
Documenta Math. 227

Products of Harmonic Forms

and Rational Curves

Daniel Huybrechts

Received: May 8, 2000

Revised: October 10, 2000

Communicated by Thomas Peternell
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The product of closed forms is closed again. The analogous statement for
harmonic forms, however, fails. A priori, there is no reason why the product
of harmonic forms should be harmonic again. This phenomenon was recently
studied by Merkulov [8]. He shows that it leads to a natural A∞-structure on a
Kähler manifold. In the context of mirror symmetry Polishchuk made use of (a
twisted version of) this A∞-structure on elliptic curves to confirm Kontsevich’s
homological version of mirror symmetry in this case [9].

In the present paper we show that this failure of harmonicity in fact happens
quite frequently. It usually is related to certain geometric properties of the
manifold and to the existence of rational curves in particular. In fact, we are
only interested in the product of harmonic (1, 1)-forms, as this is the geometric
relevant case. We wish to emphasize that the interplay between harmonicity
and geometry is by far not completely understood. The results of this paper
just seem to indicate that there is in fact a relationship. As the failure of
harmonicity is related to the shape of the ‘non-linear Kähler cone’ (cf. 1.2,
2.3), the results of this paper can roughly be phrased by saying that the ge-
ometry of the manifold forces the non-linear Kähler cone to be curved. For
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a deeper understanding of the situation one will have to study the shape of
the non-linear Kähler cone or, equivalently, the non-harmonicity of products of
harmonic forms.
Let us briefly indicate the main results for the special case of compact Ricci-flat
Kähler manifolds. For a Kähler class ω ∈ H2(X,R) on such a manifold there
exists a unique Ricci-flat Kähler form ω̃ representing it. Let H1,1(ω̃) denote
the space of (1, 1)-forms harmonic with respect to ω̃. Of course, for a different
Kähler class ω′ and the representing Ricci-flat Kähler form ω̃′ this space might
be different.
The main technical result (Prop. 2.3) says that H1,1(ω̃) is independent of ω
if and only if the top exterior power of any harmonic form α ∈ H1,1(ω̃) is
again harmonic. This can be used to interpret the failure of harmonicity of
the top exterior power geometrically. Proposition 3.2 asserts that there always
exist harmonic (1, 1)-forms with non-harmonic top exterior power, whenever
the Kähler cone (or ample cone) does not form a connected component of the
(integral) cone of all classes α ∈ H1,1(X,R) with

∫
X
αN > 0.

Note that there are many instances where the Kähler cone is strictly smaller.
E.g. this is the case for any Calabi-Yau manifold that is birational to a non-
isomorphic Calabi-Yau manifold (Prop. 6.1).
In Section 4 we apply the result for K3 surfaces. One finds that on any K3
surfaces containing a rational curve there exists a harmonic (1, 1)-form α such
that α2 is not harmonic. This can be extended to arbitrary K3 surfaces by
using the existence of rational curves on nearby K3 surfaces.

1 Preparations

Let X be a compact Kähler manifold. Then KX ⊂ H1,1(X,R) denotes
the Kähler cone, i.e. the open set of all Kähler classes on X. For a class
α ∈ H1,1(X,R) we usually denote by α̃ ∈ A1,1(X)R a closed real (1, 1)-form
representing α. Let us recall the Calabi-Yau theorem [3].

Theorem 1.1 — Let X be an N -dimensional compact Kähler manifold with a

given volume form vol ∈ AN,N (X)R. For any Kähler class ω ∈ KX there exists

a unique Kähler form ω̃ ∈ A1,1(X)R representing ω, such that ω̃N = c · vol,

with c ∈ R.

Since ω̃N is harmonic with respect to ω̃, this can be equivalently expressed by
saying that any Kähler class ω can uniquely be represented by a Kähler form
ω̃ with respect to which the given volume form is harmonic. Note that the
constant c can be computed as c =

∫
X
ωN/vol(X).

Definition 1.2 — For a given volume form vol ∈ AN.N (X)R we let K̃X ⊂

A1,1(X)R be the set of Kähler forms ω̃ with respect to which vol is harmonic.

