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Abstract.

Let F be a field of characteristic different from 2 and assume that F
satisfies the strong approximation theorem on orderings (F is a SAP
field) and that I3(F ) is torsion-free. We prove that the 2-primary
component of the torsion subgroup of the Brauer group of F is a
divisible group and we prove a structure theorem on the 2-primary
component of the Brauer group of F . This result generalizes well-
known results for algebraic number fields. We apply these results to
characterize the trace form of a central simple algebra over such a
field in terms of its determinant and signatures.
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1 Introduction and Preliminaries

Let A be a central simple algebra over a field F of characteristic different from
2. The quadratic form q : A→ F given by x 7→ TrdA(x

2) ∈ F is called the trace
form of A, and is denoted by TA. This trace form has been studied by many
authors (cf.[Le], [LM], [Ti] and [Se], Annexe §5 for example). In particular, its
classical invariants are well-known (loc.cit.).
In this article, we prove some divisibility results for the Brauer group of fields
F under the assumption that F satisfies the strong approximation theorem on
orderings (F is a SAP field) and I3(F ) is torsion-free. Then we apply these
results to characterize the trace form of a central simple algebra over such a
field in terms of its determinant and signatures.
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490 Grégory Berhuy, David B. Leep

First we review the necessary background for this article. For a field F , Br(F )
denotes the Brauer group of F . If p is a prime number, p Br(F ) denotes the
p-primary component of Br(F ). If n ≥ 1, Brn(F ) denotes the kernel of multi-
plication by n in the Brauer group. If A is a central simple algebra over F , the
exponent of A, denoted by expA, is the order of [A] in Br(F ) and the index of
A, denoted by indA, is the degree of the division algebra which corresponds to
A. We know that expA divides indA. If a, b ∈ F×, we denote by (a, b)F the
corresponding quaternion algebra, or simply (a, b) if no confusion is possible.
We also use the same symbol to denote its class in the Brauer group.
We refer to [D], [J], or [Sc] for more information on central simple algebras over
general fields.
In the following, all quadratic forms are nonsingular. If q is a quadratic form
over F , dim q is the dimension of q and det q ∈ F×/F×2 is the determinant of
q. We denote by H the hyperbolic plane.
If q ' 〈a1, · · · , an〉, the Hasse-Witt invariant of q is given by w2(q) =
∑

i<j

(ai, aj) ∈ Br2(F ).

If a1, · · · , an ∈ F×, the quadratic form 〈〈a1, · · · , an〉〉 := 〈1,−a1〉⊗· · ·⊗〈1,−an〉
is called an n-fold Pfister form.
If F is a formally real field, the space of orderings of F is denoted by ΩF .
We let signv(q) ∈ Z denote the signature of q relative to an ordering v ∈ ΩF .
Thus signv(q) is the difference between the number of positive elements and
the number of negative elements in any diagonalization of q.
If n ≥ 1, In(F ) is the nth power of the fundamental ideal of the Witt ringW (F )
of F . We denote by In(F )t the kernel of the map In(F ) → ∏

v∈ΩF

In(Fv). We

will say that In(F ) is torsion-free if In(F )t = 0. A field F satisfies property
An if every torsion n-fold Pfister form defined over F is hyperbolic over F .
See [EL2], section 4, for more details on property An. The absolute stability
index of F , denoted sta(F ) is the smallest nonnegative integer n such that
In+1(F ) = 2In(F ) (or ∞, if no such integer exists). See [EP], p. 1248 for
more details. The reduced stability index of F , denoted str(F ) is the smallest
nonnegative integer n such that In+1(F ) ≡ 2In(F ) mod W (F )t. See [La2],
Chapter 13, for more details.
A field F satisfies the strong approximation property (SAP ) if for every clopen
set X of ΩF there exists a ∈ F× such that a >v 0 if v ∈ X and a <v 0
otherwise. See [La2] for various equivalent definitions and basic properties of
SAP fields. If q is a quadratic form defined over F , then q̂ ∈ C(ΩF ,Z) is the
continuous function q̂ : ΩF −→ Z defined by q̂(v) = signv(q) for every v ∈ ΩF .
If M is a discrete torsion Galois-module of exponent m, prime to the charac-
teristic of F , Hn(F,M) denotes the n-th cohomology group
Hn(Gal(F sep/F ),M). The group Hn(F,M)t denotes the kernel of the map
Hn(F,M) → ∏

