M∞ with
pn ∈ B, taking B = (pnN

′ ∩M∞pn)′ ∩ pnM∞pn and using the above and the

Cauchy-Schwartz inequality it follows that for all x, y ∈ Ñ we have:

|τ(xe0ypn)/τ(pn)− λτ(xypn)/τ(pn)|
= |τ(pnyxe0pn)/τ(pn)− τ(pnxyλpn)/τ(pn)|
= |τ(EpnBpn(pnyxe0pn)/τ(pn)− τ(pnxyλpn)/τ(pn)|
= τ(pnyx(EpnBpn(e0pn)− λpn))/τ(pn))

≤ ‖p‖2‖yx‖ ‖EpnBpn(e0)− λpn‖2/τ(pn)

≤ 2−n‖yx‖.

Since Ẽ(xe0y) = λxy, ∀ x, y ∈ Ñ , and spÑe0Ñ = M̃ , it follows that

lim
n→∞

‖τ(Xpn)/τ(pn)− τ(Ẽ(X)pn)/τ(pn)| = 0 ∀ X ∈ M̃.
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Thus, ϕ(X) = ϕ(Ẽ(X)), ∀ X ∈ M̃ . All this shows that ψ
def
= ϕ|M̃ is both a

trace and satisfies ψ = ψ ◦ Ẽ.

2) =⇒ 3). Since ψ is a trace on M̃ , it is in particular a M -hypertrace and ψ =

ψ ◦ Ẽ implies it is actually a (N ⊂ M)-hypertrace on (Ñ
Ẽ⊂ M̃); equivalently,

there exists a conditional expectation of Ñ ⊂ M̃ onto N ⊂M .

3) =⇒ 4). If there exists a conditional expectation Φ ofM onto M then by am-
plification it follows that there exist conditional expectations Φ2n ofM2n onto
M2n, ∀ n ≥ 0. Let F2n : ∪kMk →M2n be the conditional expectation imple-
mented by · · · ◦ E2n+2 ◦ E2n+1 and denote Ψ2n : ∪kMk →M∞ the aplications
defined by Ψ2n(X) = Φ2n ◦ F2n(X) ∈M2n ⊂M∞. Note that Ψ2n is M2n-M2n

linear. Finally, we put Ψ(X)
def
= limn→ω ψ2n(X), for X ∈ ∪kMk, where ω is

a free ultrafilter on N. Thus, Ψ(1) = 1 and Ψ is M2n-M2n linear ∀ n. Since
the representation of N ⊂ M into N ⊂ M is smooth, M ′ ∩Mj ⊂ M′ ∩Mj ,
∀ j. Thus, if X ∈ M then [X,M ′ ∩ Mj ] = 0 and by applying ψ we get

[Ψ(X),M ′ ∩Mj] = 0. Thus, ψ(X) ⊂ (∪jM ′ ∩Mj)
′ ∩M∞ = M̃ . Similarly,

we obtain that if X ∈ N then Ψ(X) ∈ Ñ . But by 3) we have a conditional

expectation of M̃ onto M , say Ψ0, such that Ψ0(Ñ ) = N .

We then define Ψ1 : M → M by Ψ1(X) = Ψ0(Ψ(X)), which is a conditional

expectation and satisfies Ψ1(N ) = Ψ0(ψ(N )) ⊂ Ψ0(Ñ) ⊂ N .

4) =⇒ 5). SinceM has projections p ∈ Z(M) such thatMp is finite, it follows
that there is a conditional expectation of Mp onto Mp ≃ M , thus of M onto
M and so 4) applies.

5) =⇒ 1) If 5) holds true then in particular there exists a norm one projection
from the finite standard representation onto N ⊂ M , so by Theorem 5.3 we
have 1). Q.E.D.

Recall from [Po2] that a standard λ-graph (Γ, ~s) is called ergodic if ~s is the
unique ~s-bounded eigenvector for ΓΓt corresponding to the eigenvalue λ−1,
equivalently, if Z(A0,∞) = C, where A0,∞ is the finite von Neumann algebra
obtained as an inductive limit with the Bratteli diagram given by Γ,Γt,Γ, ...,
starting from the even vertex ∗ of Γ, and having trace given by ~s = (sk)k∈K .
Note that if N ⊂ M is a subfactor having standard graph (Γ, ~s) then the
algebra A0,∞ equals M ′ ∩M∞, where N ⊂ M = M0 ⊂ M1 ⊂ ... is the Jones
tower for N ⊂M and M∞ = (∪nMn)− as usual.

In what follows we’ll call the standard λ-graph almost ergodic if dimZ(A0,∞) <
∞. This is equivalent to the fact that, up to scalar multiples, there are only
finitely many ~s-bounded eigenvectors for ΓΓt corresponding to the eigenvalue
λ−1 (see the proof of 1.4.2 in [Po2]). Note that Haagerup constructed extremal

hyperfinite subfactors of index λ−1 = 2 · 4cos2π/5 = 3 +
√

5 which have almost
ergodic, but not ergodic, standard graph. The following consequence of 6.3
shows that this cannot happen if Γ is amenable.

6.4. Corollary. If an amenable, extremal standard graph (Γ, ~s) is almost
ergodic then it is ergodic, and thus it is strongly amenable.
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Proof. Let N ⊂ M be a subfactor having (weighted) standard graph equal to

(Γ, ~s). Denote like in 6.2 by Ñ1 = (N ′1 ∩ M∞)′ ∩ M∞, Ñ = (N ′ ∩ M∞)′ ∩
M∞, M̃ = (M ′ ∩ M∞)′ ∩ M∞ and by F̃ the expectation from M̃ onto Ñ1

defined as in 6.2 (so that in fact, with the notations there, we also have F̃ =

Ẽ−1 ◦ Ẽ0). Note that Z(M̃) = Z(M ′ ∩M∞). Since N1 ⊂ M has amenable

graph (= ΓΓt), by 6.3 there exists a trace τ ′ on M̃ such that τ ′ ◦ F̃ = τ ′. Since

dimZ(M̃) = dimZ(M ′ ∩M∞) < ∞, it follows that there exists a ∈ Z(M̃)+
such that τ ′(X) = τ(Xa), ∀X ∈ M̃ . Since Ẽ is τ ′-preserving, this implies that

a = F̃ (a) ∈ F̃ (Z(M̃)) = Z(Ñ1). Thus a ∈ Z(M̃) ∩ Z(Ñ1) = C1, so a = 1 and
τ ′ = τ .
Thus F̃ coincides with the trace preserving expectation F of M̃ onto Ñ .
In particular, this implies that E(N ′

1∩M∞)′∩M∞(f) = F (f) = λ21, where
f ∈ M is the Jones projection for N1 ⊂ M . By duality it follows that
E(M ′

2j∩M∞)′∩M∞(fj) = λ21 for any j ∈ Z, where fj is the Jones projec-

tion for the inclusion M2j ⊂ M2j+2. By (5.3 in [Po2]) it follows that
M = (M ′ ∩ M∞)′ ∩ M∞, so in particular M ′ ∩ M∞ is a factor, i.e., (Γ, ~s)
is ergodic. Q.E.D.

We now examine the effect of amenability on the universal graph ΓuN,M . To

this end, let us denote, like in [Po2], by N u,f
Eu,f

⊂ Mu,f the direct summand of
N u ⊂Mu given by all the irreducible representations B(H) of M ⊗P op which,
when regarded as M−P bimodules, have finite dimension, dim(MHP ) <∞, P
denoting here a generic ”dummy” type II1 factor weakly stably equivalent to M
(in the sense of 1.4.3 in [Po8], i.e., P can be embedded with finite index in the

amplification by some α > 0 of M). Let Γu,fN,M denote its inclusion graph (or

matrix). Recall from [Po2] that Γu,fN,M is in a natural way a weighted bipartite

graph, the weights being given by the vector ((dimM,PH)1/2), which in fact
also gives the weights of an Eu,f -invariant trace on Mu,f .

6.5. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) The standard graph ΓN,M is amenable, i.e., ‖ΓN,M‖2 = [M : N ].

2) The graph Γu,fN,M is amenable, i.e., ‖Γu,fN,M‖2 = [M : N ].

3) Each irreducible component Γ of ΓuN,M satisfies ‖Γ‖2 = [M : N ].

4) For any ε > 0 there exists a subfactor Q ⊂ N , with [N : Q] <∞, such that
the inclusion matrix T0 = TQ′∩N⊂Q′∩M satisfies ‖T0‖2 ≥ [M : N ]− ε.
4′) For any ε > 0 there exists a factor P containing M with [P : M ] <∞, such
that ‖TM ′∩P⊂N ′∩P ‖2 ≥ [M : N ]− ε.
Proof. 3) =⇒ 2) is trivial.

2) =⇒ 1). For simplicity of notations, we let (N E⊂ M) = (N u,f
Eu,f

⊂ Mu,f).
Let K ′ be the set of simple summands of M and TT t be the inclusion matrix
of M⊂M2. It follows that ∀ ε > 0, ∃ k0 ∈ K ′ such that

lim
n→∞

‖(TT t)nδk0‖1/n ≥ ‖TT t‖ − ε = [M : N ]− ε.
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But if for each n ≥ 0 we denote by p2n the minimal central projection in M2n

corresponding to k0 ∈ K ′, then

‖(TT t)nδk0‖2 = dim(Mp′0 ∩ p0M2np0) = dim(Mp′2n ∩M2np2n).

Moreover, by using that if R ⊂ Q ⊂ P are inclusions of type II1 factors with
finite index then dimR′ ∩ P ≤ ([P : Q]) dimR′ ∩ Q (because the inclusion
matrix of R′ ∩ Q ⊂ R′ ∩ P has square norm ≤ [P : Q]), it follows that, with
the notations M0 = P ′ ∩M,M0

k = P ′ ∩Mk, k ≥ 0, we have:

dim(Mp′2n ∩M2np2n) ≤ dim(Mp′2n ∩M0
2np2n)

≤ ([M0
2np2n : M2np2n]) dim(Mp′2n ∩M2np2n)

= ([M0p0 : Mp0]) dim(M ′ ∩M2n)

= ([M0p0 : Mp0])‖(ΓN,MΓt
N,M )nδ∗‖2.

Thus,

lim
n→∞

‖(TT t)nδk0‖1/n ≤ lim
n→∞

([Mp0 : Mp0])1/2n‖(ΓΓt)nδ∗‖1/n = ‖ΓΓt‖

showing that ‖Γ‖2 ≥ [M : N ]− ε. Since ε was arbitrary, ‖ΓN,M‖2 = [M : N ].
1) =⇒ 3). Let k′ be any of the labels corresponding to an even vertex of
Γ and let q ∈ Mu

2n be a minimal central projection corresponding to that
same label. Then dim((Muq)′ ∩Mu

2nq) = ‖(ΓΓt)nδk′‖2. But by smoothness,
(M ′ ∩M2n)q ⊂ (Muq)′ ∩Mu

2nq, thus ‖ΓΓt‖ ≥ ‖ΓN,MΓtN,M‖.
1) =⇒ 4). This is clear, by simply taking Q = Nk, a subfactor in a Jones
tunnel, with k large enough.
4)⇐⇒ 4′). This follows immediately by taking into account that if Q ⊂ N(⊂
M) is a subfactor of finite index in N and we denote Q ⊂ N ⊂M ⊂M1 ⊂ Q1

its basic construction, then TQ′∩N⊂Q′∩M = TM ′
1∩Q1⊂M ′∩Q1

.

