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Stability of the Relativistic Electron-Positron Field

of Atoms in Hartree-Fock Approximation:

Heavy Elements 1

Raymond Brummelhuis, Norbert Röhrl, Heinz Siedentop

Received: September 15, 2000

Communicated by Alfred K. Louis

Abstract. We show that the modulus of the Coulomb Dirac oper-
ator with a sufficiently small coupling constant bounds the modulus
of the free Dirac operator from above up to a multiplicative constant
depending on the product of the nuclear charge and the electronic
charge. This bound sharpens a result of Bach et al [2] and allows
to prove the positivity of the relativistic electron-positron field of an
atom in Hartree-Fock approximation for all elements occurring in na-
ture.

2000 Mathematics Subject Classification: 35Q40, 81Q10
Keywords and Phrases: Dirac operator, stability of matter, QED,
generalized Hartree-Fock states

1. Introduction

A complete formulation of quantum electrodynamics has been an elusive topic
to this very day. In the absence of a mathematically and physically complete
model various approximate models have been studied. A particular model
which is of interest in atomic physics and quantum chemistry is the the electron-
positron field (see, e.g., Chaix et al [4, 5]). The Hamiltonian of the electron-
positron field in the Furry picture is given by

H :=

∫
d3x : Ψ∗(x)Dg,mΨ(x) : +

α

2

∫
d3x

∫
d3y

: Ψ∗(x)Ψ(y)∗Ψ(y)Ψ(x) :

|x− y| ,

1 Financial support of the European Union and the Deutsche Forschungsgemein-

schaft through the TMR network FMRX-CT 96-0001 and grant SI 348/8-1 is gratefully

acknowledged.
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2 Brummelhuis, Röhrl, Siedentop

where the normal ordering and the definition of the meaning of electrons and
positrons is given by the splitting of L2(R2)⊗C4 into the positive and negative
spectral subspaces of the atomic Dirac operator

Dg,m =
1

i
α · ∇+mβ − g

|x| .

This model agrees up to the complete normal ordering of the interaction energy
and the omission of all magnetic field terms with the standard Hamiltonian as
found, e.g., in the textbook of Bjorken and Drell [3, (15.28)]. (Note that we
freely use the notation of Thaller [8], Helffer and Siedentop [6], and Bach et al
[2].)
From a mathematical point of view the model has been studied in a series of
papers [2, 1, 7]. The first paper is of most interest to us. There it is shown that
the energy E(ρ) := ρ(H) is nonnegative, if ρ is a generalized Hartree-Fock state
provided that the fine structure constant α := e2 is taken to be its physical
value 1/137 and the atomic number Z does not exceed 68 (see Bach et al [2,
Theorem 2]). This pioneering result is not quite satisfying from a physical
point of view, since it does not allow for all occurring elements in nature, in
particular not for the heavy elements for which relativistic mechanics ought to
be most important. The main result of the present paper is

Theorem 1. The energy E(ρ) is nonnegative in Hartree-Fock states ρ, if α ≤
(4/π)(1− g2)1/2(

√
4g2 + 9− 4g)/3.

We use g instead of the nuclear number Z = g/α as the parameter for the
strength of the Coulomb potential because this is the mathematically more
natural choice. For the physical value of α ≈ 1/137 the latter condition is
satisfied, if the atomic number Z does not exceed 117.
Our main technical result to prove Theorem 1 is

Lemma 1. Let g ∈ [0,
√

3/2] and

d =

{
1
3 (
√

4g2 + 9− 4g) m = 0√
1− g2 1

3 (
√

4g2 + 9− 4g) m > 0
.

Then we have for m ≥ 0

|Dg,m| ≥ d|D0,0|.(1)

The following graph gives an overview of the dependence of d on the coupling
constant g

Documenta Mathematica 6 (2001) 1–9
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Our paper is organized as follows: in Section 2 we show how Lemma 1 proves
our stability result. Section 3 contains the technical heart of our result. Among
other things we will prove Theorem 1 in that section. Eventually, Section 4
contains some additional remarks on the optimality of our result.

2. Positivity of the Energy

As mentioned in the introduction, a first – but non-satisfactory result as far
as it concerns heavy elements – is due to Bach et al [2]. Their proof consists
basically of three steps:
(i) They show that positivity of the energy E(ρ) in generalized Hartree-Fock
states ρ is equivalent to showing positivity of the Hartree-Fock functional

EHF : X → R,

EHF (γ) = tr(Dg,mγ) + αD(ργ , ργ)− α

2

∫
dxdy

|γ(x, y)|2
|x− y|

where D(f, g) := (1/2)
∫
R6 dxdyf(x)g(y)|x−y|−1 is the Coulomb scalar prod-

uct, X is the set of trace class operators γ for which |D0,m|γ is also trace class

and which fulfills −P− ≤ γ ≤ P+, and ργ(x) :=
∑4
σ=1 γ(x, x). (See [2], Section

3.)
(ii) They show, that the positivity of EHF follows from the inequality

|Dg,m| ≥ d|Dg,0|

(Inequality (1)), if α ≤ 4d/π (see [2], Theorem 2).
(iii) They show this inequality for d = 1 − 2g implying then the positivity of
E(ρ) in Hartree-Fock states ρ, if α ≈ 1/137 and Z ≤ 68.
From the first two steps, the proof of Theorem 1 follows using Lemma 1. –
Step (iii) indicates that it is essential to improve (1) which we shall accomplish
in the next section.

Documenta Mathematica 6 (2001) 1–9



4 Brummelhuis, Röhrl, Siedentop

3. Inequality Between Moduli of Dirac Operators

We now start with the main technical task, namely the proof of the key Lemma
1. We will first prove Inequality (1) in the massless case. Then we will roll
back the “massive” case to the massless one.
Because there is no easy known way of writing down |Dg,0| explicitly, we prove
the stronger inequality

D2
g,0 ≥ d2D2

0,0(2)

again following Bach et al [2]. However, those authors proceeded just using the
triangular inequality. In fact this a severe step. Instead we shall show (2) with

the sharp constant d2 = (
√

4g2 + 9 − 4g)2/9 in the massless case. Since the
Coulomb Dirac operator is essentially selfadjoint on D := C∞0 (R3 \ {0}) ⊗ C4

for g ≤
√

3/2, (2) is equivalent to showing

‖Dg,0f‖22 − d2‖D0,0f‖22 ≥ 0

for all f ∈ D.
Since the Coulomb Dirac operator – and thus also its square – commutes with
the total angular momentum operator, we use a partial wave decomposition.
The Dirac operator Dg,m in channel κ equals to

hg,m,κ :=

(
m− g

r − d
dr + κ

r
d
dr + κ

r −m− g
r

)
.

It suffices to show (2) for the squares of hg,0,κ and h0,0,κ for κ = ±1,±2, ....
Notice that hg,0,κ is homogeneous of degree -1 under dilations. Therefore it
becomes – up to a shift – a multiplication operator under (unitary) Mellin
transform. The unitary Mellin transform M : L2(0,∞) → L2(R), f 7→ f#

used here is given by

f#(s) =
1√
2π

∫ ∞

0

r−1/2−isf(r)dr.

Unitarity can be seen by considering the isometry

ι : L2(0,∞) −→ L2(−∞,∞)
f : r 7→ f(r) 7→ h : z 7→ ez/2f(ez)

.

The Mellin transform is just the composition of the Fourier transform and ι.
We recall the following two rules for f# =M(f) on smooth functions of com-
pact support in (0,∞).

(rαf)
#

(s) = f#(s+ iα)
(
d

dr
f

)#

(s) = (is+
1

2
)f#(s− i)

These two rules give

Mhg,0,κ

(
f+

f−

)
=

(
−g −is− 1

2 + κ
+is+ 1

2 + κ −g

)(
Mf+(s− i)
Mf−(s− i)

)
.

Documenta Mathematica 6 (2001) 1–9



Stability of Heavy Elements 5

If we denote above matrix by hMg,0,κ, we see that (2) is equivalent to

(3) (hMg,0,κ)∗hMg,0,κ − d2(hM0,0,κ)∗hM0,0,κ =
(
g2 + (1− d2)(s2 + (κ+ 1

2 )2) −2(κ− is)g
−2(κ+ is)g g2 + (1− d2)(s2 + (κ− 1

2 )2)

)
≥ 0,

where κ = ±1,±2, . . . . This is true if and only if the eigenvalues of the matrix
on the left hand side of (3) are nonnegative for all s ∈ R and κ = ±1,±2, . . . .
The eigenvalues are the solutions of the quadratic polynomial

λ2−2λ
(
g2 +(1−d2)(s2 +κ2 +

1

4
)
)

+
(
g2 +(1−d2)(s2 +κ2 +

1

4
)
)2−(1−d2)2κ2

− 4g2(s2 + κ2).

Hence the smaller one equals

λ1 = g2 + (1− d2)(s2 + κ2 +
1

4
)−

√
(1− d2)2κ2 + 4g2(s2 + κ2).

Here we can already see that d may not exceed 1, and that d = 1 is only
possible for g = 0. It the following we therefore restrict d to the interval [0, 1).
At first we look at the necessary condition λ1(s = 0) ≥ 0. Now,

λ1(s = 0) = g2 + (1− d2)(κ2 +
1

4
)− |κ|

√
(1− d2)2 + 4g2

is positive, if |κ| not in between the two numbers

√
(1− d2)2 + 4g2 ±

√
(1− d2)2 + 4g2 − 4(1− d2)(g2 + (1− d2)/4)

2(1− d2)

=

√
(1− d2)2 + 4g2 ± 2gd

2(1− d2)
.

But since we are only interested in integer |κ| ≥ 1, we want to get the critical

interval below 1 (to get the interval above 1 would require g >
√

3/2), i.e.,
√

(1− d2)2 + 4g2 + 2gd

2(1− d2)
≤ 1,

or – equivalently –
√

(1− d2)2 + 4g2 ≤ 2(1− d2)− 2gd.

Since by definition of d we have g ≤ (1 − d2)/d, the right hand side of above
inequality is non-negative. Hence, the above line is equivalent to

4g2 + 8dg − 3(1− d2) ≤ 0.(4)

Solving (4) for d yields

d ≤ 1/6
(
− 8g +

√
16g2 + 36

)
= 1/3

(√
4g2 + 9− 4g

)
.(5)

Documenta Mathematica 6 (2001) 1–9



6 Brummelhuis, Röhrl, Siedentop

We also need the solution for g:

g ≤ 1

2
(
√

3 + d2 − 2d) =
3

2

1− d2

√
3 + d2 + 2d

.(6)

We now compute the derivative

∂λ1

∂s
= 2s[1− d2 − 2g2

(
(1− d2)2κ2 + 4g2(s2 + κ2)

)−1/2
].

The possible extrema are s = 0 and the zeros of [. . . ]. We will show below that
under condition (5) only s = 0 is an extremum. It is necessarily a minimum,
since λ(s = ±∞) = ∞, which concludes the proof. Now we show [. . . ] > 0.
The expression obviously reaches the smallest value if we choose κ2 = 1 and
s = 0. In this case we get the inequality

4g4 − (1− d2)2((1− d2)2 + 4g2) < 0,

which implies

g2 <
1 +
√

2

2
(1− d2)2.(7)

By the necessary condition (6) we get a sufficient condition for (7) to hold

3

2

1− d2

√
3 + d2 + 2d

<

√
1 +
√

2

2
(1− d2).

Because d < 1 this is equivalent to

3 <
√

2

√
1 +
√

2(
√

3 + d2 + 2d)

and the right hand side is bigger than 3 for all d.
Before we proceed to the massive case, we note that we did not loose anything
in the above computation, i.e., our value of d2 is sharp for Inequality (2).
Next, we reduce the massive inequality to the already proven massless one. We
have the following relation between the squares of the massive and massless
Dirac operator

D2
g,m = D2

g,0 +m2 − 2mβg/|x|.
The above operator is obviously positive, but we will show in the following that
we only need a fraction of the massless Dirac to control the mass terms.
To implement this idea, we show

εD2
g,0 +m2 − 2mβg/|x| ≥ 0,(8)

if and only if ε ≥ g2.
To show (8), we note that from the known value of the least positive eigenvalue
of the Coulomb Dirac operator (see, e.g., Thaller [8]) we have D2

g,m ≥ m2(1−
g2). Scaling the mass with 1/ε and multiplying the equation by ε yields

ε
m2(1− g2)

ε2
≤ εD2

g,m/ε = εD2
g,0 +

1

ε
m2 − 2mβg/|x|.

Documenta Mathematica 6 (2001) 1–9



Stability of Heavy Elements 7

It follows that

εD2
g,0 +m2 − 2mβg/|x| ≥

(
1− 1/ε+

1− g2

ε

)
m2 =

(
1− g2

ε

)
m2,

showing (8), if ε ≥ g2. This is also necessary, since all inequalities in the proof
are sharp for f equal to the ground state eigenfunction.
With (8) the massive inequality follows in a single line:

D2
g,m = (1− g2)D2

g,0 + g2D2
g,0 +m2 − 2mβg/|x| ≥ (1− g2)d2D2

0,0.

4. Supplementary Remarks on the Necessity of the Hypothesis
g <
√

3/2

We wish to shed some additional light, on why g in our lemma does not exceed√
3/2. In this section we will show again that for the “squared” inequality

D2
g,m ≥ d2D2

0,m(9)

we inevitably get d2 ≤ 0 for g =
√

3/2. This is because there are elements
of the domain of D√3/2,m whose derivatives are not square integrable. One

example is the eigenfunction of the lowest eigenvalue.
For general g ∈ [0,

√
3/2] this function is given in channel κ = −1 as

ng

(
−g

1− s

)
rse−gmr,

where s =
√

1− g2 and ng is the normalization constant for the L2-norm. Its

derivative is square integrable, if and only if s > 1/2 or equivalently g <
√

3/2.
To make the argument precise, we compute the L2-norm of h√3/2,m,−1Ψβ and

h0,m,−1Ψβ with β ∈ (1, 2], g =
√

3/2, s = 1/2, m′ > 0, and

Ψβ := nβ

(
−g

−(s− 1)

)
rβse−gm

′r

with the normalization constant nβ . We will see that as β → 1, the first one
stays finite and the second one tends to infinity. This only leaves d2 ≤ 0 for
g =
√

3/2 in (9). The value of m′ is not relevant; it is just necessary to take
m 6= m′ if m = 0 to keep Ψβ square integrable. Now,

hg,m,−1Ψβ = nβ

(
−gm+ g2/r + (s− 1) ddr + (s− 1)/r
−g d

dr + g/r + (s− 1)m+ (s− 1)g/r

)
rβse−gm

′r

= nβ

(
g2 + (βs+ 1)(s− 1) + r(−gm− (s− 1)gm′)
−gβs+ g + (s− 1)g + r(g2m′ + (s− 1)m)

)
rβs−1e−gm

′r.

Writing the above function as

nβ

(
f1(β) + r · h1

f2(β) + r · h2

)
rβ/2−1e−gm

′r,

Documenta Mathematica 6 (2001) 1–9



8 Brummelhuis, Röhrl, Siedentop

we get the following expression for its norm

n2
β

∫ ∞

0

((f1(β) + r · h1)2 + (f2(β) + r · h2)2)rβ−2e−2gm′rdr.

The potentially unbounded terms are those involving f 2
i . Now, f1(β) = (1 −

β)/4, f2(β) = (1 − β)
√

3/2, and for a ∈ (−1, 0), b > 0 we have the straight
forward inequality

∫ ∞

0

rae−brdr ≤ 1

a+ 1
+

e−b

b
.

Hence

(1− β)2

∫ ∞

0

rβ−2e−2gm′r dr → 0 for β → 1.

Proceeding as before we get in the free case

h0,m,−1Ψβ = nβ

(
−gm+ (s− 1) ddr + (s− 1)/r
−g d

dr + g/r + (s− 1)m

)
rβse−gm

′r

= nβ

(
(βs+ 1)(s− 1) + r(−gm− (s− 1)gm′)
−gβs+ g + r(g2m′ + (s− 1)m)

)
rβs−1e−gm

′r.

But now the terms that depend on r like rβs−1 do not vanish for β → 1.
Therefore the L2-norm is unbounded.
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Compact Moduli Spaces of Stable Sheaves

over Non-Algebraic Surfaces

Matei Toma

Received: October 18, 2000

Communicated by Thomas Peternell

Abstract. We show that under certain conditions on the topolo-
gical invariants, the moduli spaces of stable bundles over polarized
non-algebraic surfaces may be compactified by allowing at the border
isomorphy classes of stable non-necessarily locally-free sheaves. As a
consequence, when the base surface is a primary Kodaira surface, we
obtain examples of moduli spaces of stable sheaves which are compact
holomorphically symplectic manifolds.

2000 Mathematics Subject Classification: 32C13

1 Introduction

Moduli spaces of stable vector bundles over polarized projective complex sur-
faces have been intensively studied. They admit projective compactifications
which arise naturally as moduli spaces of semi-stable sheaves and a lot is known
on their geometry. Apart from their intrinsic interest, these moduli spaces al-
so provided a series of applications, the most spectacular of which being to
Donaldson theory.
When one looks at non-algebraic complex surfaces, one still has a notion of
stability for holomorphic vector bundles with respect to Gauduchon metrics
on the surface and one gets the corresponding moduli spaces as open parts
in the moduli spaces of simple sheaves. In order to compactify such a moduli
space one may use the Kobayashi-Hitchin correspondence and the Uhlenbeck
compactification of the moduli space of Hermite-Einstein connections. But the
spaces one obtains in this way have a priori only a real-analytic structure. A
different compactification method using isomorphy classes of vector bundles on
blown-up surfaces is proposed by Buchdahl in [5] in the case of rank two vector
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bundles or for topological invariants such that no properly semi-stable vector
bundles exist.
In this paper we prove that under this last condition one may compactify the
moduli space of stable vector bundles by considering the set of isomorphy clas-
ses of stable sheaves inside the moduli space of simple sheaves. See Theorem 4.3
for the precise formulation. In this way one gets a complex-analytic structure
on the compactification. The idea of the proof is to show that the natural map
from this set to the Uhlenbeck compactification of the moduli space of anti-
self-dual connections is proper. We have restricted ourselves to the situation of
anti-self-dual connections, rather than considering the more general Hermite-
Einstein connections, since our main objective was to construct compactificati-
ons for moduli spaces of stable vector bundles over non-Kählerian surfaces. (In
this case one can always reduce oneself to this situation by a suitable twist). In
particular, when X is a primary Kodaira surface our compactness theorem com-
bined with the existence results of [23] and [1] gives rise to moduli spaces which
are holomorphically symplectic compact manifolds. Two ingredients are needed
in the proof: a smoothness criterion for the moduli space of simple sheaves and
a non-disconnecting property of the border of the Uhlenbeck compactification
which follows from the gluing techniques of Taubes.
Acknowledgments I’d like to thank N. Buchdahl, P. Feehan and H. Spindler
for valuable discussions.

2 Preliminaries

Let X be a compact (non-singular) complex surface. By a result of Gauduchon
any hermitian metric on X is conformally equivalent to a metric g with ∂∂̄-
closed Kähler form ω. We call such a metric a Gauduchon metric and fix one
on X. We shall call the couple (X, g) or (X,ω) a polarized surface and ω
the polarization. One has then a notion of stability for torsion-free coherent
sheaves.

Definition 2.1 A torsion-free coherent sheaf F on X is called reducible if it
admits a coherent subsheaf F ′ with 0 < rankF ′ < rankF , (and irreducible
otherwise). A torsion-free sheaf F on X is called stably irreducible if every
torsion-free sheaf F ′ with

rank(F ′) = rank(F), c1(F ′) = c1(F), c2(F ′) ≤ c2(F)

is irreducible.

Remark that if X is algebraic (and thus projective), every torsion-free coherent
sheaf F on X is reducible. But by [2] and [22] there exist irreducible rank-
two holomorphic vector bundles on any non-algebraic surface. Moreover stably
irreducible bundles have been constructed on 2-dimensional tori and on primary
Kodaira surfaces in [23], [24] and [1].
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We recall that on a non-algebraic surface the discriminant of a rank r torsion-
free coherent sheaf which is defined by

∆(F) =
1

r

(
c2(F)− (r − 1)

2r
c1(F)2

)

is non-negative [2].
Let Mst(E,L) denote the moduli space of stable holomorphic structures in a
vector bundle E of rank r > 1, determinant L ∈ Pic(X) and second Chern
class c ∈ H4(X,Z) ∼= Z. We consider the following condition on (r, c1(L), c):

(*) every semi-stable vector bundle E with rank(E) = r,
c1(E) = c1(L) and c2(E) ≤ c is stable.

Under this condition Buchdahl constructed a compactification ofMst(E,L) in
[5]. We shall show that under this same condition one can compactifyMst(E,L)
allowing simple coherent sheaves in the border. For simplicity we shall restrict
ourselves to the case degω L = 0. When b1(X) is odd we can always reduce
ourselves to this case by a suitable twist with a topologically trivial line bundle;
(see the following Remark).
The condition (*) takes a different aspect according to the parity of the first
Betti number of X or equivalently, according to the existence or non-existence
of a Kähler metric on X.

Remark 2.2 (a) When b1(X) is odd (*) is equivalent to: ”every torsion free
sheaf F on X with rank(F) = r, c1(F) = c1(L) and c2(F) ≤ c is irre-
ducible”, i.e. (r, c1(L), c) describes the topological invariants of a stably
irreducible vector bundle.

(b) When b1(X) is even and c1(L) is not a torsion class in H2(X,Zr) one can
find a Kähler metric g such that (r, c1(L), c) satisfies (*) for all c.

(c) When b1(X) is odd or when degL = 0, (*) implies c < 0.

(d) If b2(X) = 0 then there is no torsion-free coherent sheaf on X whose
invariants satisfy (*).

Proof It is clear that the stable irreducibility condition is stronger than (*).
Now if a sheaf F is not irreducible it admits some subsheaf F ′ with 0 <
rankF ′ < rankF . When b1(X) is odd the degree function degω : Pic0(X) −→
R is surjective, so twisting by suitable invertible sheaves L1, L2 ∈ Pic0(X)
gives a semi-stable but not stable sheaf (L1 ⊗ F ′) ⊕ (L2 ⊗ (F/F ′)) with the
same Chern classes as F . Since by taking double-duals the second Chern class
decreases, we get a locally free sheaf

(L1 ⊗ (F ′)∨∨)⊕ (L2 ⊗ (F/F ′)∨∨)

which contradicts (*) for (rank(F), c1(F), c2(F)). This proves (a).
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For (b) it is enough to take a Kähler class ω such that

ω(r′ · c1(L)− r · α) 6= 0 for all α ∈ NS(X)/Tors(NS(X))

and integers r′ with 0 < r′ < r. This is possible since the Kähler cone is open
in H1,1(X).

For (c) just consider (L ⊗ L1) ⊕ O⊗(r−1)
X for a suitable L1 ∈ Pic0(X) in case

b1(X) odd. Finally, suppose b2(X) = 0. Then X admits no Kähler structure
hence b1(X) is odd. If F were a coherent sheaf on X whose invariants satisfy
(*) we should have

∆(F) =
1

r

(
c2 −

(r − 1)

2r
c1(L)2

)
=

1

r
c2 < 0

contradicting the non-negativity of the discriminant. ¤

3 The moduli space of simple sheaves

The existence of a coarse moduli space SplX for simple (torsion-free) sheaves
over a compact complex space has been proved in [12] ; see also [19]. The
resulting complex space is in general non-Hausdorff but points representing
stable sheaves with respect to some polarization on X are always separated.
In order to give a better description of the base of the versal deformation of a
coherent sheaf F we need to compare it to the deformation of its determinant
line bundle detF . We first establish

Proposition 3.1 Let X be a nonsingular compact complex surface, (S, 0) a
complex space germ, F a coherent sheaf on X×S flat over S and q : X×S → X
the projection. If the central fiber F0 := F|X×{0} is torsion-free then there exists
a locally free resolution of F over X × S of the form

0 −→ q∗G −→ E −→ F −→ 0

where G is a locally free sheaf on X.

Proof In [20] it is proven that a resolution of F0 of the form

0 −→ G −→ E0 −→ F0 −→ 0

exists on X with G and E0 locally free on X as soon as the rank of G is large
enough and

H2(X,Hom(F0, G)) = 0.

We only have to notice that when F0 and G vary in some flat families over S
then one can extend the above exact sequence over X × S. We choose S to be
Stein and denote by p : X × S → S the projection.
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From the spectral sequence relating the relative and global Ext-s we deduce
the surjectivity of the natural map

Ext1(X × S;F , q∗G) −→ H0(S, Ext1(p;F , q∗G)).

We can apply the base change theorem for the relative Ext1 sheaf if we know
that Ext2(X;F0, G) = 0 (cf. [3] Korollar 1). But in the spectral sequence

Hp(X, Extq(F0, G)) =⇒ Extp+q(X;F0, G)

relating the local Ext−s to the global ones, all degree two terms vanish since
H2(X;Hom(F0, G)) = 0 by assumption. Thus by base change

Ext1(X;F0, G) ∼= Ext1(p;F , q∗G)0

/
mS,0 · Ext1(p;F , q∗G)

and the natural map

Ext1(X × S;F , q∗G) −→ Ext1(X;F0, G)

given by restriction is surjective. ¤
Let X,S and F be as above. One can use Proposition 3.1 to define a morphism

det : (S, 0) −→ (Pic(X),detF0)

by associating to F its determinant line bundle detF .
The tangent space at the isomorphy class [F ] ∈ SplX of a simple sheaf F
is Ext1(X;F ,F) since SplX is locally around [F ] isomorphic to the base of
the versal deformation of F . The space of obstructions to the extension of a
deformation of F is Ext2(X;F ,F).
In order to state the next theorem which compares the deformations of F and
detF , we have to recall the definition of the trace maps

trq : Extq(X;F ,F) −→ Hq(X,OX).

When F is locally free one defines trF : End(F) −→ OX in the usual way
by taking local trivializations of F . Suppose now that F has a locally free
resolution F •. (See [21] and [10] for more general situations.) Then one defines

trF• : Hom•(F •, F •) −→ OX

by

trF• |Hom(F i,F j)=

{
(−1)itrF i , for i = j

0 , for i 6= j.

