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Abstract. The Abel–Jacobi maps of the families of elliptic quintics
and rational quartics lying on a smooth cubic threefold are studied. It
is proved that their generic fiber is the 5-dimensional projective space
for quintics, and a smooth 3-dimensional variety birational to the
cubic itself for quartics. The paper is a continuation of the recent work
of Markushevich–Tikhomirov, who showed that the first Abel–Jacobi
map factors through the moduli component of stable rank 2 vector
bundles on the cubic threefold with Chern numbers c1 = 0, c2 = 2
obtained by Serre’s construction from elliptic quintics, and that the
factorizing map from the moduli space to the intermediate Jacobian
is étale. The above result implies that the degree of the étale map is
1, hence the moduli component of vector bundles is birational to the
intermediate Jacobian. As an application, it is shown that the generic
fiber of the period map of Fano varieties of degree 14 is birational to
the intermediate Jacobian of the associated cubic threefold.

1991 Mathematics Subject Classification: 14J30,14J60,14J45

Introduction

Clemens and Griffiths studied in [CG] the Abel–Jacobi map of the family of
lines on a cubic threefold X . They represented its intermediate Jacobian J 2(X)
as the Albanese variety AlbF (X) of the Fano surface F (X) parametrizing lines
on X and described its theta divisor. From this description, they deduced the
Torelli Theorem and the non-rationality of X . Similar results were obtained
by Tyurin [Tyu] and Beauville [B].
One can easily understand the structure of the Abel–Jacobi maps of some
other familes of curves of low degree on X (conics, cubics or elliptic quartics),
in reducing the problem to the results of Clemens–Griffiths and Tyurin. The
first non trivial cases are those of rational normal quartics and of elliptic normal
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quintics. We determine the fibers of the Abel–Jacobi maps of these families of
curves, in continuing the work started in [MT].
Our result on elliptic quintics implies that the moduli space of instanton vector
bundles of charge 2 on X has a component, birational to J2(X). We con-
jecture that the moduli space is irreducible, but the problem of irreducibility
stays beyond the scope of the present article. As far as we know, this is the
first example of a moduli space of vector bundles which is birational to an
abelian variety, different from the Picard or Albanese variety of the base. The
situation is also quite different from the known cases where the base is P3 or
the 3-dimensional quadric. In these cases, the instanton moduli space is ir-
reducible and rational at least for small charges, see [Barth], [ES], [H], [LP],
[OS]. Remark, that for the cubic X , two is the smallest possible charge, but
the moduli space is not even unirational. There are no papers on the geome-
try of particular moduli spaces of vector bundles for other 3-dimensional Fano
varieties (for some constructions of vector bundles on such varieties, see [G1],
[G2], [B-MR1], [B-MR2], [SW], [AC]).
The authors of [MT] proved that the Abel–Jacobi map Φ of the family of elliptic
quintics lying on a general cubic threefold X factors through a 5-dimensional
moduli component MX of stable rank 2 vector bundles E on X with Chern
numbers c1 = 0, c2 = 2. The factorizing map φ sends an elliptic quintic C ⊂ X
to the vector bundle E obtained by Serre’s construction from C (see Sect. 2).
The fiber φ−1([E ]) is a 5-dimensional projective space in the Hilbert scheme

Hilb5n
X , and the map Ψ from the moduli space to the intermediate Jacobian

J2(X), defined by Φ = Ψ ◦ φ, is étale on the open set representing (smooth)
elliptic quintics which are not contained in a hyperplane (Theorem 2.1).
We improve the result of [MT] in showing that the degree of the above étale
map is 1. Hence MX is birational to J2(X) and the generic fiber of Φ is just
one copy of P5 (see Theorem 3.2 and Corollary 3.3). The behavior of the Abel–
Jacobi map of elliptic quintics is thus quite similar to that of the Abel–Jacobi
map of divisors on a curve, where all the fibers are projective spaces. But we
prove that the situation is very different in the case of rational normal quartics,
where the fiber of the Abel–Jacobi map is a non-rational 3-dimensional variety:
it is birationally equivalent to the cubic X itself (Theorem 5.2).
The first new ingredient of our proofs, comparing to [MT], is another interpre-
tation of the vector bundles E from MX . We represent the cubic X as a linear
section of the Pfaffian cubic in P14, parametrizing 6× 6 matrices M of rank 4,
and realize E∨(−1) as the restriction of the kernel bundle M 7→ kerM ⊂ C

6

(Theorem 2.2). The kernel bundle has been investigated by A. Adler in his Ap-
pendix to [AR]. We prove that it embedsX into the GrassmannianG = G(2, 6),
and the quintics C ∈ φ−1([E ]) become the sections of X by the Schubert vari-
eties σ11(L) for all hyperplanes L ⊂ C6. We deduce that for any line l ⊂ X ,
each fiber of φ contains precisely one pencil P1 of reducible curves of the form
C ′ + l (Lemma 3.4). Next we use the techniques of Hartshorne–Hirschowitz
[HH] for smoothing the curves of the type “a rational normal quartic plus one
of its chords in X” (see Sect. 4) to show that there is a 3-dimensional family
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of such curves in a generic fiber of φ and that the above pencil P1 for a generic
l contains curves C ′ + l of this type (Lemma 4.6, Corollary 4.7).
The other main ingredient is the parametrization of J2(X) by minimal sec-
tions of the 2-dimensional conic bundles of the form Y (C2) = π−1

l (C2), where
πl : Blowupl(X)−→P2 is the conic bundle obtained by projectingX from a fixed
line l, and C2 is a generic conic in P2 (see Sect. 3). The standard Wirtinger
approach [B] parametrizes J2(X) by reducible curves which are sums of compo-
nents of reducible fibers of πl. Our approach, developed in [I] in a more general
form, replaces the degree 10 sums of components of the reducible fibers of the
surfaces Y (C2) by the irreducible curves which are sections of the projection
Y (C2)−→C2 with a certain minimality condition. This gives a parametriza-
tion of J2(X) by a family of rational curves, each one of which is projected
isomorphically onto some conic in P2. It turns out, that these rational curves
are normal quartics meeting l at two points. They form a unique pencil P1 in
each fiber of the Abel–Jacobi map of rational normal quartics. Combining this
with the above, we conclude that the curves of type C ′ + l form a unique pencil
in each fiber of Φ, hence the fiber is one copy of P5.
In conclusion, we provide a description of the moduli space of Fano varieties
V14 as a birationally fibered space over the moduli space of cubic 3-folds with
the intermediate Jacobian as a fiber (see Theorem 5.8). The interplay between
cubics and varieties V14 is exploited several times in the paper. We use the
Fano–Iskovskikh birationality between X and V14 to prove Theorem 2.2 on
kernel bundles, and the Tregub–Takeuchi one (see Sect. 1) to study the fiber
of the Abel–Jacobi map of the family of rational quartics (Theorem 5.2) and
the relation of this family to that of normal elliptic quintics (Proposition 5.6).

Acknowledgements. The authors are grateful to the referee for his remarks
which allowed to improve the exposition. The second author acknowledges
with pleasure the hospitality of the MPIM at Bonn, where he completed the
work on the paper.

1. Birational isomorphisms between V3 and V14

There are two constructions of birational isomorphisms between a nonsingular
cubic threefold V3 ⊂ P4 and the Fano variety V14 of degree 14 and of index 1,
which is a nonsingular section of the Grassmannian G(2, 6) ⊂ P14 by a linear
subspace of codimension 5. The first one is that of Fano–Iskovskikh, and it
gives a birational isomorphism whose indeterminacy locus in both varieties
is an elliptic curve together with some 25 lines; the other is due to Tregub–
Takeuchi, and its indeterminacy locus is a rational quartic plus 16 lines on the
side of V3, and 16 conics passing through one point on the side of V14. We will
sketch both of them.

