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Abstract. In this paper we study the stability of the Baum-Connes
conjecture with coefficients under various natural operations on the
groups. We show that the class of groups satisfying this conjecture
is stable under taking subgroups, Cartesian products, and more gen-
erally, under certain group extensions. In particular, we show that a
group satisfies the conjecture if it has an amenable normal subgroup
such that the associated quotient group satisfies the conjecture. We
also study a natural induction homomorphism between the topolog-
ical K-theory of a subgroup H of G and the topological K-theory of
G with induced coefficient algebra, and show that this map is always
bijective. Using this, we are also able to present new examples of
groups which satisfy the conjecture with trivial coefficients.
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0 Introduction.

Given a locally compact group G and a C∗-algebra B equipped with a point-
wise continuous action of G by ∗-automorphisms, Baum, Connes and Higson
constructed in [2] the topological K-theory Ktop

∗ (G;B) of G with coefficients in
B and an assembly map

µG,B : Ktop
∗ (G;B)→ K∗(B or G).
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128 Chabert and Echterhoff

The Baum-Connes conjecture (with coefficients, cf. [2, §9]) asserts that µG,B
is an isomorphism for all G and for every G-C∗-algebra B. For convenience,
we will use the following

Notation. We say that G satisfies BCC (Baum-Connes conjecture with co-
efficients) if µG,B is an isomorphism for every G-algebra B. Moreover, we say
that G satisfies BCI (resp. BCS) if the assembly map is injective (resp. sur-
jective) for all B. In case we want to specify the coefficient algebra, we simply
say that G satisfies BCC (resp. BCI, BCS) for B.

Although BCC has been shown to be true for many groups (for a general
overview of recent results we recommend the surveys [24, 28]), it seems now
to be clear that there exist examples of groups for which the assembly map
is not always surjective (there are counterexamples due to Higson, Lafforgue,
Osawa, Skandalis and Yu, which base on a recent announcement by Gromov
on the existence of finitely presented groups with certain graph-theoretic prop-
erties). However, knowing that the conjecture fails in some cases makes it even
more important to be able to describe the class of groups which do satisfy the
conjecture. A natural problem in this direction is to investigate how the con-
jecture behaves under certain standard operations on the group, like passing
to (closed) subgroups or taking group extensions.

Partial answers to the extension problem were given in [5], for the case of
semi-direct products by a totally disconnected or almost connected group. The
argument in [5] is based on the construction of a partial assembly map associ-
ated to a semi-direct product, which generalizes and factors the assembly map
of the Baum-Connes conjecture.

In [6] we extended the definition of this partial assembly map in order to
decompose the assembly map for arbitrary (non-split) group extension: If N
is any closed normal subgroup of G and B is a G-algebra, we constructed a
natural homomorphism (the partial assembly map)

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N),

which factorizes the assembly map for G in the sense that

µG,B = µG/N,BorN ◦ µ
G,N
N,B ,

where µG/N,BorN denotes the assembly map for G/N with (twisted) coefficient
algebra B or N . For this construction, we had to use Green’s notion of twisted
actions which allows to decomposeBorG as an iterated twisted crossed product
BorNorG/N . To make sense of topological K-theory with twisted coefficients,
we had to adapt Kasparov’s equivariant KK-theory to cover twisted group
actions on C∗-algebras. The main results on extensions obtained in [6] are the
following: Assume that G has a γ-element (see Definition 1.7 below), and that
G/N is either almost connected or totally disconnected. Then G satisfies BCC
if G/N and any compact extensions of N in G satisfy BCC.
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Permanence Properties of the Baum-Connes Conjecture 129

In this article we want to generalize these results in two directions: Remove the
assumption on the topology of the quotient group and lift the requirement that
the group has a γ-element. We reached the latter objective in full generality in
the case when G/N is totally disconnected (see Theorem 3.3 below), inspired
from some ideas exposed in [22], where Oyono-Oyono obtains quite similar
results for discrete G. We were also able to reach the other objectives to a very
far extend (see the discussion below).
For the investigation of the subgroup problem we study a natural induction
homomorphism

IndGH : Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B),

which provides a link between the assembly map for a subgroup H of a group
G, with coefficient algebra B and the assembly map for G with coefficients in
the induced G-algebra IndGH B (see Proposition 2.3 below). For discrete G, this
map has been studied by Guentner, Higson and Trout in [11] (in the frame of
E-theory), where they showed that it is an isomorphism if H is finite. Later,
in [21], H. Oyono-Oyono was able to prove the bijectivity of the induction map
for arbitrary subgroups of discrete groups. Here we prove that

• The induction homomorphism IndGH : Ktop
∗ (H;B) → Ktop

∗ (G; IndGH B) is
always bijective (Theorem 2.2).

As a direct consequence we get

• If G satisfies BCC (resp. BCI, BCS), the same is true for every closed
subgroup H of G (Theorem 2.5).

Combining this with our previous results on group extensions we are able to
make further progress in this direction. In fact we show

• Suppose that N is a closed normal subgroup of G such that N satisfies
the Haagerup property (in particular, if N is amenable). Then, if G/N
satisfies BCC (resp. BCS), the same is true for G (Corollary 3.14; but
see Theorem 3.12 for a more general statement).

• A direct product G1 ×G2 satisfies BCC if and only if G1 and G2 satisfy
BCC (Theorem 3.17).

Another application of the bijectivity of the induction homomorphism is given
in [7], where it is shown that the generalized Green-Julg theorem (i.e., BCC
for proper G-algebras) holds for all (second countable) locally compact groups
G. Further, in §4 below, we apply the induction isomorphism in a specific
example, which hints into the direction of a more general “Mackey-Machine”
for the investigation of the Baum-Connes conjecture.
The outline of the paper is as follows: After a short preliminary section (§1),
we give a detailed discussion on the induction homomorphism in §2, where we
prove all relevant results, except of the bijectivity of this map. In §3 we briefly
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discuss the partial assembly map and prove most of our results on group exten-
sions, except of our main technical result on extensions by totally disconnected
groups. In §4 we present an example, which illustrates how our results can
be used towards a Mackey-Machine approach to the Baum-Connes conjecture.
Using some general ideas, we show that for K = R or C the Baum-Connes
conjecture with trivial coefficients is true for the groups KnoSLn(K), a result
which has been known, so far, only for the cases n ≤ 2.
The most difficult (and technical) results of this paper are the proofs of The-
orem 2.2 and Theorem 3.3 on the bijectivity of the induction homomorphism
and the bijectivity of the partial assembly map for totally disconnected quo-
tients, respectively. For this reason we decided to devote two extra sections (§5
and §6) to the proofs of these results. There are some substantial similarities
in the proofs of these theorems: Both depend deeply on a certain realization of
the universal example E(G) for proper actions of G (which is an important in-
gredient in the computation of topological K-theory), using the fact that E(G)
can be realized as a simplicial complex if G is totally disconnected. Since the
proof of Theorem 3.3 seemed a bit easier (and perhaps more illustrative), we
decided to do this result first (§5). Note that the approach via our special
realization of E(G) seems to have a bunch of other important consequences.
So, as a further example for the usefulness of this approach, we show in our
final section, §7, that the topological K-theory of a group G is continuous in
the coefficient algebras, i.e.,

Ktop
∗ (G; lim

i
Ai) = lim

i
Ktop
∗ (G;Ai)

for any inductive limit limiAi of G-algebras Ai. This result plays an important
role in the proof of the generalized Green-Julg theorem given in [7].
In order to avoid unnecessary repetitions, we have chosen to make the following
general conventions: All C∗-algebras (except of multiplier algebras)
are supposed to be separable and by group we mean a locally
compact second countable Hausdorff topological group.

1 Some preliminaries

Let G be a group. By a proper G-space we shall always understand a lo-
cally compact space X endowed with an action of G such that the map
G × X → X × X, (g, x) 7→ (gx, x) is continuous and proper (inverse im-
ages of compact sets are compact). A universal example for the proper actions
of G, E(G), is a proper G-space such that for any other proper G-space Z, there
is a continuous and G-equivariant map F : Z → E(G) which is unique up to G-
equivariant homotopy. Note that E(G) is uniquely defined up to G-homotopy.
The existence of universal proper spaces is shown in [17].
Now let N denote a closed normal subgroup of G. A twisted action of (G,N)
on a C∗-algebra D (in the sense of Green, [12]) consists of a strongly continuous
action by ∗-automorphisms α : G→ Aut(D) together with a strictly continuous
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Permanence Properties of the Baum-Connes Conjecture 131

homomorphism τ : N → UM(D) of N into the group of unitaries of the
multiplier algebra M(D) of D, such that

αn(d) = τndτ
∗
n and αs(τn) = τsns−1 , for all d ∈ D, s ∈ G,n ∈ N.

If equipped with such a twisted action, D will be called a (G,N)-algebra.
Note that a twisted action of (G,N) should be viewed as a generalization of
a G/N -action. In particular, every G/N -algebra can be regarded as a (G,N)-
algebra by inflating a given action β of G/N to the twisted action (Inf β, 1N ) of
(G,N), and the corresponding twisted crossed products by (G,N) coincide with
the ordinary crossed products by G/N . The main advantage of working with
twisted actions is, that they allow to decompose crossed products: If B is a G-
algebra, then BorN becomes a (G,N)-algebra in a canonical way, so that the
iterated (twisted) crossed product BorNor(G,N) is canonically isomorphic to
BorG. We refer to [6] for more details on these facts and for the construction
of the bifunctor KKG,N∗ (D1, D2) for pairs (D1, D2) of (G,N)-algebras, which

extends Kasparov’s equivariant KKG/N -theory for G/N -algebras.

Definition 1.1. Let D be a (G,N)-algebra. The topological K-theory of G/N
with coefficient algebra D is

Ktop
∗ (G/N ;D) = lim

Y
KKG,N∗

(

C0(Y ), D
)

,

where the limit is taken over the directed system of all G/N -compact subspaces
Y (i.e., (G/N)\Y is compact) of a given universal example E(G/N) for the
proper actions of G/N .

Remark 1.2. In this work we are using a notion of proper G-spaces (resp.
G/N -spaces) which differs from the notion used in [2]. This leads to different
notions of universal proper G-spaces (resp. G/N -spaces). However, it is shown
in [7] that both notions of properness lead to equivalent definitions of the
topological K-theory of G (resp. G/N).

If D is a G/N -algebra (viewed as a (G,N)-algebra as explained above), then
the above definition of the topological K-theory of G/N with coefficient alge-
bra D coincides with the usual definition of the topological K-theory of G/N
with untwisted coefficient algebra D (this follows from [6, Corollary 3.14]). In
particular, if N = {e} in the above definition, we recover the usual topological
K-theory of G with coefficients in the G-algebra D.

For any proper G-space Z, Cc(Z) carries a canonical C0(G\Z) − Cc(G × Z)
bimodule structure, where we regard Cc(G × Z) as a dense subalgebra of
C0(Z) oG. This bimodule structure extends to give a C0(G\Z)− C0(Z) oG
Hilbert bimodule ΛZ,G. For reference, the module operations are given on the
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dense subspaces by

(ϕ · ξ)(z) = ϕ(Gz)ξ(z)

〈ξ, η〉(s, z) = ∆G(s)
−1/2ξ(z)η(s−1z)

(ξ · f)(z) =

∫

G

ξ(s−1z)f(s−1, s−1z)∆G(s)
−1/2ds,

(1.1)

with ϕ ∈ C0(G\Z), ξ, η ∈ Cc(Z), and f ∈ Cc(G× Z). Together with the zero
operator, we obtain an element (also denoted ΛZ,G) of the Kasparov group
KK0

(

C0(G\Z), C0(Z) o G
)

(see [6, §5] for more details). Moreover, if Z is
G-compact, i.e., G\Z is compact, then we can pair ΛZ,G with the unital homo-
morphism C→ C(G\Z) to obtain a canonical element λZ,G ∈ K0

(

C0(Z)oG
)

.
We now recall the definition of the twisted Baum-Connes assembly map as
introduced in [6]:

Definition 1.3. Let D be a (G,N)-algebra. The twisted assembly map for
G/N with coefficients in D, µG/N,D : Ktop

∗ (G/N ;D) → K∗
(

D or (G,N)
)

, is
defined inductively by the maps

µG/N,D[Y ] : KKG,N∗
(

C0(Y ), D
)

→ K∗
(

D or (G,N)
)

,

where Y runs through the G/N -compact subspaces of a given realization of
E(G/N) and µG/N,D[Y ] is defined via the composition of maps

KKG,N∗
(

C0(Y ), D
)

jGN,r ++VVVVVVVVVVVVVVVVVV

//_______ K∗
(

D or (G,N)
)

KK∗
(

C0(Y ) o (G,N), D or (G,N)
)

λY,G/N⊗·

OO

Here jGN,r denotes the descent in twisted equivariant KK-theory as described
in [6, §4].

Remark 1.4. For a G/N -algebra D, viewed as a (G,N)-algebra via inflation,
the assembly map of the above definition coincides with the usual Baum-Connes
assembly map for G/N with coefficient algebra D. This follows directly from
[6, Corollary 3.14]. Of course, if N = {e}, we get the usual assembly map for
G.
It is important to note that by a result of [10], any twisted action of (G,N)
is Morita equivalent, and hence KKG,N -equivalent, to an untwisted action of
G/N , so that bijectivity, injectivity or surjectivity of the assembly map of
Definition 1.3 is equivalent to the corresponding properties of the usual Baum-
Connes assembly map for G/N with the corresponding G/N -algebra as coeffi-
cient (see [6, 5.6]).

The introduction of twisted coefficients enabled us in [6] to define a partial
assembly map for (G,N), which will also play a central role in this paper. We
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will recall the precise definition of this partial assembly map in §3 below. For
its construction we shall need to work with a kind of fundamental class

ΛG,NX,N ∈ KKG,N0

(

C0(N\X), C0(X) oN
)

, (1.2)

associated to a proper G-space X, which will play a similar role in the definition
of the partial assembly map as the class λY,G/N in Definition 1.3. We briefly
recall its construction: If X is a proper G-space, the given G-action restricts
to a proper action of N on X. Thus we can form the C0(N\X)− C0(X) oN
bimodule ΛX,N as described above. As was shown in [6, §5], there exists a
canonical (twisted) action of (G,N) on ΛX,N , which (again together with the

zero operator) provides the element ΛG,NX,N of (1.2).
Recall that for two locally compact spaces X and Y , any ∗-homomorphism
ψ : C0(X)→ C0(Y ) is a composition

C0(X)
ψ1

−−−−→ C0(Z)
ψ2

−−−−→ C0(Y ),

where Z is an open subset of Y , ψ2 is the canonical inclusion and ψ1 is induced
by a continuous proper map, say ϕ : Z → X, via ψ1(f)(z) = f

(

ϕ(z)
)

, f ∈

C0(X). In fact, Z is the open subset of Y corresponding to the ideal ψ
(

C0(X)
)

·
C0(Y ) ⊆ C0(Y ) (note that by an easy application of Cohen’s factorization
theorem, ψ

(

C0(X)
)

· C0(Y ) = {ψ(f) · g | f ∈ C0(X), g ∈ C0(Y )} is a closed
ideal of C0(Y )), and ϕ is the proper map induced from the non-degenerate
∗-homomorphism C0(X)→ ψ

(

C0(X)
)

· C0(Y ) = C0(Z); f 7→ ψ(f).
If X and Y are G-spaces and ψ is G-equivariant, then all maps in the above
decomposition (and also the map ϕ : Z → X) are G-equivariant. If, moreover,
G acts properly on X and Y , and N is a closed normal subgroup of G, then
there exist canonical maps

C0(N\X)
ψ1,N
−−−−→ C0(N\Z)

ψ2,N
−−−−→ C0(N\Y ),

where the first homomorphism is induced by the proper map

ϕN : N\Z → N\X, ϕN (Nz) = Nϕ(z),

and the second map is induced via the inclusion of the open set N\Z into N\Y .
Note that the composition ψN := ψ2,N ◦ ψ1,N satisfies the equation

ψ(g · f) = ψN (g) · ψ(f), g ∈ C0(N\X), f ∈ C0(X).

The following lemma will be used frequently throughout this work.

Lemma 1.5 (cf. [6, Lemma 5.13]). Let ψ : C0(X) → C0(Y ) and ψN :
C0(N\X)→ C0(N\Y ) be as above. Then

[ΛG,NX,N ]⊗ jN{e},r([ψ]) = [ψN ]⊗ [ΛG,NY,N ] in KKG,N0

(

C0(N\X), C0(Y ) oN
)

,

where jN{e},r : KKG
(

C0(X), C0(Y )
)

→ KKG,N
(

C0(X)oN,C0(Y )oN
)

denotes

the partial descent of [6, §4]. (Note that by the properness of the N -actions,
the maximal crossed products coincide with the reduced crossed products.)
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Proof. By the decomposition argument presented above, it is sufficient to prove
each of the following special cases:

(1) ψ is induced by a continuous and proper G-map ϕ : Y → X (as explained
above), or

(2) X is an open subset of Y and ψ : C0(X)→ C0(Y ) is the inclusion.

Since all operators in the Kasparov triples defining the KK-elements of
the lemma are the zero operators, it is enough to show that the two
C0(N\X) − C0(Y ) o N Hilbert bimodules C0(N\X) ⊗C0(N\Y ) ΛG,NY,N and

ΛG,NX,N ⊗C0(X)oN
(

C0(Y ) o N
)

are equivariantly isomorphic. Using the for-
mulas for the module operations as given in Equation (1.1) above, we see that

C0(N\X)⊗C0(N\Y ) Λ
G,N
Y,N is just the closure of ψN

(

Cc(N\X)
)

·Cc(Y ) ⊆ ΛG,NY,N

(pointwise multiplication). Now consider the map

Φ : Cc(X)¯ Cc(N × Y )→ Cc(Y )

defined by

Φ(ξ ⊗ f)(y) =

∫

N

ψ(ξ)(ny)f(n, ny)∆N (n)−1/2dn.

A lengthy but straightforward computation shows that Φ is an isometry with
respect to the right inner products on ΛG,NX,N ⊗C0(X)oN

(

C0(Y )oN
)

and ΛG,NY,N ,
respectively, and therefore extends to an isometry

Φ : ΛG,NX,N ⊗C0(X)oN
(

C0(Y ) oN
)

→ ΛG,NY,N .