v∈ΩF

Hn(Fv,M). If L/F is any field extension, ResL/F denotes

the restriction map. We then have ResL/F (w2(q)) = w2(qL) for any quadratic
form q over F . If L/F is a finite Galois extension, CorL/F denotes the core-
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striction map.
In this paper, we deal only with the case when n is even, because we know that

TA ' n < 1 >⊥ n(n− 1)

2
H when n is odd (cf.[Se], Annexe §5 for example).

An abelian group G is divisible if for all n ≥ 1, we have G = nG. If J is any
set, G(J) is the group of families of elements of G indexed by J , with finite
supports.
In the following, F always denotes a field of characteristic different from 2, and
K = F (

√
−1).

We now recall some results about the classical invariants of trace forms of
central simple algebras:

Theorem 1.1. Let A be a central simple algebra over F of degree n. Then we
have:

1. dim TA = n2

2. det TA = (−1)
n(n−1)

2

3. We have signv TA = ±n for each v ∈ ΩF , and signv TA = n if and only if
ResFv/F ([A]) = 0, where Fv is the real closure of (F, v).

4. If n = 2m ≥ 2, then w2(TA) =
m(m− 1)

2
(−1,−1) +m[A]

The three first statements can be found in [Le], and the last one is proved in
[LM] or [Ti] for example.

2 Divisibility results in the Brauer group

Proposition 2.1. Let θ : I3(F ) −→ ∏

v∈ΩF

I3(Fv)/I
4(Fv). If str(F ) ≤ 4, then

ker(θ) = I3(F )t + I4(F ).

Proof. It is clear that ker(θ) ⊇ I3(F )t + I4(F ). Now let q ∈ I3(F ) and
assume q ∈ ker(θ). Then qv ∈ I4(Fv) and this implies 16|signv(q) for each
v ∈ ΩF . Thus q̂ ∈ C(ΩF , 16Z). Since str(F ) ≤ 4, Theorem 13.1 of [La2]
applied to the preorder T =

∑

F 2 implies there exists q0 ∈ I4(F ) such that
q̂ = q̂0. Then q− q0 ∈ I3(F )∩W (F )t = I3(F )t and hence q ∈ I3(F )t + I4(F ).
2

Corollary 2.2. Let θ̄ : I3(F )/I4(F ) −→ ∏

v∈ΩF

I3(Fv)/I
4(Fv). If I3(F )t = 0

and str(F ) ≤ 4, then θ̄ is injective and H3(F, µ2)t = 0.

Proof. The hypothesis and Proposition 2.1 imply ker(θ) = I4(F ). There-
fore ker(θ̄) = (0) and θ̄ is injective. Since I3(F )/I4(F ) ' H3(F, µ2), and
I3(Fv)/I

4(Fv) ' H3(Fv, µ2) by [MS1] and [MS2], it follows H3(F, µ2)t = 0. 2
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Proposition 2.3. Assume that I3(F )t = 0 and str(F ) ≤ 4. Let α ∈
H2(F, µ2r )t (r ≥ 1). Then there exists β ∈ H2(F, µ2r+1) such that α = 2β.

Proof. The exact sequence

1→ µ2 → µ2r+1 → µ2r → 1

(where the last map is squaring) induces the following commutative diagram
with exact rows

H2(F, µ2r+1) −−−−→ H2(F, µ2r ) −−−−→ H3(F, µ2)




y





y





y

∏

v∈ΩF

H2(Fv, µ2r+1) −−−−→ ∏

v∈ΩF

H2(Fv, µ2r ) −−−−→
∏

v∈ΩF

H3(Fv, µ2).