Here we denoted by Hom•(F •, F •) the complex having Homn(F •, F •) =⊕
i

Hom(F i, F i+n) and differential

d(ϕ) = dF• ◦ ϕ− (−1)degϕ · ϕ ◦ dF•
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for local sections ϕ ∈ Homn(F •, F •). trF• becomes a morphism of complexes
if we see OX as a complex concentrated in degree zero. Thus trF• induces
morphisms at hypercohomology level. Since the hypercohomology groups of
Hom•(F •, F •) and of OX are Extq(X;F ,F) and Hq(X,OX) respectively, we
get our desired maps

trq : Extq(X;F ,F) −→ Hq(X,OX).

Using tr0 over open sets of X we get a sheaf homomorphism tr :
End(F) −→ OX . Let End0(F) be its kernel. If one denotes the kernel of
trq : Extq(X;F ,F) −→ Hq(X,OX) by Extq(X,F ,F)0 one gets natural maps
Hq(X, End0(F)) −→ Extq(X,F ,F)0, which are isomorphisms for F locally
free.

This construction generalizes immediately to give trace maps

trq : Extq(X;F ,F ⊗N) −→ Hq(X,N)

for locally free sheaves N on X or for sheaves N such that T orOXi (N,F) vanish
for i > 0.

The following Lemma is easy.

Lemma 3.2 If F and G are sheaves on X allowing finite locally free resolutions
and u ∈ Extp(X;F ,G), v ∈ Extq(X;G,F) then

trp+q(u · v) = (−1)p·qtrp+q(v · u).

Theorem 3.3 Let X be a compact complex surface, (S, 0) be a germ of a com-

plex space and F a coherent sheaf on X×S flat over S such that F0 := F
∣∣∣
X×{0}

is torsion-free. The following hold.

(a) The tangent map of det : S → Pic(X) in 0 factorizes as

T0S
KS−→ Ext1(X;F ,F)

tr1

−→ H1(X,OX) = T[detF0](Pic(X)).

(b) If T is a zero-dimensional complex space such that OS,0 = OT,0/I for an
ideal I of OT,0 with I · mT,0 = 0, then the obstruction ob(F , T ) to the
extension of F to X × T is mapped by

tr2 ⊗C idI : Ext2(X;F0,F0 ⊗C I) ∼= Ext2(X;F0,F0)⊗C I −→
−→ H2(X,OX)⊗C I ∼= Ext2(X; detF0, (detF0)⊗C I)

to the obstruction to the extension of detF to X × T which is zero.
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Proof (a) We may suppose that S is the double point (0,C[ε]). We define the
Kodaira-Spencer map by means of the Atiyah class (cf. [9]).
For a complex space Y let p1, p2 : Y ×Y → Y be the projections and ∆ ⊂ Y ×Y
the diagonal. Tensoring the exact sequence

0 −→ I∆/I2
∆ −→ OY×Y /I2

∆ −→ O∆ −→ 0

by p∗2F for F locally free on Y and applying p1,∗ gives an exact sequence on Y

0 −→ F ⊗ ΩY −→ p1,∗(p
∗
2F ⊗ (OY×Y /I2

∆)) −→ F −→ 0.

The class A(F) ∈ Ext1(Y ;F ,F ⊗ ΩY ) of this extension is called the Atiyah
class of F . When F is not locally free but admits a finite locally free resolution
F • one gets again a class A(F) in Ext1(Y ;F ,F ⊗ΩY ) seen as first cohomology
group of Hom•(F •, F • ⊗ ΩY ).
Consider now Y = X × S with X and S as before, p : Y → S, q : Y → X the
projections and F as in the statement of the theorem.
he decomposition ΩX×S = q∗ΩX ⊕ p∗ΩS induces

Ext1(X × S; F ,F ⊗ ΩS×X) ∼=
Ext1(X × S; F ,F ⊗ q∗ΩX)⊕ Ext1(X × S; F ,F ⊗ p∗ΩS).

The component AS(F) of A(F) lying in Ext1(X×S; F ,F ⊗p∗ΩS) induces the
”tangent vector” at 0 to the deformation F through the isomorphisms

Ext1(X × S; F ,F ⊗ p∗ΩS) ∼= Ext1(X × S; F ,F ⊗ p∗mS,0) ∼=
Ext1(X × S; F ,F0) ∼= Ext1(X;F0,F0).

Applying now tr1 : Ext1(Y ;F ,F⊗ΩY )→ H1(Y ; ΩY ) to the Atiyah class A(F)
gives the first Chern class of F , c1(F) := tr1(A(F)), (cf. [10], [21]).
It is known that

c1(F) = c1(detF), i.e. tr1(A(F)) = tr1(A(detF)).

Now detF is invertible so

tr1 : Ext1(Y,detF , (detF)⊗ ΩY )) −→ H1(Y,ΩY )

is just the canonical isomorphism. Since tr1 is compatible with the decompo-
sition ΩX×S = q∗ΩX ⊕ p∗ΩS we get tr1(AS(F)) = AS(detF) which proves
(a).
(b) In order to simplify notation we drop the index 0 from OS,0,mS,0, OT,0,
mT,0 and we use the same symbols OS ,mS ,OT ,mT for the respective pulled-
back sheaves through the projections X × S → S, X × T → T .
There are two exact sequences of OS-modules:

(1) 0 −→ mS −→ OS −→ C −→ 0,

(2) 0 −→ I −→ mT −→ mS −→ 0.
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(Use I ·mT = 0 in order to make mT an OS-module.)

Let j : C→ OS be the C-vector space injection given by the C-algebra structure
of OS . j induces a splitting of (1). Since F is flat over S we get exact sequences
over X × S

0 −→ F ⊗OS mS −→ F −→ F0 −→ 0

0 −→ F ⊗OS I −→ F ⊗OS mT −→ F ⊗OS mS −→ 0

which remain exact as sequences over OX . Thus we get elements in
Ext1(X;F0,F ⊗OS mS) and Ext1(X;F ⊗OS mS ,F ⊗C I) whose Yoneda compo-
site ob(F , T ) in Ext2(X;F0,F⊗C I) is represented by the 2-fold exact sequence

0 −→ F ⊗OS I −→ F ⊗OS mT −→ F −→ F0 −→ 0

and is the obstruction to extending F from X × S to X × T , as is well-known.

Consider now a resolution

0 −→ q∗G −→ E −→ F −→ 0

of F as provided by Proposition 3.1, i.e. with G locally free on X and E locally
free on X × S. Our point is to compare ob(F , T ) to ob(E, T ).

Since F is flat over S we get the following commutative diagrams with exact
rows and columns by tensoring this resolution with the exact sequences (1) and
(2):

0

��

0

��

0

��

0 �� q∗G⊗C mS

��

�� q∗G

��

�� G0

��

�� 0

0 �� E ⊗OS mS ��

��

E ��

��

E0 ��

��

0

0 �� F ⊗OS mS ��

��

F ��

��

F0 ��

��

0

0 0 0

(1’)
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0

��

0

��

0

��

0 �� q∗G⊗C I

��

�� q∗G⊗C mT

��

�� q∗G⊗C mS

��

�� 0

0 �� E ⊗OS I ��

��

E ⊗OS mT

��

�� E ⊗OS mS ��

��

0

0 �� F ⊗OS I ��

��

F ⊗OS mT ��

��

F ⊗OS mS ��

��

0

0 0 0

(2’)

Using the section j : C→ OS we get an injective morphism of OX sheaves

G0
idq∗G⊗j−−−−−→ q∗G⊗C mT −→ E ⊗OS mT

which we call jG.

From (1′) we get a short exact sequence over X in the obvious way

0 −→ (E ⊗OS mS)⊕ jG(G0) −→ E −→ F0 −→ 0

Combining this with the middle row of (2′) we get a 2-fold extension

0 −→ (E ⊗OS I)⊕G0 −→ (E ⊗OS mT )⊕G0 −→ E −→ F0 −→ 0

whose class in Ext2(X;F0, (E ⊗OS I)⊗G0) we denote by u.

Let v be the surjection E → F and

v′ :=

(
v ⊗ idI

0

)
: (E ⊗OS I)⊕G0 −→ F ⊗OS I,

v′′ =

(
v0

0

)
: E0 ⊕G0 −→ F0,

the OX -morphisms induced by v.

The commutative diagrams

0 �� (E ⊗OS I)⊕G0 ��

v′
��

(E ⊗OS mT )⊕G0 ��

(v⊗idmT
0 )

��

��

��

E ��

��

F0 ��

��

0

0 �� F ⊗OS I �� F ⊗OS mT �� F �� F0 �� 0
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and

0 �� (E ⊗OS I)⊕G0 ��

��

(E ⊗OS mT )⊕G0 ��

id
��

E ⊕G0 ��

( idjG)
��

��

��

E0 ⊕G0 ��

v′′
��

0

0 �� (E ⊗OS I)⊕G0 �� (E ⊗mT )⊕G0 �� E �� F0 �� 0

show that ob(F , T ) = v′ · u and

(ob(E, T ), 0) = u · v′′ ∈ Ext2(X;E0 ⊕G0, (E ⊗OS I)⊕G0).

We may restrict ourselves to the situation when I is generated by one element.
Then we have canonical isomorphisms of OX -modules E0

∼= E ⊗OS I and
F0
∼= F ⊗OS I. By these one may identify v′ and v′′. Now the Lemma 3.2 on

the graded symmetry of the trace map with respect to the Yoneda pairing gives
tr2(ob(F , T )) = tr2(ob(E, T )).

But E is locally free and the assertion (b) of the theorem may be proved for it
as in the projective case by a cocycle computation.

Thus tr2(ob(E, T )) = ob(detE) and since det(E) = (detF) ⊗ q∗(detG) and
q∗(detG) is trivially extendable, the assertion (b) is true for F as well. ¤
The theorem should be true in a more general context. In fact the proof of (a)
is valid for any compact complex manifold X and flat sheaf F over X×S. Our
proof of (b) is in a way symmetric to the proof of Mukai in [17] who uses a
resolution for F of a special form in the projective case.

Notation For a compact complex surface X and an element L in Pic(X) we
denote by SplX(L) the fiber of the morphism det : SplX → Pic(X) over L.

Corollary 3.4 For a compact complex surface X and L ∈ Pic(X) the tangent
space to SplX(L) at an isomorphy class [F ] of a simple torsion-free sheaf F
with [detF ] = L is Ext1(X;F, F )0. When Ext2(X;F, F )0 = 0, SplX(L) and
SplX are smooth of dimensions

dim Ext1(X;F, F )0 = 2 rank(F )2∆(F )− (rank(F )2 − 1)χ(OX)

and

dim Ext1(X;F, F ) = dim Ext1(X;F, F )0 + h1(OX)

respectively.

We end this paragraph by a remark on the symplectic structure of the moduli
space SplX when X is symplectic.

Recall that a complex manifold M is called holomorphically symplectic if
it admits a global nondegenerate closed holomorphic two-form ω. For a surface
X, being holomorphically symplectic thus means that the canonical line bundle
KX is trivial. For such an X, SplX is smooth and holomorphically symplectic
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as well. The smoothness follows immediately from the above Corollary and a
two-form ω is defined at [F ] on SplX as the composition:

T[F ]SplX × T[F ]SplX ∼= Ext1(X;F, F )× Ext1(X;F, F ) −→

−→ Ext2(X;F, F )
tr2

−−→ H2(X,OX) ∼= H2(X,KX) ∼= C.

It can be shown exactly as in the algebraic case that ω is closed and nonde-
generate on SplX (cf. [17], [9]). Moreover, it is easy to see that the restriction
of ω to the fibers SplX(L) of det : SplX → Pic(X) remains nondegenerate, in
other words that SplX(L) are holomorphically symplectic subvarieties of SplX .

4 The moduli space of ASD connections and the comparison map

4.1 The moduli space of anti-self-dual connections

In this subsection we recall some results about the moduli spaces of anti-self-
dual connections in the context we shall need. The reader is referred to [6], [8]
and [14] for a thorough treatment of these questions.
We start with a compact complex surface X equipped with a Gauduchon metric
g and a differential (complex) vector bundle E with a hermitian metric h in its
fibers. The space of all C∞ unitary connections on E is an affine space modeled
on A1(X,End(E, h)) and the C∞ unitary automorphism group G, also called
gauge-group, operates on it. Here End(E, h) is the bundle of skew-hermitian
endomorphisms of (E, h). The subset of anti-self-dual connections is invariant
under the action of the gauge-group and we denote the corresponding quotient
by

MASD =MASD(E).

A unitary connection A on E is called reducible if E admits a splitting in
two parallel sub-bundles.
We use as in the previous section the determinant map

det :MASD(E) −→MASD(detE)

which associates to A the connection detA in detE. This is a fiber bund-
le over MASD(detE) with fibers MASD(E, [a]) where [a] denotes the gau-
ge equivalence class of the unitary connection a in detE. We denote by
Mst(E) = Mst

g (E) the moduli space of stable holomorphic structures in E
and by Mst(E,L) the fiber of the determinant map det :Mst(E) −→ Pic(X)
over an element L of Pic(X). Then one has the following formulation of the
Kobayashi-Hitchin correspondence.

Theorem 4.1 Let X be a compact complex surface, g a Gauduchon metric on
X, E a differentiable vector bundle over X, a an anti-self-dual connection on
detE (with respect to g) and L the element in Pic(X) given by ∂̄a on detE.
Then Mst(E,L) is an open part of SplX(L) and the mapping A 7→ ∂̄A gives
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rise to a real-analytic isomorphism between the moduli spaceMASD,∗(E, [a]) of
irreducible anti-self-dual connections which induce [a] on detE andMst(E,L).

We may also look at MASD(E, [a]) in the following way. We consider all anti-
self-dual connections inducing a fixed connection a on detE and factor by those
gauge transformations in G which preserve a. This is the same as taking gauge
transformations of (E, h) which induce a constant multiple of the identity on
detE. Since constant multiples of the identity leave each connection invariant,
whether on detE or on E, we may as well consider the action of the subgroup
of G inducing the identity on detE. We denote this group by SG, the quotient
space by MASD(E, a) and by MASD,∗(E, a) the part consisting of irreducible
connections. There is a natural injective map

MASD(E, a) −→MASD(E, [a])

which associates to an SG-equivalence class of a connection A its G-equivalence
class. The surjectivity of this map depends on the possibility to lift any unitary
gauge transformation of detE to a gauge transformation of E. This possi-
bility exists if E has a rank-one differential sub-bundle, in particular when
r := rankE > 2, since then E has a trivial sub-bundle of rank r − 2. In this
case one constructs a lifting by putting in this rank-one component the given
automorphism of detE and the identity on the orthogonal complement. A lif-
ting also exists for all gauge transformations of (detE,deth) admitting an r-th
root. More precisely, denoting the gauge group of (detE,deth) by U(1), it is
easy to see that the elements of the subgroup U(1)r := {ur | u ∈ U(1)} can be
lifted to elements of G. Since the obstruction to taking r-th roots in U(1) lies
in H1(X,Zr), as one deduces from the corresponding short exact sequence, we
see that U(1)r has finite index in U(1). From this it is not difficult to infer that
MASD(E, [a]) is isomorphic to a topologically disjoint union of finitely many
parts of the form MASD(E, ak) with [ak] = [a] for all k.

4.2 The Uhlenbeck compactification

We continue by stating some results we need on the Uhlenbeck compactification
of the moduli space of anti-self-dual connections. References for this material
are [6] and [8].
Let (X, g) and (E, h) be as in 4.1. For each non-negative integer k we consider
hermitian bundles (E−k, h−k) on X with rankE−k = rankE =: r, (detE−k,
deth−k) ∼= (detE,deth), c2(E−k) = c2(E)− k. Set

M̄U (E) :=
⋃

k∈N
(MASD(E−k)× SkX)

M̄U (E, [a]) :=
⋃

k∈N
(MASD(E−k, [a])× SkX)

M̄U (E, a) :=
⋃

k∈N
(MASD(E−k, a)× SkX)
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where SkX is the k-th symmetric power of X. The elements of these spaces are
called ideal connections. The unions are finite since the second Chern class
of a hermitian vector bundle admitting an anti-self-dual connection is bounded
below (by 1

2c
2
1).

To an element ([A], Z) ∈ M̄U (E) one associates a Borel measure

µ([A], Z) := |FA|2 + 8π2δZ

where δZ is the Dirac measure whose mass at a point x of X equals the mul-
tiplicity mx(Z) of x in Z. We denote by m(Z) the total multiplicity of Z. A
topology for M̄U (E) is determined by the following neighborhood basis for
([A], Z):

VU,N,ε([A], Z) = {([A′], Z ′) ∈ M̄U (E) | µ([A′], Z ′) ∈ U and there is an

L2
3 -isomorphism ψ : E−m(Z) |X\N−→ E−m(Z′) |X\N

such that ‖A− ψ∗(A′)‖L2
2(X\N) < ε}

where ε > 0 and U and N are neighborhoods of µ([A], Z) and supp (δZ)
respectively. This topology is first-countable and Hausdorff and induces the
usual topology on each MASD(E−k) × SkX. Most importantly, by the weak
compactness theorem of Uhlenbeck M̄U (E) is compact when endowed with
this topology,MASD(E) is an open part of M̄U (E) and its closure M̄ASD(E)
inside M̄U (E) is called the Uhlenbeck compactification of MASD(E).
Analogous statements are valid for MASD(E, [a]) and MASD(E, a).

Using a technique due to Taubes, one can obtain a neighborhood of an ir-
reducible ideal connection ([A], Z) in the border of MASD(E, a) by gluing
to A ”concentrated” SU(r) anti-self-dual connections over S4. One obtains
”cone bundle neighborhoods” for each such ideal connection ([A], Z) when
H2(X, End0(E∂̄A)) = 0. For the precise statements and the proofs we refer
the reader to [6] chapters 7 and 8 and to [8] 3.4. As a consequence of this de-
scription and of the connectivity of the moduli spaces of SU(r) anti-self-dual
connections over S4 (see [15]) we have the following weaker property which will
suffice to our needs.

Proposition 4.2 Around an irreducible ideal connection ([A], Z) with
H2(X, End0(E∂̄A)) = 0 the border of the Uhlenbeck compactification
M̄ASD(E, a) is locally non-disconnecting in M̄ASD(E, a), i.e. the-
re exist arbitrarily small neighborhoods V of ([A], Z) in M̄ASD(E, a) with
V
⋂MASD(E, a) connected.

Note that for SU(2) connections a lot more has been proved, [7], [18]. In this
case the Uhlenbeck compactification is the completion of the space of anti-self-
dual connections with respect to a natural Riemannian metric.
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4.3 The comparison map

We fix (X, g) a compact complex surface together with a Gauduchon me-
tric on it, (E, h) a hermitian vector bundle over X, a an unitary anti-self-
dual connection on (detE,deth) and denote by L the (isomorphy class of
the) holomorphic line bundle induced by ∂̄a on detE. Let c2 := c2(E) and
r := rankE. We denote by Mst(r, L, c2) the subset of SplX consisting of iso-
morphy classes of non-necessarily locally free sheaves F (with respect to g)
with rankF = r,detF = L, c2(F ) = c2.
In 4.1 we have mentioned the existence of a real-analytic isomorphism between
Mst(E,L) and MASD,∗(E, [a]). When X is algebraic, rankE = 2 and a is the
trivial connection this isomorphism has been extended to a continuous map
from the Gieseker compactification ofMst(E,O) to the Uhlenbeck compactifi-
cation of MASD(E, 0) in [16] and [13]. The proof given in [16] adapts without
difficulty to our case to show the continuity of the natural extension

Φ :Mst(r, L, c2) −→ M̄U (E, [a]).

Φ is defined by Φ([F ]) = ([A], Z), where A is the unique unitary anti-self-dual
connection inducing the holomorphic structure on F∨∨ and Z describes the
singularity set of F with multiplicities mx(Z) := dimC(F∨∨x /Fx) for x ∈ X.
The main result of this paragraph asserts that under certain conditions for X
and E this map is proper as well.

Theorem 4.3 Let X be a non-algebraic compact complex surface which has
either Kodaira dimension kod(X) = −∞ or has trivial canonical bundle and
let g be a Gauduchon metric on X. Let (E, h) be a hermitian vector bundle
over X, r := rankE, c2 := c2(E), a an unitary anti-self-dual connection on
(detE,deth) and L the holomorphic line bundle induced by ∂̄a on detE. If
(r, c1(L), c2) satisfies condition (*) from section 2 then the following hold:

(a) the natural map Φ : Mst(r, L, c2) −→ M̄U (E, [a]) is continuous and
proper,

(b) any unitary automorphism of (detE,deth) lifts to an automorphism of
(E, h) and

(c) Mst(r, L, c2) is a compact complex (Hausdorff) manifold.

Proof
Under the Theorem’s assumptions we prove the following claims.
Claim 1. SplX is smooth and of the expected dimension at points [F ] of
Mst(r, L, c2).
By Corollary 3.4 for such a stable sheaf F we have to check that
Ext2(X;F, F )0 = 0. When KX is trivial this is equivalent to
dim(Ext2(X;F, F )) = 1 and by Serre duality further to dim(Hom(X;F, F )) =
1 which holds since stable sheaves are simple. So let now X be non-algebraic and
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kod(X) = −∞. By surface classification b1(X) must be odd and Remark 2.2
shows that F is irreducible. In this case we shall show that Ext2(X;F, F ) = 0.
By Serre duality we have Ext2(X;F, F ) ∼= Hom(X;F, F ⊗ KX)∗. By taking
double duals Hom(X;F, F ⊗ KX) injects into Hom(X;F∨∨, F∨∨ ⊗ KX).
Suppose ϕ is a non-zero homomorphism ϕ : F∨∨ → F∨∨ ⊗ KX . Then
detϕ : detF∨∨ → (detF∨∨)⊗K⊗rX cannot vanish identically since F is irredu-
cible. Thus it induces a non-zero section of K⊗rX contradicting kod(X) = −∞.
Claim 2. Mst(r, L, c2) is open in SplX .
This claim is known to be true over the open part of SplX parameterizing
simple locally free sheaves and holds possibly in all generality. Here we give an
ad-hoc proof.
If b1 is odd or if the degree function degg : Pic(X) −→ R vanishes iden-
tically the assertion follows from the condition (*). Suppose now that X is
non-algebraic with b1 even and trivial canonical bundle. Let F be a torsion-
free sheaf on X with rankF = r,detF = L and c2(F ) = c2. If F is not stable
then F sits in a short exact sequence

0 −→ F1 −→ F −→ F2 −→ 0

with F1, F2 torsion-free coherent sheaves onX. Let r1 := rankF1, r2 := rankF2.
We first show that the possible values for degF1 lie in a discrete subset of R.
An easy computation gives

−c1(F1)2

r1
− c1(F2)2

r2
= −c1(F )2

r
+ 2r∆(F )− 2r1∆(F1)− 2r2∆(F2).

Since all discriminants are non-negative we get

−c1(F1)2

r1
− c1(F2)2

r2
≤ −c1(F )2

r
+ 2r∆(F ).

In particular c1(F1)2 is bounded by a constant depending only on (r, c1(L), c2).
Since X is non-algebraic the intersection form on NS(X) is negative semi-
definite. In fact, by [4] NS(X)/Tors(NS(X)) can be written as a direct sum
N
⊕
I where the intersection form is negative definite on N , I is the isotropy

subgroup for the intersection form and I is cyclic. We denote by c a generator of
I. It follows the existence of a finite number of classes b in N for which one can
have c1(F1) = b+αc modulo torsion, with α ∈ N. Thus degF1 = deg b+α deg c
lies in a discrete subset of R.
Let now b ∈ NS(X) be such that 0 < deg b ≤ |degF1| for all possible subs-
heaves F1 as above with degF1 6= 0. We consider the torsion-free stable cen-
tral fiber F0 of a family of sheaves F on X × S flat over S. Suppose that
rank(F0) = r,detF0 = L, c2(F0) = c2. We choose an irreducible vector bundle
G on X with c1(G) = −b. Then H2(X,Hom(F0, G)) = 0, so if rankG is large
enough we can apply Proposition 3.1 to get an extension

0 −→ q∗G −→ E −→ F −→ 0
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with E locally free on X × S, for a possibly smaller S. (As in Proposition 3.1
we have denoted by q the projection X × S −→ S.) It is easy to check that
E0 doesn’t have any subsheaf of degree larger than −deg b. Thus E0 is stable.
Hence small deformations of E0 are stable as well. As a consequence we get
that small deformations of F0 will be stable. Indeed, it is enough to consider
for a destabilizing subsheaf F1 of Fs, for s ∈ S, the induced extension

0 −→ G −→ E1 −→ F1 −→ 0.