By the Calabi-Yau theorem the natural projection K̃X → KX is bijective. The
Kähler cone KX is an open subset of H1,1(X,R), whereas K̃X is in general not
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contained as an open subset in a linear subspace of A1,1(X) (cf. 2.1). Thus it
might be appropriate to call K̃X the non-linear Kähler cone.
Let ω̃ ∈ K̃X and c =

∫
X
ωN/vol(X). The tangent space of K̃X at ω̃ can be

computed as follows. Firstly, we may write K̃X = R+ × K̃
c
X , where K̃cX =

{ω̃ ∈ K̃X |ω̃
N = c · vol}. Secondly, the infinitesimal deformations of ω̃ in the

direction of K̃cX are of the form ω̃+ εṽ, where ṽ is a closed real (1, 1)-form and
such that (ω̃ + εṽ)N = ω̃N . The latter condition gives ω̃N +Nεω̃N−1ṽ = ω̃N ,
i.e. ṽ is primitive. As any closed primitive (1, 1)-form is harmonic, this shows
that the tangent space of K̃cX at ω̃ is the space H1,1(ω)R,prim of real ω̃-primitive
ω̃-harmonic (1, 1)-forms. Thirdly, the R+-direction corresponds to the scaling
of ω̃ and this tangent direction is therefore canonically identified with Rω̃.
Altogether, one obtains that Tω̃K̃X = H1,1(ω̃)R is the space of real ω̃-harmonic
(1, 1)-forms. In particular, K̃X is a smooth connected submanifold of A1,1(X)R.
To make this approach rigorous, one first completesA1,1(X) in the L2

k-topology,

where k > N . The Sobolev embedding theorem then shows that L2
k(Λ

1,1

R
)cl →

L2
k(Λ

N,N

R
) given by α 7→ αN is a well-defined continuous multi-linear map and

hence differentiable. Then, K̃X is contained as an open subset in the fibre
over vol. It inherits the differentiable structure and the above calculation then
shows that it is smooth. Also note that the projection from the closed L2

k forms

onto cohomology is differentiable. Hence, K̃X → KX is a differentiable map.
Moreover, again due to the description of the tangent space, this map is in fact
a diffeomorphism. In particular, the bijection K̃X → KX yields a differentiable
map KX → A2(X) (in the L2

k-topology). This fact is used in 2.2.

Definition 1.3 — Let X be a compact Kähler manifold with a given volume

form. Then one associates to a given Kähler class ω ∈ KX the space Hp.q(ω) :=

Hp,q(ω̃) of (p, q)-forms that are harmonic with respect to the unique ω̃ ∈ K̃X
representing ω.

Note that two different Kähler forms ω̃1 and ω̃2 representing the same Kähler
class ω1 = ω2 always have different spaces of harmonic (1, 1)-forms. Indeed, ω̃1

and ω̃2 are ω̃1-harmonic respectively ω̃2-harmonic. Since any class, in particular
ω1 = ω2, is represented by a unique harmonic form and ω̃1 6= ω̃2, this yields
H1,1(ω̃1) 6= H1,1(ω̃2). But one might ask whether H1,1(ω̃1) and H1,1(ω̃2) can
be equal for two Kähler forms ω̃1, ω̃2 not representing the same class, e.g.
ω̃1, ω̃2 ∈ K̃X . It is quite interesting to observe that the dependence of H1,1(ω̃)
on the Kähler class ω is related to the problem discussed in the introduction.
This is explained in the next section.

2 How ‘harmonic’ depends on the Kähler form

As before, we consider a compact Kähler manifold X with a fixed volume form
and we let K̃X be the associated non-linear Kähler cone. Let us begin with
the following fact which relates the shape of K̃X to the dependence of H1,1(ω)
on ω.
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230 Daniel Huybrechts

Proposition 2.1 — The subspace H1,1(ω) ⊂ A1,1(X) is independent of ω if

and only if K̃X spans an R-linear subspace of dimension h1,1(X).