Since the third vertical map is injective by Corollary 2.2, a diagram chase gives
the conclusion. 2

In Theorem 2.7 below, we need a hypothesis that is slightly stronger than the
one occurring in Proposition 2.3. The following result gives a characterization
of this hypothesis.

Proposition 2.4. Let K = F (
√
−1). The following statements are equivalent.

1. F satisfies property A3 and sta(F ) ≤ 2.

2. I3(F )t = 0 and str(F ) ≤ 2.

3. sta(K) ≤ 2.

4. I3(K) = 0.

5. H3(K,µ2) = 0.

Proof. (4) ⇐⇒ (5): I3(K) = 0 if and only if I3(K)/I4(K) = 0 by the
Arason-Pfister Hauptsatz, and I3(K)/I4(K) ' H3(K,µ2) by [MS1] and [MS2].
(3) ⇐⇒ (4): sta(K) ≤ 2 means I3(K) = 2I2(K) and this holds if and only if
I3(K) = 0, since 〈1, 1〉 = 0 implies 2I2(K) = 0.
(1) ⇐⇒ (3): This is [EP], Theorem 3.3.
(1) =⇒ (2): Property A3 implies I3(F )t = 0, by [EL1], Theorem 3 and Corol-
lary 3. It is clear that sta(F ) ≤ 2 implies str(F ) ≤ 2, by [La2], Theorem
13.1(3).
(2) =⇒ (1): Clearly I3(F )t = 0 implies F satisfies property A3. Let q be a
3-fold Pfister form defined over F . Then there exists q′ ∈ I2(F ) such that
q − 2q′ ∈ I3(F )t = 0. Thus q = 2q′ with q′ ∈ I2(F ) and it follows I3(F ) =
2I2(F ). 2

Proposition 2.5. If str(F ) ≤ 2, then for every β ∈ H2(F, µ2r+1), there exists
β′ ∈ H2(F, µ2r+1)t such that 2β′ = 2β.
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Proof. Since the characteristic of F is not 2, we have H2(F, µ2r+1) '
Br2r+1(F ). Let A be a central simple algebra over F such that β = [A],
and set X = {v ∈ ΩF , signv TA = n}, where n = degA. Then Xc = {v ∈
ΩF , signv TA = −n} by Theorem 1.1. Since the total signature map is continu-
ous with respect to the topology on ΩF , the set X is clopen. Since str(F ) ≤ 2

and X is clopen, there exists q ∈ I2(F ) such that signv(q) =

{

4, if v /∈ X

0, if v ∈ X.
In

the Witt ringWF we have q =
∑n

i=1〈〈ai, bi〉〉, with ai, bi ∈ F×. Let B be a cen-
tral simple algebra over F such that [B] =

∑n
i=1(ai, bi)F . Let γ ∈ H2(F, µ2r+1)

be such that γ = [B] under the isomorphism H2(F, µ2r+1) ' Br2r+1(F ).
Now set β′ = β + γ. We clearly have 2β′ = 2β. Moreover, if v ∈ X, then
ResFv/F (β) = 0 by Theorem 1.1 and ResFv/F (γ) = 0 by the choice of B.
Similar arguments show that ResFv/F (β

′) = 0 for all v /∈ X. It follows that
β′ ∈ H2(F, µ2r+1)t. 2

Remark 2.6. In Proposition 2.5, a stronger conclusion is possible if we also
assume that F is a SAP field. This is equivalent to assuming str(F ) ≤ 1. (See
[La2].) In this case there exists an element a ∈ F× such that a >v 0 if v ∈ X
and a <v 0 if v /∈ X. Let γ ∈ H2(F, µ2r+1) be such that γ = (−1, a)F under
the isomorphism H2(F, µ2r+1) ' Br2r+1(F ). Now set β′ = β + γ. We clearly
have 2β′ = 2β. We finish as before. This observation will be used in the proof
of Theorem 2.8.