4′) =⇒ 2). If P ⊃M is as in condition 4′) for some ε then let p ∈ Z(Mu,f) be
the central projection supporting all the N −M bimodules appearing as direct
summands in NL

2(P )M . Then clearly ‖Γ‖ ≥ ‖Γp‖ ≥ ‖TM ′∩P⊂N ′∩P ‖. Q.E.D.

6.6. Corollary. Let Q ⊂ N ⊂ M be inclusions of II1 factors with finite
index (not necessarily extremal). (i). If Q ⊂ M has amenable graph then
Q ⊂ N and N ⊂ M have amenable graphs. (ii). If N ⊂ M has amenable
graph and p ∈ N ′ ∩M is a projection, then Np ⊂ pMp has amenable graph.

Proof. By [L], there exist extremal inclusions Q0 ⊂ N0 ⊂ M0 such that:
a). The higher relative commutants of Q0 ⊂ N0, N0 ⊂ M0 and respec-
tively Q0 ⊂ M0 are algebraically isomorphic to those of Q ⊂ N , N ⊂ M
and respectively Q ⊂ M ; so, in particular, the graphs of the induced-reduced
algebras in the Jones towers of the corresponding subfactors are equa. b).

[N0 : Q0] = IndEQ,Nmin , [M0 : N0] = IndEN,Mmin and [M0 : Q0] = IndEQ,Mmin and
the local indices in the Jones tower for the inclusions Q0 ⊂ N0, N0 ⊂ M0,
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respectively Q0 ⊂M0 are the same as for the initial incusions Q ⊂ N,N ⊂M ,
respectively Q ⊂M . With these in mind, let us prove (i) and (ii).

(i). Let Γu,fQ,N , Γu,fN,M be as in [Po2] the inclusion matrices describing the inclu-

sions (Q ⊗Mop)∗∗at,f ⊂ (N ⊗Mop)∗∗at,f ⊂ (M ⊗Mop)∗∗at,f . Recall from ([Po2])

that Γu,fQ,M = Γu,fQ,N ◦ Γu,fN,M . Thus, if ‖Γu,fQ,M‖2 = IndEQ,Mmin then we get

IndEQ,Nmin · IndEN,Mmin = IndEQ,Mmin = ‖Γu,fQ,M‖2 ≤ ‖Γ
u,f
Q,N‖2‖Γ

u,f
N,M‖2

≤ IndEQ,Nmin · IndEN,Mmin ,

forcing the equalities ‖Γu,fQ,N‖2 = IndEQ,Nmin , ‖Γu,fN,M‖2 = IndEN,Mmin . But by the
above considerations and 6.5 this implies ΓQ,N and ΓN,M are amenable.
(ii). This can be easily deduced from 6.5, by using the universal graphs as
in the proof of (i) above. Instead, we’ll use the following simpler argument:
By the first part of the proof, we may assume N ⊂ M is extremal. Then by
2.9.c) it follows that the finite standard representation of Np ⊂ pMp is given

by N st,fp
E⊂ pMst,fp, where E is defined by E(pXp) = τ(p)−1Est,f(pXp), for

X ∈ Mst,f. But then, if Φ is a conditional expectation from Mst,f onto N st,f

sending M onto N then clearly Φ also sends pMst,fp onto pMp and N st,fp onto
Np. By 5.3, this implies that Np ⊂ pMp has amenable graph. Q.E.D.

We mention one last hereditarity property for the amenability of the graphs of
subfactors, which has a self-contained and rather elementary proof.

6.7. Proposition. Let
N ⊂ M

∪ ∪
Q ⊂ P

be a nondegenerate commuting square of inclusions of type II1 factors with finite
index (thus, [M : N ] = [P : Q] <∞, [M : P ] = [N : Q] <∞). Then we have:

a) ‖ΓN,M‖ = ‖ΓQ,P‖, H(M | N) = H(P | Q), IndEN,Mmin = IndEQ,Pmin and
EQ′∩P (e0) = EN ′∩M (e0), where e0 ∈ P is a Jones projection for Q ⊂ P (and
thus for N ⊂M as well).
b) N st ⊂M st has atomic centers iff Qst ⊂ P st has atomic centers.
c) GN,M is amenable (resp. strongly amenable, resp. has finite depth) iff GQ,P
is amenable (resp. strongly amenable, resp. has finite depth).

Proof. Let
. . . N1 ⊂ N ⊂ M

∪ ∪ ∪
. . . Q1 ⊂ Q ⊂ P

be a tunel for the given commuting square. Then dimN ′k∩M ≤ dimQ′k∩M ≤
[M : P ] dimQ′k ∩ P , so that

‖ΓN,M‖2 = lim
k→∞

(dimN ′k ∩M)1/k ≤ lim
k→∞

(dimQ′k ∩ P )1/k = ‖ΓQ,P ‖2.

Documenta Mathematica 4 (1999) 665–744



Symmetric Enveloping Algebras 717

Taking
〈N,Q〉 ⊂ 〈M,P 〉
∪ ∪
N ⊂ M

and using that 〈N,Q〉 ⊂ 〈M,P 〉 is an amplified of Q ⊂ P (so that
Γ〈N,Q〉,〈M,P 〉 = ΓQ,P ), by the first part we also get ‖ΓQ,P ‖ ≥ ‖ΓN,M‖, thus
‖ΓN,M‖ = ‖ΓQ,P ‖.
Now remark that EP (Q′k ∩M) = Q′k ∩ P and EP (Z(Q′k ∩M)) ⊂ Z(Q′k ∩ P ).
Also, we have

Ind(E
Q′

k∩M
Q′

k∩P
) ≤ [M : P ],

Ind(E
Q′

k∩M
N ′

k∩M
) ≤ [Q′k : N ′k] = [Nk : Qk] = [M : P ].

It follows that if we denote R = ∪kQ′k ∩M then Ind(ERP st) ≤ [M : P ],
Ind(ERMst) ≤ [M : P ]. Thus, P st has atomic center iff R has atomic center
iff M st has atomic center.
Also, the above shows that

sup
n

dimZ(N ′k ∩M) <∞⇐⇒ sup
n

dimZ(Q′k ∩M) <∞

⇐⇒ sup
k

dimZ(Q′k ∩ P ) <∞.

Thus, N ⊂M has finite depth iff Q ⊂ P has finite depth.
Since Q ⊂ P is embedded as a commuting square in N ⊂M , by the definition
of relative entropy we have H(P | Q) ≤ H(M | N) ≤ H(〈M,P 〉 | 〈N,Q〉) =
H(P | Q), thus, H(M | N) = H(P | Q).
Next, if e0 ∈ P is a Jones projection then

EN ′∩M (e0) = EN ′∩M (EQ′∩M (e0)) = EN ′∩M (EQ′∩P (e0))

so that ‖EN ′∩M (e0)‖2 ≤ ‖EQ′∩P (e0)‖2 with equality iff EN ′∩M (e0) =
EQ′∩P (e0). But N ⊂ M is embedded as a commuting square in 〈N,Q〉 ⊂
〈M,P 〉 which is an amplified of Q ⊂ P , so we get similarly ‖EQ′∩P (e0)‖2 ≤
‖EN ′∩M (e0)‖2 giving EN ′∩M (e0) = EQ′∩P (e0).
To prove the statemnt about the minimal index, note from the formula of the

Jones projection in ([PiPo1], page 83-84) that EN,Mmin = EMN (b1/2 ·b1/2) with b ∈
Alg{EN ′∩M (e0)} = Alg{EQ′∩P (e0)}. Thus, b ∈ P and EN,Mmin (P ) = Q, imply-

ing that Ind(EN,Mmin ) ≥ Ind(EQ,Pmin ). Similarily, Ind(EN,Mmin ) ≤ Ind(E
〈N,Q〉,〈M,P 〉
min )

Thus, IndEM,N
min =IndEP,Qmin .

From the above, it follows in particular that IndEN,Mmin = ‖ΓN,M‖2 iff

IndEQ,Pmin = ‖ΓQ,P ‖2 so ΓN,M is amenable iff ΓQ,P is amenable (without the
extremality assumtion required).
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If ΓN,M is amenable and M st is a factor (i.e., GN,M is strongly amenable) then
ΓQ,P is amenable and P st has finite dimensional center. Thus 6.4 applies to
get that ΓQ,P follows strongly amenable. Alternatively, and in order to keep
the proof of this Proposition elementary and self-contained, note that the same
proof as on (pages 235 and 183 of [Po2]) can be used to get the same conclusion,
i.e., that P st follows a factor and thus ΓQ,P strongly amenable. Q.E.D.

7. Hyperfiniteness of M ⊠
eN

Mop and Hereditarity

of the Amenability for Subfactors

Recall from [Po2] that an inclusion of factors N ⊂ M is called amenable if it
is the range of a norm one projection from any of its smooth representations,
equivalently, if the algebras N,M are themselves amenable (i.e., hyperfinite by

[C1]) and the graph ΓN,M is amenable ([Po2,3,4]), i.e., ‖ΓN,M‖2 = IndEN,Mmin .
In this section we will show that, in the case the inclusion N ⊂M is extremal,
the amenability of N ⊂ M is in fact equivalent to the hyperfiniteness of its
symmetric enveloping algebra. We will then derive that the amenability of an
inclusion is inherited by its ”sub-inclusions”

7.1. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) N ⊂M is amenable.
2) ΓN,M is amenable and M is hyperfinite.
3) ∀ x1, . . . , xm ∈ M , ∀ ε > 0, ∃ n, a projection f in N ′ ∩Mn, a subfactor
P ⊂ N such that Pf ⊂ Nf ⊂ fMnf is a basic construction and a finite
dimensional subfactor Q0 ⊂ P such that

xi ∈ε Q0 ∨ (P ′ ∩M), i = 1, 2, . . . ,m.

4) ∀ x1, . . . , xm ∈M , ∀ ε > 0, ∃ Q ⊂ N with [N : Q] <∞ such that

xi ∈ε Q′ ∩M, i = 1, 2, . . . ,m.

5) M ⊠
eN

Mop is isomorphic to the hyperfinite type II1 factor.

6) There exists a M ⊠
eN

Mop-hypertrace on B(L2(M ⊠
eN

Mop).

7) There exists a (N ⊂ M)-hypertrace on N st ⊂ Mst (equivalently, a norm
one projection of N st ⊂Mst onto N ⊂M).

Proof. We will prove 1) =⇒ 7) =⇒ 2) =⇒ 3) =⇒ 4) =⇒ 5) =⇒ 6) =⇒ 7) and
2) =⇒ 1).
The implication 1) =⇒ 7) is trivial, as N st ⊂Mst is just a particular case of a
smooth representation.
If 7) is satisfied then by [Po13] we have ‖ΓN,M‖2 = [M : N ] and N,M follow
amenable (as ranges of norm one projections from the amenable von Neumann
algebras N st, Mst). Thus we have 7) =⇒ 2).

Documenta Mathematica 4 (1999) 665–744



Symmetric Enveloping Algebras 719

2) =⇒ 3). This is essentially (4.4.1 in [Po2]), or the proof of (4.1 in [Po4], up
to Step VI on page 291), with some changes and additional considerations that
we explain below.
Like in the proof of 1) =⇒ 2) in Theorem 6.1, we let F be an ε′-Følner set for
ΓN1,N (by 2) we have that ΓN,M is amenable, equivalently ΓN1,N is amenable),

then we choose a large n and some integers mk ≤ (dimN ′ ∩M2n+1p
n+1
k )1/2

such that

(1)
∣∣mk

mk′
− vk
vk′

∣∣ < δ ∀ k, k′ ∈ F,

where {pn+1
k }k is now the list of minimal central projections in N ′∩M2n+1 and

~v = (vk)k∈K is the standard vector of local indices (at even levels) for ΓN1,N .

