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1 Introduction

Let G be a reductive group over a number field F and H the fixed point set
of an involution θ of G. The period of a cusp form φ on G is defined as the
integral

ΠH(φ) =

∫

H(F )\(H(A)∩G(A)1)

φ(h) dh,

known to converge by [AGR]. Recall that a cuspidal representation π = ⊗πv
of G is said to be distinguished by H if there exists an element φ in the space
Vπ of π such that ΠH(φ) 6= 0. It is known in some cases that the period
factors as a product of local Hv-invariant functionals, even when there is no
local uniqueness for such functionals (cf. [J2]), and that it is related to special
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values of L-functions. Periods of more general automorphic forms, such as an
Eisenstein series, are also of interest. Although the above integral need not
converge, it should be possible to regularize it, as has been carried out in [JLR]
and [LR] when (G,H) is a Galois pair, i.e., when H is the fixed point set of
a Galois involution on G. The regularized period of cuspidal Eisenstein series
was computed for the pair (GL(n)E , GL(n)F ) in [JLR]. It is either identically
zero or can be expressed as a ratio of Asai L-functions (up to finitely many
local factors at the ramified places). In general, however, the result will be
more complicated.

In this paper we study the pair (GL(3)E , U(3)) in detail in order to illustrate
some phenomena which are likely to appear in the general case. Our goal is
two-fold. First, we introduce a stabilization procedure to express the period
of an Eisenstein series induced from a Borel subgroup as a sum of terms, each
of which is factorizable with local factors given almost everywhere by ratios
of L-factors. This is reminiscent of the procedure carried out in [LL] for the
usual trace formula. Second, we define a stable version of the relative Bessel
distributions occurring in the relative trace formula developed by Jacquet-Ye.
We then use the comparison of trace formulae carried out in [JY] to prove
some identities between our stable relative Bessel distributions on GL(3)E and
Bessel distributions on GL(3)F .

The main motivation for this work comes form the relative trace formula (RTF),
introduced by Jacquet to study distinguished representations. One expects in
general that the distinguished representations are precisely those in the image
of a functorial lifting from a group G′ determined by the pair (G,H). For
example, G′ is GL(n)F for the pair (GL(n)E , U(n)). To that end one compares
the RTF for G with the Kuznetzov trace formula (KTF) for G′. This was
first carried out in [Y] for the group GL(2). The cuspidal contribution to the
RTF appears directly as sum of relative Bessel distributions (defined below)
attached to distinguished representations of G. It should match term by term
with the corresponding sum in the KTF of Bessel distributions attached to
cuspidal representations of G′. Examples ([J1], [JY], [GJR]) suggest that the
contribution of the continuous spectrum of G can also be written as integrals
of relative Bessel distributions built out of regularized periods of Eisenstein
series. However, these terms cannot be matched up with the continuous part
of the KTF directly. Rather, as we show in our special case, the matching can
be carried out using the stable relative Bessel distributions.

We now describe our results in greater detail. Assume from now on that (G,H)
is a Galois pair, that is G = ResE/FH where E/F is a quadratic extension and
θ is the involution induced by the Galois conjugation of E/F . We also assume
that H is quasi-split. By abuse of notation, we treat G as a group over E,
identifying it with HE . The regularized period of an automorphic form φ,
also denoted ΠH(φ), can be defined using a certain truncation operator ΛTmφ
depending on a parameter T in the positive Weyl chamber. For T sufficiently
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regular, the integral
∫

H(F )Z\H(A)

ΛTmφ(h) dh

is a polynomial exponential function of T , i.e., it has the form
∑
pj(T )e〈λj ,T 〉

for certain polynomials pj and exponents λj . Under some restrictions on the
exponents of φ, the polynomial p0(T ) is constant and ΠH(φ) is defined to be
its value.
When φ = E(ϕ, λ) is a cuspidal Eisenstein series, ΠH(φ) can be expressed in
terms of certain linear functionals J(η, ϕ, λ) called intertwining periods ([JLR],
[LR]). To describe this, consider for simplicity the case of an Eisenstein series
induced from the Borel subgroup B = TN . We assume that B, T and N are
θ-stable. Given a character χ of T (E)\T (AE), trivial on Z(AE), and λ in the
complex vector space a∗0,C spanned by the roots of G, the Eisenstein series

E(g, ϕ, λ) =
∑

γ∈B(E)\G(E)

ϕ(γg) e〈λ,H(γg)〉

converges for Reλ sufficiently positive. Here, as usual, ϕ : G(A) → C is a

smooth function such that ϕ(bg) = δB(b)
1
2χ(b)ϕ(g). According to a result of

T. Springer [S], each double coset in B(E)\G(E)/H(F ) has a representative
η such that ηθ(η)−1 lies in the normalizer NG(T ) of T . Denoting the class of
ηθ(η)−1 in the Weyl group W by

[
ηθ(η)−1

]
, we obtain a natural map

ι : B(E)\G(E)/H(F ) → W

sending B(E)ηH(F ) to
[
η θ(η)−1

]
. For such η, set

Hη = H ∩ η−1Bη.

The intertwining period attached to η is the integral

J(η, ϕ, λ) =

∫

Hη(AF )\H(AF )

e〈λ,H(ηh)〉 ϕ(ηh) dh

where dh is a semi-invariant measure on the quotient Hη(AF )\H(AF ). The
result of [LR] alluded to above is that for suitable χ and λ the integral defining
J(η, λ, ϕ) converges and that

ΠH(E(ϕ, λ)) = δθ · c ·
∑

ι(η)=w

J(η, ϕ, λ) (1)

where w is the longest element inW and c = vol(Hη(F )Z(AF )\Hη(AF )). Here,
δθ is 1 if θ acts on a∗0 as −w and it is 0 otherwise.
If G = GL(2)E and H = GL(2)F , ι−1(w) consists of a single coset B(E)ηH(F )
and ΠH (E(ϕ, λ)) is either zero or proportional to J(η, ϕ, λ). More generally, if

Documenta Mathematica 5 (2000) 317–350



320 Lapid and Rogawski

G = GL(n)E and H = GL(n)F , the regularized period of a cuspidal Eisenstein
series is either zero or is proportional to a single intertwining period. This
intertwining period factors as a product of local integrals which are equal al-
most everywhere to a certain ratio of Asai L-functions ([JLR]). For general
groups, however, the sum in (1) is infinite and ΠH(E(ϕ, λ)) cannot be ex-
pressed directly in terms of L-functions. This occurs already for G = SL(2)E
and H = SL(2)F . This is related to the fact that base change is not necessarily
one-to-one for induced representations. See [J2] for a discussion of the relation
between non-uniqueness of localH-invariant functionals and the non-injectivity
of base change for the pair (GL(3)E , U(3)).

For the rest of this paper, let G = GL(3)E , G′ = GL(3)F , and let H = U(3) be
the quasi-split unitary group in three variables relative to a quadratic extension
E/F and the Hermitian form

Φ =




0 0 −1
0 −1 0
−1 0 0




Let T and T ′ be the diagonal subgroups of G and G′, respectively, and Nm :
T → T ′ the norm mapping. We shall fix a unitary character χ of T (AE)
which is a base change lifting with respect to Nm of a unitary character of
T ′(F )Z ′(AF )\T ′(AF ). We write B(χ) = {ν} for the set of four characters of
T ′(F )Z ′(AF )\T ′(AF ) such that χ = ν ◦ Nm. The stable intertwining periods
Jst(ν, ϕ, λ) are defined in §8. Each functional Jst(ν, ϕ, λ) is factorizable and
invariant under H(Af ) where Af is the ring of finite adeles. Our first main
result is that with a suitable normalization of measures, we have the following

Theorem 1.

ΠH(E(ϕ, λ)) =
∑

ν∈B(χ)

Jst(ν, ϕ, λ)

In particular, this expresses the left-hand side as a sum of factorizable distri-
butions.

In Proposition 3, §7, we show that the local factors at the unramified places
are given by ratios of L-functions. This is done by a lengthy calculation which
can fortunately be handled using Mathematica. Hence we obtain a description
of ΠH(E(ϕ, λ)) in terms of L-functions.

We now describe our results on Bessel distributions. In general, if (π, V ) is a
unitary admissible representation of G(A) and L1, L2 ∈ V ∗ are linear function-
als, we may define a distribution on the space of compactly-supported, K-finite
functions by the formula

O(f) =
∑

{φ}

L1(π(f)φ) L2(φ)
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where {φ} is an orthonormal basis of V consisting of K-finite vectors. The sum
is then finite and O is independent of the choice of basis. The distributions oc-
curring in the KTF and RTF are all of this type. They are referred to as Bessel
distributions and relative Bessel distributions in the two cases, respectively.
In this paper, the representations of G and G′ that we consider are all assumed
to have trivial central character. Correspondingly we will consider factorizable
functions f =

∏
fv (resp. f ′ =

∏
f ′
v) on G(AE) (resp. G′(A)) of the usual type

such that fv (resp. f ′
v) is invariant under the center Zv (resp. Z ′

v) of Gv (resp.
G′
v) for all v. In particular, we define π(f) =

∫
G(E)Z(E)\G(AE)

f(g)π(g)dg and

similarly for π′(f ′). The relative Bessel distribution attached to a cuspidal
representation (π, Vπ) of G is defined by

B̃(f, π) =
∑

{φ}

ΠH (π(f)φ) W(φ) (2)

and the Bessel distribution attached to a cuspidal representation (π′, V ′) of G′

is defined by

B(f ′, π′) =
∑

{φ′}

W′(π′(f ′)φ′)W′(φ′).

