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Abstract. Let M be a non–compact, connected manifold of dimen-
sion ≥ 1. Let D(sheaves/M) be the unbounded derived category of
chain complexes of sheaves of abelian groups on M . We prove that
D(sheaves/M) is not a compactly generated triangulated category,
but is well generated.
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0. Introduction

We remind the reader. Let T be a triangulated category in which arbitrary co-
products exist. For example, we may take T = D(sheaves/M), the unbounded
derived category of chain complexes of sheaves of abelian groups on a topo-
logical space M . An object c ∈ T is called compact if, for every collection
{tλ |λ ∈ Λ} of objects in T,

T

(
c,
∐

λ∈Λ

tλ

)
=
⊕

λ∈Λ

T(c, tλ).

A triangulated category T is called compactly generated if arbitrary coproducts
exist in T, and there are plenty of compact objects. [The precise definition is
that every non–zero object in T admits a non–zero map from a compact object,
and there is a set of isomorphism classes of compact objects.] In this article,
we will see the following

Theorem 0.1. Let M be a non–compact, connected manifold of dimension ≥
1. Let D(sheaves/M) be the unbounded derived category of chain complexes of

sheaves of abelian groups onM . Then the only compact object in D(sheaves/M)
is the zero object.

In a recent book [6], the author defined a generalisation of compactly generated
categories, the well generated triangulated categories. We will not repeat the
definition here. Assuming the reader is familiar with the definitions, we state
our next result.
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Theorem 0.2. Let M and D(sheaves/M) be as in Thoerem 0.1. Then the

category D(sheaves/M) is well generated. More generally, for any Grothendieck

abelian category A, the derived category D(A) is well generated.

The two theorems above should perhaps explain the point of the book [6].
Surely the category D(sheaves/M) is natural enough, we want to prove some-
thing about it. The fact that it is not compactly generated says that the old
theorems of the subject cannot be applied. Well generated triangulated cate-
gories is an attempt to pick out a class of triangulated categories which includes
D(sheaves/M), but is restrictive enough so that we can prove good theorems,
for example Brown representability. For much more information about well
generated triangulated categories the reader is referred both to the book [6],
as well as several beautiful insights in Krause’s paper [4].
In Section 1 we give a fairly detailed and self contained account of the proof of
Theorem 0.1. Compactly generated triangulated categories have been around
for many years. The people who have worked with them might understandably
want a good account of why D(sheaves/M) is not compactly generated. It
seems only right to make the presentation easily accessible. In Section 2 we
give a very terse proof of Theorem 0.2. The argument makes no attempt to be
self-contained. The proof relies heavily on results from Alonso, Jeremı́as and
Souto’s [1], and from [6].
I would like to thank Marco Schlichting, who asked me to provide proofs for
the two theorems above. In the case of Theorem 0.2 I know several proofs, and
the one presented here was chosen mostly because it is only a paragraph long.
In the case of Theorem 0.1, until Schlichting prompted me I had carelessly
assumed it was a true fact, without ever checking the details.

1. The proof of Theorem 0.1

In this section we give a fairly detailed and complete proof of Theorem 0.1.
The proof attempts to be reasonably self-contained. We will, however, assume
that the reader is familiar with the six gluing functors. Let M be a topological
space. Suppose M = U ∪ Z is the disjoint union of an open set U and its
complement Z. Let i : Z −→ M , j : U −→ M be the inclusions. Then there
are six functors on chain complexes of sheaves of abelian groups, denoted j!,
j∗, j

∗
, i∗, i

∗
and i!, which allow us to glue complexes of sheaves on U and Z

to form complexes of sheaves on M . There are many excellent accounts of this
in the literature, for example in Beilinson, Bernstein and Deligne’s [2].
Before plunging into the proof, we remind the reader of a key property of
compact objects.

Reminder 1.1. Let A be a Grothendieck abelian category, T = D(A) its de-
rived category. Suppose c is compact in D(A), and suppose we are given a
sequence of chain complexes

X0 −→ X1 −→ X2 −→ · · ·

with colim
−→

Xi = X. Then T(c,X) = colim
−→

T(c,Xi).
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Proof. The proof may be found in Lemma 2.8 of [5] combined with Remark 2.2
of [3].