Factoring Cc(X) as Cc(N\X) · Cc(X), it follows directly from the formula for

Φ that it has its image in ψN
(

C0(N\X)
)

· ΛG,NY,N . Another short computation
shows that Φ respects the module actions and that it is equivariant for the
given (G,N)-actions on the modules and algebras (see [6, §5] for the precise
formulas of those actions).
Thus the only thing which remains to be checked is the surjectivity of Φ, at
least if ψ satisfies either (1) or (2). This is trivial in the case of (2) and we
restrict ourselves to (1).
Consider any functions h ∈ Cc(N\X) and η ∈ Cc(Y ). We want to construct
ξ ∈ Cc(X) and f ∈ Cc(N × Y ) such that Φ(ξ ⊗ f) = ψN (h) · η. For this we
choose a function c : X → R such that c2 is a cut-off function for the action of
N on X (i.e., the restriction of c2 to any N -compact subset of X has compact
support and

∫

N
c2(nx)dn = 1 for all x ∈ X). We define ξ ∈ Cc(X) by ξ(x) =

h(Nx)c(x), and we define f ∈ Cc(N×Y ) by f(n, ny) = ∆N (n)1/2c
(

nϕ(y)
)

η(y).
Then

Φ(ξ ⊗ f)(y) =

∫

N

ξ
(

nϕ(y)
)

f(n, ny)∆N (y)−1/2dn

=

∫

N

h
(

Nϕ(y)
)

c2
(

nϕ(y)
)

η(y) dn

=
(

ψN (h) · η
)

(y).
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This finishes the proof.

In what follows, we will frequently have to work with the notion of a γ-element,
which goes back to the pioneering work of Kasparov [15, 14], and which turned
out to be the most important tool for the investigation of the Baum-Connes
conjecture. We first have to introduce the notion of proper G-algebras:

Definition 1.6. A G-C∗-algebra A is called a proper G-algebra, if there exists
a proper G-space X and a non-degenerate G-equivariant homomorphism Φ :
C0(X)→ ZM(A), the center of the multiplier algebra of A.

We can now recall the abstract definition of a γ-element:

Definition 1.7 (cf. [25, §5], [14, §3 - 5]). Let G be a group. An element
γG ∈ KKG0 (C,C) is called a γ-element for G if

(1) there exists a proper G-algebra A and (Dirac and dual-Dirac) elements
D ∈ KKG0 (A,C), η ∈ KKG0 (C,A) such that γG = η ⊗A D;

(2) for any proper G-space Z we have p∗(γG) = 1Z ∈
RKKG0

(

Z;C0(Z), C0(Z)
)

, where p maps Z to the one-point set {pt}
(see [14, Proposition 2.20]).

Remark 1.8. If G has a γ-element, then it follows from the work of Kasparov
and Tu (see [14, 25]) that G satisfies BCI (i.e., the assembly map µG,B is

injective for any coefficient algebra B). Moreover, if γG = 1 ∈ KKG0 (C,C),
then G satisfies BCC (we refer to [27] for a concise proof of this result). By a
result of Higson and Kasparov ([13], but see also [26]), every group G which
satisfies the Haagerup property (in particular every amenable group G) has
1 ∈ KKG0 (C,C) as a γ-element, and hence all such groups satisfy BCC for
every coefficient algebra B. Moreover, by the work of Kasparov, [15, 14], every
group which can be embedded as a closed subgroup of an almost connected
group (i.e., a group with compact component group G/G0) has a γ-element.
We refer to [6, §6] for a slightly more detailed account on γ-elements.

2 Induction and the Baum-Connes conjecture for subgroups

Let H be a closed subgroup of the group G and let B be an H-algebra. In this
section we want to discuss the induction homomorphism

IndGH : Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B)

between the topological K-theory ofH with coefficients in B and the topological
K-theory of G with coefficients in the induced algebra IndGH B. We will then
use this homomorphism to show that BCC passes to closed subgroups.
Recall that the induced algebra IndGH B is defined as

{

f ∈ Cb(G,B)
∣

∣

∣

h(f(s)) = f(sh−1) for all s ∈ G, h ∈ H
and sH 7→ ‖f(s)‖ ∈ C0(G/H)

}
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together with the pointwise operations and the supremum norm. If B = C0(X)
is abelian, then IndGH C0(X) is canonically isomorphic to C0(G ×H X), where
G×HX = (G×X)/H (with respect to the diagonal action h(g, x) = (gh−1, hx))
denotes the classical induced G-space.
If A and B are two H-algebras, then Kasparov constructed a natural induction
homomorphism

iGH : KKH∗ (A,B)→ KKG∗ (Ind
G
H A, Ind

G
H B)

(see [15, §5] and [14, §3]). Let us briefly recall its construction: Suppose that
x ∈ KKH∗ (A,B) is represented by a Kasparov triple (E,Φ, T ). Similar to the
construction of the induced algebras we can form the induced IndGH B-Hilbert
module IndGH E as the set

{

ξ ∈ Cb(G,E)
∣

∣

∣

h(ξ(s)) = ξ(sh−1) for all s ∈ G, h ∈ H
and sH 7→ ‖ξ(s)‖ ∈ C0(G/H)

}

,

equipped with the pointwise actions and inner products. Pointwise action
on the left provides an obvious induced representation IndGH Φ : IndGH A →
L(IndGH E). Using a cut-off function c : G → [0,∞[ for the right translation
action of H on G, Kasparov constructs an operator T̃ ∈ L(IndGH E) by the
formula:

T̃ ξ(g) =

∫

H

c(gh)h(T (ξ(gh)))dh, ξ ∈ IndGK E (2.1)

(see [15, Lemma 2 of §5]), to obtain the Kasparov triple (IndGH E, Ind
G
H Φ, T̃ )

which represents the element iGH(x) ∈ KKG∗ (Ind
G
H A, Ind

G
H B).

Now suppose that X is an H-compact proper H-space. Then G ×H X is a
G-compact proper G-space and, therefore, there exists a continuous G-map
F : G×H X → E(G) with G-compact image Y ⊆ E(G). The composition

KKH∗
(

C0(X), B
)

iGH **TTTTTTTTTTTTTTTT

//____ KKG∗ (C0(Y ), IndGH B)

KKG∗
(

IndGH C0(X), IndGH B
)

F∗

OO

provides a well defined homomorphism

IndGH [X] : KKH∗ (C0(X), B)→ Ktop
∗ (G; IndGH B), (2.2)

and it is straightforward to check (using a special case of Lemma 1.5) that the
maps IndGH [X] are compatible with taking inclusions i : X1 → X2 (i.e., that
IndGH [X2] ◦ i

∗ = IndGH [X1]). Thus, if we let X run through the H-compact
subsets of E(H) we obtain a well defined homomorphism

IndGH : Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B).
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Definition 2.1. The homomorphism IndGH : Ktop
∗ (H;B) → Ktop

∗ (G; IndGH B)
is called the induction homomorphism between Ktop

∗ (H;B) and
Ktop
∗ (G; IndGH B).

The following theorem is one of the main results of this paper. Since the proof
is rather complex and technical, we postpone it to §6 below. For discrete G and
finite subgroupsH, a similar result (using E-theory) was obtained by Guentner,
Higson and Trout in [11], and they asked the question whether the result could
be true in more generality. In [21], Oyono-Oyono proves a similar result for
arbitrary subgroups of discrete groups.

Theorem 2.2. Let H be a closed subgroup of G, and let B be an H-algebra.
Then the induction map IndGH : Ktop

∗ (H;B)→ Ktop
∗ (G; IndGH B) is an isomor-

phism.

The above theorem has many interesting consequences. It provides a connection
between the Baum-Connes conjectures for G and H, as we shall study in more
details below. It also allows to prove the fact that the Baum-Connes assembly
map

µG,A : Ktop
∗ (G;A)→ K∗(Aor G)

is an isomorphism whenever A is a proper G-algebra, as is worked out in more
detail in [7]. Note that this was an open question for quite some time, and was
only known for discrete groups by the work of Guentner, Higson and Trout in
[11]. Another use of this isomorphism theorem will be indicated in §4 below.

Proposition 2.3. Let H be a closed subgroup of the group G, and let B be an
H-algebra. Let x ∈ KK0

(

B or H, (Ind
G
H B) or G

)

be defined by the canonical

Morita equivalence between (IndGH B)orG and BorH (e.g., see [12, Theorem
17]). Then the following diagram commutes:

Ktop
∗ (H;B)

µH,B
−−−−→ K∗(B or H)

IndGH





y

∼=





y

·⊗x

Ktop
∗ (G; IndGH B)

µ
G,IndG

H
B

−−−−−−→ K∗
(

(IndGH B) or G
)

.

For the proof we need

Lemma 2.4. Let H be a closed subgroup of G. If E(G) is a universal example
for the proper actions of G, then, by restricting the action to H, it is also a
universal example for the proper actions of H.

Proof. Since E(G) is unique up to G-homotopy (which certainly implies H-
homotopy), it is sufficient to show that the result holds for one particular
realization of E(G). By [17], a realization can be constructed as follows: Choose
any proper G-space Z and let E(G) be the set of positive Radon-measures on
Z with total mass in the half open interval ] 12 , 1], equipped with the weak∗-
topology and the canonical G-action. Now since the action of G on Z restricts
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to a proper action of H on Z, the same set of Radon measures provides a
realization of E(H).

Proof of Proposition 2.3. By the definition of IndGH and Lemma 2.4, it is
enough to show that, for a given realization of E(G), the diagram

KKH∗
(

C0(X), B
) [ΛX,H ]⊗jH{e},r(·)

−−−−−−−−−−→ K∗(B or H)

IndGH





y





y

·⊗x

KKG∗
(

C0(G×H X), IndGH B
) [ΛG×HX,G]⊗j

G
{e},r(·)

−−−−−−−−−−−−−→ K∗
(

(IndGH B) or G
)

F∗




y





y

=

KKG∗
(

C0(G ·X), IndGH B
) [ΛG·X,G]⊗j

G
{e},r(·)

−−−−−−−−−−−−→ K∗
(

(IndGH B) or G
)

(2.3)

commutes, where X is any H-compact subset X of E(G) (also serving as a
universal example for proper actions of H). An easy application of Lemma 1.5
implies that the bottom square commutes, so we may restrict our attention to
the upper square.
Let y denote the invertible element of KK0

(

C0(G×HX)oG,C0(X)oH
)

which
is implemented by the canonical Morita equivalence between C0(G×H X)oG
and C0(X)oH. Then it follows from [14, corollary on p. 176]) that the square

KKH∗
(

C0(X), B
) jH{e},r

−−−−→ KK∗
(

C0(X) oH,B or H
)

IndGH





y





y

y⊗·⊗x

KKG∗
(

C0(G×H X), IndGH B
) jG{e},r
−−−−→ KK∗

(

C0(G×HX) oG, (IndGH B) or G
)

commutes. So the commutativity of (2.3) will follow if we can show that

KK∗
(

C0(X) oH,B or H
) y⊗·⊗x //

[ΛX,H ]⊗·

²²

KK∗
(

C0(G×H X) oG, (IndGH B) or G
)

[ΛG×HX,G]⊗·

²²
KK∗

(

C0(H\X), B or H
)

·⊗x
// KK∗

(

C0(H\X), (IndGH B) or G
)

commutes. For this it is enough to prove that

[ΛG×HX,G]⊗ y = [ΛX,H ] in KK0

(

C0(H\X), C0(X) oH
)

, (2.4)

where we identify G\(G ×H X) with H\X via G[x, s] 7→ Hx. All KK-classes
appearing in this equation are given by a Hilbert bimodule together with the
zero operator: ΛG×HX,G (resp. ΛX,H) is the Hilbert module obtained by taking
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the completion of Cc(G×HX) (resp. Cc(X)) with respect to the inner product,
the right action of C0(G×H X) oG (resp. C0(X) oH) and the left action of
C0

(

G\(G×H X)
)

(resp. C0(H\X)) as given in (1.1). The underlying module

M for y is obtained by taking the completion of the Cc
(

G,C0(G ×H X)
)

−

Cc
(

H,C0(X)
)

bimodule Cc
(

G,C0(X)
)

with respect to the formulas:

(ϕ · η)(s)(x) =

∫

G

ϕ(t)(s, x)η(t−1)(x)dt

〈η1, η2〉(u)(x) =

∫

G

∆G(t)
1/2∆H(t)−1/2η1(t)(x)η2(tu)(u

−1x)dt

(η · f)(s)(x) = ∆G(s)
1/2∆H(s)−1/2

∫

H

η(su)(u−1x)f(u−1)(u−1x)du,

where ϕ ∈ Cc
(

G,C0(G×HX)
)

, η1, η2 ∈ Cc
(

G,C0(X)
)

and f ∈ Cc
(

H,C0(X)
)

.

Consider the assignment Φ : Cc(G ×H X) ¯ Cc
(

G,C0(X)
)

→ Cc(X) defined
by

Φ(ξ ⊗ η)(x) =

∫

G

ξ(t−1, x)η(t−1)(x)∆G(t)
−1/2dt,

ξ ∈ Cc(G×HX), η ∈ Cc
(

G,C0(X)
)

. One can check that this map extends to a
well defined morphism Φ : ΛG×HX,G⊗C0(G×HX)oGM → ΛX,H which respects
the corresponding left and right actions and which is isometric with respect
to the C0(X) o H-valued inner products. To see that it is also surjective let
c : G · X → [0,∞[ be a continuous function such that c2 is a cut-off function
for the proper G-space G ·X (cf. proof of Lemma 1.5). Set ξ(s, x) = c(sx). For
any ζ ∈ Cc(X), set η(s)(x) = c(sx)ζ(x)∆G(s)

1/2. Then ζ = Φ(ξ ⊗ η) ∈ ΛX,H .
This proves (2.4).

As a direct consequence of Theorem 2.2 and Proposition 2.3 we get

Theorem 2.5. Let H be a closed subgroup of G and let B be an H-algebra.
Then the following statements are equivalent:

(i) H satisfies BCC (resp. BCI, resp. BCS) for B;

(ii) G satisfies BCC (resp. BCI, resp. BCS) for IndGH B.

In particular, if G satisfies BCC (resp. BCI, resp. BCS) for all coefficients,
the same is true for H.

We say that a group G satisfies the Baum-Connes conjecture with abelian
coefficients if the assembly map

µG,A : Ktop
∗ (G;A)→ K∗(Aor G)

is an isomorphism for every commutative C∗-algebra A. Since any commutative
H-algebra induces to a commutative G-algebra, we get the following direct
corollary of Theorem 2.5:

Corollary 2.6. Let H be a closed subgroup of G. If G satisfies the Baum-
Connes conjecture with abelian coefficients, then the same is true for H.
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3 The Baum-Connes conjecture for group extensions

In this section we want to present our new results on the stability of the Baum-
Connes conjecture for group extensions. For this we have to recall from [6] the
definition of the partial assembly map

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N),

where B or N is equipped with the decomposition twisted action of (G,N).
Let B be any G-algebra and let X be a G-compact proper G-space. Let

ΛG,NX,N ∈ KKG,N0

(

C0(N\X), C0(X) oN
)

be the fundamental class associated to X as described in §1, (1.2). The com-
position of maps

KKG∗
(

C0(X), B
)

jN{e},r **UUUUUUUUUUUUUUUU

//___ KKG,N∗
(

C0(N\X), B or N
)

KKG,N∗
(

C0(X) oN,B or N
)

ΛG,NX,N⊗·

OO

determines a map

ν[X] : KKG∗
(

C0(X), B
)

→ KKG,N∗
(

C0(N\X), B or N
)

. (3.1)

Now observe that if X is a proper G-space, then N\X is a proper G/N -space,
and therefore there exists a homotopically unique continuous G/N -equivariant
map F : N\X → E(G/N). In particular, there exists a homotopically unique
continuous G/N -map F : N\E(G)→ E(G/N).

Definition 3.1. Let F : N\E(G) → E(G/N) be as above. For each G-
compact subset X ⊆ E(G) let

µG,NN,B [X] = F ∗ ◦ ν[X] : KKG∗
(

C0(X), B
)

→ KKG,N∗
(

C0

(

F (N\X)
)

, B or N
)

.

Then it follows from Lemma 1.5 that the maps µG,NN,B [X] are compatible with
respect to taking inclusions, and, therefore, they determine a well defined ho-
momorphism

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N).

µG,NN,B is called the partial assembly map for (G,N) with coefficient algebra B.

The following result was one of the main outcomes of [6], and it is central
for the investigations in this section. Recall that if B is a G-algebra and N
is a closed normal subgroup of G, then B or G is canonically isomorphic to
B or N or (G,N).
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Proposition 3.2 (cf. [6, Proposition 5.15]). The diagram

Ktop
∗ (G;B)

µG,B
−−−−→ K∗(B or G)

µG,NN,B





y

x





∼=

Ktop
∗ (G/N ;B or N)

µG/N,BorN−−−−−−−→ K∗
(

(B or N) or (G,N)
)

commutes. Thus, if the partial assembly map

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N)

is bijective, then G satisfies BCC (resp. BCI, resp. BCS) for B if and only if
G/N satisfies BCC (resp. BCI, resp. BCS) for B or N .

Proposition 3.2 gives a strong motivation to study the conditions under which
the partial assembly map is an isomorphism. The main technical result in this
direction is the following theorem. The proof will be given in §5 below.

Theorem 3.3. Let 1 → N → G
q
→ G/N → 1 be an extension of groups

such that G/N has a compact open subgroup. Let B be any G-algebra and
assume that for every compact open subgroup K̇ of G/N , the subgroup q−1(K̇)
of G satisfies BCC with coefficients in B. Then the partial assembly map
µG,NN,B : Ktop

∗ (G;B)→ Ktop
∗ (G/N ;B or N) is bijective.

As a direct corollary of the theorem and of Proposition 3.2 we get:

Corollary 3.4. Assume that G, N , G/N and B satisfy all assumptions of
Theorem 3.3. Then G satisfies BCC (resp. BCI, resp. BCS) for B if and only
if G/N satisfies BCC (resp. BCI, resp. BCS) for B or N .