Here {φ} and {φ′} are orthonormal bases of V and V ′, respectively, and W(φ)
and W′(φ′) are the Fourier coefficients defined in §2. They depend on the choice
of an additive character ψ which will remain fixed.
Jacquet and Ye have studied the comparison between the relative trace formula
on G and the Kuznetzov trace formula on G′ under the assumption that E
splits at all real places of F ([J1], [JY]). They define a local notion of matching
functions fv ↔ f ′

v for all v and prove the identity

RTF (f) = KTF (f ′)

for all global function f =
∏
v fv and f ′ =

∏
f ′
v such that f ↔ f ′. By

definition, f ↔ f ′ if fv ↔ f ′
v for all v. It follows from the work of Jacquet-Ye

that if f ↔ f ′, then

B̃(f, π) = B(f ′, π′) (3)

for any cuspidal representation π′ of G′(AF ) with base change lifting π on
G(AE). Our goal is to formulate and prove an analogous result for Eisensteinian
automorphic representations.
Assume that χ is unitary and let

I(χ, λ) = Ind
G(AE)
B(AE) χ · e

〈λ,H(·)〉

be an induced representation of G(AE). In this case, we define a relative Bessel
distribution in terms of the regularized period as follows:

B̃(f, χ, λ) =
∑

{ϕ}

ΠH (E(I(f, χ, λ)ϕ, λ)) W(ϕ, λ)
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where {ϕ} runs through an orthonormal basis of I(χ, λ) and W(ϕ, λ) =
W(E(ϕ, λ)). Throughout the paper we will use the notation W(·, ·) for the
complex conjugate of W(·, ·). For ν ∈ B(χ), the Bessel distribution is defined
by

B′(f ′, ν, λ) =
∑

{ϕ′}

W ′(I(f ′, ν, λ)ϕ, λ) W ′(ϕ′, λ),

whereW ′(ϕ′, λ) is defined similarly. However, the equality (3) no longer holds.
In fact, it is not well-defined since there is more than one automorphic repre-
sentation π′ whose base change lifting is I(χ, λ). However, for ν ∈ B(χ) we
may define

B̃st(f, ν, λ) =
∑

{ϕ}

Jst(ν, ϕ, λ) W(ϕ, λ). (4)

With this definition, Theorem 1 allows us to write

B̃(f, χ, λ) =
∑

ν∈B(χ)

B̃st(f, ν, λ).

Our next main result is the following

Theorem 2. Assume that the global quadratic extension E/F is split at the
real archimedean places. Fix a unitary character χ and ν ∈ B(χ). Then

B̃st(f, ν, λ) = B′(f ′, ν, λ)

for all matching functions f ↔ f ′.

There is a local analogue of this Theorem. The distributions B̃st(f, ν, λ) are
factorizable. Their local counterparts are defined in terms of Whittaker func-
tionals and local intertwining periods. Let E/F be a quadratic extension of
p-adic fields. For any character µ of F ∗, set

γ(µ, s, ψ) =
L(µ, s)

ε(µ, s, ψ)L(µ−1, 1− s)
.

Denote by ω the character of F ∗ attached to E/F by class field theory. For
any character ν = (ν1, ν2, ν3) of T ′(F ) and λ ∈ ia∗0, set

γ(ν, λ, ψ) = γ(ν1ν
−1
2 ω, s1, ψ)γ(ν2ν

−1
3 ω, s2, ψ)γ(ν1ν

−1
3 ω, s3, ψ). (5)

with notation as in §2.

Theorem 3. Let E/F be a quadratic extension of p-adic fields. There exists
a constant dE/F depending only on the extension E/F with the property: for
all unitary characters ν of T ′(F ),

B̃st(f, ν, λ) = dE/F γ(ν, λ, ψ)B′(f ′, ν, λ).

whenever f ↔ f ′. Moreover, if E/F is unramified and p 6= 2 then dE/F = 1.
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We determine the constant dE/F for E/F unramified and p 6= 2 by taking f
to be the identity in the Hecke algebra and directly comparing both sides of
the equality. As remarked, this involves an elaborate Mathematica calculation.
Determining dE/F in general would require more elaborate calculations which
we have not carried out. We remark, however, that in a global situation we do
have

∏
dEv/Fv

= 1.
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2 Notation

Throughout, E/F will denote a quadratic extension of global or local fields of
characteristic zero. In the local case we also consider E = F ⊕F . In the global
case we make the following assumption on the extension E/F :

E splits at every real place of F . (6)

The character of F attached to E by class field theory will be denoted ω. In
the local case, if E = F ⊕ F , then ω is trivial, and Nm : E → F is the map
(x, y)→ xy.
As in the introduction, H = U(3) denotes the quasi-split unitary group with
respect to E/F and the Hermitian form Φ, and we set G = GL(3)E and
G′ = GL(3, F ). We shall fix some notation and conventions for the group G.
Similar notation and conventions will be used for G′ with a prime added.
We write B for the Borel subgroup of G of upper triangular matrices and
B = TN for its Levi decomposition where T is the diagonal subgroup. Let
W be the Weyl group of G. The standard maximal compact subgroup of
G(A) will be denoted K. In the local case we write K. We have the Iwasawa
decompositions G(A) = T (A)N(A)K = N(A)T (A)K. We fix the following
Haar measures. Let dn and dt be the Tamagawa measures on N(A) and T (A),
respectively. Then vol(N(F )\N(A)) = 1. We fix dk on K by the requiring
vol(K) = 1. Let dg the Haar measure dt dn dk. We define Haar measures for
G′ and H similarly.
Let α1, α2 be the standard simple roots and set α3 = α1 + α2. Denote the
associated co-roots α∨

1 , α∨
2 , α∨

3 . Let a∗0 be the real vector space spanned by the
roots, and let a0 be the dual space. For λ ∈ a∗0 set si = 〈λ, α∨

i 〉 for i = 1, 2, 3. If
M is a Levi subgroup containing T , let aM ⊂ a0 be the subspace spanned by the
co-roots of the split component of the center of M . The map H : G(A) → a0

is characterized, as usual, by the condition e〈αi,H(ntk)〉 = |αi(t)|. We write
d(a, b, c) for the diagonal element

d(a, b, c) =




a
b

c


 .
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If M is a Levi subgroup of G, π is an admissible representation of M (locally
or globally) and λ ∈ a∗M,C we write I(π, λ) for the representation of G unitary

induced from the representation m → π(m)e〈λ,H(m)〉. In the global case, we
let E(g, ϕ, λ) be the Eisenstein series on G(A) induced by ϕ.
If χ is a unitary character of T (A), we identify the induced space I(χ) =
I(χ, λ), with the pre-Hilbert space of smooth functions ϕ : G(A)→ C such that

ϕ(ntg) = δ
1/2
B (t)χ(t)ϕ(g) for n ∈ N(A) and t ∈ T (A). We use the notation δQ

to denote the modulus function of a group Q. The scalar product is given by

(ϕ1, ϕ2) =

∫

B(A)\G(A)

ϕ1(g)ϕ2(g) dg =

∫

K

ϕ1(k)ϕ2(k) dk.

The representation I(χ, λ) is defined by

I(g, χ, λ)ϕ(g′) = e−〈λ,H(g′)〉e〈λ,H(g′g)〉ϕ(g′g).

It is unitary if λ ∈ ia∗0. Similar notation will be used in the local case. Let
w ∈W and let wχ(t) = χ(wtw−1). The (unnormalized) intertwining operator

M(w, λ) : I(χ, λ)→ I(wχ,wλ)

is defined by

[M(w, λ)ϕ](g) =

∫

(N∩w−1Nw)\N

ϕ(wng) dn.

It is absolutely convergent in a suitable cone and admits a meromorphic con-
tinuation in λ.
Let B(χ) = {ν} be the set of four Hecke characters of the diagonal subgroup
T ′(AF ) of G′(AF ) such that ν is trivial on the center Z ′(AF ) and χ = ν ◦Nm.
In the non-archimedean case, let HG be the Hecke algebra of compactly-
supported, bi -K-invariant functions onG. Let f̂(χ, λ) be the Satake transform,

i.e., f̂(χ, λ) is the trace of f acting on I(χ, λ). Define HG′ and f̂ ′(ν, λ) similarly.
We define the base change homomorphism

bc : HG → HG′

in the usual way. By definition, if f ′ = bc(f) then f̂(ν ◦Nm,λ) = f̂ ′(ν, λ) for
any unramified character ν of T ′(F ).
We fix a non-trivial additive character ψ of F\AF . The ψ-Fourier coefficient
of an automorphic form on G is defined by

W(φ) =

∫

N(E)\N(AE)

φ(n) ψN (n) dn

where

ψN (




1 x ∗
0 1 y
0 0 1


) = ψ(trx+ tr y).
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The ψ-Fourier coefficient W′(φ) of an automorphic form on G′ is defined in a
similar way with respect to the character

ψN ′(




1 x ∗
0 1 y
0 0 1


) = ψ(x+ y).

If ϕ ∈ I(π, λ), we set
W(ϕ, λ) = W(E(ϕ, λ)).

In this paper, we use a different Hermitian form from the one used in [JY].
This forces us to modify the definition of matching functions, namely we have
to take a left translate of f by τ where tττ = Φ.

Part I
The regularized Period

3 Double Cosets

Let θ : G→ G be the involution

θ(g) = Φ−1 tg−1Φ.