Proof. Let H1,1(ω) ⊂ A1,1(X) be independent of ω ∈ KX . Since for any
ω ∈ KX the unique ω̃ ∈ K̃X representing it is ω̃-harmonic, the assumption
immediately yields K̃X ⊂ H

1,1(ω)R for any ω ∈ KX .
Conversely, if K̃X spans an R-linear subspace of dimension h1,1(X), then this
subspace coincides with the tangent space of K̃X at every point ω̃ ∈ K̃X . But
the latter was identified with H1,1(ω)R. Hence, the linear subspace equals
H1,1(ω)R for any ω ∈ KX and H1,1(ω), therefore, does not depend on ω. 2

Remark 2.2 — The assertion might be rephrased from a slightly different

point of view as follows. Use the differentiable map KX → A2(X). The

proposition then just says that this map is linear if and only if the Gauss map

is constant. It might be instructive to rephrase some of the results later on in

this spirit, e.g. Proposition 3.2.

The next proposition states that the ‘global’ change of H1,1(ω) for ω ∈ KX is
determined by the ‘harmonic’ behavior with respect to a single ω ∈ KX .

Proposition 2.3 — Let X be a compact Kähler manifold of dimension N

with a fixed Kähler form ω̃0 and volume form ω̃N0 /N !. Then the following

statements are equivalent:

i) The linear subspace H1,1(ω)R ⊂ A
1,1(X)R does not depend on ω ∈ KX .

ii) For all α ∈ H1,1(ω0) one has αN ∈ HN,N (ω0).

Proof. Let us assume i). By the previous proposition the lifted Kähler cone
K̃X spans the C-linear subspace H1,1(ω0). Since K̃X is open in H1,1(ω0)R and
all α ∈ K̃X satisfy the C-linear equation

αN = (

∫
X

αN/

∫
X

ωn0 ) · ω
N
0 (1)

which is an algebraic condition, in fact all α ∈ H1,1(ω0) satisfy (1). Hence, for
all α ∈ H1,1(ω0) the top exterior power αN is harmonic, i.e. ii) holds true.
Let us now assume ii). If α ∈ H1,1(ω0), such that its cohomology class ω := [α]
is a Kähler class, let ω̃ ∈ K̃X denote the distinguished Kähler form representing
ω. If α itself is strictly positive definite, then the unicity of ω̃ and ii) imply α =
ω̃. Thus, the intersection of the closed subset H1,1(ω0)R with the open cone of
strictly positive definite real (1, 1)-forms is contained in K̃X . This intersection
is non-empty, as it contains ω̃0. Since K̃X is a closed connected subset of this
open cone of the same dimension as H1,1(ω0)R this yields K̃X ⊂ H

1,1(ω0)R. By
Prop. 2.1 one concludes that H1,1(ω) does not depend on ω ∈ KX . 2
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3 The positive cone

The next proposition is a first step towards a geometric understanding of the
failure of harmonicity of αN for a harmonic form α. To state it we recall the
following notation.

Definition 3.1 — For a compact Kähler manifold X the positive cone CX ⊂

H1,1(X,R) is the connected component of {α ∈ H1,1(X,R) |
∫
X
αN > 0} that

contains the Kähler cone.

Note that by definition KX ⊂ CX . Also note that the positive cone CX might
not be convex. However, for hyperkähler manifolds also CX is convex, as it
coincides with the cone defined by the Beauville-Bogomolov quadratic form
(see Sect. 5).

Proposition 3.2 — If X is a compact Kähler manifold such that KX is

strictly smaller than CX , then for any Kähler form ω̃ there exists a ω̃-harmonic

(1, 1)-form α such that αN is not ω̃-harmonic.

Proof. Assume that there exists a Kähler form ω̃0 such that for all α ∈ H1,1(ω̃0)
also αN is ω̃0-harmonic. We endow X with the volume form ω̃N0 /N !. By
Prop. 2.3 the lifted Kähler cone K̃X is contained in H1,1(ω̃0). Since KX is
strictly smaller than CX there exists a sequence ωt ∈ KX converging towards
a ω ∈ CX \ KX . As K̃X is contained in the finite-dimensional space H1,1(ω̃0)
the lifted Kähler forms ω̃t ∈ K̃X will converge towards a form (!) and just
only a current ω̃ ∈ H1,1(ω̃0) \ K̃X . As a limit of strictly positive definite forms
ω̃ is still semi-positive definite. Moreover, ω̃ is strictly positive definite at
x ∈ X if and only if ω̃N does not vanish at x. By assumption ω̃N = c · ω̃N0
with c =

∫
X
ωN/

∫
X
ωN0 . Since ω ∈ CX , the scalar factor c is strictly positive.