Note that we obtained a similar result in [6, Proposition 7.8] under the addi-
tional assumption that G has a γ-element. Although the proof of that special
case is easier than the proof of the above result, it can be quite difficult to
check the existence of a γ-element in practice. For discrete G, a similar result
(without requiring a γ-element) has been obtained by Oyono-Oyono in [22],
and the proof of Theorem 3.3, as presented in §5 below, is partly inspired by
the ideas of [22].
In [8, Example 3, §5.1] it is shown that if N is a normal subgroup of a group K
such that K/N is compact, and if N satisfies the Haagerup property, then K
satisfies the Haagerup property. We mentioned earlier (see Remark 1.8) that
it follows from the work of Higson, Kasparov and Tu [13, 25] that such groups
satisfy BCC. Thus we get

Corollary 3.5. Let 1 → N → G
q
→ G/N → 1 be an extension of groups

such that G/N has a compact open subgroup. Suppose further that N satisfies
the Haagerup property (e.g., if N is amenable). Then, if B is a G-algebra, G
satisfies BCC (resp. BCI, resp. BCS) for B if and only if G/N satisfies BCC
(resp. BCI, resp. BCS) for B or N .
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Let G be a group and let G0 denote the connected component of the identity of
G. Then G0 is a closed normal subgroup of G and G/G0 is totally disconnected.
Thus we may apply the above results to the extension 1→ G0 → G→ G/G0 →
1. In particular, we get

Corollary 3.6. Assume that G0 satisfies the Haagerup property and let B be
a G-algebra. Then G satisfies BCC (resp. BCI, resp. BCS) for B if and only
if G/G0 satisfies BCC (resp. BCI, resp. BCS) for B or G0.

In what follows we want to get rid of the condition of G/N having a compact
open subgroup. It turns out that, at least if we restrict our attention to prop-
erty BCC or BCS, we can indeed obtain very far reaching generalizations. A
very important tool for this is the use of Theorem 2.2 and its consequences as
described in the previous section. The main idea is to reduce to the two cases
where the quotient group is either totally disconnected or almost connected
(i.e., (G/N)/(G/N)0 is compact). The first case is the one treated above,
and the second case was treated in [6] (under the assumption that G has a
γ-element). In fact, combining [6, (2) of Proposition 6.7] (note that the injec-
tivity condition in that statement is satisfied by Remark 1.8 if G/N is almost
connected) with [6, Proposition 7.6], we get

Theorem 3.7. Let 1 → N → G
q
→ G/N → 1 be an extension of groups

such that G/N is almost connected and such that G has a γ-element. Let
B be a G-algebra, and assume that for the maximal compact subgroup K̇ of
G/N , the group q−1(K̇) satisfies BCC for B. Then the partial assembly map

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;BorN) of Definition 3.1 is bijective. It then
follows that G satisfies BCC (resp. BCI, resp. BCS) for B if and only if G/N
satisfies BCC (resp. BCI, resp. BCS) for B or N .

As indicated above, we want to combine Theorem 3.7 with Theorem 3.3 in
order to cover arbitrary quotients G/N . But before we do this, we want to
weaken the assumption on the γ-element in the above theorem. This is done
in Lemma 3.9 below, where we show that it is actually enough to assume the
existence of a γ-element for the inverse image K = q−1(K̇) ⊆ G of the maximal
compact subgroup K̇ of G/N . But for the proof of this, we first need another
lemma.
For notation: If A is a C∗-algebra and X is a locally compact space, we will
write A(X) := A⊗C0(X). If A is a G-algebra and X is a G-space, then A(X)
carries the diagonal action. Recall that ifX is aG-space,K is a closed subgroup
of G, and A is a K-algebra, then IndGK(A(X)) ∼=

(

IndGK A
)

(X) (cf. [14, 3.6]).
In fact, both algebras can be viewed as a subalgebra of Cb(G × X,A): The
elements F ∈ IndGK(A(X)) satisfy the equation F (gk, x) = k−1

(

F (g, kx)
)

and

the elements G ∈
(

IndGK A
)

(X) satisfy the equation G(gk, x) = k−1
(

G(g, x)
)

.
It is then easy to check that

Φ : IndGK(A(X))→
(

IndGK A
)

(X); Φ(F )(g, x) = F (g, g−1x) (3.2)

is the desired isomorphism.
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Lemma 3.8. Let K be a closed subgroup of G, and let A and B be two K-
algebras. Let X be a locally compact G-space. Then the following diagram
commutes

KKK∗ (A,B)
iGK //

p∗X
²²

KKG∗ (Ind
G
K A, Ind

G
K B)

p∗X
²²

RKKK∗
(

X;A(X), B(X)
)

iK,G

²²

RKKG∗
(

X; (IndGKA)(X),(IndGKB)(X)
)

RKKG∗
(

G×K X; IndGK(A(X)), IndGK(B(X))
)

33gggggggggggggggggggggg

where p∗X is induced by the map pX : X → {pt} (see [14, Proposition 2.20]), iGK
is the induction morphism defined in [15, Theorem 1 of §5] (see §2 above), iK,G

is the induction morphism defined in [14, §3.6], and the bottom slant arrow is
obtained by first identifying G×K X with G/K×X via [g, x] 7→ (gK, gx), then
forgetting the action of C0(G/K), and eventually identifying IndGK(A(X)) with
(IndGK A)(X) (resp. IndGK(B(X)) with (IndGK B)(X)) via the isomorphism of
(3.2) above.

Proof. Let (E ,Φ, T ) be any cycle in EK(A,B). By construction,
the image of the class of this cycle by p∗X ◦ iGK is the class in

RKKG∗
(

X; (IndGK A)(X), (IndGK B)(X)
)

of the cycle

P =
(

(IndGK E)⊗ C0(X), (IndGK Φ)⊗ 1, T̃ ⊗ 1
)

, (3.3)

where the action of C0(X) is given via the natural inclusions

C0(X)→M
(

(IndGK A)⊗ C0(X)
)

, M
(

(IndGK B)⊗ C0(X)
)

; f 7→ 1⊗ f,

and where the operator T̃ on IndGK E is given by Equation (2.1).
On the other hand, the composition iK,G ◦ p∗X maps the class of (E ,Φ, T ) to
the class of the triple

Q =
(

IndGK(E ⊗ C0(X)), IndGK(Φ⊗ 1), T̃ ⊗ 1
)

,

where the C0(G ×K X)-actions on the algebras IndGK(A ⊗ C0(X)) (resp.
IndGK(B ⊗ C0(X))) are given by

(ϕ ·F )(g, x) = ϕ([g, x])F (g, x), for all ϕ ∈ C0(G×KX), F ∈ IndGK(A⊗C0(X))

(resp. F ∈ IndGK(B ⊗ C0(X))). We now apply the isomorphism (3.2) to the
algebras IndGK(A⊗C0(X)) and IndGK(B⊗C0(X)). The same formula provides
an isomorphism of Hilbert modules Ψ : IndGK(E ⊗C0(X))→ (IndGK E)⊗C0(X).
If we now identify G ×K X with G/K × X as in the lemma, and if we then
forget the C0(G/K) action on the algebras, then a straightforward computation
shows that these isomorphisms turn Q into the cycle P of (3.3).
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Lemma 3.9. Let 1→ N → G
q
→ G/N → 1 be an extension of groups such that

G/N is almost connected. Let K̇ be the maximal compact subgroup of G/N and
let K = q−1(K̇). Assume that K has a γ-element. Then G has a γ-element.

Proof. Let AK , (resp. DK , ηK) be the proper algebra (resp. the Dirac, dual-
Dirac element) associated to γK , the γ-element of K. By Remark 1.8, G/N
also has a γ-element, and we write γG/N , AG/N , DG/N and ηG/N accordingly.
Let V be the tangent space of G/K at the point eK and let C

V
be the Clifford

algebra of V . When viewed as a G-algebra (with trivial N -action), the algebra
AG/N is given by AG/N = IndGK CV (denoted Cτ (G/K) in [14]).
Define

DG : = iGK
(

σC
V
(DK)

)

⊗AG/N DG/N ∈ KKG0
(

IndGK(AK ⊗ CV ),C
)

and

ηG : = ηG/N ⊗AG/N i
G
K

(

σC
V
(ηK)

)

∈ KKG0
(

C, IndGK(AK ⊗ CV )
)

,

where DG/N and ηG/N are viewed as elements of the respective KKG-

groups by inflating the actions of G/N to G, and iGK : KKK∗ (A,B) →

KKG∗ (Ind
G
K A, Ind

G
K B) denotes Kasparov’s induction homomorphism. Since

AK is K-proper, the algebra IndGK(AK ⊗ CV ) is G-proper.
Thus, to see that γG = ηG⊗DG ∈ KKG0 (C,C) is a γ-element for G (cf. Defini-
tion 1.7), it suffices to check that p∗X(γG) = 1 ∈ RKKG0

(

X;C0(X), C0(X)
)

for
every proper G-space X, where pX denotes the map from X to the one-point
set.
Let z = σC

V
(γK) ∈ KKK0 (C

V
, C

V
). Since X is a proper K-space, it follows that

p∗X(γK) = 1, and, therefore, that p∗X(z) = 1 ∈ RKKK
(

X;C
V
(X), C

V
(X)

)

. It
then follows that iK,G ◦ p∗X(z) = 1, and hence, by Lemma 3.8, that

p∗X◦i
G
K

(

σC
V
(γK)

)

= p∗X◦i
G
K(z) = 1 ∈ RKKG

(

X; (IndGKCV )(X), (IndGKCV )(X)
)

.

On the other hand, the map pX : X → {pt} factors G/N -equivariantly
through N\X, which is a proper G/N -space. Thus, p∗X(γG/N ) = 1 ∈

RKKG0
(

X;C0(X), C0(X)
)

. But this implies

p∗X(γG) = p∗X
(

ηG/N ⊗ i
G
K

(

σC
V
(γK)

)

⊗DG/N

)

= p∗X
(

ηG/N
)

⊗ p∗X
(

iGK(σC
V
(γK))

)

⊗ p∗X
(

DG/N

)

= p∗X
(

ηG/N
)

⊗ p∗X
(

DG/N

)

= p∗X(γG/N ) = 1.

As a consequence of the above lemma and of Theorem 3.7 we obtain

Corollary 3.10. Assume that 1→ N → G
q
→ G/N → 1 is a group extension

such that G/N is almost connected. Assume further that the inverse image
K = q−1(K̇) ⊆ G of the maximal compact subgroup K̇ of G/N has a γ-element
and satisfies BCC for the given G-algebra B (which is always true if N has the
Haagerup property). Then G satisfies BCC (resp. BCI, resp. BCS) for B if
and only if G/N satisfies BCC (resp. BCI, resp. BCS) for B or N .
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The following proposition is the main step for linking our previous results in
order to cover general quotients G/N :

Proposition 3.11. Let 1 → N → G
q
→ G/N → 1 be an extension of groups

and let B be a G-algebra. Denote by (G/N)0 the connected component of the
identity in G/N and let M := q−1

(

(G/N)0
)

⊆ G. If Ḧ is a compact subgroup

of G/M , we denote by Ḣ ⊂ G/N the inverse image of Ḧ in G/N , and we let
H denote the inverse image of Ḧ in G. Then the following are true:

(i) If for every Ḧ as above, the group H satisfies BCC for B, then the partial
assembly map for (G,M) with coefficients in B is bijective.

(ii) If G/N satisfies BCC (resp. BCS) for every coefficient algebra, then
G/M satisfies BCC (resp. BCS) for B or M .

Proof. For (i), let us consider the extension 1 → M → G
p
→ G/M → 1. Note

that G/M is isomorphic to (G/N)/(M/N) ∼= (G/N)/(G/N)0, and hence it is
totally disconnected. The condition in (i) is then precisely what we need to
apply Theorem 3.3 to this extension.
For (ii), we write G/N as an extension of M/N by G/M :

1→M/N → G/N
r
→ G/M → 1. (3.4)

Note that G/M is totally disconnected and that the crossed product BorM is
isomorphic to (BorN)or (M,N). Thus, applying Proposition 3.2 to extension
(3.4), the result will follow if the partial assembly map corresponding to (3.4)
with coefficients in B or N is a bijection: If G/N satisfies BCC (resp. BCS)
for the coefficient algebra B or N , G/M will satisfy BCC (resp. BCS) for the
crossed product B or M ∼= (B or N) or (M,N).
To see that the partial assembly map for (3.4) with coefficients in B or N is
bijective, we apply Theorem 3.3 to this extension. It then follows that it is
enough to check that, whenever Ḧ is a compact subgroup of G/M , the group
Ḣ ⊆ G/N satisfies BCC for BorN . We do this by using the hereditarity result
of Theorem 2.5: Ḣ is a subgroup of G/N which is assumed to satisfy (at least)
BCS with arbitrary coefficients. Thus, Theorem 2.5 implies that Ḣ satisfies (at
least) BCS, too. Since Ḣ is almost connected (as a compact extension of the
connected group M/N ∼= (G/N)0), it also satisfies BCI for arbitrary coefficient
algebras by Remark 1.8.

We now formulate and prove our extension result for arbitrary quotients G/N .

Theorem 3.12. Let 1 → N → G
q
→ G/N → 1 be an extension of groups and

let B be any G-algebra. Assume that for every compact subgroup Ċ of G/N ,
the group C = q−1(Ċ) has a γ-element and satisfies BCC for B. Then, if G/N
satisfies BCC (resp. BCS) for arbitrary coefficients, then G satisfies BCC
(resp. BCS) for B.
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Proof. We are going to use the reduction argument of Proposition 3.11: Denote
by (G/N)0 the connected component of the identity in G/N and let M =
q−1

(

(G/N)0
)

⊆ G. Let Ḧ be any compact subgroup of G/M , let Ḣ ⊂ G/N

be the inverse image of Ḧ in G/N , and let H denote the inverse image of
Ḧ in G. Note that Ḣ is an almost connected group. Let K̇ be its maximal
compact subgroup. Then K̇ is a compact subgroup of G/N , so, by assumption,
K = q−1(K̇) has a γ-element and satisfies BCC for B. Lemma 3.9 now implies
that H itself has a γ-element. Applying Theorem 3.7 to the extension 1 →
N → H → Ḣ → 1, it follows that H satisfies BCC for B: Since G/N satisfies
BCS for all coefficients, the same is true for Ḣ ⊆ G/N by Theorem 2.5. Since
Ḣ is almost connected, it also satisfies BCI. Thus Theorem 3.7 applies.
We can now apply Proposition 3.11: By (i), the partial assembly map for (G,M)
with coefficients in B in bijective, and, by (ii), G/M satisfies BCC (resp. BCS)
for B or M . Thus, Proposition 3.2 implies that G satisfies BCC (resp. BCS)
for B.

Remark 3.13. Note that the statement of Theorem 3.12 is a bit weaker than
the statements of Theorems 3.3 and 3.7 above, since it requires that G/N
satisfies BCC (resp. BCS) for all coefficients, while the previous results only
required that G/N satisfies BCC (resp. BCI, BCS) for BorN . Also, Theorem
3.12 does not give any information on condition BCI.
If we could show that Theorem 3.7 holds without requiring a γ-element for
G, then no reference to γ-elements would be needed in Theorem 3.12 above.
However, note that the assumption on the existence of γ-elements for the com-
pact extensions of N in G is much easier to check than the assumption on the
existence of a γ-element for G, as we did in [6]. A particularly nice application
is given when N satisfies the Haagerup property. As mentioned earlier (see
the discussions before Corollary 3.5) the Haagerup property for N implies the
Haagerup property for every compact extension of N in G. Thus, all compact
extensions of N in G have a γ-element and satisfy BCC (see Remark 1.8).
Thus, the following is a direct corollary of Theorem 3.12:

Corollary 3.14. Let N be a closed normal subgroup of G such that N sat-
isfies the Haagerup property (e.g., if N is amenable). Then, if G/N satisfies
BCC (resp. BCS), the same is true for G.

In what follows next, we want to look at the consequences of the above results
on the stability of the Baum-Connes conjecture under taking direct products
of groups. We need:

Lemma 3.15. Let G1 and G2 be groups. Suppose that G1 has a compact open
subgroup, or is an almost connected group, and that G2 has a compact open
subgroup. Let B be a G1 × G2-algebra, and assume that for every compact
subgroup K2 of G2, G1 satisfies BCC for B o K2. Then the partial assembly
map µG1×G2,G1

G1,B
: Ktop

∗ (G1 ×G2;B) → Ktop
∗ (G2;B or G1) of Definition 3.1 is

bijective.
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Proof. Take any compact subgroup K2 of G2. If G1 has a compact open sub-
group, we can apply Theorem 3.3 to the extension K2×G1 of K2 by G1. Since
G1 satisfies BCC for BoK2 by assumption, it is enough to check that for every
compact subgroup K1 of G1, the group K2×K1 satisfies BCC (which is clear).
It follows that for every compact subgroup K2 of G2, G1 ×K2 satisfies BCC
for B. Thus the result follows from applying Theorem 3.3 to G1 ×G2.
If G1 is almost connected, the same is true for G1×K2 (since K2 is compact),
so G1×K2 has a γ-element by Remark 1.8. Replacing Theorem 3.3 by Theorem
3.7 in the above argument gives the result.

Remark 3.16. In the prove of the theorem below, we shall also need a twisted
version of the above lemma, i.e., a version in which the quotient group G/N has
a product structure as above. However, this extension follows from the above
lemma by the result of [10] that every (G,N)-algebra is Morita equivalent to
some G/N -algebra.

Theorem 3.17. Let G1 and G2 be two groups. Then the following statements
are true:

(i) The product group G = G1 ×G2 satisfies BCC if and only if G1 and G2

satisfy BCC.

(ii) Suppose that G1 satisfies BCC. Then G = G1 ×G2 satisfies BCS if and
only if G2 satisfies BCS.

(iii) Suppose that G1 has a compact open subgroup, or is almost connected.
Suppose further that G2 has a compact open subgroup. If G1 satisfies
BCC and G2 satisfies BCI, then G = G1 ×G2 satisfies BCI.