Then H = U(3) is the fixed-point set of θ. Note that θ preserves B, T , N and
K. We shall consider the space

S0 = {s ∈ G : θ(s) = s−1}

and its quotient modulo scalars

S = {s ∈ G : θ(s) = s−1}/F ∗.

Remark 1. The space S0 is a translate by Φ−1 of the space of non-degenerate
Hermitian forms. Indeed, s ∈ S0 if and only if Φ−1 ts = sΦ−1, i.e. sΦ−1 is
Hermitian.

The group G acts on S via s→ gsθ(g)−1. This is compatible with the action
on Hermitian forms. The stabilizer of s is the subgroup

Hs = {g ∈ G : gsΦ−1 tg = λsφ−1 for some λ ∈ F ∗}.

Thus Hs is the unitary similitude group of the Hermitian form sΦ−1. There
are only finitely many equivalence classes of Hermitian forms modulo scalars
and hence G has finitely many orbits in S. We obtain a bijection

∐

{s}

G/Hs → S

g → gsθ(g)−1
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where {s} is a set of orbit representatives. In fact, our assumption (6) implies
that there is only one orbit.
Consider the B-orbits in S. According to a result of Springer ([S]), every
B-orbit in S intersects the normalizer NG(T ) of the diagonal subgroup T .
Moreover, the map C 7→ C ∩ NG(T ) is a bijection between B-orbits of S and
T -orbits of S ∩NG(T ). Thus we may define a map

ι : B orbits of S → W

sending C to the T -coset of C ∩NG(T ).
Set w = Φ and regard w as an element of W . We shall be interested in ι−1(w).
Suppose that η ∈ G(E) satisfies

ηθ(η)−1 = tw

where t = d(t1, t2, t3) ∈ T (E). In this case, θ(tw)tw = 1, or θ(w)tw = θ(t)−1,
and hence t1, t2, t3 ∈ F ∗. If α ∈ T (E), then

α(tw)θ(α)−1 = α(tw)wαw−1 = (Nmα)tw (7)

since w = w−1. This yields the following

Lemma 1. There is a bijection (depending on the choice of w)

ι−1(w)←→ T ′(F )/Z ′(F ) Nm(T (E))

defined by sending C to {t : tw ∈ C ∩NG(T )} modulo Z ′(F ) Nm(T (E)).

In the local case, ι−1(w) consists of the open orbits.
Set

Bη = ηHη−1 ∩ B

and

Hη = H ∩ η−1Bη.

Then Bη = {b ∈ B : θ(b) = twbw−1t−1} and hence

Bη = {d(a, b, c) : a, b, c ∈ E1}

where E1 is the group of norm one elements in E∗. The subgroup Bη is thus
independent of η.

4 Fourier inversion and stabilization

For E/F a quadratic extension of local fields or number fields, or for E = F⊕F ,
we set

A(F ) = T ′(F )/Z ′(F ) Nm(T (E)).
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By Lemma 1, A(F ) parameterizes the B-orbits in ι−1(w). Note that A(F ) '
(F ∗/NE∗)2. If E = F ⊕ F , then A(F ) is trivial. In the global case, we define
A(AF ) as the direct sum of the corresponding local groups

A(AF ) =
⊕

v

A(Fv)

where v ranges over all places of F . View A(F ) as a subgroup of A(AF )
embedded diagonally. Note that [A(AF ) : A(F )] = 4.

For an absolutely summable function g on A(AF ), we may define the Fourier
transform

ĝ(κ) =
∑

x∈A(AF )

κ(x) g(x)

for any character κ of A(AF ). Let X be the set of four characters of A(AF )
trivial on A(F ). Then the following Fourier inversion formula holds

∑

x∈A(F )

g(x) =
1

4

∑

κ∈X

ĝ(κ).

Suppose in addition that g is of the form

g(x) =
∏

v

gv(xv)

where gv is a function on A(Fv) for all v and the infinite product converges
absolutely. Define the local Fourier transform

ĝv(κ) =
∑

xv∈A(Fv)

κ(xv) gv(xv)

for any character κ of A(Fv). We shall write κv for the restriction of a character
κ ∈ A(AF ) to A(Fv). Then we have the following

Lemma 2. ĝ(κ) =
∏
v ĝv(κv)

Proof. Let {Sn}∞n=1 be an ascending sequence of finite sets of places of F whose
union is the set of all places of F . For any finite set of places S let AS(AF ) be
the subgroup of elements x = (xv) ∈ A(AF ) such that xv = 1 for v 6∈ S. By
definition,

g(x) = lim
n→∞

∏

v∈Sn

gv(xv)
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and

ĝ(κ) = lim
n→∞

∑

x∈ASn(AF )

κ(x) g(x)

= lim
n→∞

∏

v∈Sn


 ∑

xv∈A(Fv)

κv(xv) gv(xv)


 ∏

v 6∈Sn

gv(1)

= lim
n→∞

(
∏

v∈Sn

ĝv(κv)

)
∏

v 6∈Sn

gv(1) =
∏

v

ĝv(κv)

since
∏
v 6∈Sn

gv(1) converges to 1 as n→∞.

5 Stable Local Period

Let us consider the local case. Fix η ∈ G(E) such that ηθ(η)−1 = tw for
some t ∈ T (F ). To define the stable local period, we assume that the inducing
character χ = (χ1, χ2, χ3) satisfies χj

∣∣
E1 ≡ 1. It is shown in [LR] that the

integral

J(η, ϕ, λ) =

∫

Hη(F )\H(F )

e〈λ,H(ηh)〉 ϕ(ηh) dh

where ϕ ∈ I(χ, λ) converges for Reλ positive enough. Let ν = (ν1, ν2, ν3) be a
character of T ′ such that χj = νj ◦Nm for j = 1, 2, 3. Set

∆ν,λ(η) = ν(t)ω(t1t3) e
1
2
〈λ+ρ,H(t)〉.

By (7), we have

∆ν,λ(αη) = χ(α) e〈λ+ρ,H(α)〉 ∆ν,λ(η),

for all α ∈ T (E) and the expression

∆ν,λ(η)
−1

∫

Hη(F )\H(F )

e〈λ,H(ηh)〉 ϕ(ηh) dh (8)

depends only on the double coset BηH and the measure on Hη(F )\H(F ). The
stable local period is defined to be the distribution

Jst(ν, ϕ, λ) =
∑

ι(η)=w

∆ν,λ(η)
−1

∫

Hη(F )\H(F )

e〈λ,H(ηh)〉 ϕ(ηh) dh.

The split case

If E = F ⊕ F , then

G(E) = GL3(F )×GL3(F ) = G′(F )×G′(F ).
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In this case, the local period can be expressed in terms of an intertwining
operator. We have θ(h1, h2) = (ϑ(h2), ϑ(h1)) where ϑ(h) = Φ−1 th−1Φ, and

H = {(h, ϑ(h)) : h ∈ G′}.

Furthermore, B(E)\G(E)/H(F ) ' W , so the stabilization is trivial. We can
take η = (1, w). Then Hη = {(t, ϑ(t)) : t ∈ T ′}.
Let ν be a unitary character of T ′. Its base change to T is χ = (ν, ν). Let
ϕ = ϕ1 ⊗ ϕ2 ∈ I(ν ⊗ ν, (λ, λ)) = I ′(ν, λ) ⊗ I ′(ν, λ). Recall that K ′ is the
standard maximal compact subgroup of G′(F ).

Proposition 1. We have

Jst(ν, ϕ1 ⊗ ϕ2, λ) =

∫

K′

ϕ1(k)(M(w, λ)ϕ2)(ϑ(k)) dk.

Proof. By definition

J(η, ϕ, λ) =

∫

Hη\H

e〈(λ,λ),H(ηh)〉ϕ(ηh) dh

=

∫

T ′\G′

e〈λ,H(h)+H(wϑ(h))〉ϕ1(h)ϕ2(wϑ(h)) dh

=

∫

K′

ϕ1(k)

(∫

N

e〈λ,H(wϑ(n))〉ϕ2(wϑ(n)ϑ(k)) dn

)
dk

=

∫

K′

ϕ1(k)(M(w, λ)ϕ2)(ϑ(k)) dk.

as required.

6 Meromorphic Continuation of Local Periods in the p-adic case

Let E/F be quadratic extension of p-adic fields and let q = qF be the cardinality
of the residue field of F .

Proposition 2. Jst(ν, ϕ, λ) is a rational function in qλ.

It suffices to show that each integral J(η, ϕ, λ) is a rational function in qλ. We
shall follow the discussion in [GPSR], pp. 126–130, where a similar assertion
is established for certain zeta integrals.
The key ingredient is a theorem of J. Bernstein, which we now recall. Let
V be a vector space of countable dimension over C, Y an irreducible variety
over C with ring of regular functions C[Y ], and I an arbitrary index set. By a
system of linear equations in V ∗ indexed by i ∈ I we mean a set of equations
for ` ∈ V ∗ of the form `(vi) = ai where vi ∈ V and ai ∈ C. Consider an
algebraic family Ξ of systems parameterized by Y . In other words, for each
i ∈ I we have functions vi(y) ∈ V ⊗ C[Y ] and ai(y) ∈ C[Y ] defining a system
Ξy: `(vi(y)) = ai(y), for each y ∈ Y .
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Let K = C(Y ) be the fraction field of C[Y ]. If L ∈ HomC(V,K) and v(y) ∈
V ⊗ C[Y ], then L(v(y)) may be viewed as an element of K. We will say that
L ∈ HomC(V,K) is a meromorphic solution of the family Ξ if L(vi(y)) = ai(y)
for all i ∈ I . Then Bernstein’s Theorem is the following statement.