Theorem 1.1 (Fano–Iskovskikh). Let X = V3 be a smooth cubic threefold.
Then X contains a smooth projectively normal elliptic quintic curve. Let C be
such a curve. Then C has exactly 25 bisecant lines li ⊂ X, i = 1, ..., 25, and
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there is a unique effective divisor M ∈| OX (5− 3C) | on X, which is a reduced
surface containing the li. The following assertions hold:
(i) The non-complete linear system | OX(7 − 4C) | defines a birational map
ρ : X → V where V = V14 is a Fano 3-fold of index 1 and of degree 14.
Moreover ρ = σ ◦ κ ◦ τ where σ : X ′ → X is the blow-up of C, κ : X ′ → X+ is
a flop over the proper transforms l′i ⊂ X ′ of the li, i = 1, ..., 25, and τ : X+ → V
is a blowdown of the proper transform M+ ⊂ X+ of M onto an elliptic quintic
B ⊂ V . The map τ sends the transforms l+i ⊂ X+ of li to the 25 secant lines
mi ⊂ V , i = 1, ..., 25 of the curve B.
(ii) The inverse map ρ−1 is defined by the system | OV (3 − 4B) |. The excep-
tional divisor E′ = σ−1(C) ⊂ X ′ is the proper transform of the unique effective
divisor N ∈| OV (2 − 3B) |.

For a proof , see [Isk1], [F], or [Isk-P], Ch. 4.

Theorem 1.2 (Tregub–Takeuchi). Let X be a smooth cubic threefold. Then
X contains a rational projectively normal quartic curve. Let Γ be such a curve.
Then Γ has exactly 16 bisecant lines li ⊂ X, i = 1, ..., 16,and there is a unique
effective divisor M ∈| OX(3−2Γ) | on X, which is a reduced surface containing
the li. The following assertions hold:
(i) The non-complete linear system | OX (8 − 5Γ) | defines a birational map
χ : X → V where V is a Fano 3-fold of index 1 and of degree 14. Moreover
χ = σ ◦ κ ◦ τ , where σ : X ′ → X is the blowup of Γ, κ : X ′ → X+ is a flop
over the proper transforms l′i ⊂ X ′ of li, i = 1, ..., 16, and τ : X+ → V is a
blowdown of the proper transform M+ ⊂ X+ of M to a point P ∈ V . The
map τ sends the transforms l+i ⊂ X+ of li to the 16 conics qi ⊂ V , i = 1, ..., 16
which pass through the point P .
(ii) The inverse map χ−1 is defined by the system | OV (2 − 5P ) |. The excep-
tional divisor E′ = σ−1(Γ) ⊂ X ′ is the proper transform of the unique effective
divisor N ∈| OV (3 − 8P ) |.
(iii) For a generic point P on any nonsingular V14, this linear system defines
a birational isomorphism of type χ−1.

Proof. For (i), (ii), see [Tak], Theorem 3.1, and [Tre]. For (iii), see [Tak],
Theorem 2.1, (iv). See also [Isk-P], Ch. 4.

1.3. Geometric description. We will briefly describe the geometry of the
first birational isomorphism between V3 and V14 following [P].
Let E be a 6-dimensional vector space over C. Fix a basis e0, . . . , e5 for E,
then ei ∧ ej for 0 ≤ i < j ≤ 5 form a basis for the Plücker space of 2-spaces
in E, or equivalently, of lines in P

5 = P(E). With Plücker coordinates xij , the
embedding of the Grassmannian G = G(2, E) in P14 = P(∧2E) is precisely the
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locus of rank 2 skew symmetric 6 × 6 matrices

M =

















0 x01 x02 x03 x04 x05

−x01 0 x12 x13 x14 x15

−x02 −x12 0 x23 x24 x25

−x03 −x13 −x23 0 x34 x35

−x04 −x14 −x24 −x34 0 x45

−x05 −x15 −x25 −x35 −x45 0

















.

There are two ways to associate to these data a 13-dimensional cubic. The
Pfaffian cubic hypersurface Ξ ⊂ P14 is defined as the zero locus of the 6 × 6
Pfaffian of this matrix; it can be identified with the secant variety of G(2, E),
or else, it is the locus where M has rank 4. The other way is to consider the
dual variety Ξ′ = G∨ ⊂ P14∨ of G; it is also a cubic hypersurface, which is
nothing other than the secant variety of the Grassmannian G′ = G(2, E∨) ⊂
P(∧2E∨) = P14∨.
As it is classically known, the generic cubic threefold X can be represented as
a section of the Pfaffian cubic by a linear subspace of codimension 10; see also
a recent proof in [AR], Theorem 47.3. There are ∞5 essentially different ways
to do this. Beauville and Donagi [BD] have used this idea for introducing the
symplectic structure on the Fano 4-fold (parametrizing lines) of a cubic 4-fold.
In their case, only special cubics (a divisorial family) are sections of the Pfaffian
cubic, so they introduced the symplectic structure on the Fano 4-folds of these
special cubics, and obtained the existence of such a structure on the generic
one by deformation arguments.
For any hyperplane section H ∩G of G, we can define rkH as the rank of the
antisymmetric matrix (αij), where

∑

αijxij = 0 is the equation of H . So, rkH
may take the values 2,4 or 6. If rkH = 6, then H ∩ G is nonsingular and for
any p ∈ P5 = P(E), there is the unique hyperplane Lp ⊂ P5 = P(E), such that
q ∈ H ∩ G, p ∈ lq ⇐⇒ lq ⊂ Lp. Here lq denotes the line in P5 represented by
q ∈ G. (This is a way to see that the base of the family of 3-dimensional planes
on the 7-fold H ∩G is P5.)
The rank of H is 4 if and only if H is tangent to G at exactly one point z, and
in this case, the hyperplane Lp is not defined for any p ∈ lz: we have for such
p the equivalence p ∈ lx ⇐⇒ x ∈ H . Following Puts, we call the line lz the
center of H ; it will be denoted cH .
In the third case, when rkH = 2, H ∩ G is singular along the whole Grass-
mannian subvariety G(2, 4) = G(2, EH), where EH = ker(αij) is of dimension
4. We have x ∈ H ⇐⇒ lx ∩ P(EH) 6= ∅.
This description identifies the dual of G with Ξ′ = {H | rkH ≤ 4} = {H |
Pf((αij)) = 0}, and its singular locus with {EH}rkH=2 = G(4, E).
Now, associate to any nonsingular V14 = G ∩ Λ, where Λ = H1 ∩ H2 ∩ H3 ∩
H4 ∩H5, the cubic 3-fold V3 by the following rule:

V14 = G ∩ Λ 7→ V3 = Ξ′ ∩ Λ∨,(1)
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where Λ∨ =< H∨

1 , H
∨

2 , H
∨

3 , H
∨

4 , H
∨

5 >, H∨

i denotes the orthogonal complement
of Hi in P14∨, and the angular brackets the linear span. One can prove that V3

is also nonsingular.
According to Fano, the lines lx represented by points x ∈ V14 sweep out an
irreducible quartic hypersurface W , which Fano calls the quartic da Palatini.
W coincides with the union of centers of all H ∈ V3. One can see, that W is
singular along the locus of foci p of Schubert pencils of lines on G

σ43(p, h) = {x ∈ G | p ∈ lx ⊂ h}

which lie entirely in V14, where h denotes a plane in P5(depending on p). The
pencils σ43 are exactly the lines on V14, so SingW is identified with the base of
the family of lines on V14, which is known to be a nonsingular curve of genus
26 for generic V14 (see, e. g. [M] for the study of the curve of lines on V14,
and Sections 50, 51 of [AR] for the study of SingW without any connection to
V14).
The construction of the birational isomorphism ηL : V14 99K V3 depends on the
choice of a hyperplane L ⊂ P5. Let

φ : V14 99K W ∩ L, x 7→ L ∩ lx , ψ : V3 99K W ∩ L, H∨ 7→ L ∩ cH .

These two maps are birational, and ηL is defined by

ηL = ψ−1 ◦ φ.(2)

The locus, on which ηL is not an isomorphism, consists of points where either φ
or ψ is not defined or is not one-to-one. The indeterminacy locus B of φ consists
of all the points x such that lx ⊂ L, that is, B = G(2, L) ∩ H1 ∩ . . . ∩ H5.
For generic L, it is obviously a smooth elliptic quintic curve in V14, and it
is this curve that was denoted in Theorem 1.1 by the same symbol B. The
indeterminacy locus of ψ is described in a similar way. We summarize the
above in the following statement.

Proposition 1.4. Any nonsingular variety V14 determines a unique nonsin-
gular cubic V3 by the rule (1). Conversely, a generic cubic V3 can be obtained
in this way from ∞5 many varieties V14.
For each pair (V14, V3) related by (1), there is a family of birational maps ηL :
V14 99K V3, defined by (2) and parametrized by points of the dual projective
space P5∨, and the structure of ηL for generic L is described by Theorem 1.1.
The smooth elliptic quintic curve B (resp. C) of Theorem 1.1 is the locus of
points x ∈ V14 such that lx ⊂ L (resp. H∨ ∈ V3 such that cH ⊂ L).