Proof. We first prove (i) and (ii). If G = G1 ×G2 satisfies BCC (resp. BCS),
the same is true for G1 and G2 by Theorem 2.5. Assume now that G1 satisfies
BCC. Let G0 (resp. G1,0, G2,0) denote the connected component of G (resp.
G1, G2). It is clear that G0 = G1,0 ×G2,0. Consider the extension 1→ G0 →
G → G/G0 → 1. The quotient group is totally disconnected. Let B be any
G-algebra. By Corollary 3.4, to see that G satisfies BCS (resp. BCC) for B, it
is enough to show that

(a) any compact extension of G0 satisfies BCC, and

(b) G/G0 satisfies BCS (resp. BCC) for B or G0.

For (a), note that if L is a compact extension of G0, L is contained in
a direct product L1 × L2, where L1 is a compact extension of G1,0 and
L2 is a compact extension of G2,0. Being a subgroup of G1 (resp. G2),
L1 (resp. L2) satisfies BCS by Theorem 2.5. Both groups being al-
most connected, they also satisfy BCI, whence BCC. Consider the extension
1→ L1 × {e} → L1 × L2 → L2 → 1. By Theorem 3.7, to see that L1×L2 satis-
fies BCC (and hence that L satisfies BCC by Theorem 2.5), it suffices to check
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that L1 ×K2 satisfies BCC whenever K2 is a compact subgroup of G2. To see
this, we use again Theorem 3.7 to reduce to the group K1 ×K2, where K1 is
an arbitrary compact subgroup of G1. But compact groups satisfy BCC.
In order to check (b), first observe that we just saw in particular, that compact
extensions of G1,0 in G1 (resp. of G2,0 in G2) satisfy BCC. Hence it follows
from Theorem 3.3 and Proposition 3.2 that G1/G1,0 satisfies BCC with twisted
coefficients in A or G1,0, where A1 is any G1-algebra. A similar result holds
for G2/G2,0.
In particular, it follows that G1/G1,0 satisfies BCC with (twisted) coefficients
in

B or G0 or K̇2 = B or G2,0 or K̇2 or G1,0 = B or K2 or G1,0,

where K̇2 is any compact subgroup of G2/G2,0 andK2 denotes its inverse image
in G2. Note that in the above formula we took the freedom to write the twisted
crossed products by the pairs (K2×G1,0, G0) (in the first crossed product) and
(K2, G2,0) (in the second crossed product) simply as crossed products by the

common quotient K̇2. Using the definition of the twisted crossed products (see
[6]), it is fairly straightforward (but tedious) to check that all three crossed
products in the above formula do coincide.
A similar argument shows that G2/G2,0 satisfies BCS (resp. BCC) with coef-
ficients in the algebra

B or G0 or G1/G1,0 = B or G1 or G2,0.

Using the twisted version of Lemma 3.15 (replacing G1 by G1/G1,0, G2 by
G2/G2,0 and B by B or G0 = B or G1,0 or G2,0), we see that the partial
assembly map for the extension of G1/G1,0 by G2/G2,0 and with coefficients in
Bor G0 is bijective. Composing this with the assembly map for G2/G2,0 with
coefficient algebra B or G0 or G1/G1,0 = B or G1 or G2,0, we get (b).
We have now completed the proofs of (i) and (ii). (iii) is a direct consequence
of Lemma 3.15 and Proposition 3.2.

4 An example for the Baum-Connes conjecture with trivial co-
efficients

In this section we want to show how the results of the previous sections may be
combined in order to produce new examples for the validity of the Baum-Connes
conjecture without coefficients. The methods we use here give a hint into a
direction of a more general “Mackey-machine” for computing the topological
K-theory of group extensions via an induction process.
The basic idea is to use our partial assembly map to write Ktop

∗ (G;C) as
Ktop
∗ (G/N ;C∗r (N)), where N is a closed normal subgroup of G (see the main

results of §3 above). In good cases, we might be able to decompose C∗r (N) into
finitely many pieces (i.e., G-invariant subquotients) which are induced from
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smaller groups, which satisfy the conjecture for the respective coefficient alge-
bras. The bijectivity of the induction homomorphism (see Theorem 2.2) then
gives the conjecture for the original pieces, and, using excision, we end up with
the desired result for G. Below, we will give some explicit examples for this
procedure.

But before we present the examples, we need to mention some results on the
functorial properties of the topological K-theory of a fixed group G, viewed as
a functor on the category of G-C∗-algebras.

By a result of Kasparov and Skandalis (see [17, Appendix]), it is known that for
any proper G-algebra D the functor A 7→ KKG(D,A) is half exact. Replacing
D by C0(X), for X a G-compact subspace of E(G), and taking the limit over
X, implies that the topological K-theory functor A 7→ Ktop

∗ (G;A) is half exact,
too. Since this functor is also homotopy invariant and satisfies Bott-periodicity,
it follows from some general arguments (which, for instance, are outlined in
[4, Chapter IX]) that it satisfies excision in the sense that every short exact
sequence

0→ I → A→ A/I → 0

of G-algebras induces a natural six-term exact sequence

Ktop
0 (G; I) −−−−→ Ktop

0 (G;A) −−−−→ Ktop
0 (G;A/I)

∂

x









y
∂

Ktop
1 (G;A/I) ←−−−− Ktop

1 (G;A) ←−−−− Ktop
1 (G; I).

If G satisfies BCC, then it follows from the half exactness of Ktop
∗ (G, ·) and the

naturality of the assembly map that the functor

A 7→ K∗(Aor G)

has to be half exact, too. Thus we see that BCC can only hold for G if G is K-
exact in the sense that for every short exact sequence 0→ I → A→ A/I → 0
of G-algebras, the natural sequence

K∗(I or G)→ K∗(Aor G)→ K∗(A/I or G)

is exact in the middle term. By the same general arguments as used above,
K-exactness of G implies that every short exact sequence of G-algebras induces
a natural six-term exact sequence for the K-theories of the reduced crossed
products.

Proposition 4.1. Assume that G is K-exact and that 0→ I → A→ A/I → 0
is a short exact sequence of G-algebras. Let ∂ : Ktop

∗+1(G;A/I)→ Ktop
∗ (G; I) and

δ : K∗+1(A/I or G)→ K∗(I or G) denote the boundary maps in the respective
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six-term exact sequences. Then the diagram

Ktop
∗+1(G;A/I)

∂
−−−−→ Ktop

∗ (G; I)

µG,A/I





y





y

µG,I

K∗+1(A/I or G) −−−−→
δ

K∗(I or G)

commutes. In fact, the assembly map commutes with all maps in the respective
six-term exact sequences.

Proof. This result follows easily from the naturality of the assembly map and
the general construction of the boundary maps: By [4, Theorem 21.4.3], it
follows that the boundary maps can be factorized via K-theory maps coming
from ∗-homomorphisms Φ : C0(R) ⊗ A/I → Cq and e : I → Cq, where Cq
denotes the mapping cone for the quotient map q : A → A/I. More precisely,
using suspension, the above diagram splits into the diagram

Ktop
∗

(

G;C0(R)⊗A/I
) Φ∗−−−−→ Ktop

∗ (G;Cq)
e∗←−−−−
∼=

Ktop
∗ (G; I)

µG,C0(R)⊗A/I





y

µG,Cq





y





y

µG,I

K∗
(

(C0(R)⊗A/I) or G
)

−−−−→
Φ∗

K∗(Cq or G)
∼=

←−−−−
e∗

K∗(I or G),

which commutes by the naturality of the assembly map. The result then follows
from the fact that the assembly map commutes with Bott periodicity.

Using the above observations, an easy application of the Five Lemma gives the
following general principle:

Proposition 4.2. Suppose that G is K-exact and let 0→ I → A→ A/I → 0
be a short exact sequence of G-algebras. If G satisfies BCC for two of the
algebras I, A and A/I, then it satisfies BCC for all three algebras.

We are now ready to present our example.

Example 4.3. Let K = R or C. The semi-direct product groups Kn o
SLn(K), n ∈ N∗, (where the action of SLn(K) on Kn is by matrix multi-
plication) satisfy the Baum-Connes conjecture without coefficients (i.e., with
coefficient algebra C). We believe that this was known before only for the
cases n ≤ 2.

The proof is by induction on n. For short, let us write Hn = SLn(K) and
Gn = Kn o Hn. For n = 1, the conclusion holds. By induction, take n > 1
and let us assume that the conclusion holds for n− 1.

Since Kn is abelian, hence amenable, it follows from Theorem 3.7 that Gn
satisfies the Baum-Connes conjecture for C if and only Hn satisfies BCC for
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C∗r (K
n) ∼= C0(K

n). Moreover, the Gelfand transform carries the decompo-
sition action of Hn on C∗(Kn) to the action of Hn on C0(K

n) given by the
formula

(x · f)(η) = f(x∗ · η), x ∈ SLn(K), η ∈ Kn,

where x∗ denotes the adjoint of the matrix x.
There are two orbits under this action of Hn on Kn: {0} and Kn r {0}. Let
η = (1, 0, . . . , 0)t ∈ Kn. Then a short computation shows that the stabilizer
of η under the above action is isomorphic to Kn−1 o SLn−1(K) = Gn−1, and
therefore we get

C0(K
n \ {0}) ∼= C0(Hn/Gn−1) ∼= IndHn

Gn−1
C.

By [19], we know that the semi-simple group SLn(K) satisfies BCC for C and
by the induction assumption we know that Gn−1 also satisfies BCC for C.
Using Theorem 2.5 it follows that Hn satisfies BCC for C0(K

n \ {0}). Thus,
applying Proposition 4.2 to the short exact sequence 0 → C0(K

n \ {0}) →
C0(K

n)→ C→ 0 gives the result.

Remark 4.4. A similar argument can be used to show that Qn
p o GLn(Qp)

satisfies BCC with coefficients in C. Since GLn(Qp) can be written as the
product Qp1 ·GLn(O), where GLn(O) is the compact group of invertible ma-
trices with p-adic integer entries, it is a (non-direct) product of an amenable
group and a compact group, and therefore exact by a standard argument (e.g.,
see [18]). Moreover, by results of Baum, Higson and Plymen [3] and Lafforgue
[19], it is known that GLn(Qp) satisfies BCC for C. Now the same procedure
as used in the above example, using Theorem 3.3 instead of Theorem 3.7, gives
the result.

5 Proof of Theorem 3.3

In this section we give the proof of Theorem 3.3. As indicated in the introduc-
tion, some of the main ideas (and intermediate results) used in this proof will
also be applied in the proofs of the bijectivity of the induction homomorphism
as given in §6, and the continuity of topological K-theory with respect to the
coefficients as presented in §7. First we recall the statement of the theorem.

Theorem 3.3. Let 1 → N → G
q
→ G/N → 1 be an extension of groups such

that G/N has a compact open subgroup. Let B be a G-algebra and assume
that for every compact open subgroup K̇ of G/N , the subgroup q−1(K̇) of G

satisfies BCC for B. Then the partial assembly map µG,NN,B : Ktop
∗ (G;B) →

Ktop
∗ (G/N ;B or N) of Definition 3.1 is bijective.

As mentioned in the introduction, the proof relies on a special realization of a
universal example for the proper actions of G. In order to obtain this special
realization, we start with the following easy observation:
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Lemma 5.1. Let G1 and G2 be groups. If E(G1) (resp. E(G2)) is a realization
of the universal example for the proper actions of G1 (resp. G2), then E(G1)×
E(G2), equipped with the product action of G1 × G2, is a realization of the
universal example for the proper actions of G1 ×G2.

Proof. The action of G1 × G2 on E(G1) × E(G2) is clearly proper. To show
the universal property, take any space X endowed with a proper action of
G1 × G2. This action restricts to proper actions of G1 and G2 on X, so
there exist continuous Gi-maps Fi : X → E(Gi), i = 1, 2. Then F : X →
E(G1)×E(G2);F (x) = (F1(x), F2(x)) is a continuous G1×G2-equivariant map.
Conversely, every continuous G1×G2-map is of this form. Thus the uniqueness
(up to homotopy), follows from the uniqueness of E(G1) and E(G2).

If a group G has at least one compact open subgroup, the constructions in [17]
provide a realization of E(G) as a simplicial complex (the constructions in [17]
are given for discrete G; the adaptations for the more general case of groups
with compact open subgroup are given in the discussion following [6, Lemma
7.10]). Summing up the results of [17] and [6, §7], we obtain

Proposition 5.2. Let G be a group having a compact open subgroup K. Then
there exists a realization E(G) of the universal example for proper actions of
G, such that

(i) E(G) is the geometric realization of a locally finite simplicial complex on
which G acts properly and simplicially,

(ii) If S is any simplex of E(G),
o

S its interior, and g ∈ G, then either g acts

as the identity on S or g
o

S ∩
o

S= ∅.

In this section we will from now on assume that N is a closed normal subgroup
of G such that G/N has a compact open subgroup. Thus, in what follows next,
we can always assume that E(G/N) has the structure of a simplicial complex
as described in Proposition 5.2 above. The following lemma shows how this
provides a special realization for the universal example for the proper actions
of G:

Lemma 5.3. Let E(G) be a universal example for the proper actions of G.
Then the Cartesian product E(G)×E(G/N), endowed with the diagonal action
g(x, y) = (gx, ġy), is also a universal example for the proper actions of G.

Proof. E(G) × E(G/N) is a universal example for G × G/N by Lemma 5.1.
Because G can be seen as a closed subgroup of G×G/N via the map g 7→ (g, ġ),
the result follows from Lemma 2.4.

The main advantage of taking E(G) × E(G/N) as a universal example for the
proper actions of G comes from the fact that the simplicial structure of E(G/N)
allows us to use induction arguments on the dimension of simplices and to
“compress” to smaller subgroups.
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Remark 5.4. In what follows we will denote by π2 the projection of E(G) ×
E(G/N) onto the second factor E(G/N). Moreover, if we restrict the diagonal
G-action on E(G) × E(G/N) to N , the quotient space N\(E(G) × E(G/N))
can be identified with (N\E(G)) × E(G/N), and we will always denote by p2
the second projection of (N\E(G))× E(G/N) onto E(G/N). Note that by the
universal property of E(G/N), p2 : N\(E(G) × E(G/N)) → E(G/N) is the
unique (up to G/N -equivariant homotopy) continuous G/N -equivariant map.

We are now using E(G) × E(G/N) to compute the topological K-theory of G.
We start with

Definition 5.5. Let Y be a G/N -compact subset of E(G/N). Then we define
Ktop
∗ 〈Y 〉(G;B) to be the inductive limit

Ktop
∗ 〈Y 〉(G;B) := lim

X
KKG∗

(

C0(X), B
)

,

over all G-compact subspaces X of E(G)× E(G/N) which satisfy π2(X) = Y .

Lemma 5.6. Assume that G/N has a compact open subgroup and that E(G/N)
has the simplicial structure described in Proposition 5.2. Let F denote the fam-
ily of subsets Y of E(G/N) such that Y is the G/N -saturation of a finite union
of simplices of E(G/N). Then the topological K-theory of G with coefficients
in the G-algebra B can be computed by the formula

Ktop
∗ (G;B) = lim

Y ∈F
Ktop
∗ 〈Y 〉(G;B).

Proof. Using E(G) × E(G/N) as a realization of the universal example for
the proper actions of G, Ktop

∗ (G;B) can be computed as Ktop
∗ (G;B) =

limZ KKG∗
(

C0(Z), B
)

, where Z runs through the family of G-compact sub-
sets of E(G) × E(G/N). Clearly, any such Z is contained in a G-compact
subset X of E(G) × E(G/N) satisfying π2(X) = Y for some Y ∈ F : Choose
any Y ∈ F such that π2(Z) ⊆ Y . Y can be written as Y = G/N · K,
where K is a compact subset of E(G/N). Take any point x in E(G) and
put X = Z ∪G ·

(

{x} ×K
)

⊆ E(G)× E(G/N).

To each piece of the above decomposition of Ktop
∗ (G;B) via the elements Y ∈ F

corresponds a piece of the partial assembly map for (G,N): If Y is a G-compact
subset of E(G/N) and X is a G-compact subset of E(G)×E(G/N) (viewed as a
universal example for the proper actions of G) such that π2(X) = Y , we obtain
from Definition 3.1 a well defined morphism

µG,NN,B [X] : KKG∗ (C0(X), B)→ KKG,N∗ (C0(Y ), B or N)

(note that the map F : N\E(G) → E(G/N) of Definition 3.1 is given by
the projection p2 : N\

(

E(G) × E(G/N)
)

→ E(G/N), and that p2(X) = Y ).

It follows from Lemma 1.5 that the maps µG,NN,B [X] commute with the maps
induced by taking inclusions. Thus we may define

Documenta Mathematica 6 (2001) 127–183



154 Chabert and Echterhoff

Definition 5.7. For any G/N -compact subset Y of E(G/N) we define

µG,NN,B〈Y 〉 : K
top
∗ 〈Y 〉(G;B)→ KKG,N∗

(

C0(Y ), B or N
)

as the map which is obtained inductively from the morphisms

KKG∗
(

C0(X), B
) µG,NN,B [X]
−−−−−→ KKG,N∗

(

C0(Y ), B or N
)

,

where X runs through all G-compact subspaces of E(G)×E(G/N) which satisfy
π2(X) = Y .

We observe that not only Ktop
∗ (G;B) but also the partial assembly map associ-

ated to (G,N) can be recovered from the decomposition described above. This
follows directly from the definitions.

Lemma 5.8. Let N , G, E(G/N), and F be as in Lemma 5.6. Then the partial

assembly map µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G;B or N) of Definition 3.1 can be
computed inductively from the maps

µG,NN,B〈Y 〉 : K
top
∗ 〈Y 〉(G;B)→ KKG,N∗

(

C0(Y ), B or N
)

, Y ∈ F .

In view of Lemma 5.8, the proof of Theorem 3.3 reduces to the proof of:

Proposition 5.9. Let N , G, E(G/N) and F be as in Lemma 5.6. Let q : G→
G/N be the quotient map and let B be any G-algebra. Assume further that for
any compact open subgroup K̇ of G/N , the subgroup q−1(K̇) of G satisfies BCC
for B. Then, for any Y ∈ F , the map

µG,NN,B〈Y 〉 : K
top
∗ 〈Y 〉(G;B)→ KKG,N∗

(

C0(Y ), B or N
)

is bijective.