Then E1 is a subsheaf of Es with degE1 = degG+degF1 ≥ 0. This contradicts
the stability of Es.
Claim 3. Any neighborhood in SplX of a point [F ] of Mst(r, L, c2) contains
isomorphy classes of locally free sheaves.
The proof goes as in the algebraic case by considering the ”double-dual stra-
tification” and making a dimension estimate. Here is a sketch of it.
If one takes a flat family F of torsion free sheaves on X over a reduced base
S, one may consider for each fiber Fs, s ∈ S, the injection into the double-
dual F∨∨s := Hom(Hom(Fs,OX×{s}),OX×{s}). The double-duals form a flat
family over some Zariski-open subset of S. To see this consider first F∨ :=
Hom(F ,OX×S). Since F is flat over S, one gets (Fs)∨ = F∨s . F∨ is flat over
the complement of a proper analytic subset of S and one repeats the procedure
to obtain F∨∨ and F∨∨/F flat over some Zariski open subset S ′ of S. Over
X × S′, F∨∨ is locally free and (F∨∨/F)s = F∨∨s /Fs for s ∈ S′. Take now S
a neighborhood of [F ] in Mst(r, L, c2). Suppose that

length(F∨∨s0 /Fs0) = k > 0

for some s0 ∈ S′. Taking S′ smaller around s0 if necessary, we find a morphism
φ from S′ to a neighborhood T of [F∨∨s0 ] in Mst(r, L, c2 − k) such that there
exists a locally free universal family E on X×T with Et0 ∼= F∨∨s0 for some t0 ∈ T
and (idX ×φ)∗E = F∨∨. Let D be the relative Douady space of quotients of
length k of the fibers of E and let π : D −→ T be the projection. There exists
an universal quotient Q of (idX ×π)∗E on X × D. Since F∨∨/F is flat over
S′, φ lifts to a morphism φ̃ : S′ −→ D with (idX × φ̃)∗Q = F∨∨/F . By the
universality of S′ there exists also a morphism (of germs) ψ : D −→ S ′ with
(idX ×ψ)∗F = Ker((idX ×π)∗E −→ Q). One sees now that ψ ◦ φ̃ must be an
isomorphism, in particular dimS ′ ≤ dimD. Since S′ and T have the expected
dimensions, it is enough to compute now the relative dimension of D over T .
This is k(r+ 1). On the other side by Corollary 3.4 dimS ′−dimT = 2kr. This
forces r = 1 which is excluded by hypothesis.
After these preparations of a relatively general nature we get to the actual
proof of the Theorem. We start with (b).
If b−2 (X) denotes the number of negative eigenvalues of the intersection form
on H2(X,R), then for our surface X we have b−2 (X) > 0. This is clear when
KX is trivial by classification and follows from the index theorem and Remark
2.2 (d) when b1(X) is odd. In particular, taking p ∈ H2(X,Z) with p2 < 0 one
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constructs topologically split rank two vector bundles F with given first Chern
class l and arbitrarily large second Chern class: just consider (L⊗P⊗n)⊕(P ∗)⊗n

where L and P are line bundles with c1(L) = l, c1(P ) = p and n ∈ N. If E
has rank two we take F with detF ∼= detE and c2(F ) ≥ c2(E) = c2. (When
r > 2 assertion (b) is trivial; cf. section 4.1). We consider an anti-self-dual
connection A in E inducing a on detE and Z ⊂ X consisting of c2(F )− c2(E)
distinct points. By the computations from the proof of Claim 1 we see that A
is irreducible and H2

A,0 = 0. Using the gluing procedure mentioned in section

4.2 , one sees that a neighborhood of ([A], Z) in M̄U (F, [a]) contains classes
of irreducible anti-self-dual connections in F . We have seen in section 4.1 that
any unitary automorphism of detF lifts to an unitary automorphism u of F . If
we take a sequence of anti-self-dual connections (An) in F with detAn = a and
([An]) converging to ([A], Z), we get by applying u a limit connection B for
subsequence of (u(An)). Since M̄U (F, [a]) is Hausdorff, there exists an unitary
automorphism ũ of E with ũ∗(B) = A. It is clear that ũ induces the original
automorphism u on detF ∼= detE .
We leave the proof of the following elementary topological lemma to the reader.

Lemma 4.4 Let π : Z −→ Y be a continuous surjective map between Hausdorff
topological spaces. Suppose Z locally compact, Y locally connected and that there
is a locally non-disconnecting closed subset Y1 of Y with Z1 := π−1(Y1) compact

and
◦
Z1 = ∅. Suppose further that π restricts to a homeomorphism

π |Z\Z1,Y \Y1
: Z \ Z1 −→ Y \ Y1.

Then for any neighborhood V of Z1 in Z, π(V ) is a neighborhood of Y1 in Y .
If in addition Y is compact, then Z is compact as well.

We complete now the proof of the Theorem by induction on c2. For fixed r and
c1(E), c2(E) is bounded below if E is to admit an anti-self-dual connection.
If we take c2 minimal, then Mst(r, L, c2) =Mst(E,L) and MASD,∗(E, [a]) =
MASD(E, [a]) is compact. From Theorem 4.1 we obtain that Φ is a homeomor-
phism in this case.
Take now c2 arbitrary but such that the hypotheses of the Theorem hold and
assume that the assertions of the Theorem are true for any smaller c2. We apply
Lemma 4.4 to the following situation:

Z :=Mst(r, L, c2), Y := M̄U (E, [a]) = M̄ASD(E, [a]) ∼= M̄ASD(E, a).

The last equalities hold according to Claim 3 and Claim 4. Let further Y1

be the border M̄ASD(E, a) \ MASD(E, a) of the Uhlenbeck compactification
and Z1 be the locus Mst(r, L, c2) \ Mst(E,L) of singular stable sheaves in
SplX . Z is smooth by Claim 1 and Hausdorff, Y1 is locally non-disconnecting

by Proposition 4.2,
◦
Z1 = ∅ by Claim 3 and π |Z\Z1,Y \Y1

is a homeomorphism
by Theorem 4.1. In order to be able to apply Lemma 4.4 and thus close the
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proof we only need to check that Z1 is compact. We want to reduce this to the
compactness ofMst(r, L, c2− 1) which is ensured by the induction hypothesis.
We consider a finite open covering (Ti) ofMst(r, L, c2− 1) such that over each
X × Ti an universal family Ei exists. The relative Douady space Di parame-
terizing quotients of length one in the fibers of Ei is proper over (Ti). In fact
it was shown in [11] that Di

∼= P(Ei). If πi : Di −→ Ti are the projections, we
have universal quotients Qi of π∗Ei and Fi := Ker(π∗Ei −→ Qi) are flat over
Di. This induces canonical morphisms Di −→ Z1. It is enough to notice that
their images cover Z1, or equivalently, that any singular stable sheaf F over X
sits in an exact sequence of coherent sheaves

0 −→ F −→ E −→ Q −→ 0

with lengthQ = 1 and E torsion-free. Such an extension is induced from

0 −→ F −→ F∨∨ −→ F∨∨/F −→ 0

by any submodule Q of length one of F∨∨/F . (To see that such Q exist re-
call that (F∨∨/F )x is artinian over OX,x and use Nakayama’s Lemma). The
Theorem is proved. ¤

Remark 4.5 As a consequence of this theorem we get that when X is a 2-
dimensional complex torus or a primary Kodaira surface and (r, L, c2) is chosen
in the stable irreducible range as in [24], [23] or [1], then Mst(r, L, c2) is a
holomorphically symplectic compact complex manifold.
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[14] M. Lübke and A. Teleman, The Kobayashi-Hitchin correspondence, World
Scientific, Singapore 1995

[15] M. Maruyama, Instantons and Parabolic Sheaves, in Geometry and Ana-
lysis, Oxford University Press 1995.

[16] J.W. Morgan, Comparison of the Donaldson polynomial invariants with
their algebraic-geometric analogues, Topology 32 (1993), 449–488

[17] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian
or K3 surface, Invent. math. 77 (1984), 101–116.

[18] X.-W. Peng, Asymptotic behavior of the L2-metric on moduli spaces of
Yang-Mills connections. II, Math. Z. 222 (1996), 425–449 Berlin,

[19] G. Schumacher, The generalized Petersson-Weil metric and positive line
bundles on moduli spaces, Rev. Roumaine Math. Pures Appl. 36 (1991),
291–308

[20] H.W. Schuster, Locally free resolutions of coherent sheaves on surfaces, J.
Reine Ang. Math. 337 (1982), 159–165

[21] D. Toledo and Y.L. Tong, Green’s theory of Chern classes and the
Riemann-Roch formula, The Lefschetz Centennial Conference, Contemp.
Math. 58 (1986), 261–275

[22] M. Toma, Holomorphic vector bundles on non-algebraic surfaces, Disser-
tation, Bayreuth, 1992

[23] M. Toma, Stable bundles on non-algebraic surfaces giving rise to compact
moduli spaces, C.R. Acad. Sci. Paris, 323 (1996), 501–505

[24] M. Toma, Stable bundles with small c2 over 2-dimensional complex tori,
Math. Z. 232 (1999), 511–525.

Matei Toma
Universität Osnabrück, FB 6
49069 Osnabrück, Germany
matei@mathematik.Uni-Osnabrueck.DE
and
Institute of Mathematics
of the Romanian Academy

Documenta Mathematica 6 (2001) 11–29



30

Documenta Mathematica 6 (2001)



Documenta Math. 31

How Frequent Are Discrete Cyclic Subgroups

of Semisimple Lie Groups?

Jörg Winkelmann

Received: February 25, 2001

Communicated by Ulf Rehmann

Abstract. Let G be a non-compact semisimple Lie group. We
investigate the asymptotic behaviour of the probability of generating
a discrete subgroup.

2000 Mathematics Subject Classification: 22E40
Keywords and Phrases: discrete subgroup, Lie group, generic sub-
group, Cartan subgroup

1 Main result

For a locally compact topological group G let us define ∆G as the set of all
g ∈ G such that the cyclic subgroup {gn : n ∈ Z} of G is discrete. If there is
no danger of ambiguity, we write simply ∆ instead of ∆G.
Let G be a connected non-compact real semisimple Lie group and µ a Haar
measure on G. In a preceding article ([3]) we proved that µ(∆G) = ∞ and
that furthermore µ(G \ ∆G) = ∞ if G contains a compact Cartan subgroup
and µ(G \∆G) = 0 otherwise.
During the “Colloquium on Lie Theory and Application” in Vigo in July 2000
K. H. Hofmann suggested to me to investigate the asymptotic behavior of the
ratio of volumes of the respective intersections with balls.
This paper is concerned with establishing such an asymptotic description.
The first problem is to make precise what is meant “balls”. What is a natural
choice of “balls” to be considered here? The first idea would be to consider
balls with respect to some Riemannian metric which should be a canonical as
possible. However, a non-compact semisimple Lie group does not admit any
Riemannian metric invariant under both left and right translations and there
is no good reason to discriminate against left or right wingers.
Here we took a different approach. Let K be a maximal compact subgroup of
G and consider the double quotient X = K\G/K. For a continuous exhaustion
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function ρ on X we define “balls” Br = {ρ < r}. We demonstrate that with
respect to such an exhaustion asymptotically the share of ∆ tends to one.
Now let us proceed to a precise statement.
First we recall that an “exhaustion function” ρ on a topological space X is
a continuous map ρ : X → R+ ∪ {0} such that ρ−1([0, r]) is compact for all
r ∈ R+. If H is a subgroup of a topological group G, then an exhaustion
function ρ on G is called “H-biinvariant” if ρ(hgh′) = ρ(g) for all g ∈ G,
h, h′ ∈ H.

Theorem. Let G be a connected, non-compact real semisimple Lie group, ∆
the set of all elements g ∈ G for which the generated subgroup {gn : n ∈ Z} is
discrete in G, µ a Haar measure on G, K a maximal compact subgroup of G,
and ρ : G→ R+ ∪ {0} a K-biinvariant exhaustion function.
Let Br = {g ∈ G : ρ(g) < r}.
Then

lim
r→∞

µ(∆ ∩Br)
µ(Br)

= 1.

Proof. Let Z denote the center of G. We distinguish three different cases,
depending on the cardinality of Z.
Case 1. Here we assume that the center Z is trivial. Then G admits a faithful
representation λ : G → GL(V ) (for instance, the adjoint representation is
faithful.) Note that {gn : n ∈ Z} must be discrete if g ∈ G with |Tr(λ(g))| > n.
Let K be a maximal compact subgroup of G, Lie(G) = Lie(K) + p a Cartan
decomposition, a a maximal Abelian subspace of p and A the corresponding
connected Lie subgroup of G. Then (see e.g. [2]) A is a reductive connected
and simply-connected Lie group and closed in G. It follows that, in suitably
chosen coordinates on V , the image λ(A) is a closed subset of the set D+ of
all diagonal matrices with all entries non-negative. This implies in particular
that g 7→ Tr(λ(g)) defines an exhaustion function on the closed set A.
Next recall that G = KAK by a result of É. Cartan ([1], see also [2], thm.7.39).
We will consider the double coset space X = K\G/K and the natural projec-
tion p : G→ X. By results due to Cartan (see [2]) X = K\G/K ' A/W where
W = NG(A)/A is the (restricted) Weyl group. Since the trace of an endomor-
phism is invariant under conjugation, Tr ◦λ|A is W -invariant, and therefore
there exists an exhaustion function τ on X such that Tr ◦λ and τ ◦ p coincide
on A.
Using the natural projection p : G→ X ' K\G/K we define a Borel measure
η on X by setting η(U) = µ(p−1(U)) for every Borel set U ⊂ X. This is an
infinite measure, η(X) = µ(G) = +∞, and for every compact set C ⊂ X we
have η(C) <∞, because p−1(C) is compact, too. Let ξ denote the normalized
Haar measure on K ×K. Then for all f ∈ Cc(G)

∫

G

f(g)dµ(g) =

∫

X

∫

K×K
f(kah)dξ(k, h)dη(a).
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Next we define a function

ζ : End(Rn)× R+
0 → R+

0

by

ζ(a,R) = ξ (S(a,R))

where

S(a,R) = {(k, h) ∈ K : |Tr(λ(k) · a · (λ(h)))| < R}.

If Tr(a) 6= 0, then

{(k, h) ∈ K : Tr(λ(k) · a · (λ(h))) = 0}

is a nowhere dense real analytic subset of K×K and therefore of measure zero.
It follows that

lim
t→0

ζ(a, t) = 0

for all a ∈ End(Rn) with Tr(a) 6= 0.
We observe that

S(ã, R) ⊂ S(a,R+ ε)

for a, ã ∈ End(Rn) with
∑n
i=1 |λ(a)ii − λ(ã)ii| < ε. Using this, it follows that

lim
n→∞

ζ(an, rn) = 0

for all convergent sequences (an)n in End(Rn), (rn)n in R with lim rn = 0 and
Tr(lim an) 6= 0.
This in turns implies, that if we have a compact subset C ⊂ End(Rn) such that
Tr(c) 6= 0 for all c ∈ C, then

lim
t→0

(
sup
c∈C

ζ(c, t)

)
= 0.

We now define such a compact set. Let C be the set of all diagonal matrices
diag(d1, . . . , dn) in End(Rn) with 0 ≤ di ≤ 1 for all i and

∑
i di = 1.

Now C is a compact set with Tr(c) = 1 for all c ∈ C. By definition of C it is
clear that for every a ∈ A there is an element c ∈ C such that cTr(λ(a)) = λ(a).
We claim: For every ε > 0 there exists a number R0 > 0 such that ζ(λ(a), n+
1) < ε for all a ∈ D+ with Tr(a) ≥ R0. Indeed, for every ε there is a number
δ0 such that

ζ(c, δ) < ε
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for all c ∈ C, δ ≤ δ0.
By the linearity of the trace operator, we have

ζ(c, δ) = ζ(xc, xδ)

for all c ∈ C and x ∈ R+. Now let v ∈ D+. Then v = xc with c ∈ C, x ∈ R+

and Tr(v) = x. This implies

ζ(v, δ) = ζ(xc, δ) ≤ ζ(Tr(v)c, δ) = ζ(c, δ/Tr(v)).

Therefore ζ(v, δ) < ε whenever δ/Tr(v) < δ0. Thus

ζ(v, n+ 1) < ε

for all v ∈ D+ with Tr(v) > R0 = (n+ 1)/δ0.
Now fix a number ε > 0. We will demonstrate that there exists a number R > 0
such that

µ(∆ ∩Br)
µ(Br)

> 1− ε

for all r ≥ R.
We start by choosing R0 such that ζ(a, n+ 1) < ε/2 for all a ∈ A+ ⊂ D+ with
Tr(a) ≥ R0. Recall that η(X) = +∞ and that θ : X → R+

0 is an exhaustion
function. Hence we may choose a number R1 > R0 such that

η({x ∈ X : θ(x) ≤ R0}) <
ε

2
η({x ∈ X : θ(x) ≤ R1}).

Finally choose R such that {θ ≤ R1} ⊂ p(BR).
Now we have for r > R:

µ(Br \∆) ≤ µ({g ∈ Br : Tr(λ(g)) < n+ 1})

=

∫

x∈p(Br)

ζ(x, n+ 1)dη

=

∫

θ(x)≤R0

ζ(x, n+ 1)dη +

∫

R0≤θ(x),x∈p(Br)

ζ(x, n+ 1)dη

< η({x ∈ X : θ(x) ≤ R0}) +

∫

R0≤θ(x),x∈p(Br)

ε

2
dη

≤ ε

2
η({x ∈ X : θ(x) ≤ R0}) +

ε

2
η({x ∈ p(Br) : R0 ≤ θ(x)})

= εη(p(Br)) = εµ(Br).

Case 2. Assume that Z is finite, but non-trivial. Let p : G → G/Z denote
the natural projection. Since Z is compact and normal, it is contained in
every maximal compact subgroup K. Therefore every K-biinvariant exhaustion
functions on G is a pull-back of a p(K)-biinvariant exhaustion function on G/Z.
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Finiteness of Z furthermore implies that p−1(∆G/Z) = ∆G and that the Haar
measure on G/Z pulls back to a Haar measure on G. Therefore the statement
of the theorem for this case follows from the proof for case 1.
Case 3. Assume that Z is infinite. In this case Z is not compact. Since Cartan
subgroups are maximally nilpotent and therefore necessarily contain Z, this
implies that G admits no compact Cartan subgroups. By the results of [3] it
follows that in this case µ(G \ ∆) = 0, implying µ(∆ ∩ Br) = µ(Br) for all
r ∈ R+.

2 Interpretation from a Lie algebra point of view

One may consider the projection Lie(G)→ P(Lie(G)). In the projective space
P(Lie(G)) both the set corresponding to compact Cartan subgroups as well as
the set corresponding to non-compact Cartan subgroups contains non-empty
open sets, if we assume thatG is a non compact semisimple Lie group containing
a compact Cartan subgroup. In this sense it seems that one the Lie algebra
level the set ∆ and its complement look as having the same size. How does
this reconcile with our result? The answer may be found in the following
reasoning: The correspondence between Lie algebra and Lie group is given by
the exponential map. However, the exponential map behaves quite differently
for compact and non-compact Cartan subgroups: it is injective on non-compact
Cartan subgroups and has infinite kernel for compact Cartan subgroups. Thus,
multiplicities are quite different for Lie algebra and Lie groups. Taking these
multiplicities into account, it appears only reasonable that on the Lie group ∆
dominates if both sides have the same size in P(Lie(G)).

3 Explicit calculations for SL(2,R)

In this section, we deduce explicit results for the special case G = SL2(R).
In this case the KAK-decomposition can be written as the map

F : S1 × R≥1 × S1 → SL2(R)

given by

F : (θ, s, φ) 7→
(

cos θ sin θ
− sin θ cos θ

)
·
(
s

s−1

)
·
(

cosφ sinφ
− sinφ cosφ

)

Then

F ∗dµ = 2π
(
s− s−3

) dθ
2π
∧ ds ∧ dφ

2π

for a Haar measure dµ on G. We can define a K-biinvariant exhaustion function
ρ on SL2(R) by

ρ(g) = max
v∈R2\{(0,0)}

||g(v)||
||v|| .
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Then ρ(F (θ, s, φ)) = s.
An element g ∈ SL2(R) generates a discrete subgroup if and only if it is
diagonalizable or unipotent or a torsion element. It follows that g ∈ ∆ iff
|Tr(g)| ≥ 2 or 1

2 Tr(g) = cos( q
2π ) for a rational number q ∈ Q. Hence {g :

|Tr(g)| > 2} ⊂ ∆ and

µ (∆ \ {g : |Tr(g)| > 2}) = 0.

An easy calculation yields

Tr(F (θ, s, φ)) = (s+ s−1) cos(θ + φ).

It follows that

1− ζ(s, 2) = ξ ({(θ, φ) : |Tr(F (θ, s, φ)| > 2}) = 4 arccos
2

s+ s−1
.

Therefore

µ(Br) =

∫ r

s=1

2π(s− s−3)ds

and

µ(Br ∩∆) =

∫ r

s=1

4 arccos
(
2/(s+ s−1)

)
2π(s− s−3)ds.

Using Maple, the graph of the function f(r) = µ(Br ∩∆)/µ(Br) now appears
as shown in the graphic below:
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Abstract. Bipartite graphs occur in many parts of mathematics,
and their embeddings into orientable compact surfaces are an old sub-
ject. A new interest comes from the fact that these embeddings give
dessins d’enfants providing the surface with a unique structure as a
Riemann surface and algebraic curve. In this paper, we study the
(surprisingly many different) dessins coming from the graphs of finite
cyclic projective planes. It turns out that all reasonable questions
about these dessins — uniformity, regularity, automorphism groups,
cartographic groups, defining equations of the algebraic curves, their
fields of definition, Galois actions — depend on cyclic orderings of
difference sets for the projective planes. We explain the interplay
between number theoretic problems concerning these cyclic ordered
difference sets and topological properties of the dessin like e.g. the
Wada property that every vertex lies on the border of every cell.

2000 Mathematics Subject Classification: 51E15, 05C10, 14H25,
14H55, 20H10, 30F10
Keywords and Phrases: Projective planes, difference sets, dessins
d’enfants, Riemann surfaces, Fuchsian groups, algebraic curves

1 Finite projective planes and dessins d’enfants

1.1 Projective planes, bipartite graphs, and maps

It is well known that the incidence pattern of finite projective planes can be
made visible by connected bipartite graphs using the following dictionary.

line ←→ white vertex

point ←→ black vertex

incidence ←→ existence of a joining edge

flag ←→ edge
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Following this dictionary, the axioms of projective geometry translate into
graph–theoretic properties like
For any two different black vertices there exists a unique white vertex as a com-
mon neighbor.
The same is true for elementary properties like
Every black vertex has precisely q = n + 1 white neighbors and every white
vertex has precisely q = n+ 1 black neighbors. The graph has l = n2 + n+ 1
black and white vertices, respectively, and ql edges.
As usual, we will call n the order of the projective plane. (Recall that up to
now only finite projective planes of prime power order are known.) On the
other hand, it is well known that connected graphs can be embedded as maps
into oriented compact surfaces [Li].

1.2 Dessins d’enfants

Now, bipartite graphs embedded into orientable compact surfaces cutting these
surfaces into simply connected cells represent a way to describe Grothendieck’s
dessins d’enfants.
Definition. A (p, q, r)–dessin is a bipartite graph on an orientable compact
surface X with the following properties.

1. The complement of the graph is the disjoint union of simply connected
open cells.

2. p is the l.c.m. of all valencies of the graph at the black points.

3. q is the l.c.m. of all valencies of the graph at the white points.

4. 2r is the l.c.m. of all valencies of the cells (i.e. the numbers of bordering
edges; they have to be counted twice if they border the cell at both sides).

Dessins arise in a natural way on compact Riemann surfaces (non–singular
complex projective algebraic curves) X if there is a non–constant meromorphic
(= rational) Belyi function β : X → C ramified at most above 0, 1,∞.
Then β−1{0}, β−1{1} are the sets of white and black vertices respectively an
the connected components of β−1]0, 1[ are the edges of the dessin. According
to a theorem of Belyi such a function exists if and only if — as an algebraic
curve — X can be defined over a number field. Moreover, for every dessin D
on a compact orientable surface X there is a unique conformal structure on X
such that D results from a corresponding Belyi function β on X. Therefore the
combinatorics of dessins should encode all properties of curves definable over
Q. For a survey on this topic, see [JS]. In the present paper, we concentrate
on two aspects namely uniformization theory and Galois actions.
As a Riemann surface with a (p, q, r)–dessin, X is the quotient space of a
subgroup Γ of the triangle group ∆ of signature 〈p, q, r〉, acting discontinuously
on C , C or the hyperbolic plane H if

1

p
+

1

q
+

1

r
> 1 , = 1 or < 1 respectively.
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The dessin is uniform if all black points have equal valency p , all white points
have equal valency q , and all cells have equal valency 2r ; equivalently, Γ has no
torsion and is therefore the universal covering group of the Riemann surface.
This is satisfied e.g. if the dessin is regular, i.e. if its automorphism group G
acts transitively on the edges; equivalently, Γ is a normal torsion–free subgroup
of ∆ (and then ∆/Γ ∼= G ; for other reformulations of this condition see the
first section of [StWo]). Automorphism of the dessin means the restriction
of an orientation–preserving topological — and automatically conformal —
automorphism of X to the bipartite graph.

Recall that via the action of σ ∈ GalQ/Q on the coefficients of the defining
equations of the algebraic curve X — or of an extension of σ to AutC/Q on
the coordinates of their points — one has a Galois action on the set of Riemann
surfaces. We can even speak of Galois actions on dessins in the following sense:
for a dessins D on X consider the corresponding Belyi function β. Clearly,
for every σ ∈ GalQ/Q we have on the image curve Xσ a Belyi function βσ

defining a Galois conjugate dessin. (This Galois action is only the first step of
Grothendieck’s far reaching ideas for a better understanding of the structure
of GalQ/Q via the so called Grothendieck–Teichmüller lego.)

1.3 The Fano plane. An easy observation

Concerning the embedding of the bipartite graph of a finite projective plane as
a dessin on X, some immediate questions arise:

How does the structure of the Riemann surface depend on the choice of the
embedding? Which additional structure of the projective plane (like e.g. AutP ,
the group of collineations) translates into a structure of the dessin and the
Riemann surface?

We are grateful to David Singerman who informed us about former work on
these questions by himself [Si2], Fink and in particular Arthur White ([FiWh],
[Wh]). In the following, we will take up their work under new topological and
arithmetical aspects. Already the easiest example, i.e. the Fano plane P2(F2) ,
shows the existence of different embeddings leading to different dessins.

Fig. 6.5 of [JS] shows one of two embeddings of the graph of the Fano plane as
a regular (3, 3, 3)–dessin, consisting of 7 hexagons on a torus. The underlying
Riemann surface is the torus C/Λ for the sublattice Λ of the hexagonal lattice
Z[ 1

2 (1 +
√
−3)] corresponding to one of the two prime ideals of norm 7 in that

ring of integers. The automorphism group G of the dessin is isomorphic to Z7o
Z3 , in fact a subgroup of PGL3(F2) (Zm denotes the cyclic group of order m ).
This full group of collineations of the Fano plane contains elements not giving
automorphisms of the dessin because an automorphism of the dessin fixing an
edge is automatically the identity. There is another embedding of the Fano
plane graph as a dessin to be discussed now which is better for generalizations
to other projective planes: Identify F3

2−{0} with the multiplicative group F∗8
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of order 7 and generator g . The exponents m of g give a bijection

P2(F2) ←→ Z/7Z

and an analogous bijection — with g−1 as generator — for the lines of the Fano
plane. To make the incidence structure visible we use the trace t of the field
extension F8/F2 as a nondegenerate bilinear form

b : F8 × F8 → F2 : (x, y) 7→ t(xy) .

