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Abstract. We show that under certain conditions on the topolo-
gical invariants, the moduli spaces of stable bundles over polarized
non-algebraic surfaces may be compactified by allowing at the border
isomorphy classes of stable non-necessarily locally-free sheaves. As a
consequence, when the base surface is a primary Kodaira surface, we
obtain examples of moduli spaces of stable sheaves which are compact
holomorphically symplectic manifolds.
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1 Introduction

Moduli spaces of stable vector bundles over polarized projective complex sur-
faces have been intensively studied. They admit projective compactifications
which arise naturally as moduli spaces of semi-stable sheaves and a lot is known
on their geometry. Apart from their intrinsic interest, these moduli spaces al-
so provided a series of applications, the most spectacular of which being to
Donaldson theory.
When one looks at non-algebraic complex surfaces, one still has a notion of
stability for holomorphic vector bundles with respect to Gauduchon metrics
on the surface and one gets the corresponding moduli spaces as open parts
in the moduli spaces of simple sheaves. In order to compactify such a moduli
space one may use the Kobayashi-Hitchin correspondence and the Uhlenbeck
compactification of the moduli space of Hermite-Einstein connections. But the
spaces one obtains in this way have a priori only a real-analytic structure. A
different compactification method using isomorphy classes of vector bundles on
blown-up surfaces is proposed by Buchdahl in [5] in the case of rank two vector
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bundles or for topological invariants such that no properly semi-stable vector
bundles exist.
In this paper we prove that under this last condition one may compactify the
moduli space of stable vector bundles by considering the set of isomorphy clas-
ses of stable sheaves inside the moduli space of simple sheaves. See Theorem 4.3
for the precise formulation. In this way one gets a complex-analytic structure
on the compactification. The idea of the proof is to show that the natural map
from this set to the Uhlenbeck compactification of the moduli space of anti-
self-dual connections is proper. We have restricted ourselves to the situation of
anti-self-dual connections, rather than considering the more general Hermite-
Einstein connections, since our main objective was to construct compactificati-
ons for moduli spaces of stable vector bundles over non-Kählerian surfaces. (In
this case one can always reduce oneself to this situation by a suitable twist). In
particular, whenX is a primary Kodaira surface our compactness theorem com-
bined with the existence results of [23] and [1] gives rise to moduli spaces which
are holomorphically symplectic compact manifolds. Two ingredients are needed
in the proof: a smoothness criterion for the moduli space of simple sheaves and
a non-disconnecting property of the border of the Uhlenbeck compactification
which follows from the gluing techniques of Taubes.
Acknowledgments I’d like to thank N. Buchdahl, P. Feehan and H. Spindler
for valuable discussions.

2 Preliminaries

Let X be a compact (non-singular) complex surface. By a result of Gauduchon
any hermitian metric on X is conformally equivalent to a metric g with ∂∂̄-
closed Kähler form ω. We call such a metric a Gauduchon metric and fix one
on X. We shall call the couple (X, g) or (X,ω) a polarized surface and ω
the polarization. One has then a notion of stability for torsion-free coherent
sheaves.

Definition 2.1 A torsion-free coherent sheaf F on X is called reducible if it
admits a coherent subsheaf F ′ with 0 < rankF ′ < rankF , (and irreducible
otherwise). A torsion-free sheaf F on X is called stably irreducible if every
torsion-free sheaf F ′ with

rank(F ′) = rank(F), c1(F
′) = c1(F), c2(F

′) ≤ c2(F)

is irreducible.

Remark that if X is algebraic (and thus projective), every torsion-free coherent
sheaf F on X is reducible. But by [2] and [22] there exist irreducible rank-
two holomorphic vector bundles on any non-algebraic surface. Moreover stably
irreducible bundles have been constructed on 2-dimensional tori and on primary
Kodaira surfaces in [23], [24] and [1].
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Compact Moduli Spaces of Stable Sheaves 13

We recall that on a non-algebraic surface the discriminant of a rank r torsion-
free coherent sheaf which is defined by

∆(F) =
1

r

(

c2(F)−
(r − 1)

2r
c1(F)2

)

is non-negative [2].
Let Mst(E,L) denote the moduli space of stable holomorphic structures in a
vector bundle E of rank r > 1, determinant L ∈ Pic(X) and second Chern
class c ∈ H4(X,Z) ∼= Z. We consider the following condition on (r, c1(L), c):

(*) every semi-stable vector bundle E with rank(E) = r,
c1(E) = c1(L) and c2(E) ≤ c is stable.

Under this condition Buchdahl constructed a compactification ofMst(E,L) in
[5]. We shall show that under this same condition one can compactifyMst(E,L)
allowing simple coherent sheaves in the border. For simplicity we shall restrict
ourselves to the case degω L = 0. When b1(X) is odd we can always reduce
ourselves to this case by a suitable twist with a topologically trivial line bundle;
(see the following Remark).
The condition (*) takes a different aspect according to the parity of the first
Betti number of X or equivalently, according to the existence or non-existence
of a Kähler metric on X.

Remark 2.2 (a) When b1(X) is odd (*) is equivalent to: ”every torsion free
sheaf F on X with rank(F) = r, c1(F) = c1(L) and c2(F) ≤ c is irre-
ducible”, i.e. (r, c1(L), c) describes the topological invariants of a stably
irreducible vector bundle.

(b) When b1(X) is even and c1(L) is not a torsion class in H2(X,Zr) one can
find a Kähler metric g such that (r, c1(L), c) satisfies (*) for all c.