We then take qk ∈ P(N ′ ∩M2n+1p
n+1
k ) such that dim(qkN

′ ∩M2n+1qk) = m2
k

and define p =
∑

k∈F qk.
Let then P0 ⊂ N be a downward basic construction for Np ⊂ pM2n+1p. By
the choice of F (i.e., satisfying

∑
k∈F∪∂F v

2
k ≤ (1 + ε′)

∑
k∈F v

2
k) it follows that

if {x̄j}j is an orthonormal basis of N over P0 ∨P ′0 ∩N then {x̄j}j is almost an
orthonormal basis of M over P0 ∨ P ′0 ∩M as well. Moreover, by the choice of
integers {mk}k∈F it follows that

(2)
∑

j

τ(EP∨P ′∩N (x̄∗j x̄j)p̄k0)/τ(p̄k0 ) ≈
∑

k∈F
v2
k, ∀ k0 ∈ F,

{p̄k}k∈F being the minimal central projections in P ′0 ∩N . Also, since P0 is a
type II1 factor, we may assume EP0∨P ′

0∩N (x̄∗j x̄j)p̄k ∈ P0p̄k, ∀ k ∈ F . But then,
by using first the approximate innerness of Np ⊂ pM2n+1p then the central
freeness of P0 ⊂ M , like in (Steps I, II, III in the proof of 4.1 in [Po4]), we
obtain a conjugate of P0 by a unitary element in N , say P1, such that we have
the type of estimates (a)–(f) on page 285 of [Po4] with P1 instead of Nm0 .
Then we go through Step IV on pages 286–288 of [Po4], noting that due to the
condition (2) above, we don’t need to take a further tunnel and that taking P1

for Nm will do.
Then Step V on page 289 can be taken unchanged. Altogether, after doing
all this we end up obtaining the following: ∀ x1, . . . , xl ∈ M , ∀ ε > 0, if
F ⊂ Even(ΓN1,N ) is a ε-Følner set, n is sufficiently large and {mk}k∈F satisfy
(1) with δ suficiently small, then there exists a choice of a downward basic
construction P1 ⊂ N for Np ⊂ pM2n+1p, where p =

∑
k∈F qk as above, and a

projection s0 ∈ P1, such that for all 1 ≤ i ≤ l we have

‖[s0, xi]‖2 < f(ε′)‖s0‖2,(3)

‖s0xis0 − Es0(P1∨P ′
1∩M)s0(s0xis0)‖2 < f(ε′)‖s0‖2

where f(ε′)→ 0 as ε′ → 0.
Arguing like in Step VI on page 290 of [Po4] we obtain a family of such choices
of downward basic constructions (Pi)i∈I with projections (si)i∈I , si ∈ Pi, such
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that (Pi, si) satisfy (3) and
∑

i si = 1. But then there exists a downward
basic construction P ⊂ N for Np ⊂ pM2n+1p such that si ∈ P , ∀ i, and
siPsi = siPisi, ∀ i. Thus P will satisfy

‖EP∨P ′∩M (xi)− xi‖2 < f(ε′), 1 ≤ i ≤ n.

Since P is hyperfinite, by taking ε′ so that f(ε′) < ε we get 7.1.3).
3) =⇒ 4) is trivial, by simply taking Q = Q′0 ∩ P in 3).
4) =⇒ 5). since Alg(M, eN ,M

op) is so-dense in M ⊠
eN

Mop it is sufficient to

prove that ∀ x1, x2, . . . , xn ∈ M , ∀ ε > 0, ∃ B ⊂ M ⊠
eN

Mop finite dimensional

such that

‖EB(xi)− xi‖2 < ε

‖EB(eN )− eN‖2 < ε

‖EB(xop
i )− xop

i ‖2 < ε.

By 4) there exists Q ⊂ N with [N : Q] <∞ such that xi ∈ε Q′ ∩M . But

[Qop′ ∩M ⊠
eN

Mop : Mop′ ∩M ⊠
eN

Mop] ≤ [Mop : Qop] <∞

and thus
[Qop′ ∩M ⊠

eN

Mop : Q] ≤ [M : Q]2 <∞,

implying that B
def
= Q′∩ (Qop′∩M ⊠

eN

Mop) has finite dimension. Since eN ∈ B
and Q′ ∩M , Qop′ ∩Mop ⊂ B, we are done.
5) =⇒ 6) is trivial, because hyperfinite algebras are amenable, so they have
hypertraces.
6) =⇒ 7) By 5.2 we have Mst = vN(M,JSMJS) ⊂ B(L2(S)), N st =
vN(N, JSMJS), where S = M ⊠

eN

Mop. Let then Φ : B(L2(S)) → S be a

conditional expectation. Since Φ is S-S linear and [Mst,Mop] = 0 it follows
that Φ(Mst) ⊂ Mop′ ∩ S = M . Similarly, since [Mst,Mop

1 ] = 0, we get

Φ(N st) ⊂Mop
1
′ ∩ S = N .

2 =⇒ 1). If
N ⊂ M
∪ ∪
N ⊂ M

is an arbitrary smooth representation of N ⊂M then, M being hyperfinite, it
follows that there exists a conditional expectation ofM onto M . By Theorem

5.7 it then follows that there exists a conditional expectation of N E⊂M onto
N ⊂M . Q.E.D.

7.2. Remarks. 1◦. Note that by using condition 7.1.3 one can easily proceed to
construct recursively a sequence of appropriate downward basic constructions
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for suitable local inclusions in the Jones tower-tunnel, say M ⊃ N ⊃ P ⊃
P1 ⊂ ..., such that if we let Q = ∩nPn and (N0,st ⊂ M0,st) = (∪nP ′n ∩N ⊂
∪nP ′n ∩M) then (N ⊂ M) = (Q⊗̄N0,st ⊂ Q⊗̄M0,st), with the isomorphism
class of N0,st ⊂M0,st only depending on GN,M .

Indeed, from the proof of 7.1.2) ⇒ 7.1.3) we see that, up to conjugacy by a
unitary in N , the choice of the subfactor P = P1 (equivalently, the choice
of the projection p ∈ N ′ ∩M2n+1) is determined by a choice of the ε-Følner
set F and by a choice of the integers {mk}k∈F , which in turn both depend
on ε. Similarily, each time one goes from step n to step n + 1, one uses the
Følner-type amenability condition for Pn ⊂ M and some ε = εn+1 to get the
next subfactor Pn+1 (up to conjugation by a unitary element in Pn), from
a downward basic construction that only depends on some choice of an εn+1-
Følner set Fn+1 and of some integers {mn+1

j }j∈Fn+1 . Thus, if we let for instance

ε = 2−n, ∀n, and make the choice of the Fn’s and mn
j ’s this way, once for all,

then the isomorphism class of {P ′n ∩N ⊂ P ′n ∩M}n will only depend on GN,M ,
as all the above choices can be ”read” from this object through its amenability
properties. In particular, the isomorphism class of N0,st ⊂ M0,st will only
depend on GN,M .

Thus, when complemented with this remark, we see that condition 7.1.3 in
the above theorem shows that hyperfinite subfactors with amenable graphs are
completely classified by their standard invariants (for more on this, see [Po16]).

2◦. Recently, F. Hiai and M. Izumi have further investigated our notion of
amenability for standard lattices and weighted graphs coming from subfactors
and obtained two more equivalent characterizations ([HiIz]): the first one re-
quires the existence of invariant means on the (weighted) fusion algebra of all
M −M bimodules in the Jones tower of N ⊂M ; the second one is a ratio limit
condition on the weight vector ~v, stating that the (weighted) graph (ΓN,M , ~v)
is amenable if and only if for every vertex k ∈ K one has

lim
n→∞

〈(ΓΓt)nδ∗, δk〉
〈(ΓΓt)nδ∗, δ∗〉

= vk,

where Γ = ΓN,M . This ”ratio limit” result for group-like objects coming from
subfactors, which generalizes in a non-trivial way a prior result of Avez for
discrete groups ([Av]), shows that in fact the projections qk ∈ (N ′∩M2n+1)pn+1

k

in the proof of 2) =⇒ 3) of Theorem 7.1 can be taken equal to pn+1
k . It also

shows that the standard weight vector ~v of an amenable standard λ-lattice G
can be completely recovered from its graph Γ.

It should be noted however that there exist no known examples of standard
graphs Γ which admit two distinct standard weights, say ~v1, ~v2, for the same
value of the index, i.e., such that (Γ, ~v1) 6≃ (Γ, ~v2). Whether such examples
exist or not seems to be an interesting problem.

In order to prove the hereditarity result in its largest generality, namely without
assuming that the inclusions involved are extremal, we’ll need the following:
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7.3. Lemma. Let N ⊂ M be an inclusion of type II1 factors, of finite index
(but not necessarily extremal). Let B be a C∗-algebra containing M , such that
B = C∗(M,

⋃
k

N ′k ∩ B) and such that B has a state φ with [ϕ,M ] = 0. Let

(πϕ,Hϕ, ξϕ) be the GNS representation for (B,ϕ). Then, as a M -M Hilbert
bimodule, Hϕ is a direct sum of irreducible bimodules Hϕ =

⊕
j

H′j with each

H′j isomorphic to a bimodule in the list {Hk}k∈K .

Proof. Note first that if {Kop
l }l∈L denotes the list of all irreducible M -N

bimodules contained in
⊕
k∈K

MHkN (see the beginning of Section 5) and

H′0 ≃
⊕
j

Kop
lj

is a M -N Hilbert bimodule contained in some M −M bimodule

H, (i.e., H′0 ⊂ MHN ) then spMH′0M ≃
⊕
i

Hki .

Then note that ∪kspM(N ′k ∩B)ξϕ is dense in Hϕ. Indeed, we have

spM(N ′k ∩B)M(N ′k ∩B)M = spM(N ′k ∩B)Nkf
0
−k−1Nk

(N ′k ∩B)M = spM(N ′k ∩B)f0
−k−1(N ′k ∩B)M

⊂ spM(N ′2k+1 ∩B)M.

showing that

Alg(M,∪kN ′k ∩B) = ∪kspM(N ′k ∩B)M = ∪kspM(N ′k ∩B)R,

where R = ∪kN ′k ∩M , the closure being taken in the norm ‖ · ‖2 in M . But
∪k(N ′k∩M)ξϕ is dense in Rξϕ (because ϕ implements τ on M), so ∪kspM(N ′k∩
B)ξϕ is dense in ∪kspM(N ′k ∩ B)Rξϕ = ∪kspM(N ′k ∩ B)Mξϕ which is dense
in Hϕ.

Let then H′ϕ
def
= ∨{H′ ⊂ Hϕ | ∃ k ∈ K such that H′ ≃ Hk as M -M bimodules}.

Assume H′ϕ 6= Hϕ. Thus, there exists ξ ∈M(N ′k ∩B)ξϕ such that ξ /∈ H′ϕ. Let
ξ = X0Y

′
0ξϕ, for some X0 ∈M , Y ′0 ∈ N ′k ∩B. It follows that if x ∈M , y ∈ Nk

then
〈xξy, ξ〉 = 〈xX0Y

′
0ξϕy,X0Y

′
0ξϕ〉 = 〈X∗0xX0yY

′
0ξϕ, Y

′
0ξϕ〉.