Theorem 2.7. Assume I3(F )t = 0 and str(F ) ≤ 2. Then 2 Br(F )t is a divis-
ible group.

Proof. It suffices to check that for all [B] ∈ 2 Br(F )t and all primes p,
there exists [A] ∈ 2 Br(F )t such that p[A] = [B]. Let [B] ∈ 2 Br(F )t. Then,
there exists r ≥ 1 such that 2r[B] = 0. Assume first that p is odd. Then
gcd(p, 2r) = 1, so there exist n,m ∈ Z such that np +m2r = 1. Then [B] =
(np+m2r)[B] = p(n[B]). If p = 2, apply Proposition 2.3 and Proposition 2.5.
2

We now give a structure theorem on the 2-primary component of the Brauer
group. We denote by

∑

F 2 the multiplicative subgroup of F× of nonzero sums
of squares. We use the notation of [K].

Theorem 2.8. Assume that I3(F )t = 0 and F is SAP. Let T (resp. Λ) be an
index set of a Z/2Z-basis of Br2(F )t (resp. of F

×/
∑

F×2). Then we have the
following group isomorphism

2 Br(F ) ' Z(2∞)(T ) × (Z/2Z)(Λ).

Proof. Theorem 2.7 implies that 2 Br(F )t is a divisible group. Since every
element of 2 Br(F )t has 2-power order, the structure theorems on divisible
groups (see [K] for example) imply that this group is isomorphic to Z(2∞)(T ),
where T is an index set of a basis of the 2-torsion part of 2 Br(F )t, namely
Br2(F )t.
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Let [A] ∈ 2 Br(F ). Remark 2.6 shows that there exists a ∈ F× such that
[A′] := [A] + (−1, a) is a torsion element. Choose elements aλ ∈ F× such that
(aλ

∑

F×2)λ∈Λ is a Z/2Z-basis of F×/
∑

F×2. Then a = b
∏

λ∈Λ

arλλ , where b ∈
∑

F 2 and rλ = 0 or 1. Since b is a sum of squares, (−1, b) is a torsion element,
so we have a decomposition [A] = [B] +

∑

rλ(−1, aλ), where [B] = [A′] +
(−1, b) is a torsion element. Now we show that [B] and the rλ’s are uniquely
determined. Assume that [B] +

∑

rλ(−1, aλ) = 0. Then (−1,
∏

arλλ ) = −[B]
is a torsion element. This implies that

∏

arλλ is positive at all orderings of F ,
so
∏

arλλ is a sum of squares. By choice of the aλ’s, this implies that rλ = 0
for all λ ∈ Λ and hence that [B] = 0. 2

3 Trace forms of central simple algebras

In this section, we give realization theorems for trace forms of central simple
algebras.

Theorem 3.1. Let n = 2m ≥ 2 be an even integer. Assume that F is SAP and
I2(F ) is torsion-free. Then a quadratic form q is isomorphic to the trace form
of a central simple algebra of degree n if and only if the following conditions
are satisfied :

1. dim q = n2

2. det q = (−1)
n(n−1)

2

3. signv q = ±n, for all v ∈ ΩF .

Proof. The necessity follows from Theorem 1.1. Conversely, let q be a
quadratic form satisfying the conditions above. Since I2(F ) is torsion-free, it
is well-known that quadratic forms are classified by dimension, determinant
and signatures (see [EL1]). Let X = {v ∈ ΩF , signv q = n}. This is a clopen
set, so the SAP property of F implies there exists a ∈ F× such that a >v 0 if
v ∈ X and a <v 0 otherwise. Set A = Mm((−1, a)). Then ResFv/F ([A]) = 0 if
and only if signv q = n, so TA and q have the same signatures. Since they also
have equal dimension and determinant, they are isomorphic. 2

The following proposition gives a characterization of fields that satisfy the
hypotheses of Theorem 3.1. Note the similarity to Proposition 2.4.