Definition 1.5. We will call two varieties V3, V14 associated (to each other),
if V3 can be obtained from V14 by the construction (1).

1.6. Intermediate Jacobians of V3, V14. Both constructions of birational
isomorphisms give the isomorphism of the intermediate Jacobians of generic
varieties V3, V14, associated to each other. This is completely obvious for the
second construction: it gives a birational isomorphism, which is a composi-
tion of blowups and blowdowns with centers in nonsingular rational curves or
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points. According to [CG], a blowup σ : X̃−→X of a threefold X with a
nonsingular center Z can change its intermediate Jacobian only in the case
when Z is a curve of genus ≥ 1, and in this case J2(X̃) ' J2(X) × J(Z) as
principally polarized abelian varieties, where J2 (resp. J) stands for the in-
termediate Jacobian of a threefold (resp. for the Jacobian of a curve). Thus,
the Tregub–Takeuchi birational isomorphism does not change the intermediate
Jacobian. Similar argument works for the Fano–Iskovskikh construction. It
factors through blowups and blowdowns with centers in rational curves, and
contains in its factorization exactly one blowup and one blowdown with nonra-
tional centers, which are elliptic curves. So, we have J2(V3)×C ' J2(V14)×B
for some elliptic curves C,B. According to Clemens–Griffiths, J2(V3) is irre-
ducible for every nonsingular V3, so we can simplify the above isomorphism1

to obtain J2(V3) ' J2(V14); we also obtain, as a by-product, the isomorphism
C ' B.

Proposition 1.7. Let V = V14, X = V3 be a pair of smooth Fano varieties
related by either of the two birational isomorphisms of Fano–Iskovskikh or of
Tregub–Takeuchi. Then J2(X) ' J2(V ), V,X are associated to each other and
related by a birational isomorphism of the other type as well.

Proof. The isomorphism of the intermediate Jacobians was proved in the pre-
vious paragraph. Let J2(V ′) = J2(V ′′) = J . By Clemens-Griffiths [CG] or
Tyurin [Tyu], the global Torelli Theorem holds for smooth 3-dimensional cu-
bics, so there exists the unique cubic threefold X such that J2(X) = J as
p.p.a.v. Let X ′ and X ′′ be the unique cubics associated to V ′ and V ′′. Since
J2(X ′) = J2(V ′) = J = J2(V ′′) = J2(X ′′), then X ′ ' X ' X ′′.
Let now V ′ and V ′′ be associated to the same cubic threefold X , and let
J2(X) = J . Then by the above J2(V ′) = J2(X) = J2(V ′′).
Let X , V be related by, say, a Tregub–Takeuchi birational isomorphism. By
Proposition 1.4, V contains a smooth elliptiic quintic curve and admits a bi-
rational isomorphism of Fano–Iskovskikh type with some cubic X ′. Then, as
above, X ' X ′ by Global Torelli, and X , V are associated to each other by
the definition of the Fano–Iskovskikh birational isomorphism. Conversely, if
we start from the hypothesis that X , V are related by a Fano–Iskovskikh bi-
rational isomorphism, then the existence of a Tregub–Takeuchi one from V to
some cubic X ′ is affirmed by Theorem 1.2, (iii). Hence, again by Global Torelli,
X ' X ′ and we are done.

1It is an easy exercise to see that if an abelian variety decomposes into the direct product of
two irreducible abelian varieties of different dimensions, then such a decomposition is unique
up to isomorphism. The referee pointed out to us the reference to Shioda’s counterexample
[Fac. Sc. Univ. Tokio 24, 11-21(1977)] of three nonisomorphic elliptic curves C1, C2, C3

such that C1 × C2 ' C1 × C3, which shows that the assumption of different dimensions is
essential.
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2. Abel–Jacobi map and vector bundles on a cubic threefold

Let X be a smooth cubic threefold. The authors of [MT] have associated to
every normal elliptic quintic curve C ⊂ X a stable rank 2 vector bundle E = EC ,
unique up to isomorphism. It is defined by Serre’s construction:

0−→OX−→E(1)−→IC(2)−→0 ,(3)

where IC = IC,X is the ideal sheaf of C in X . Since the class of C modulo
algebraic equivalence is 5l, where l is the class of a line, the sequence (3) implies
that c1(E) = 0, c2(E) = 2l. One sees immediately from (3) that det E is trivial,
and hence E is self-dual as soon as it is a vector bundle (that is, E∨ ' E). See
[MT, Sect. 2] for further details on this construction.

Let H∗ ⊂ Hilb5n
X be the open set of the Hilbert scheme parametrizing normal

elliptic quintic curves in X , and M ⊂MX(2; 0, 2) the open subset in the moduli
space of vector bundles on X parametrizing those stable rank 2 vector bundles
which arise via Serre’s construction from normal elliptic quintic curves. Let
φ∗ : H∗−→M be the natural map. For any reference curve C0 of degree 5
in X , let Φ∗ : H∗−→J2(X), [C] 7→ [C − C0], be the Abel–Jacobi map. The
following result is proved in [MT].

Theorem 2.1. H∗ and M are smooth of dimensions 10 and 5 respectively.
They are also irreducible for generic X. There exist a bigger open subset H ⊂
Hilb5n

X in the nonsingular locus of Hilb5n
X containing H∗ as a dense subset and

extensions of φ∗,Φ∗ to morphisms φ,Φ respectively, defined on the whole of H,
such that the following properties are verified:
(i) φ is a locally trivial fiber bundle in the étale topology with fiber P5. For
every [E ] ∈ M , we have h0(E(1)) = 6, and φ−1([E ]) ⊂ H is nothing but the P

5

of zero loci of all the sections of E(1).
(ii) The fibers of Φ are finite unions of those of φ, and the map Ψ : M−→J 2(X)
in the natural factorization Φ = Ψ ◦ φ is a quasi-finite étale morphism.

Now, we will give another interpretation of the vector bundles EC . Let us
represent the cubic X = V3 as a section of the Pfaffian cubic Ξ′ ⊂ P14∨

and
keep the notation of 1.3. Let K be the kernel bundle on X whose fiber at
M ∈ X is kerH . Thus K is a rank 2 vector subbundle of the trivial rank 6
vector bundle EX = E ⊗C OX . Let i : X−→P

14 be the composition Pl ◦Cl,
where Cl : X−→G(2, E) is the classifying map of K ⊂ EX , and Pl : G(2, E) ↪→
P(∧2E) = P14 the Plücker embedding.

Theorem 2.2. For any vector bundle E obtained by Serre’s construction start-
ing from a normal elliptic quintic C ⊂ X, there exists a representation of X as
a linear section of Ξ′ such that E(1) ' K∨ and all the global sections of E(1) are
the images of the constant sections of E∨

X via the natural map E∨

X−→K∨. For
generic X, E, such a representation is unique modulo the action of PGL(6) and
the map i can be identified with the restriction v2|X of the Veronese embedding
v2 : P4−→P14 of degree 2.
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Proof. Let C ⊂ X be a normal elliptic quintic. By Theorem 1.1, there exists
a V14 = G ∩ Λ together with a birational isomorphism X 99K V14. Proposition
1.7 implies that X and V14 are associated to each other. By Proposition 1.4,
we have C = {H∨ ∈ X | cH ⊂ L} = Cl−1(σ11(L)), where σ11(L) denotes
the Schubert variety in G parametrizing the lines c ⊂ P(E) contained in L.
It is standard that σ11(L) is the scheme of zeros of a section of the dualized
universal rank 2 vector bundle S∨ on G. Hence C is the scheme of zeros of a
section of K∨ = Cl∗(S∨). Hence K∨ can be obtained by Serre’s construction
from C, and by uniqueness, K∨ ' EC(1).
By Lemma 2.1, c) of [MT], h0(EC(1)) = 6, so, to prove the assertion about
global sections, it is enough to show the injectivity of the natural map E∨ =
H0(E∨

X )−→H0(K∨). The latter is obvious, because the quartic da Palatini is
not contained in a hyperplane. Thus we have E∨ = H0(K∨).
For the identification of i with v2|X , it is sufficient to show that
i is defined by the sections of O(2) in the image of the map ev :
Λ2H0(E(1))−→H0(det(E(1))) = H0(O(2)) and that ev is an isomorphism.
This is proved in the next lemmas. The uniqueness modulo PGL(6) is proved
in Lemma 2.7.