But the state on M defined by ψ(X) = 〈XY ′0ξϕ, Y ′0ξϕ〉, X ∈ M has Nk in its
centralizer so by A.1 it is automatically normal and of the form ψ(X) = τ(Xa)
for some a ∈ N ′k ∩M . Thus we get

〈xξy, ξ〉 = τ(X∗0xX0ya) = 〈x(X0a
1/2ξτ )y, (X0a

1/2ξτ )〉

so if we define ξ′ = X0a
1/2ξτ ∈Mξτ ⊂ L2(M) then the above shows that H′0 =

spMξNk is a M -Nk bimodule isomorphic to a sub-bimodule of ML
2(M)Nk

. By
the first part applied to N = Nk it follows that spMH′0M is a sub-bimodule
of (
⊕

k∈K Hk)n for some multiplicity n ≤ ∞, giving a contradiction. Q.E.D.
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7.4. Corollary. Let N ⊂M be an inclusion of type II1 factors with finite in-
dex. Assume that for any ε > 0 there exists an amenable type II1 von Neumann
algebra B containing M such that

‖E(N ′∩B)′∩B(e0)− λ1‖2 < ε.

Then there exists a norm one projection from N st ⊂Mst onto N ⊂M .

Proof. If B ⊃M satisfies the condition in the hypothesis for some ε, then there
exist some finite many unitary elements u1, . . . , un ∈ N ′ ∩B such that

∥∥∥∥∥
1

n

n∑

i=1

uie0u
∗
i − λ1

∥∥∥∥∥
2

< ε.

Thus, by taking instead of B the von Neumann algebra generated by M and
{u1, . . . , un}, it follows that we may assume B is separable in the norm ‖ ‖2.
Let then H be the M -M Hilbert bimodule obtained by summing up countably
many copies of each Hk, k ∈ K. By 7.3 we have L2(B) ⊂ H, for each B
as in the hypothesis, where L2(B) has the M -M bimodule structure given by
left-right multiplication by elements of M .
For each ε = 1/n we choose an algebra Bn satisfying the hypothesis. We let
Φn : B(L2(Bn))→ Bn be norm one projections and define the state ϕ on B(H)
by

ϕ(T ) = lim
n→ω

τn ◦ Φn(pnT |L2(Bn))

where pn = projL2(Bn), τn is the trace on Bn and ω is a free ultrafilter on N.
Since each τn◦Φn is a M -hypertrace, ϕ follows a M -hypertrace. Moreover, if we
identifyMst with the von Neumann algebra generated in B(H) by the operators
of left and right multiplication by M and N st with its von Neumann subalgebra
generated by the operators of left multiplication by N and right multiplication
by M , then Mst = spN ste0N . Let Y ∈ N st, y ∈ N . We want to show that
ϕ = ϕ ◦ Est on Mst, thus we need to show that ϕ(Y e0y) = λϕ(Y y). But
[pn,Mst] = 0 and [N stpn, N

′ ∩Bn] = 0, so that Φn(N stpn) ⊂ (N ′ ∩Bn)′ ∩Bn.
Thus Φn((Y e0y)pn) = Φn(Y pn)e0y = y′e0y, with y′ ∈ (N ′ ∩ Bn)′ ∩ Bn. Thus
τn(y′e0y) = τn(E(N ′∩Bn)′∩Bn

(y′e0y)) = τn(y′E(N ′∩Bn)′∩Bn
(e0)y). It follows

that

|τn ◦Φn((Y e0y)pn)−λτn ◦ Φn((Y y)pn)|
= |τn(y′E(N ′∩Bn)′∩Bn

(e0)y)− λτn(y′y)|
≤ ‖y′‖ ‖y‖ ‖E(N ′∩Bn)∩Bn

(e0)− λ1‖2

≤ 1

n
‖Y ‖ ‖y‖.

This proves that indeed ϕ(Y e0y) = λϕ(Y y), so ϕ = ϕ ◦ Est on Mst. Q.E.D.

We can now prove the announced hereditarity property for amenable inclusions.
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7.5. Theorem. Let N ⊂ M be an extremal inclusion of hyperfinite type II1
factors with amenable graph (equivalently, with amenable standard invariant
GN,M), i.e., ‖ΓN,M‖2 = [M : N ]. Assume Q ⊂ P is an inclusion of factors
embedded in N ⊂ M as commuting squares (i.e., such that EN (P ) = Q), but
without necessarily being extremal and not necessarily having the same index
as N ⊂ M . Then ΓQ,P is amenable (equivalently, GQ,P is amenable), i.e.,
‖ΓQ,P ‖2 equals the minimal index of Q ⊂ P .

Proof. By Theorem 7.1, S = M ⊠
eN

Mop follows amenable so in particular the

von Neumann algebra B generated in S by P and Q′ ∩S is also amenable. Let
e0 ∈ P be a Jones projection for Q ⊂ P . Thus, EQ(e0) = EN (e0) = λ01 = [P :
Q]−11. Since (N ′ ∩ S)′ ∩ S = N it follows that E(N ′∩S)′∩S(e0) = λ01. Since
N ′ ∩ S ⊂ Q′ ∩ S = Q′ ∩B, this implies that E(Q′∩B)′∩B(e0) = λ01 as well.

Thus Q ⊂ P satisfies the conditions in the hypothesis of 7.4, so there exists a
norm one projection from the standard representation Qst ⊂ Pst onto Q ⊂ P .

By [Po13] this implies ‖ΓQ,P‖2 = ‖TQst⊂Pst‖2 = IndEQ,Pmin . Q.E.D.

In Sec. 6 we’ve seen that for extremal inclusions of arbitrary type II1 factors

N ⊂M the condition ‖Γu,fN,M‖2 = [M : N ] is sufficient to insure the amenability
of the standard graph ΓN,M . We now show that for inclusions of hyperfinite

factors the weaker condition ‖Γu,rfN,M‖2 = [M : N ] is enough, where Γu,rfN,M de-

notes the inclusion graph of the direct summand N u,rf ⊂Mu,rf of N u ⊂Mu,
in which Mu,rf consists of all irreducible representations B(H) of M ⊗Mop,
with H having finite right dimension over M , i.e., dim(HM ) <∞, but leaving
the left dimensions dim(MH) arbitrary.

7.6. Theorem. Let N ⊂ M be an extremal inclusion of hyperfinite type II1
factors. The following conditions are equivalent:

1) N ⊂M has amenable graph, i.e., ‖ΓN,M‖2 = [M : N ].

2) ∀ ε > 0, ∃ P a hyperfinite factor containing M , such that dimM ′ ∩ P <∞
and ‖TM ′∩P⊂N ′∩P ‖2 ≥ [M : N ]− ε.
3) ‖Γu,rfN,M‖2 = [M : N ].

Proof. 1) =⇒ 3) is trivial because Γu,rfN,M ⊃ ΓN,M .

3) =⇒ 2) By 3) there exists a direct summand N ⊂ M = ⊕l∈L′B(K′l) ⊂
⊕k∈K′B(H′k) of N u,rf ⊂ Mu,rf such that its inclusion graph Γ is connected
and ‖Γ‖2 > [M : N ]− ε. Take K ′0 ⊂ K ′ finite and sufficiently large so that we
still have ‖ΓtK′

0
‖2 > [M : N ]− ε.

By the definition of the universal representationN u,rf ⊂Mu,rf , if Q = M ′∩N
then Q is a factor of type II1, N = N ∨ Q ⊂ M ∨ Q = M and Q has finite
coupling constant in each direct summand B(H′k) ofM. But then, if one takes
P = Q′ ∩ B(⊕k∈K′

0
H′k) then ‖TM ′∩P⊂N ′∩P ‖2 ≥ ‖ΓtK′

0
‖2 ≥ [M : N ]− ε.

2) =⇒ 3) follows by noticing that Mu,rf contains the von Neumann algebra
generated by the operators of left multiplication by M and right multiplication

Documenta Mathematica 4 (1999) 665–744



Symmetric Enveloping Algebras 725

by P on L2(P ) as a direct summand (by taking Mop ≃ P op, both being

hyperfinite factors). Thus TM ′∩P⊂N ′∩P will be a restriction of the graph Γu,rfN,M

2) =⇒ 1). Let ε > 0 and choose P a hyperfinite II1 factor satisfying 2) for ε32.
Denote by T the bipartite graph describing the inclusions M ′ ∩ P ⊂ N ′ ∩ P ⊂
N ′1 ∩ P ⊂ N ′2 ∩ P ⊂ · · · . Thus ‖T ‖2 ≥ [M : N ] − ε32 and there is a positive
vector w = (wj)j∈J such that TT tw = λ−1w, giving the traces on {N ′k∩P}k≥1.
But then A.2 applies the same way as in the proof of 1) =⇒ 2) in Theorem
5.3 to get a finite set F ⊂ J such that

∑
j∈∂F w

2
j < ε

∑
j∈F w

2
j (see 5.5.2◦ and

[Po14]). Arguing like in the proof of 1) =⇒ 2) in Theorem 6.1 it then follows
that there exist k ≥ 1 and a projection p ∈ N ′2k ∩ P such that

‖E(pN ′
2k+1∩Pp)′∩pPp(e−2k−1p)− λp‖2 < ε‖p‖2.

By taking an α = [M : N ]k+1-amplification of the inclusion N2k+2 ⊂ N2k+1 →֒
pPp and using that (N2k+2 ⊂ N2k+1)α = (N ⊂M) it follows that there exists
a hyperfinite type II1 factor P0 ≃ (pPp)α such that N ⊂M ⊂ P0 and

‖E(N ′∩P0)′∩P0
(e0)− λ1‖2 < ε.

But then 7.3 applies to get that ΓN,M is amenable. Q.E.D

8. An Effros-Lance Type Characterization of Amenability

We will prove in this section yet another equivalent characterization for the
amenability of a subfactor N ⊂M , in terms of simplicity properties of the C∗-
algebra C∗bin(M, eN ,M

op). In the case N = M our result reduces to the impli-
cation “C∗bin(M,Mop) simple =⇒ ∃ conditional expectations of B(L2(M)) onto
M”, which is one of the well known results of Effros and Lance in [EL], relating
various amenability conditions for single von Neumann algebras (semidiscrete-
ness, injectivity, etc).

8.1. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:

1◦. N ⊂M is amenable.

2◦. C∗bin(M, eN ,M
op) is simple.

3◦. C∗(M, eN , JMJ) is simple.

4◦. C∗bin(M, eN ,M
op) ≃ C∗(M, eN , JMJ) ≃ C∗min(M, eN ,M

op), with the iso-
morphisms being given by the natural quotient maps.

Proof. 1◦ =⇒ 2◦. Let C∗bin(M, eN ,M
op) →֒ B(H) be a faithful representation

of C∗bin(M, eN ,M
op) such that M and Mop are von Neumann algebras in B(H).

It is sufficient to prove that if

x ∈ Alg(M, eN ,M
op) =

⋃
k

spMopMkM
op ⊂ C∗bin(M, eN ,M

op) ⊂ B(H),
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then ‖x‖B(H) ≤ ‖x‖min, where ‖x‖min is the norm of (the image of) x in
C∗min(M, eN , Mop). For such x ∈ Alg(M, eN ,M

op) let k be large enough such
that

x =

n∑

i=n

yop
i zix

op
i ∈ spMopMkM

op,

for some xi, yi ∈ M, zi ∈ Mop, 1 ≤ i ≤ n. We will prove that x can be
approximated in the so topology on B(H) by elements x′ ∈ Alg(M, eN ,M

op)
such that ‖x′‖B(H) ≤ ‖x‖min. By the inferior semicontinuity of the norm
‖ ‖B(H) with respect to the so-topology on B(H), this will show that ‖x‖B(H) ≤
‖x‖min and will thus end the proof of 1◦ =⇒ 2◦.
To prove this approximation, let us first note that ∀ ξ1, . . . , ξp ∈ H, ∀ ε > 0,
∃ δ > 0 such that if z′i ∈Mk, with ‖z′i − zi‖2 < δ, ‖z′i‖ ≤ ‖zi‖ then

x′
def
=

n∑

i=1

yop
i z
′
ix

op
i

satisfies ‖(x− x′)ξj‖ < ε, ∀ 1 ≤ j ≤ p. Indeed we have:

‖(x− x′)ξj‖ ≤
n∑

i=1

‖yop
i ‖ ‖(zi − z′i)xop

i ξj‖

and since the so-topology on the ball of radius ‖zi‖ (in the uniform norm) in Mk

coincides with the topology given by the norm ‖ ‖2 on this ball, it follows that
there exists δ > 0 such that if ‖zi − z′i‖2 < δ then ‖(zi − z′i)xop

i ξj‖ < ε/n‖yi‖,
∀ i. But then we have

‖(x− x′)ξj‖ <
n∑

i=1

‖yop
i ‖ε/n‖yop

i ‖ = ε.