Then the point x and the line y are incident if and only if t(xy) = 0 . We may
choose the generator g such that t(g) = 0 ; then a point gm and a line g−k are
incident if and only

t(gm−k) = 0 ⇐⇒ m− k ∈ {1, 2, 4}

what is easily seen using the Frobenius of F8/F2 . Therefore, we may choose
the local orientation of the Fano plane graph as given in Figure 1.
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Figure 1: Local pattern of the Fano plane dessin

Then, the global dessin may be given as in Figure 2. To draw the picture
on a Riemann surface, observe that every edge not incident with the white
vertex 0 occurs twice. Identifying these edges, one obtains a (3, 3, 7)–dessin
with 3 cells on a Riemann surface of genus 3 . Here also, the automorphism
group of the dessin is easily seen to be Z7oZ3 which is a homomorphic image
of the triangle group 〈3, 3, 7〉 as well. Moreover, one may prove that the
kernel Γ of this homomorphism is torsion free and a normal subgroup even in
the triangle group 〈2, 3, 7〉 with factor group PSL2(F7) ∼= PGL3(F2) . The
Riemann surface is known to be uniquely determined by this property: it is
Klein’s quartic. One may vary Figure 1 by taking the mirror image on both
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sides: the global result will be a regular dessin looking like Figure 2 but with
completely different identifications of the edges. Its automorphism group is
again Z7 o Z3 and its Riemann surface is again Klein’s quartic, and both
dessins are Galois conjugate in the sense explained above, see Theorem 1.
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Figure 2: A (3, 3, 7)–dessin of the Fano plane

After all necessary identifications, we see that this Fano plane dessin has the
remarkable property that every vertex lies on the border of every cell. Such
phenomena occur even for subdivisions of the Euclidean plane into simply con-
nected open domains, as was long time ago known to Kerékjártó and Brouwer
([Ke], p.120), and became popular more recently under the name lakes of Wada
in the theory of dynamical systems [Ch]. Therefore, we propose the following

Definition. A Wada dessin is characterized by the property that every vertex
lies on the border of every cell.

(This property may be reformulated passing to a dual dessin by exchanging e.g.
the white vertices with the cells: then we obtain a complete bipartite graph
embedded in such a way that every white vertex lies on the border of every
cell.) Comparing the four realizations of the Fano plane graph as dessins one
may remark that the global picture depends heavily on the choice of the local
orientation of the edges around the vertices, see the proof of Proposition 2.
How typical are the Fano plane dessins for the general situation? An evident
observation is
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Proposition 1 Let P be a finite projective plane of order n . Then any embed-
ding of its graph as a dessin gives a (q, q,N)–dessin for some natural number
N , where q = n+1 is the number of points on a line of P . The automorphism
group of the dessin corresponds to a subgroup of AutP acting fixed-point–free
on the flags.

To prove the last statement one has just to observe that only the identity
automorphism of the dessin can fix an edge.

1.4 Main results

This first Proposition and the Fano plane example raise other questions:
is there a choice of the embedding such that N = l is the number of points
of P ? Is there a choice of the embedding such that the resulting dessin is a
Wada dessin, uniform or even regular? Which subgroup of the collineation
group of the projective plane becomes the automorphism group of the dessin?
How does the absolute Galois group act on the corresponding set of algebraic
curves? What is their field of definition?
It is not clear to us if these questions have a reasonable answer for very general
embeddings of bipartite graphs coming from arbitrary finite projective planes.
But it turns out that there is an interesting interplay between properties of P
and the algebraic curve X if we concentrate on cyclic projective planes with
an action of a Singer group Zl and a difference set D — the definitions will be
recalled in the beginning of the next section — and on embeddings compatible
with the action of Zl. First we (re)prove in Section 2

Theorem 1 For the known cyclic projective planes P2(Fn) the graph has em-
beddings into regular dessins if and only if n = 2 or 8 . For n = 2 these
are

• 2 non–isomorphic but Galois conjugate regular (3, 3, 7) –dessins on
Klein’s quartic (defined over Q ),

• 2 non–isomorphic but Galois conjugate regular (3, 3, 3) –dessins on the
elliptic curve with affine model y2 = x3 − 1 .

For n = 8 there are embeddings into

• 6 non–isomorphic, Galois conjugate regular (9, 9, 73)–dessins of genus
252 , defined over Q(ζ9) , ζ9 a 9–th primitive root of unity. Each pair of
complex conjugate dessins lies on an algebraic curve defined over Q(ζ9 +
ζ−1
9 ) .

• 18 non–isomorphic regular (9, 9, 9)–dessins of genus 220 defined over
Q(ζ9) and forming 3 Galois orbits. They belong to 18 non–isomorphic
algebraic curves definable over the same field and forming 3 Galois orbits
as well.
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• 12 non–isomorphic regular (9, 9, 3)–dessins of genus 147 lying on 12 non–
isomorphic algebraic curves. The dessins and their curves form two Ga-
lois orbits and are defined over Q(ζ9) .

The first sentence and the genera are known by [Si2], Sec. 5., 6., [FiWh], [Wh],
Theorem 3.15, Theorem 5.3. Some results of [Wh], §3, Theorem 3.13, overlap
also with

Theorem 2 (and Definition). Let P be a cyclic projective plane with a fixed
Singer group Zl and a fixed difference set D . There is a bijection between

• pairs of cyclic orderings of D and

• embeddings of the graph of P as (q, q,N)–dessin D such that the auto-
morphism group AutD contains Zl .

For special choices of these orderings, characterized by the fact that D/Zl is a
genus 0 dessin, D becomes a (q, q, l)–dessin. We call these D globe covering
dessins; they depend on only one cyclic ordering of D .

(For the terminology globe covering see the proof, and for existence of isomor-
phisms between the resulting dessins see the Remark following the proof in
Section 2.)

Theorem 3 If l is prime, all globe covering dessins of a cyclic projective plane
are uniform Wada dessins.

It will turn out that such (q, q, l)–dessins are typical Wada dessins, see Section
5, Proposition 7. Regular Wada dessins can be completely characterized by
group theoretical properties (see Proposition 8 and 9) but are in general very
different from dessins coming from projective planes (Proposition 11).
For all other cyclic projective planes with the (possible) exception n = 4
( q = 5 , l = 21 ) there might exist embeddings onto uniform (q, q, l)–dessins as
well. Some evidence for this conjecture — reformulated as a number theoretic
question about cyclic orderings of difference sets — will follow from the proof
of Theorem 3 (Section 3) and Proposition 4. Concerning the automorphism
group of the dessin we will prove with similar methods as White [Wh], §3:

Theorem 4 Let P be a cyclic projective plane of prime power order n = ps ≡
2 mod 3 , and suppose the number l = n2 + n+ 1 to be prime. Then the graph
of P has embeddings as globe covering dessins with an automorphism group
Zl o Z3s .

To explain how the subgroup Z3s acts on the normal subgroup Zl recall that p
has the order 3s in the multiplicative group of prime residue classes (Z/lZ)∗

[Wh], Lemma 3.3, hence acts by multiplication on Zl ∼= Z/lZ . As a special
case, Theorem 4 contains the existence of regular dessins for the planes over
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F2, F8 . Section 6 gives a different proof of a more general result saying that for
all l and all globe covering dessins, the automorphism group is of type ZloZm .
Section 4 treats the explicit equations for the algebraic curves corresponding
to the uniform globe covering dessins, in particular those of Theorem 3. We
can give these equations in the relatively simple form

yl = (x− ζ0)b1 · . . . · (x− ζq−1)bq ,

where ζ = ζq denotes a primitive q–th root of unity. The exponents bi depend
again on the ordering of the difference set of the projective plane, see Example
1 following Proposition 6. It will be shown that this equation can be replaced
by another with coefficients in Q(ζ+ ζ−1) . Examples suggest that this field of
definition is the smallest possible — Section 4 describes an effective procedure
for the determination of the moduli field of the curve.
Even non–regular dessins have a description in terms of group theory, namely
by their (hyper–) cartographic groups, i.e. the monodromy groups M of
the Belyi function belonging to the dessin D (see the proof of Theorem 2 and
Section 6). In the description given above using subgroups Γ of triangle groups
∆ this monodromy group can be written as the quotient ∆/N by the maximal
normal subgroup N of ∆ contained in Γ . In other words, M is isomorphic to
the automorphism group of the minimal regular cover R of D . In particular,
M ∼= AutD for regular dessins. How does M look like in the case of uniform
dessins for cyclic projective planes? In Section 6, we give the following partial
answer:

Theorem 5 Under the conditions of Theorem 3, the cartographic group of the
dessin D is isomorphic to a semidirect product

Zrl o Zq

with an exponent r < q .

Again, we will prove a slightly more general version than stated here. Again,
the ordered difference sets determine the precise nature of the cartographic
group, i.e. the exponent r and the action of Zq on Zrl .
It is a great pleasure for us to thank Gareth Jones for the many fruitful dis-
cussions on these subjects during the last Southampton–Frankfurt workshops
on dessins and group actions.

2 Cyclic projective planes and difference sets

Recall that a finite projective plane P is called cyclic if there is a collineation
a of order l generating a Singer subgroup of AutP acting sharply transitive
on the points (and, by duality, on the lines) of P . Fixing one point x and
writing all points as am(x) we may identify the points with the exponents
m ∈ Z/lZ ↔ Zl , hence read the cyclic automorphism group as the (additive)
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group Zl acting by addition on Zl . For the lines we adopt the same convention.
In the case of the projective plane over the finite field Fn we may — as we
did for the Fano plane — think of the exponents of some generator g of the
multiplicative group F∗n3/F∗n and describe the incidence between points and
lines using the trace t of Fn3/Fn as nondegenerate bilinear form. Locally, the
embeddings in question will be chosen such that the incidence graph look as
described in Figure 3,
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Figure 3: Local pattern of a dessin for a cyclic projective plane

for a fixed set {k1, . . . , kq} = {m1, . . . ,mq} ⊂ Zl characterized by the prop-
erty

t(gki) = 0 for all i = 1, . . . , q .

But we may use this figure for other cyclic projective planes as well (if there
exist any) reading {k1, . . . , kq} = {m1, . . . ,mq} ⊂ Zl as a difference set
D characterized by the property that for all m ∈ Zl , m 6= 0 , there are unique
i and j with m = ki − kj . In any case, the cyclic collineation a of P can be
identified with the shift

m 7→ m+ 1 , k 7→ k + 1

proving graphically the if part of the following Proposition and the statement
in Theorem 2 about the automorphism group as well.

Proposition 2 Let D be a dessin obtained by embedding the graph of a cyclic
projective plane P with l points. Its Singer group Zl becomes a subgroup of the
automorphism group of D if and only if for all m and k the local orientation
of the edges around the vertices are chosen as indicated in Figure 3. Such
orientations correspond bijectively to the choice of a pair of orderings of a
given difference set D for P , both up to cyclic permutations.
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In fact, the translations m 7→ m + r , k 7→ k + r , r ∈ Zl , preserve incidence
and orientation and give the action of Zl on the dessin. The only if part is true
by the following reason: If a induces an automorphism of the dessin, the local
orientations of the edges around the black vertices must show the same pattern
as the left part of Figure 3, and an analogous statement is true for the white
vertices.
Proof of Theorem 2. We know already by Proposition 2 that embeddings for
the cyclic projective plane P as a dessin D with Zl ⊆ AutD determine two
orderings of the (fixed) difference set D . To prove the existence of such em-
beddings, choose a pair of orderings of D giving local orientations of the graph
around all vertices as in Figure 3. These 2l drawings define in an obvious way
local charts for an orientable surface into which the graph has to be embedded,
and the numbering of the vertices gives the following unique prescription how
to glue the local pieces together. Let Ω the set of all ql edges of D (flags of
P ) and let M be the permutation group on Ω generated by b and w where b
is the cyclic counterclockwise shift of all edges around the black vertices (i.e.
sending the edge between m and m − mi , for all i ∈ Zq and all m ∈ Zl ,
to the edge between m and m −mi+1 in the left part of Figure 3), and w is
the corresponding counterclockwise shift of the edges around all white vertices.
According to [JS], 5. Maps and Hypermaps, M and its generators b and w
of order q define an algebraic hypermap on a unique compact Riemann surface
X or — in the present terminology — a (q, q,N)–dessin on X where N is the
order of wb in the cartographic group M . The surface X can be described ex-
plicitly as follows: there is an obvious homomorphism h of the triangle group
∆ = 〈q, q,N〉 onto M ; let H ⊂M be the fixgroup of an arbitrary edge in Ω
and let Γ := h−1(H) , then we can define X as the quotient Γ\H .
For example, consider the case n = 4, q = 5, l = 21 with the cyclic ordering
of a difference set

(mi)imod5 = (−3, 0, 1, 6, 8) , (ki)imod5 = (8, 6, 1, 0,−3) .

Here one obtains a uniform (5, 5, 5)–dessin on a surface of genus 22 with 21
cells of valency 10 on which the Singer group Z21 acts fixed-point–free as cyclic
permutation group of the set of cells. The quotient dessin D/Z21 has one cell,
5 edges, one black and one white vertex, hence genus 2 .
For the last claim of the theorem suppose D to be globe covering. Since D/Zl
has genus 0 and q edges, one black and one white vertex (the poles), it has
also q cells, and we can imagine the edges as meridians joining the poles and
separating the cells. It is easy to see that this quotient dessin arises if and
only if both orderings of D are the same, i.e. if in Figure 3 mi = ki for all
i = 1, . . . , q . Clearly, the globe covering dessins depend on only one cyclic
ordering of D . Their cells look as indicated in Figure 4.
Then, the numbers corresponding to the vertices on the border of the cell form
arithmetic progressions in Zl and therefore this cell has 2l/ci edges where ci is
the gcd of l and ki+1 − ki . The resulting dessin is therefore a (q, q,N)–dessin
where 2N = 2l/c is the lcm of the valencies of the cells and c the gcd of all
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Figure 4: Cell of a globe covering dessin for a cyclic projective plane (mi = ki)

ci . But c > 1 would imply that all differences ki − kj were multiples of c in
contradiction to the fundamental property of the difference set. Therefore, we
have N = l proving that globe covering dessins are (q, q, l)–dessins for P .
Remark. Suppose D,D′ to be dessins resulting from two different pairs of
orderings for D . Then there is no Zl–equivariant isomorphism i : D → D′ , i.e.
satisfying i ◦a = a ◦ i , since in that case we could replace i by an isomorphism
preserving the numbering of black and white vertices, hence also the local
pattern of Figure 3. However, non–Zl–equivariant isomorphisms may exist,
related to multipliers of difference sets: for n = 5, q = 6, l = 31 take two
different cyclic orderings of a fixed difference set D

(mi) = (ki) = (1, 5, 11, 25, 24, 27) , (m′i) = (k′i) = (5, 25, 24, 1, 27, 11)

giving isomorphic dessins where the isomorphism is defined by i : x 7→ 5x mod
l .
Exercise. Reverse the orientation in the right part of Figure 1 and show that
this choice induces globally a (3, 3, 3)–Fano dessin. Reverse the orientation
in the left part of Figure 1 to show that this choice induces globally another
(3, 3, 3)–Fano dessin.
Proof of Theorem 1. That we can obtain regular dessins only for n = 2 and
8 follows directly from Proposition 1 and a theorem of Higman/McLaughlin
[HML], Prop. 12, stating that for the planes P2(Fn) different from the Fano
plane and P2(F8) , flag–transitive groups of collineations cannot act fixed-
point–free on the flags. The converse direction is already verified for the Fano
plane by giving two regular dessins in genus 1 and two in genus 3 . The genus
3 dessins belong to Klein’s quartic which is known to be defined over Q . As
the two dessins on the elliptic curves they differ by their local orientation —
see the exercise above (giving a chiral pair of dessins) — whence the dessins
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have to be complex conjugate. For the genus 1 dessins, the underlying elliptic
curve is the same for both dessins since it has an automorphism of order 3 ,
hence uniquely determined with model y2 = x3 − 1 . On the other hand, the
dessins are not isomorphic: their vertices are obtained (with suitable coloring)
by the points of Z[ 1

2 (1 +
√
−3)] on the two tori

C/(2±
√
−3)Z[

1

2
(1 +

√
−3)] .

These two tori are of course isomorphic but there is no isomorphism mapping
the two dessins onto each other since multiplication by (2 +

√
−3)/(2−

√
−3)

does not give an automorphism of the elliptic curve.
The two dessins for the Fano plane on Klein’s quartic are non–isomorphic
since they correspond to two different normal subgroups of the triangle group
〈3, 3, 7〉 which are conjugate in the index 2 extension 〈2, 3, 14〉, compare also
Lemma 1 and 2 below.
For the plane P2(F8) one may verify that

ki = 2i mod 73 , i = 0 , . . . , 8 ,

form a difference set. A cyclic order is provided by the cyclic order of the
exponents i mod 9 . Therefore, it is easy to verify that

b : m 7→ 2m : Z73 → Z73

together with a generates an edge–transitive automorphism group G ∼= Z73 o
Z9 of the (9, 9, 73)–dessin described by Figure 4.
For the proof of the statements about the different possible images under these
embeddings recall that cocompact triangle groups ∆ with signature 〈p, q, r〉
are presented by generators and relations

γ0 , γ1 , γ∞ ; γp0 = γq1 = γr∞ = γ0γ1γ∞ = 1 .

The following is well known and turns out to be very useful for the classification
of regular dessins.

Lemma 1 Let ∆ = 〈p, q, r〉 be a Fuchsian triangle group. Then there is a
bijection between

• isomorphism classes of regular (p, q, r)–dessins with automorphism group
G ,

• normal torsion free subgroups Γ of ∆ with ∆/Γ ∼= G ,

• equivalence classes of epimorphisms h : ∆→ G , with torsion–free kernel,
i.e. mapping the generators γi of ∆ onto generators of G of the same
order. Two epimorphisms are equivalent if they result from each other by
combination with an automorphism of G .
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(The next lemma and the following remark will explain in more detail why
non–isomorphic dessins may however lie on isomorphic Riemann surfaces.) For
the special G under consideration, it is easy to see that such epimorphisms
exist only for the triangle groups 〈9, 9,m〉 with m = 73, 9 or 3 . Following
closely the method described in [StWo] we can select homomorphisms h (with
pairwise different kernels) onto G ∼= Z73oZ9 with generators a, b as above in
the following way. For 〈9, 9, 73〉 we may take

h(γ0) = bs , h(γ1) = b−sak , h(γ∞) = a−k , s ∈ (Z/9Z)∗

(another choice of k ∈ (Z/73Z)∗ changes h only by composition with an ele-
ment of AutG ). For 〈9, 9, 9〉 we may take

h(γ0) = bs , h(γ1) = btak , h(γ∞) = a−kbu ,

s , t , u ∈ (Z/9Z)∗ with s + t + u ≡ 0 mod 9

(same remark for the choice of k ), and for 〈9, 9, 3〉 we may take

h(γ0) = bs , h(γ1) = btak , h(γ∞) = a−kb3u ,

s , t , u ∈ (Z/9Z)∗ with s + t + 3u ≡ 0 mod 9 .

(same remark for the choice of k ). The number of non–isomorphic dessins now
follows from counting the possible parameter values s, t, u . The question if the
underlying curves are isomorphic can be answered by another well known

Lemma 2 Let Γ and N be two different torsion free normal subgroups of the
Fuchsian triangle group ∆ with isomorphic quotient ∆/Γ ∼= G ∼= ∆/N . The
Riemann surfaces Γ\H and N\H are isomorphic if and only if the following
equivalent conditions hold:

• Γ and N are PSL2(R)–conjugate.

• Γ and N are conjugate in some triangle group ∆ ⊃ ∆ .

(The two regular dessins corresponding to Γ and N are not isomorphic since the
isomorphism of Riemann surfaces induced by the conjugation with ∆ permutes
the different fix-point orbits of ∆ , i.e. does not preserve at least the color
of the vertices.) To apply this Lemma, one has to check if there are larger
triangle groups and to control if the normal subgroupsN remain normal in these
larger triangle groups. Equivalently, one has to check if the homomorphisms
found above are extendable to larger triangle groups than the original ones,
see [StWo], Lemma 4. As an example, take the first case m = 73 : here we
obtain 6 different normal torsion–free subgroups Ns of ∆ according to the 6
different choices of s . But ∆ is contained with index 2 in the maximal triangle
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group 〈2, 9, 146〉 in which Ns and N−s are conjugate. Therefore we obtain 6
non–isomorphic dessins but only 3 non–isomorphic Riemann surfaces.
The genera of the quotients of the upper half plane by these kernels can be
computed by standard methods like Riemann–Hurwitz’ theorem.
For the statements about fields of definition and Galois orbits recall first that
curves X with many automorphisms can be defined over their field of moduli,
i.e. the common fixed field of all σ with X ∼= Xσ [Wo1], Remark 4, [Wo2],
Satz 3. For the determination of this field take again the example of the regular
(9, 9, 73)–dessins. Let Ns be the kernel of the homomorphism h defined above
by h(γ0) = bs , h(γ1) = b−sak and let Xs be the quotient surface Ns\H .
Recall that η is a multiplier of an automorphism α of Xs in some fixed point
x if the action of α in a local coordinate z around x (corresponding to z = 0 )
can be described by z 7→ ηz (not to be confused with multipliers in the theory
of difference sets!). Then it is easy to prove

Lemma 3 On Xs the automorphism b has two fixed points with multipliers ζs9
and ζ−s9 where ζ9 = e2πi/9 and ss ≡ 1 mod 9 .

Using the representation of the automorphism group on the canonical model
or Belyi’s cyclotomic character one may prove moreover

Lemma 4 Let σ be ∈ GalQ/Q and let b act as an automorphism of X with a
multiplier η in the fixed point x . Then b acts in xσ on Xσ with a multiplier
σ(η) .

Lemma 1, 2, 3 and the classification of the covering groups Ns show that the
isomorphism class of Xs is uniquely determined among all surfaces with regular
(9, 9, 73)–dessin and automorphism group G by the unordered pair of multipli-
ers {ζs9 , ζ−s9 } , and that the isomorphism class of dessins is uniquely determined
by the ordered pair of multipliers. On the other hand, Lemma 4 shows that
every σ fixing elementwise the cyclotomic field Q(ζ9) fixes the isomorphism
class of dessin and curve. The Galois orbits are now easily determined by the
action of GalQ(ζ9)/Q . The other cases can be treated in the same way.
It remains to prove that all the resulting bipartite graphs are isomorphic (as
graphs, not as dessins) to the graph of P2(F8) . First, we observe that — by
the freedom of choice of k — we may assume that all h(γ1) generate the same
cyclic subgroup of G ; the same observation holds trivially for all h(γ0) . Then,
from the first part of the proof we know that at least one resulting dessin has
the desired property. Now, by the preceding classification of Riemann surfaces
with a regular dessin and automorphism group G we obtain graph–isomorphic
dessins what follows from a statement which might be of independent interest:

Proposition 3 Let Dr,Dl be regular (p, q, r)– and (m,n, l)–dessins with au-
tomorphism groups both isomorphic to G , induced by epimorphisms

hr : 〈p, q, r〉 → G , hl : 〈m,n, l〉 → G
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with torsion–free kernels. The bipartite graphs of Dr and Dl are graph–
isomorphic if

• p = m and q = n ,

• by combination with a group automorphism, hr and hl can be chosen
such that

1. hr(γ0) and hl(γ0) generate the same subgroup B of G ,

2. hr(γ1) and hl(γ1) generate the same subgroup W of G .

Proof. A necessary condition for the existence of an isomorphism between
both graphs is equality between the valencies in the vertices. Therefore we will
suppose in the sequel that the first condition is satisfied. Since both dessins are
regular with the same automorphism group, we can represent their edges by
group elements g ∈ G if we identify the edge 1 with the image of the hyperbolic
line between the fixed points of γ0 and γ1 under the map of H onto its quotient
by the kernels of hr and hl respectively. In order to describe the graph of Dr
we have to describe incidence around black (white) vertices. Let B and W
be the subgroups of G generated by hr(γ0) and hr(γ1) respectively. Then B
and W consist of the edges incident with 1 in its black and white end–vertex,
respectively. Using the G–action from the left, we see that the edge f is inci-
dent in its black end–vertex with all edges in fB and in its white end–vertex
with all edges fW . Since this property does not depend on the choice of the
generators of B and W , the conditions of Proposition 3 imply that the trivial
and G–covariant application of edges g 7→ g induces an isomorphism of graphs.

Remarks. 1) The different non–isomorphic dessins for P 2(F8) can be obtained
as well by different pairs of orderings of the difference set. If one wants to
obtain a regular dessin then only such permutations of D are admissible which
are preserved by the multiplication with 2 mod 73 , and it is easy to see that
there are precisely 6 such permutations. Applied independently to the inci-
dence pattern around black and white vertices, this gives 36 different regular
dessins as found in Theorem 1.
2) Which other cyclic projective planes besides the usual P 2(Fn) could exist,
giving also a regular dessin? It is known that their order n has to be > 3600 ;
furthermore, they should admit a sharply flag–transitive automorphism group,
and by results of Kantor and Feit (see Theorem 8.18 of [Ju]) this could be
possible only if a collection of exotic conditions holds: the order n of the plane
must be a multiple of 8 but no power of 2 , the number l of points is a prime,
and the difference D set can be chosen as set of powers nk mod (Z/lZ)∗ (for
this point one may also consult Proposition 11). Furthermore, D is its own
group of multipliers and contains all divisors of n .
3) Galois conjugate dessins are in general not necessarily graph isomorphic.
Some non–regular examples can be found in [JSt], but there are also such

Documenta Mathematica 6 (2001) 39–68



54 Manfred Streit and Jürgen Wolfart

examples for regular dessins: the three regular (2, 3, 7)–dessins with automor-
phism group G = PSL2(F13) on three Macbeath–Hurwitz curves treated in
[St] give three non–isomorphic but Galois conjugate dessins whose graphs are
not isomorphic.

3 The Wada property

We mention first that the proof of Theorem 3 is an almost trivial consequence
of the proof of Theorem 2: For prime l and globe covering dessins, i.e. with
mi = ki for all i in Figure 3, every cell in Figure 4 has valency 2l . Therefore,
the dessin is uniform, and every vertex lies on the border of every cell.
According to standard conjectures of number theory, there should exist an
infinity of prime powers n such that l = n2 + n + 1 is a prime (n =
2, 3, 5, 8, 9, 17, . . . ). But even for composite l , each difference ki − ki+1 de-
fines a module for an arithmetic progression in Z/lZ giving the sequence of
black points in clockwise order around the cell, and similarly for the white
points. However, the length of these arithmetic progressions (determining the
valency of the cell) is in general a proper divisor of l . For example in the case
n = 4 , q = 5 , l = 21 the difference set

D := {−3, 0, 1, 6, 8 }

has no arrangement such that all differences ki − ki+1 are coprime to l (the
indices i have to be considered mod 5 , of course).
The question raised for composite l about the existence of uniform (q, q, l)–
dessins for cyclic projective planes admitting Zl as automorphism group may
be reformulated now in the following way (note that for n = 5 we have l = 31
prime and that for n = 6 no difference set exists). Let n be ≥ 7 and l ≥ 57
be a composite number. Is it always possible to arrange a difference set

D := { ki | i mod q } ⊂ Z/lZ

in such a way that all successive differences ki − ki+1 are coprime to l ?
For small (prime powers) n the answer is positive thanks to the following Propo-
sitions.