Hence, ω̃N is everywhere non-trivial. Thus ω̃ is strictly positive definite. This
yields the contradiction. 2

The interesting thing here is that the proposition in particular can be used
to determine the positivity of a class with positive top exterior power just by
studying the space of harmonic forms with respect to a single given, often very
special Kähler form:

Corollary 3.3 — Let X be a compact Kähler manifold with a given Kähler

form ω̃0. If for all ω̃0-harmonic (1, 1)-forms α the top exterior power αN is

also ω̃0-harmonic, then any class ω ∈ CX is a Kähler class. 2

Here is another version of the same corollary in a more algebraic spirit.

Corollary 3.4 — Let X be a compact Kähler manifold with a given Kähler

form ω̃0, such that for every ω̃0-harmonic (1, 1)-form α the top exterior power

αN is also ω̃0-harmonic. Then, a line bundle L on X is ample if and only if

c1(L) ∈ CX . 2
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We conclude this section with a few examples, where the assumption of the
corollary is met a priori. In the later sections we will discuss examples where
KX is strictly smaller than CX and where Prop. 3.2 can be used to conclude
the ‘failure’ of harmonicity.

Examples 3.5 — i) If X is a complex torus and ω is a flat Kähler form,

then harmonic forms are constant forms and their products are again constant,

hence harmonic. In particular, one recovers the fact that on a torus the Kähler

cone and the positive cone coincide.

ii) If for two Kähler manifolds (X, ω̃) and (X ′, ω̃′) with b1(X) · b1(X
′) = 0 the

top exterior power of any harmonic (1, 1)-forms on X or on X ′ is again har-

monic, then the same holds for the product (X ×X ′, ω̃× ω̃′). The additional

assumption on the Betti-numbers is necessary as the product of two curves of

genus at least two shows. Indeed, any ϕ ∈ H1,0(X), for a curve X, is harmonic,

but ϕ∧ ϕ̄ is not. Hence, α = ϕ× ϕ̄+ ϕ̄×ϕ is a harmonic (1, 1)-form on X×X ′

with non-harmonic α2.

iii) Let X be a Kähler manifold and X → X ′ a smooth finite quotient.

Consider the non-linear Kähler cone on X with respect to the pull-back of a

volume form on X ′. Then H1,1(ω) with ω ∈ KX does not depend on ω if and

only if the same holds true for X ′.

iv) For hermitian symmetric spaces of compact type it is known that the

space of harmonic forms equals the space of forms invariant under the real

form. As the latter space is invariant under products, the Kähler cone of an

irreducible hermitian symmetric space coincides with the positive cone.

4 K3 surfaces

As indicated earlier the behavior of the Kähler cone is closely related to the
geometry of the manifold. We shall study this in more detail for K3 surfaces.
The next proposition follows directly from the well-known description of the
Kähler cone of a K3 surface.

Proposition 4.1 — Let X be a K3 surface containing a smooth rational

curve. Then for any Kähler form ω̃ there exists an ω̃-harmonic form (1, 1)-form

α such that α2 is not harmonic.

Proof. If X contains a smooth rational curve, then KX is strictly smaller than
CX and we apply Prop. 3.2. Indeed, a smooth rational curve C ⊂ X determines
a (−2)-class [C], whose perpendicular hyperplane [C]⊥ cuts CX into two parts
and KX is contained in the part that is positive on C. 2

If the harmonicity of the top exterior powers fails for a Kähler manifold with
a given Kähler form (X, ω̃) then it should do so for any small deformation of
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Products of Harmonic Forms and Rational Curves 233

(X, ω̃). For a Ricci-flat Kähler structure on a K3 surface the argument can be
reversed and one can use the existence of rational curves on arbitrarily near
deformations to prove the assertion in the above proposition on any K3 surface
with respect to a Ricci-flat Kähler form.

Corollary 4.2 — Let X be an arbitrary K3 surface. If ω̃ is any hyperkähler

form on X, then there exists an ω̃-harmonic (1, 1)-form α such that α2 is not

ω̃-harmonic.