Lemma 1.2. Suppose M is a manifold, and that c ∈ D(sheaves/M) is a com-

pact object. Then there is a compact set K ⊂ M , so that c is acyclic outside

K.

Proof. Choose an increasing sequence of open subsets U` ⊂M , ` ∈ N so that

(i) M = ∪U` is the union of the U`.
(ii) The closure U ` of U` is compact, and U ` ⊂ U`+1.

Let j` : U` −→ M be the inclusion. Because the U` are increasing, we have a
sequence of chain complexes of sheaves

{j1}!j
∗

1c −−−−→ {j2}!j
∗

2c −−−−→ {j3}!j
∗

3c −−−−→ · · ·

with direct limit c. The identity map c −→ c is a map from a compact object
c to a direct limit. By Remark 1.1, it must factor through {j`}!j

∗

` c for some `.

And the complex {j`}!j
∗

` c is acyclic outside the compact set U `.

Definition 1.3. The support of a chain complex c of sheaves on M is the set

of all points p ∈M so that the stalk at p of c is not acyclic.

Lemma 1.4. Suppose M is a manifold, and that c ∈ D(sheaves/M) is a com-

pact object. Then the support of c is compact.

Proof. Let p be point outside the support of c; that is, the stalk of c at p is
acyclic. Let U = M − {p} be the complement of p. Let j : U −→ M be
the inclusion of the open set, i : {p} −→ M the inclusion of its complement.
Consider now the triangle

j!j
∗c −−−−→ c −−−−→ i

∗
i∗c −−−−→ Σj!j

∗c.

Since the stalk of c at p vanishes, we know that i∗c = 0. Thus c is quasi-
isomorphic to j!j

∗c. In particular j!j
∗c is compact. We assert that j∗c must

also be compact. This is because

Hom

(
j∗c ,

∐
λ∈Λ

tλ

)

= Hom

(
j∗c , j∗j!

∐
λ∈Λ

tλ

)
since j∗j! = 1

= Hom

(
j!j

∗c , j!
∐
λ∈Λ

tλ

)
by adjunction

= Hom

(
j!j

∗c ,
∐
λ∈Λ

j!tλ

)
as j! respects coproducts

=
⊕
λ∈Λ

T(j!j
∗c , j!tλ) since c = j!j

∗c is compact

=
⊕
λ∈Λ

T(j∗c , j∗j!tλ) by adjunction

=
⊕
λ∈Λ

T(j∗c , tλ) since j∗j! = 1.
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Lemma 1.2, applied to the complex j∗c on M − {p}, now tells us that the
support of j∗c is contained in a compact subset of M − {p}. Hence so is the
support of c ∼= j!j

∗c. What this proves is that any point p not in the support
of c is in the interior of the complement of the support. The support is closed.
By Lemma 1.2, the support is contained in a compact subset of M . Being a
closed subset of a compact subset, the support of c must be compact.

Notation 1.5. From now on, let c be a compact object in D(sheaves/M),
with M a non-compact, connected manifold. Let K be the support of c. By
Lemma 1.4 we know that K is compact. To prove Theorem 0.1 we must show
that K is empty. In the rest of this section we assume K 6= ∅, and deduce a
contradiction.

Lemma 1.6. Let the notation be as in Notation 1.5. There is a compact set

L ⊂M so that

(i) The support of c is contained in L; that is, K ⊂ L.
(ii) L is a deformation retract of a neighbourhood.

(iii) The boundary of L contains a point in K.

Proof. Choose a Morse function on the manifold M ; that is, a proper function
ϕ : M −→ [0,∞) with only non-degenerate critical points. Now ϕ(K) is a
compact subset of R. Let k ∈ R be the maximum of ϕ(K). By jiggling ϕ a
little, we may assume that k is a regular value of ϕ. Now let L = ϕ−1[0, k].
Because ϕ is proper, L must be compact. Because k is the maximum of ϕ on
K ⊂ M , there must be a point x ∈ K with ϕ(x) = k. Since ϕ is regular at x,
x must be a boundary point of L. Now, for any Riemannian metric on M , the
gradient flow along ϕ deformation retracts ϕ−1[0, k + ε] to L = ϕ−1[0, k].