Proposition 3.2. Let K = F (
√
−1). The following statements are equivalent.

1. F satisfies property A2 and F is a SAP field (sta(F ) ≤ 1).

2. I2(F )t = 0 and F is a SAP field (str(F ) ≤ 1).

3. sta(K) ≤ 1.

4. I2(K) = 0.
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5. u(K) ≤ 2.

6. ũ(F ) ≤ 2.

7. I2(F )t = 0 and F is linked.

Proof. The proof of the equivalence of (1)-(4) is very similar to the proof
of the equivalence of the corresponding statements in Proposition 2.4. The
equivalence of (4) and (5) is well-known. The equivalence of (6) and (7) appears
in [E]. The equivalence of (2) and (6) appears in [ELP]. 2

We now give a characterization of fields F such that I2(F ) is torsion-free in
terms of Brauer groups.

Proposition 3.3. I2(F ) is torsion-free if and only if Br(F ) has no element
of order 4.

Proof. Assume that [A] ∈ Br(F ) has order 4, so [A] ∈ H2(F, µ4). Then
2[A] ∈ H2(F, µ2) has order 2. Moreover, it is well-known that the image of
[A] ∈ H2(F, µ4) 7→ 2[A] ∈ H2(F, µ2) is the kernel of
[B] ∈ H2(F, µ2) 7→ (−1)∪ [B] ∈ H3(F, µ2) (see for example [LLT], Proposition
A2 and Remark A3). So (−1) ∪ 2[A] = 0, that is 2[A] = CorK/F ([B]) for
some [B] ∈ H2(K,µ2). Since H2(K,µ2) is generated by elements of the form
(a, b), a ∈ F×, b ∈ K×, the transfer formula shows that 2[A] =

∑

(ai,NK/F (bi))
for some ai ∈ F× and bi ∈ K×. Since 2[A] has order 2, it is not split, so there
exists i such that (ai,NK/F (bi)) is not split. Then the norm form of this
quaternion algebra is not hyperbolic, and it is a torsion 2-fold Pfister form,
since NK/F (bi) is the sum of 2 squares.
Conversely, assume that I2(F ) is not torsion-free. Then property A2 fails (see
[EL2], section 4). Theorem 4.3(3) in [EL2] (with x = 1) implies that there
exists a binary form 〈1,−a〉 and an element b = u2 + v2, with u, v ∈ F , such
that 〈1,−a〉 does not represent b. This means 〈〈a, b〉〉 is an anisotropic 2-fold

Pfister form and b is not a square. Let L := F (
√

b+ v
√
b). Then L/F is a cyclic

quartic extension which contains F (
√
b). Denote by σ a generator of Gal(L/F )

and let A be the cyclic algebra (a, L/F, σ) (see [Sc] for the definition and basic
properties of cyclic algebras). It is not difficult to show that 2[A] = (a, b) (for
example use [J], Corollary 2.13.20). By construction, the norm form of this
quaternion algebra is not hyperbolic, so 2[A] is not split, and [A] has order 4.
2

We now apply the results of section 2 to prove the following theorem:

Theorem 3.4. Let n = 2m ≥ 2 be an even integer.
Write n = 2r+1s, r ≥ 0, s ≥ 1 odd. Assume that F satisfies the following
conditions:

(a) I3(F ) is torsion-free

(b) For every [A] ∈ Br(F ) such that 2r+1[A] = 0, there exists A′, degA′ =
2r+1 such that [A′] = [A]

Documenta Mathematica 6 (2001) 489–500



496 Grégory Berhuy, David B. Leep

(c) If r ≥ 1, assume str(F ) ≤ 2.