Proof. Let H0(X,Ω2
X) = Cσ. Then

H2(ω̃) = H1,1(ω̃)⊕H2,0(ω̃)⊕H0,2(ω̃)
= H1,1(ω̃)⊕ Cσ ⊕ Cσ̄

As the space of harmonic forms only depends on the underlying hyperkähler
metric g, the space H1,1(ω̃) ⊕ Cσ ⊕ Cσ̄ contains H1,1(ω̃aI+bJ+cK) for all
(a, b, c) ∈ S2. Here, I, J, and K are the three complex structures associated
with the hyperkähler metric g (cf. Sect. 5).
Assume α2 is g-harmonic for all α ∈ H1,1(ω̃). Since σ = ω̃J + iω̃K (up to a
scalar factor) and since the product of a harmonic form with the Kähler form
is again harmonic, also σσ̄ is harmonic. This implies that α2 is harmonic for
all α ∈ H2(ω̃), as σ2 = σ̄2 = ασ = ασ̄ = 0 for α ∈ H1,1(ω̃). Thus, α2 is
g-harmonic for all α ∈ H1,1(ω̃aI+bJ+cK) and all (a, b, c) ∈ S2. On the other
hand, it is well-known that for a non-empty (dense) subset of S2 the K3 surface
(X, aI + bJ + cK) contains a smooth rational curve. Indeed, if e ∈ H2(X,Z)
is any (−2)-class, then the subset of the moduli space of marked K3 surfaces
for which e is of type (1, 1) is a hyperplane section. This hyperplane section,
necessarily, cuts the complete curve given by the base P1 = S2 of the twistor
family. Hence, on one of the K3 surfaces (X, aI + bJ + cK) the class e is a
(−2)-class of type (1, 1) and, thus, X contains a smooth rational curve. This
yields a contradiction to Prop. 4.1. 2

Remark 4.3 — What are the bad harmonic (1, 1)-forms? Certainly ω̃2 is

harmonic and for any harmonic form α also ω̃α is harmonic. So, if there is

any bad harmonic (1, 1)-form there must be also one that is ω̃-primitive. Most

likely, it is even true that the square of any primitive harmonic form is not

harmonic. The proof of it should closely follow the arguments in the proof

of Proposition 3.2, but there is a slight subtlety concerning the existence of

sufficiently many (−2)-classes, that I do not know how to handle. We sketch

the rough idea:

Assume there exists a ω̃-harmonic ω̃-primitive real (1, 1)-form α such that α2

is ω̃-harmonic. As an ω̃-harmonic ω̃-primitive (1, 1)-form, the form α is also of

type (1, 1) with respect to any complex structure λ = aI+ bJ + cK induced by
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the hyperkähler metric corresponding to ω̃ (see Prop. 7.5 [6]). Moreover, α is

also primitive with respect to all Kähler forms ω̃λ.

Assume that there exists a complex structure λ ∈ S2, such that CX ∩R[α]⊕Rωλ
is not contained in KX . This condition can be easily rephrased in terms of (−2)-

classes and thus becomes a question on the lattice 3U⊕2(−E8). It looks rather

harmless, but for the time being I do not know a complete proof of it. Under

this assumption, we may even assume that in fact λ = I. Since α2 is harmonic,

in fact β2 is harmonic for all β ∈ Rα⊕Rω̃ ⊂ H1,1(ω). Going back to the proof

of Prop. 3.2, we see that the second part of it can be adapted to this situation

and shows that ψ−1(KX ∩ R[α] ⊕ Rω) ⊂ Rα ⊕ Rω̃, where ψ : K̃X → KX .

The space ψ−1(KX ∩R[α]⊕Rω) is the space of the distinguished Kähler forms

whose classes are linear combinations of [α] and ω. Therefore, all these forms

are harmonic and linear combinations of α and ω̃ themselves. To conclude, we

imitate the proof of Prop. 3.2 and choose a sequence ωt ∈ KX ∩ R[α] ⊕ Rω
converging towards ω′ ∈ CX \ KX . The corresponding sequence ω̃t ∈ K̃X is

contained in Rα ⊕ Rω̃ and converges towards a form ω̃′. As in the proof of

Prop. 3.2 this leads to a contradiction.