(c) When b1(X) is odd or when degL = 0, (*) implies c < 0.

(d) If b2(X) = 0 then there is no torsion-free coherent sheaf on X whose
invariants satisfy (*).

Proof It is clear that the stable irreducibility condition is stronger than (*).
Now if a sheaf F is not irreducible it admits some subsheaf F ′ with 0 <
rankF ′ < rankF . When b1(X) is odd the degree function degω : Pic0(X) −→
R is surjective, so twisting by suitable invertible sheaves L1, L2 ∈ Pic0(X)
gives a semi-stable but not stable sheaf (L1 ⊗ F

′) ⊕ (L2 ⊗ (F/F ′)) with the
same Chern classes as F . Since by taking double-duals the second Chern class
decreases, we get a locally free sheaf

(L1 ⊗ (F ′)∨∨)⊕ (L2 ⊗ (F/F ′)∨∨)

which contradicts (*) for (rank(F), c1(F), c2(F)). This proves (a).
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For (b) it is enough to take a Kähler class ω such that

ω(r′ · c1(L)− r · α) 6= 0 for all α ∈ NS(X)/Tors(NS(X))

and integers r′ with 0 < r′ < r. This is possible since the Kähler cone is open
in H1,1(X).

For (c) just consider (L ⊗ L1) ⊕ O
⊗(r−1)
X for a suitable L1 ∈ Pic0(X) in case

b1(X) odd. Finally, suppose b2(X) = 0. Then X admits no Kähler structure
hence b1(X) is odd. If F were a coherent sheaf on X whose invariants satisfy
(*) we should have

∆(F) =
1

r

(

c2 −
(r − 1)

2r
c1(L)

2
)

=
1

r
c2 < 0

contradicting the non-negativity of the discriminant. ¤

3 The moduli space of simple sheaves

The existence of a coarse moduli space SplX for simple (torsion-free) sheaves
over a compact complex space has been proved in [12] ; see also [19]. The
resulting complex space is in general non-Hausdorff but points representing
stable sheaves with respect to some polarization on X are always separated.
In order to give a better description of the base of the versal deformation of a
coherent sheaf F we need to compare it to the deformation of its determinant
line bundle detF . We first establish

Proposition 3.1 Let X be a nonsingular compact complex surface, (S, 0) a
complex space germ, F a coherent sheaf on X×S flat over S and q : X×S → X
the projection. If the central fiber F0 := F|X×{0} is torsion-free then there exists
a locally free resolution of F over X × S of the form

0 −→ q∗G −→ E −→ F −→ 0

where G is a locally free sheaf on X.

Proof In [20] it is proven that a resolution of F0 of the form

0 −→ G −→ E0 −→ F0 −→ 0

exists on X with G and E0 locally free on X as soon as the rank of G is large
enough and

H2(X,Hom(F0, G)) = 0.

We only have to notice that when F0 and G vary in some flat families over S
then one can extend the above exact sequence over X × S. We choose S to be
Stein and denote by p : X × S → S the projection.
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Compact Moduli Spaces of Stable Sheaves 15

From the spectral sequence relating the relative and global Ext-s we deduce
the surjectivity of the natural map

Ext1(X × S;F , q∗G) −→ H0(S, Ext1(p;F , q∗G)).

We can apply the base change theorem for the relative Ext1 sheaf if we know
that Ext2(X;F0, G) = 0 (cf. [3] Korollar 1). But in the spectral sequence

Hp(X, Extq(F0, G)) =⇒ Extp+q(X;F0, G)

relating the local Ext−s to the global ones, all degree two terms vanish since
H2(X;Hom(F0, G)) = 0 by assumption. Thus by base change

Ext1(X;F0, G) ∼= Ext
1(p;F , q∗G)0

/

mS,0 · Ext
1(p;F , q∗G)

and the natural map

Ext1(X × S;F , q∗G) −→ Ext1(X;F0, G)

given by restriction is surjective. ¤

Let X,S and F be as above. One can use Proposition 3.1 to define a morphism

det : (S, 0) −→ (Pic(X),detF0)

by associating to F its determinant line bundle detF .
The tangent space at the isomorphy class [F ] ∈ SplX of a simple sheaf F
is Ext1(X;F ,F) since SplX is locally around [F ] isomorphic to the base of
the versal deformation of F . The space of obstructions to the extension of a
deformation of F is Ext2(X;F ,F).
In order to state the next theorem which compares the deformations of F and
detF , we have to recall the definition of the trace maps

trq : Extq(X;F ,F) −→ Hq(X,OX).

When F is locally free one defines trF : End(F) −→ OX in the usual way
by taking local trivializations of F . Suppose now that F has a locally free
resolution F •. (See [21] and [10] for more general situations.) Then one defines

trF• : Hom•(F •, F •) −→ OX

by

trF• |Hom(F i,F j)=

{

(−1)itrF i , for i = j
0 , for i 6= j.

Here we denoted by Hom•(F •, F •) the complex having Homn(F •, F •) =
⊕

i

Hom(F i, F i+n) and differential

d(ϕ) = dF• ◦ ϕ− (−1)degϕ · ϕ ◦ dF•
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for local sections ϕ ∈ Homn(F •, F •). trF• becomes a morphism of complexes
if we see OX as a complex concentrated in degree zero. Thus trF• induces
morphisms at hypercohomology level. Since the hypercohomology groups of
Hom•(F •, F •) and of OX are Extq(X;F ,F) and Hq(X,OX) respectively, we
get our desired maps

trq : Extq(X;F ,F) −→ Hq(X,OX).