Theorem 1.7. With the notation as above, the object c vanishes.

Proof. With the notation as in the proof of Lemma 1.6, let L = ϕ−1[0, k], and

let L̂ = ϕ−1[0, k + ε]. Denote by i : L −→ M and ı̂ : L̂ −→ M the inclusions.

Let p : L̂ −→ L be the retraction, and j : U = {M − L} −→ M the open
inclusion.
We wish to consider the complex b = ı̂

∗
p∗c on M . The fact that M = L∪U is

a disjoint union of an open set and its complement gives a triangle

j!j
∗b −−−−→ b −−−−→ i

∗
i∗b −−−−→ Σj!j

∗b.

Now

i
∗
i∗b = i

∗
i∗ ı̂

∗
p∗c by definition of b

= i
∗
i∗c since p and ı̂ are the identity on L

= c since c is supported on K ⊂ L.

It follows that the map

i
∗
i∗b −−−−→ Σj!j

∗b
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is a map from a compact object c = i
∗
i∗b. Now write U = M − L as an

increasing union of U` ⊂ U , with U ` compact and U ` ⊂ U`+1. As in the proof
of Lemma 1.2, we write

j!j
∗b = colim

−→
{j`}!j

∗

` b

with j` : U` −→ U the inclusion. The compactness of i
∗
i∗b guarantees that the

map

i
∗
i∗b −−−−→ Σj!j

∗b

must factor as

i
∗
i∗b −−−−→ Σ{j`}!j

∗

` b −−−−→ Σj!j
∗b.

But now i
∗
i∗b is supported on L, while {j`}!j

∗

` b is supported on the compact

set U ` ⊂M − L. The map between them must vanish. In the triangle

j!j
∗b −−−−→ b −−−−→ i

∗
i∗b

β
−−−−→ Σj!j

∗b.

we have shown that the map β vanishes. We conclude that there is an isomor-
phism in the derived category

b ∼= i
∗
i∗b⊕ j!j

∗b.

Now let x be a point in K on the boundary of L; in the notation of the proof
of Lemma 1.6 this means that ϕ(x) = k. Then p−1(x) is the interval [k, k+ ε].
If we pull back the isomorphism b ∼= i

∗
i∗b ⊕ j!j

∗b to p−1(x) = [k, k + ε], we
have that b is the complex of constant sheaves on the interval [k, k+ ε], whose
value is the stalk of c at x, which by hypothesis is not acyclic. This complex is
quasi-isomorphic to a direct sum b ∼= i

∗
i∗b ⊕ j!j

∗b, where i is the inclusion of
the endpoint k and j the inclusion of the complement. But this is absurd; it is
easy to see that any map b −→ j!j

∗b must vanish.

2. The proof of Theorem 0.2

We need to prove that, for any Grothendieck abelian category A, the derived
category is well generated. By Proposition 5.1 in Alonso, Jeremı́as and Souto’s
paper [1], we know that there exists a ring R and a set of objects L ⊂ D(R)
for which the following is true.

Proposition 2.1. (=Proposition 5.1 in [1]) Let L
A

be the smallest local-

ising subcategory of D(R) containing L. Then the derived category D(A) of A

is equivalent to the quotient D(A) ∼= D(R)/L
A
.

The category D(R) is compactly generated, hence well generated. By Propo-
sition 8.4.2 of [6] (more precisely by part (8.4.2.3) of the Proposition),

D(R) =
⋃

α

{D(R)}α.

Since L is a set of objects, the coproduct of all the objects in L is an object
of D(R), and therefore must lie in {D(R)}α for some regular cardinal α. Now

apply Theorem 4.4.9 of [6]. We have that, for any regular cardinal β ≥ α, L
β
A
is
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just 〈L〉β , the smallest β-localising subcategory containing L, while {D(R)}β =

〈R〉β is the smallest β-localising subcategory containing R. And if β > ℵ0, then

{D(A)}β = {D(R)}β/Lβ
A
. The categories L

β
A
, {D(R)}β and {D(A)}β are all

essentially small, and generate L
A
, D(R) and D(A) respectively. It follows

that D(A) is well generated.
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