Then a quadratic form q is isomorphic to the trace form of a central simple
algebra of degree n if and only if the following conditions are satisfied :

1. dim q = n2

2. det q = (−1)
n(n−1)

2

3. signv q = ±n, for all v ∈ ΩF .

Before we begin the proof of this theorem, we need the following calculation.

Lemma 3.5. Let n = 2m, m ≥ 1, and assume F is a real closed field.

Let q+ = n〈1〉 ⊥ n(n− 1)

2
H and let q− = n〈−1〉 ⊥ n(n− 1)

2
H. Then

w2(q+) =
m(m− 1)

2
(−1,−1)F and w2(q−) =

(

m(m− 1)

2
+m

)

(−1,−1)F .

In particular, if m is odd, then w2(q+) 6= w2(q−).

Proof. Let A = Mn(F ) and let B = Mm((−1,−1)). Then degA = degB =
n and hence Theorem 1.1 implies sign(TA) = n and sign(TB) = −n. This
implies TA ' q+ and TB ' q−. In addition, Theorem 1.1 implies

w2(q+) = w2(TA) =
m(m− 1)

2
(−1,−1) +m[A] =

m(m− 1)

2
(−1,−1)

and

w2(q−) = w2(TB) =
m(m− 1)

2
(−1,−1) +m(−1,−1)

=

(

m(m− 1)

2
+m

)

(−1,−1).

The last statement of this Lemma is clear since (−1,−1)F 6= 0 if F is real
closed. 2

Proof of Theorem 3.4 Notice that property (a) implies that quadratic forms
are classified by dimension, determinant, Hasse-Witt invariant and signatures
(see [EL1]).
The necessity follows from Theorem 1.1. Now suppose q satisfies (1)-(3). As-
sume first that r = 0, so m is odd. By hypothesis, there exists a quaternion

algebra Q such that [Q] = w2(q) +
m(m− 1)

2
(−1,−1)F . Let A = Mm(Q).

Then

w2(TA) =
m(m− 1)

2
(−1,−1)F +m[Q] =

m(m− 1)

2
(−1,−1)F + [Q] = w2(q).

We have signv(TA) = n if and only if ResFv/F ([Q]) = 0, by Theorem 1.1, which

is equivalent to w2(qFv ) =
m(m− 1)

2
(−1,−1)Fv . This occurs if and only if
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qFv ' q+, by Lemma 3.5, since m is odd and signv(q) = ±n. Thus q and
TA have the same signatures. Since q and TA also have the same dimension,
determinant and Hasse-Witt invariant, it follows that they are isomorphic.
Assume now that r ≥ 1. Let B be a central simple algebra over F such that

[B] = w2(q) +
m(m− 1)

2
(−1,−1)F . Since m is even and signv(q) = ±n, it

follows from Lemma 3.5 that

ResFv/F ([B]) = ResFv/F (w2(q) +
m(m− 1)

2
(−1,−1)Fv ) = 0

for all v ∈ ΩF . By Theorem 2.7, there exists [A1] ∈ 2 Br(F )t such that 2r[A1] =
[B]. Let X = {v ∈ ΩF , signv q = n}. Since X is clopen and str(F ) ≤ 2,
we can use the ideas in the proof of Proposition 2.5 to find a central simple
algebra D over F such that 2[D] = 0 and such that [A2] = [A1] + [D] satisfies
ResFv/F [A2] = 0 if and only if signv(q) = n. Then 2r[A2] = [B] since r ≥ 1.
Since 2[B] = 0, we have 2r+1[A2] = 0, and so by assumption there exists a
central simple algebra A3, degA3 = 2r+1, such that [A3] = [A2]. Now set
A = Ms(A3), and note that A has degree n. Since A and A2 are Brauer
equivalent, q and TA have equal signatures by construction of A2. Since

m[A] = 2rs[A2] = s[B] = [B] =
m(m− 1)

2
(−1,−1)F + w2(q),

it follows that w2(TA) =
m(m− 1)

2
(−1,−1)F +m[A] = w2(q). Thus q and TA

are isomorphic, since they have the same dimension, determinant, Hasse-Witt
invariant, and signature. 2

Corollary 3.6. Assume F satisfies the following conditions.