Using tr0 over open sets of X we get a sheaf homomorphism tr :
End(F) −→ OX . Let End0(F) be its kernel. If one denotes the kernel of
trq : Extq(X;F ,F) −→ Hq(X,OX) by Extq(X,F ,F)0 one gets natural maps
Hq(X, End0(F)) −→ Extq(X,F ,F)0, which are isomorphisms for F locally
free.

This construction generalizes immediately to give trace maps

trq : Extq(X;F ,F ⊗N) −→ Hq(X,N)

for locally free sheaves N on X or for sheaves N such that T orOX

i (N,F) vanish
for i > 0.

The following Lemma is easy.

Lemma 3.2 If F and G are sheaves on X allowing finite locally free resolutions
and u ∈ Extp(X;F ,G), v ∈ Extq(X;G,F) then

trp+q(u · v) = (−1)p·qtrp+q(v · u).

Theorem 3.3 Let X be a compact complex surface, (S, 0) be a germ of a com-

plex space and F a coherent sheaf on X×S flat over S such that F0 := F
∣

∣

∣

X×{0}

is torsion-free. The following hold.

(a) The tangent map of det : S → Pic(X) in 0 factorizes as

T0S
KS
−→ Ext1(X;F ,F)

tr1

−→ H1(X,OX) = T[detF0](Pic(X)).

(b) If T is a zero-dimensional complex space such that OS,0 = OT,0/I for an
ideal I of OT,0 with I · mT,0 = 0, then the obstruction ob(F , T ) to the
extension of F to X × T is mapped by

tr2 ⊗C idI : Ext2(X;F0,F0 ⊗C I) ∼= Ext2(X;F0,F0)⊗C I −→

−→ H2(X,OX)⊗C I ∼= Ext2(X; detF0, (detF0)⊗C I)

to the obstruction to the extension of detF to X × T which is zero.
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Compact Moduli Spaces of Stable Sheaves 17

Proof (a) We may suppose that S is the double point (0,C[ε]). We define the
Kodaira-Spencer map by means of the Atiyah class (cf. [9]).
For a complex space Y let p1, p2 : Y ×Y → Y be the projections and ∆ ⊂ Y ×Y
the diagonal. Tensoring the exact sequence

0 −→ I∆/I
2
∆ −→ OY×Y /I

2
∆ −→ O∆ −→ 0

by p∗2F for F locally free on Y and applying p1,∗ gives an exact sequence on Y

0 −→ F ⊗ ΩY −→ p1,∗(p
∗
2F ⊗ (OY×Y /I

2
∆)) −→ F −→ 0.

The class A(F) ∈ Ext1(Y ;F ,F ⊗ ΩY ) of this extension is called the Atiyah
class of F . When F is not locally free but admits a finite locally free resolution
F • one gets again a class A(F) in Ext1(Y ;F ,F ⊗ΩY ) seen as first cohomology
group of Hom•(F •, F • ⊗ ΩY ).
Consider now Y = X × S with X and S as before, p : Y → S, q : Y → X the
projections and F as in the statement of the theorem.
he decomposition ΩX×S = q∗ΩX ⊕ p

∗ΩS induces

Ext1(X × S; F ,F ⊗ ΩS×X) ∼=

Ext1(X × S; F ,F ⊗ q∗ΩX)⊕ Ext1(X × S; F ,F ⊗ p∗ΩS).

The component AS(F) of A(F) lying in Ext1(X×S; F ,F ⊗p∗ΩS) induces the
”tangent vector” at 0 to the deformation F through the isomorphisms

Ext1(X × S; F ,F ⊗ p∗ΩS) ∼= Ext1(X × S; F ,F ⊗ p∗mS,0) ∼=

Ext1(X × S; F ,F0) ∼= Ext1(X;F0,F0).

Applying now tr1 : Ext1(Y ;F ,F⊗ΩY )→ H1(Y ; ΩY ) to the Atiyah class A(F)
gives the first Chern class of F , c1(F) := tr1(A(F)), (cf. [10], [21]).
It is known that

c1(F) = c1(detF), i.e. tr1(A(F)) = tr1(A(detF)).

Now detF is invertible so

tr1 : Ext1(Y,detF , (detF)⊗ ΩY )) −→ H1(Y,ΩY )

is just the canonical isomorphism. Since tr1 is compatible with the decompo-
sition ΩX×S = q∗ΩX ⊕ p∗ΩS we get tr1(AS(F)) = AS(detF) which proves
(a).
(b) In order to simplify notation we drop the index 0 from OS,0,mS,0, OT,0,
mT,0 and we use the same symbols OS ,mS ,OT ,mT for the respective pulled-
back sheaves through the projections X × S → S, X × T → T .
There are two exact sequences of OS-modules:

(1) 0 −→ mS −→ OS −→ C −→ 0,

(2) 0 −→ I −→ mT −→ mS −→ 0.
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18 Matei Toma

(Use I ·mT = 0 in order to make mT an OS-module.)

Let j : C → OS be the C-vector space injection given by the C-algebra structure
of OS . j induces a splitting of (1). Since F is flat over S we get exact sequences
over X × S

0 −→ F ⊗OS
mS −→ F −→ F0 −→ 0

0 −→ F ⊗OS
I −→ F ⊗OS

mT −→ F ⊗OS
mS −→ 0

which remain exact as sequences over OX . Thus we get elements in
Ext1(X;F0,F⊗OS

mS) and Ext1(X;F⊗OS
mS ,F⊗C I) whose Yoneda compo-

site ob(F , T ) in Ext2(X;F0,F⊗C I) is represented by the 2-fold exact sequence

0 −→ F ⊗OS
I −→ F ⊗OS

mT −→ F −→ F0 −→ 0

and is the obstruction to extending F from X × S to X × T , as is well-known.