5 Hyperkähler manifolds

We will try to improve upon Proposition 3.2 in the case of hyperkähler mani-
folds. In particular, we will replace the question whether the top exterior power
αN of an harmonic form α is harmonic by the corresponding question for the
square of α. The motivation for doing so stems from the general philosophy
that hyperkähler manifolds should be treated in almost complete analogy to
K3 surfaces, whereby the top intersection pairing should be replaced by the
Beauville-Bogomolov form [2], which is the higher dimensional analogue of the
intersection pairing on a K3 surface.
Let us begin by recalling some notations and basic facts. By a compact hy-
perkähler manifoldX we understand a simply-connected compact Kähler mani-
fold, such thatH0(X,Ω2) = Cσ, where σ is an everywhere non-degenerate holo-
morphic two-form. A Ricci-flat Kähler form ω̃ turns out to be a hyperkähler
form (cf. [2]), i.e. there exists a metric g and three complex structures I, J ,
and K := IJ , such that the corresponding Kähler forms ω̃aI+bJ+cK are closed
for all (a, b, c) ∈ S2, such that I is the complex structure defining X, and such
that ω̃ = ω̃I . One may renormalize σ, such that σ = ω̃J + iω̃K . In particular,
multiplying with σ maps harmonic forms to harmonic forms, for this holds true
for the Kähler forms ω̃J and ω̃K .
The positive cone CX ⊂ H1,1(X,R) is a connected component of {α ∈
H1,1(X,R) | qX(α) > 0}, where qX is the Beauville-Bogomolov form (cf. [2]).

Proposition 5.1 — Let X be a 2n-dimensional compact hyperkähler manifold

with a fixed hyperkähler form ω̃0 and the unique holomorphic two-form σ. Then,
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α2(σσ̄)n−1 is harmonic for all α ∈ H1,1(ω0) if and only if the linear subspace

H1,1(ω) ⊂ A1,1(X) does not depend on ω ∈ KX .

Proof. Assume that for all α ∈ H1,1(ω0) also α2(σσ̄)n−1 is harmonic. If
α is in addition strictly positive definite and ω̃ ∈ K̃X with [α] = ω, then
α2(σσ̄)n−1 = ω̃2(σσ̄)n−1. We adapt Calabi’s classical argument to deduce that
in this case α = ω̃: If α2(σσ̄)n−1 = ω̃2(σσ̄)n−1, then (α−ω̃)(α+ω̃)(σσ̄)n−1 = 0.
Since α and ω̃ are strictly positive definite, also (α + ω̃) is strictly positive
definite. It can be shown that also (α + ω̃)(σσ̄)n−1 is strictly positive. As
[α] = ω = [ω̃], the difference α−ω̃ can be written as ddcϕ for some real function
ϕ. But by the maximum principle the equation (α+ω̃)(σσ̄)n−1ddcϕ = 0 implies
ϕ ≡ const. Hence, α = ω̃.
As in the proof of Proposition 3.2 this shows that the intersection of the
closed subset H1,1(ω0)R with the open cone of strictly positive definite forms
in A1,1(X)R is contained in K̃X and one concludes that K̃X ⊂ H

1,1(ω0)R.
Hence, K̃X spans a linear subspace of the same dimension and, by Lemma 2.1
this shows that H1,1(ω) is independent of ω ∈ KX .
Conversely, let H1,1(ω) be independent of ω ∈ KX . Then K̃X ⊂ H1,1(ω)R

for any ω ∈ KX . Therefore, α2(σσ̄)n−1 = c(σσ̄)n with c ∈ R for α in the
Zariski-dense open subset K̃X ⊂ H

1,1(ω)R. Hence, α2(σσ̄)n−1 is harmonic for
any α ∈ H1,1(ω) (cf. the proof of Prop. 2.3). 2

Similar to Proposition 3.2 one has

Corollary 5.2 — Let X be a 2n-dimensional compact hyperkähler manifold.