Now, if we assume N ⊂M is amenable then M ⊂Mk follows amenable and by
[Po2] we get that ∀ δ > 0, ∃ finitely many tunnels {N r

k}1≤k≤nr , r = 1, . . . ,m,
and projections pr ∈ P(N r

nr

′ ∩M), r = 1, . . . ,m, such that {pr}r are mutually
orthogonal, Σrpr = 1 and

z′i
def
=

m∑

r=1

prE
Mk

Nr ′
nr
∩Mk

(zi)pr

satisfies ‖z′i − zi‖2 < δ. Also, by its definition, z′i checks ‖z′i‖ ≤ ‖zi‖. Further-
more, since pr ∈ M commute with xop

i , y
op
i ∈ Mop, ∀ r, i, it follows that if we

let x′ = Σiy
op
i z
′
ix

op
i as above, then ‖x′‖B(H) = sup

r
‖x′pr‖B(H). But since

x′pr =
∑

i

yop
i prENr

nr
′∩Mk

(zi)prx
op
i = pr

(
n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

)
pr,
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each ‖x′pr‖B(H) is majorized by

∥∥∥∥∥

n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

∥∥∥∥∥
B(H)

=

∥∥∥∥∥

n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

∥∥∥∥∥
Mop

nr

=

∥∥∥∥∥

n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

∥∥∥∥∥
C∗

min(M,eN ,Mop)

≤ ‖x‖min,

with the last inequality following from the fact that, in the algebra
C∗min(M, eN ,M

op), the element Σiy
op
i ENr

nr
′∩Mk

(zi)x
op
i is the image of x un-

der a conditional expectation.
Thus, from the the above remarks, if we take δ sufficiently small, we are done.
2◦ =⇒ 3◦ is trivial, since by the definition of C∗bin(M, eN ,M

op),
C∗(M, eN , JMJ) is its quotient.
3◦ =⇒ 1◦. If C∗(M, eN , JMJ) is simple then there exists an isomorphism

ϕ : S0 def
= C∗min(M, eN ,M

op) ≃ C∗(M, eN , JMJ) ⊂ B(L2(M)).

Since S0 ⊂ S ⊂ B(L2(S)), where S = M ⊠
eN

Mop as usual, by Arveson’s theo-

rem ϕ can be extended to a completely positive map Φ from all B(L2(S)) to
B(L2(M)). (Note that in fact we only use here a particular case of Arveson’s
theorem stating that if B ⊂ A are unital C∗-algebras and π0 : B → B(H0)
is a representation of B then there exists a Hilbert space H ⊃ H0 and a rep-
resentation π : A → B(H) such that π0(b) = projH0π(b)|H0 , ∀ b ∈ B. See
2.10.2 in [D2]). Since Φ is a unital ∗-homomorphism when restricted to S0, it
follows that it is a S0-S0 bimodule map. In particular, if xop

1,2 ∈ Mop ⊂ S0

(⊂ B(L2(S))) then Φ(xop
1 Txop

2 ) = ϕ(xop
1 )Φ(T )ϕ(xop

2 ), ∀ T ∈ B(L2(S)). Thus,
if T satisfies Txop − xopT = 0, ∀ xop ∈ Mop, then Φ(T )ϕ(xop) = ϕ(xop)Φ(T ),
∀ xop ∈Mop.
Thus we have Φ((Mop)′ ∩ B(L2(S)) = ϕ(Mop)′ ∩ B(L2(M)). But ϕ(Mop) =
JMJ and JMJ ′ ∩B(L2(M)) = M , so that Φ((Mop)′ ∩B(L2(S))) = M . Simi-
larily we get

Φ((Mop
1 )′ ∩ B(L2(S))) = ϕ(Mop

1 )′ ∩ B(L2(M))

= JM1J
′ ∩ B(L2(M))

= N.

But from 5.3 we have that Mst ⊂ (Mop)′ ∩ B(L2(S)) and N st ⊂ (Mop
1 )′ ∩

B(L2(S)), so Φ implements a positive unital M -M bimodule map from Mst

onto M carrying N st onto N . This shows that there exists a conditional ex-
pectation of (N st ⊂Mst) onto (N ⊂M), so N ⊂M follows amenable.
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All this shows that the conditions 1◦–3◦ are equivalent. Since clearly 4◦ ⇐⇒ 2◦,
all the conditions 1◦–4◦ follow equivalent. Q.E.D.

8.2. Remarks. 1◦. Note that when applied to the case N = M the above
proof of the implication 3◦ ⇒ 1◦ in Theorem 8.1 reduces to a very short and
elementary proof to one of the results in ([EL]).
2◦. Recall from ([Bi3]) that C∗(M, eN , JMJ) contains the ideal K of compact
operators over the Hilbert space L2(M, τ) if and only if N contains no non-
trivial central sequences of M . Thus, 8.1 implies that amenable inclusions
always have non-trivial cental sequences contained in the subfactor (because if
C∗(M, eN , JMJ) is simple then it cannot contain the ideal K). In fact, 7.1.4
shows that there even exist non-commuting such central sequences, so that
amenable inclusions split off the hyperfinite type II1 factor (this is, of course,
a consequence of the classification result 7.2.1◦ as well).

9. Property T for Subfactors and Standard Lattices

In this section we introduce a notion of property T for standard λ-lattices G
(or, equivalently, for paragroups). When restricted to the class of standard lat-
tices associated with subfactors coming from finitely generated discrete groups,
our notion coincides with the classical property T of Kazhdan, which it thus
generalizes, from discrete groups to the larger class of group-like objects G. In
order to define this notion, we will use a strategy similar to the approach to
amenability in Section 5. Thus, the property T for a standard λ-lattice G will
be defined by requiring M ⊠

eN

Mop to have the property T relative to M ∨Mop

in the sense of ([A-D], [Po8]), where N ⊂ M is an extremal subfactor with
GN,M = G. This definition however depends on proving that such a property
does not in fact depend on the subfactor N ⊂ M one takes. We do prove this
in the next few lemmas.
First of all, let us recall the definition of the relative property T, as introduced
in ([A-D], [Po8]):

(∗). Let U be a type II1 factor and B ⊂ U a von Neumann subalgebra of U .
Then we say that U has the property T relative to B if there exists ε > 0
and x1, x2, ..., xn ∈ U such that whenever H is a given U − U bimodule with a
vector ξ ∈ H satisfying ‖ξ‖ = 1, [ξ, B] = 0, ‖[ξ, xi]‖ < ε, it follows that H must
contain a non-zero vector ξ0 satisfying [ξ0, U ] = 0.

Note that in the case B = C the above definition reduces to Connes’ definition
of property T for single type II1 factors U . In general though, the definition
(∗) does not require the ambient algebra U to have the property T. Instead,
note that by ([A-D], [Po8]), if V is a type II1 factor and G is a discrete group
acting outerly on V , then U = V ⋊G has the property T relative to V if and
only if the group G has Kazhdan’s property T.
With this in mind, let us proceed with some technical results.

9.1. Lemma. Let V ⊂ U be an inclusion of type II1 factors with V ′ ∩U = C1.
Then U has the property T relative to V if and only if ∀ ε > 0 ∃ δ > 0
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and x1, . . . , xn ∈ U such that if ϕ : U → U is completely positive, unital, trace
preserving, with ϕ(v1xv2) = v1ϕ(x)v2, ∀ v1, v2 ∈ V , x ∈ U , and ‖ϕ(xi)−xi‖2 <
δ then ‖ϕ(x)− x‖2 < ε, ∀ x ∈ U , ‖x‖ ≤ 1.

Proof. If U has the property T relative to V then the condition on completely
positive maps holds true by 4.1.4 in [Po8].
Conversely, if this latter condition holds, then let H be a U -U bimodule with

ξ ∈ H, ‖ξ‖ = 1, vξ = ξv, ∀ v ∈ V , ‖xiξ − ξxi‖ < δ′
def
= δ/2

∑‖xi‖2. Let
ϕ : U → U be defined by τ(yϕ(x)) = 〈xξy, ξ〉, x, y ∈ V as in [C4] (see [Po8]).
Then ϕ is a well defined completely positive map and τ(ϕ(x)) = 〈xξ, ξ〉. Since
ξ = vξv∗, ∀ v ∈ U(V ), one gets

〈vxv∗ξ, ξ〉 = 〈vxξv∗, ξ〉 = 〈vxξ, ξv〉 = 〈vxξ, vξ〉
= 〈v∗vxξ, ξ〉 = 〈xξ, ξ〉

for all x ∈ U . Averaging by unitaries v ∈ U(V ) like in [Po1] and using that
V ′ ∩ U = C1 and EV ′∩U (x) = τ(x)1, it follows that

〈xξ, ξ〉 = 〈τ(x)ξ, ξ〉 = τ(x), ∀ x ∈ U.
Similarly, we obtain that

τ(yϕ(1)) = 〈ξy, ξ〉 = τ(y), ∀ y ∈ U.
Thus ϕ(1) = 1. Also, if x, y ∈ U , v1, v2 ∈ V then

τ(yϕ(v1xv2)) = 〈v1xv2ξy, ξ〉 = 〈xξv2y, v∗1ξ〉〈xξv2y, ξv∗1〉
= 〈xξv2yv1, ξ〉 = τ(v2yv1ϕ(x)) = τ(y(v1ϕ(x)v2)).

This shows that ϕ(v1xv2) = v1ϕ(x)v2.
Finally, since ‖xiξ − ξxi‖2 < δ′ we have

‖ϕ(xi)− xi‖22 = τ(ϕ(x∗i )ϕ(xi)) = τ(x∗i xi)− 2Re τ(x∗i ϕ(xi))

≤ τ(ϕ(x∗i xi)) + τ(x∗i xi)− 2Re τ(x∗iϕ(xi))

= 2τ(x∗i xi)− 2Re τ(x∗i ϕ(xi))

= 2〈ξxi, ξxi〉 − 2Re〈xiξ, ξxi〉
≤ 2‖xiξ − ξxi‖ ‖ξxi‖ ≤ 2δ′‖xi‖2 < δ2.

Thus, ϕ this way defined satisfies the required condition, so ‖ϕ(x) − x‖2 < ε,
∀ x ∈ U , ‖x‖ ≤ 1. In particular, we have

‖ϕ(u)− u‖2 < ε, ∀ u ∈ U(U).

Thus,

‖ξu− uξ‖2 = 2− 2Re〈ξu, ξu〉 = 2− 2Re〈u∗ξu, ξ〉
= 2− 2Re τ(ϕ(u)u∗) = 2Re(τ((u − ϕ(u))u∗))

≤ 2‖ϕ(u)− u‖2 ≤ 2ε.