Lemma 2.3. Let Pf2 : P14
99K P14 be the Pfaffian map, sending a skew-

symmetric 6× 6 matrix M to the collection of its 15 quadratic Pfaffians. Then
Pf22 = idP14 , the restriction of Pf2 to P14 \ Ξ is an isomorphism onto P14 \G,
and i = Pf2 |X .

Thus Pf2 is an example of a Cremona quadratic transformation. Such trans-
formations were studied in [E-SB].

Proof. Let (ei), (εi) be dual bases of E,E∨ respectively, and (eij = ei∧ej), (εij)
the corresponding bases of ∧2E, ∧2E∨. Identify M in the source of Pf2 with a
2-formM =

∑

aijεij . Then Pf2 can be given by the formula Pf2(M) = 1
2!4!M∧

M e123456, where e123456 = e1 ∧ . . . ∧ e6, and stands for the contraction of
tensors. Notice that Pf2 sends 2-forms of rank 6,4, resp. 2 to bivectors of rank
6,2, resp. 0. Hence Pf2 is not defined on G′ and contracts Ξ′ \G′ into G. In
fact, the Pfaffians of a 2-form M of rank 4 are exactly the Plücker coordinates
of kerM , which implies i = Pf2 |X .
In order to iterate Pf2, we have to identify its source P(∧2E∨) with its target
P(∧2E). We do it in using the above bases: εij 7→ eij . Let N = Pf22(M) =
∑

bijεij . Then each matrix element bij = bij(M) is a polynomial of degree 4
in (akl), vanishing on Ξ′. Hence it is divisible by the equation of Ξ′, which is

the cubic Pfaffian Pf(M). We can write bij = b̃ij Pf(M), where b̃ij are some
linear forms in (akl). Testing them on a collection of simple matrices with only
one variable matrix element, we find the answer: Pf2(M) = Pf(M)M . Hence
Pf2 is a birational involution.
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Lemma 2.4. Let l ⊂ V3 be a line. Then i(l) is a conic in P14, and the lines of
P5 parametrized by the points of i(l) sweep out a quadric surface of rank 3 or
4.

Proof. The restriction of Cl to the lines in V3 is written out in [AR] on pages
170 (for a non-jumping line of K, formula (49.5)) and 171 (for a jumping line).
These formulas imply the assertion; in fact, the quadric surface has rank 4 for
a non-jumping line, and rank 3 for a jumping one.

Lemma 2.5. The map i is injective.

Proof. Let Ξ̃ be the natural desingularization of Ξ′ parametrizing pairs (M, l),
where M is a skew-symmetric 6 × 6 matrix and l is a line in the projectivized
kernel of M . We have Ξ̃ = P(∧2(EX/S)), where S is the tautological rank 2

vector bundle on G = G(2, 6). Ξ̃ has two natural projections p : Ξ̃−→G ⊂ P14

and q : Ξ̃−→Ξ′ ⊂ P14∨. The classifying map of K is just Cl = pq−1. q is
isomorphic over the alternating forms of rank 4, so q−1(V3) ' V3. p is at least
bijective on q−1(V3). In fact, it is easy to see that the fibers of p can only
be linear subspaces of P

14. Indeed, the fiber of p is nothing but the family of
matrices M whose kernel contains a fixed plane, hence it is a linear subspace P5

of P14∨

, and the fibers of p|q−1(V3) are P5 ∩ V3. As V3 does not contain planes,
the only possible fibers are points or lines. By the previous lemma, they can
be only points, so i is injective.

Lemma 2.6. i is defined by the image of the map ev : Λ2H0(E(1)) −→
H0(det(E(1))) = H0(O(2)) considered as a linear subsystem of |O(2)|.

Proof. Let (xi = εi) be the coordinate functions on E, dual to the basis (ei).
The xi can be considered as sections of K∨. Then xi ∧ xj can be considered
either as an element xij of ∧2E∨ = ∧2H0(K∨), or as a section sij of ∧2K∨. For
a point x ∈ V3, the Plücker coordinates of the corresponding plane Kx ⊂ E are
xij(ν) for a non zero bivector ν ∈ ∧2Kx. By construction, this is the same as
sij(x)(ν). This proves the assertion.

Lemma 2.7. Let X−̃→Ξ′ ∩ Λ1, X−̃→Ξ′ ∩ Λ2 be two representations of X as
linear sections of Ξ′, K1,K2 the corresponding kernel bundles on X. Assume
that K1 ' K2. Then there exists a linear transformation A ∈ GL(E∨) = GL6

such that Ξ′ ∩∧2A(Λ1) and Ξ′ ∩Λ2 have the same image under the classifying
maps into G. The family of linear sections Ξ′∩Λ of the Pfaffian cubic with the
same image in G is a rationally 1-connected subvariety of G(5, 15), generically
of dimension 0.

Proof. The representationsX−̃→Ξ′∩Λ1, X−̃→Ξ′∩Λ2 define two isomorphisms
f1 : E∨−→H0(K1), f2 : E∨−→H0(K2). Identifying K1,K2, define A = f−1

2 ◦f1.
Assume that Λ = ∧2A(Λ1) 6= Λ2. Then the two 3-dimensional cubics Ξ′ ∩ Λ
and Ξ′ ∩ Λ2 are isomorphic by virtue of the map f = f2 ◦ f

−1
1 ◦ (∧2A)−1. By

construction, we have kerM = ker f(M) for any M ∈ Ξ′∩Λ. Hence Ξ′∩Λ and
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Ξ′ ∩ Λ2 represent two cross-sections of the map pq−1 defined in the proof of
Lemma 2.5 over their common image Y = pq−1(Ξ′ ∩ Λ) = pq−1(Ξ′ ∩ Λ2), and
f is a morphism over Y . These cross-sections do not meet the indeterminacy
locus G′ ⊂ Ξ′ of pq−1, because it is at the same time the singular locus of Ξ′

and both 3-dimensional cubics are nonsingular. The fibers of pq−1 being linear
subspaces of P14∨

, the generic element of a linear pencil Xλ:µ = Ξ′∩(λΛ+µΛ2)
represents also a cross-section of pq−1 that does not meet G′. So there is a one-
dimensional family of representations of X as a linear section of the Pfaffian
cubic which are not equivalent under the action of PGL(6) but induce the same
vector bundle K. This family joins Ξ′ ∩ Λ and Ξ′ ∩ Λ2 and its base is an open
subset of P1. This cannot happen for generic X, E , because both the family of
vector bundles E and that of representations of X as a linear section of Ξ′ are
5 dimensional for generic X (Theorem 2.1 and Proposition 1.4).

Lemma 2.8. For a generic 3-dimensional linear section V3 of Ξ′, the 15 qua-
dratic Pfaffians of M ∈ V3 are linearly independent in |OV3

(2)|.

The authors of [IR] solve a similar problem: they describe the structure of the
restriction of Pf2 to a 4-dimensional linear section of the Pfaffian cubic.

Proof. It is sufficient to verify this property for a special V3. Take Klein’s cubic

v2w + w2x+ x2y + y2z + z2v = 0.

Adler ([AR], Lemma (47.2)) gives the representation of this cubic as the Pfaffian
of the following matrix:

M =

















0 v w x y z
−v 0 0 z −x 0
−w 0 0 0 v −y
−x −z 0 0 0 w
−y x −v 0 0 0
−z 0 y −w 0 0

















.

Its quadratic Pfaffians are given by

cij = (−1)i+j+1(apqars − apraqs + apsaqr),

where p < q < r < s, (pqrsij) is a permutation of (123456), and (−1)i+j+1

is nothing but its sign. A direct computation shows that the 15 quadratic
Pfaffians are linearly independent.

This ends the proof of Theorem 2.2.