Theorem 4. In the above notation, suppose that the system Ξy has a unique
solution `y ∈ V ∗ for all y in some non-empty open set Ω ⊂ Y (in the
complex topology). Then the family Ξ has a unique meromorphic solution
L ∈ HomC(V,K). Furthermore, outside a countable set of hypersurfaces in
Y , `y(v) = (L(v))(y).

To use the Theorem, we need the following input. Recall that there are 4 open
B-orbits in G/H . The next lemma shows that generically each one supports
at most one H-invariant functional.

Lemma 3. (a). If Reλ is sufficiently positive, then there exists a unique (up
to a constant) H-invariant functional ` on I(χ, λ) such that `(ϕ) = 0 if
ϕ|BηH = 0.

(b). There exists ϕ0 ∈ I(χ, λ) such that J(η, ϕ0, λ) = cqnλ for some non-zero
c ∈ C and n ∈ Z.

Proof. To prove (a), first note that J(η, ϕ, λ) defines a non-zero H-invariant
functional whenever the integral defining it converges. To prove uniqueness, let
{ηi} be a set of representatives for the open orbits in B\G/H and let V be the
H-invariant subspace of ϕ ∈ I(χ, λ) whose support is contained in the union∐
ηi
BηiH . The argument in [JLR], pp. 212–213 shows that an H-invariant

functional vanishing on V is identically zero if Reλ is sufficiently positive. On
the other hand, V decomposes as a direct sum over the ηi’s of indHHηi

(χηi

λ )

where

(χηi

λ )(h) = χ(ηihη
−1
i )e〈λ,H(ηihη

−1

i )〉.

It remains to show that the space of H-invariant functionals on indHHηi
(χηi

λ ) is

at most one-dimensional. However, the dual of indHHη
(χηλ) is IndHHη

((χηλ)
−1) and

the dimension of H-invariant vectors in the latter is at most one by Frobenius
reciprocity.
To prove (b), let V be a small open subgroup of G. The map B × H → G
defined by (b, h) 7→ bηh is proper since the stabilizer Bη is compact. We infer
that the set U = ηH ∩ BηV is a small neighborhood of Bηη and hence the
weight function H(x) takes the constant value H(η) on U . Then we may take
for ϕ0 any non-negative, non-zero function supported in BηV .

To finish the proof of Proposition 2, let V = I(χ) and Y = C∗. Then C[Y ]
may be identified with the ring of polynomials in q±λ. Fix ϕ0, c and n as in
Lemma 3 and consider the following conditions on a linear functional ` ∈ V ∗:

1. ` is H-invariant, i.e. `(I(h, χ, λ)ϕ − ϕ) = 0 for all ϕ and h ∈ H .
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2. `(ϕ) = 0 if ϕ
∣∣
BηH

= 0.

3. `(ϕ0) = cqnλ.

These conditions form an algebraic family of systems of linear equations as
above. The functional J(η, ϕ, λ) converges for Reλ > λ0 and it is the unique
solution for the system by Lemma 3. The proposition now follows from Bern-
stein’s Theorem.

7 Unramified Computation

Suppose now that E/F is an unramified extension of p-adic fields with p 6= 2
and that χ is unramified. Let ϕ0 be the K-invariant section of I(χ, λ) such
that ϕ0(e) = 1. Recall that si = 〈λ, α∨

i 〉 for i = 1, 2, 3.
Recall our convention that the Haar measure dh onH(F ) is defined via the Iwa-
sawa decomposition and assigns measure one to KH . In the following Propo-
sition, we assume that the measure on Hη(F )\H(F ) is the quotient of the dh
by the measure on Hη(F ) such that vol(Hη(F )) = 1.

Proposition 3. The stable local period J st(ν, ϕ0, λ) is equal to

L(ν1ν
−1
2 ω, s1)L(ν2ν

−1
3 ω, s2)L(ν1ν

−1
3 ω, s3)

L(ν1ν
−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)

Sketch of proof. Without loss of generality we may assume that χ = 1. Let
η1, η2, η3, η4 be the matrices



1
2 0 1
0 1 0
− 1

2 0 1


 ,




ε
2 0 1
0 1 0
− 1

2 0 ε−1


 ,




ε
2 0 1
− 1

2 0 ε−1

0 −1 0


 ,




0 −1 0
ε
2 0 1
− 1

2 0 ε−1




respectively, where ε ∈ F ∗−NE∗, e.g., ε has odd valuation. They form a set of
representatives for the double cosets in B\G/H over w. The matrices ηiθ(ηi)

−1

are



1
1

−1


 ,




ε
1

−ε−1


 ,




ε
−ε−1

1


 ,




1
ε

−ε−1




respectively.
By definition,

Jst(ν, ϕ0, λ) =
∑

j

Ij

where

Ij = ∆−1
ν,λ(ηj)

∫

Hηj
(F )\H(F )

e〈λ+ρ,H(ηjh)〉 dh. (9)
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Since Hηj
(F ) has measure one, we may use Iwasawa decomposition to write Ij

as ∆ν,λ(ηj)
−1 times

∑

n

q2nE

∫

E

∫

β̄=−β

exp(

〈
λ+ ρ,H(ηj




1 x xx̄
2 + β

0 1 x̄
0 0 1





$n

1
$−n


)

〉
) dβ dx

where $ is a uniformizer of E and qE is the cardinality of the residue field of
E.
The Ij can be evaluated explicitly. For j = 2, 3, 4, the integrands depend only
on v(x), v(β) and n, but for j = 1 it depends also on v( xx̄4 ± 1). In any
case, the integrations and the summation over β, x and n can be computed as
geometric series. This is tedious to carry out by hand, especially in the first
case, but we did it using Mathematica with the following results. The term I1
is independent of ν and is equal to

[
1− q−2(s1+s2) − 2q−2(1+s1+s2) + q−1−2s1 + q−2−2s2−4s1 + q−1−2s2−

2q−1−2(s1+s2) − q−3−2(s1+s2) + q−2−2s1−4s2 + q−4s1−4s2−3
]
/

((1− q−2s1)(1− q−2s2)(1− q−2(s1+s2))),

(10)

while

I2 = ν1(ε)
−1ν3(ε) ·

q−2−s1−s2(1 + q)

1− q−2(s1+s2)
,

I3 = −ν1(ε)
−1ν2(ε) ·

q−1−s1(1 + q)(1− q−2(1+s1+s2))

(1− q−2s1)(1− q−2(s1+s2))
,

I4 = −ν2(ε)
−1ν3(ε) ·

q−1−s2(1 + q)(1− q−2(1+s1+s2))

(1− q−2s2)(1− q−2(s1+s2))

respectively. Summing up the contributions (also done with Mathematica) we
get

(1− q−(s1+1))(1− q−(s2+1))(1− q−(s1+s2+1))

(1 + q−s1)(1 + q−s2)(1 + q−(s1+s2))
for ν1 = ν2 = ν3 = 1

(1− q−(s1+1))(1 + q−(s2+1))(1 + q−(s1+s2+1))

(1 + q−s1)(1− q−s2)(1− q−(s1+s2))
for ν1 = ν2 = ω, ν3 = 1

(1 + q−(s1+1))(1 + q−(s2+1))(1− q−(s1+s2+1))

(1− q−s1)(1− q−s2)(1 + q−(s1+s2))
for ν1 = ν3 = ω, ν2 = 1

(1 + q−(s1+1))(1− q−(s2+1))(1 + q−(s1+s2+1))

(1− q−s1)(1 + q−s2)(1− q−(s1+s2))
for ν2 = ν3 = ω, ν1 = 1
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as required.

Remark 2. We have also computed Jst(ν, ϕ0, λ) when E/F is ramified but ν
is unramified and −1 ∈ NmE∗. In this case the matrices ηi still provide
representatives for B\G/H . We find that J st(ν, ϕ0, λ) is equal to

0 for ν1 = ν2 = ν3 = 1

q−(s2+1/2)(1− q−(s1+1))

(1− q−s2)(1− q−(s1+s2))
for ν1 = ν2 = ω, ν3 = 1

q−1/2(1− q−(s1+s2+1))

(1− q−s1)(1− q−s2)
for ν1 = ν3 = ω, ν2 = 1

q−(s1+1/2)(1− q−(s2+1))

(1− q−s1)(1− q−(s1+s2))
for ν2 = ν3 = ω, ν1 = 1

However, this is not sufficient to evaluate dE/F . We would also need to deter-
mine the function f ′ on G′ that matches ϕ0. Finally if −1 6∈ NmE∗ then the
representatives are more difficult to write down and the computation is more
elaborate. We have not attempted to do this.

8 Stabilization of Periods

We return to the global situation. Let

c = vol(Hη(F )Z(AF )\Hη(A)) = vol(E1\E1(A))2.

The following identity

ΠH(E(ϕ, λ)) = c
∑

ι(η)=w

J(η, ϕ, λ)

is proved in [LR]. It is valid whenever Reλ is positive enough. From now
on, we assume that the Haar measure on Hη(A) is the Tamagawa measure.
This measure has the property that vol(Hη(Fv)) = 1 for almost all v and
furthermore,

c = 4 (11)

by Ono’s formula for the Tamagawa number of a torus [O].
Fix a character ν0 ∈ B(χ) to serve as a base-point. Recall from §4 that the
set of double cosets over w is parameterized by the group A(F ) both locally
and globally. For a ∈ A(F ), let ηa be a representative for the double coset
corresponding to a such that ηaθ(ηa)

−1 = tw with t ∈ T ′(F ). Fix λ and
ϕ = ⊗ϕv ∈ I(χ, λ) = ⊗I(χv, λ), and let gv be the function on A(Fv) defined
as follows:

gv(a) = ∆ν0,λ(ηa)
−1

∫

Hηa (Fv)\H(Fv)

e〈λ,Hv(ηah)〉 ϕv(ηah) dh. (12)
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The product function g =
∏
v gv on A(A) is integrable over A(AF ) for Reλ

positive enough. Indeed, Proposition 3 applied to |ν0| shows that almost all
factors of the integral are local factors of a quotient of products of L-functions.
For the same reason, we may define the global stable intertwining period for
Reλ positive enough as the absolutely convergent product

Jst(ν0, ϕ, λ) =
∏

v

Jstv (ν0v, ϕv , λ).