To prove Proposition 5.9, we use two ingredients (which goes back to some ideas
used in [11, Chapter 12] and [21, §5]). The first is to make an induction on
the maximal dimension of the simplices generating Y , using a Mayer-Vietoris
argument. For this we need a relative version of Definition 5.7:

Definition 5.10. Let Y be a G/N -compact subset of E(G/N) and let Y0
be an open (in the relative topology) G/N -equivariant subset of Y . For any
G-compact set X ⊆ E(G) × E(G/N) satisfying π2(X) = Y we put X0 =
X ∩ π−12 (Y0). Consider the composition of maps

KKG∗
(

C0(X0), B
)

ν[X0] **UUUUUUUUUUUUUUUU

//____ KKG,N∗
(

C0(Y0), B or N
)

KKG,N∗
(

C0(N\X0), B or N
)

p∗2

OO
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where p2 : N\(E(G) × E(G/N)) → E(G/N) denotes the projection onto the
second factor and ν[X0] is as in Equation (3.1). Using Lemma 1.5 we see that
these maps induce a well defined map

µG,NN,B〈Y0〉 : lim
X

KKG∗
(

C0(X0), B
)

→ KKG,N∗
(

C0(Y0), B or N
)

,

on the inductive limit, where X runs through all G-compact subsets of E(G)×
E(G/N) which project onto Y .

Remark 5.11. It is important to note that both, the limit
limX KKG∗

(

C0(X0), B
)

, and the map µG,NN,B〈Y0〉, only depend on the space Y0
and not on the particular choice of the G-compact set Y ⊇ Y0. To see this, it is
enough to observe that, if Y0 ⊆ Y ⊆ Y1 such that Y and Y1 are G/N -compact
and Y0 is open in Y1, then for any G-compact set X ⊆ E(G) × E(G/N)
with π2(X) = Y , there exists a G-compact set X1 ⊆ E(G) × E(G/N) with
π2(X1) = Y1 and X ⊆ X1 (then X0 ⊆ X1,0, and, conversely, if X1 is given,
and if we put X = X1 ∩ π

−1
2 (Y ), we get X1,0 ⊆ X0).

We will make use of Definition 5.10 in our Mayer-Vietoris argument. The
second ingredient for the proof of Proposition 5.9 is a reduction argument
based on an isomorphism in KK-theory, which makes it possible to simplify
the group KKG,N∗

(

C0(Y0), B or N
)

, if Y0, as a G-space, is induced from an
open subgroup of G. The following characterization of induced spaces is taken
from [9]:

Proposition 5.12 (cf. [9, Corollary 2]). Let Y be a locally compact G-
space and let C be a closed subgroup of G. Then Y is G-homeomorphic to
an induced space G ×C T , for some C-space T , if and only if there exists a
continuous G-equivariant map p : Y → G/C. In that case, the C-space T can
be chosen as T = p−1({eC}) ⊆ Y , and a G-homeomorphism is given by the
mapping G×C T → Y ; [(s, x)] 7→ sx.

Remark 5.13. Assume that G/N has a compact open subgroup and that
E(G/N) has the simplicial structure of Proposition 5.2. By part (ii) of that
proposition, the above characterization of induced spaces shows immediately
that any subspace Z of E(G) × E(G/N) which projects onto the G-saturation

of the interior
o

S of a simplex S of E(G/N) is an induced space Z = G ×C T ,

where C is the stabilizer of S under the action of G and T = π−12 (
o

S)∩Z. Since
the action of G/N on E(G/N) is continuous, simplicial, and proper, C is an
open subgroup of G and C/N is a compact subgroup of G/N .

One of the basic ideas of the proof of Theorem 3.3 is to “compress” to the open
subgroup C ⊆ G of the above remark. For this we want to use a more general
compression isomorphism in twisted equivariant KK-theory, which we are now
going to describe.
So assume that C is an open subgroup of G containing the closed normal
subgroup N of G, and let A be a (C,N)-algebra. Let IndGC A denote the
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induced algebra of A. Then IndGC A is a (G,N)-algebra in a canonical way: If
τ : N → UM(A) is the twist for the original C-action on A, then the twist
Ind τ : N → UM(IndGC A) for the induced G-action on IndGC A is given by the
formula

(

Ind τn · F
)

(g) = τg−1ng · F (g), F ∈ IndGC A.

Since C is open in G, there exists a canonical (C,N)-equivariant embedding
iA : A→ IndGC A, given by

(

iA(a)
)

(g) =

{

g−1(a) if g ∈ C;
0 if g /∈ C.

For any (G,N)-algebra D, the compression homomorphism

compGC : KKG,N∗
(

IndGC A,D
)

→ KKC,N∗ (A,D),

is then defined as the composition

KKG,N∗
(

IndGC A,D
) resGC→ KKC,N∗

(

IndGC A,D
) i∗A→ KKC,N∗ (A,D).

It is shown in [5] (extending earlier results of [11] and [21]) that the compression
map is an isomorphism if N = {e} and C is a compact open subgroup of G.
But for our purposes it is necessary to get rid of these assumptions. Thanks to
a recent result of Ralf Meyer, this is indeed possible:

Proposition 5.14. The map

compGC : KKG,N∗
(

IndGC A,D
)

→ KKC,N∗ (A,D)

is an isomorphism.

Proof. We first note that the result is invariant under passing to Morita equiv-
alent twisted actions in both variables: First, if we replace D by a Morita
equivalent (G,N)-algebra D′, say, and if y ∈ KKG,N0 (D,D′) is the correspond-
ing invertible element, then the statement follows from the commutativity of
the diagram

KKG,N∗
(

IndGC A,D
) compGC−−−−→ KKC,N∗ (A,D)

·⊗y





y

∼= ∼=





y
·⊗resGC(y)

KKG,N∗
(

IndGC A,D
′
) compGC−−−−→ KKC,N∗ (A,D′).

Secondly, if we replace A by a Morita equivalent (C,N)-algebra A′, and if

x ∈ KKC,N0 (A′, A) denotes the corresponding invertible element, the statement
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follows from the commutativity of

KKG,N∗
(

IndGC A,D
) compGC−−−−→ KKC,N∗ (A,D)

iGC(x)⊗·





y

∼= ∼=





y

x⊗·

KKG,N∗
(

IndGC A
′, D

) compGC−−−−→ KKC,N∗ (A′, D),

which follows from the equation [i′A] ⊗ resGC
(

iGC(x)
)

= x ⊗ [iA] in

KKC,N0 (A′, IndGC A).
Since every twisted action of (G,N) (resp. (C,N)) is Morita equivalent to an
ordinary action of G/N (resp. C/N) by [10, Theorem 1], it follows from the
results of [6, §3] that we may assume without loss of generality that N = {e}
and all actions are untwisted. Moreover, since an action α : C → Aut(A) is
Morita equivalent to the stabilized action α⊗Adλ : C → Aut

(

A⊗K(L2(C))
)

,
where λ denotes the left regular representation of C (a Morita equivalence is
given by (A ⊗ L2(C), α ⊗ λ)), we can use [20, Proposition 3.2] in order to
assume without loss of generality that every element α ∈ KKC(A,D) can be
represented by a Kasparov triple (E ,Φ, T ), such that Φ(A)E = E and such that
T is a C-equivariant operator on E . Moreover, by [20, Proposition 3.4], we
can also assume that the homotopies between equivalent triples have the same
properties.
Using these reductions, we can now follow the constructions of [5, Lemma 4.11]
(see also [21]) to build an inverse

infGC : KKC∗ (A,D)→ KKG∗ (Ind
G
C A,D)

for the compression homomorphism compGC : Let α ∈ KKC∗ (A,D) be repre-
sented by a Kasparov triple (E ,Φ, T ) with the properties as described above.
Consider the complex vector space E consisting of all continuous functions
ξ : G→ E such that

• ξ(gc) = c−1(ξ(g)) for all g ∈ G, c ∈ C;

• the map gC 7→ ‖ξ(g)‖ has finite support in G/C.

Then E becomes a G-equivariant pre-Hilbert D-module by defining the D-
valued inner product, the right D-action on E, and the action of G on E by

〈ξ, η〉D =
∑

ġ∈G/C

g(〈ξ(g), η(g)〉D), (ξ · d)(g) = ξ(g) · g−1(d), and

(g · ξ)(g′) = ξ(g−1g′),

for all g, g′ ∈ G, ξ, η ∈ E and d ∈ D. Let Ẽ denote the completion of E and
define Φ̃ : IndGC A→ L(Ẽ) and an operator T̃ ∈ L(Ẽ) by

(

Φ̃(F ) · ξ
)

(g) = Φ
(

F (g)
)

·
(

ξ(g)
)

and
(

T̃ ξ
)

(g) = T
(

ξ(g)
)

,
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for F ∈ IndGC A and ξ ∈ E. We want to define

infGC
(

[(E ,Φ, T )]
)

= [(Ẽ , Φ̃, T̃ )] ∈ KKG
(

IndGC A,D
)

. (5.1)

For this we first have to show that (Ẽ , Φ̃, T̃ ) is a Kasparov triple in
EG(IndGC A,D). Since T̃ is clearly G-equivariant, it is enough to check that
[T̃ , Φ̃(F )], (T̃ 2− 1)Φ̃(F ), and (T̃ ∗− T̃ )Φ̃(F ) are compact operators on Ẽ for all
F ∈ IndGC A. Since T̃ is G-equivariant, we may replace F by any translate of
it, and since the finite sums of the translates of the elements of the form iA(a),
a ∈ A, are dense in IndGC A, we may even assume that F = iA(a) for some
a ∈ A. Now observe that E embeds (C-equivariantly) as a direct summand of
Ẽ via

(

iE(w)
)

(g) =

{

g−1(w) if g ∈ C,
0 if g /∈ C.

This induces a corresponding embedding iK(E) : K(E) → K(Ẽ), and it fol-

lows directly from the formulas that [T̃ , Φ̃(iA(a))] = iK(E)
(

[T,Φ(a)]
)

, (T̃ 2 −

1)Φ̃(iA(a)) = iK(E)
(

(T 2−1)Φ(a)
)

, and (T̃ ∗−T̃ )Φ̃(iA(a)) = iK(E)
(

(T ∗−T )Φ(a)
)

,

and hence all three elements are in K(Ẽ). Since the assignment (E ,Φ, T ) 7→
(Ẽ , Φ̃, T̃ ) preserves homotopy (we just apply the same construction to a homo-
topy), it is now clear that (5.1) determines a well defined map in KK-theory.
It is easy to check that compGC ◦ inf

G
C is the identity on KKC(A,D): Write

Ẽ = E
⊕

F , with respect to the C-equivariant embedding iE : E → Ẽ consid-
ered above. Then show that Φ̃ ◦ iA decomposes as Φ

⊕

0 under the above
decomposition of Ẽ , from which it follows that compGC ◦ inf

G
C

(

[E ,Φ, T ])
)

=

[(E ,Φ, T )]
⊕

[(F , 0, T̃ )] = [(E ,Φ, T )] ∈ KKC(A,D).
Conversely, to see that infGC ◦ compGC = idKKG(IndGC A,D), we start with a Kas-

parov triple (F ,Ψ, S) representing a class in KKG(IndGC A,D). Passing to the
stabilization A⊗K(L2(G)), if necessary (equipped with action α⊗AdλG), we
can use the equation IndHC

(

A⊗K(L2(G))
)

=
(

IndGH A
)

⊗K(L2(G)) in order to

apply Meyer’s result [20, Proposition 3.2] to the induced algebra IndGC A. Thus
we may assume without loss of generality that

(1) Ψ(IndGC A)F = F , and

(2) the operator S ∈ L(F) is G-equivariant.

We can use (1) to define a family {pġ | ġ ∈ G/C} of projections on F by

pġ
(

Ψ(F )ξ
)

= Ψ(F |gC)ξ, for F ∈ IndGC A. We may then assume additionally
that

(3) pġS = Spġ for all ġ ∈ G/C.

In fact, if S does not satisfy this condition, then we pass to the compact per-
turbation S′ =

∑

ġ∈G/C pġSpġ of S, which then satisfies (1)–(3) (to see that

S′ is a compact perturbation of S, i.e., that (S − S ′)Ψ(F ) ∈ K(F) for all
F ∈ IndGC A, one first observes that (S − S ′)Ψ(F ) =

∑

G/C(S − pġS)Ψ(F |gC),
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where the sum converges in the norm topology, and then one uses the com-
pactness of [S,Ψ(F |gC)] to see that each summand is a compact operator).
Using these properties, we easily check that (E ,Φ, T ) := (pėF , pėΨpė, pėSpė)
is a representative for compGC([F ,Ψ, S]). A straightforward computation then
shows that

Θ : Ẽ → F ; Θ(ξ) =
∑

ġ∈G/C

g(ξ(g))

is an isomorphism which intertwines Φ̃ with Ψ and T̃ with S.

The main reduction argument for the proof of Proposition 5.9 is contained in
the following lemma. We resume the situation of Lemma 5.6, i.e., we assume
that G/N has a compact open subgroup, and E(G/N) has the structure of a
simplicial complex as in Proposition 5.2. Moreover, for a simplex S of E(G/N)

we let
o

S denote its interior, n its dimension and C the open subgroup of G
which stabilizes S (with respect to the inflated action of G on E(G/N)).

Lemma 5.15. For any simplex S of E(G/N), let Y ∈ F be the G-saturation

of S in E(G/N), and let Y0 be the open subset of Y generated by
o

S under the
action of G. Let X be a G-compact subspace of E(G) × E(G/N) such that
π2(X) = Y , and let X0 be the open subset of X defined by X0 = X ∩ π−1(Y0).
Then:

(i) After enlarging X, if necessary, we may assume that there exists a C-
compact subset T of E(G) such that X0 is G-homeomorphic to the induced

space G×C (T×
o

S).

(ii) For every G-algebra B, the diagram

KKGi
(

C0(X0), B
) µG,NN,B [X0]
−−−−−−→ KKG,Ni

(

C0(Y0), B or N
)

compGC





y

∼= ∼=





y
compGC

KKCi
(

C0(T×
o

S), B
) µC,NN,B [T×

o
S]

−−−−−−−→ KKC,Ni

(

C0(
o

S), B or N
)

β⊗.





y

∼= ∼=





y

β⊗.

KKCi+n
(

C0(T ), B
) µC,NN,B [T ]

−−−−−→ KKC,Ni+n (C, B or N)

commutes, where β ∈ KKn

(

C, C0(Rn)
)

denotes the Bott element.

Proof. Since S generates Y as a G-space, we can choose a compact subset
L ⊆ E(G)×S such that L generates X as a G-space and such that π2(L) = S.
Let T = C · π1(L), where π1 : E(G)× E(G/N)→ E(G) denotes the projection
on the first factor, and let X ′ = G · (T × S). Then X ⊆ X ′, X ′ is G-compact,

and X ′0
∼= G×C (T×

o

S) by Remark 5.13. Thus, replacing X by X ′ gives (i).
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For the proof of (ii), first note that β can be seen as an element of

KKC,Nn

(

C, C0(
o

S)
)

because the action of C on
o

S is trivial and
o

S is homeo-
morphic to Rn. To see the commutativity of the upper square of the diagram,
we first have to introduce some notation:

• i1 : C0(T×
o

S) → C0(X0) and i2 : C0(
o

S) → C0(Y0) denote the canonical

inclusions (recall that because C is open in G,
o

S and T×
o

S are open
subsets of Y0 and X0 respectively).

• q1 : C0(Y0) → C0(N\X0) and q2 : C0(
o

S) → C0

(

N\(T×
o

S)
)

are

the homomorphisms induced by the second projection p2 : N\
(

E(G) ×

E(G/N)
)

→ E(G/N) (note that the restrictions of p2 to N\X0 → Y0 and

to N\(T×
o

S)→
o

S are proper maps).

The corresponding elements in the various equivariant KK-groups are de-

noted by the same letters. Using the definitions of µC,NN,B [X0], µ
C,N
N,B [T×

o

S]

and compGC (see Definition 5.10 and Proposition 5.14 above), we get for all
α ∈ KKG∗

(

C0(X0), B
)

:

µC,NN,B [T×
o

S] ◦ compGC(α) = q2 ⊗ ΛC,N
T×

o
S,N
⊗ jN{e},r(i1 ⊗ resGC(α)).

On the other hand we have

compGC ◦µ
G,N
N,B [X0](α) = i2 ⊗ resGC

(

q1 ⊗ ΛG,NX0,N
⊗ jN{e},r(α)

)

.

But it is clear from Equation (1.1) that resGC(Λ
G,N
X0,N

) is nothing but ΛC,NX0,N
.

Using the fact that resGC(j
N
{e},r(α)) = jN{e},r(res

G
C(α)) (cf. [6, (2) Remark 4.6]),

we note that the commutativity of the upper square of the diagram reduces to
the equality:

i2 ⊗ resGC(q1)⊗ ΛC,NX0,N
= q2 ⊗ ΛC,N

T×
o
S,N
⊗ jN{e},r(i1),

which follows from Lemma 1.5.

To see the commutativity of the lower square of the diagram, we first observe

that, since N (as a subgroup of C) acts trivially on
o

S, we have

p∗2(Λ
C,N

T×
o
S,N

) = σ
C0(

o
S)

(

p∗2(Λ
C,N
T,N )

)

and jN{e},r
(

σC(T )(β)
)

= σC(T )oN (β),

where for any (C,N)-algebra D, σD : KKC,N (A,B)→ KKC,N (A⊗D,B ⊗D)
denotes the external tensor product operator. Using this and the commutativ-

Documenta Mathematica 6 (2001) 127–183



Permanence Properties of the Baum-Connes Conjecture 161

ity of the Kasparov product over C, we compute for α ∈ KKC,N
i (C0(T×

o

S), B):

µC,NN,B [T ](β ⊗ α) = p∗2
(

ΛC,NT,N

)

⊗C(T )oN jN{e},r

(

σC0(T )(β)⊗C0(T×
o
S)
α
)

= p∗2
(

ΛC,NT,N

)

⊗C(T )oN
(

σC0(T )oN (β)
)

⊗
C0(T×

o
S)oN

(

jN{e},r(α)
)

=
(

p∗2(Λ
C,N
T,N )⊗C β

)

⊗
C0(T×

o
S)oN

(

jN{e},r(α)
)

=
(

β ⊗C p
∗
2(Λ

C,N
T,N )

)

⊗
C0(T×

o
S)oN

(

jN{e},r(α)
)

=
(

β ⊗
C0(

o
S)
σ
C0(

o
S)

(

p∗2(Λ
C,N
T,N )

)

)

⊗
C0(T×

o
S)oN

(

jN{e},r(α)
)

= β ⊗
C0(

o
S)

(

p∗2
(

ΛC,N
T×

o
S,N

)

⊗
C0(T×

o
S)oN

(

jN{e},r(α)
)

)

= β ⊗ µC,NN,B [T×
o

S](α).