3. Minimal sections of 2-dimensional conic bundle

Let X be a generic cubic threefold. To prove the irreducibility of the fibers of
the Abel-Jacobi map Φ of Theorem 2.1, we will use other Abel–Jacobi maps.
Let us fix a line l0 in X , and denote by Φd,g the Abel–Jacobi map of the family
Hd,g of curves of degree d and of arithmetic genus g in X having dl0 as reference
curve. The precise domain of definition of Φd,g will be specified in the context
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in each particular case. So, Φ5,1 will be exactly the above map Φ defined on
H.
We will provide a description of Φ4,0, obtained by an application of the te-
chiniques of [I]. This map is defined on the family of normal rational quartics
in X . For completeness, we will mention a similar description of Φ3,0, the
Abel–Jacobi map of twisted rational cubics in X . As was proved in [MT],
these families of curves are irreducible for a generic X .
Let L0 ⊂ X be a generic line, p : X̃−→P2 the projection from L0, giving to
X̃ = BlowupL0

(X) a structure of a conic bundle. Let C ⊂ P
2 be a generic conic,

then Y = p−1(C) is a 2-dimensional conic bundle, and pY = p|Y : Y−→C is the
conic bundle structure map. It is well known (see [B]), that the discriminant
curve ∆ ⊂ P2 of p is a smooth quintic, and the components of the reducible
conics P1∨P1 over points of ∆ are parametrized by a non-ramified two-sheeted
covering π : ∆̃−→∆. As C is generic, there are 10 distinct points in ∆ ∩ C,
giving us 10 pairs of lines {l1 ∪ l′1 ∪ . . . ∪ l10 ∪ l′10} = p−1(∆ ∩ C). We will

identify the components l of reducible fibers of p with points of ∆̃, so that
{l1, l′1, . . . , l10, l

′
10} = π−1(∆ ∩ C) ⊂ ∆̃. Let pα : Yα−→C be any of the 210

ruled surfaces obtained by contracting the l′i with i ∈ α and the lj with j 6∈ α,
where α runs over the subsets of {1, 2, . . . , 10}. Then the Yα are divided into
two classes: even and odd surfaces, according to the parity of the integer n ≥ 0
such that Yα ' Fn = P(OP1 ⊕ OP1(−n)). Remark, that the surfaces Yα are
in a natural one-to-one correspondence with effective divisors D of degree 10
on ∆̃ such that π∗D = ∆ ∩ C. The 10 points of such a divisor correspond to
lines (li or l′i) which are not contracted by the map Y−→Yα. For a surface Yα,
associated to an effective divisor D of degree 10, we will use the alternative
notation YD .
The next theorem is a particular case of the result of [I].

Theorem 3.1. Let X be a generic cubic threefold, C ⊂ P2 a generic conic.
Then, in the above notation, the following assertions hold:
(i) There are only two isomorphism classes of surfaces among the Yα: Yodd ' F1

and Yeven ' F0 ' P1 × P1.
(ii) The family C− of the proper transforms in X of (−1)-curves in each one of
the odd surfaces Yα ' F1 over all sufficiently generic conics C ⊂ P2 is identified
with a dense open subset in the family of twisted rational cubic curves C3 ⊂ X
meeting L0 at one point.
(iii) Let Φ3,0 be the Abel–Jacobi map of the family of rational twisted cubics.
Let Φ− = Φ3|C−

be its restriction. Then Φ− is onto an open subset of the
theta divisor of J2(X). For generic C3 ∈ C−, which is a proper transform of
the (−1)-curve in the ruled surface Yα associated to an effective divisor Dα of

degree 10 on ∆̃, the fiber Φ−1
− Φ−(C3) can be identified with an open subset of

P1 = |Dα| by the following rule:

D ∈ |Dα| 7→
∣

∣

∣

the proper transform in X of the (−1)-curve in YD if

YD ' F1
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(iv) Let C+ be the family of the proper transforms in X of the curves in the
second ruling on any one of the even surfaces Yα ' P1 × P1 for all sufficiently
generic conics C; the second ruling means the one which is different from that
consisting of fibers of πα. Then C+ is identified with a dense open subset in the
family of normal rational quartic curves C4 ⊂ X meeting L0 at two points.
(v) Let Φ4,0 be the Abel–Jacobi map of the family of rational normal quartics.
Let Φ+ = Φ4,0|C+

be its restriction. Then Φ+ is onto an open subset of J2(X).
For generic C4 ∈ C+ which is the proper transform of a curve on the ruled

surface Yα associated to an effective divisor Dα of degree 10 on ∆̃, we have
dim |Dα| = 0 and the fiber Φ−1

+ Φ+(C4) ' P1 consists of the proper transforms
of all the curves of the second ruling on Yα.

The irreducibility of Φ−1
+ Φ+(C4) in the above statement is an essential ingre-

dient of the proof of the following theorem, which is the main result of the
paper.

Theorem 3.2. Let X be a nonsingular cubic threefold. Then the degree of the
étale map Ψ from Theorem 2.1 is 1. Equivalently, all the fibers of the Abel–
Jacobi map Φ are isomorphic to P

5.

This obviously implies:

Corollary 3.3. The open set M ⊂MX(2; 0, 2) in the moduli space of vector
bundles on X parametrizing those stable rank 2 vector bundles which arise via
Serre’s construction from normal elliptic quintics is isomorphic to an open
subset in the intermediate Jacobian of X.

We will start by the following lemma.

Lemma 3.4. Let X be a generic cubic threefold. Let z ∈ J 2(X) be a generic
point, Hi(z) ' P

5 any component of Φ−1(z). Then, for any line l ⊂ X3, the
family
Hl;i(z) := {C ∈ Hi(z) : C = l + C ′, where C ′ is a curve of degree 4 }
is isomorphic to P

1.

Proof. By Theorem 2.1, the curve C represented by the generic point of Hi(z) is
a (smooth) normal elliptic quintic. Let E = EC be the associated vector bundle,
represented by the point φ([C]) ∈ M . Choose any representation of X as a
linear section of the Pfaffian cubic Ξ′ as in Theorem 2.2, so that E(1) ' K∨.
The projective space Hi(z) is naturally identified with P

5∨ = P(E∨). This
follows from the proof of Theorem 2.2. Indeed, the curves C represented by
points of Hi(z) are exactly the zero loci of the sections of E(1), and the latter
are induced by linear forms on E via the natural surjection EX−→K∨. The
zero loci of these sections are of the form Cl−1(σ11(L)), where L ∈ P5∨ runs
over all the hyperplanes in P5.
Let l be a line in X . By Lemma 2.4, the quadratic pencil of lines with base
Cl(l) sweeps out a quadric surface Q(l) of rank 3 or 4. Let <Q(l)>' P3 be

the linear span of Q(l) in P
5. Then l is a component of Cl−1(σ11(L)) if and

only if <Q(l)>⊂ L. Such hyperplanes L form the pencil <Q(l)>∨' P1 in
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P5∨. Obviously, the pencil {Cl−1(σ11(L)) | L ∈< Q(l) >∨} contains exactly
all the curves, represented by points of Hi(z) and having l as an irreducible
component.

Now our aim is to show that the generic member of Hl;i(z) is a rational nor-
mal quartic having l as one of its chords. Then we will be able to apply the
description of such curves given by Theorem 3.1, (iv), (v).

4. Smoothing C ′ + l

Let X be a nonsingular cubic threefold, C = C ′ + l ⊂ X a rational nor-
mal quartic plus one of its chords. Then one can apply Serre’s construction
(3) to C to obtain a self-dual rank 2 vector bundle E = EC in MX(2; 0, 2)
like it was done in [MT] for a nonsingular C. One proves directly that E
possesses all the essential properties of the vector bundles constructed from
normal elliptic quintics. First of all, our C is a locally complete intersection in
X with trivial canonical sheaf ωC , and this implies (see the proofs of Lemma
2.1 and Corollary 2.2 in loc. cit.) that Ext1(IC(2),OX) ' H0(C, ωC) ' C

and that Ext1OX
(IC(2),OX) = Ext2OX

(OC , ωX) = ωC ,so that E is uniquely
determined up to isomorphism and is locally free. One can also easily show
that h0(IC(1)) = h1(IC(1)) = h2(IC(1)) = 0, and this implies (see the proofs
of Corollary 2.4, Proposition 2.6 and Lemma 2.8 in loc. cit.) the stability
of E and the fact that the zero loci of nonproportional sections of E(1) are
distinct complete intersection linearly normal quintic curves. Further, remark
that h0(IC(2)) = 5 (the basis of H0(IC(2)) is given in appropriate coordinates
in (10) below); the restriction exact sequence

0−→IC(k)−→OX(k)−→OC(k)−→0(4)

with k = 2 implies also hi(IC(2)) = 0 for i > 0. One deduces from here
h0(E(1)) = 6, hi(E(1)) = 0 for i > 0. Hence the sections of E(1) define a P5 in

Hilb5n
X .

We are going to show that this P5 is of the form Hi(z), that is E(1) has a
section whose zero locus is a (smooth) normal elliptic quintic.

Lemma 4.1. E(1) is globally generated.