For any character κ of A(A) trivial on A(F ) we have ĝ(κ) = J st(κν0, ϕ, λ).
Observe that the characters ν = κν0 comprise B(χ). The Fourier inversion
formula of Section 4 together with (11) gives

ΠH(E(ϕ, λ)) =
∑

ν∈B(χ)

Jst(ν, ϕ, λ). (13)

By Propositions 1, 2 and 3, each Jst(ν, ϕ, λ) admits a meromorphic continua-
tion, and hence, the identity (13) is valid for all λ. These assertions make up
Theorem 1, which is now proved.

Remark 3. It seems unlikely that the individual terms J(η, ϕ, λ) have a mero-
morphic continuation to the entire complex plane. This is motivated by the
following old result of Estermann ([E]). Let P (x) be a polynomial with inte-
ger coefficients with P (0) = 1. Then either P (x) is a product of cyclotomic
polynomials or else the Euler product

∏
p P (p−s) has the imaginary axis as its

natural boundary. The function J(η, ϕ, λ) has Euler product where the factors
in the inert places are almost always (10).

Part II
Relative Bessel Distributions

We now turn to the relative Bessel distributions, starting with the local case.
Thus we assume that F is a local field. The Whittaker functional is defined by
the integral

W(ϕ, λ) =

∫

N

e〈λ,H(wn)〉ϕ(wn)ψN (n) dn

for ϕ ∈ I(χ, λ). It converges absolutely for Reλ sufficiently large, and defines
a rational function in qλ.

Definition 1. Let ν be a unitary character of T ′ which base changes to χ.
The stable relative Bessel distribution is defined by

B̃st(f, ν, λ) =
∑

ϕ

Jst(ν, I(f, χ, λ)ϕ, λ)W(ϕ, λ)

for λ ∈ ia∗0 where {ϕ} is an orthonormal basis for I(χ, λ).
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Similarly, the local Bessel distributions on G′ are defined in terms of the Whit-
taker functionals on G′ as follows:

B′(f ′, ν, λ) =
∑

ϕ′

W ′(I(f ′, ν, λ)ϕ′, λ)W ′(ϕ′, λ).

Remark 4. Let us check that Theorem 3 is compatible with a change of additive
character. In doing this, we include the additive character in the notation.
Let ψ′ be the character ψ′(x) = ψ(ax). Then ψ′

N (·) = ψN (t−1
0 · t0) where

t0 = d(a−1, 1, a), and

Wψ′

(ϕ, λ) = χ(wt0w
−1)e〈wλ+ρ,H(t0)〉Wψ(I(t−1

0 , χ, λ)ϕ, λ).

Hence

B̃stψ′(f, ν, λ) = χ(wt0w−1)e〈wλ+ρ,H(t0)〉B̃stψ (ft0 , ν, λ)

where ft0(x) = f(xt0). Similarly,

B′
ψ′(f ′, ν, λ) = |ν(wt0w

−1)e〈wλ+ρ,H′(t0)〉|2B′
ψ(f ′

t0 , ν, λ)

where f ′
t0(x) = f ′(t−1

0 xt0). It follows from the definition in [JY] that if f ↔ f ′

with respect to ψ then ft0 ↔ f ′
t0 with respect to ψ′. On the other hand,

γ(ν, λ, ψ′) = (ν1ν
−1
2 )(a)|a|s1 (ν2ν

−1
3 )(a)|a|s2(ν1ν

−1
3 )(a)|a|s3γ(ν, λ, ψ).

It remains to note that

χ(wt0w−1)e〈wλ+ρ,H(t0)〉 = (ν1ν
−1
2 )(a)|a|s1(ν2ν

−1
3 )(a)|a|s2 (ν1ν

−1
3 )(a)|a|s3

|ν(wt0w
−1)e〈wλ+ρ,H′(t0)〉|2.

Our goal is to prove Theorems 2 and 3. Let us start with the split case E =
F ⊕ F . By a special case of a result of Shahidi ([Sh]) we have the following
local functional equations. For any ϕ ∈ I ′(ν, λ)

W(M(w, λ)ϕ,wλ) = γ(ν, λ, ψ)W(ϕ, λ) (14)

where γ(ν, λ, ψ) is defined in (5). Recall that ω ≡ 1 in this case.

Proposition 4. We have

B̃st(f1 ⊗ f2, ν, λ) = γv(ν, λ)B
′(f, ν, λ)

where

f(g) =

∫

H(F )

f1(hg)f2(ϑ(h)) dh.
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Proof. The involution ϑ on G′ preserves B′, T ′, N ′. It induces the principal
involution on the space spanned by the roots. We also let (ϑϕ)(g) = ϕ(ϑ(g)).
This is a self-adjoint involution on I ′(ν). By Proposition 1

J(η, ϕ1 ⊗ ϕ2, λ) = (ϑ(M(w, λ)ϕ2), ϕ1),

and hence

B̃st(f1 ⊗ f2, ν, λ) (15)

is equal to
∑

i,j

(ϑ(M(w, λ)I ′(ν, f2, λ)ϕj), I ′(ν, f1, λ)ϕi)×W(ϕi, λ) · W(ϕj , λ).

The following identity holds for any operator A, functional l and orthonormal
basis {ei} on a Hilbert space:

∑

i

(Aei, v)l(ei) = l(A∗v).

Hence (15) is equal to
∑

i

W((ϑ ◦M(w, λ)I ′(ν, f2, λ))
∗I ′(ν, f1, λ)ϕi, λ)W(ϕi, λ) (16)

We have the following simple relations

W(ϑ(ϕ), ϑ(λ)) =W(ϕ, λ) because ψN ′(ϑ(n)) = ψN ′(n)

ϑ ◦M(w, λ) = M(w, ϑ(λ)) ◦ ϑ

ϑ ◦ I ′(ν, f, λ) = I ′(ν, ϑ(f), ϑ(λ)) ◦ ϑ

I ′(ν, f, λ)∗ = I ′(ν, f∨,−λ) where f∨(g) = f(g−1)

M(w, λ)∗ = M(w,−wλ)

We get for any ϕ,

(ϑ ◦M(w, λ)I ′(ν, f2, λ))
∗ϕ = (M(w, ϑ(λ))I ′(ν, ϑ(f2), ϑ(λ)) ◦ ϑ)∗ϕ

= (I ′(ν, ϑ(f2), wϑ(λ))M(w, ϑ(λ))ϑ)∗ϕ

= (ϑ ◦M(w,−wϑ(λ))I ′(ν, ϑ(f2)
∨,−wϑ(λ)))ϕ

= (ϑ ◦M(w, λ)I ′(ν, ϑ(f◦
2 ), λ))ϕ

with f◦(g) = f(g−1). Hence,

W((ϑ ◦M(w, λ)I ′(ν, f2, λ))
∗I ′(ν, f1, λ)ϕi, λ)

=W(ϑ ◦M(w, λ)I ′(ν, ϑ(f◦
2 ), λ)I ′(ν, f1, λ)ϕi, λ)

=W(M(w, λ)I ′(ν, ϑ(f◦
2 ), λ)I ′(ν, f1, λ)ϕi, ϑ(λ))

=γ(ν, λ, ψ)W(I ′(ν, ϑ(f◦
2 ), λ)I ′(ν, f1, λ)ϕi, wϑ(λ))

=γ(ν, λ, ψ)W(I ′(ν, ϑ(f◦
2 )∗f1, λ)ϕi,−λ)
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and since λ ∈ ia∗0, (16) becomes

γ(ν, λ, ψ)
∑

i

W(I ′(ν, ϑ(f◦
2 )∗f1, λ)ϕi, λ)W(ϕi, λ) = γ(ν, λ, ψ)B′(f, ν, λ)

as required.

We next consider the unramified non-archimedean case. Recall that

bc : HG → HG′

is the base change homomorphism. Proposition 3 gives the following

Proposition 5. Assume that f ∈ HG and that ν is a unitary, unramified
character. Then

B̃st(f, ν, λ) = γ(ν, λ, ψ)B′(bc(f), ν, λ). (17)

Proof. The left hand side is

Jst(ν, I(f, χ, λ)ϕ0, λ)W(ϕ0, λ) = f̂(χ, λ)Jst(ν, ϕ0, λ)W(ϕ0, λ).

Recall that we may assume that the additive character ψ is unramified. By the
formula for the unramified Whittaker functional and Proposition 3

Jst(ν, ϕ0, λ)W(ϕ0, λ) =
L(ν1ν

−1
2 ω, s1)L(ν2ν

−1
3 ω, s2)L(ν1ν

−1
3 ω, s3)

L(ν1ν
−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)

times

(L(χ1χ
−1
2 , s1 + 1)L(χ2χ

−1
3 , s2 + 1)L(χ1χ

−1
3 , s3 + 1))

−1

If µ0 is a character of F ∗, µ = µ0 ◦Nm, and s ∈ iR we have

L(µ0$, s)

L(µ0, s+ 1)
(L(µ, s+ 1))−1 =

L(µ0$, s)

L(µ0, s+ 1)
(L(µ0, s+ 1)L(µ0$, s+ 1))−1

= |L(µ0, s+ 1)|−2 L(µ0$, s)

L((µ0$)−1, 1− s)
.