Thus, if ε < 1/2 then ‖u∗ξu − ξ‖ < 1, ∀ u ∈ U(U). But then ∃ ξ0 ∈ H,
‖ξ0 − ξ‖ < 1, such that uξ0 = ξ0u, ∀ u (see e.g., [Po1]). Thus H has a nonzero
vector commuting with U , showing that U has the property T relative to V
Q.E.D.

Documenta Mathematica 4 (1999) 665–744



730 Sorin Popa

9.2. Lemma. Let
V ⊂ U

∪ ∪
Q ⊂ P

be a nondegenerate commuting square of type II1 von Neumann algebras with a
countable set X = {fn}n ⊂ P such that spQXQ is ‖ ‖2-dense in P and spV XV
is ‖ ‖2-dense in U . Let ϕ : P → P be a unital, τ-preserving, completely positive
map such that

ϕ(q1xq2) = q1ϕ(x)q2, ∀ q1, q2 ∈ Q, x ∈ P

and assume that ∀ n ≥ 1, ∃ {mj}j ⊂ L2(V, τ) orthonormal basis of V over
Q such that [mj , fn] = 0, [mj , ϕ(fn)] = 0, ∀ j. Then there exists a unique
unital, τ-preserving, completely positive map ϕ̃ : U → U such that ϕ̃|P = ϕ
and ϕ̃(v1xv2) = v1ϕ(x)v2, ∀ v1, v2 ∈ V , x ∈ P .

Proof. Let e = eUP . Let {mj}j ⊂ L2(V ) be a fixed orthonormal basis of V over
Q and note that any element in 〈U,P 〉 can be written in the form Σi,jmipijem

∗
j ,

with pij ∈ P (see Ch.1 in [Po2]). We first define an application ϕ̃ : 〈U, e〉 →
〈U, e〉 by

ϕ̃


∑

i,j

mipijem
∗
j


 =

∑

i,j

miϕ(pij)em
∗
j , pij ∈ P.

It is easy to see that ϕ̃ this way defined is completely positive and Tr-preserving
and satisfies ϕ̃(1) = 1, ϕ̃(Y1XY2) = Y1ϕ̃(X)Y2, ∀ Y1, Y2 ∈ 〈V, e〉, X ∈ 〈U, e〉.
Let us next show that ϕ̃ does not depend on the choice of the orthonor-
mal basis {mj} of V over Q. So let {m′j}j ⊂ L2(V, τ) be another such

orthonormal basis. Then mi =
∑
km
′
kE

U
P (m

′∗
k mi) so that if p ∈ P then

mipem
∗
j =

∑
k,lm

′
kE

U
P (m

′∗
k mi)pE(m∗jm

′
l)em

′∗
l (note that the sums do make

sense in L2(U, τ), with convergence in ‖ ‖2, respectively so-topologies). By

definition we thus have ϕ̃(mipem
∗
j) = miϕ(p)em∗j and since EUP (m

′∗
k mi) ∈ Q

and
ϕ(EUP (m′∗kmi)pE

U
P (m∗jm

′
l)) = EUP (m′∗kmi)ϕ(p)EUP (m∗jm

′
l),

we further get

miϕ(p)em∗j =
∑

k,l

m′k(EUP (m′∗kmi)ϕ(p)EUP (m∗jm
′
l))em

′∗
l

=
∑

k,l

m′kϕ(EUP (m′∗kmi)pE
U
P (m∗jm

′
l))em

′∗
l .

Taking linear combinations and limits, this shows that if

∑

i,j

mipijem
∗
j =

∑

i,j

m′ip
′
ijem

′∗
j
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then ∑

i,j

miϕ(pij)em
∗
j =

∑

i,j

m′iϕ(p′ij)em
′∗
j ,

showing that ϕ̃ does not depend on {mj}j .
We will now show that ϕ̃(U) = U and that ϕ̃|P = ϕ. To this end, let us first
note that ϕ̃(fn) = ϕ(fn), ∀ n. Indeed, we have fn = fn1 = fn

∑
imiem

∗
i in

which we may assume [mj , fn] = 0, ∀ j ( by the hypothesis and the above).
Thus we get fn =

∑
imifnem

∗
i .

According to the definition of ϕ̃ we get ϕ̃(fn) =
∑

imiϕ(fn)em∗i . But
by the hypothesis we may also assume [mi, ϕ(fn)] = 0 so that we get∑

jmjϕ(fn)em∗j = ϕ(fn)
∑

jmjem
∗
j = ϕ(fn).

Since ϕ̃ is V -bilinear (being 〈Q, e〉-bilinear) it follows that ϕ̃(V XV ) =
V ϕ̃(X )V = V ϕ(X )V ⊂ U . In particular ϕ̃|QXQ = ϕ.
The rest of the statement thus follows by continuity. Q.E.D.

9.3. Corollary. Let
N ⊂ M

∪ ∪
N0 ⊂ M0

be a nondegenerate commuting square of type II1 factors with N ⊂M , N0 ⊂M0

extremal and N ′ ∩Mj = N ′0 ∩M0j, ∀ j. Let T = M ∨Mop ⊂ M ⊠
eN

Mop = S

and T0 = M0 ∨Mop
0 ⊂M0 ⊠

eN0

Mop
0 = S0. If S has the property T relative to T

then S0 has the property T relative to T0.

Proof. By 2.5 we have T ′0 ∩ S0 = C, T ′ ∩ S = C. Also, by 2.8 S0 is naturally
included in S and we have a nondegenerate commuting square

T ⊂ S

∪ ∪
T0 ⊂ S0.

Let {N0,m}m be some tunnel for N0 ⊂ M0 and Nm be the corresponding
tunnel for N ⊂ M and denote by fn = fn−n ∈ M0,n the Jones projection for
N0,n−1 ⊂M0 ⊂M0,n. By 4.1.4 in [Po8], since S has the property T relative to
T and sp∪nTfnT contains the dense ∗-subalgebra ∪nMMop

n M in S (cf. 4.1), it
follows that ∀ ε > 0 there exists n and δ such that if ϕ : S → S is unital, trace
preserving, completely positive, T -T bimodule map with ‖ϕ(fn) − fn‖2 < δ
then ‖ϕ(x) − x‖2 < ε, ∀ x ∈ S, ‖x‖ ≤ 1. Since

fm ∈ (N0,m ∨Nop
0,m)′ ∩M0 ⊠

eN0

Mop
0 = (Nm ∨Nop

m )′ ∩M ⊠
eN

Mop, ∀ m,

it follows that ∀ k, ∃ {mk
j }j ⊂ Nk ∨ Nop

k an orthonormal basis of Nk ∨ Nop
k

over N0,k ∨Nop
0,k (which will therefore be an orthonormal basis of T over T0 as

well). Thus [mk
j , fk] = 0, ∀j.
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Let ϕ0 : S0 → S0 be a unital, trace preserving, completely positive, T0-T0

bimodule map satisfying ‖ϕ0(fn)− fn‖2 < δ. Since ϕ0 is T0 − T0 bilinear and
since [fk, N0,k ∨Nop

0,k] = 0, we get [ϕ0(fk), N0,k ∨Nop
0,k] = 0. Thus we also have:

ϕ0(fm) ∈ (N0,m ∨Nop
0,m)′ ∩M0 ⊠

eN0

Mop
0 = (Nm ∨Nop

m )′ ∩M ⊠
eN

Mop, ∀ m.

So we may apply Lemma 9.2 to get ϕ : S → S unital, τ -preserving, completely
positive T -T bimodule map with ϕ|S0 = ϕ0. Thus ‖ϕ(fn)− fn‖2 = ‖ϕ0(fn)−
fn‖2 < δ, implying that ‖ϕ(x)− x‖2 < ε, ∀ x ∈ S, ‖x‖ ≤ 1.
In particular, ‖ϕ0(x) − x‖2 < ε ∀ x ∈ S0. By Lemma 9.1, this is suficient to
ensure that S0 has the property T relative to T0. Q.E.D.

9.4. Proposition. Let
N ⊂ M

∪ ∪
N0 ⊂ M0

be a nondegenerate commuting square of type II1 factors with N0 ⊂M0, N ⊂M
extremal and N ′0 ∩M0,j ⊂ N ′ ∩Mj, ∀ j (i.e., N0 ⊂ M0 is smoothly embedded
in N ⊂ M , in the sense of [Po2]). Let T0 ⊂ S0, T ⊂ S be the corresponding
symmetric enveloping inclusions. If S0 has the property T relative to T0, then
S has the property T relative to T .

Proof. By [Po8], ∀ ε > 0, ∃ δ > 0 and x1, . . . , xn ∈ S0 such that if H0 is a
S0-S0 bimodule with a unit vector ξ0 ∈ H0 satisfying [y, ξ0] = 0, ∀ y ∈ T0, and
‖[xi, ξ0]‖ < δ, ∀ i, then there exists ξ1 ∈ H0 satisfying [x, ξ1] = 0, ∀ x ∈ S0,
and ‖ξ1 − ξ0‖ < ε.
Let then H be a S-S bimodule with a unit vector ξ0 ∈ H such that [y, ξ0] = 0,
∀ y ∈ T , and ‖[xi, ξ0]‖ < δ, ∀ i. Regarding H as a S0-S0 bimodule it follows
that there exists ξ′0 ∈ H such that [x, ξ′0] = 0, ∀ x ∈ S0, and ‖ξ′0 − ξ0‖ < ε.
Denote

K = {ξ ∈ H | xξ = ξx, ∀ x ∈ S0},
K0 = {η0 ∈ H | [y, η0] = 0, ∀ y ∈ T = M ∨Mop},
K1 = {η1 ∈ H | [y, η1] = 0, ∀ y ∈M1 ∨Nop}.

With these notations, it follows that ξ0 ∈ K0 and ξ′0 ∈ K. We then need to
construct some positive contractions A,B ∈ B(H) such that 0 ≤ A,B ≤ 1,
Aξ = ξ = Bξ, ∀ ξ ∈ K, AK0 ⊂ K1, BK1 ⊂ K0. For if we have such A and B,
then

‖(BA)nξ0 − ξ′0‖ = ‖(BA)nξ0 − (BA)nξ′0‖ ≤ ‖ξ0 − ξ′0‖ < ε

so that if ξ′′0 is a weak limit point of {(1/n)
∑n
k=1(BA)kξ0}n then BAξ′′0 = ξ′′0 ,

ξ′′0 ∈ K0 (because all (BA)kξ0 belong to K0) and ‖ξ′′0 −ξ′0‖ < ε. But 0 ≤ A ≤ 1,
0 ≤ B ≤ 1, BAξ′′0 = ξ′′0 implies that Aξ′′0 = ξ′′0 , Bξ′′0 = ξ′′0 , so that ξ′′0 ∈ K0∩K1.
Thus e1ξ

′′
0 = ξ′′0 e1, yξ′′0 = ξ′′0 y, ∀ y ∈ T , and since T and e1 generate S we get
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xξ′′0 = ξ′′0x, ∀ x ∈ S. This shows that H has a nonzero vector commuting with
S.

Finally, in order to construct A,B with the required properties, let
{pnj }1≤j≤kn ⊂ M0,1 = 〈M0, e1〉, {qki }1≤i≤m ⊂ Mop

0 be partitions of the

identity such that if pn, respectively qk denote the spectral projection of
|∑j p

n
j e2p

n
j −λ1|, respectively |∑i q

k
i e1q

k
i −λ1|, corresponding to the interval

[ε,∞], where λ = [M0 : N0]−1 = [M : N ]−1, then τ(pn) < (1/n) minj τ(pnj )

and τ(qk) < (1/k) mini τ(qki ) (cf. the Appendix in [Po2], or [Po9]). We claim
that if A is a weak limit of the sequence of operators {∑j p

n
j ·pnj }n ⊂ B(H) and

B is a weak limit of {∑i q
k
i · qki }k ⊂ B(H) then A,B do satisfy the required

conditions. Indeed, since pnj , q
k
i ∈ S0 we have

∑

j

pnj ξp
n
j = ξ,

∑

i

qki ξq
k
i = ξ, ∀ ξ ∈ K, ∀ k, n.