Consider now a resolution

0 −→ q∗G −→ E −→ F −→ 0

of F as provided by Proposition 3.1, i.e. with G locally free on X and E locally
free on X × S. Our point is to compare ob(F , T ) to ob(E, T ).

Since F is flat over S we get the following commutative diagrams with exact
rows and columns by tensoring this resolution with the exact sequences (1) and
(2):

0

²²

0

²²

0

²²

0 // q∗G⊗C mS

²²

// q∗G

²²

// G0

²²

// 0

0 // E ⊗OS
mS

//

²²

E //

²²

E0
//

²²

0

0 // F ⊗OS
mS

//

²²

F //

²²

F0
//

²²

0

0 0 0

(1’)
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Compact Moduli Spaces of Stable Sheaves 19

0

²²

0

²²

0

²²

0 // q∗G⊗C I

²²

// q∗G⊗C mT

²²

// q∗G⊗C mS

²²

// 0

0 // E ⊗OS
I //

²²

E ⊗OS
mT

²²

// E ⊗OS
mS

//

²²

0

0 // F ⊗OS
I //

²²

F ⊗OS
mT

//

²²

F ⊗OS
mS

//

²²

0

0 0 0

(2’)

Using the section j : C → OS we get an injective morphism of OX sheaves

G0
idq∗G⊗j
−−−−−→ q∗G⊗C mT −→ E ⊗OS

mT

which we call jG.

From (1′) we get a short exact sequence over X in the obvious way

0 −→ (E ⊗OS
mS)⊕ jG(G0) −→ E −→ F0 −→ 0

Combining this with the middle row of (2′) we get a 2-fold extension

0 −→ (E ⊗OS
I)⊕G0 −→ (E ⊗OS

mT )⊕G0 −→ E −→ F0 −→ 0

whose class in Ext2(X;F0, (E ⊗OS
I)⊗G0) we denote by u.

Let v be the surjection E → F and

v′ :=

(

v ⊗ idI
0

)

: (E ⊗OS
I)⊕G0 −→ F ⊗OS

I,

v′′ =

(

v0
0

)

: E0 ⊕G0 −→ F0,

the OX -morphisms induced by v.

The commutative diagrams

0 // (E ⊗OS
I)⊕G0

//

v′

²²

(E ⊗OS
mT )⊕G0

//

(v⊗idmT
0

)
²²

//

²²

E //

²²

F0
//

²²

0

0 // F ⊗OS
I // F ⊗OS

mT
// F // F0

// 0
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and

0 // (E ⊗OS
I)⊕G0

//

²²

(E ⊗OS
mT )⊕G0

//

id

²²

E ⊕G0
//

( id
jG
)

²²

//

²²

E0 ⊕G0
//

v′′

²²

0

0 // (E ⊗OS
I)⊕G0

// (E ⊗mT )⊕G0
// E // F0

// 0

show that ob(F , T ) = v′ · u and

(ob(E, T ), 0) = u · v′′ ∈ Ext2(X;E0 ⊕G0, (E ⊗OS
I)⊕G0).

We may restrict ourselves to the situation when I is generated by one element.
Then we have canonical isomorphisms of OX -modules E0

∼= E ⊗OS
I and

F0
∼= F ⊗OS

I. By these one may identify v′ and v′′. Now the Lemma 3.2 on
the graded symmetry of the trace map with respect to the Yoneda pairing gives
tr2(ob(F , T )) = tr2(ob(E, T )).

But E is locally free and the assertion (b) of the theorem may be proved for it
as in the projective case by a cocycle computation.

Thus tr2(ob(E, T )) = ob(detE) and since det(E) = (detF) ⊗ q∗(detG) and
q∗(detG) is trivially extendable, the assertion (b) is true for F as well. ¤

The theorem should be true in a more general context. In fact the proof of (a)
is valid for any compact complex manifold X and flat sheaf F over X×S. Our
proof of (b) is in a way symmetric to the proof of Mukai in [17] who uses a
resolution for F of a special form in the projective case.

Notation For a compact complex surface X and an element L in Pic(X) we
denote by SplX(L) the fiber of the morphism det : SplX → Pic(X) over L.

Corollary 3.4 For a compact complex surface X and L ∈ Pic(X) the tangent
space to SplX(L) at an isomorphy class [F ] of a simple torsion-free sheaf F
with [detF ] = L is Ext1(X;F, F )0. When Ext2(X;F, F )0 = 0, SplX(L) and
SplX are smooth of dimensions

dimExt1(X;F, F )0 = 2 rank(F )2∆(F )− (rank(F )2 − 1)χ(OX)

and

dimExt1(X;F, F ) = dimExt1(X;F, F )0 + h1(OX)

respectively.

We end this paragraph by a remark on the symplectic structure of the moduli
space SplX when X is symplectic.