Proposition 4 Let n be ≥ 7 and l ≥ 57 be a composite number with prime
divisor p . A difference set D ⊂ Z/lZ can always be arranged in such a way
that all successive differences of elements in D satisfy

ki − ki+1 6≡ 0 mod p .

For the proof it is sufficient to show that no residue class mod p contains
≥ q/2 elements among the elements of D . This will follow from

Proposition 5 Let n be ≥ 7 and l ≥ 57 be a composite number with prime
divisor p and a difference set D ⊂ Z/lZ . Let ar be the number of elements d ∈

Documenta Mathematica 6 (2001) 39–68



Cyclic Projective Planes and Wada Dessins 55

D with d ≡ r mod p , r = 1, . . . , p . Then the numbers ar have the following
properties.

∑

r

ar = q = n + 1 , (1)

∑

r

a2
r =

l

p
+ n =

1

p
(n2 + (p+ 1)n + 1) , (2)

∑

r

arar+s =
l

p
=

1

p
(n2 + n + 1) for all s 6≡ 0 mod p , (3)

|| (a1, . . . , ap) −
1

p
(n+ 1, . . . , n+ 1) ||2 =

p− 1

p
n (4)

Max | ar −
n+ 1

p
| <

√
n (5)

ar <
√
n +

n+ 1

p
for all r . (6)

(In (4), we use the Euclidean norm in Rp ).

From the last inequality, ar < n/2 follows for n > 40 and p ≥ 3 or for
n > 8 and p ≥ 7 (note that the primes 2 and 5 never occur as divisors of l ).
Therefore, one has to check the truth of Proposition 4 by hand for some small
n only. This can be done by giving the solutions of (1) to (3) for p = 3 and
small n . These are, up to permutation of the coordinates

(a1, a2, a3) = (4, 3, 1) for n = 7

(7, 4, 3) for n = 13

(9, 7, 4) for n = 19

(12, 7, 7) for n = 25

(13, 12, 7) for n = 31

(16, 13, 9) for n = 37 .

Now we can explain the strategy how to construct uniform dessins for projec-
tive planes even in the case of composite l , e.g. for n = 7 . Here we have
two prime divisors p = 3, 19 dividing l = 57 and we have to arrange D in
such a way that just every second ki ∈ D is congruent to 1 mod 3 . Then,
Proposition 5 is satisfied for p = 3 , and we have 2 · 4! · 4! possibilities for
such arrangements. Among these possibilities, one has to find an arrangement
satisfying Proposition 5 also for p = 19 . This is obviously possible since for
p = 19 , equations (1) and (2) are satisfied with one ar = 2 , for other six
indices m one has am = 1 , and all other at vanish.
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Proof of Proposition 5. Equation (1) just counts the number of elements in D .
Equation (2) follows from the fact that precisely l

p − 1 among the differences
ki − kj , i 6= j , fall into the residue class 0 mod p , and therefore

∑

r

ar(ar − 1) =
l

p
− 1 ,

Together with (1), this implies (2). Equation (3) follows by a similar consid-
eration of the differences giving elements ≡ d 6≡ 0 mod p . We may consider
(a1, . . . , ap) as a point on the hyperplane given by equation (1). By Hesse’s
normal form, this hyperplane has square distance 1

p (n + 1)2 from the origin,

and the nearest point to the origin is of course 1
p (n+ 1, . . . , n+ 1) . Therefore,

the square distance (2) and Pythagoras enable us to calculate the distance (4),
and this implies (5).
Proof of Theorem 4. If l = n2 + n+ 1 is prime and n = ps a prime power, it
is known [Wh], Lemma 3.3, that p mod l has order 3s in the group (Z/lZ)∗ .
Moreover, we may choose a difference set D ⊂ Zl = Z/lZ for the projective
plane invariant under multiplication with p mod l . Therefore, as in the case
of the plane P2(F8) described in the proof of Theorem 1, we have at least a
group of graph automorphisms isomorphic to ZloZ3s . This group becomes an
automorphism group of the globe covering dessin if and only if we can arrange
D in such a way that the multiplication with p preserves this cyclic ordering of
D .

Lemma 5 Under the hypotheses of Theorem 4, the action of Z3s through mul-
tiplication by pm on the p–invariant difference set D has orbits of length 3s .

Proof of the Lemma. Since l is prime and p mod l has order 3s , the orbits of
the action on Zl have length 3s or 1 . Length 1 occurs for one orbit only, and
this orbit cannot be contained in D since D has q = n+1 ≡ 0 mod 3 elements.
Proof of Theorem 4, continued. Now let k1, . . . , kr ∈ D represent the Z3s–
orbits of the Z3s–invariant difference set D , r = l/3s . Arrange D as

k1, . . . , kr , pk1, . . . , pkr, p
2k1, . . . . . . , p

3s−1kr .

Then it is easy to check that the multiplication with p mod l preserves the
cyclic order of the edges incident with black and white vertices as described in
Figure 3. Since l is prime, this arrangement does not bother the property that
every cell has valency 2l , see the proof of Theorem 3 in the beginning of this
section.

4 Equations

The aim of this section is the determination of explicit algebraic models for
the curves corresponding to the uniform (q, q, l)–dessins D coming from cyclic
projective planes as described in Theorem 3 and the last Section. We begin
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with a more general remark about globe covering (q, q, l)–dessins. The genus
0 quotient D/Zl with its q cells, q edges and two vertices, both of valency q ,
belongs to a unique Fuchsian subgroup of the triangle group ∆ of signature
〈q, q, l〉, its commutator subgroup Ψ of signature < 0; l(q) > , i.e. of genus 0
and with q inequivalent elliptic fixed points of order l such that

Γ ¢ Ψ with Ψ/Γ ∼= Zl , (7)

Ψ ¢ ∆ with ∆/Ψ ∼= Zq , (8)

if as before D corresponds to the Fuchsian group Γ . In the cases studied
in Theorem 3 and the last Section, i.e. for uniform dessins, Γ is the universal
(torsion–free) covering group of the curve whose equation we want to determine,
but with the exception of the cases studied in Theorem 1 we cannot suppose
that Γ is normal in ∆ .

Lemma 6 Suppose q > 2 and −2+q(1− 1
l ) > 0 , and let Ψ be a Fuchsian group

of signature < 0; l(q) > . Then the number of torsion–free normal subgroups of
Ψ with cyclic factor group ∼= Zl is a multiplicative function fq(l) of l . For p
prime and integer exponents a ≥ 1 we have

fq(p
a) = [(p− 1)q−1 + 1] paq−2a−q+1

if q is even, and for q odd we have

fq(p
a) = [(p− 1)q−1 − 1] paq−2a−q+1 .

Proof. In order to obtain a torsion–free normal subgroup of Ψ we have to
map the generators γ1, . . . , γq onto b1, . . . , bq ∈ (Z/lZ)∗ such that

∑
bi ≡

0 mod l . By an obvious extension of Lemma 1 to Γ ¢ Ψ , the number of these
congruence solutions is ϕ(l)fq(l) because two such epimorphisms Ψ → Zl
have the same kernel if and only if they result from each other by combination
with one of the ϕ(l) automorphisms of Zl where ϕ denotes the Euler function.
The multiplicativity of fq is therefore a consequence of the Chinese remainder
theorem and the multiplicativity of ϕ .
First, let l = p be prime. Then we count the congruence solutions

(p− 1) fq(p) = #{ (b1, . . . , bq) | bi ∈ (Z/pZ)∗ ,
∑

bi ≡ 0 mod p } =

= #{ (b1, . . . , bq−2) |
q−2∑

bi ≡ 0 mod p } (p− 1)

+ #{ (b1, . . . , bq−2) |
q−2∑

bi 6≡ 0 mod p } (p− 2) =

= #{ (b1, . . . , bq−2) | bi ∈ (Z/pZ)∗} (p− 1) − (p− 1)q−2

+ #{ (b1, . . . , bq−2) |
q−2∑

bi ≡ 0 mod p } =

= (p− 1)q−1 − (p− 1)q−2 + (p− 1) fq−2(p)

Documenta Mathematica 6 (2001) 39–68



58 Manfred Streit and Jürgen Wolfart

from which the formulae for l = p follow easily by induction over q .
Now, let l be a prime power pa , a > 1 . Every solution of

q∑

i=1

bi ≡ 0 mod pa , bi ∈ (Z/paZ)∗

gives by reduction mod p a solution of
∑
bi ≡ 0 mod p , and conversely every

solution of
∑
bi ≡ 0 mod p comes from p(a−1)(q−1) solutions mod pa since

every bi mod p has pa−1 preimages in (Z/paZ)∗ , and we have a free choice for
precisely q − 1 of these preimages. Therefore Lemma 6 follows from

(p− 1) pa−1 fq(p
a) = paq−a−q+1 (p− 1) fq(p) .

For another approach, in particular to the case of l = p prime, see [J], p.500.

Proposition 6 Let Ψ of signature < 0; l(q) > be the unique normal subgroup
of the triangle group ∆ of signature 〈q, q, l〉 , q > 2 , l > 3 with factor group
Zq . Let Γ of signature < (l − 1)(q − 2)/2; 0 > be the torsion–free kernel of
the epimorphism Ψ → Zl sending the canonical elliptic generators γi, i =
1, . . . , q, of Ψ onto bi ∈ (Z/lZ)∗ with

∑
bi ≡ 0 mod l (w.l.o.g. we may

normalize these epimorphisms by taking b1 = 1 ). Let bi be defined by bibi ≡
1 mod l , and let ζ = exp(2πi/q) be the multiplier of all γi . Then, as an
algebraic curve, the quotient surface Γ\H has a (singular, affine) model given
by the equation

yl = (x− ζ0)b1 · . . . · (x− ζq−1)bq .

Proof. This curve defines a function field built up by two consecutive cyclic
extensions

C(x, y) ⊃ C(x) ⊃ C(xq)

of orders l and q . The function xq on this curve is a Belyi function whose
ramification points lie above 0, 1,∞ of orders q, l, q respectively. The condition∑
bi ≡ 0 mod l is necessary and sufficient to ensure that∞ is unramified under

the extension C(x, y)/C(x) . The choice of the exponents easily follows from
a consideration of the local action of the automorphism group Zl in its fixed
points.

Example 1. For the globe covering dessins of Theorem 2, suppose that
k1, . . . , kq ∈ Z/lZ form the difference set D with (ki − ki+1, l) = 1 for all
i ∈ Z/qZ . This is true for prime l (Theorem 3); the Propositions 4 and 5 give
some evidence that there may exist orderings of D with that property as well
for all other q 6= 5 . Then the graph of the projective plane embeds into

yl = (x− ζ0)k2−k1 · . . . · (x− ζq−1)k1−kq .
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Remark. Cyclic permutations of the difference set in Example 1 give isomorphic
dessins and should give therefore isomorphic curves. In Lemma 10 below, we
will study these isomorphisms as coming from cyclic shifts of exponents.
Example 2. With l = q and b1 = . . . = bq = 1 the Fermat curves

yq = (x− ζ0) · . . . · (x− ζq−1) = xq − 1

fall under Proposition 6 as well.
Remark. Example 2 corresponds to a dessin for which — in the terminology
of Proposition 6 — Γ is even normal in ∆ . The dessin has therefore the larger
automorphism group Z2

q inducing additional relations between the exponents
(here: equality). Other examples of this type can be found in [StWo], Section
3.
The remaining part of this section is devoted to a determination of the moduli
field for the curves treated in Proposition 6. To this aim, define

b := (b1, . . . , bq) = (1, b2, . . . , bq)

and Xb := Γ\H to be the curve with the affine equation arising in Proposition
6, i.e. with bi ∈ (Z/lZ)∗ for all i and 1 +

∑q
i=2 bi ≡ 0 mod l . Clearly, the field

of definition of Xb can be chosen as a subfield of the cyclotomic field Q(ζ) ,
hence also the field of moduli (recall that by the definition given in Section 2
between Lemma 2 and Lemma 3, the field of moduli is contained in any field
of definition). We can give a slightly better result:

Lemma 7 The curve Xb can be defined over K = Q(ζ + ζ−1) = Q(cos 2π/q) ,
and K contains the moduli field of Xb .

A direct proof is provided by a substitution x = µ(z) in the defining equation
of Xb where µ denotes a fractional linear transformation defined over Q(ζ)
sending R ∪ {∞} onto the unit circle. Another way to prove the statement
about the field of moduli relies on the fact that the complex conjugation on
Xb corresponds on the one hand to the transformation

a : b = (1, b2, . . . , bq) 7→ (1, bq, . . . , b2) .

On the other hand, the same transformation of exponents corresponds to the
isomorphism of curves given by

x 7→ 1

x
, y 7→ y

x
.

We know by Lemma 1 that there is a bijection between the normalized q–
tuples b introduced above and the torsion–free normal subgroups N in this
unique subgroup Ψ of ∆ = 〈q, q, l〉 with quotient Ψ/N ∼= Zq . The absolute
Galois group does only permute the different curves Xb . To determine their
fields of moduli, one has therefore to determine the isomorphisms between
these different Xb , and by Lemma 2 we know that we have to determine all
conjugacies between the different groups N in maximal triangle groups ∆ .
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Lemma 8 Suppose q > 2 , l > 3 , q 6= l, 2l, 4l and suppose that 〈q, q, l〉 = ∆
is a non–arithmetic triangle group. Then ∆ = 〈2, q, 2l〉 is the unique maximal
triangle group containing N, Ψ, ∆ .

The uniqueness is a consequence of Margulis’ characterization of non–
arithmetic Fuchsian groups that the commensurator of N, Ψ, ∆ is only a finite
index supergroup of them. By work of Singerman [Si1], these supergroups are
well known, and our hypotheses about q and l guarantee that 〈2, q, 2l〉 is in
fact the maximal triangle group to be considered here.
Remark. The Fermat curves give examples in which 〈2, q, 2q〉 are not maximal
— and for which the following determination of the moduli field needs an extra
effort which is useless since we know that K = Q . For the dessins arising from
the embeddings of cyclic projective planes we have l = q2 − q + 1 > q . The
hypotheses of the Lemma are therefore violated only if ∆ is an arithmetical
triangle group. A look into Takeuchi’s classification [Ta] shows that this is
the case only for 〈3, 3, 7〉 . Since we already know that in this case Xb is
isomorphic to Klein’s quartic defined over K = Q , we can concentrate on the
cases satisfying the hypotheses of Lemma 8.
We continue with four rather obvious observations.

Lemma 9 Under the hypotheses of Proposition 6, Ψ is a normal subgroup of
∆ = 〈2, q, 2l〉, and to the group inclusions Ψ ⊂ ∆ ⊂ ∆ correspond the normal
function field extensions of their quotient spaces C(x) ⊃ C(xq) ⊃ C(xq +x−q) .
The quotient ∆/Ψ is isomorphic to the dihedral group Zq o Z2 and acts as
Galois group on the function field extension C(x)/C(xq + x−q) of degree 2q
generated by

a : x 7→ 1

x
, b : x 7→ ζx .

Lemma 10 This group ZqoZ2 acts on the set of quotient curves Xb
∼= N\H

by

a(b) = a((1, b2, . . . , bq)) = (1, bq, bq−1, . . . , b2) ,

b(b) = b((1, b2, . . . , bq)) = (1, b3b
−1
2 , . . . , bqb

−1
2 , b−1

2 ) .

If the hypotheses of Lemma 8 are satisfied, the orbits under this group action
form precisely the isomorphism classes among the curves Xb .

Lemma 11 For i ∈ Z/qZ denote bi(b) =: (1, b′2, . . . , b
′
q) . There is a k ≡

1− i mod q such that the cyclic sequences of quotients

1 , b2 , . . . , bq−1 , bq and 1 , b′k+1/b
′
k , b

′
k+2/b

′
k , . . . , b

′
k−1/b

′
k

coincide. The action of a reverses the order of these sequences, i.e. replaces
b′k+m by b′k−m .
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Lemma 12 The action of the absolute Galois group GalQ/Q on the set of
curves Xb factorizes through G = GalQ(ζ)/Q . If we identify G in the usual
way with the group of prime residue classes Z∗q := (Z/qZ)∗ , every r ∈ Z∗q acts
on the set of q–tuples b by

r : (1, b2, . . . , bq) 7→ (1, br−1+1, b2r−1+1, . . . , b(q−1)r−1+1) .

In particular, the action of r = −1 coincides with the action of a .

The last sentence again shows that the moduli field of every Xb is a real
subfield of Q(ζ) . If Xb and Xb′ are isomorphic curves, then their r–images are
isomorphic, too, for all r ∈ Z∗q . We obtain therefore

Lemma 13 Under the hypotheses of Lemma 8 there is a well–defined action of
the Galois group G = GalQ(ζ)/Q = Z∗q on the Zq o Z2–orbits considered in
Lemma 10. With this action of G , the moduli field of Xb is the fixed field of
the stabilizer of (Zq o Z2)(b) .

Example. Let n = 7 , q = 8 , l = 57 and consider the uniform dessin for the
plane P2(F7) belonging to the cyclic ordered difference set

D = (0, 1, 3, 7, 21,−19,−24,−8)

satisfying in fact the condition (ki − ki+1, l) = 1 , see the last section. Its
algebraic curve Xb corresponds to the 8–tuple (of inverse exponents mod 57 )

b = (1, 2, 4, 14, 17,−5, 16, 8) .

For r = 3 and r = 5 ∈ Z∗8 = G we obtain

3(b) = (1, 14, 16, 2, 17, 8, 4,−5) and 5(b) = (1,−5, 4, 8, 17, 2, 16, 14) .

Both do not belong to the (Z8 o Z2)–orbit of b what can easily be seen using
Lemma 11: the cyclic sequence of the bi contains the subsequent members
1, 2, 4 which do not occur in any sequence of quotients 1 , b′k±1/b

′
k , b

′
k±2/b

′
k

for 3(b) and 5(b) . Therefore, the field of moduli and the field of definition
of Xb is in fact the fixed field K = cos 2π/8 of the subgroup {1,−1} ⊂ G .
Another interesting fact becomes visible in this example: Being the dessin of
a projective plane is not a Galois invariant property because e.g. 5(b) does
not consist of the successive differences of a difference set. By consequence, the
existence or non–existence of quadrangle loops (see Prop. 10, next section) in
a dessin is neither a Galois invariant.

5 Regular Wada dessins

We start with some more general remarks on the Wada property. Clearly,
unicellular dessins are Wada dessins, and starting with unicellular dessins in
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d

d d

d d

t t

t

t

t
Figure 5: Non–uniform Wada dessin on a torus

positive genera, it is easy to construct Wada dessins by suitable subdivisions of
the cell as in the following more general genus 1 example (Figure 5) in which
the opposite borderlines have to be identified.
This (4, 4, 3)–dessin is not uniform since there are vertices of both colors with
different valencies. The reason is the fact that on the border of each cell there
are different vertices which have to be identified on the Riemann surface. In
other words, one may draw a curve joining this vertex to itself in the cell but not
null–homotopic in the (closed) cell. This turns out to be the only obstruction
for Wada dessins with more than one cell to be uniform.
Definition. We call a dessin flat if the topological closure of all cells are simply
connected.

Proposition 7 Let D be a flat Wada dessin with q > 1 cells. Then D is a
uniform (q, q, l)–dessin where l denotes the number of black resp. white vertices.

Proof. By definition, every vertex of D lies on the border of every cell, so the
valencies of the vertices have to be at least q . On the other hand, no such
valency can be > q : Otherwise there would exist a cell S having a vertex
x twice on its border, more precisely one could join x with itself by a non–
nullhomotopic curve in the cell, but — by hypothesis — null–homotopic in S ;
therefore another vertex y 6= x exists in the interior of this curve, lying on the
border of (only) the cell S , hence q = 1 , contradiction. By the same reason,
every cell has precisely the valency 2l .
Remark and Example. By Theorem 2, we know that the resulting dessin of the
embedding of a cyclic projective plane’s graph depends on the chosen orderings
of the difference set. This is also true for the Wada property and for flatness:
For P2(F3) one has the difference set

D := { 0, 1, 3, 9 } ⊂ Z13 .
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If we take the corresponding globe covering dessin, i.e. with mi = ki , we obtain
a uniform flat (4, 4, 13)–dessin as in the proof of Theorem 3. If we change the
cyclic orders of D into

(mi)i=1,... ,4 = (0, 1, 3, 9) but (ki)i=1,... ,4 = (9, 3, 1, 0)

we obtain a non–flat uniform (4, 4, 26)–Wada dessin with two cells. With the
cyclic orders

(mi)i=1,... ,4 = (0, 1, 3, 9) and (ki)i=1,... ,4 = (0, 3, 9, 1)

we obtain a Wada dessin with two cells, one of valency 2 · 13 and the other
of valency 2 · 39 . In both examples the quotient by the Singer group Z13 is a
dessin with one black vertex and one white vertex and q = 4 edges, but not
with q cells in genus 0 (as for the globe covering dessins treated in Sections 3
and 4) but with two cells in genus 1 .

In Section 2, we already met some special regular Wada dessins. Here we
will characterize such dessins, give some more examples and explain why their
underlying graphs do in general not come from finite projective planes even if
the valencies q and l satisfy the necessary relation l = n2 +n+ 1 = q2− q+ 1 .

Proposition 8 Let D be a regular (q,m, l)–dessin with automorphism group
G , generated by elements b0, b1, b∞ of respective orders q,m, l and generating
cyclic subgroups B, W and C , respectively. Then D is a Wada dessin if and
only if

(G : B) = (C : C ∩B) and (G : W ) = (C : C ∩W ) .

In that case, the number of cells of D is

(G : C) = (B : C ∩B) = (W : C ∩W ) .

D is a flat Wada dessin if and only if moreover

C ∩B = C ∩W = {1} ,

in other words if D has l black and l white vertices and q = m cells.

Proof. There are a black vertex x fixed by B and a white vertex y fixed by
W , both on the border of a cell fixed by C . Since D is a regular dessin, the
automorphism group G acts transitively on all black (resp. white) vertices, and
since B (resp. W ) is the stabilizer subgroup of x (resp.y ), the total number
of black (resp. white) vertices is (G : B) resp. (G : W ) . Now, D is a Wada
dessin if and only if all these black (resp. white) vertices form one orbit under
the action of C . According to the class formula, this is the case if and only if

(G : B) = (C : C ∩B) and (G : W ) = (C : C ∩W ) .
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The number of cells is deduced in a similar way by the action of G, B and
W on the cells. Moreover, D is flat if and only if all the black (resp. white)
vertices on the border of the cell fixed by C are pairwise different, i.e. if and
only if l is the number of black (resp. white) vertices.
As a non–flat example, take the genus 3 curve with the affine model

y2 = x7 − x ,

with (4, 4, 6)–dessin and an automorphism group G of order 12 (a semidirect
product of a cyclic group of order 4 with a normal subgroup of order 3 ). Here
we have two cells of valency 12 but only 3 different black (resp. white) vertices.
It is not surprising that in the case of flat regular Wada dessins the structure
of G can be determined rather precisely.

Proposition 9 Let D be a regular (q, q, l)–Wada dessin with q cells and l
black (resp. white) vertices. Then

1. G = AutD has order ql ,

2. G = BC = WC for the cyclic stabilizer subgroups B,W of a black and
a white neighbor vertex and the cyclic stabilizer subgroup C of a cell,

3. G′′ = {1} , i.e. G is metabelian.

4. If q is prime and l > 1 , one has even l ≥ q .

5. In the case l = q prime, the dessin belongs to a Fermat curve of exponent
q and with G ∼= Z2

q .

6. If l is prime > q (arbitrary), q divides l − 1 and G ∼= Zl o Zq .

Proof. 1) Clearly, D has ql edges. Since G acts sharply transitive, the number
of edges is the order of G . A similar argument proves assertion 2). As we
learned from Gareth Jones, 3) follows from 2) by a theorem of Itô [I]. 4)
Because G is generated by two cyclic subgroups B and W of order q , they
coincide if and only if l = 1 . If not and q is prime, they satisfy moreover
B ∩W = {1} , ordG ≥ q2 and hence l ≥ q . 5),6) Since G contains a cyclic
subgroup of order l , the statements about the structure of G are standard
consequences of Sylow’s theorems. It is well known that regular (q, q, q)–
dessins with automorphism group Z2

q belong to Fermat curves, see e.g. [JS],7.
Examples 3. On the other hand: that these dessins are flat Wada dessins can
easily be verified using Proposition 8.

Remark. If q is not prime, the statement 4) in general fails as the following
example shows. On the elliptic curve y2 = x4 − 1 there is a regular (4, 4, 2)–
dessin with 8 edges, q = 4 cells, l = 2 black resp. white points, automorphism
group G ∼= Z4 ×Z2 and disjoint generating subgroups B ∼= W ∼= Z4 , C ∼= Z2

(complete the Figure 5 dessin by two edges forming a vertical middle axis).
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For the structure of G in these more general cases one may consult a paper of
Huppert [Hu]. Theorem 2 of [I] gives the existence of normal subgroups N¢G
containing B,W or C and other normal subgroups contained in these cyclic
subgroups, so it is possible to represent D by successive cyclic coverings of very
simple genus 0 dessins.
In [StWo] we studied a series of regular (q, q, l)–dessins with q, l prime, q|l−1
and automorphism group G ∼= Zl o Zq giving examples for Proposition 9.6).
For the purpose of the present paper, the hypothesis ”q prime” is unnecessary,
but we make the assumptions

q > 2 , l = q2 − q + 1 prime , G ∼= Zl o Zq

where Zl is generated by a and Zq by b satisfying the relation

b−1 a b = au

for some fixed prime residue class u ∈ (Z/lZ)∗ of order q . Imitating the
proof of Proposition 3, we generate the automorphism group of the dessin by a
rotation b around a black vertex x and a rotation b−1a around a white vertex
neighbor y . That all these dessins are flat Wada dessins follows again easily
from Proposition 8.