In what follows next, we still assume that G/N has a compact open subgroup,
and that E(G/N) has the structure of a simplicial complex. As before, F
denotes the family of G-saturations of a finite union of simplices in E(G/N).

Proposition 5.16. Let B be a G-algebra such that for every compact subgroup
K̇ of G/N the group K = q−1(K̇) ⊆ G satisfies BCC for B. Let Y ∈ F and let
W be a finite set of simplices whose union generates Y as a G/N -space. Define
dim(Y ) to be the highest dimension of simplices in W and let Y0 ⊆ E(G/N)
be the G/N -saturation of the interiors of the simplices of dimension dim(Y ) in
W .

(i) Assume that dim(Y ) = n > 0. Then the partial assembly map

µG,NN,B〈Y0〉 : lim
X

KKG∗
(

C0(X0), B
)

→ KKG,N∗
(

C0(Y0), B or N
)

of Definition 5.10 is bijective (recall that the limit is taken over the G-
compact subsets X of E(G) × E(G/N) which satisfy π2(X) = Y and
X0 = X ∩ π−12 (Y0)).

(ii) Assume dim(Y ) = 0. Then the partial assembly map

µG,NN,B〈Y 〉 : lim
X

KKG∗
(

C0(X), B
)

→ KKG,N∗
(

C0(Y ), B or N
)

of Definition 5.7 is bijective.

Proof. To show that (i) holds, note first that Y0 is a finite union of disjoint

spaces, each being the G-saturation of the interior
o

S of only one simplex S in
E(G/N). We can therefore assume that Y is the G-saturation of S. It is not
hard to check that the diagram of Lemma 5.15 is compatible with taking the
inductive limit over the G-compact subsets X of E(G)×E(G/N) which satisfy
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π2(X) = Y . Moreover, by part (i) of Lemma 5.15, it follows that taking the
limits over all X0 = X ∩ π−12 (Y0) such that X projects onto Y is the same

as taking the limit over the sets G ×C (T×
o

S), where T runs through the C-
compact subsets of E(G). Thus, taking the limit over T of the diagram in part
(ii) of Lemma 5.15 gives:

limX KKGi
(

C0(X0), B
) µG,NN,B 〈Y 〉
−−−−−→ KKG,Ni

(

C0(G/C), B or N
)

∼=





y





y

∼=

limT KKCi+n(C0(T ), B) KKC,Ni+n (C, B or N)

=





y





y

=

Ktop
i+n(C;B) −−−−→

µC,NN,B

Ktop
i+n(C/N ;B or N),

where the first upper vertical arrows are given by the compositions
Bott ◦ compGC . We now use the assumption that C satisfies BCC for B:
Since C/N is compact (and thus satisfies BCC), Proposition 3.2 implies

that the partial assembly map µC,NN,B is a bijection. The above diagram then
completes the proof of part (i) of the proposition.
For (ii), the same argument applies, starting from the fact that Y is a finite
union of disjoint “induced spaces” G/N ·x ∼= G/C, where x denotes a vertex of
E(G/N) and C its stabilizer under the action of G. No Bott map (and thus no
dimension shift) is required to get the analogue of the above diagram in this
case.

As we have already suggested, we are going to use Proposition 5.16 for an
induction argument on the maximal dimension of the simplices involved. To
do this, we need to be able to put the above maps into a six-term exact sequence
in KK-theory, namely the Mayer-Vietoris sequence associated to the inclusion
Y0 → Y .

Lemma 5.17. Let Y , n = dim(Y ), and Y0 be as in Proposition 5.16. Assume
further that n > 0. Then Y0 is a nonempty open subset of Y and Y1 = Y r Y0
is an element of F and satisfies dim(Y1) = n − 1. Furthermore, for any G-
compact subset X of E(G) × E(G/N) such that π2(X) = Y , we write X0 =
X ∩ π−12 (Y0) and X1 = X ∩ π−12 (Y1). Then we get two equivariant exact
sequences of commutative C∗-algebras:

δ : 0→ C0(X0)→ C0(X)→ C0(X1)→ 0 and

d : 0→ C0(Y0)→ C0(Y )→ C0(Y1)→ 0

which determine elements [δ] ∈ KKG
1

(

C0(X1), C0(X0)
)

and [d] ∈

KKG1
(

C0(Y1), C0(Y0)
)

such that

[p∗2]⊗[Λ
G,N
X1,N

]⊗jN{e},r([δ]) = [d]⊗[p∗2]⊗[Λ
G,N
X0,N

] ∈ KKG,N1

(

C0(Y1), C0(X0)oN
)

.
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Proof. The existence of [δ] ∈ KKG
1

(

C0(X1), C0(X0)
)

and [d] ∈

KKG1
(

C0(Y1), C0(Y0)
)

is a particular case of [16, Corollary of Proposition 6.2].
For the equation, we first consider the extensions

d : 0 −−−−→ C0(Y0) −−−−→ C0(Y ) −−−−→ C0(Y1) −−−−→ 0,




y

p∗2





y

p∗2





y

p∗2

δN : 0 −−−−→ C0(N\X0) −−−−→ C0(N\X) −−−−→ C0(N\X1) −−−−→ 0 .

Applying [23, Lemma 1.5] to this diagram implies that [p∗2]⊗ [δN ] = [d]⊗ [p∗2] ∈

KKG,N1

(

C0(Y1), C0(N\X0)
)

. Thus, it is enough to check that

[ΛG,NX1,N
]⊗ jN{e},r([δ]) = [δN ]⊗ [ΛG,NX0,N

] ∈ KKG,N1

(

C0(N\X1), C0(X0) oN
)

.

(5.2)

According to [1, Remarque 7.5, (2)], [δN ] and [δ] are obtained from the Bott
element β ∈ KK1

(

C, C0(]0, 1[)
)

. To be more precise, recall from [4, §19.5] that
if

c : 0→ J → A→ A/J → 0

is a semi-split short exact sequence of C∗-algebras (i.e., there exists a completely
positive section q : A/J → A), then the canonical embedding

e : J → Cq := C0

(

[0, 1[, A
)

/C0

(

]0, 1[, J
)

determines a KK-equivalence [e] ∈ KK0(J,Cq). The same computations show
that if the above short exact sequence is equivariant with respect to an action
of a group G and if q can be chosen to be equivariant as well, then e : J →
Cq := C0

(

[0, 1[, A
)

/C0

(

]0, 1[, J
)

determines a KK-equivalence [e] ∈ KKG
0 (J,Cq)

(where G acts trivially on [0, 1]). Moreover, if we also consider the canonical
inclusion

i : C0

(

]0, 1[, A/J
)

→ Cq,

then it follows from [1, Remarque 7.5, (2)] that the element [c] ∈ KKG
1 (A/J, J)

coming from any equivariantly semi-split short exact sequence as above satisfies
the equation

[e]⊗ [c] = σA/J(β)⊗ [i]. (5.3)

We want to apply this to the short exact sequences δ and δN . For this define Z
by Z =

(

X × [0, 1[
)

r
(

X0×]0, 1[
)

. Then C0(Z) is the algebra Cq correspond-
ing to the extension δ, and C0(N\Z) becomes the substitute for Cq with respect
to the extension δN . Let e : C0(X0)→ C0(Z) and eN : C0(N\X0)→ C0(N\Z)
denote the canonical inclusions (which, by the above discussion, are KK-
equivalences) and let i and iN denote the canonical inclusions of C0

(

X1×]0, 1[
)
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and C0

(

N\(X1×]0, 1[)
)

into C0(Z) and C0(N\Z), respectively. Using this no-
tation we now compute

ΛG,NX1,N
⊗ jN{e},r([δ]) = [δN ]⊗ ΛG,NX0,N

⇔ ΛG,NX1,N
⊗ jN{e},r([δ]⊗ [e]) = [δN ]⊗ ΛG,NX0,N

⊗ jN{e},r([e])

⇔ ΛG,NX1,N
⊗ jN{e},r([δ]⊗ [e]) = [δN ]⊗ [eN ]⊗ ΛG,NZ,N , by Lemma 1.5

⇔ ΛG,NX1,N
⊗ jN{e},r

(

σC0(X1)(β)⊗ [i]
)

= σC0(N\X)(β)⊗ [iN ]⊗ ΛG,NZ,N , by (5.3)

⇔ ΛG,NX1,N
⊗ jN{e},r

(

σC0(X1)(β)⊗ [i]
)

= σC0(N\X)(β)⊗ ΛG,NX1×]0,1[,N
⊗ jN{e},r([i])

where the last line uses Lemma 1.5. Since G acts trivially on ]0, 1[, it follows
that

ΛG,NX1×]0,1[,N
= σ

C0

(

]0,1[
)(ΛG,NX1,N

). (5.4)

On the other hand, since β ∈ KK1

(

C, C0

(

]0, 1[
))

(inflated to the various equiv-
ariant KK-groups), it follows that

jN{e},r
(

σC0(X1)(β)
)

= σC0(X1)oN (β). (5.5)

Using (5.4) and (5.5), the above computation shows that it is

enough to prove that
(

ΛG,NX1,N
⊗ σC0(X1)oN (β)

)

⊗ jN{e},r([i]) is equal to
(

σC0(N\X)(β)⊗ σC0(]0,1[)(Λ
G,N
X1,N

)
)

⊗ jN{e},r([i]) to get Equation (5.2). Using
Kasparov’s notations, this becomes

(

ΛG,NX1,N
⊗C β

)

jN{e},r([i]) =
(

β ⊗C ΛG,NX1,N

)

jN{e},r([i]),

which is a consequence of the commutativity of the Kasparov product over C
(see [14, Theorem 2.14]). This finishes the proof.

We are now able to complete the proof of Proposition 5.9. This will also
complete the proof of Theorem 3.3 since, as noted earlier, the theorem is a
consequence of Proposition 5.9 and Lemma 5.8.

Proof of Proposition 5.9. We are going to make an induction on the dimension
of Y ∈ F . Let Y ∈ F such that dim(Y ) = 0. Then µG,NN,B〈Y 〉 is bijective by (ii)
of Proposition 5.16.
Let n be an arbitrary non-negative integer, and assume that µG,NN,B〈Z〉 is bijec-
tive for all Z ∈ F such that dim(Z) ≤ n.
Take Y ∈ F such that dim(Y ) = n + 1, and let W be a finite set of simplices
in E(G/N) which generate Y under the action of G. Define Y0 to be the G-
saturation of the union of the interiors of the simplices of dimension n+1 inW .
Then Y0 is open in Y and Y1 = Y rY0 is an element of F which has dimension
less or equal to n.
Consider any G-compact subsetX of E(G)×E(G/N) which satisfies π2(X) = Y
and put X0 = X ∩ π−12 (Y0) and X1 = X ∩ π−12 (Y1). Using Lemma 5.17, we
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obtain two long exact sequences in equivariant KK-theory, where the boundary
maps are given by Kasparov product with the elements [δ] and [d], respectively.
Using [23, Lemma 1.5] we see that the sequence for X is compatible with taking
inclusions of G-compact sets. Thus we can form the inductive limit over the
G-compact subsets X of E(G)×E(G/N) which satisfy π2(X) = Y , to obtain a
diagram

limX KKGi+1

(

C0(X1), B
)

µG,NN,B 〈Y1〉 //

OO

KKG,Ni+1

(

C0(Y1), B or N
)

OO

limX KKGi
(

C0(X0), B
)

µG,NN,B 〈Y0〉 //

OO

KKG,Ni

(

C0(Y0), B or N
)

OO

limX KKGi
(

C0(X), B
)

µG,NN,B 〈Y 〉 //

OO

KKG,Ni

(

C0(Y ), B or N
)

OO

limX KKGi
(

C0(X1), B
)

µG,NN,B 〈Y1〉 //

OO

KKG,Ni

(

C0(Y1), B or N
)

OO

limX KKGi+1

(

C0(X0), B
)

µG,NN,B 〈Y0〉 //

OO

KKG,Ni+1

(

C0(Y0), B or N
)

OO

OO OO

in which the vertical sequences are exact. Using Lemma 5.17, it follows from the
definition of the horizontal maps that the diagram commutes. By the induction
hypothesis, the two horizontal arrows corresponding to Y1 are bijective, and
part (i) of Proposition 5.16 ensures that those corresponding to Y0 are also

bijective. Thus, it follows from the Five Lemma that µG,NN,B〈Y 〉 is bijective,
too.

6 Proof of the induction isomorphism

In this section we give the proof of the bijectivity of the induction homomor-
phism as stated in Theorem 2.2. For convenience, let’s restate the theorem:

Theorem 2.2. Let H be a closed subgroup of a group G, and let B be an
H-algebra. Then the map IndGH : Ktop

∗ (H;B) → Ktop
∗ (G; IndGH B) is an iso-

morphism.

As in the proof of Theorem 3.3 (see §5), we will use a special realization of
the universal proper space for G to obtain a certain simplicial structure which
allows an induction argument based on excision. In fact, if G0 denotes the
connected component of the identity in G, then G/G0 is a totally disconnected
group, and therefore has a compact open subgroup. Thus, by Proposition
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5.2, there exists a realization of E(G/G0) as a simplicial complex. If E(G) is
any realization of the universal proper G-space, then, by Lemma 5.3, E(G) ×
E(G/G0) equipped with the diagonal G-action is also a universal proper G-
space, which we will use throughout this section to compute the topological
K-theories of G and H.
The strategy used in the previous section will allow us to reduce the problem of
the bijectivity of the induction homomorphism to the case of almost connected
groups. But by Kasparov’s work, every almost connected group has a γ-element
(see Definition 1.7 and Remark 1.8). So, as a first step, we start with giving
the proof under the extra condition that G has a γ-element. For this we have
to use the following general lemma about the image of the assembly map in
the presence of a γ-element for G. Note that this lemma is well known to the
experts (it is implicitly contained in the work of Kasparov and Tu [15, 14, 25]).
However, it seems that there exist no direct references. Thus, for the reader’s
convenience, we present a short argument building on [25, Proposition 5.23].

Lemma 6.1. Assume that G has a γ-element γ = η ⊗A D ∈ KKG(C,C) (see
Definition 1.7). Then, for every G-algebra B, the assembly map induces an
isomorphism between Ktop

∗ (G;B) and the γ-part

γ
(

K∗(B or G)
)

:= K∗(B or G)⊗ j
G
r (σB(γ)) ⊆ K∗(B or G)

of K∗(B or G).

Proof. We will use the facts that the assembly map µG,B is injective, whenever
G has a γ-element ([25, Proposition 5.23]) and that µG,D is surjective if D
is a proper G-algebra (which follows from the descent isomorphism of [17]).
It follows from part (2) of Definition 1.7 (see [6, Remark 6.4]) that the right
Kasparov product with σB(γ) determines the identity map on KKG

∗ (C0(X), B)
for every proper G-space X. Thus, γ acts as the identity on Ktop

∗ (G;B) via
right Kasparov product. This easily implies that the image of the assembly
map µG,B lies in the γ-part of K∗(BorG), and we get a commutative diagram

Ktop
∗ (G;B)

µG,B(·)
−−−−−→ γG

(

K∗(B or G)
)

·⊗η





y





y
·⊗jGr

(

σB(η)
)

Ktop
∗ (G;B ⊗A)

µG,B⊗A(·)
−−−−−−−→ γG

(

K∗
(

(B ⊗A) or G
)

)

·⊗D





y





y
·⊗jGr

(

σB(D)
)

Ktop
∗ (G;B)

µG,B(·)
−−−−−→ γG

(

K∗(B or G)
)

.

Since B⊗A is a proper G-algebra, the middle horizontal row is a bijection, and,
by the above discussion, the composition of the left-hand side vertical rows is
the identity on Ktop

∗ (G;B). Finally, since γ is an idempotent in KKG
0 (C,C) by

[25, Proposition 5.20], the composition of the right-hand side vertical arrows
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is the identity of γ
(

K∗(B or G)
)

. Now a straightforward diagram chase gives
the result.

Lemma 6.2. Let H be a closed subgroup of G and assume that G has a γ-
element. Then, for every G-algebra B, the induction homomorphism IndGH :
Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B) is bijective.

Proof. Let γG be the γ-element of G. Then γH = resGH(γG) is the γ-element

of H by [6, Remark 6.4]. Let x ∈ KK∗
(

(IndGH B) or G,B or H
)

denote
the invertible element implementing the canonical Morita equivalence between
(IndGH B) or G and B or H. As was already noted for the proof of [6, Propo-
sition 6.9], the corollary on page 176 of [14] and item (2) of [15, Theorem 1 of
§5] imply:

jGr
(

σIndGH B(γG)
)

= x⊗BorH jHr
(

σB(γH)
)

⊗BorH x−1. (6.1)

Together with Proposition 2.3, this implies that the two squares of the following
diagram are commutative:

Ktop
∗ (H;B)

IndGH−−−−→ Ktop
∗ (G; IndGH B)

µH,B





y





y

µ
G,IndG

H
B

K∗(B or H)
·⊗x−1
−−−−→ K∗

(

(IndGH B) or G
)

·⊗jHr

(

σB(γH)
)





y





y

·⊗jGr

(

σ
IndG

H
B
(γG)

)

γH
(

K∗(B or H)
)

−−−−→
·⊗x−1

γG

(

K∗
(

(IndGH B) or G
)

)

,

where γH
(

K∗(B or H)
)

(resp. γG

(

K∗
(

(IndGH B) or G
)

)

) denotes the γ-part

of K∗(B or H) (resp. K∗
(

(IndGH B) or G
)

). But Lemma 6.1 implies that the
compositions of the vertical arrows are isomorphisms. Further, since the middle
row of the above diagram is an isomorphism, Equation 6.1 also implies that
the bottom arrow is an isomorphism. But then the top arrow has to be an
isomorphism, too.