Recall that a complex manifoldM is called holomorphically symplectic if
it admits a global nondegenerate closed holomorphic two-form ω. For a surface
X, being holomorphically symplectic thus means that the canonical line bundle
KX is trivial. For such an X, SplX is smooth and holomorphically symplectic
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Compact Moduli Spaces of Stable Sheaves 21

as well. The smoothness follows immediately from the above Corollary and a
two-form ω is defined at [F ] on SplX as the composition:

T[F ]SplX × T[F ]SplX ∼= Ext1(X;F, F )× Ext1(X;F, F ) −→

−→ Ext2(X;F, F )
tr2

−−→ H2(X,OX) ∼= H2(X,KX) ∼= C.

It can be shown exactly as in the algebraic case that ω is closed and nonde-
generate on SplX (cf. [17], [9]). Moreover, it is easy to see that the restriction
of ω to the fibers SplX(L) of det : SplX → Pic(X) remains nondegenerate, in
other words that SplX(L) are holomorphically symplectic subvarieties of SplX .

4 The moduli space of ASD connections and the comparison map

4.1 The moduli space of anti-self-dual connections

In this subsection we recall some results about the moduli spaces of anti-self-
dual connections in the context we shall need. The reader is referred to [6], [8]
and [14] for a thorough treatment of these questions.
We start with a compact complex surfaceX equipped with a Gauduchon metric
g and a differential (complex) vector bundle E with a hermitian metric h in its
fibers. The space of all C∞ unitary connections on E is an affine space modeled
on A1(X,End(E, h)) and the C∞ unitary automorphism group G, also called
gauge-group, operates on it. Here End(E, h) is the bundle of skew-hermitian
endomorphisms of (E, h). The subset of anti-self-dual connections is invariant
under the action of the gauge-group and we denote the corresponding quotient
by

MASD =MASD(E).

A unitary connection A on E is called reducible if E admits a splitting in
two parallel sub-bundles.
We use as in the previous section the determinant map

det :MASD(E) −→MASD(detE)

which associates to A the connection detA in detE. This is a fiber bund-
le over MASD(detE) with fibers MASD(E, [a]) where [a] denotes the gau-
ge equivalence class of the unitary connection a in detE. We denote by
Mst(E) = Mst

g (E) the moduli space of stable holomorphic structures in E
and by Mst(E,L) the fiber of the determinant map det :Mst(E) −→ Pic(X)
over an element L of Pic(X). Then one has the following formulation of the
Kobayashi-Hitchin correspondence.

Theorem 4.1 Let X be a compact complex surface, g a Gauduchon metric on
X, E a differentiable vector bundle over X, a an anti-self-dual connection on
detE (with respect to g) and L the element in Pic(X) given by ∂̄a on detE.
Then Mst(E,L) is an open part of SplX(L) and the mapping A 7→ ∂̄A gives
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rise to a real-analytic isomorphism between the moduli spaceMASD,∗(E, [a]) of
irreducible anti-self-dual connections which induce [a] on detE andMst(E,L).

We may also look at MASD(E, [a]) in the following way. We consider all anti-
self-dual connections inducing a fixed connection a on detE and factor by those
gauge transformations in G which preserve a. This is the same as taking gauge
transformations of (E, h) which induce a constant multiple of the identity on
detE. Since constant multiples of the identity leave each connection invariant,
whether on detE or on E, we may as well consider the action of the subgroup
of G inducing the identity on detE. We denote this group by SG, the quotient
space by MASD(E, a) and by MASD,∗(E, a) the part consisting of irreducible
connections. There is a natural injective map

MASD(E, a) −→MASD(E, [a])

which associates to an SG-equivalence class of a connection A its G-equivalence
class. The surjectivity of this map depends on the possibility to lift any unitary
gauge transformation of detE to a gauge transformation of E. This possi-
bility exists if E has a rank-one differential sub-bundle, in particular when
r := rankE > 2, since then E has a trivial sub-bundle of rank r − 2. In this
case one constructs a lifting by putting in this rank-one component the given
automorphism of detE and the identity on the orthogonal complement. A lif-
ting also exists for all gauge transformations of (detE,deth) admitting an r-th
root. More precisely, denoting the gauge group of (detE,deth) by U(1), it is
easy to see that the elements of the subgroup U(1)r := {ur | u ∈ U(1)} can be
lifted to elements of G. Since the obstruction to taking r-th roots in U(1) lies
in H1(X,Zr), as one deduces from the corresponding short exact sequence, we
see that U(1)r has finite index in U(1). From this it is not difficult to infer that
MASD(E, [a]) is isomorphic to a topologically disjoint union of finitely many
parts of the form MASD(E, ak) with [ak] = [a] for all k.

4.2 The Uhlenbeck compactification

We continue by stating some results we need on the Uhlenbeck compactification
of the moduli space of anti-self-dual connections. References for this material
are [6] and [8].
Let (X, g) and (E, h) be as in 4.1. For each non-negative integer k we consider
hermitian bundles (E−k, h−k) on X with rankE−k = rankE =: r, (detE−k,
deth−k) ∼= (detE,deth), c2(E−k) = c2(E)− k. Set

M̄U (E) :=
⋃

k∈N

(MASD(E−k)× S
kX)

M̄U (E, [a]) :=
⋃

k∈N

(MASD(E−k, [a])× S
kX)

M̄U (E, a) :=
⋃

k∈N

(MASD(E−k, a)× S
kX)
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where SkX is the k-th symmetric power of X. The elements of these spaces are
called ideal connections. The unions are finite since the second Chern class
of a hermitian vector bundle admitting an anti-self-dual connection is bounded
below (by 1

2c
2
1).