Proposition 10 Let D be a (q, q,m)–dessin with l = q2 − q + 1 points, all
vertices with valency q > 2 . The underlying graph is the graph of a projective
plane if and only if no quadrangle loop exists in D , i.e. if there are no white
vertices y 6= y∗ , black vertices x 6= x∗ such that xyx∗y∗x are successive
neighbors.

Proof. If such a quadrangle loop exists, the uniqueness of the intersection points
or joining lines is violated, whence we cannot have the graph of a projective
plane. If no such quadrangle exists, counting neighbor vertices one easily shows
that any two black vertices have a unique white neighbor in common, and that
the respective statement is true for two white vertices. The existence of four
points in general position follows easily from q > 2 .
With Proposition 10 we can now see why e.g. the regular (7, 7, 43)–dessin
with automorphism group Z43 o Z7 has no underlying graph belonging to a
projective plane:

Proposition 11 Let D be a regular (q, q, l)–dessin with l = q2 − q+ 1 prime
and automorphism group G ∼= Zl o Zq whose generators a, b of respective
orders l, q satisfy

b−1 a b = au ,

u ∈ (Z/lZ)∗ of order q . The underlying graph is a graph of a projective plane
of order n = q−1 if and only if the powers uk, k = 1, . . . , q, form a difference
set in Z/lZ .
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Proof. Because the dessin is regular, we can start with any black vertex x and
a white neighbor y , hence we will take the fixed points of b and b−1a . Suppose
there is a quadrangle loop as forbidden by Proposition 9, then

x∗ = (b−1a)k(x) , y∗ = bm(y)

with k,m 6≡ 0 mod q , and the subgroups fixing these two points are generated
by

(b−1a)k b (b−1a)−k and bm(b−1a)b−m

respectively. An edge joining x∗ with y∗ exists if and only if it is the G–image
of the edge joining y and x by a group element which can be written in two
ways:

(bm(b−1a)b−m)s bm = ((b−1a)k b (b−1a)−k)r (b−1a)k

with r, s 6≡ 0 mod q . This equation is equivalent to

(b−1a)s = b−m (b−1a)k br

or, using the relation between a and b ,

au+u2+...+us b−s = b−m au+u2+...+uk b−k+r = au
m(u+u2+...+uk) b−m−k+r .

This relation holds if and only if

s+ r ≡ m+ k mod q and u+ . . .+ us ≡ um(u+ . . .+ uk) mod l .

The second congruence is easily seen to be equivalent to

us − 1 ≡ um+k − um

meaning that the powers of u do not form a difference set in Z/lZ . On the
other hand, if the powers of u form a difference set, the last congruence is
unsolvable for s,m, k 6≡ 0 mod q , whence a quadrangle loop cannot exist.

6 The cartographic group

We prove the last theorem in the following more general form.

Proposition 12 Let D be a globe covering dessin obtained by embedding the
graph of a cyclic projective plane P of order n = q − 1 with Singer group
Zl ⊆ AutD . Then the cartographic group M of D is isomorphic to a semidirect
product Ao Zq for a quotient A of Znl .
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As explained in the beginning of Section 4, the hypothesis globe covering says
that D corresponds to a subgroup Γ of the triangle group ∆ = 〈q, q, l〉 with
an intermediate normal subgroup Ψ = ∆′ of signature < 0; l(q) > such that
(7) and (8) hold. In contrast to Section 4, we can even admit the existence
of torsion elements in Γ , in other words D is allowed to be a non–uniform
dessin. The cartographic group of D can be introduced either as monodromy
group of the corresponding Belyi function β or as a certain permutation group
of the edges of D since these represent the sheets of the covering β . Here, the
easiest way to determine M is the fact that M is isomorphic to the quotient
∆/N of ∆ by its maximal normal subgroup N contained in Γ . Let Ψ′ the
commutator subgroup of Ψ . Since Ψ is normal in ∆ , the same holds for Ψ′ .
The presentation of Ψ shows that

Ψ′ ⊆ Γ with Ψ/Ψ′ ∼= Zq−1
l .

Therefore, Ψ′ ⊆ N ⊆ Γ , and if we denote the quotient Ψ/N by A , the result
follows.
Remark. As in Section 4, the choice of the ordered difference set for P deter-
mines the homomorphism Ψ→ Zl with kernel Γ , and the action of ∆ resp. Zq
on Zq−1

l is also known. Using these data, it is in principle possible to determine
A and the action of Zq on A .
The same line of arguments as in the proof above gives a more general version of
Theorem 4. Since the full automorphism group of D is isomorphic to N∆(Γ)/Γ
where N∆(Γ) denotes the normalizer in ∆ (containing Ψ , of course), we obtain

Proposition 13 Under the hypotheses of Proposition 12 we have

AutD ∼= Zl o Zm

for some divisor m of q .
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[Ke] B. v. Kerékjártó: Vorlesungen über Topologie I. Flächentopologie.
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1 Introduction

In [S] Serre defined local Euler factors Lp(Hn(X), s) for the “motives” Hn(X)
where X is a smooth projective variety over a number field k. The definition at
the finite places p involves the Galois action on the l-adic cohomology groups
Hn

ét(X ⊗ kp,Ql). At the infinite places the local Euler factor is a product
of Gamma factors determined by the real Hodge structure on the singular
cohomology Hn

B(X ⊗ kp,R). If p is real then the Galois action induced by
complex conjugation on kp has to be taken into account as well.
Serre also conjectured a functional equation for the completed L-series, defined
as the product over all places of the local Euler factors.
In his definitions and conjectures Serre was guided by a small number of exam-
ples and by the analogy with the case of varieties over function fields which is
quite well understood. Since then many more examples over number fields no-
tably from the theory of Shimura varieties have confirmed Serre’s suggestions.
The analogy between l-adic cohomology with its Galois action and singular
cohomology with its Hodge structure is well established and the definition
of the local Euler factors fits well into this philosophy. However in order to
prove the functional equation in general, a deeper understanding than the one
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70 C. Deninger

provided by an analogy is needed. First steps towards a uniform description
of the local Euler factors were made in [D1], [D2], [D3]. There we constructed
infinite dimensional complex vector spaces Fp(Hn(X)) with a linear flow such
that for all places:

Lp(Hn(X), s) = det∞
( 1

2π
(s · id−Θ) | Fp(Hn(X))

)−1

. (1)

Here Θ is the infinitesimal generator of the flow and det∞ is the zeta-regularized
determinant. Unfortunately the construction of the spaces
Fp(Hn(X)) was not really geometric. They were obtained by formal construc-
tions from étale cohomology with its Galois action and from singular cohomol-
ogy with its Hodge structure.
C. Consani [C] later developed a new infinite-dimensional cohomology theory
Hn

Cons (Y ) with operators N and Θ for varieties Y over R or C such that for
infinite places p:

(Fp(Hn(X)),Θ) ∼= (Hn
Cons (X ⊗ kp)N=0,Θ) . (2)

Her constructions are inspired by the theory of degenerations of Hodge struc-
ture and her N has to be viewed as a monodromy operator. The formula for
the archimedean local factors obtained by combining (1) and (2) is analogous to
the expression for Lp(Hn(X), s) at a prime p of semistable reduction in terms
of log-crystalline cohomology.
The conjectural approach to motivic L-functions outlined in [D7] suggests the
following: It should be possible to obtain the spaces Fp(Hn(X)) for archime-
dian p together with their linear flow directly by some natural homological
construction on a suitable non-linear dynamical system. Clearly, forming the
intersection of the Hodge filtration with its complex conjugate and running the
resulting filtration through a Rees module construction as in our first construc-
tion of Fp(Hn(X)) in [D1] is not yet what we want: In this construction the
linear flow appears only a posteriori on cohomology but it is not induced from
a flow on some underlying space by passing to cohomology.
In the present paper in Theorems 4.2, 4.3, 4.4 we make a step towards this goal
of a more direct dynamical description of the archimedian Gamma-factors. The
approach is based on a result of Simpson which roughly speaking replaces the
consideration of the Hodge filtration by looking at a relative de Rham complex
with a deformed differential.
In our case, instead of the Hodge filtration F

•
we require the non-algebraic

filtration F
• ∩ F •. This forces us to work in a real analytic context even

for complex p. It seems difficult to carry Simpson’s method over to this new
context. However this is not necessary. By a small miracle – the splitting of a
certain long exact sequence – his result can be brought to bear directly on our
more complicated situation.
In the appendix to section 4 we explain a relation between Simpson’s deformed
complex and a relative de Rham complex on the deformation of X to the normal
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On the Γ-Factors of Motives II 71

bundle of a base point. This observation probably holds the key for a complete
dynamical understanding of the Gamma-factor.
Our main construction also provides a Cω-vector bundle on R with a flow. Its
fibre at zero can be used for a “dynamical” description of the contribution from
p |∞ in the motivic “explicit formulas” of analytic number theory.
In our investigation we encounter a torsion sheaf whose dimension is to some
extent related to the ε-factor at p of Hn(X).
Using forms with logarithmic singularities one can probably deal more generally
with the motives Hn(X) where X is only smooth and quasiprojective.
It would also be of interest to give a construction for Consani’s cohomology
theory using the methods of the present paper.
I would like to thank J. Wildeshaus for discussions which led to the appendix of
section 4. A substantial part of the work was done at the IUAV in Venice where
I would like to thank U. Zannier and G. Troi very much for their hospitality. I
would also like to thank the referee for a number of suggestions to clarify the
exposition.

2 Preliminaries on the algebraic Rees sheaf

In this section we recall and expand upon a simple construction which to any
filtered complex vector space attaches a sheaf on A1 = A1

C with a Gm-action.
We had used it in earlier work on the Γ-factors [D1], [D3] § 5. Later Simpson
[Si] gave a more elegant treatment and proved some further properties. Most
importantly for us he proved Theorem 5.1 below which was the starting point
for the present paper. In the following we also extend his results to a variant
of the construction where one starts from a filtered vector space with an in-
volution. This is necessary later to deal not only with the complex places but
with the real places as well.
Let FilC be the category of finite dimensional complex vector spaces V with a
descending filtration FilrV such that Filr1V = 0,Filr2V = V for some integers
r1, r2. Let Fil±R be the category of finite dimensional complex vector spaces with
a filtration as above and with an involution F∞ which respects the filtration.
Finally let FilR be the full subcategory of Fil±R consisting of objects where F∞
induces multiplication by (−1)

•
on Gr

•
V .

These additive categories have ⊗-products and internal Hom’s. We define Tate
twists for every integer n by

(V,Fil
•
V )(n) = (V,Fil

•+nV ) in FilC

and by

(V,Fil
•
V, F∞)(n) = (V,Fil

•+nV, (−1)nF∞) in Fil±R and FilR .

Note that the full embedding:

i : FilR ↪→ Fil±R
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72 C. Deninger

is split by the functor

s : Fil±R −→ FilR

which sends (V, F̃il
r
V, F∞) to

(V,FilrV = (F̃il
r
V )(−1)r + (F̃il

r+1
V )(−1)r+1

, F∞)

i.e. s ◦ i = id. Here W±1 denotes the ±1 eigenspace of F∞ on W . For V in
FilC following [Si] § 5 define a locally free sheaf ξC(V ) = ξC(V,Fil

•
V ) over A1

with action of Gm by

ξC(V ) =
∑

p

FilpV ⊗ z−pOA1 ⊂ V ⊗ j∗OGm .

Here j : Gm ↪→ A1 is the inclusion and z denotes a coordinate on A1 determined
up to a scalar in C∗. Unless stated otherwise the constructions in this paper
are independent of z. The global sections of the “Rees sheaf” ξC(V,Fil

•
V ) form

the “Rees module” over C[z]:

Fil0(V ⊗C C[z, z−1]) =
∑

p

FilpV ⊗ z−pC[z] ⊂ V ⊗ C[z, z−1]

where FilpC[z, z−1] = zpC[z] for p ∈ Z. The natural action of Gm on A1

induces a Gm-action on ξC by pullback

λ∗ : (λ)−1ξC −→ ξC , v ⊗ g(z) 7−→ v ⊗ g(λz) . (3)

Here (λ)−1ξC denotes the inverse image of ξC under the multiplication by λ ∈
C∗ map.
Let sq : A1 → A1 be the squaring map sq(z) = z2 and define F∞ : A1 → A1 as
F∞ = −id. For V in Fil±R the actions of F∞ on V and Gm ⊂ A1 combine to
an action

F ∗∞ : F−1
∞ (V ⊗ j∗OGm) −→ V ⊗ j∗OGm .

Thus we get an involution F∞ on the sheaf sq∗(V ⊗ j∗Gm) and we define a
locally free sheaf on A1 by:

ξR(V ) = ξR(V,Fil
•
V, F∞) = (sq∗ξC(V,Fil

•
V ))F∞ .

The Gm-action on ξC leads to an action

λ∗ : (λ2)−1ξR −→ ξR .

The global sections of ξR(V,Fil
•
V, F∞) are given by

(∑

p

FilpV ⊗ z−pC[z]
)F∞

⊂ V ⊗ C[z, z−1]

viewed as a C[z2]-module.
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On the Γ-Factors of Motives II 73

Remark 2.1 The global sections of ξ – with the action of the Lie algebra of
Gm – were also considered in [D3] § 5

Γ(A1, ξC(V,Fil
•
V )) = D+(V,Fil

•
V )

Γ(A1, ξR(V,Fil
•
V, F∞)) = D+(V,Fil

•
V, F∞)

in the notation of that paper.

We denote by E = E(V,Fil
•
V ) resp. E = E(V,Fil

•
V, F∞) the vector bundle on

A1 corresponding to the locally free sheaf ξ. It has a contravariant Gm-action
with respect to the action of Gm on A1 by

Gm × A1 −→ A1 , (λ, a) 7−→ λeKa (4)

where eC = 1 and eR = 2.
For K = C resp. R let DK be the category of locally free OA1 -modules of
finite rank with contravariant action by Gm with respect to the action (4)
on A1. The category DK has ⊗-products and internal Homs. For M ∈ DK
set M(n) = znM for any integer n. Thus M(n) is isomorphic to M as an
OA1 -module but with Gm-action twisted as follows:

λ∗M(n) = λn · λ∗M .

The following construction provides inverses to ξC and ξR. For M in DK set

ηK(M) = Γ(Gm, j∗M)Gm = (Γ(A1,M)⊗C[zeK ] C[z, z−1])Gm

with the filtration (and in case K = R the involution) coming from the one on
C[z, z−1].
The main properties of ξ and η are contained in the following proposition.
Recall that a map ϕ : V → W of filtered vector spaces is called strict if
ϕ−1FiliW = FiliV for all i.

Proposition 2.2 a) The functor ξK : FilK → DK is an equivalence of addi-
tive categories with quasi-inverse ηK . It commutes with ⊗-products and internal
Homs and we have that

dimV = rkξK(V ) and dim ηK(M) = rkM
for all V in FilK and M in DK .
The functors ξC and ξR : Fil±R → DR commute with Tate twists.
For (V,Fil

•
V, F∞) ∈ Fil±R there is a canonical isomorphism:

ξR(V,Fil
•
V, F∞)∗ = ξR(V ∗,Fil

•−1V ∗, F ∗∞) .

Here FilpV ∗ := (Fil1−pV )⊥ in V ∗.
b) The diagrams

Fil±R
s

��

ξR
�� DR

FilR
ξR

� ���������

and Fil±R

s �
� ��������

ξR
�� DR

ηR
��

FilR
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74 C. Deninger

are commutative.
c) If ϕ : U → V is a morphism in FilC resp. Fil±R then
i) ξ(kerϕ) = ker(ξ(U)→ ξ(V ))
and
ii) ξ(cokerϕ) = coker (ξ(U)→ ξ(V ))/T
where T is the subsheaf of torsion elements. We have T = 0 if and only if ϕ
resp. s(ϕ) is strict.

Proof a) is shown in [Si] § 5 for K = C. Every object in Fil±R is the direct sum
of objects C(n)± defined as follows: The underlying vector space of C(n)± is
C, the filtration is given by FilpC(n)± = C(n)± if p ≤ −n and = 0 if p > −n.
Finally F∞ acts on C(n)± by multiplication with ±1. The objects of FilR are
direct sums of objects C(n)(−1)n and we have that

s(C(n)(−1)n) = C(n)(−1)n and s(C(n)(−1)n+1

) = C(n+ 1)(−1)n+1

.

Using decompositions into C(n)(−1)n ’s, one checks that the natural maps

ξR(V )⊗ ξR(W ) −→ ξR(V ⊗W )

and

Hom(ξR(V ), ξR(W )) −→ ξR(Hom(V,W ))

are isomorphisms for all V,W in FilR. Moreover the rank assertions in a) follow.
Commutation with Tate twists follows immediately from the definitions. The
final isomorphism follows from the above and the first diagram in b) since a
short calculation gives that:

(V, sFil
•
V, F∞)∗ = (V ∗, s(Fil

•−1V ∗), F ∗∞) .

The commutativities in b) can be seen using decompositions into C(n)±’s.
In particular ηR ◦ ξR = id for ξR : FilR → DR. The opposite isomorphism
ξR ◦ηR = id follows as in Simpson [Si] § 5. Finally c) is stated in loc. cit. for
K = C and remains true for K = R. Part i) is straightforward. As for ii), by
functoriality of ξ and the fact that ξ(cokerϕ) is torsion-free one is reduced to
proving that the kernel of the natural surjection

coker (ξ(U)→ ξ(V ))³ ξ(cokerϕ)

is torsion. This can be checked using a suitable splitting of ϕ. 2

The following facts about the structure of the Rees bundle were noted for
K = C in [Si] § 5.

Proposition 2.3 i) For all V in FilC resp. Fil±R there are canonical isomor-
phisms of vector bundles over Gm

j∗E(V,Fil
•
V )

∼−→ V ×Gm
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On the Γ-Factors of Motives II 75

resp.

sq∗j∗E(V,Fil
•
V, F∞)

∼−→ V ×Gm
functorial in V and compatible with the (contravariant) Gm-action. Thus the
local systems FC and sq∗FR are trivialized functorially in V . Under the iso-
morphism

E(V,Fil
•
V, F∞)1 = (sq∗E(V,Fil

•
V, F∞))1

∼−→ V

the monodromy representation of π1(C∗, 1) ∼= Z maps n to Fn∞.
ii) For V in FilC resp. Fil±R there are isomorphisms depending on the choice
of a coordinate z on A1:

E(V,Fil
•
V )0

∼−→ Gr
•
V

resp.

E(V,Fil
•
V, F∞)0

∼−→ Gr
•
(sV )

functorial in V . They are compatible with the Gm-action if Gm acts on GrpV
resp. Grp(sV ) by the character z−p.

Proof i) We treat the case K = R. It suffices to check that

sq∗j∗ξ(V,Fil
•
V, F∞)

∼−→ V ⊗OGm
compatibly with the Gm-action and functorially in V . This can be verified on
global sections. The required maps

A =
(∑

p

FilpV ⊗ z−pC[z]
)F∞
⊗C[z2] C[z, z−1] −→ V ⊗ C[z, z−1]

are obtained by composition:

A −→ (V ⊗ C[z, z−1])⊗C[z2] C[z, z−1]

−→ (V ⊗ C[z, z−1])⊗C[z] C[z, z−1] = V ⊗ C[z, z−1] .

That they are isomorphisms needs to be checked on the generators C(n)(−1)n

of FilR only. As for the second assertion it suffices to show that the diagram:

(sq∗FR(V ))1

α1 o
��

= FR(V )1 = (sq∗FR(V ))−1

α−1 o
��

V
F∞

�� V

is commutative where the vertical arrows come from the above trivialization.
They are given by setting z = 1 on the left and z = −1 on the right. The value
of a global section of the form

1

2
(v ⊗ zp + F∞(v ⊗ zp)) =

1

2
(v + (−1)pF∞(v))⊗ zp
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76 C. Deninger

in sq∗FR(V )±1 is mapped by α±1 to (−1)p 1
2 (v + (−1)pF∞(v)). Hence the

composition α−1 ◦ (α1)−1 maps w = 1
2 (v + (−1)pF∞(v)) to (−1)pw = F∞(w).

Since the w’s generate V we have α−1 ◦ (α1)−1 = F∞ as claimed.
ii) This is a special case of Proposition 6.1. 2

3 A real-analytic version of the Rees sheaf

A real structure on an object V of FilC leads to a real structure in the algebraic
sense on the vector bundle EC(V,Fil

•
V ) – it is then defined over A1

R. For reasons
explained in section 3 we are interested however in obtaining a real structure in
the topological sense on the Rees bundle. There does not seem to be a natural
real Rees bundle over C = A1(C). However over R ⊂ C a suitable topologically
real bundle can be constructed, and its properties will be important in section
4. We now proceed with the details.
Let Filreal

C etc. be categories defined as before but using real instead of complex
vector spaces. Let AY denote the sheaf of real valued real-analytic functions
on a real Cω-manifold or more generally orbifold Y . For V in Filreal

C we set

ξωC (V,Fil
•
V ) =

∑

p

FilpV ⊗ r−pAR ⊂ V ⊗ j∗AR∗

where r denotes the coordinate on R and j : R∗ ↪→ R is the inclusion. This is
a free AR-module. With respect to the flow φtC(r) = re−t on R it is equipped
with an action

ψt : (φtC)−1ξωC −→ ξωC

which is induced by the pullback action:

ψt = (φtC)∗ : (φtC)−1j∗AR∗ −→ j∗AR∗ .

Let sq : R → R≥0 be the squaring map sq(r) = r2 and consider the action of
µ2 = {±1} on R by multiplication. Let ρ : R→ R/µ2 be the natural projection.
If we view R≥0 as a Cω-orbifold via the isomorphism

sq : R/µ2
∼−→ R≥0 , [r] 7−→ r2

we have

AR≥0 = sq∗(ρ∗AR)µ2 = (sq∗AR)µ2 .

In the previous situation over C the adjunction map:

sq∗ : OC −→ (sq∗OC)µ2 , f 7−→ (z 7→ f(z2))

was an isomorphism and we used it to view ξR = (sq∗ξC)F∞ as an OC-module.
Over R however the corresponding map is not an isomorphism since sq : R→ R
is not even surjective and we will have to work with AR≥0 in the following.
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For V in Fil±real
R we set

ξωR (V,Fil
•
V, F∞) = (sq∗ξ

ω
C (V,Fil

•
V ))F∞ ⊂ sq∗(V ⊗ j∗AR∗)

viewed as a free AR≥0-module on the orbifold R≥0. With respect to the flow
φtR(r′) = r′e−2t on R≥0 where r′ = r2 we have an action

ψt : (φtR)−1ξωR −→ ξωR

induced by the action ψt on ξωC .
Let DωK be the category of locally free AR- resp. AR≥0 -modules M with an
action

ψt : (φtK)−1M−→M .

Then DωK has ⊗-products and internal Hom’s and we define the Tate twist by
an integer n as M(n) = rnM. Then M(n) is canonically isomorphic to M as
a module but equipped with the twisted action:

ψtM(n) = e−tnψtM .

As before ξωC and ξωR : Fil±real
R → DωR commute with Tate twists.

The relation with the previous algebraic construction is the following. For Y
as above set OY = AY ⊗R C. Let i : R ↪→ C denote the inclusion. Then we
have OR = i−1OC and OR≥0 = (sq∗OR)µ2 = i−1(sq∗OC)µ2 . Moreover:

ξωK(V )⊗R C = i−1ξan
K (V ⊗ C) . (5)

Here ξan
K (V ⊗ C) is obtained from ξK(V ⊗ C) by analytification. It carries a

natural involution J coming from the real structures V of V ⊗C and R[z, z−1] of
C[z, z−1]. The involution id⊗c on the left of (5), where c is complex conjugation
corresponds to i−1(J) on the right.
These facts can be used to see that the analytic version ξωK over R resp. R≥0

of ξK has analogous properties as the algebraic ξK on A1
C.

An object of FilC resp. Fil±R may be viewed as an object of Filreal
C resp. Fil±real

R
by considering the underlying R-vector space. We write this functor as V 7→ VR.
It is clear from the definitions that

ξωK(VR) = i−1ξan
K (V ) (6)

as AR- resp. AR≥0 -modules.
Looking at associated Cω-vector bundles we get:

Corollary 3.1 To every V in Filreal
C resp. Fil±real

R there is functorially at-
tached a real Cω-bundle Eω over R resp. R≥0 together with a Cω-action

ψt : φt∗KE
ω −→ Eω .

The rank of Eω equals the dimension of V and there are functorial isomor-
phisms:

Eω(V,Fil
•
V )0

∼−→ Gr
•
V resp. Eω(V,Fil

•
V, F∞)0

∼−→ Gr
•
(sV )

such that ψt0 corresponds to e
•t.
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4 The relation of Rees sheaves and Rees bundles with archime-
dian invariants of motives

In this section we first recall briefly the definition of the spaces Fp(M) for
archimedian primes using Rees sheaves. We then describe the local contribution
from p in the motivic “explicit formulas” of analytic number theory in terms of
a suitable Rees bundle. This formula is new. We also explain the motivation
for considering Cω-Rees bundles over R or R≥0 in the preceeding section.
Consider the category of (mixed) motivesMk over a number field k, for exam-
ple in the sense of Deligne [De2] or Jannsen [J].
For an infinite place p let Mp be the real Hodge structure of M⊗k kp. In case p
is real Mp carries the action of an R-linear involution Fp which maps the Hodge

filtration F
•
Mp,C on Mp,C = Mp ⊗R C to F

•
Mp,C. Consider the descending

filtration

γνMp = Mp ∩ F νMp,C = Mp ∩ F νMp,C ∩ F
ν
Mp,C

on Mp and set

nν(Mp) = dim GrνγMp .

For real p write

n±ν (Mp) = dim(GrνγMp)±

where ± denotes the ±1 eigenspace of Fp.
Set VνMp = γνMp if p is complex and

VνMp = (F νMp,C ∩Mp)(−1)ν ⊕ (F ν+1Mp,C ∩Mp)(−1)ν+1

if p is real. In other words:

(Mp,V•Mp, F∞) = s(Mp, γ
•
Mp, F∞) .

In the real case there is an exact sequence

0 −→ (Grν+1
γ Mp)(−1)ν −→ GrνVMp −→ (GrνγMp)(−1)ν −→ 0 .