Thus, Aξ = ξ = Bξ, ∀ ξ ∈ K. Since pnj ∈ 〈M0, eN〉 ⊂ Nop′ ∩ S it follows that

if [y, η0] = 0, ∀ y ∈ T = M ∨Mop, then


xop,

∑

j

pnj η0p
n
j


 = 0, ∀ xop ∈ Nop.

Thus,

[xop, Aη0] = 0, ∀ xop ∈ Nop, ∀ η0 ∈ K0.

Let η0 ∈ K0 with ‖η0‖ = 1 and note that, since η0 commutes with T and
T ′ ∩ S = C, η0 follows a trace vector for S. Let also ξ ∈ H, and x ∈ M1 =
〈M, e1〉 and note that

∥∥∥∥∥∥
λ−1

∑

j

pnjE
M1

M (pnj xp
n
i )− xpni

∥∥∥∥∥∥
2

= λ−1/2

∥∥∥∥∥∥
λ−1

∑

j

pnj e2p
n
j xp

n
i e2 − xpni e2

∥∥∥∥∥∥
2

≤ λ−1/2

∥∥∥∥∥∥
(1− pn)


λ−1

∑

j

pnj e2p
n
j − 1



∥∥∥∥∥∥
‖xpni e2‖2 + λ−1/2‖pn‖2

≤ 2λ−1/2(‖x‖/n)‖pni ‖2.
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Thus we get

∥∥∥∥∥∥
x
∑

i

pni η0p
n
i − λ−1

∑

i,j

pnjE
M1

M (pnj xp
n
i )η0p

n
i

∥∥∥∥∥∥

2

=
∑

i

∥∥∥∥∥∥
xpni η0p

n
i − λ−1

∑

j

pnjE
M1

M (pnj xp
n
i )η0p

n
i

∥∥∥∥∥∥

2

≤
∑

i

∥∥∥∥∥∥
xpni − λ−1

∑

j

pnjE
M1

M (pnj xp
n
i )

∥∥∥∥∥∥

2

2

≤ 4λ−1(‖x‖2/n2)
∑

j

‖pni ‖22 = 4λ−1‖x‖2/n2.

Similarly we get

∥∥∥∥∥∥

∑

i

pni η0p
n
i x− λ−1

∑

i,j

pnj η0E
M1

M (pnj xp
n
i )pni

∥∥∥∥∥∥

2

≤ 4λ−1‖x‖2/n2

as well.
But since yη0 = η0y, ∀ y ∈M ⊂M ∨Mop, we have

∑

i


∑

j

pnjE
M1

M (pnj xp
n
i )


 η0p

n
i =

∑

j

pnj η0

(
∑

i

EM1

M (pnj xp
n
i )pni

)

so by the above estimates we get

∥∥∥∥∥∥
x
∑

i

pni η0p
n
i −

∑

j

pnj η0p
n
j x

∥∥∥∥∥∥
< 8λ−1/2‖x‖/n→ 0.

Since A is a weak limit of {∑i p
n
i · pni }n it follows that [x,Aη0] = 0, thus

AK0 ⊂ K1. Similar calculations show that BK1 ⊂ K0 and A,B are thus
constructed. As we have previously shown, this was sufficient to ensure that H
has a nonzero vector commuting with S. Thus S has the property T relative
to T . Q.E.D.

We can now conclude with the following:

9.5. Theorem. Let N0 ⊂M0 be an extremal inclusion of type II1 factors such
that M0 ⊠

eN0

Mop
0 has the property T relative to M0∨Mop

0 . Then M ⊠
eN

Mop has
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the property T relative to M ∨Mop for any extremal inclusion N ⊂ M with
GN,M = GN0,M0

Proof. Since N0 ⊂ M0 is embedded smoothly in Nω
0 ⊂ Mω

0 and the two
subfactors have the same higher relative commutants, by 9.4 it follows that
Mω

0 ⊠
eNω

0

Mωop
0 has the property T relative to Mω

0 ∨Mωop
0 . But by [Po9], the in-

clusion of factors NG(R) ⊂MG(R), where G = GN0,M0 and R is the hyperfinite
II1 factors, is also embedded as a commuting square with same higher relative
commutants in Nω

0 ⊂ Mω
0 . Thus, by 9.2 it follows that MG(R) ⊠(MG(R))op

has the property T relative to MG(R) ∨ (MG(R))op. But NG(R) ⊂ MG(R)
is included in Nω ⊂ Mω as well ([Po9]), so Mω

⊠
eNω

Mωop has the property T

relative to Mω ∨Mωop, by 9.4. Then, again by 9.2 it follows that M ⊠
eN

Mop

has the property T relative to M ∨Mop. Q.E.D.

9.6. Definition. We say that a standard λ-lattice G has the property T if
M ⊠

eN

Mop has the property T relative to M ∨Mop for some (and thus all!)

subfactor N ⊂M with GN,M = G.

The following class of examples shows that our notion of property T agrees
with Kazhdan’s classical notion for groups.

9.7. Proposition. Let G be the standard λ-lattice of a locally trivial subfactor
associated to some faithful G-kernel on some type II1 factor. Then G has the
property T if and only if the group G has the property T.

Proof. Let P be the factor on which G acts and σ be the G-kernel on P . By
Section 3 and 9.6, G has the property T iff P ⊗̄P op ⋊σ⊗σop G has the property
T relative to P ⊗̄P op. By ([A-D], [Po8]) this is equivalent to G having the
property T. Q.E.D.

Let us next note some simple properties of this notion.

9.8. Proposition. (i) G is both amenable and has the property T if and only
if it has finite depth.
(ii) If G = G1×G1 (see part (b) in 5.6 for the definition) then G has the property
T if and only if both G1 and G2 have the property T.
(iii) G has the property T if and only if Gop has it.
(iv) If N ⊂M is an extremal inclusion {Mi}i is its tower, then GN,M has the
property T iff GMi,Mj has the property T for some i < j iff GMi,Mj has the
property T for all i < j.

Proof. To prove (i), let N ⊂M be an extremal inclusion such that GN,M = G.
Then G is both amenable and has the property T iff M ⊠

eN

Mop is both amenable

and has the property T relative to M ∨Mop. And by (4.1.4 in [Po8]) this is
further equivalent to [M ⊠

eN

Mop : M ∨Mop] < ∞. But by 4.6, [M ⊠
eN

Mop :

M ∨Mop] <∞ is equivalent to N ⊂M having finite depth.
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To prove (ii) let Nj ⊂ Mj, j = 1, 2, be such that GNj ,Mj = Gj and note that
GN,M = G where G = G1 × G2, N = N1⊗̄N2 ⊂ M1⊗̄M2 = M . Then (T ⊂
S) = (T1⊗̄T2 ⊂ S1⊗̄S2), where T ⊂ S, T1 ⊂ S1, T2 ⊂ S2 are the symmetric
enveloping inclusions associated withN ⊂M , N1 ⊂M1, respectivelyN2 ⊂M2.
If T ⊂ S has the relative property T and {xi}1≤i≤n ⊂ S is its critical set for
some ε > 0, then by [Po8] we may assume xi are in the algebraic tensor product
S1 ⊗ S2, i.e., xi =

∑
j x

i
j ⊗ yij, xij ∈ S1, yij ∈ S2. Let H1 be a S1-S1 bimodule

with a unit vector ξ1 ∈ H1 commuting with T1 and δ1-commuting with {xij}i,j .
Denote by H = H1⊗̄L2(S2), ξ = ξ1 ⊗ 1̂ and note that if δ1 is sufficiently small
then ξ ε-commutes with {xi}i. It follows that there exists ξ′ ∈ H, commuting
with S at distance Kε from ξ (see [Po8]), where K is a universal constant. But
then, if Kε < 1, the projection ξ′′ of ξ′ onto H1⊗C1 ≃ H1 is a nonzero vector
commuting with S1. This shows that S1 has the property T relative to T1.
Similarly, S2 has the property T relative to T2.
Conversely, if Si has property T relative to Ti for i = 1, 2 and H is a S-
S bimodule with ξ ∈ H a unit vector commuting with {xi ⊗ yj}i,j , where
{xi}i ⊂ S1, {yj}j ⊂ S2 are the critical sets for T1 ⊂ S1, respectively T2 ⊂ S2

then it follows that

‖uξ − ξu‖ < ε, ∀ u ∈ U(S1 ⊗ 1) ∪ U(1⊗ S2).

Thus,
‖(u⊗ v)ξ − ξ(u⊗ v)‖ < 2ε, ∀ u ∈ U(S1), v ∈ U(S2).

A simple convexity argument in Hilbert space, or Ryll-Nardjewski’s fixed point
theorem then shows that there exists ξ′ ∈ H, ‖ξ′−ξ‖ < 2ε, commuting with all
elements in the groupF = {u⊗v | u ∈ U(S1), v ∈ U(S2)}. Since spF ⊃ S1⊗S2

it follows that ξ′ commutes with S = S1⊗̄S2. Taking ε < 1/2, this shows that
H has a nonzero vector commuting with S, so S has the property T relative to
T .
To prove (iii) we only need to remark that the symmetric enveloping inclusions
associated to N ⊂ M and Nop ⊂ Mop are identical, so that 9.5 applies to get
that GN,M has T iff GNop,Mop (= (GN,M )op) has this property.
Finally, to prove (iv) recall from [Po8] that if V0 ⊂ V ⊂ U are inclusions of
factors and [V : V0] <∞ then U has the property T relative to V iff U has the
property T relative to V0. Thus, if N ⊂M is an extremal inclusion and we put
U = M ⊠

eN

Mop, V = M ∨Mop, V0 = M ∨Nop, V1 = M1 ∨Nop, it follows that

U has the property T relative to V iff U has the property T relative V1. But
V1 ⊂ U is a reduced of the symmetric enveloping inclusion for M ⊂ M1 (cf.
2.6) so, by [Po8] again, it has the relative property T iff M1∨Mop

1 ⊂M1 ⊠
eN

Mop
1

has relative propert T. Thus, GN,M has T iff GM,M1 has T. The rest follows
from 2.6 a). Q.E.D.

We do not have more examples of property T standard λ-lattices other than the
ones coming from groups (in 9.7) or the obvious ones that can be constructed
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by using jointly 9.7 and 9.8. For example, we do not know whether there exist
standard lattices with the property T that come from irreducible subfactors. As
for the minimal standard lattices generated by the Jones projections only, i.e.,
the so-called Temperley-Lieb-Jones standard lattices, we will prove below that
generically they do not have the property T. This will in fact be an imediate
corollary of the following more important consequence of 9.4:

9.9. Theorem. Let G be a standard λ-lattice and G0 be a sublattice of G. If
G0 has the property T then G has the property T. Conversely, if [G : G0] < ∞
and G has T then G0 has T.

Proof. By [Po7] there exists a commuting square

N ⊂ M

∪ ∪
N0 ⊂ M0

such that G0 = GN0,M0 and G = GN,M . By 9.4 and the definition of property
T for standard latices 9.6, it follows that if GN0,M0 has T then GN,M has this
property as well.