On the other hand

B′(bc(f), ν, λ) =W ′(I ′(ν, bc(f), λ)ϕ′
0)W

′(ϕ′
0)

= b̂c(f)(ν, λ)|L(ν1ν
−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)|−2

= f̂(χ, λ)|L(ν1ν
−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)|−2,

and the statement follows.
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In the global setup we define

B̃st(f, ν, λ) =
∏

v

B̃stv (fv, νv, λ)

for f = ⊗fv. Note that this is compatible with (4). Similarly

B′(f ′, ν, λ) =
∏

v

B′
v(f

′
v, νv, λ).

9 The Relative Trace Formula

The relative trace formula identity, established by Jacquet reads

RTF (f) = KTF (f ′) (18)

where

RTF (f) =

∫

H\H(A)

∫

N(E)\N(AE)

Kf (h, n)ψN (n) dh dn

KTF (f ′) =

∫

N ′(F )\N ′(A)

∫

N ′(F )\N ′(A)

K ′
f ′(n1, n2)ψN ′(n1n2) dn1 dn2

for f , f ′ matching. In ([J1]), Jacquet established the following spectral ex-
pansion for RTF (f), at least for K-finite functions f . It is a sum over terms
indexed by certain pairs Q = (M,π) consisting of a standard Levi subgroup M
and a cuspidal representation π of M(A).
If M = G, then Q contributes if π is H-distinguished. In this case, the contri-
bution is

∑

ϕ

ΠH(π(f)ϕ)W(ϕ)

where {ϕ} is an orthonormal basis of the space Vπ of π. We will say that
a Hecke character of GL(1)E is distinguished if it is trivial on E1(A), that
is, it is the base change of a Hecke character of GL(1)F . If M is the Levi
factor of a maximal parabolic subgroup, then π = σ ⊗ κ where σ is a cuspidal
representation of of GL(2)E and κ is a Hecke character of GL(1)E . The pair Q
contributes if σ is distinguished relative to some unitary group in two variables
relative to E/F in GL(2)E and κ is distinguished. In this case, the contribution
is

∫

ia∗

P

∑

ϕ

ΠH(E(I(f, π, λ)ϕ, λ))W(E(ϕ, λ)) dλ.

Finally, if M is the diagonal subgroup, then π is a triple of characters which we
denote χ = (χ1, χ2, χ3). There are two kinds of contributions. The first one,
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which we call fully continuous is in the case where each χj is distinguished. In
the notation of relative Bessel distributions, the contribution is

1

6

∫

ia∗

0

B̃(f, χ, λ) dλ.

On the other hand, the residual contribution comes from triplets χ such that
χ2 is distinguished, χ3(x) = χ1(x) but χ1, χ3 are not distinguished. Up to a
volume factor it is∫

i(α∨

3
)⊥)

∑

ϕ

∫

HK

I(f, χ, λ)ϕ(k) dk · W(ϕ, λ) dλ.

Moreover the sum over χ and the integrals are absolutely convergent.
The spectral decomposition of the KT (f ′) is

∑

M ′,π′

∫

ia∗

M′

∑

ϕ′

W ′(I(f ′, π′, λ′)ϕ′, λ)W ′(ϕ′, λ) dλ′.

The fully continuous part is

1

6
·
∑

ν

∫

ia∗

0

B′(f ′, ν, λ) dλ.

There is no contribution from the residual spectrum because the representations
occurring in it are not generic, i.e., the ψ-Fourier coefficients of the residual
automorphic forms all vanish. This follows from the description of the residual
spectrum by Moeglin and Waldspurger ([MW]).

Remark 5. For all w ∈ W , we have B̃(f, χ, λ) = B̃(f, wχ,wλ). Indeed, by the
functional equation for the Eisenstein series we have

ΠH(E(I(f, χ, λ)ϕ, λ))W (ϕ, λ)

= ΠH(E(M(w, λ)I(f, χ, λ)ϕ,wλ))W (M(w, λ)ϕ,wλ)

= ΠH(E(I(f, wχ,wλ)M(w, λ)ϕ,wλ))W (M(w, λ)ϕ,wλ).

We may change the orthonormal basis {ϕ} to {M(w, λ)ϕ} because M(w, λ) is
unitary for λ ∈ ia∗0.
A similar remark applies to the other contributions. In particular, all the
expressions above depend on Q only up to conjugacy.

Recall that

B̃(f, χ, λ) =
∑

ν∈B(χ)

B̃st(f, ν, λ)

and therefore
∑

ϕ

ΠH(E(I(f, χ, λ)ϕ, λ))W(ϕ, λ) =
∑

ν∈B(χ)

B̃st(f, ν, λ).

We shall now prove Theorems 2 and 3 by isolating the term corresponding to
ν, λ in the relative trace formula identity. We proceed in several steps.
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10 Separation of Continuous Spectrum

Proposition 6. For any χ and λ and matching functions f ↔ f ′,

∑

ν∈B(χ)

B̃st(f, ν, λ) =
∑

ν∈B(χ)

B(f ′, ν, λ). (19)

To prove this, we modify the usual linear independence of characters argument
([L]). In the following lemma, let G be a reductive group over a global field F
and S a set of places containing all the archimedean places and the “bad” places
of G. Let X be a countable set of pairs (M,π) consisting of a Levi subgroup M
and a cuspidal representation π of M(A) which is unramified outside S. For
each (M,π) ∈ X let a subspace Aπ ⊂ ia∗M and a continuous function gπ(·) on
Aπ be given. We make the following hypotheses:

1. If (M1, π1), (M2, π2) ∈ X with π1 6= π2 and λi ∈ Aπi
, i = 1, 2, then

I(π1, λ1)
S and I(π2, λ2)

S have no sub-quotient in common.

2. If (M,π) ∈ X, λ, λ′ ∈ Aπ and I(π, λ)S ' I(π, λ′)S then gπ(λ) = gπ(λ
′).

Let HS denote the Hecke algebra of GS relative to hyperspecial maximal com-
pact subgroups of Gv for v /∈ S. For f ∈ HS and σS an unramified representa-
tion of GS , we set f̂S(σS) = tr(σS(fS)).

Lemma 4 (Generalized linear independence of characters).
Suppose that

∑

π

∫

Aπ

|gπ(λ)| dλ <∞ (20)

and that for any f ∈ HS

∑

π

∫

Aπ

f̂S(I(π, λ)S)gπ(λ) dλ = 0 (21)

Then gπ(λ) = 0 for all π ∈ X.

Proof. Let U be any set of places containing at least two places v1, v2 with
distinct residual characteristics p1 and p2 such that U ∩ S = ∅. Each π defines
a map

Tπ,U : Aπ → GunU

sending λ to I(π, λ)U . Applying (21) with fU = 1 gives

∑

π

∫

Aπ

f̂U (Tπ,U (λ))gπ(λ) dλ = 0. (22)
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Let µπ be the push-forward under Tπ,U of the measure gπ(λ)dλ. The Stone-
Weierstrass Theorem implies that the image of HU under the Satake transform
gives a dense set of continuous functions on ĜunU relative to the sup norm.

Therefore (21) vanishes for all continuous functions on ĜunU . The Riesz Repre-
sentation Theorem implies that

∑

π

µπ = 0.

Let Zπ,U be the image of Tπ,U . Then µπ1
(Zπ,U ) = 0 unless Zπ,U ⊃ Zπ1,U . We

now claim that for any subset Z ⊂ ĜunU we have

∑

π:Zπ,U =Z

µπ = 0. (23)

We argue by induction on dimZ (i.e., dimAπ where Z = Zπ,U ). For Z zero
dimensional this follows from the fact that the atomic part of µ is

∑
π:Aπ={0} µπ.

For the induction step, we can assume that there are no π with dimAπ < dimZ.
The restriction of µ to Z is then given by the left-hand side of (23), and our
claim is proved.
For each place v, let Xv be the group of unramified characters of the maximal
split torus Tv in M0(Fv) where M0 is a Levi factor of a fixed minimal parabolic
subgroup P0 of G(Fv) (contained in a globally defined minimal parabolic). We
identify Xv with the vector space a∗v = X∗(Tv) ⊗ C modulo the lattice Lv =
2πi
ln qv

X∗(Tv). Attached to each unramified representation σ of Mv is an orbit
of characters in Xv under the Weyl group of Mv. Let λσ be a representative
of this orbit. Let Wv be the Weyl group of Gv and let WU be the Weyl group∏
v∈U Wv of GU . If σ is an unramified representation of GU , let λσ be the

element (λσv
) in the product XU =

∏
Xv . We observe that the natural map

a∗P → XU is injective since ln p1 and ln p2 are linearly independent over Q. We
identify a∗P with its image in XU .
We now claim that if Zπ,U = Zπ0,U , then there exists an element w ∈WU such
that

1. wλπ0,U − λπ,U ∈ Aπ.