To an element ([A], Z) ∈ M̄U (E) one associates a Borel measure

µ([A], Z) := |FA|
2 + 8π2δZ

where δZ is the Dirac measure whose mass at a point x of X equals the mul-
tiplicity mx(Z) of x in Z. We denote by m(Z) the total multiplicity of Z. A
topology for M̄U (E) is determined by the following neighborhood basis for
([A], Z):

VU,N,ε([A], Z) = {([A
′], Z ′) ∈ M̄U (E) | µ([A′], Z ′) ∈ U and there is an

L2
3 -isomorphism ψ : E−m(Z) |X\N−→ E−m(Z′) |X\N

such that ‖A− ψ∗(A′)‖L2
2(X\N) < ε}

where ε > 0 and U and N are neighborhoods of µ([A], Z) and supp (δZ)
respectively. This topology is first-countable and Hausdorff and induces the
usual topology on each MASD(E−k) × SkX. Most importantly, by the weak
compactness theorem of Uhlenbeck M̄U (E) is compact when endowed with
this topology,MASD(E) is an open part of M̄U (E) and its closure M̄ASD(E)
inside M̄U (E) is called the Uhlenbeck compactification of MASD(E).
Analogous statements are valid for MASD(E, [a]) and MASD(E, a).

Using a technique due to Taubes, one can obtain a neighborhood of an ir-
reducible ideal connection ([A], Z) in the border of MASD(E, a) by gluing
to A ”concentrated” SU(r) anti-self-dual connections over S4. One obtains
”cone bundle neighborhoods” for each such ideal connection ([A], Z) when
H2(X, End0(E∂̄A

)) = 0. For the precise statements and the proofs we refer
the reader to [6] chapters 7 and 8 and to [8] 3.4. As a consequence of this de-
scription and of the connectivity of the moduli spaces of SU(r) anti-self-dual
connections over S4 (see [15]) we have the following weaker property which will
suffice to our needs.

Proposition 4.2 Around an irreducible ideal connection ([A], Z) with
H2(X, End0(E∂̄A

)) = 0 the border of the Uhlenbeck compactification
M̄ASD(E, a) is locally non-disconnecting in M̄ASD(E, a), i.e. the-
re exist arbitrarily small neighborhoods V of ([A], Z) in M̄ASD(E, a) with
V
⋂

MASD(E, a) connected.

Note that for SU(2) connections a lot more has been proved, [7], [18]. In this
case the Uhlenbeck compactification is the completion of the space of anti-self-
dual connections with respect to a natural Riemannian metric.
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4.3 The comparison map

We fix (X, g) a compact complex surface together with a Gauduchon me-
tric on it, (E, h) a hermitian vector bundle over X, a an unitary anti-self-
dual connection on (detE,deth) and denote by L the (isomorphy class of
the) holomorphic line bundle induced by ∂̄a on detE. Let c2 := c2(E) and
r := rankE. We denote by Mst(r, L, c2) the subset of SplX consisting of iso-
morphy classes of non-necessarily locally free sheaves F (with respect to g)
with rankF = r,detF = L, c2(F ) = c2.
In 4.1 we have mentioned the existence of a real-analytic isomorphism between
Mst(E,L) and MASD,∗(E, [a]). When X is algebraic, rankE = 2 and a is the
trivial connection this isomorphism has been extended to a continuous map
from the Gieseker compactification ofMst(E,O) to the Uhlenbeck compactifi-
cation of MASD(E, 0) in [16] and [13]. The proof given in [16] adapts without
difficulty to our case to show the continuity of the natural extension

Φ :Mst(r, L, c2) −→ M̄U (E, [a]).

Φ is defined by Φ([F ]) = ([A], Z), where A is the unique unitary anti-self-dual
connection inducing the holomorphic structure on F∨∨ and Z describes the
singularity set of F with multiplicities mx(Z) := dimC(F

∨∨
x /Fx) for x ∈ X.

The main result of this paragraph asserts that under certain conditions for X
and E this map is proper as well.

Theorem 4.3 Let X be a non-algebraic compact complex surface which has
either Kodaira dimension kod(X) = −∞ or has trivial canonical bundle and
let g be a Gauduchon metric on X. Let (E, h) be a hermitian vector bundle
over X, r := rankE, c2 := c2(E), a an unitary anti-self-dual connection on
(detE,deth) and L the holomorphic line bundle induced by ∂̄a on detE. If
(r, c1(L), c2) satisfies condition (*) from section 2 then the following hold:

(a) the natural map Φ : Mst(r, L, c2) −→ M̄U (E, [a]) is continuous and
proper,

(b) any unitary automorphism of (detE,deth) lifts to an automorphism of
(E, h) and

(c) Mst(r, L, c2) is a compact complex (Hausdorff) manifold.

Proof
Under the Theorem’s assumptions we prove the following claims.
Claim 1. SplX is smooth and of the expected dimension at points [F ] of
Mst(r, L, c2).
By Corollary 3.4 for such a stable sheaf F we have to check that
Ext2(X;F, F )0 = 0. When KX is trivial this is equivalent to
dim(Ext2(X;F, F )) = 1 and by Serre duality further to dim(Hom(X;F, F )) =
1 which holds since stable sheaves are simple. So let nowX be non-algebraic and
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kod(X) = −∞. By surface classification b1(X) must be odd and Remark 2.2
shows that F is irreducible. In this case we shall show that Ext2(X;F, F ) = 0.
By Serre duality we have Ext2(X;F, F ) ∼= Hom(X;F, F ⊗ KX)∗. By taking
double duals Hom(X;F, F ⊗ KX) injects into Hom(X;F∨∨, F∨∨ ⊗ KX).
Suppose ϕ is a non-zero homomorphism ϕ : F∨∨ → F∨∨ ⊗ KX . Then
detϕ : detF∨∨ → (detF∨∨)⊗K⊗r