The last part is trivial, by [Po8], 2.7, 2.9 and 2.10. Q.E.D.

9.10. Corollary. If a standard λ-lattice G0 is a sublattice of an amenable
standard λ-lattice with infinite graph then G0 doesn’t have the property T. In
particular, if there exists an amenable subfactor of index λ−1 and infinite depth
then the Temperley-Lieb-Jones standard lattice of graph A∞ and index λ−1 does
not have the property T.

Proof. Trivial by 9.9. Q.E.D.

Let us end by mentioning a problem which at this point seems of interest:

9.11. Problem. Is it true that the property T for a standard lattice G only
depends on its graph, i.e., if G,G0 have the same (weighted) graph Γ and G has
T, does it follow that G0 has T ? Note that in all the examples of property T
standard lattices that we have in this paper (obtained by combining 9.7 with
9.8) this is indeed the case.

We strongly believe that this question has a positive answer. If this would
be indeed the case, then one would have a notion of property T for standard
graphs. We mention that in the combinatorial theory of groups there has been
a steady interest towards generalizing the property T from groups to more
general objects, in particular to (certain classes of) graphs. Since the standard
lattices do generalize discrete groups and certain classes of Kac algebras and
compact quantum groups ([Ba]), our definition of property T does provide a
generalization along these lines.
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Appendix

A.1. Relative Dixmier Property for Subfactors of Finite Index

We prove in this section a version for inclusions of type II1 factors with finite
Jones index of Dixmier’s classical result on the norm closure of ”averaging”
elements by unitaries, as follows:

Theorem. Let N ⊂M be an inclusion of factors of finite index. Then N ⊂M
has the relative Dixmier property, i.e., for any x ∈ M , we have con{uxu∗ | u
unitary element in N} ∩N ′ ∩M = {EN ′∩M (x)}.

Proof. For x ∈ M denote CN (x) = con{uxu∗ | u ∈ U(N)}. Since
EN ′∩M (uxu∗) = EN ′∩M (x), ∀u ∈ U(N), it follows that EN ′∩M (y) =
EN ′∩M (x), ∀y ∈ CN (x). Thus, if for some x ∈M we have CN (x)∩N ′ ∩M 6= ∅
then CN (x) ∩N ′ ∩M = {EN ′∩M (x)}.
By replacing if necessary x by x − EN ′∩M (x), it follows that it is sufficient to
check that 0 ∈ CN (x) for all x ∈M with EN ′∩M (x) = 0. Moreover, by arguing
like in the single algebra case ([D3]), it is sufficient to check this property for
selfadjoint such elements x.

We will proceed by contradiction, assuming there exists an element x = x∗ in
M , with EN ′∩M (x) = 0, such that 0 /∈ CN (x). By the Hahn-Banach theorem
there exists a functional Φ = Φ∗ ∈ M∗ and ε0 > 0 such that Φ(y) ≥ ε0, ∀y ∈
CN (x). It follows that Ψ(x) ≥ ε0, ∀Ψ ∈ co{Φ(u · u∗) | u ∈ U(N)} so that

Ψ(x) ≥ ε0, ∀Ψ ∈ CN (Φ)
def
= coσ(M∗,M){Φ(u · u∗) | u ∈ U(N)} and in fact

Ψ(y) ≥ ε0, ∀y ∈ CN (x) as well.

To get to a contradiction we first show that there exists Ψ in CN (Φ) which
can be written as Ψ = Ψ1−Ψ2, with Ψ1,2 positive functionals on M which are
scalar multiples of the trace τ when restricted to N . To this end let Φ = Φ1−Φ2

be the polar decomposition of Φ, into its positive and negative parts.

Let V = {F ⊂ (N)1 | F finite}. By Dixmier’s classical Theorem ∀F ∈
V , ∃uF = (uF1 , ..., u

F
nF

) ⊂ U(N) such that ‖TuF (y) − τ(y)1‖ < 1/|F |, ∀y ∈ F ,

where for X ∈ M we denote TuF (X)
def
= (nF )−1Σju

F
j Xu

F∗
j . Then let ω be

a free ultrafilter majorizing the filter V and for each i = 1, 2 define Ψi(X) =
limF→ω Φi(TuF (X)), the limit being taken in the usual Banach sense. Then
we clearly have Ψi|N = ciτ|N , where ci = Φi(1), i = 1, 2. Also, if we let Ψ =
Ψ1 − Ψ2 then Ψ(X) = limF→ω Φ(TuF (X)), ∀X ∈ M and since Φ(TuF ( )) ∈
CN (Φ), ∀F , it follows that Ψ belongs to CN (Φ). Thus Ψ = Ψ1 − Ψ2 satisfies
the desired conditions.

But by [PiPo1] we have EN (X) ≥ λX, ∀X ∈M+, so by applying Ψ1,2 to both
sides we get ciτ(X) = ciτ(EN (X)) = Ψi(EN (X)) ≥ λΨi(X), implying that
Ψi ≤ λ−1ciτ , i = 1, 2. Thus Ψ1,2 actually follow normal on all M and so does
Ψ. By Sakai’s Radon-Nykodim type theorem there exists a = a∗ ∈ M such
that Ψ(X) = τ(aX), ∀X ∈ M . Putting this into the relation that Ψ satisfies
gives τ(ya) ≥ ε0, ∀y ∈ CN (x).
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In particular, from the last relation and the trace property we get τ(xu∗au) =
τ(uxu∗a) ≥ ε0. By taking convex combinations of elements of the form u∗au
and weak limits and using that cow{u∗au | u unitary element in N} ∩ N ′ ∩
M = {EN ′∩M (a)} (cf. [Po1]), we deduce that τ(xEN ′∩M (a)) ≥ ε0. But
τ = τ ◦ EN ′∩M and, since EN ′∩M (xEN ′∩M (a)) = EN ′∩M (x)EN ′∩M (a) and x
was assumed to satisfy EN ′∩M (x) = 0, we obtain 0 ≥ ε0 a contradiction which
ends the proof of the theorem. Q.E.D.

A.2. A generalized version of Connes’ perturbation theorem

In [C1] A. Connes proved a technical result about Hilbert norm perturbations
of square integrable operators in semifinite von Neumann algebras.

We will use here a slight modification of his argument (essentially, of his ”joint
distribution trick”) to derive the following version of his result, needed in the
proof of Theorem 5.4:

A.2.1. Theorem. Let P be a semifinite von Neumann algebra with a normal
semifinite faithful trace denoted by Tr. Let Φ be a positive map on P satisfying
the conditions:

(1) Φ(1) = 1, Tr ◦ Φ ≤ Tr.

(2) sup{‖Φ(x)‖2,Tr | x ∈ P, ‖x‖2,Tr ≤ 1} ≤ 1.

Let δ > 0 be such that δ < (5)−4 and b ∈ P+ satisfy the conditions:

(3) ‖b‖2,Tr = 1, ‖Φ(b)‖2,Tr ≥ 1− δ.
(4) ‖b− Φ(b)‖2,Tr < δ.

Then there exists s > 0 such that ‖es(b)− Φ(es(b))‖2,Tr < δ1/4‖es(b)‖.

Proof. Like in [C1], let X = R2
+ \ {0} and H0(x, y) = x, H1(x, y) = y. As on

page 77 in [C1] it then follows that

µ(A0 ×A1)
def
= Tr(eA0(b)Φ(eA1(b)))

for Ai ⊂ R+ Borel sets such that either 0 6= Ā0 or 0 6= Ā1, defines a Radon
measure µ on X , which satisfies the properties:

a) ‖f(Hi)‖1,µ = Tr(Φi(|f |(b))) (respectively ‖f(Hi)‖22,µ = Tr(Φi(|f |2(b))) ≤
‖f(b)‖22,Tr), for all f : [0,∞) → C Borel function with f(0) = 0 and f(b) ∈
L1(P,Tr) (respectively f(b) ∈ L2(P,Tr)), i = 0, 1, where Φ0 = id,Φ1 = Φ.

b)

∫

X

f0(H0)f1(H1)dµ = Tr(f0(b))Φ(f̄1(b))), for all fi : [0,∞)→ C Borel with

fi(0) = 0 and fi(b) ∈ L2(P,Tr), i = 0, 1.

c) ‖f0(H0)− f1(H1)‖2,µ ≥ ‖f0(b)− Φ(f1(b))‖2,Tr, ∀ fi as in b).

d) ‖H0 −H1‖22,µ = Tr(b2) + Tr(Φ(b2))− 2Tr(bΦ(b)) ≤ 6δ.

Indeed, a) and b) are clear by the proof of I.1 in [C1] and the definition of µ.
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Further on, by a), b), (1), and Kadison’s inequality we get:

‖f0(H0)− f1(H1)‖22,µ = ‖f0(H0)‖22,µ + ‖f1(H1)‖22,µ
− 2Re

∫

X

f0(H0)f1(H1)dµ

= Tr(f0(b)∗f0(b) + Tr(Φ(f1(b)∗f1(b)))

− 2Re Tr(f0(b))Φ(f1(b)))

≥ Tr(f0(b)∗f0(b0))

+ Tr(Φ(f1(b))∗Φ(f1(b)))

− 2Re Tr(f0(b))Φ(f1(b))∗)

= ‖f0(b0)− Φ(f1(b))‖22,Tr.

This proves c). Then d) is clear by noticing that the hypothesis and the Cauchy-
Schwartz inequality imply:

Tr(b2) + Tr(Φ(b2))− 2Tr(bΦ(b))

≤ Tr(b2) + Tr(b2)− 2Tr(bΦ(b))

= 2− 2Tr(bΦ(b))

≤ 2− 2Tr(b2) + 2δ

≤ 2(1− (1 − δ)2) + 2δ ≤ 6δ

Remark now that we have, like in proof of 1.2.6 in [C1], the estimate:

∫

R∗
+

‖et1/2(H0)− et1/2(H1)‖22,µdt

= ‖H2
0 −H2

1‖1,µ ≤ ‖H0 −H1‖2,µ‖H0 +H1‖2,µ.

But d) implies ‖H0−H1‖2,µ ≤ (6δ)1/2 and a) implies ‖H0+H1‖2,µ ≤ ‖H0‖2,µ+
‖H1‖2,µ ≤ ‖b‖2,Tr + ‖b‖2,Tr = 2. Thus, by applying c) to the function f =
χ[t1/2,∞), for each t > 0, we obtain

∫

R∗
+

‖et1/2(b)− Φ(et1/2(b))‖22,Trdt

≤ 2(6δ)1/2 = 2(6δ)1/2
∫

R∗
+

‖et1/2(b0)‖22,Trdt.(∗)

This implies that if we denote by D the set of all t > 0 for which

g(t)
def
= ‖et1/2(b0)− Φ(et1/2(b))‖22,Trdt < δ1/4‖et1/2(b)‖22,Tr
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then ∫

D

‖et1/(b)‖22,Trdt ≥ 1− 5δ1/4.

Indeed, for if
∫
D ‖et1/2(b0)‖22,Trdt < 1 − 5δ1/4, by taking into account that

g(t) ≥ δ1/4‖et1/2(b0)‖22,Tr for t ∈ R∗+ \D, we would get:

∫

R∗
+

g(t)dt ≥
∫

R∗
+\D

g(t)dt

≥ δ1/4
∫

R∗
+\D
‖et1/2(b0)‖22,Trdt

≥ 5δ1/2 > 2(6δ)1/2.

which is in contradiction with (∗).
In particular, since δ < 5−4, we have 1 − 5δ1/4 > 0 so that D 6= ∅. Thus, any
s > 0 with s2 ∈ D will satisfy the condition in the conclusion. Q.E.D.
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