If the positive cone CX is strictly smaller than the Kähler cone, then for any

hyperkähler form ω̃0 there exists a harmonic form α ∈ H1,1(ω̃0), such that

α2(σσ̄)n−1 is not harmonic. 2

Of course, one expects that H1,1(ω) does in fact depend on ω, as it is the
case for K3 surfaces. This would again follow from the existence of rational
curves in nearby hyperkähler manifolds in the twistor space. In fact, for the
two main series of examples of higher dimensional hyperkähler manifolds, i.e.
Hilbert schemes of points on K3 surfaces and generalized Kummer varieties,
this trivially holds true, since in these cases CX is strictly bigger that KX
and so Corollary 5.2 applies. But already for global deformations of these
examples the situation is not clear. One might speculate that Hilbert schemes
respectively Kummer varieties are dense in their deformation spaces, so that
arguments similar to those in the proof of Corollary 4.2 could be applied. But
an understanding of the global deformations of Hilbert schemes respectively
Kummer varieties seems difficult.
Actually, it would be more interesting to reverse the argument: Assume that
X is a hyperkähler manifold, such that for any small deformation X ′ of X the
Kähler cone KX′ equals CX′ . I expect that this is equivalent to saying that
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H1,1(ω) does not depend on ω. If for some other reason than the existence of
rational curves as used in the K3 surface case this can be excluded, then one
could conclude that there always is a nearby deformation X ′ for which KX′ is
strictly smaller than CX′ . The latter implies the existence of rational curves on
X ′ (cf. [6]). Along these lines one could try to attack the Kobayashi conjecture,
as the existence of rational curves on nearby deformations would say that X
itself cannot be hyperbolic. Unfortunately, I cannot carry this through even
for K3 surface.

6 Various other examples

Here we collect a few examples where algebraic geometry predicts the failure of
harmonicity of the top exterior power of harmonic (1, 1)-forms. In all examples
this is linked to the existence of rational curves.

Varieties of general type. Let X be a non-minimal smooth variety of
general type. As I learned from Keiji Oguiso this immediately implies that
the Kähler cone is strictly smaller than the positive cone. His proof goes as
follows: By definition the canonical divisor KX is big and by the Kodaira
Lemma (cf. [7]) it can therefore be written as the sum KX = H + E of an
ample divisorH and an effective divisor E (with rational coefficients). Consider
the segment Ht := H + tE with t ∈ [0, 1). If all Ht were contained in the
positive cone CX , then KX would be in the closure of CX . If the Kähler cone
coincided with the positive cone CX , then KX would be nef, contradicting the
hypothesis that X is not minimal. Hence t0 := sup{t|Ht ∈ CX} ∈ (0, 1).
If Ht0 is not nef, then KX is strictly smaller than CX . Thus, it suffices to
show that Ht0 is not nef. If Ht0 were nef then all expressions of the form
HN−i
t0

.Hi−1.E would be non-negative. Then 0 = HN
t0

= HN−1
t0

(H + t0E) =

HN−1
t0

.H + t0H
N−1
t0

.E, so both summands must vanish. In particular, 0 =

HN−1
t0

.H = H2.HN−2
t0

+ t0H.H
N−2
t0

.E. Again this yields the vanishing of both

terms and in particular 0 = H2.HN−2
t0

. By induction we eventually obtain
0 = HN−1.Ht0 and, furthermore, 0 = HN−1.Ht0 = HN + t0H

N−1.E. But this
time HN > 0 yields the contradiction. Therefore, for a non-minimal variety of
general type one has KX 6= CX and hence there exist harmonic (with respect to
any Kähler metric) (1, 1)-forms with non-harmonic top exterior power. Note
that a non-minimal variety contains rational curves. As the reader will notice,
the above proof goes through on any manifold X that admits a big, but not nef
line bundle L (replacing the canonical divisor). Also in this case the positive
cone and the Kähler cone differ.

For a Calabi-Yau manifold X the following proposition shows that if X
admits a ‘special’ Kähler form in the sense that the top power of any harmonic
(1, 1)-form is harmonic, then X is a unique birational model.
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Proposition 6.1 — If ϕ : X − − → X ′ is a birational map between two

Calabi-Yau manifolds, then either ϕ can be extended to an isomorphism or KX

is strictly smaller than the positive cone CX . In the latter case, there exists for

any Kähler form ω̃ a ω̃-harmonic (1, 1)-form α with αN not harmonic.