Proof. The vanishing

h1(IC(2)) = h2(IC(1)) = h3(IC) = 0,(5)

implies the Castelnuovo–Mumford regularity condition for F = E(1):

H i(X,F (−i)) = 0 , i = 1, 2, . . . , dimX.

By 2.4 of [AC], the Castelnuovo–Mumford regularity implies that F is generated
by global sections.

Corollary 4.2. The zero locus of a generic section of E(1) is a normal elliptic
quintic curve.
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Proof. The Bertini–Sard Theorem yields the smoothness of the zero locus Cs

of a generic section s. Moreover, Cs spans P4, because C does, and by flatness,
it is an elliptic quintic.

Next, we will show that the locus of the curves of type ‘normal rational quartic
plus its chord’ inside the P5 = P(H0(X, E(1))) has at least one 3-dimensional
component. By a standard dimension count, this will imply that all the compo-
nents of this locus are 3-dimensional for generic (X, E), and that Hi(z) contains,
for generic z, a purely 3-dimensional locus of curves of type ‘normal rational
quartic plus its chord’.

Lemma 4.3. Let X be a nonsingular cubic threefold, C = C ′+ l ⊂ X a rational
normal quartic plus one of its chords. Then h0(NC/X) = 10, h1(NC/X ) = 0,

hence Hilb5n
X is smooth of dimension 10 at [C].

Assume now that X, C are generic. Then the deformation C−→U of C over
a sufficiently small open subset U ⊂ Hilb5n

X parametrizes curves of only the
following three types: (a) for u in a dense open subset of U , Cu is a normal
elliptic quintic; (b) over on open subset of a divisor ∆1 ⊂ U , Cu is a linearly
normal rational curve with only one node as singularity; (c) over a closed
subvariety of pure codimension 2 ∆2 ⊂ U , Cu is of the same type as C, that is
a normal rational quartic plus one of its chords.

Proof. As concerns the numerical values for the hi, the proof goes exactly as
that of Lemma 2.7 in [MT] with only one modification: the authors used there
the property of a normal elliptic quintic h0(NC/P4(−2)) = 0, proved in Propo-
sition V.2.1 of [Hu]. Here we should verify directly this property for our curve
C = C ′ + l. This is an easy exercise using the techniques, developed in [HH]
for the study of deformations of nodal curves2. One can use the identifications
of the normal bundles of C ′, l

NC′/P4 ' 3OP1(6) , Nl/P4 ' 3OP1(1)(6)

and the three natural exact sequences

0−→NC/W−→NC/W |C′ ⊕NC/W |l−→NC/W ⊗ CS−→0,(7)

0−→NC′/W−→NC/W |C′−→T 1
S−→0,(8)

0−→Nl/W−→NC/W |l−→T 1
S−→0,(9)

where S = {P1, P2} = C ′ ∩ l, CS = CP1
⊕CP2

is the sky-scraper sheaf with the
only nonzero stalks at P1, P2 equal to C, W = P4, and T 1

S denotes Schlesinger’s
T 1 of a singularity; we have T 1

S ' CS for nodal curves.
For the last assertion of the lemma, we need the surjectivity of the Schlesinger
map δ : T[C]Hilb5n

X = H0(NC/X)−→T 1
S . Then the natural maps δi :

H0(NC/X )−→T 1
Pi
C = CPi

are surjective. Hence the discriminant divisor

2Hartshorne–Hirschowitz formulated all the results for nodal curves in P3, but the tech-
niques of the paper remain valid if one replaces P3 by any nonsingular projective variety; see
Remark 4.1.1 in [HH].
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∆1 ⊂ U has locally analytically two nonsingular branches with tangent spaces
ker δi ⊂ H0(NC/X ) = T[C]Hilb5n

X , each unfolding only one of the two singular
points of C, and their transversal intersection ∆2 parametrizes the deforma-
tions preserving the two singular points.
The surjectivity of δ for a particular pair (X,C) follows from the next lemma,
where even a stronger assertion is proved, hence it holds for a generic pair
(X,C).

Lemma 4.4. There exists a pair (X,C), consisting of a nonsingular cubic three-
fold X and a curve C = C ′ + l ⊂ X, where C ′ is a rational normal quartic and
l its chord, such that the following property is verified:
Let E be the vector bundle on X defined by C and HE ⊂ Hilb5n

X the P5 of
zero loci of sections of E(1). Let δE : T[C]HE−→T 1

S be the restriction of the
Schlesinger map δ to the tangent space of HE at [C]. Then δE is surjective.

Proof. Choose a curve C of type C ′ + l in P
4, then a cubic X passing through

C. Take, for example, the closures of the following affine curves:

C ′ = {x1 = t, x2 = t2, x3 = t3, x4 = t4} , l = {x1 = x2 = x3 = 0} .

The family of quadrics passing through C is 5-dimensional with generators

(10) Q1 = x2 − x2
1, Q2 = x3 − x1x2, Q3 = x1x3 − x2

2,

Q4 = x1x4 − x2x3, Q5 = x2x4 − x2
3 .

The cubic hypersurface in P4 with equation
∑

αi(x)Qi is nonsingular for
generic linear forms αi(x), so we can choose X to be of this form. We verified,
in using the Macaulay program [BS], that the choice α1 = 0, α2 = −1, α3 =
x2, α4 = −x1, α5 = x4 yields a nonsingular X = {x1x2 − x3

2 − x3 + 2x1x2x3 −
x2

1x4 − x2
3x4 + x2x

2
4 = 0}.

Look at the following commutative diagram with exact rows and columns,
where the first row is the restriction of (3) to the subsheaf of the sections of
E(1) vanishing along C.
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0 −−−−→ OX −−−−→ E(1) ⊗ IC −−−−→ I2
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∥

∥
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0 −−−−→ OX −−−−→ E(1) −−−−→ IC(2) −−−−→ 0




y





y

NC/X N ∨

C/X(2)




y





y

0 0

(11)

It allows to identify the tangent space T[E]HE = H0(E(1))/H0(E(1)⊗IC) with

the image of H0(IC(2)) in H0(NC/X) = H0(IC(2)/I2
C(2)). So, we have to

show that the derivative d : H0(IC(2))−→T 1
SC is surjective. Using the basis

(10) of H0(IC(2)), we easily verify that this is the case (in fact, dQ1, dQ2

generate T 1
SC).

The following assertion is an obvious consequence of the lemma:

Corollary 4.5. Let X be a generic cubic threefold, C = C ′ + l ⊂ X a generic
rational normal quartic plus one of its chords, E the vector bundle defined by
C. Let HE ⊂ Hilb5n

X be the P5 of zero loci of sections of E(1). Then, with the
notations of Lemma 4.3, dim ∆i ∩HE = 5 − i for i = 1, 2.

Lemma 4.6. With the hypotheses of Lemma 3.4, the family Ci(z) of curves of
the form C ′ + l in Hi(z), where C ′ is a rational normal quartic and l one of
its chords, is non-empty and equidimensional of dimension 3.

Proof. According to [MT], the family of rational normal quartics in a nonsin-
gular cubic threefold X has dimension 8, and is irreducible for generic X . By
Theorem 1.2, each rational normal quartic C ′ has exactly 16 chords l in X , so
the family ∆2 = ∆2(X) of pairs C ′ + l is equidimensional of dimension 8. It
suffices to verify that one of the components of ∆2, say ∆2,0, meets Hi(z) at
some point b with local dimension dimb ∆2,0 ∩ Hi(z) = 3 for one special cubic
threefold X , for one special z and for at least one i. But this is asserted by
Corollary 4.5. Indeed, the fact that C can be smoothed inside HE implies that
E ∈ H, hence HE = Hi(z) for some i, z. The assertion for general X, z follows
by the relativization over the family of cubic threefolds and the standard count
of dimensions.

Corollary 4.7. With the hypotheses of Lemma 3.4, let l be a generic line in
X. Then the generic member of the pencil Hl;i(z) is a rational normal quartic
plus one of its chords.
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Proof. We know already that the family Di(z) of pairs C ′ + l ∈ Ci(z) is 3-
dimensional. Now we are to show that the second components l of these pairs
move in a dense open subset in the Fano surface F (X) of X . This is obvi-
ously true, since, by Lemma 3.4, the dimension of the fibers of the projection
Di(z)−→F (X) is at most 1.