X cannot vanish identically since F is irredu-
cible. Thus it induces a non-zero section of K⊗r

X contradicting kod(X) = −∞.
Claim 2. Mst(r, L, c2) is open in SplX .
This claim is known to be true over the open part of SplX parameterizing
simple locally free sheaves and holds possibly in all generality. Here we give an
ad-hoc proof.
If b1 is odd or if the degree function degg : Pic(X) −→ R vanishes iden-
tically the assertion follows from the condition (*). Suppose now that X is
non-algebraic with b1 even and trivial canonical bundle. Let F be a torsion-
free sheaf on X with rankF = r,detF = L and c2(F ) = c2. If F is not stable
then F sits in a short exact sequence

0 −→ F1 −→ F −→ F2 −→ 0

with F1, F2 torsion-free coherent sheaves onX. Let r1 := rankF1, r2 := rankF2.
We first show that the possible values for degF1 lie in a discrete subset of R.
An easy computation gives

−
c1(F1)

2

r1
−
c1(F2)

2

r2
= −

c1(F )
2

r
+ 2r∆(F )− 2r1∆(F1)− 2r2∆(F2).

Since all discriminants are non-negative we get

−
c1(F1)

2

r1
−
c1(F2)

2

r2
≤ −

c1(F )
2

r
+ 2r∆(F ).

In particular c1(F1)
2 is bounded by a constant depending only on (r, c1(L), c2).

Since X is non-algebraic the intersection form on NS(X) is negative semi-
definite. In fact, by [4] NS(X)/Tors(NS(X)) can be written as a direct sum
N
⊕

I where the intersection form is negative definite on N , I is the isotropy
subgroup for the intersection form and I is cyclic. We denote by c a generator of
I. It follows the existence of a finite number of classes b in N for which one can
have c1(F1) = b+αc modulo torsion, with α ∈ N. Thus degF1 = deg b+α deg c
lies in a discrete subset of R.
Let now b ∈ NS(X) be such that 0 < deg b ≤ |degF1| for all possible subs-
heaves F1 as above with degF1 6= 0. We consider the torsion-free stable cen-
tral fiber F0 of a family of sheaves F on X × S flat over S. Suppose that
rank(F0) = r,detF0 = L, c2(F0) = c2. We choose an irreducible vector bundle
G on X with c1(G) = −b. Then H

2(X,Hom(F0, G)) = 0, so if rankG is large
enough we can apply Proposition 3.1 to get an extension

0 −→ q∗G −→ E −→ F −→ 0

Documenta Mathematica 6 (2001) 11–29



26 Matei Toma

with E locally free on X × S, for a possibly smaller S. (As in Proposition 3.1
we have denoted by q the projection X × S −→ S.) It is easy to check that
E0 doesn’t have any subsheaf of degree larger than −deg b. Thus E0 is stable.
Hence small deformations of E0 are stable as well. As a consequence we get
that small deformations of F0 will be stable. Indeed, it is enough to consider
for a destabilizing subsheaf F1 of Fs, for s ∈ S, the induced extension

0 −→ G −→ E1 −→ F1 −→ 0.

Then E1 is a subsheaf of Es with degE1 = degG+degF1 ≥ 0. This contradicts
the stability of Es.
Claim 3. Any neighborhood in SplX of a point [F ] of Mst(r, L, c2) contains
isomorphy classes of locally free sheaves.
The proof goes as in the algebraic case by considering the ”double-dual stra-
tification” and making a dimension estimate. Here is a sketch of it.
If one takes a flat family F of torsion free sheaves on X over a reduced base
S, one may consider for each fiber Fs, s ∈ S, the injection into the double-
dual F∨∨

s := Hom(Hom(Fs,OX×{s}),OX×{s}). The double-duals form a flat
family over some Zariski-open subset of S. To see this consider first F∨ :=
Hom(F ,OX×S). Since F is flat over S, one gets (Fs)

∨ = F∨
s . F

∨ is flat over
the complement of a proper analytic subset of S and one repeats the procedure
to obtain F∨∨ and F∨∨/F flat over some Zariski open subset S ′ of S. Over
X × S′, F∨∨ is locally free and (F∨∨/F)s = F∨∨

s /Fs for s ∈ S′. Take now S
a neighborhood of [F ] in Mst(r, L, c2). Suppose that

length(F∨∨
s0
/Fs0) = k > 0

for some s0 ∈ S
′. Taking S′ smaller around s0 if necessary, we find a morphism

φ from S′ to a neighborhood T of [F∨∨
s0

] in Mst(r, L, c2 − k) such that there
exists a locally free universal family E on X×T with Et0

∼= F∨∨
s0

for some t0 ∈ T
and (idX ×φ)

∗E = F∨∨. Let D be the relative Douady space of quotients of
length k of the fibers of E and let π : D −→ T be the projection. There exists
an universal quotient Q of (idX ×π)

∗E on X × D. Since F∨∨/F is flat over
S′, φ lifts to a morphism φ̃ : S′ −→ D with (idX × φ̃)∗Q = F∨∨/F . By the
universality of S′ there exists also a morphism (of germs) ψ : D −→ S ′ with
(idX ×ψ)