2. Aπ = wAπ0
.

3. If x ∈ Aπ0
and λ = w(x+ λπ0,U )− λπ,U , then Tπ,U(λ) = Tπ0,U (x).

To prove this, observe that for each λ ∈ Aπ0
, there exist wλ ∈WU and λ′ ∈ Aπ

such that

wλ(λ+ λπ0,U ) = λ′ + λπ,U

in XU . There are only finitely many possibilities for wλ, and hence there exists
w ∈WU such that wλ = w for a set of λ whose closure has a non-empty interior.
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Since the condition wλ = w is a closed condition, it holds on an open set and
hence everywhere on Aπ0

. Taking λ = 0 gives (1). Parts (2) and (3) follow.
Set Z = Zπ0,U for a fixed π0. We rewrite (23) as follows:

∑

π:Zπ,U =Z

∫

Aπ

f̂U (Tπ,U (λ))gπ(λ) dλ =
∑

π:Zπ,U =Z

∫

Aπ0

f̂U (Tπ0,U (x))gπ(λ) dx

=

∫

Aπ0

f̂U (Tπ0,U (x))


 ∑

π:Zπ,U =Z

gπ(λ)


 dx = 0

where λ+λπ,U = w(x+λπ0,U ). The sum taken inside the integral is absolutely
convergent for almost all λ by Fubini’s theorem. It follows that the push-
forward to ĜunU with respect to Tπ0,U of the measure


 ∑

π:Zπ,U=Z

gπ(λ)


 dx

is zero. We conclude that for almost all λ0 ∈ Aπ0
, we have

∑

(π,λ):Tπ,U (λ)=Tπ0,U (λ0)

gπ(λ) = 0. (24)

It remains to prove that gπ0
is identically zero. Fix U as above and fix a set

Z = Zπ0,U . Suppose that gπ0
(λ0) 6= 0. Let Y be the set of pairs (π, λ) such

that Tπ,U (λ) = Tπ0,U (λ0). We may choose a finite subset Y ′ ⊂ Y such such
that

∑

Y−Y ′

|gπ(λ)| < |gπ0
(λ0)|/2.

By choosing U ′ ⊃ U sufficiently large, we can ensure that Tπ,U ′(λ) 6= Tπ0,U ′(λ0)
for all (π, λ) ∈ Y ′ such that I(π, λ)S and I(π0, λ0)

S have distinct unramified
constituents. By Assumption (1), this holds if π 6= π0. Equality (24) for U ′

yields

∑

λ:Tπ0,U′ (λ)=Tπ0,U′ (λ0)

gπ0
(λ) +

∑

(π,λ):π 6=π0,Tπ,U′ (λ)=Tπ0,U′ (λ0)

gπ(λ) = 0. (25)

By Assumption (2), the first term is a positive integer multiple of multiple of
gπ0

(λ0). The second term is bounded by |gπ0
(λ0)|/2. This is a contradiction.

Proof of Proposition 6. Fix a character χ and let S be a finite set of places
containing the archimedean places such that χ and E/F are unramified outside
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S. We shall consider functions f = fS ⊗ fS where fS is fixed and fS varies in
the Hecke algebra HS . Write (18) as an equality

RT (f)−KT (f ′) = 0.

Using the fundamental lemma we can write this in the form (21). To apply
Lemma 4, we must check that the Assumptions hold. Assumption (1) is a
consequence of the classification theorem of Jacquet-Shalika [JS] applied to
GL(3). To check Assumption (2), observe that if I(π, λ)S ' I(π, λ′)S , then
(π, λ) = (wπ,wλ′) by [JS]. Remark 5 then implies that gπ(λ) = gπ(λ

′).

11 Decomposable distributions

We still have to derive identities for the individual ν’s in (19). We note that
(19) is an equality between sums of four decomposable distributions. We have
the following elementary

Lemma 5. Let V1, V2, V3 be vector spaces. Consider vectors xi, x
′
i ∈ V1, yi, y

′
i ∈

V2, zi, z
′
i ∈ V3 for i = 1, . . . , n such that

n∑

i=1

xi ⊗ yi ⊗ zi =

n∑

i=1

x′i ⊗ y
′
i ⊗ z

′
i.

If each of the sets {xi}, {yi} and {zi} is linearly independent, then there exists
a permutation σ of {1, . . . , n} such that x′i ⊗ y

′
i ⊗ z

′
i = xσ(i) ⊗ yσ(i) ⊗ zσ(i) for

all i.

Proof. The hypothesis implies that the span of {x′i} is equal to the span of
{xi}, and similarly for the y’s and z’s. In particular, the sets {x′i}, {y

′
i}, {z

′
i}

are linearly independent. Write x′i =
∑
j αijxj . Since the sum

∑
xj ⊗ V2 ⊗ V3

is direct, we must have

xj ⊗ yj ⊗ zj =
∑

i

αijxj ⊗ y
′
i ⊗ z

′
i,

for all j and hence yj ⊗ zj =
∑

i αijy
′
i ⊗ z

′
i. Writing yj and zj in terms of the

linearly independent sets {y′i} and {z′i}, we see that αij is non-zero for exactly
one i.

We also have the following

Lemma 6. For v inert the distributions B̃stv (f, ν, λ), ν ∈ B(χ) are linearly
independent for λ generic.

Proof. Suppose that L′ and L1, ..., Ln are linear functionals on Vπ where (π, V )
is an irreducible unitary representation of a reductive group G over a local field.
Assume that L′ is non-zero and set

Oi(f) =
∑

{ϕ}⊂Vπ

Li(π(f)ϕ)L′(ϕ)
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for i = 1, . . . , n. Then the Oi’s are linearly independent distributions if and
only if the Li are linearly independent. Indeed, any relation among the Oi’s
would imply that

∑

ϕ

L(π(f)ϕ)L′(ϕ) = 0 (26)

for some linear combination L of the Li’s. Fix a compact open K small enough
so that L′|VK 6= 0. Then (26) implies that

∑

{ϕ}⊂VK

L(π(f)ϕ)L′(ϕ) = 0

for any f ∈ H(G,K). We can rewrite this as

L(π(f)ϕ0) = 0

for some 0 6= ϕ0 ∈ V
K and all f ∈ H(G,K). This implies that L|VK = 0.

Thus, in order to prove the Lemma, it suffices to show that the function-
als {Jstv (νv , ϕv, λ)}ν∈B(χ) are linearly independent. However, it is clear that
{J(η, ϕv , λ)}η is a linearly independent set in the range of convergence, since
they are given by integrals over disjoint open orbits. Confining ourselves to
ϕ ∈ V K where K is small enough, the condition of linear independence can be
expressed in terms of a non-vanishing of some determinant which is a meromor-
phic function in λ (in fact rational in qλ). Thus, it holds for generic λ. Finally,
in order to prove the same thing for the Jstv , it suffices to check that the matrix
of coefficients (∆ν,λ(η)

−1)ν,η is non-singular. However the determinant of this
matrix is easily seen to be a non-zero constant multiple of a power of qλ times
the determinant of the character table of A(Fv).

Corollary 1. There exists a permutation τχ of B(χ) such that

B̃st(f, ν, λ) = B′(f ′, τχ(ν), λ) (27)

for all λ.

Proof. First, as was noted by Jacquet in ([J2], §4) one may use the localization
principle to infer that B′(f ′, ν, λ) depends only on the orbital integrals used
in the definition of matching functions, and hence only on f . Choose any two
finite places u, u′ of F which are inert in E and view each term in the equality

∑

ν∈B(χ)

B̃st(f, ν, λ) =
∑

ν∈B(χ)

B′(f ′, ν, λ)

of Proposition 6 as a decomposable distribution in f with three factors, where
the first two factors are the components at u and u′ and the third factor is the
product of all components away from u and u′. Lemma 6 allows us to apply
Lemma 5 to conclude that (27) holds with the permutation a-priori depending
on λ ∈ ia∗0. Each side of (27) is the restriction to ia∗

0 of a meromorphic function
on a∗0,C. Thus, the permutation does not depend on λ, because there are only
finitely many of them.
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12 Uniform distribution of Hecke characters

We need to prove that τχ(ν) = ν. We first prove a Lemma which is interesting
in its own right. Let F be a number field and S a finite set of places including
the archimedean ones. We write S = S∞ ∪ Sf . Embed R+ in F ⊗Q R by
x 7→ 1⊗ x. For any ideal I of OF let φ(I) = |(OF /I)∗|.

Lemma 7. Let {Ik} be a family of ideals, disjoint from S whose norms N(Ik)
tend to ∞. For each k let Xk be the set of Hecke characters of F which are
trivial on R+ and whose conductor divides IkJ for some ideal J whose prime
factors lie in S. Then for any fS ∈ C∞

c (F ∗
S) we have

1/φ(Ik)
∑

%∈Xk

f̂S(%S)→ λF

∫

R+

fS(t) d∗t

where λF = vol(F ∗R+\IF ).

Proof. This is a simple application of the trace formula for L2(R+F
∗\IF ). Let

f = fS ⊗fk ∈ C∞
c (IF ) where fS ∈ C∞

c (F ∗
S) is fixed and fk is the characteristic

function of {x ∈
∏
v 6∈S O

∗
v : x ≡ 1 (mod Ik)}. The Poisson summation formula

gives

λF
∑

γ

g(γ) =
∑

%

f̂(%) (28)

where g(x) =
∫

R+
f(tx) d∗t. By our choice of f , the sum in the right hand side

extends over Xk, and in the left hand side only γ = 1 contributes provided that
k is sufficiently large.

By standard methods, this Lemma implies that as k →∞, the set of restrictions
%S of the Hecke characters % in Xk is uniformly distributed in the dual of F ∗

S .
The Lemma carries over immediately to the torus T ′, which is a product of
copies of the multiplicative group. We shall use this variant to prove the fol-
lowing Corollary. If Q is a finite set of finite places, we denote by UQ the space
of unramified unitary characters of T ′(FQ) with the usual topology.