5. Fibers of Φ4,0,Φ5,1 and periods of varieties V14

Now we are able to prove Theorem 3.2. Let X be a generic cubic threefold. Let
Φ1,0, Φ4,0, resp. Φ∗ = Φ∗

5,1 be the Abel–Jacobi map of lines, rational normal
quartics, resp. elliptic normal quintics. We will use the notation Φ, or Φ5,1 for
the extension of Φ∗ defined in the statement of Theorem 2.1. By Lemma 4.5,
the generic curves of the form C ′ + l, where C ′ is a rational normal quartic and
l one of its chords, are elements of H, the domain of Φ.

Proof of Theorem 3.2. Let z ∈ J2(X) be a generic point, Hi(z) ' P
5 any

component of Φ−1(z). Choose a generic line l on X . In the notations of Lemma
3.4, the number of pencils Hl;i(z) ' P

1 with generic member C ′
i + l, where C ′

i is
a rational normal quartic meeting l quasi-transversely at 2 points, and mapped
to the same point z of the intermediate Jacobian, is equal to the degree d of Ψ.
Now look at the images of the curves C ′

i arising in these pencils under the Abel–
Jacobi map Φ4,0. Denoting AJ the Abel–Jacobi map on the algebraic 1-cycles
homologous to 0, we have AJ((C ′

i + l)− (C ′
j + l)) = AJ(C ′

i −C ′
j) = z − z = 0.

Hence Φ4,0(C
′
i) = Φ4,0(C

′
j) is a constant point z′ ∈ J2(X). According to

Theorem 3.1, the family of the normal rational quartics in a generic fiber of
Φ4,0 meeting a generic line at two points is irreducible and is parametrized
by (an open subset of) a P1. The point z′ is a generic one, because Φ4,0 is
dominant, and every rational normal quartic has at least one chord. Hence
d = 1 and we are done.

Corollary 5.1. M,H are irreducible and the degree of Ψ is 1 not only for a
generic cubic X, but also for every nonsingular one.

Proof. One can easily relativize the constructions of H,M,Φ, φ,Ψ, etc. over a
small analytic (or étale) connected open set U in the parameter space P34 of
3-dimensional cubics, over which all the cubics Xu are nonsingular. We have
to restrict ourselves to a “small” open set, because we need a local section of
the family {Hu} in order to define the maps Φ,Ψ.
The fibers Hu,Mu are equidimensional and nonsingular of dimensions 10, 5
respectively. Moreover, it is easy to see that a normal elliptic quintic C0 in a
special fiber Xu0

can be deformed to the neighboring fibers Xu. Indeed, one
can embed the pencil λXu0

+µXu into the linear system of hyperplane sections
of a 4-dimensional cubic Y and show that the local dimension of the Hilbert
scheme of Y at [C0] is 15, which implies that C0 deforms to all the nearby and
hence to all the nonsingular hyperplane sections of Y .
Hence the families {Hu}, {Mu} are irreducible, flat of relative dimensions 10,
resp. 5 over U , and the degree of Ψ is constant over U . If there is a reducible
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fiber Mu, then the degree sums up over its irreducible components, so it has
to be strictly greater than 1. But we know, that d is 1 over the generic fiber,
hence all the fibers are irreducible and d = 1 for all u.

We are going to relate the Abel–Jacobi mapping of elliptic normal quintics
with that of rational normal quartics. With our convention for the choice of
reference curves in the form dl0 for a line l0, fixed once and forever, we have
the identity

Φ5,1(C
′ + l) = Φ4,0(C

′) + Φ1,0(l) .

Theorem 5.2. Let X be a generic cubic threefold, z ∈ J2(X) a generic point.
Then the corresponding fiber Φ−1

4,0(z) is an irreducible nonsingular variety of
dimension 3, birationally equivalent to X.

Proof. As we have already mentioned in the proof of Lemma 4.6, the fam-
ily H4,0 of rational normal quartics in X is irreducible of dimension 8. The
nonsingularity of H4,0 follows from the evaluation of the normal bundle of
a rational normal quartic in the proof of Lemma 4.3. We saw also that
Φ4,0 : H4,0−→J2(X) is dominant, so the generic fiber is equidimensional of
dimension 3 and we have to prove its irreducibility.
Let π : Ũ−→U be the quasi-finite covering of U = Φ(H) parametrizing the
irreducible components of the fibers of Φ4,0 over points of U . Let z ∈ U be
generic, and Hz ' P5 the fiber of Φ. By Corollary 4.7,for a generic line l, we
can represent z as Φ4,0(C

′) + Φ1,0(l) for a rational normal quartic C ′ having

l as one of its chords. Let κ : U 99K Ũ be the rational map sending z to the
component of Φ−1

4,0Φ4,0(C
′) containing C ′. Let λ = π ◦ κ. Theorem 3.1 implies

that λ is dominant. Hence it is generically finite. Then κ is also generically
finite, and we have for their degrees deg λ = (deg π)(deg κ).
Let us show that degλ = 1. Let z, z′ be two distinct points in a generic fiber
of λ. By Theorem 3.1, Φ−1

4,0Φ4,0(C
′) contains only one pencil of curves of type

C ′′ + l, where l is a fixed chord of C ′, and C ′′ is a rational normal quartic
meeting l in 2 points. But Lemma 3.4 and Corollary 4.7 imply that both Hz

and Hz′ contain such a pencil. This is a contradiction. Hence degλ = deg π =
deg κ = 1.
Now, choose a generic rational normal quartic C ′ in X . We are going to show
that Φ−1

4,0Φ4,0(C
′) is birational to some V14, associated to X , and hence bi-

rational to X itself. Namely, take the V14 obtained by the Tregub–Takeuchi
transformation χ from X with center C ′. Let x ∈ V14 be the indeterminacy
point of χ−1. The pair (x, V14) is determined by (C ′, X) uniquely up to iso-
morphism, because V14 is the image of X under the map defined by the linear
system |OX (8) − 5C ′| and x is the image of the unique divisor of the linear
system |OX(3 − 2C ′)|.
By Theorem 1.2, (iii), a generic ξ ∈ V14 defines an inverse map of Tregub–
Takeuchi type from V14 to the same cubicX . AsX is generic, it has no biregular
automorphisms, and hence this map defines a rational normal quartic Γ in X .
We obtain the rational map α : V14 99K H4,0, ξ 7→ [Γ], whose image contains
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[C ′]. As h1,0(V14) = 0, the whole image α(V14) is contracted to a point by the
Abel–Jacobi map. Hence, to show that Φ−1

4,0Φ4,0(C
′) is birationally equivalent

to V14, it suffices to see that α is generically injective. This follows from the
following two facts: first, the pair (ξ, V14) is determined by (Γ, X) uniqueley
up to isomorphism, and second, a generic V14 has no biregular automorphisms.
If there were two points ξ, ξ′ ∈ V14 giving the same Γ, then there would exist
an automorphism of V14 sending ξ to ξ′, and hence ξ = ξ′. Another proof of
the generic injectivity of α is given in Proposition 5.6.
We did not find an appropriate reference for the second fact, so we prove it in
the next lemma.

Lemma 5.3. A generic variety V14 has no nontrivial biregular automorphisms.

Proof. As V14 is embedded in P9 by the anticanonical system, any biregular au-
tomorphism g of V14 is induced by a linear automorphism of P9. Hence it sends
conics to conics, and thus defines an automorphism F (g) : F (V14)−→F (V14)
of the Fano surface F (V14), parametrizing conics on V14. In [BD], the au-

thors prove that the Hilbert scheme Hilb2(S) = S[2] parametrizing pairs of
points on the K3 surface S of degree 14 in P8 is isomorphic to the Fano 4-fold
F (V 4

3 ) parametrizing lines on V 4
3 , where V 4

3 is the 4-dimensional linear section
of the Pfaffian cubic in P

14 associated to S. The same argument shows that
F (V14) ' F (X), where X is the cubic 3-fold associated to V14, and F (X) is
the Fano surface parametrizing lines on X .
Hence g induces an automorphism f of F (X). Let f ∗ be the induced linear
automorphism of Alb(F (X)) = J2(X), and T0f

∗ its differential at the origin.
By [Tyu], the projectivized tangent cone of the theta divisor of J 2(X) at 0 is
isomorphic to X , so T0f

∗ induces an automorphism of X . V14 being generic,
X is also generic, so Aut(X) = {1}. Hence f ∗ = id. By the Tangent Theorem
for F (X) [CG], Ω1

F (X) is identified with the restriction of the universal rank 2

quotient bundle Q on G(2, 5), and all the global sections of Ω1
F (X) are induced

by linear forms L on P4 via the natural map H0(P4,OP4(1)) ⊗ OG(2,5) � Q.