We set dν(Mp) = dim GrνVMp and ΓC(s) = (2π)−sΓ(s) and ΓR(s) =
2−1/2π−s/2Γ(s/2).
In [F-PR] the local Euler factors of M for the infinite places were defined as
follows:

Lp(M, s) =
∏

ν

ΓC(s− ν)nν(Mp) if p is complex

and

Lp(M, s) =
∏

ν

ΓR(s+ εν − ν)n
+
ν (Mp)ΓR(s+ 1− εν − ν)n

−
ν (Mp)
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On the Γ-Factors of Motives II 79

if p is real. Here εν ∈ {0, 1} is determined by εν ≡ ν mod 2.
Using the above exact sequence we get an alternative formula for real p:

Lp(M, s) =
∏

ν

ΓR(s− ν)dν(Mp) .

See also [D4] for background. It follows from remark 2.1 that for p |∞ the
space Fp(M) of [D3] § 5 is given as follows:

Fp(M) = Γ(A1, ξC(MpC, γ
•
MpC)) if p is complex

and

Fp(M) = Γ(A1, ξR(MpC, γ
•
MpC, F∞))

= Γ(A1, ξR(MpC,V•MpC, F∞)) if p is real.

According to [D3] Cor. 6.5 we have:

Lp(M, s) = det∞
( 1

2π
(s · id−Θ) | Fp(M)

)−1

.

Here Θ is the infinitesimal generator of the Gm-action of Fp(M), i.e. the
induced action by 1 ∈ C = LieGm.
We define the real analytic version of Fp(M) as follows:

Fωp (M) = Γ(R, ξωC (Mp, γ
•
Mp)) if p is complex

and

Fωp (M) = Γ(R≥0, ξωR (Mp, γ
•
Mp, F∞))

= Γ(R≥0, ξωR (Mp,V•Mp, F∞)) if p is real.

It follows from the above formula for Lp(M, s) in terms of Fp(M) and the
relation between ξωK and ξK that we have for all p |∞:

Lp(M, s) = det∞
( 1

2π
(s · id−Θ) | Fωp (M)

)−1

. (7)

Here Θ denotes the infinitesimal generator of the flow ψt∗ induced on Fωp (M)
by the actions ψt and φtkp

which were defined in section 2.

In the next section we will express Fωp (Hn(X)) for smooth projective varieties
X/k in “dynamical” terms. Via formula (7) we then get formulas for the
archimedian L-factors Lp(Hn(X), s) which come from the geometry of a simple
dynamical system.
Let us now turn to the motivic “explicit formulas” of analytic number theory.
To every motive M in Mk one can attach local Euler factors Lp(M, s) for all
the places p in k and global L-functions:

L(M, s) =
∏

p-∞
Lp(M, s) and L̂(M, s) =

∏

p

Lp(M, s) ,
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c.f. [F-PR], [D4]. Assuming standard conjectures about the analytical be-
haviour of L(M, s) and L(M∗, s) proved in many interesting cases the following
explicit formula in the analytic number theory of motives holds for every ϕ in
D(R+) = C∞0 (R+) c.f. [D-Sch] (2.2.1):

−
∑

ρ

Φ(ρ)ords=ρL̂(M, s) =
∑

p

Wp(ϕ) . (8)

Here Φ(s) =
∫
R ϕ(t)ets dt and p runs over all places of k.

For finite p we have

Wp(ϕ) = logNp

∞∑

k=1

Tr(Frkp |M
Ip

l )ϕ(k logNp) (9)

where Frp denotes a geometric Frobenius at p and M
Ip

l is the fixed module
under inertia of the l-adic realization of M with p - l.

The terms Wp for the infinite places are given as follows: For complex p we
have:

Wp(ϕ) =
∑

ν

nν(Mp)

∫ ∞

0

ϕ(t)
eνt

1− e−t dt (10)

whereas for real p:

Wp(ϕ) =
∑

ν

dν(Mp)

∫ ∞

0

ϕ(t)
eνt

1− e−2t
dt . (11)

The distributions Wp for p |∞ can be rewritten as follows:

Wp =
Tr(e

•t |Gr
•
VMp)

1− e−κpt
(12)

where e
•t is the map eνt on Grν and κp = 2 resp. 1 according to whether p is

real or complex.
In terms of our conjectural cohomology theory c.f. [D3] § 7, equation (8) can
thus be reformulated as an equality of distributions on R+:

∑

i

(−1)iTr(ψ∗ |Hi(“spec ok”,F(M)))dis (13)

=
∑

p-∞
logNp

∞∑

k=1

Tr(Frkp |M
Ip

l )δk logNp +
∑

p |∞

Tr(e
•t |Gr

•
VMp)

1− e−κpt
.

Compare [D-Sch] (3.1.1) for the elementary notion of distributional trace used
on cohomology here. In the rest of this section we will be concerned with a
deeper understanding of the function Tr(e

•t |Gr
•
VMp).
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Certain dynamical trace formulas for vector bundles E over a manifold X with
a flow φt and an action ψt : φt∗E → E involve local contributions at the fixed
points x of the form:

Tr(ψtx |Ex)

1− e−κxt some κx > 0 .

This is explained in [D7] § 4. These formulas bear a striking resemblance to
the “explicit formulas” and they suggest that infinite places correspond to fixed
points of a flow. Incidentially the finite places would correspond to the periodic
orbits. This analogy suggests that for the infinite places it should be possible
to attach to M a real vector bundle E in the topological sense over a dynamical
system with fixed points. If 0 denotes the fixed point corresponding to p, we
should have:

Tr(ψt0 |E0) = Tr(e
•t |Gr

•
VMp) .

At least over one flowline this is achieved by Corollary 3.1 as follows.
Define as follows a real Cω-bundle Eωp (M) over R resp. R≥0 together with a
Cω-action

ψt : φt∗KE
ω
p (M) −→ Eωp (M) .

Set

Eωp (M) = Eω(Mp, γ
•
Mp) if p is complex

and

Eωp (M) = Eω(Mp, γ
•
Mp, F∞)

= Eω(Mp,V•Mp, F∞) if p is real.

Note that this is just the Cω-bundle corresponding to the locally free sheaf
Fωp (M) defined earlier. According to Corollary 3.1 we then have:

Proposition 4.1 There are functorial isomorphisms

Eωp (M)0
∼−→ Gr

•
VMp

for all p |∞ such that ψt0 corresponds to e
•t. In particular we find:

Tr(ψt0 |Eωp (M)0) = Tr(e
•t |Gr

•
VMp)

= (1− e−κpt)Wp .

5 A geometrical construction of Fωp (M) and Eωp (M) for M =
Hn(X)

In this section we express the locally free sheaf Fωp (Hn(X)) over R resp. R≥0

of section 3 in terms of higher direct image sheaves modulo torsion. The con-
struction is based on the following result of Simpson [Si] Prop. 5.1, 5.2. For a
variety X/C we write Xan for the associated complex space.
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Theorem 5.1 (Simpson) Let X/C be a smooth proper variety and let F
•

be
the Hodge filtration on Hn(Xan,C). Then we have:

ξC(Hn(Xan,C), F
•
) = Rnπ∗(Ω

•
X×A1/A1 , zd)

where π : X × A1 → A1 denotes the projection.

Remarks (1) The Gm-action on the deformed complex (Ω
•
X×A1/A1 , zd) given

by sending a homogenous form ω to λ− degω · λ∗(ω) for λ ∈ Gm induces a
Gm-action on Rnπ∗(Ω

•
X×A1/A1 , zd). Under the isomorphism of the theorem it

corresponds to the Gm-action on ξC(Hn(X,C), F
•
) defined by formula (4).

(2) In the appendix to this section we relate the complex (Ω
•
X×A1/A1 , zd) to the

complex of relative differential forms on a suitable deformation of X × A1.

In the situation of the theorem consider the natural morphism from the spectral
sequence:

Epq1 = (Rqπ∗(Ω
p
X×A1/A1))an =⇒ (Rnπ∗(Ω

•
X×A1/A1 , zd))an

to the spectral sequence

Epq1 = Rqπ∗(Ω
p
Xan×C/C) =⇒ Rnπ∗(Ω

•
Xan×C/C, zd) .

By GAGA it is an isomorphism on the E1-terms and hence on the end terms
as well. Thus we get a natural isomorphism of locally free OC-modules:

ξan
C (Hn(Xan,C), F

•
) = Rnπ∗(Ω

•
Xan×C/C, zd) . (14)

Let id× i : Xan × R ↪→ Xan × C be the inclusion and set

ΩpXan×R/R = (id× i)−1ΩpXan×C/C .

It is the subsheaf of C-valued smooth relative differential forms on Xan ×
R/R which are holomorphic in the Xan-coordinates and real analytic in the
R-variable. We then have an equality of complexes

(Ω
•
Xan×R/R, rd) = (id× i)−1(Ω

•
Xan×C/C, zd) .

We define an action ψt of R on (Ω
•
Xan×R/R, rd) by sending a homogenous form

ω to et degω · (id× φtC)∗ω:

ψt : (id× φtC)−1(Ω
•
Xan×R/R, rd) −→ (Ω

•
Xan×R/R, rd) .

This induces an action:

ψt : (φtC)−1Rnπ∗(Ω
•
Xan×R/R, rd) −→ Rnπ∗(Ω

•
Xan×R/R, rd)
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and hence an AR-linear action

ψt : φt∗C R
nπ∗(Ω

•
Xan×R/R, rd) −→ Rnπ∗(Ω

•
Xan×R/R, rd) .

By proper base change we obtain from (14) that

i−1ξan
C (Hn(Xan,C), F

•
) = Rnπ∗(Ω

•
Xan×R/R, rd) . (15)

According to (6) this gives an isomorphism

ξωC ((Hn(Xan,C), F
•
)R) = Rnπ∗(Ω

•
Xan×R/R, rd) (16)

of locally free AR-modules which is compatible with the action ψt relative to
φtC.
Let DRX/C be the cokernel of the natural inclusion of complexes of π−1AR-
modules on Xan × R with action ψt

π−1AR −→ (Ω
•
Xan×R/R, rd) .

Here π−1AR is viewed as a complex concentrated in degree zero and on it ψt

acts by pullback via id× φtC. The projection formula gives us

Rnπ∗(π
−1AR) = Hn(Xan,R)⊗AR = ξωC (Hn(Xan,R),Fil

•
0) (17)

where

Filp0H
n(Xan,R) = Hn(Xan,R)

for p ≤ 0 and Filp0 = 0 for p > 0. We thus get a long exact ψt-equivariant
sequence of coherent AR-modules:

. . . → ξωC (Hn(Xan,R),Fil
•
0) → ξωC ((Hn(Xan,C), F

•
)R) →

→ Rnπ∗DRX/C → ξωC (Hn+1(Xan,R),Fil
•
0) → . . .

(18)

For any n the natural map

ξωC (Hn(Xan,R),Fil
•
0) −→ ξωC ((Hn(Xan,C), F

•
)R)

is injective by the ξωC -analogue of Prop. 2.2 c), part i) since it is induced by
the inclusion of objects in Filreal

C :

(Hn(Xan,R),Fil
•
0) ↪→ (Hn(Xan,C), F

•
)R . (19)

The injectivity can also be seen by noting that the fibres of the associated
Cω-vector bundles for r ∈ R∗ are naturally isomorphic to Hn(Xan,R) resp.
Hn(Xan,C), the map being the inclusion c.f. the ξωC -analogue of Proposition
2.3 i).
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Therefore the long exact sequence (18) splits into the short exact sequences:

0→ ξωC (Hn(Xan,R),Fil
•
0) → ξωC ((Hn(Xan,C), F

•
)R) (20)

α→ Rnπ∗DRX/C → 0 .

Using the ξωC -version of Proposition 3.1 c) ii) we therefore get a ψt-equivariant
isomorphism of AR-modules:

Rnπ∗(DRX/C)/AR-torsion
∼−→ ξωC (Hn(Xan,R(1)), π1(F

•
)) . (21)

Here we have used the exact sequence:

0 −→ Hn(Xan,R) −→ Hn(Xan,C)
π1−→ Hn(Xan,R(1)) −→ 0 ,

where π1(f) = 1
2 (f − f).

Let us now indicate the necessary amendments for the case K = R. We consider
a smooth and proper variety X/R. Its associated complex manifold Xan is
equipped with an antiholomorphic involution F∞, which in turn gives rise to
an involution F

∗
∞ of Hn(Xan,R(1)) which maps the filtration π1(F

•
) to itself.

By definition of ξωR we have

ξωR (Hn(Xan,R(1)), π1(F
•
), F

∗
∞) = (sq∗ξ

ω
C (Hn(Xan,R(1)), π1(F

•
)))

F∞ (22)

where F∞ =̂ F
∗
∞ ⊗ (−id)∗.

To deal with the other side of (21) consider the µ2-action on Xan × R by
F∞ × (−id) and let

λ : Xan × R −→ Xan ×µ2
R = (Xan × R)/µ2

be the canonical projection.
The map

λ∗(π
−1AR) −→ λ∗(Ω

•
Xan×R/R, rd)

becomes µ2-equivariant if −1 ∈ µ2 acts by (F∞ × (−id))∗ on the left and by
sending a homogenous form ω to (−1)degω(F∞ × (−id))∗ω on the right. We
set

Ω
•
Xan×µ2

R/(R/µ2) =
(
λ∗(Ω

•
Xan×R/R, rd)

)µ2

and

DRX/R = (λ∗DRX/C)µ2 .

Let π be the composed map

π : Xan ×µ2
R −→ R/µ2

sq
∼−→ R≥0 .
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Combining the isomorphisms (21) and (22) we obtain an isomorphism of free
AR≥0-modules on R≥0:

Rnπ∗(DRX/R)/AR≥0 -torsion
∼−→ ξωR (Hn(Xan,R(1)), π1(F

•
), F

∗
∞) . (23)

The left hand side carries a natural action ψt with respect to the flow φtR on
R≥0 and the isomorphism (23) is ψt-equivariant.
As before we have a short exact sequence:

0→ ξωR (Hn(Xan,R),Fil
•
0, F

∗
∞) → ξωR ((Hn(Xan,C), F

•
, F
∗
∞)R)(24)

α→ Rnπ∗DRX/R → 0 .

The first main result of this section is the following:

Theorem 5.2 Fix a smooth and proper variety X/K of dimension d where
K = C or R. Assume that n+m = 2d. Then we have natural isomorphisms:

1) ξC(Hm(Xan,R), γ
•
) = (2πi)1−dHomAR(R

nπ∗DRX/C,AR(−d))
in case K = C and

2) ξR(Hm(Xan,R),V•, F∞)

= (2πi)1−dHomA≥0
R

(Rnπ∗DRX/R,AR≥0(1− d))

if K = R.

These isomorphisms respect the AR-resp. AR≥0-module structure and the flow
ψt.

Proof Consider the perfect pairing of R-Hodge structures:

〈, 〉 : Hn(Xan)×Hm(Xan)
∪−→ H2d(Xan)

tr
∼−→ R(−d) (25)

given by ∪-product followed by the trace isomorphism

tr(c) =
1

(2πi)d

∫

Xan

c .

It says in particular that

F iHn(Xan,C)⊥ = F d+1−iHm(Xan,C) . (26)

Moreover it leads to a perfect pairing of R-vector spaces:

〈, 〉 : Hn(Xan,R(1))×Hm(Xan,R(d− 1)) −→ R . (27)

Now according to the ω-version of Proposition 2.2 a) we have:

HomAR (ξωC (Hn(Xan,R(1)), π1(F
•
)),AR)

= ξωC
(
Hn(Xan,R(1))∗, π1(F 1−•)⊥

)

(27)
= ξωC

(
Hm(Xan,R(d− 1)),Fil

•)
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where Filp consists of those elements u ∈ Hm(Xan,R(d− 1)) with

〈π1(F 1−p), u〉 = πd〈F 1−p, u〉 = 0

i.e. with

〈F 1−p, u〉 = 0 .

Using (26) we find:

Filp = Hm(Xan,R(d− 1)) ∩ F p+dHm(Xan,C)

= (2πi)d−1γp+dHm(Xan,R)

and therefore:

HomAR(ξ
ω
C (Hn(Xan,R(1)), π1(F

•
)),AR)

= (2πi)d−1ξωC ((Hm(Xan,R), γ
•
)(d))

= (2πi)d−1ξωC (Hm(Xan,R), γ
•
)(d) .

Combining this with the isomorphism (21) we get the first assertion. As for
the second note that by Proposition 2.2 a) we have:

HomAR≥0
(ξωR (Hn(Xan,R(1)), π1(F

•
), F

∗
∞),AR≥0)

= ξωR (Hn(Xan,R(1))∗, π1(F 2−•)⊥ , dual of F
∗
∞) .

Since for X/R the pairing (25) is F
∗
∞-equivariant this equals

ξωR (Hm(Xan,R(d− 1)),Fil
•
, F
∗
∞)

where Filp consists of those elements u with:

〈π1(F 2−p), u〉 = 0 .

Thus

Filp = (2πi)d−1γp+d−1Hm(Xan,R)

in Fil±real
R . Hence:

HomAR≥0
(ξωR (Hn(Xan,R(1)), π1(F

•
), F

∗
∞),AR≥0)

= (2πi)d−1ξωR ((Hm(Xan,R), γ
•
, F ∗∞)(d− 1))

= (2πi)d−1ξωR (Hm(Xan,R), γ
•
, F ∗∞)(d− 1) .

Since we can replace γ
•

by V• = sγ
•

in the last expression the second formula
of the theorem now follows by invoking the isomorphism (23). 2
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If X/K is projective, fixing a polarization defined over K the hard Lefschetz
theorem together with Poincaré duality provides an isomorphism of R-Hodge
structures over K:

Hn(Xan)∗ = Hn(Xan)(1) . (28)

Similar arguments as before based on (28) instead of (25) then give the following
result:

Corollary 5.3 Fix a smooth projective variety X/K together with the class
of a hyperplane section over K. There are canonical isomorphisms:
1) ξC(Hn(Xan,R), γ

•
) = HomAR(R

nπ∗DRX/C,AR(−1))
in case K = C and
2) ξR(Hn(Xan,R),V•, F ∗∞) = HomAR≥0

(Rnπ∗DRX/R,AR≥0)

if K = R. These isomorphisms respect the AR-resp. AR≥0-module structure
and the action of the flow.

A consideration of the sequence

0 −→ (Hn(Xan,R), γ
•
) −→ (Hn(Xan,C), F

•
)R

π1−→ (Hn(Xan,R(1)), π1(F
•
)) −→ 0

in Filreal
C and of

0 −→ (Hn(Xan,R), γ
•
, F ∗∞) −→ (Hn(Xan,C), F

•
, F
∗
∞)R

π1−→ (Hn(Xan,R(1)), π1(F
•
), F

∗
∞) −→ 0

in Fil±real
R leads to the following expressions for ξK of (Hn(Xan,R), γ

•
, (F ∗∞))

which are not based on duality:

Theorem 5.4 Let X be a smooth and proper variety over K. Then we have
for K = C

1) ξC(Hn(Xan,R), γ
•
)

= Ker
(
Rnπ∗(Ω

•
Xan×R/R, rd)

α−→ Rnπ∗DRX/C/AR-torsion
)

= inverse image in Rnπ∗(Ω
•
Xan×R/R, rd) of the maximal AR-submodule of

Rnπ∗DRX/C with support in 0 ∈ R.

For K = R we find similarly:

2) ξR((Hn(Xan,R),V•, F ∗∞)

= Ker
(
Rnπ∗(Ω

•
Xan×µ2R/(R/µ2), rd)

α−→ Rnπ∗DRX/R/AR≥0-torsion
)

= inverse image in Rnπ∗(Ω
•
Xan×µ2

R/(R/µ2), rd) of the maximal AR≥0-

submodule of Rnπ∗DRX/R with support in 0 ∈ R≥0.

By passing to the associated Cω-vector bundles over R resp. R≥0 the pre-
ceeding theorems and corollary give a geometric construction of the Cω-bundle
Eωp (M) attached to a motive M in section 3. The Hodge theoretic notions pre-
viously required for its definition have been replaced by using suitably deformed
complexes and their dynamics.
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Appendix

In this appendix we relate the deformed complex (Ω
•
X×A1/A1 , zd) in Simpson’s

theorem 4.1 to the ordinary complex of relative differential forms on a suitable
space.
Let X be a variety over a field k. For a closed subvariety Y ⊂ X let M =
M(Y,X) denote the deformation to the normal bundle c.f. [V1] § 2. Let I ⊂ OX
be the ideal corresponding to Y . Filtering OX by the powers I i for i ∈ Z with
Ii = OX for i ≤ 0 we have:

M = spec Fil0(k[z, z−1]⊗k OX)

= spec

(⊕

i∈Z
z−iIi

)
.

Here spec denotes the spectrum of a quasi-coherent OX -algebra. By construc-
tion M is equipped with a flat map

πM : M −→ A1

and an affine map

ρ : M −→ X .

They combine to a map:

h = (ρ, πM ) : M −→ X × A1

such that the diagram

M
h

��

πM �� �������� X × A1

π
��� � � � � � � � �

A1

commutes.
The map πM is equivariant with respect to the natural Gm-actions on M and
A1 defined by λ · z = λz for λ ∈ Gm. The map h becomes equivariant if Gm
acts on X × A1 via the second factor.
It is immediate from the definitions that if f : X ′ → X is a flat map of varieties
and Y ′ = Y ×X X ′ then

M(Y ′, X ′) = M(Y,X)×X X ′ . (29)

Moreover the diagram

M(Y ′, X ′)
h

��

fM
��

X ′ × A1

f×id
��

M(Y,X)
h

�� X × A1

(30)
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is commutative and cartesian.
From now on let X be a smooth variety over an algebraically closed field k and
fix a base point ∗ ∈ X. Set M = M(∗, X) and consider the natural map

h : M −→ X × A1 .

Pullback of differential forms induces a map :

µ : h∗ΩpX×A1/A1 −→ ΩpM/A1 , µ(ω) = h∗(ω) .

We can now formulate the main observation of this appendix:

Theorem 5.5 For every p ≥ 0 the sheaf Ωp
M/A1 has no z-torsion and we have

that

Imµ = zpΩpM/A1 .

The map of OM -modules:

α : h∗ΩpX×A1/A1 −→ ΩpM/A1 , α(ω) = z−ph∗(ω)

which is well defined by the preceeding assertions is an isomorphism. Hence we
get an isomorphism of complexes:

α : h∗(Ω
•
X×A1/A1 , zd)

∼−→ Ω
•
M/A1 , α(ω) = z− degωh∗(ω) .

Remarks. 1) Under the isomorphism α the Gm-action on the left, as defined
after theorem 5.1, corresponds to the natural Gm-action on Ω

•
M/A1 by pullback

λ · ω = λ∗(ω).
2) By a slightly more sophisticated construction one can get rid of the choice
of base point: The spaces M(∗, X) define a family M → X. The maps h :
M(∗, X)→ X×A1 lead to a mapM→ X×X×A1. Replace M by the inverse
image inM of ∆×A1 where ∆ ⊂ X ×X is the diagonal. This is independent
of the choice of base point.

Proof of 4.5 We first check the assertions for the pair (0,An), n ≥ 1. In this
case M = M(0,An) is the spectrum of the ring

B = k[z, x1, . . . , xn, y1, . . . , yn]/(zy1 − x1, . . . , zyn − xn) .

The maps A1 πM←−M ρ−→ An are induced by the natural inclusions

k[z] ↪→ B ←↩ k[x1, . . . , xn] .

The B-module Ω1
B/k[z] is generated by dxi, dyi for 1 ≤ i ≤ n modulo the

relations zdyi = dxi. Hence it is freely generated by the dyi and in particular
z-torsion free. The B-module

Ω1
k[z,x1,... ,xn]/k[z] ⊗k[z,x1,... ,xn] B
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is free on the generators dxi. The map µ corresponds to the natural inclusion
of this free B-module into Ω1

B/k[z] which sends dxi to dxi = zdyi. The map
α which sends dxi to dyi is an isomorphism. Hence the theorem for the pair
(0,An).
In the general case choose an open subvariety U ⊂ X containing ∗ ∈ U and an
étale map

f : U −→ An

such that f−1(0) = ∗. By (29) and (30) we then have a cartesian diagram:

M(0,An)×An U

proj. �
� ������������

M(∗, U)
h

��

fM
��

U × A1

f×id
��

M(0,An)
h

�� An × A1 .

Since f × id and hence fM are étale we know by [M] Theorem 25.1 (2) that

ΩpM(∗,U)/A1 = f∗MΩpM(0,An)/A1 (31)

and

ΩpU×A1/A1 = (f × id)∗ΩpAn×A1/A1 .

As we have seen, ΩpM(0,An)/A1 has no z-torsion. Since fM is flat the same is

true for ΩpM(∗,U)/A1 by (31). Applying f∗M to the isomorphism

α : h∗ΩpAn×A1/A1

∼−→ ΩpM(0,An)/A1

it follows from the above that

α : h∗ΩpU×A1/A1

∼−→ ΩpM(∗,U)/A1

is an isomorphism as well.
We now choose an open subvariety V ⊂ X not containing the point ∗ and such
that U ∪V = X. Then M(∗, U) and M(∅, V ) are open subvarieties of M(∗, X)
and we have that

M(∗, X) = M(∗, U) ∪M(∅, V ) .

As we have seen the map α for M(∗, X) is an isomorphism over M(∗, U). Over
M(∅, V ) it is an isomorphism as well since

M(∅, V ) = V ×Gm

canonically. Hence the theorem follows. 2
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6 The torsion of Rnπ∗DRX/K

In this section we describe the AR-resp. AR≥0-torsion TX/C resp. TX/R of
the sheaves Rnπ∗DRX/C resp. Rnπ∗DRX/R which were introduced in the last
section. For this we first have to extend Proposition 2.3 ii) somewhat.
For a filtered vector space V ∈ FilC and any N ≥ 1 define a graded vector
space by

NGr
•
V =

⊕

p∈Z
FilpV/Filp+NV .

It becomes a C[z]/(zN )-module by letting z act as the one-shift to the left: For
v in FilpV/Filp+NV set

z · v = image of v in Filp−1V/Filp+N−1V .

This action depends on the choice of z. For N = 1 we have NGr
•
V = Gr

•
V .

To V in Fil±R , N ≥ 1 we attach the graded vector space:

2N
RGr

•
V := ( 2NGr

•
V )F∞=(−1)

•
.