Corollary 2. Given a place w 6∈ S, a unitary character η = (ηv)v∈Sf
of

T ′(FSf
) and an open set U ⊂ USf

there exists a Hecke character % of T ′ which

is unramified outside S ∪ {w} such that %−1
Sf
η ∈ U .

13 Proof of Theorems 2 and 3

We now finish the proofs of Theorem 2 and Theorem 3.
We first prove Theorem 3 by choosing a favorable global situation. Suppose
that we are given local data which consists of:

• a quadratic extension E0/F 0, and
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• a unitary character µ of T ′(F 0).

In principle there is also an additive character of F 0, but we are free to choose
it at will by Remark 4. We can find a quadratic extension of number fields
E/F and a place v1 of F such that Ev1/Fv1 ' E

0/F 0. By passing to EK/FK
for an appropriate K we can assume in addition that

1. Every real and even place of F splits at E.

2. Let S1 = {vi}li=1 be the set (possible empty) of places of F which ramify
over E. Then Evi

/Fvi
' E0/F 0. We fix such isomorphisms.

Choose a non-trivial additive character ψ of F\AF . Let w1 be an auxiliary
place of F which is inert in E with residual characteristic p. Assume that
p 6 |qF 0 . Let S2 = {wj}mj=1 be the places of F of residual characteristic p. We
may also assume that ψv is unramified for v ∈ S2. Set

Lp(η, s) =
∏

j

Lwj
(ηwj

, s)

for any Hecke character η.

Lemma 8. There exists an open set U2 of US2
such that whenever ν is a Hecke

character of T ′ such that νS2
∈ U2 we necessarily have τχ(ν) = ν in the nota-

tions of Corollary 1.

To deduce Theorem from Lemma 8, apply Corollary 2 with the following data:

1. S = S∞ ∪ S1 ∪ S2.

2. ηv = µ for v ∈ S1.

3. ηv = 1 for v ∈ S2.

4. U = U1 × U2 where U1 is an open set of US1
.

5. w 6∈ S is any place of F which splits at E.

Corollary 2 implies that there exists a ν such that νS2
∈ U2 and νS2

µ−1 ∈ U1. In
particular, τχ(ν) = ν by our claim. The equality (27) yields the proportionality
of the local distributions, i.e.

B̃st(fv, ν, λ) = cv(νv , λ)B
′(f ′

v , ν, λ).

Let

dv(νv , λ) = cv(νv , λ)/γv(νv , λ).

A-priori, dv is a rational function in qλ depending on ν and λ. In the split case
Proposition 4 shows that dv(νv , λ) = 1. In the unramified case, the same holds
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by Proposition 5 and Remark 4. Thus, by our conditions we have dv(νv , λ) = 1
except possibly for v = vi. Since

∏
v cv(νv, λ) = 1 we have

∏

i

dvi
(νvi

, λ) = 1. (29)

Write νvi
µ−1 = |·|λi with λi ∈ ia∗0. The relation (29) implies that

∏

i

d(µ, λ + λi) = 1.

If d(µ, ·) were not constant this would impose a non-trivial closed condition on
the λi’s and this would contradict Corollary 2 for an appropriate choice of U1.
Hence d(µ, ·) is a constant. In fact, d(µ, ·) is an l-th root of unity where l is
the cardinality of S1 above. To show that d is independent of µ as well, let µ1

be given and apply the same corollary with η as before except that ηv1 = µ1.
Then (29) implies that d(µ)l−1d(µ1) = 1 so that d(µ1) = d(µ) as required.
We now prove Lemma 8. Let ν ′ = τχ(ν) and let S̃ be a finite set of places of F
including the archimedean ones, outside of which E/F , ψ and ν are unramified.
We are free to chose S̃ so that S2 ∩ S̃ = ∅. By applying Proposition 3.2
and Lemma 3.1 of [JY], we may fix matching functions fS̃ ↔ f ′

S̃
such that

B′
S̃
(f ′
S̃
, I(ν′, λ)) 6≡ 0 as a function of λ. Let f = fS̃ ⊗ 1KS̃ and f ′ = f ′

S̃
⊗ 1K′S̃ .

Then B′(f ′, I(ν′, λ)) 6≡ 0.
Since we assume that all real places of F split at E, the relation (27) gives

Dν
S̃
(f, λ)LS̃(1)(ν, λ)L

S̃
(2)(χ, λ) = γ∞(ν, λ, ψ)D′ν

′

S̃ (f ′, λ)|LS̃(3)(ν
′, λ)|2 (30)

where Dν
S̃
, D′ν

′

S̃ are non-zero rational functions in S̃λ = {qλ : q = qv, v ∈ S̃},

LS̃(1)(ν, λ) is the partial L-function computed in Proposition 3 and LS̃(2)(χ, λ)

(resp. LS̃(3)(ν
′, λ)) is the L-function giving the Fourier coefficient of the Eisen-

stein series on G (resp. G′), and finally, γ∞ is the product of the local γ factors
(5) of the archimedean places. As is well known,

LS̃(2)(χ, λ) =
(
LS̃(χ1χ

−1
2 , s1 + 1)LS̃(χ2χ

−1
3 , s2 + 1)LS̃(χ1χ

−1
3 , s1 + s2 + 1)

)−1

and

LS̃(3)(ν, λ) =
(
LS̃(ν1ν

−1
2 , s1 + 1)LS̃(ν2ν

−1
3 , s2 + 1)LS̃(ν1ν

−1
3 , s1 + s2 + 1)

)−1

.

Since LS̃(2)(χ, λ) = LS̃(2)(χ
−1, λ) and si ∈ iR, we obtain a relation

LS̃(ν1ν
−1
2 ω, s1)LS̃(ν2ν

−1
3 ω, s2)LS̃(ν1ν

−1
3 ω, s1 + s2)

LS̃(ν1ν
−1
2 , s1 + 1)LS̃(ν2ν

−1
3 , s2 + 1)LS̃(ν1ν

−1
3 , s1 + s2 + 1)

×

(LS̃(χ−1
1 χ2,−s1 + 1)LS̃(χ−1

2 χ3,−s2 + 1)LS̃(χ−1
1 χ3,−s1 − s2 + 1))−1AS̃(λ)

= γ∞(ν, λ, ψ)|LS̃(ν′1ν
′
2
−1
, s1+1)LS̃(ν′2ν

′
3
−1
, s2+1)LS̃(ν′1ν

′
3
−1
, s1+s2+1)|−2

(31)
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where AS̃(λ) is a rational function in S̃λ. Note that for any Hecke character
µ0 of F which base changes to µ we have

LS̃(µ, s) = LS̃(µ0, s)L
S̃(µ0ω, s).

Hence, by the functional equation

L(µ0ω, s)

L(µ0, s+ 1) · L(µ−1,−s+ 1)
= ε(µ0ω, s)

−1|L(µ0, s+ 1)|−2

for s ∈ iR. Working with partial L-functions we obtain the relation

∣∣∣LS̃(ν1ν
−1
2 , s1 + 1)LS̃(ν2ν

−1
3 , s2 + 1)LS̃(ν1ν

−1
3 , s1 + s2 + 1)

∣∣∣
2

A′
S(λ) =

∣∣∣LS̃(ν′1ν2,
−1, s1 + 1)LS̃(ν′2ν

′
3
−1, s2 + 1)LS̃(ν′1ν

′
3
−1, s1 + s2 + 1)

∣∣∣
2

where A′
S̃
(λ) is also a rational function in S̃λ. We will assume now that ν ′ 6= ν

and obtain a contradiction. Suppose, to be specific, that ν ′1 = ν1 but ν′j = νjω
for j = 2, 3. Thus we obtain

|LS̃(ν1ν2
−1, s1 + 1)LS̃(ν1ν3

−1, s1 + s2 + 1)|−2A′
S̃
(λ)

= |LS̃(ν1ν2
−1ω, s1 + 1)LS̃(ν1ν3

−1ω, s1 + s2 + 1)|−2

where A′
S̃
(λ) is as before. This implies then that A′

S(λ) decomposes into a
product of rational functions depending only on s1 and s1 +s2 respectively and
then the identity is equivalent to two new identities, one of which reads:

∣∣LS(ν1ν
−1
2 , s+ 1)

∣∣2 c(λ) =
∣∣LS(ν1ν

−1
2 ω, s+ 1)

∣∣2

where c(λ) is a rational function in qS̃ . Using the functional equations again
and the fact that s ∈ iR, one can write this in the form

LS̃(ν1ν2
−1, s+ 1)LS̃(ν1ν2

−1, s)cS̃(s) = LS̃(ν1ν2
−1ω, s+ 1)LS̃(ν1ν2

−1ω, s)

where cS̃(s) is a rational function in qs, q|S̃. Note that the γ factors at ∞
cancel because E/F splits at all real places. This relation now holds as an
equality of meromorphic functions. For Re(s) large enough, both sides can be
expanded as Dirichlet series and we can compare their p-power coefficients to
conclude:

Lp(ν1ν
−1
2 , s)Lp(ν1ν

−1
2 , s+ 1) = Lp(ν1ν

−1
2 ω, s)Lp(ν1ν

−1
2 ω, s+ 1).

This imposes a non-trivial constraint on νS2
. A similar argument gives the

other cases. This proves Lemma 8 and hence finishes the proof of Theorem 3.
Theorem 2 is an immediate consequence of Theorem 3 and Corollary 1.
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