Hence the fact that f acts trivially on H0(Ω1
F (X)) = T ∗

0 J
2(X) implies that

f permutes the lines l ⊂ {L = 0} ∩ X lying in one hyperplane section of
X . For general L, there are 27 lines l, and in taking two hyperplane sections
{L1 = 0}, {L2 = 0} which have only one common line, we conclude that f fixes
the generic point of F (X). Hence F (g) is the identity. This implies that every
conic on V14 is transformed by g into itself.
By Theorem 1.2, we have 16 different conics C1, . . . , C16 passing through the
generic point x ∈ V14, which are transforms of the 16 chords of C ′ in X . Two
different conics Ci, Cj cannot meet at a point y, different from x. Indeed, their
proper transforms in X+ (we are using the notations of Theorem 1.2) are the
results l+i , l

+
j of the floppings of two distinct chords li, lj of C ′. Two distinct

chords of C ′ are disjoint, because otherwise the 4 points (li ∩ lj) ∩ C ′ would
be coplanar, which would contradict the linear normality of C ′. Hence l+i , l

+
j

are disjoint. They meet the exceptional divisor M+ of X+−→V14 at one point
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each, hence Ci ∩ Cj = {x}. As g(Ci) = Ci and g(Cj) = Cj , this implies
g(x) = x. This ends the proof.

5.4. Two correspondences between H4,0, H5,1. This subsection contains
some complementary information on the relations between the families of ra-
tional normal quartics and of elliptic normal quintics on X which can be easily
deduced from the above results.
For a generic cubic 3-fold X and any point c ∈ J2(X), the Abel–Jacobi maps
Φ4,0,Φ5,1 define a correspondence Z1(c) between H4,0, H5,1 with generic fibers
over H5,1, H4,0 of dimensions 3, respectively 5:

Z1(c) = {(Γ, C) ∈ H4,0 ×H5,1 | Φ4,0(Γ) + Φ5,1(C) = c} .

The structure of the fibers is given by Theorems 3.2 and 5.2: they are, respec-
tiveley, birational to X and isomorphic to P5.
There is another correspondence, defined in [MT]:

Z2 = {(Γ, C) ∈ H4,0 ×H5,1 | C + Γ = F1 ∩X for a rational

normal scroll F1 ⊂ P
4} .

It is proved in [MT] that the fiber over a generic C ∈ H5,1 is isomorphic to C,
and the one over Γ ∈ H4,0 is a rational 3-dimensional variety. In fact, we have
the following description for the latter:

Lemma 5.5. For any rational normal quartic Γ ⊂ X, we have Z2(Γ) '
PGL(2).

Proof. Let Γ ⊂ P4 be a rational normal quartic. Then there exists a unique
PGL(2)-orbit PGL(2)·g ⊂ PGL(5) transforming Γ to the normal form

{(s4, s3t, . . . , t4)}(s:t)∈P1 = {(x0, . . . , x4) | rk

(

x0 x1 x2 x3

x1 x2 x3 x4

)

≤ 1}.

There is one particularly simple rational normal scroll S containing Γ:

S = {(us2, ust, ut2, vs, vt)} = {(x0, . . . , x4) | rk

(

x0 x1 x3

x1 x2 x4

)

≤ 1}.

Geometrically, S is the union of lines which join the corresponding points of the
line l = {(0, 0, 0, s, t)} and of the conic C2 = {(s2, st, t2, 0, 0)}. Conversely, any
rational normal scroll can be obtained in this way from a pair (l, C) whose linear
span is the whole P4. Remark that (s : t) 7→ (s : t) is the only correspondence
from l to C such that the resulting scroll contains Γ.
Now, it is easy to describe all the scrolls containing Γ: they are obtained from
S by the action of PGL(2). Each non-identical transformation from PGL(2)
leaves invariant Γ, but moves both l and C, and hence moves S.

As the rational normal scrolls in P4 are parametrized by a rational variety, the
Abel–Jacobi image of C + Γ is a constant c ∈ J2(X) for all pairs (Γ, C) such
that C ∈ Z2(Γ). Hence we have identically Φ4,0(Γ) + Φ5,1(C) = c on Z2, so
that Z2(Γ) ⊂ Z1(c)(Γ).
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We can obtain another birational description of Z2(Γ) for generic Γ in applying
to all the C ∈ Z2(Γ) the Tregub–Takeuchi transformation χ, centered at Γ. Let
ξ ∈ V14 be the indeterminacy point of χ−1.

Proposition 5.6. On a generic V14, the family of elliptic quintic curves is
irreducible. It is parametrized by an open subset of a component B of Hilb5n

V14

isomorphic to P5, and all the curves represented by points of B are l. c. i. of
pure dimension 1.
For any x ∈ V14, the family of curves from B = P5 passing through x is a
linear 3-dimensional subspace P3

x ⊂ P5. For generic rational normal quartic Γ
as above, χ maps Z2(Γ) birationally onto P3

ξ.

Proof. Gushel constructs in [G2] for any elliptic quintic curve B on V14 a rank
two vector bundle G such that h0(G) = 6, detG = O(1), c2(G) = B, and proves
that the map from V14 to G = G(2, 6) given by the sections of G and composed
with the Plücker embedding is the standard embedding of V14 into P14. Hence
G is isomorphic to the restriction of the universal rank 2 quotient bundle on G
(in particular, it has no moduli), and the zero loci of its sections are precisely
the sections of V14 by the Schubert varieties σ11(L) over all hyperplanes L ⊂
C6 = H0(G)∨. These zero loci are l. c. i. of pure dimension 1. Indeed, assume
the contrary. Assume that D = σ11(L) ∩ V14 has a component of dimension
> 1. Anyway, degD = deg σ11(L) = 5, hence if dimD = 2, then V14 has a
divisor of degree ≤ 5 < 14 = degV14. This contradicts the fact that V14 has
index 1 and Picard number 1. One cannot have dimD > 2, because otherwise
V14 would be reducible. Hence dimD ≤ 1, and it is l. c. i. of pure dimension
1 as the zero locus of a section of a rank 2 vector bundle. All the zero loci B
of sections of G form a component B of the Hilbert scheme of V14 isomorphic
to P5.
The curves B from B passing through x are the sections of V14 by the Schubert
varieties σ11(L) for all L containing the 2-plane Sx represented by the point
x ∈ G(2, 6), and hence form a linear subspace P3 in P5.
Now, let us prove the last assertion. Let C ∈ Z2(Γ) be generic. We have
(C · Γ)F1

= 7, therefore the map χ, given by the linear system |O(8) − 5Γ)|,
sends it to a curve C̃ of degree 8·5−5·7 = 5. So, the image is a quintic of genus 1.
Let k = multξ C̃. The inverse χ−1 being given by the linear system |O(2)−5ξ|,

we have for the degree of C = χ−1(C̃): 5 = 2 deg C̃ − 5k = 10 − 5k,

hence k = 1, that is, ξ is a simple point of C̃ . Thus the generic C ∈ Z2(Γ) is

transformed into a smooth elliptic quintic C̃ ⊂ V14 passing through ξ. By the
above, such curves form a P3 in the Hilbert scheme, and this ends the proof.

5.7. Period map of varieties V14. We have seen that one can associate to
any Fano variety V14 a unique cubic 3-fold X , but to any cubic 3-fold X a
5-dimensional family of varieties V14. Now we are going to determine this 5-
dimensional family. This will give also some information on the period map of
varieties V14. Let Ag denote the moduli space of principally polarized abelian
varieties of dimension g.
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Theorem 5.8. Let V14 be the moduli space of smooth Fano 3-folds of degree
14, and let Π : V14 → A5 be the period map on V14. Then the image Π(V14)
coincides with the 10-dimensional locus J5 of intermediate jacobians of cubic
threefolds. fiber Π−1(J), J ∈ J5, is isomorphic to the family V(X) of the V14

which are associated to the same cubic threefold X, and birational to J 2(X).

Proof. For the construction of V14 and for the fact that dimV14 = 15, see
Theorem 0.9 in [Muk].
According to Theorem 2.2, there exists a 5-dimensional family of varieties V14,
associated to a fixed generic cubic 3-fold X , which is birationally parametrized
by the set M of isomorphism classes of vector bundle E obtained by Serre’s
construction starting from normal elliptic quintics C ⊂ X . By Corollary 3.3,
M is an open subset of J2(X). Hence all the assertions follow from Proposition
1.7.
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