∗F = Ker((idX ×π)
∗E −→ Q). One sees now that ψ ◦ φ̃ must be an

isomorphism, in particular dimS ′ ≤ dimD. Since S′ and T have the expected
dimensions, it is enough to compute now the relative dimension of D over T .
This is k(r+1). On the other side by Corollary 3.4 dimS ′−dimT = 2kr. This
forces r = 1 which is excluded by hypothesis.
After these preparations of a relatively general nature we get to the actual
proof of the Theorem. We start with (b).
If b−2 (X) denotes the number of negative eigenvalues of the intersection form
on H2(X,R), then for our surface X we have b−2 (X) > 0. This is clear when
KX is trivial by classification and follows from the index theorem and Remark
2.2 (d) when b1(X) is odd. In particular, taking p ∈ H2(X,Z) with p2 < 0 one
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constructs topologically split rank two vector bundles F with given first Chern
class l and arbitrarily large second Chern class: just consider (L⊗P⊗n)⊕(P ∗)⊗n

where L and P are line bundles with c1(L) = l, c1(P ) = p and n ∈ N. If E
has rank two we take F with detF ∼= detE and c2(F ) ≥ c2(E) = c2. (When
r > 2 assertion (b) is trivial; cf. section 4.1). We consider an anti-self-dual
connection A in E inducing a on detE and Z ⊂ X consisting of c2(F )− c2(E)
distinct points. By the computations from the proof of Claim 1 we see that A
is irreducible and H2

A,0 = 0. Using the gluing procedure mentioned in section

4.2 , one sees that a neighborhood of ([A], Z) in M̄U (F, [a]) contains classes
of irreducible anti-self-dual connections in F . We have seen in section 4.1 that
any unitary automorphism of detF lifts to an unitary automorphism u of F . If
we take a sequence of anti-self-dual connections (An) in F with detAn = a and
([An]) converging to ([A], Z), we get by applying u a limit connection B for
subsequence of (u(An)). Since M̄

U (F, [a]) is Hausdorff, there exists an unitary
automorphism ũ of E with ũ∗(B) = A. It is clear that ũ induces the original
automorphism u on detF ∼= detE .
We leave the proof of the following elementary topological lemma to the reader.

Lemma 4.4 Let π : Z −→ Y be a continuous surjective map between Hausdorff
topological spaces. Suppose Z locally compact, Y locally connected and that there
is a locally non-disconnecting closed subset Y1 of Y with Z1 := π−1(Y1) compact

and
◦

Z1 = ∅. Suppose further that π restricts to a homeomorphism

π |Z\Z1,Y \Y1
: Z \ Z1 −→ Y \ Y1.

Then for any neighborhood V of Z1 in Z, π(V ) is a neighborhood of Y1 in Y .
If in addition Y is compact, then Z is compact as well.

We complete now the proof of the Theorem by induction on c2. For fixed r and
c1(E), c2(E) is bounded below if E is to admit an anti-self-dual connection.
If we take c2 minimal, then Mst(r, L, c2) =M

st(E,L) and MASD,∗(E, [a]) =
MASD(E, [a]) is compact. From Theorem 4.1 we obtain that Φ is a homeomor-
phism in this case.
Take now c2 arbitrary but such that the hypotheses of the Theorem hold and
assume that the assertions of the Theorem are true for any smaller c2. We apply
Lemma 4.4 to the following situation:

Z :=Mst(r, L, c2), Y := M̄U (E, [a]) = M̄ASD(E, [a]) ∼= M̄ASD(E, a).

The last equalities hold according to Claim 3 and Claim 4. Let further Y1
be the border M̄ASD(E, a) \ MASD(E, a) of the Uhlenbeck compactification
and Z1 be the locus Mst(r, L, c2) \ M

st(E,L) of singular stable sheaves in
SplX . Z is smooth by Claim 1 and Hausdorff, Y1 is locally non-disconnecting

by Proposition 4.2,
◦

Z1 = ∅ by Claim 3 and π |Z\Z1,Y \Y1
is a homeomorphism

by Theorem 4.1. In order to be able to apply Lemma 4.4 and thus close the
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proof we only need to check that Z1 is compact. We want to reduce this to the
compactness ofMst(r, L, c2− 1) which is ensured by the induction hypothesis.
We consider a finite open covering (Ti) ofM

st(r, L, c2− 1) such that over each
X × Ti an universal family Ei exists. The relative Douady space Di parame-
terizing quotients of length one in the fibers of Ei is proper over (Ti). In fact
it was shown in [11] that Di

∼= P(Ei). If πi : Di −→ Ti are the projections, we
have universal quotients Qi of π

∗Ei and Fi := Ker(π∗Ei −→ Qi) are flat over
Di. This induces canonical morphisms Di −→ Z1. It is enough to notice that
their images cover Z1, or equivalently, that any singular stable sheaf F over X
sits in an exact sequence of coherent sheaves

0 −→ F −→ E −→ Q −→ 0

with lengthQ = 1 and E torsion-free. Such an extension is induced from

0 −→ F −→ F∨∨ −→ F∨∨/F −→ 0

by any submodule Q of length one of F∨∨/F . (To see that such Q exist re-
call that (F∨∨/F )x is artinian over OX,x and use Nakayama’s Lemma). The
Theorem is proved. ¤

Remark 4.5 As a consequence of this theorem we get that when X is a 2-
dimensional complex torus or a primary Kodaira surface and (r, L, c2) is chosen
in the stable irreducible range as in [24], [23] or [1], then Mst(r, L, c2) is a
holomorphically symplectic compact complex manifold.
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