As noted above, our aim is to reduce the proof of the general result of The-
orem 2.2 to the special case where G is almost connected, in which case the
result follows from Lemma 6.2. We start the reduction argument with some
preliminaries:

Lemma 6.3. Let H be a closed subgroup of G, let C be an open subgroup of
G, and let B be an H-algebra. For each g̈ in the double coset space H\G/C
(which is a discrete countable space) we put CgH = C ∩ g−1Hg ⊆ C, and we
view B as a CgH-algebra by putting g−1hg · b := h · b, h ∈ H, b ∈ B. Then the

induced algebra IndGH B is C-equivariantly isomorphic to
⊕

g̈∈H\G/C IndCCgH
B.
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Similarly, if E is an H-equivariant B-Hilbert module, there is a C-equivariant
isomorphism between IndGH E, viewed as a C-equivariant IndGH B-Hilbert mod-
ule, and the

⊕

IndCCgH
B-Hilbert module

⊕

g̈∈H\G/C IndCCgH
E.

Proof. Chose a set of representatives Γ = {g0, g1, ..., gn, ...} for H\G/C in
G. By definition, IndGH B is the subalgebra of Cb(G,B) (the C∗-algebra of
continuous bounded functions on G with values in B) consisting of all functions
f which satisfy the conditions:

(i) f(st) = t−1 · f(s) for any s ∈ G and t ∈ H,

(ii) sH 7→ ‖f(s)‖ is an element of C0(G/H).

The G action is given by (s · f)(t) = f(s−1t), for s, t ∈ G.
For f in IndGH B and g ∈ Γ, we define φg̈ : Ind

G
H B → IndCCgH

B by

(

φg̈(f)
)

(s) = g−1
(

f(sg−1)
)

, for all s ∈ C.

It is straightforward to check that φg̈ is a well defined C-equivariant ∗-

homomorphism. Note that for any f in IndGH B and any ε > 0, there is a
compact set K ⊆ G/H such that, for all s in G, s belongs to K if ||f(s)|| ≥ ε/2.
Thus, if we denote by K̈ the image of K−1 in H\G/C, we see that ||φg̈(f)|| < ε

whenever g̈ does not belong to the compact set K̈. Hence the sequence
Φ(f) =

(

φg̈(f)
)

g∈Γ
belongs to

⊕

g̈∈H\G/C IndCCgH
B. It is readily seen that

this defines an isomorphism Φ between IndGH B and
⊕

g̈∈H\G/C IndCCgH
B: If

λ = (λg)g∈Γ ∈
⊕

g̈∈H\G/C IndCCgH
B, we define Ψ(λ) ∈ Cb(G,B) by Ψ(λ)(s) =

h−1g−1i λgi(c), whenever s is equal to cgih with gi ∈ Γ. Then Ψ takes values in

IndGH B and Ψ is inverse to Φ.
A similar computation implies the decomposition IndGH E

∼=
⊕

IndCCgH
E .

Lemma 6.4. Let H be a closed subgroup of G, let C be an open subgroup of G,
and let A and B be two H-algebras. For g ∈ G let

λg : Ind
C
CgH

A→
⊕

g̈′∈H\G/C

IndC
Cg
′

H

A and ρg :
⊕

g̈′∈H\G/C

IndC
Cg
′

H

B → IndCCgH
B

denote the canonical C-equivariant inclusions and projections, respectively.
Then, using the direct sum decomposition provided by Lemma 6.3, the diagram

KKH∗ (A,B)
iGH−−−−→ KKG∗ (Ind

G
H A, Ind

G
H B)

resH
C
g
H





y





y
resGC

KK
CgH
∗ (A,B) KKC∗ (

⊕

IndC
Cg
′

H

A,
⊕

IndC
Cg
′′

H

B)

iC
C
g
H





y





y

ρ∗g

KKC∗ (Ind
C
CgH

A, IndCCgH
B) ←−−−−

λg,∗
KKC∗ (

⊕

IndC
Cg
′

H

A, IndCCgH
B)
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commutes (here the restriction resH
CgH

: KKH∗ (A,B) → KK
CgH
∗ (A,B) is defined

by first restricting to H∩gCg−1 = gCgHg
−1 and then identifying this group with

CgH via conjugation). Moreover, if Hg′C 6= HgC, then [λg] ⊗ resGC ◦i
G
H(α) ⊗

[ρg′ ] = 0 for all α ∈ KKH∗ (A,B).

Proof. Note that for the proof of the commutativity of the above diagram we
may replace A by any H-algebra A′ which is H-equivariantly Morita equivalent
to A (a similar statement holds for B, but we only need this for A). This follows
easily from the fact that any H-equivariant Morita equivalence X between two
H-algebras A and A′ induces to a G-equivariant Morita equivalence IndGH X
between IndGH A and IndGH A

′, which by Lemma 6.3 also has a C-equivariant
direct sum decomposition. Using this one checks that each map in the above
diagram commutes with the respective Morita equivalences.
Replacing A by the Morita equivalent H-algebra A ⊗ K(L2(H)), if necessary
(with action given by α ⊗ Adλ, where α : H → Aut(A) denotes the given
action on A and λ denotes the right regular representation of H), we can
now use Meyer’s result [20, Proposition 3.2] in order to assume that every
α ∈ KKH∗ (A,B) can be represented by a Kasparov triple (E ,Φ, T ) ∈ EH(A,B)
such that Φ(A)E = E and such that T is H-equivariant. Using the formulas
for the definitions of iGH and iC

CgH
, respectively (see §2), it follows from the

decomposition of IndGH E as given in Lemma 6.3 and the H-equivariance of T ,
that

resGC
(

IndGH E , Ind
G
H Φ, T̃

)

∼=
(

⊕

H\G/C

IndCCgH
Eg,

⊕

H\G/C

IndCCgH
Φg,

⊕

H\G/C

T̃g

)

in EC(IndGH A, Ind
G
H B), where (Eg,Φg, Tg) denotes the cycle in EC

g
H
∗ (A,B) ob-

tained by first restricting the H action to gCg−1 ∩ H, and then identifying
gCg−1 ∩ H with CgH via the isomorphism given by conjugation with g. The
result now follows immediately from this decomposition.

The next result will be extended to arbitrary groups in §7 below (see Propo-
sition 7.1). We only need here the weaker version where we assume that G is
an almost connected group. As for the induction homomorphism, the proof
of the general case will be done by a reduction to this case where G is almost
connected.

Lemma 6.5. Let G be an almost connected group and let B = limiBi be an
inductive limit of G-algebras Bi, i ∈ I (with G-equivariant structure maps).
Then

Ktop
∗ (G;B) ∼= lim

i
Ktop
∗ (G;Bi),

where the isomorphism is obtained from the morphisms fi,∗ : Ktop
∗ (G;Bi) →

Ktop
∗ (G;B), which are induced by the canonical maps fi : Bi → B.
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Proof. Because G is almost connected, the functor which associates to a G-
algebra the corresponding reduced crossed-product algebra is continuous with
respect to taking inductive limits (in fact this holds whenever G is an exact
group in the sense of [18]). We also know that G has a γ-element. So the lemma
is an immediate consequence of the isomorphism Ktop

∗ (G;B) ∼= γ
(

K∗(BorG)
)

of Lemma 6.1 and of the continuity of K-theory ([4]).

We now come back to the proof of Theorem 2.2. As noted before, we use E(G)×
E(G/G0) as a universal example for the proper actions of G andH (see Lemmas
5.3 and 2.4 above), and assume that E(G/G0) has the simplicial structure
described in Proposition 5.2. As mentioned before, we can do this because
G/G0 is totally disconnected and, therefore, it has a compact open subgroup.
In the following, we denote by FG the family of all subsets of E(G/G0) which
are G-saturation of finite unions of simplices of E(G/G0) (cf. Lemma 5.6, the
subscript here is to prevent confusion between G- and H-actions).
As shown in Lemma 5.6, we can use FG to compute Ktop

∗ (G; IndGH B) in the
following way:

Ktop
∗ (G; IndGH B) = lim

−→
Z∈FG

lim
−→

Y⊂E(G)×Z

Y G−compact

KKG∗
(

C0(Y ), IndGH B
)

. (6.2)

But since E(G)× E(G/G0) (with action restricted to H) serves also as a real-
ization of the universal example for proper H-actions, we can use FG also for
the computation of Ktop

∗ (H;B):

Ktop
∗ (H;B) = lim

−→
Z∈FG

lim
−→

Y⊂E(G)×Z

Y G−compact

lim
−→
X⊂Y

X H−compact

G·X=Y

KKH∗
(

C0(X), B
)

. (6.3)

The above formulas correspond to those of Lemma 5.6. Although these for-
mulas look a bit complicated, they offer the advantage of breaking down the
computation of the two topological K-theories into pieces which correspond to
each other via the induction morphism and on which we can do an induction
argument on the dimension dim(Z) of the elements Z ∈ FG.
In effect, using the above notations, note that C0(Y ) = F ∗ ◦ IndGH

(

C0(X)
)

,
where F : G ×H X → E(G) × E(G/G0) is defined by F ([s, x]) = s · x.
Thus, it follows from the definition of the induction homomorphism that, on
KKH∗ (C0(X), B), it factorizes via the diagram

KKH∗ (C0(X), B)
F∗◦iGH−−−−→ KKG∗ (C0(Y ), IndGH B)





y





y

Ktop
∗ (H;B) −−−−→

IndGH

Ktop
∗ (G; IndGH B).
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In what follows next we will simply write IndGH for the map F ∗◦iGH in the above
diagram. Hence, in view of formula (6.2) and (6.3), the conclusion of Theorem
2.2 will follows from:

Proposition 6.6. For each Z ∈ FG, the induction map IndGH induces an
isomorphism

lim
−→

Y⊂E(G)×Z

Y G−compact

lim
−→
X⊂Y

X H−compact

G·X=Y

KKH∗
(

C0(X), B
) IndGH−→ lim

−→
Y⊂E(G)×Z

Y G−compact

KKG∗
(

C0(Y ), IndGH B
)

.

As mentioned earlier, we want to use induction on n = dim(Z). As in the
proof of Proposition 5.9, we introduce the following notations: Z0 is the G/G0-
saturation of the interiors of the simplices of dimension n generating Z, Z1 =
Z r Z0; and we put

Y0 = Y ∩ (E(G)× Z0); X0 = X ∩ (E(G)× Z0);

Y1 = Y ∩ (E(G)× Z1); X1 = X ∩ (E(G)× Z1).

Note that

C0(Y ) = F ∗ ◦ IndGH
(

C0(X)
)

, C0(Y0) = F ∗ ◦ IndGH
(

C0(X0)
)

,

and C0(Y1) = F ∗ ◦ IndGH
(

C0(X1)
)

,

and that we have the exact sequences:

δ : 0 −−−−→ C0(X0) −−−−→ C0(X) −−−−→ C0(X1) −−−−→ 0 , and

d : 0 −−−−→ C0(Y0) −−−−→ C0(Y ) −−−−→ C0(Y1) −−−−→ 0.

Each of these two short exact sequences gives rise to a long exact sequence
in equivariant KK-theory, which are linked by the induction homomorphisms
IndGH :

Documenta Mathematica 6 (2001) 127–183



172 Chabert and Echterhoff

KKHi+1

(

C0(X1), B
) IndGH //

OO

KKG,Ni+1

(

C0(Y1), Ind
G
H B

)

OO

KKHi
(

C0(X0), B
) IndGH //

OO

KKG,Ni

(

C0(Y0), Ind
G
H B

)

OO

KKHi
(

C0(X), B
) IndGH //

OO

KKG,Ni

(

C0(Y ), IndGH B
)

OO

KKHi
(

C0(X1), B
) IndGH //

OO

limY KKG,Ni

(

C0(Y1), Ind
G
H B

)

OO

KKHi−1
(

C0(X0), B
) IndGH //

OO

KKG,Ni−1

(

C0(Y0), Ind
G
H B

)

OO

OO OO

(6.4)

We need

Lemma 6.7. The above diagram commutes.

Proof. The only slight difficulty arises at the square

KKHi+1(C0(X1), B)
IndGH−−−−→ KKGi+1(C0(Y1), Ind

G
H B)

[δ]⊗

x





x





[d]⊗

KKHi (C0(X0), B)
IndGH−−−−→ KKGi (C0(Y0), Ind

G
H B).

(6.5)

By the naturality of the boundary maps, we may assume without loss of gen-
erality that Y = G ×H X (and then Yi = G ×H Xi, i = 0, 1), and that IndGH
coincides with Kasparov’s induction iGH . We then follow the constructions in
the proof of Lemma 5.17: Define the spaces

T =
(

X×[0, 1[
)

r
(

X0×]0, 1[
)

andW =
(

(G×HX)×[0, 1[
)

r
(

(G×HX0)×]0, 1[
)

.

Let eX : C0(X0) → C0(T ) and eG×HX : C0(G ×H X0) → C0(W ) denote the
canonical inclusions, and let iX and iG×HX denote the canonical inclusions of
C0

(

X1×]0, 1[
)

and C0

(

(G×H X1)×]0, 1[
)

into C0(T ) and C0(W ), respectively.
A short computation shows that [eG×HX ] = iGH([eX ]) and [iG×HX ] = iGH([iX ])
(where H and G act trivially on [0, 1]). Moreover, we know from the discussion
in the proof of Lemma 5.17 that [eX ] and [eG×HX ] are KK-equivalences and
that

[eX ]⊗[δ] = σC0(X1)(β)⊗[iX ] and [eG×HX ]⊗[d] = σC0(G×HX1)(β)⊗[iG×HX ],
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where β ∈ KK1

(

C, C0(]0, 1[)
)

denotes the Bott-element, viewed as an element
of the equivariant KK-groups with respect to the trivial group actions. Using
the fact that iGH preserves Kasparov products, we now get

[eG×HX ]⊗ [d] = σC0(G×HX1)(β)⊗ [iG×HX ]

= iGH
(

σC0(X1)(β)⊗ [iX ]
)

= iGH
(

[eX ]⊗ δ
)

= [eG×HX ]⊗ iGH([δ]).

Since [eG×HX ] is a KK-equivalence, it follows that [d] = iGH([δ]), which easily
implies the commutativity of (6.5).

We are now taking limits of Diagram (6.4): First we are taking the inductive
limit over the H-compact sets X such that X ⊂ Y and G ·X = Y , and then
we take the limit over the G-compact subsets Y of E(G) × Z. As a result, we
obtain the commutative diagram

limY limX KKGi+1

(

C0(X1), B
) IndGH //

OO

limY KKG,Ni+1

(

C0(Y1), Ind
G
H B

)

OO

limY limX KKGi
(

C0(X0), B
) IndGH //

OO

limY KKG,Ni

(

C0(Y0), Ind
G
H B

)

OO

limY limX KKGi
(

C0(X), B
) IndGH //

OO

limY KKG,Ni

(

C0(Y ), IndGH B
)

OO

limY limX KKGi
(

C0(X1), B
) IndGH //

OO

limY KKG,Ni

(

C0(Y1), Ind
G
H B

)

OO

limY limX KKGi−1
(

C0(X0), B
) IndGH //

OO

limY KKG,Ni−1

(

C0(Y0), Ind
G
H B

)

OO

OO OO

Using the same induction argument as in the proof of Proposition 5.16 of the
previous section (based on the Five Lemma), the demonstration of Proposition
6.6, and hence the proof of Theorem 2.2 reduces to show

Lemma 6.8. Let Z be an element of the family FG.

(i) If dim(Z) > 0, then the map

lim lim KKHi
(

C0(X0), B
) IndGH−→ lim KKGi

(

C0(Y0), Ind
G
H B

)

−→
Y⊂E(G)×Z

Y G−compact

−→
X⊂Y

X H−compact

G·X=Y

−→
Y⊂E(G)×Z

Y G−compact
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is a bijection.

(ii) If dim(Z) = 0, then the map

lim lim KKHi
(

C0(X), B
) IndGH−→ lim KKGi

(

C0(Y ), IndGH B
)

−→
Y⊂E(G)×Z

Y G−compact

−→
X⊂Y

X H−compact

G·X=Y

−→
Y⊂E(G)×Z

Y G−compact

is a bijection.

Proof. We will only show part (i), since part (ii) follows by almost the same (but
somewhat easier) arguments. So assume that dim(Z) > 0. By the definition of
FG, the space Z0 is a disjoint union of finitely many spaces Z i0, i = 1, 2, ..., k,

each of the form Zi0 = G/G0·
o

Si, where the Si are simplices of dimensions
dim(Z) of E(G/G0). Setting Zi = G/G0 · Si, Y

i
0 = Y ∩ (E(G/G0) × Z

i
0) and

Xi
0 = X ∩ Y i0 , we obtain finite partitions of Y0 and of X0:

C0(Y ) =

k
⊕

i=1

C0(Y
i
0 ) and C0(X) =

k
⊕

i=1

C0(X
i
0).

Note that these decompositions are compatible with the morphism IndGH , so
it is enough to give a proof of Lemma 6.8 in the case where Z is the G/G0-
saturation of a single simplex S of E(G/G0). Further, the inductive limits over
Y are taken over the G-compact subspaces of E(G) × Z. But any such space
can be embedded in a G-compact set of the special form Y = G · (K × S),
where K is a compact subset of E(G). Hence, we can assume that every set Y
which appears in the formula of the inductive limit is of this special kind.
Denote by Ċ the stabilizer of S under the action of G/G0, and let C :=
q−1(Ċ) ⊆ G. Then

Y = G · (K × S) = G ·
(

(C ·K)× S
)

and Y0 = G×C
(

(C ·K)×
o

S
)

.

For every double coset g̈ ∈ H\G/C, we consider the space

Y g̈ = Hg · (C ·K × S).