Proof. The arguments are very similar to the one in the previous example.
Let H1,1(X,R) ∼= H1,1(X ′,R) be the natural isomorphism induced by the
birational map. Let ω′ ∈ H1,1(X,R) correspond to a Kähler class on X ′. By
[5] the class ω′ can be represented by a closed positive current. Furthermore,
the birational map ϕ extends to an isomorphism if and only if ω′ ∈ KX . Assume
this is not the case. Then ω′ 6∈ KX . If ω′ ∈ CX one can apply Prop. 3.2 and
we are done. If ω′ 6∈ CX we may assume that it is also not in the boundary of
CX , as we can change ω′ slightly in the open cone KX′ . If ω is a small enough
Kähler class on X, then the difference α := ω′ − ω can still be represented by
a positive current. Let t0 := sup{t|ωt := ω + tα ∈ CX}. Then t0 ∈ (0, 1). If
KX = CX then ωN−i

t0
ωi−1α ≥ 0 for all i. Then the above induction argument

goes through and we eventually get ωN−1α = 0. Since α is a positive current,
this is only possible for α = 0. Hence KX 6= CX . Note that for hyperkähler
manifolds one knows that KX′ ⊂ CX . This simplifies the argument. 2

Remark 6.2 — i) Again, a non-trivial birational correspondence produces

rational curves. We thus have another instance, where the special geometry of

the variety is related to the non-harmonicity of products of harmonic forms.

ii) Most likely, finer information is encoded by Ricci-flat metrics. Those prob-

ably ‘feel’ contractible curves in small deformations. So, as for hyperkähler

manifolds I would expect that H1,1(ω) depends on the Ricci-flat Kähler form

representing ω.

iii) The arguments of the proof of 6.1 can be applied to the case of different

birational minimal models (minimal models are not unique!). This shows that

in the previous example the Kähler cone could be strictly smaller than the

positive cone, even when KX is nef or ample.

Blow-ups. This example is very much in the spirit of the previous two. Let f :
X → Y be a non-trivial blow-up of a projective variety Y . Then KX is strictly
smaller than CX and, therefore, for any Kähler structure on X there exist
harmonic (1, 1)-forms with non-harmonic maximal exterior power. Indeed, if
L is an ample line bundle on Y then f∗(L) is nef, but not ample, and it is
contained in the positive cone. Hence, f ∗(L) ∈ CX \ KX . Note that also the
first example could be proved along these lines. By evoking the contraction
theorem one shows that any non-minimal projective variety X admits a non-
trivial contraction to a projective variety Y . The above argument then yields
that KX and CX are different.
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7 Chern forms

Let X be a compact Kähler manifold with a Ricci-flat Kähler form ω̃. If
F denotes the curvature of the Levi-Cevita connection ∇, then the Bianchi
identity reads ∇F = 0. The Kähler-Einstein condition implies ΛωF = 0. The
last equation can be expressed by saying that F is ω̃-primitive. Analogously
to the fact that any closed primitive (1, 1)-form is in fact harmonic, one has
that for F with ∇F = 0 the primitivity condition Λω̃F = 0 is equivalent to
the harmonicity condition ∇ ∗ F = 0. As for untwisted harmonic (1, 1)-forms
one might ask for the harmonicity of the product Fm. Slightly less ambitious,
one could ask whether the trace of this expression, an honest differential form,
is harmonic. This trace is, in fact, a scalar multiple of the Chern character
chm(X, ω̃) ∈ Am,m(X)R.

Question. — Let (X, ω̃) be a Ricci-flat Kähler manifold. Are the Chern forms
chm(X, ω̃) harmonic with respect to ω̃ ?

By what was said about K3 surface we shall expect a negative answer to this
question at least in this case:

Problem. — Let X be a K3 surface with a hyperkähler form ω̃. Let c2 ∈
A2,2(X) be the associated Chern form. Show that c2 is not harmonic with
respect to ω̃ !

So, this should be seen in analogy to the fact that α2 is not harmonic for
any primitive harmonic (1, 1)-form α. Here, α is replaced by the curvature F
and α2 by trF 2. It is likely that the non-harmonicity of c2 can be shown by
standard methods in differential geometry, in particular by using the fact that
c2 is essentially ‖F‖ · ω̃2 (see [3]), but I do not know how to do this.
Furthermore, it is not clear to me what the relation between the above question
and the one treated in the previous sections is. I could imagine that the non-
harmonicity of chm in fact implies the existence of harmonic (1, 1)-forms with
non-harmonic top exterior power.
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