(a) I3(F ) is torsion-free

(b′) For every r ≥ 0 and for every [A] ∈ Br(F ) such that 2r+1[A] = 0, there
exists A′, degA′ = 2r+1 such that [A′] = [A].

Then a quadratic form q is isomorphic to the trace form of a central simple
algebra of degree n if and only if the following conditions are satisfied :

1. dim q = n2

2. det q = (−1)
n(n−1)

2

3. signv q = ±n, for all v ∈ ΩF .

Proof. This follows immediately from the Theorem 3.4 and the following
observation. Condition (b′) with r = 0 implies that F is a linked field. That is,
a sum of quaternion algebras defined over F is similar to another quaternion
algebra defined over F . A theorem of Elman ([E]) states that a field F is linked
and has I3(F )t = 0 if and only if ũ(F ) ≤ 4. It is known that if ũ(F ) < ∞,
then F is a SAP field (see [ELP]). Thus condition (c) in Theorem 3.4 holds
automatically in the situation of Corollary 3.6. 2
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Remark 3.7. Condition (b) is realized for example when expA = indA for ev-
ery central simple algebra. In particular, it is the case when every central simple
algebra is cyclic. For example, condition (b) holds for local fields, global fields
or quotient fields of excellent two-dimensional local domains with algebraically
closed residue fields of characteristic zero, e.g. finite extensions of C((X,Y ))
(see [CTOP], Theorem 2.1 for the last example and [CF] for the others). Such
fields also satisfy condition (a). This is well-known for local fields and global
fields (see [CF]). If F is a field of the last type, then I3(F ) = 0 (see [CTOP],
Corollary 3.3).

We finish this paper giving a local-global principle for trace forms over global
fields.

Corollary 3.8. Let F be a global field of characteristic different from 2, and
let n = 2m ≥ 2 be an even integer. Then a quadratic form q over F is
isomorphic to the trace form of a central simple algebra of degree n defined
over F if and only if q is isomorphic to the trace form of a central simple
algebra of degree n defined over all completions of F .

Proof. Assume that q is a trace form over all completions of F . Then dim q =

n2. By assumption, (−1)
n(n−1)

2 det q is a nonzero square over all completions

of F , so it is a nonzero square in F , and hence det q = (−1)
n(n−1)

2 ∈ F×/F×2.
Since q is a trace form over all real completions of F , we have signv q = ±n for
all real places v of F , according to whether qFv is isomorphic to the trace form
of the split algebra or that of Mm((−1,−1)Fv ). Now apply Theorem 3.4. The
other implication is clear, since (TA)L ' TA⊗L for every central simple algebra
over F , and every field extension L/F . 2

The fact that qFp
' TAp

for all places p implies that q ' TA does not mean
that A ⊗ Fp ' Ap for all places. We sketch below the construction of a coun-
terexample.

Example 3.9. We refer to [CF] for the definition of invp and the theorems con-
cerning central simple algebras over global fields.
Assume n ≡ 0 [8]. Let p1, p2 be two places of F . For i = 1, 2, let Ai be a

central simple of degree n over Fpi such that invpi [Ai] =
1

n
, and let Ap be

Mn(Fp) for the other places over F . Now let qp be the trace form of Ap. We

have w2(qp) 6= 0 if and only if p = p1, p2. Moreover det qp = (−1)
n(n−1)

2 for all
p, so by [Sc], 6.6.10, there exists a quadratic form q over F such that qFp

' qp.
So q is locally a trace form, then q is the trace form of some central simple
algebra A over F , but we can never have A⊗Fp ' Ap for all p. Otherwise, we
will have

∑

invp([A]) = 0 ∈ Q/Z, which is not the case by choice of the Ap’s.
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