It is a closed H-invariant subspace of Y , and any H-compact subspace X of Y
can be written as

X = ∪g̈∈FXX
g̈, with X g̈ := X ∩ Y g̈,

where FX is a finite subset of H\G/C. Put X g̈
0 = X g̈ ∩ Y0. We record the

fact that each X g̈ is an H-compact subspace of Y g̈, and that X0 is the disjoint
union of the X g̈

0 , g̈ ∈ FX . As a consequence, we get

KKH∗
(

C0(X0), B
)

=
⊕

g̈∈FX

KKH∗
(

C0(X
g̈
0 ), B

)

.
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Moreover, any H-compact subset of Y g̈ = Hg · (C ·K × S) can be realized as
a subset of an H-compact set of the form Hg · (L×S), for L a compact subset
of C ·K satisfying C · L = C ·K. Thus, when taking the inductive limit over
the H-compact sets X which satisfy G · X = Y , we can always enlarge X in
order to assume that for every g̈ ∈ FX , X g̈ = Hg · (L× S), for some compact
subset L ⊆ C ·K such that C · L = C ·K. Moreover, it follows from this that

X g̈
0 = Hg · (L×

o

S). Thus, we obtain:

lim
−→

X⊂Y=G·(K×S)

XH−compact

GX=Y

KKHi
(

C0(X0), B
)

=
⊕

g̈∈H\G/C

lim
−→
L⊂C·K

compact

C·L=C·K

KKHi
(

C0(Hg · (L×
o

S)), B
)

.

Hence, in order to prove the first part of the lemma, it is enough to show the
bijectivity of

lim
−→

K⊂E(G)

compact

⊕

g̈

lim
−→
L⊂C·K

compact

C·L=C·K

KKHi
(

C0(Hg ·(L×
o

S)), B
) IndGH−→ lim

−→
K⊂E(G)

compact

KKGi
(

C0(G·(K×
o

S)), Ind
G
HB
)

.

(6.6)

We already noticed that Y0 = G · (K×
o

S) is canonically G-homeomorphic to

the induced space Y0 = G×C (C ·K×
o

S). Correspondingly, we now check that

X g̈
0 = Hg · (L×

o

S) is also an induced space. The composition

X g̈
0 = Hg · (L×

o

S)
π2→ Hg·

o

S → H/(gCg−1 ∩H)
hg · (l, s) 7→ hgs 7→ h(gCg−1 ∩H)

is an H-equivariant map, and the pre-image of the coset gCg−1 ∩ H of the

identity is π−12 (g·
o

S) = g · (CgH · L×
o

S), where C
g
H is the group C ∩ g−1Hg .

Applying Proposition 5.12, we see that X g̈
0 is H-homeomorphic to the induced

space H ×gCg−1∩H
(

g · (CgH · L×
o

S)
)

, with H-homeomorphism given by

X g̈
0 = Hg · (L×

o

S) → H ×gCg−1∩H
(

g · (CgH · L×
o

S)
)

hg · (l, s) 7→
(

h, g · (l, s)
)

Let ϕH := Bott ◦ compH
CgH

be the composition of the sequence of isomorphisms

KKHi
(

C0(Hg · (L×
o

S)), B
)

compH
C
g
H−−−−−→ KK

CgH
i

(

C0(C
g
H · L×

o

S), B
)

Bott
−−−−→ KK

CgH
i+n

(

C0(C
g
H · L), B

)

,

where n = dim(S). Here the compression isomorphism compH
CgH

has to be

understood as the composition of the compression

compHH∩gCg−1 : KKH∗
(

C0(X
g̈
0 ), B

)

→ KKH∩gCg
−1

∗

(

C0(g · (C
g
H · L×

o

S), B
)

,
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and then making the identification

KKH∩gCg
−1

∗

(

C0(g · (C
g
H · L×

o

S), B
)

∼= KK
CgH
∗

(

C0(C
g
H · L×

o

S), B
)

,

which comes from identifying CgH withH∩gCg−1 via conjugation with g (please
compare with the definition of the restriction map in Lemma 6.4). In particular,
we regard B as a CgH -algebra by setting g−1hg · b := h · b for h ∈ gCg−1 ∩H.
By first taking the direct limit over the compact subsets L ⊆ C ·K, then taking
the algebraic direct sum over the double cosets of H\G/C, and eventually
taking the inductive limit over the compact subsets K ⊆ E(G), we then obtain
an isomorphism

lim
−→

K⊂E(G)

compact

⊕

g̈

lim
−→
L⊂C·K

compact

C·L=C·K

KKHi
(

C0(X
g̈
0 ), B

) ϕH
−→ lim

−→
K⊂E(G)

compact

⊕

g̈

lim
−→
L⊂C·K

compact

C·L=C·K

KK
CgH
i+n

(

C0(C
G
H ·L), B

)

.

Note that the direct limit over K and the direct sum over g̈ ∈ H\G/C can be
permuted in the right-hand side term. Thus we get

lim
−→

K⊂E(G)

compact

⊕

g̈∈H\G/C

lim
−→
L⊂C·K

compact

C·L=C·K

KK
CgH
i+n

(

C0(C
G
H · L), B

)

=
⊕

g̈∈H\G/C

Ktop
i+n(C

g
H ;B).

In the end, we see that the left-hand side of (6.6) is isomorphic to
⊕

g̈∈H\G/C

Ktop
i+n(C

g
H ;B).

On the right-hand side of (6.6) we have a corresponding sequence of
isomorphisms: We first consider the composition ϕG := compGC ◦Bott of the
sequence of isomorphisms

KKGi
(

C0(Y0), Ind
G
H B

) compGC−−−−→ KKCi
(

C0(C ·K×
o

S), Ind
G
H B

)

Bott
−−−−→ KKCi+n

(

C0(C ·K), IndGH B
)

.

Exactly as above, taking the direct limit over the compact subsets K of E(G),
we obtain an isomorphism for the right-hand side of (6.6):

lim KKGi
(

C0(G·(K×
o

S)), Ind
G
H B

)

−→
K⊂E(G)

compact

ϕG // lim KKCi+n
(

C0(C ·K), IndGHB
)

−→
K⊂E(G)

compact

∼=

²²
Ktop
i+n(C; Ind

G
H B)
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On the other hand, we can use Lemma 6.3 to see that IndGH B is C-isomorphic

to the direct sum
⊕

g̈∈H\G/C

IndCCgH
B. But C is a compact extension of G0, so it

is almost connected . Therefore, Lemma 6.5 implies that

Ktop
∗ (C; IndGH B) ∼= Ktop

∗ (C;
⊕

g̈∈H\G/C

IndCCgH
B) ∼=

⊕

g̈∈H\G/C

Ktop
∗ (C; IndCCgH

B).

Let us now consider the following diagram, where the top line is the map (6.6)

lim
−→
Y

⊕

g̈

lim
−→

Xg̈⊂Y g̈

KKHi
(

C0(X
g̈
0 ), B

)

IndGH−−−−→
lim
−→
Y

KKGi
(

C0(Y0), Ind
G
H B

)

ϕG





y

ϕH





y
Ktop
i+n(C; Ind

G
H B)

∼=





y

⊕

g̈∈H\G/C

Ktop
i+n(C

g
H ;B)

−−−−−−→
⊕

IndC
C
g
H

⊕

g̈∈H\G/C

Ktop
i+n(C; Ind

C
CgH

B)
.

(6.7)

The columns of (6.7) are bijections. The bottom line (obtained from the induc-
tion morphisms from CgH to C) is an isomorphism by Lemma 6.2, since C has
a γ-element. Hence, to obtain that the map in (6.6) is an isomorphism, and
thus to conclude the proof of the lemma, we just have to show that Diagram
(6.7) commutes.

For this let g be any element in G, let K be a compact subset of E(G), and let
L be a compact subset of C ·K such that C · L = C ·K. Let

X g̈
0 = Hg · (L×

o

S) and Y0 = G×C (C · L×
o

S).

For each g′′ ∈ G let ρg′′ :
⊕

IndC
Cg
′

H

B → IndC
Cg
′′

H

B denote the canonical pro-

jection. To see that (6.7) commutes, we have to verify the following two state-
ments:
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(i) The diagram

KKHi
(

C0(X
g̈
0 ), B

) IndGH−−−−→ KKGi
(

C0(Y0), Ind
G
H B

)

compH
C
g
H





y





y
compGC

KK
CgH
i

(

C0(C
g
H · L×

o

S), B
)

KKCi
(

C0(C ·K×
o

S), Ind
G
H B

)





y

⊗Bott

⊗Bott





y
KKCi+n

(

C0(C ·K), IndGH B
)





y

ρ∗g

KK
CgH
i+n

(

C0(C
g
H · L), B

)

−−−−→
IndC

C
g
H

KKCi+n
(

C0(C ·K), IndCCgH
B
)

commutes, and

(ii) The composition

KKHi
(

C0(X
g̈
0 ), B

) IndGH−−−−→ KKGi
(

C0(Y0), Ind
G
H B

)

compGC−−−−→ KKCi
(

C0(C ·K×
o

S), Ind
G
H B

)

Bott
−−−−→ KKCi+n

(

C0(C ·K), IndGH B
)

ρg′′
−−−−→ KKCi+n

(

C0(C ·K), IndC
Cg
′′

H

B
)

is the zero homomorphism whenever g′′ /∈ HgC.

If β ∈ KKn(C, C0(
o

S)) denotes the Bott-element, then the first condition is just
the equation

β ⊗ compGC ◦ Ind
G
H(α)⊗ [ρg] = IndCCgH

(β ⊗ compHCgH
(α)),

for all α ∈ KKHi
(

C0(X
g̈
0 ), B

)

. Since C acts trivially on
o

S, we can permute

IndCCgH
and the product with the Bott element β. Thus, the problem reduces

to showing that

compGC ◦ Ind
G
H(α)⊗ [ρg] = IndHCgH

◦ compHCgH
(α). (6.8)

In order to check this equation, it is useful to introduce the following notations:

• F1 is the G-equivariant map appearing in the definition of IndGH :

F1 : G×H X g̈
0 → Y0 ⊂ E(G)× E(G/N)

[g1, hg · (l, s)] 7→ g1hg · (l, s),

where we used the equation X g̈
0 = Hg(L×

o

S).

Documenta Mathematica 6 (2001) 127–183



Permanence Properties of the Baum-Connes Conjecture 179

• i1 is the C-equivariant inclusion used to define compGC

i1 : C · L×
o

S → G×C (C · L×
o

S) ∼= Y0,

• i2 is the CgH -equivariant inclusion in the definition of compH
CgH

i2 : CgH · L×
o

S → X g̈
0 = Hg · (L×

o

S)
(c · l, s) 7→ gc · (l, s),

• F2 is the C-equivariant map in the definition of IndCCgH

F2 : C ×CgH (CgH · L×
o

S) → C · L×
o

S
[c, (c′ · l, s)] 7→ (c′c · l, s).

We will also use that i2 induces a C-equivariant injection

I2 : C ×CgH (CgH · L×
o

S) → C ×CgH (X g̈
0 ) = C ×CgH

(

Hg · (L×
o

S)
)

[c1, (c2 · l, s)] 7→ [c1, gc2 · (l, s)].

and we will denote by i3 the C-equivariant inclusion

i3 : C ×CgH X
g̈
0 → G×H (X g̈

0 )

[c, x] 7→ [cg−1, x].

Writing the KK-classes defined by these maps with the same letters, Equation
(6.8) becomes:

[i1]⊗ resGC([F1]⊗ i
G
H(α))⊗ [ρg] = [F2]⊗ i

C
CgH

([i2]⊗ resHCGH
(α)).

Since [I2] = Ind
CgH
C ([i2]), this is equivalent to:

[i1]⊗ resGC([F1])⊗ resGC(Ind
G
H(α))⊗ [ρg] = [F2]⊗ [I2]⊗ IndCCgH

(resHCGH
(α)).

(6.9)

A short computation shows that [i1]⊗res
G
C([F1]) = [F2]⊗[I2]⊗[i3] (just compute

the compositions of the associated ∗-homomorphisms). Thus, Equation (6.9)
reduces to:

[i3]⊗ resGC(i
G
H(α))⊗ [ρg] = iCCgH

(resHCGH
(α)).

Note now that i3,∗ coincides with the canonical inclusion

λg : IndCCgH
C0(X

g̈
0 )→

⊕

g′

IndC
Cg
′

H

C0(X
g̈
0 )
∼= resGC(Ind

G
H C0(X

g̈
0 )),

of Lemma 6.4, so that the last equality follows from the statement of that
lemma.
We now have verified statement (i). Using the above computations, the proof
of statement (ii) follows from the equation [i3] ⊗ resGC(i

G
H(α)) ⊗ [ρ′′g ] = 0, for

g′′ /∈ HgC, which is also a consequence of Lemma 6.4.
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7 Continuity of topological K-theory

The aim of this short section is to state and prove a generalization of Lemma
6.5 which is used in [7]. In a similar way as in §5-6 above, we obtain the result
by using E(G) × E(G/G0) as a universal example for the proper actions of
G, where we assume that E(G/G0) is a simplicial complex (compare with the
discussions preceding Proposition 6.6).

Proposition 7.1. Let G be a group, let (Bi, fij) be an inductive system of
G-algebras, and let B = limBi. Then

Ktop
∗ (G;B) ∼= lim

i
Ktop
∗ (G;Bi),

where the isomorphism is obtained from the morphisms fi,∗ : Ktop
∗ (G;Bi) →

Ktop
∗ (G;B) induced by the canonical maps fi : Bi → B.

Proof. Let f∗ : limiK
top
∗ (G;Bi)→ Ktop

∗ (G;B) be the homomorphism induced
by the morphisms fi : Bi → B, using the covariance of the topological K-
theory groups as a functor on the category of G-C∗-algebras and the universal
property of the inductive limit. We want to show that f ∗ is an isomorphism.
For every proper G-space X, let

f∗X : lim
i

KKG∗
(

C0(X), Bi
)

→ KKG∗
(

C0(X), B
)

denote the canonical morphism on the level of X. Since the structure maps for
taking the limits over X are given by left Kasparov products and the structure
maps for taking limits over the Bi are given by right Kasparov products, it
follows from the associativity of the Kasparov product that the limits can be
permuted. Thus, the map f∗ can be computed via the maps f∗X by

lim
X

(

lim
i

KKG∗ (C0(X), Bi)
)

f∗X−→ lim
X

KKG∗ (C0(X), B), (7.1)

where X runs through the G-compact subsets of E(G) × E(G/G0), which we
use as a realization of the universal example for the proper actions of G.
As before, let F denote the family of all G-saturations Z of finite unions of
simplices in E(G/G0). It follows then from Lemma 5.6 that

Ktop
∗ (G;Bi) = lim

Z∈F
lim
X

KKG∗
(

C0(X), Bi
)

and

Ktop
∗ (G;B) = lim

Z∈F
lim
X

KKG∗
(

C0(X), B
)

,

whereX runs through the G-compact subsets of E(G)×Z such that π2(X) = Z,
and where π2 : E(G) × E(G/G0) → E(G/G0) denotes the projection onto the
second factor. Combining these formulas with (7.1), the result will follow if we
can show that for each Z ∈ F the map

lim
X⊆E(G)×Z

X G−compact

π2(X)=Z

lim
i

KKG∗ (C0(X), Bi)
f∗X−→ lim

X⊆E(G)×Z

X G−compact

π2(X)=Z

KKG∗ (C0(X), B) (7.2)
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is an isomorphism. We write Z0 for the union of the interiors
o

S of simplices S
in Z of maximal dimension, and we put Z1 = Z r Z0,

X0 = X ∩
(

E(G)× Z0

)

and X1 = X ∩
(

E(G)× Z1

)

.

Doing a similar, but much easier Five-Lemma argument as in the previous
sections (compare with the discussions preceding Lemma 6.8), the result will
follow if we can show that the following two statements are true:

(i) Assume that Z is generated by a single simplex S in E(G/G0) with
dim(S) > 0. Then

lim
X⊆E(G)×Z

X G−compact

π2(X)=Z

lim
i

KKG∗ (C0(X0), Bi)
f∗X0−→ lim

X⊆E(G)×Z

X G−compact

π2(X)=Z

KKG∗ (C0(X0), B)

is bijective.

(ii) Assume that Z is the orbit of a single vertex in E(G/G0). Then the map
in (7.2) is bijective.

Again, the proof of (ii) is slightly easier than the proof of (i) (because we don’t
have to deal with the Bott-map), so we concentrate on (i). By the structure of
Z, we have

Z0 = G/G0·
o

S∼= (G/G0)×Ċ
o

S,

where
o

S denotes the interior of the single simplex S generating Z and Ċ ⊆
G/G0 denotes the stabilizer of S. Thus, if X is a G-compact subset of E(G)×Z
such that π2(X) = Z, then it follows from Proposition 5.12 that X0 is G-

homeomorphic to the induced spaceG×C
(

X ∩ π−12 (
o

S)
)

, where C := q−1(Ċ) ⊆

G. Enlarging X, if necessary, we may further assume that X ∩ π−12 (
o

S) =

C · K×
o

S for some compact subset K ⊆ E(G). Thus, using compression
and Bott-periodicity, and taking the limit over X, we obtain the following
commutative diagram

lim
K,i

KKG∗
(

C0

(

G×C (C·K×
o

S)
)

, Bi
) f∗X0−−−−→ lim

K
KKG∗

(

C0

(

G×C (C·K×
o

S)
)

, B
)

Bott ◦ compGC





y

∼= ∼=





y
Bott ◦ compGC

lim
K

lim
i

KKC∗
(

C0(C ·K), Bi
) f∗C·K−−−−→ lim

K
KKC∗

(

C0(C ·K), B
)

∼=





y





y

∼=

lim
i

Ktop
∗ (C;Bi)

f∗

−−−−→ Ktop
∗ (C;B),

where K runs through the compact subsets of E(G). Note that the left-hand
lower vertical isomorphism is given by permuting the limits. The top horizontal
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line coincides with the map in Item (i) above. Thus, since the bottom horizontal
row is an isomorphism by Lemma 6.5 (again, here C is almost connected), the
result follows.
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