It is a C[z2]/(z2N )-module and for N = 1 and V in FilR we have:

2
RGr

•
V = Gr

•
V . (32)

With these notations the following result holds:

Proposition 6.1 a) For V in FilC, N ≥ 1 there are functorial isomorphisms
of free C[z]/(zN )-modules:

i−1
0 (ξC(V,Fil

•
V )⊗OA1/zNOA1) = NGr

•
V .

Here i0 : 0 ↪→ A1 denotes the inclusion of the origin.

b) For V in Fil±R , N ≥ 1 there are functorial isomorphisms of free C[z2]/(z2N )-
modules:

i−1
0 (ξR(V,Fil

•
V, F∞)⊗OA

∼
1/z2NOA

∼
1) = 2N

RGr
•
V .

Here, A∼
1= specC[z2] and i0 : 0 ↪→A∼

1 is the inclusion.

The isomorphisms in a) and b) are compatible with the Gm-action if Gm acts
on the right in degree p by the character z−p. They depend on the choice of z.

Proof For V ∈ FilC the map:

FilpV/Filp+NV −→
(∑

i

FiliV ⊗ z−iC[z]
)
⊗ C[z]/(zN )
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sending v + Filp+NV to v ⊗ z−p mod zN is well defined. The induced map

NGr
•
V −→ Γ(A1, ξC(V,Fil

•
V ))⊗ C[z]/(zN )

is surjective and C[z]/(zN )-linear by construction. Since

dim NGr
•
V = N dimV

both sides have the same C-dimension and hence a) follows.

Given V ∈ Fil±R we may view it as an object of FilC and we get an isomorphism
of C[z]/(z2N )-modules

2NGr
•
V −→

(∑

i

FiliV ⊗ z−iC[z]
)
⊗C[z] C[z]/(z2N )

‖(∑

i

FiliV ⊗ z−iC[z]
)
⊗C[z2] C[z2]/(z2N ) .

Passing to invariants under F∞ ⊗ (−id)∗ on the right corresponds to taking
invariants under (−1)

•
F∞ on the left. Hence assertion b). The claim about

the Gm-action is clear. 2

As before there is an ω-version of this proposition over R resp. R≥0 which we
will use in the sequel.

For a proper and smooth variety X/C consider the exact sequence of R-vector
spaces:

0 −→ Hn(Xan,R) −→ Hn(Xan,C)
π1−→ Hn(Xan,R(1)) −→ 0 . (33)

It leads to a complex of R[r]/(rN )-modules:

0 −→ NGr
•
Fil0H

n(Xan,R)
ιN−→ NGr

•
FH

n(Xan,C) (34)
π1−→ NGr

•
π1(F )H

n(Xan,R(1)) −→ 0

which is right exact but not exact in the middle or on the left in general. Denote
by NH•X/C its middle cohomology.

For a proper and smooth variety X/R we obtain from (34) equipped with the

action of F
∗
∞ a complex of R[r2]/(r2N )-modules

0 −→ 2N
RGr

•
Fil0H

n(Xan,R)
ι2N−→ 2N

RGr
•
FH

n(Xan,C) (35)
π1−→ 2N

RGr
•
π1(F )H

n(Xan,R(1)) −→ 0 .

It is again right exact and we denote its middle cohomology by 2NH•X/R. As

R-vector spaces both NH•X/C and 2NH•X/R are naturally graded.

We can now describe the torsion sheaves TX/K for K = C,R:
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Theorem 6.2 For N À 0 the map α in (20) resp. (24) induces isomorphisms
of AR- resp. AR≥0-modules:

α0 : i0∗(
NH•X/C)

∼−→ TX/C

resp.

α0 : i0∗(
2NH•X/R) −→ TX/R .

Here the operation ψt0 on TK corresponds to multiplication by e
•t on the left.

Proof For any N ≥ 1 the exact sequence:

0 −→ TX/C −→ Rnπ∗DRX/C
(21)−→ ξωC (Hn(Xan,R(1)), π1(F

•
)) −→ 0

remains exact after tensoring with AR/rNAR since ξωC is AR-torsion free. To-
gether with the short exact sequence (34) and the ω-version of Proposition
6.1 a) we obtain the following exact and commutative diagram of AR/rNAR-
modules:

0y
i−1
0 (TX/C ⊗AR/rNAR)y

NGr
•
Fil0

Hn(Xan,R)→NGr
•
FH

n(Xan,C)
α0−→ i−1

0 (Rnπ∗DRX/C ⊗AR/rNAR)→ 0

π1

y
y

NGr
•
π1(F )H

n(Xan,R(1)) = i−1
0 (ξωC (Hn(Xan,R(1)), π1(F

•
))⊗AR/rNAR)y

0 .

This shows that α0 induces an isomorphism of AR-modules

α0 : NH•X/C
∼−→ i−1

0 (TX/C ⊗AR/rNAR) .

Since TX/C is a coherent torsion sheaf with support in 0 ∈ R we have

TX/C = TX/C ⊗AR/rNAR

for N À 0 which gives the first assertion. The remark on ψt0 follows from
Proposition 6.1 since the map α in the exact sequence (20) is ψt-equivariant.
The assertion over R follows similarly. 2

In the next result we will view i−1
0 TX/K simply as a finite dimensional R-vector

space with a linear flow ψt0. Let Θ be its infinitesimal generator i.e. ψt0 = exp tΘ
on i−1

0 TX/K .

Proposition 6.3 The endomorphism Θ of i−1
0 TX/K is diagonalizable over R.

For α = p ∈ {1, . . . , n} the dimension of its α-eigenspace is dim γpHn(Xan,R)
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if K = C and dim(γpHn(Xan,R)(−1)p) if K = R. For all other values of α the
α-eigenspace is zero. In particular we have

detR(s−Θ | i−1
0 TX/C) =

∏

0<p≤n
(s− p)dim γp

dimR(i−1
0 TX/C) =

∑

p∈Z
pdim GrpγH

n(Xan,R)

and

detR(s−Θ | i−1
0 TX/R) =

∏

0<p≤n
(s− p)dim(γp)(−1)p

dimR(i−1
0 TX/R) =

1

2
dimHn(Xan,R)− +

1

2

∑

p∈Z
pdim GrpVH

n(Xan,R) .

Remark: According to the proposition the torsion TX/K is zero iff γ1 = 0 in
case K = C and (γ1)− = 0 = (γ2)+ in case K = R. These conditions are
equivalent to the strictness of the inclusion (19) if K = C and to the strictness
of

(Hn(Xan,R), sFil
•
0) ↪→ (Hn(Xan,C), sF

•
)R

if K = R. Here s is formed with respect to F
∗
∞. This is as it must be according

to proposition 2.2 c) ii). More explicitly TX/C is zero iff Hn has Hodge type
(n, 0), (0, n) whereas TX/R is zero iff Hn has Hodge type either (n, 0), (0, n) or
(2, 0), (1, 1), (0, 2) with F∞ acting trivially on H11.

Proof of 6.3: We assume that K = C, the case K = R being similar.
According to theorem 6.2 the operator Θ is diagonalizable on i−1

0 TX/C the
possible eigenvalues being integers. For p ∈ Z and N À 0 we have:

dim Ker (p−Θ | i−1
0 TX/C) = dim NHpC

(34)
= dim Ker ιpN − dim NGrpFil0

Hn(Xan,R)

+ dimR
NGrpFH

n(Xan,C)− dim NGrpπ1(F )H
n(Xan,R(1)) .

Using the exact sequence:

0 −→ NGrpγH
n(Xan,R) −→ NGrpFH

n(Xan,C)
π1−→ NGrpπ1(F )H

n(Xan,R(1)) −→ 0

we see that this is equal to:

dim Ker ιpN + dim NGrpγH
n(Xan,R)− dim NGrpFil0

Hn(Xan,R) .
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Since

NGr
•
Fil0H

n(Xan,R) =
⊕

−N<p≤0

Hn(Xan,R)

we find

Ker ιN = Ker


 ⊕

−N<p≤0

Hn(Xan,R) −→
⊕

−N<p≤0

F p/F p+N




=
⊕

−N<p≤n−N
γp+NHn(Xan,R)

if N ≥ n. A short calculation now gives the result. 2

Remark. I cannot make the idea rigorous at present but it seems to me that
the complexes Rnπ∗DRX/C and Rnπ∗DRX/R should have an interpretation in
terms of a suitable perverse sheaf theory. Let us look at an analogy:

Consider a possibly singular variety Y over Fp and let j : U ⊂ Y be a smooth
open subvariety. If π : X → U is smooth and proper the intermediate extension
F = j!∗Rnπ∗Ql for l 6= p is a pure perverse sheaf. We have the L-function

LY (Hn(X), t) :=
∏

y∈|Y |
detQl(1− tFry | Fy)−1

=
∏

i

detQl(1− tFrp |Hi(Y ⊗ Fp,F))(−1)i+1

.

By perverse sheaf theory and Deligne’s work on the Weil conjectures it satisfies
a functional equation and the Riemann hypotheses.

For varieties over number fields Y corresponds to the “curve” spec ok and for
U we can take e.g. spec ok. Hypothetically a better analogue for Y (or more
precisely for Y ⊗Fp) is the dynamical system (“spec ok”, φt) whose existence is
conjectured in [D7]. For U we would take the subsystem (“spec ok”, φt) which
has no fixed points of the flow i.e. singularities. This is one motivation for the
above idea. Another comes from the discussion in sections 5 and 9 of [D5].

Incidentally the appendix to the preceeding section was motivated by the use
of the deformation to the normal cone in perverse sheaf theory [V2].

We would also like to point out that there is an exact triangle in the derived
category of AR-modules with a flow:

ξC(Hn(Xan,R), γ
•
) −→ P −→ T ∗C (−1)[−1] −→ . . .

where

P = RHomAR(R
nπ∗DX/C,AR(−1)) .
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Here ξC sits in degree zero with one-dimensional support and T ∗C (−1)[−1]
sits in degree one with zero-dimensional support. This follows by applying
RHomAR( ,AR(−1)) to the exact sequence:

0 −→ TX/C −→ Rnπ∗DX/C −→ Rnπ∗(DX/C)/TX/C −→ 0

and noting that

Ext1
AR(TX/C,AR(−1)) = T ∗X/C(−1)

:= HomAR(TX/C,AR/rNAR(−1)) for N À 0 .

A similar exact triangle exists for K = R of course.

Remark. One may wonder whether the torsion TX/K is also relevant for the
L-function. It seems to be partly responsible for the ε-factor at infinity as
follows: Let X/K be as usual a smooth and proper variety over K = R or C.
With normalizations as in [De1] 5.3 the ε-factor of Hn(X) is given by:

ε = exp(iπD) where D =
1

eK

∑

p∈Z
p(hp − dp) .

Here:

hp = dimCGrpFH
n(X,C) and dp = dim GrpVH

n(X,R) .

This description of the ε-factor can be checked directly. Alternatively it can
be found in a more general context in the proof of [D6] Prop. 2.7.
With these notations we have by 6.3:

dim(i−1
0 TX/C) =

∑

p∈Z
pdp

and

dim(i−1
0 TX/R) =

1

2

∑

p∈Z
pdp +

1

2
dimHn(Xan,R)− .
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[V1] J.L. Verdier, Le théorème de Riemann-Roch pour les intersections
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The classification of irreducible representations of a split semisimple simply
connected algebraic group G over an arbitrary field F is well-known: they are
in one-to-one correspondence with the cone of dominant weights of G. Further-
more, one can tell whether or not an irreducible representation is orthogonal or
symplectic (= supports a G-invariant bilinear form which is respectively sym-
metric or skew-symmetric) by inspecting the corresponding dominant weight
[11, §3.11]. (Throughout this paper, we only consider fields of characteristic
6= 2, cf. 1.8.) A G-invariant bilinear form on an irreducible representation is
necessarily unique up to a scalar multiple.
If the assumption that G is split is dropped, then the Galois group Γ of a
separable closure Fs of F over F acts on the cone of dominant weights (via
the so-called “∗-action”), and this action may be nontrivial. Those irreducible
representations corresponding to dominant weights which are not fixed by Γ are
not defined over F . Although an irreducible representation ρ whose dominant
weight is fixed by Γ may not be F -defined, there is always some central simple
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F -algebra A and a map G → SL1(A) defined over F which is an appropriate
descent of ρ, see [14] or [12, p. 230, Prop. 1] for details. The algebra A is
uniquely determined up to F -isomorphism. If ρ is orthogonal or symplectic
over Fs, then it is easy to show that A supports a unique G-invariant involution
γ of the first kind which is adjoint to the G-invariant bilinear form over every
extension of F where A is split and hence ρ is defined.

It is of interest to determine γ. For example, invariants of γ in turn provide
invariants of G. All involutions γ have been implicitly determined for F = Qp
and F = R in [4] and [5], but over an arbitrary field the problem is much more
difficult since involutions are no longer classified by their classical invariants [2].
We restrict our attention to simply connected groups of type 1A2n−1; that is, to
the case G = SL1(A) for A a central simple F -algebra of degree 2n. Moreover,
we will focus on the fundamental irreducible representation corresponding to
the middle vertex of the Dynkin diagram of G, which supports a G-invariant
involution γ.

For any nonnegative integer k ≤ 2n, there is a central simple F -algebra λkA
attached to A called the kth exterior power of A, and the appropriate analogues
of the fundamental representations of SL1(A) are the natural maps SL1(A)→
SL1(λkA) for 1 ≤ k < 2n. The representation we will study, which corresponds
to the middle vertex of the Dynkin diagram, is the k = n case. In general, λkA
is of degree

(
2n
k

)
and is Brauer-equivalent to A⊗k, see [7, 10.A]. It is defined so

that when A is the split algebra A = EndF (W ), this λk EndF (W ) is naturally
isomorphic to EndF (∧kW ).

The nth exterior power λnA is endowed with a canonical involution γ such
that when A is split, γ is adjoint to the bilinear form θ defined on ∧nW by the
equation θ(x1 ∧ . . .∧xn, y1 ∧ . . .∧ yn)e = x1 ∧ . . .∧xn ∧ y1 ∧ . . .∧ yn, where e is
any basis of the 1-dimensional vector space ∧2nW . This involution is preserved
by the image of G in SL1(λnA) and is the one we wish to describe. If n is even
and A⊗n is split, then γ is orthogonal and λnA is split, so our fundamental
representation of G is defined over F and orthogonal. For example, for A a
biquaternion algebra over an arbitrary field F , γ is adjoint to an Albert form
of A [3, 6.2]. In this paper, we provide a complete description of γ for G of
type 1A2n−1 when n is odd (see 1.1) or when n is even and A is isomorphic to
B ⊗ Q where Q is a quaternion algebra (in 1.4 and 1.5). In particular, until
now a description of γ has not been known for any algebra A of index ≥ 8. If A
is a tensor product of quaternion algebras, we provide (in 1.6 below) a formula
that gives γ in terms of the norm forms of the quaternion algebras.

Describing this particular involution γ is also interesting from the point of view
of groups of type 1D2n. Such a group is isogenous to G = Spin(E, σ) for E a
central simple algebra of degree 4n and σ an orthogonal involution with triv-
ial discriminant. If σ is hyperbolic, then E is isomorphic to M2(A) for some
algebra A of degree 2n. The analogue of the direct sum of the two half-spin
representations for Spin(M2(A), σ) over F is the map G→ SL1(C(M2(A), σ))
where C(M2(A), σ) denotes the even Clifford algebra of (M2(A), σ). This alge-
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bra is endowed with a canonical involution σ which is G-invariant; it is mostly
hyperbolic but contains a nontrivial piece which is isomorphic to (λnA, γ).
Please see [3] for a precise statement and [10] for a rational proof.
This relationship between representations of D2n and A2n−1 as well as the
results in this paper hint at a general theory of orthogonal representations of
semisimple algebraic groups over arbitrary fields. We hope to study this in the
future.

1 Statement of the main results

We will always assume that our base field F has characteristic 6= 2 and that
A is a central simple F -algebra of degree 2n. (See 1.8 for a discussion of the
characteristic 2 case.) We assume moreover that A is isomorphic to a tensor
product A = Q⊗B, where Q is a quaternion algebra over F , and B is a central
simple F -algebra, necessarily of degree n. Note that this is always the case
when n is odd. We write γQ for the canonical symplectic involution on Q and
nQ for the norm form.
If n is odd, the main result is the following, proven in Section 4:

Theorem 1.1. If n is odd, the algebra with involution (λn(Q⊗B), γ) is Witt-
equivalent to (Q, γQ)⊗n.

Witt-equivalence for central simple algebras is the natural generalization of
Witt-equivalence for quadratic forms, see [1] for a definition.
Assume now that n is even, n = 2m. Then λnA is split and the involution γ
is orthogonal. We fix some quadratic form qA to which γ is adjoint. It is only
defined up to similarity.
The algebra λmB is endowed with a canonical involution which we denote by
γm. For k = 0, . . . , n, we let tk : λkB → F be the reduced trace quadratic form
defined by

tk(x) = TrdλkB(x2).(1.2)

This form also has a natural description from the representation-theoretic view-
point: The group SL1(B) acts on the vector space λkB, and when B is split
λkB is isomorphic to a tensor product of an irreducible representation with
its dual, see Section 2. Consequently, there is a canonical SL1(B)-invariant
quadratic form on λkB; it is tk.
We let t+m and t−m denote the restrictions of tm to the subspaces Sym(λmB, γm)
and Skew(λmB, γm) of elements of λmB which are respectively symmetric and
skew-symmetric under γm, so that tm = t+m ⊕ t−m. The forms thus defined are
related by the following equation, proven in 5.5:

Theorem 1.3. In the Witt ring of F , the following equality holds:

〈2〉 ·
m−1∑

k=0

(−1)ktk =

{
−t−m if m is even,

t+m if m is odd.
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The similarity class of qA is determined by the following theorem, proven in 5.7:

Theorem 1.4. If n is even, n = 2m, the similarity class of qA contains the
quadratic form:

t+m − t−m + nQ ·
(
t−m +

∑
0≤k<m
k even

〈2〉tk
)

if m is even,

t−m − t+m + nQ ·
(∑

0≤k<m
k even

〈2〉tk
)

if m is odd.

The Witt class of this quadratic form can be described more precisely under
some additional assumptions (see Proposition 6.1 for precise statements). We
just mention here a particular case in which the formula reduces to be quite
nice.
Assume that m is even and B is of exponent at most 2. Then λmB is split,
and its canonical involution is adjoint to a quadratic form qB . Even though
this form is only defined up to a scalar factor, its square is actually defined up
to isometry. We then have the following, proven in 5.8:

Corollary 1.5. If m is even (i.e., degB ≡ 0 mod 4) and B is of exponent
at most 2, then the similarity class of qA contains a form whose Witt class is
q2
B + nQ

(
2n−2 − 1

2

(
n
m

)
− ∧2qB

)
.

Some of the notation needs an explanation. For a quadratic form q on a vector
space W with associated symmetric bilinear form b so that q(w) = b(w,w),
we have an induced quadratic form on ∧2W which we denote by ∧2q. For
x1, x2, y1, y2 ∈W , its associated symmetric bilinear form ∧2b is defined by

(∧2b)(x1 ∧ x2, y1 ∧ y2) = b(x1, y1)b(x2, y2)− b(x1, y2)b(x2, y1).

Thus if q = 〈α1, . . . , αn〉, we have

∧2q ' ⊕1≤i<j≤n〈αiαj〉.

From this, one sees that even if q is just defined up to similarity, ∧2q is well-
defined up to isometry. (The form ∧2q also admits a representation-theoretic
description: It is isomorphic to a scalar multiple of the Killing form on the Lie
algebra o(q), where the scalar factor depends only on the dimension of q.)
From Corollary 1.5, we also get the following, which is proven in 6.3:

Corollary 1.6. Let Ar = Q1 ⊗ · · · ⊗Qr be a tensor product of r quaternion
F -algebras, where r ≥ 3, and let TAr be the reduced trace quadratic form on
Ar. The similarity class of qAr contains a quadratic form whose Witt class is

2n−1 − 2n−2

n
〈2r〉 · TAr = 2f(r)

(
2r − (2− nQ1

) · · · (2− nQr )
)
,

where n = 2r−1 = 1
2 degA and f(r) = 2r−1 − r − 1.
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In particular, for r = 3, we get the quadratic form

4(nQ1
+ nQ2

+ nQ3
)− 2(nQ1

nQ2
+ nQ1

nQ3
+ nQ2

nQ3
) + nQ1

nQ2
nQ3

.

Adrian Wadsworth had casually conjectured a description of qA3
in [3, 6.8],

and we now see that his conjecture was not quite correct in that it omitted the
nQ1

nQ2
nQ3

term.

As a consequence of Corollary 1.6, we can show that the form qA lies in the nth
power of the fundamental ideal of the Witt ring WF for many central simple
algebras A of degree 2n; the following result is proven in 6.4:

Corollary 1.7. Suppose that A is a central simple algebra of degree 2n ≡ 0
mod 4 which is isomorphic to matrices over a tensor product of quaternion
algebras. Then the form qA lies in InF .

The first author conjectured [3, 6.6] that qA lies in InF for all central simple
F -algebras A of degree 2n ≡ 0 mod 4 and such that A⊗2 is split. Corollary 1.7
fails to prove the full conjecture because for every integer r ≥ 3 there exists a
division algebra A of degree 2r and exponent 2 such that A doesn’t decompose
as A′ ⊗ A′′ for any nontrivial division algebras A′ and A′′ [6, 3.3], so such an
A doesn’t satisfy the hypotheses of Corollary 1.7.
If A is a tensor product of two quaternion algebras, the form qA is an Albert
form of A, and the Witt index of qA determines the Schur index of A, as Albert
has shown (see for instance [7, (16.5)]). Corollary 1.6 shows that one cannot
expect nice results relating the Witt index of qAr and the Schur index of Ar for
r ≥ 3. As pointed out to us by Jan van Geel, the difficulty is that Merkurjev
has constructed in [9, §3] algebras of the form Ar for r ≥ 3 (i.e., tensor products
of at least 3 quaternion algebras) which are skew fields but whose center, F ,
has I3F = 0. By Corollary 1.7, the forms qAr are then hyperbolic.

Remark 1.8 (characteristic 2). One might hope that results concerning repre-
sentations of algebraic groups would not involve the restriction that the charac-
teristic is not 2. However, removing this restriction for the results in this paper
would necessarily dramatically change their nature. For example, the trace
forms tk occurring here are degenerate in characteristic 2. Also, our methods
require the ability to take tensor products of quadratic forms and to scale by
a factor of 〈2〉, neither of which are available in characteristic 2. These restric-
tions may be avoidable, but we have chosen not to attempt to do so because
such an attempt would almost certainly make this paper so technical that it
would be nearly unreadable.

2 Description of λnM2(B)

In order to prove these results, we have to describe the algebra with involution
(λn(Q ⊗ B), γ), which we will do by Galois descent. Hence we first give a
description of λnM2(B), see Theorem 2.5 below.
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Assume B = EndF (V ) for some n-dimensional vector space V . For 0 ≤ k ≤ n,
we have λkB = EndF (∧kV ). We identify M2(B) ' EndF (V ⊕ V ) by mapping(
a b
c d

)
∈M2(B) to the endomorphism

(x, y) 7→
(
a(x) + b(y), c(x) + d(y)

)
.

The distinguished choice of embedding of B in M2(B) corresponds with the
obvious choice of direct sum decomposition of V ⊕V . (There are many others.)
This gives an identification λnM2(B) = EndF (∧n(V ⊕V )). For all integers k, `,
this decomposition determines ∧kV ⊗∧`V as a vector subspace of ∧k+`(V ⊕V )
by mapping (x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ y`) to

(x1, 0) ∧ · · · ∧ (xk, 0) ∧ (0, y1) ∧ · · · ∧ (0, y`) ∈ ∧k+`(V ⊕ V ).

In particular, we have

∧n (V ⊕ V ) = ⊕nk=0

(
∧kV ⊗ ∧n−kV

)
.(2.1)

For each k, the space ∧kV ⊗∧n−kV can be identified to EndF (∧kV ) as follows.
Fix a nonzero element (hence a basis) e of ∧nV and define a bilinear form

θk : ∧k V × ∧n−kV → F

by the equation

θk(xk, xn−k) e = xk ∧ xn−k for x` ∈ ∧`V .

This form is nonsingular, so it provides the identification mentioned above

∧k V ⊗ ∧n−kV = EndF (∧kV )(2.2)

by sending xk ⊗ xn−k to the map y 7→ xkθn−k(xn−k, y). The product in
EndF (∧kV ) then corresponds in ∧kV ⊗ ∧n−kV to

(xk ⊗ xn−k)(yk ⊗ yn−k) = θn−k(xn−k, yk)xk ⊗ yn−k.

From (2.1) and (2.2), we deduce an identification of the corresponding endo-
morphism rings

λnM2(B) = EndF (⊕nk=0λ
kB).(2.3)

This remains true in the case when B is non split, as we will prove by Galois
descent. First, we must introduce some maps on ⊕nk=0λ

kB.
Since the bilinear form θk is nonsingular, for any f ∈ EndF (∧kV ), we have a
unique element γk(f) ∈ EndF (∧n−kV ) such that

θk (f(x), y) = θk (x, γk(f)(y)) ,
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for every x ∈ ∧kV and y ∈ ∧n−kV . This defines a canonical anti-isomorphism
(not depending on the choice of e)

γk : EndF (∧kV )→ EndF (∧n−kV )

such that

γk(x⊗ y) = (−1)k(n−k)y ⊗ x(2.4)

for x and y as before. One may easily verify that γn−k ◦ γk = IdEndF (∧kV )

for all k = 0, . . . , n. By Galois descent, the maps γk are defined even when
B is nonsplit, i.e., we have anti-isomorphisms γk : λkB → λn−kB such that
γk ◦ γn−k = IdλkB (see [7, Exercise 12, p. 147] for a rational definition). In
the particular case where n is even, by definition of the bilinear form θn/2, the

map γn/2 is actually the canonical involution on λn/2B.

Theorem 2.5. Whether or not B is split, there is a canonical isomorphism

Φ: λnM2(B)→ EndF (λ0B ⊕ · · · ⊕ λnB)

which in the split case is the identification (2.3) above. The canonical involution
γ on λnM2(B) induces via Φ an involution on EndF (⊕nk=0λ

kB) which is adjoint
to the bilinear form T defined on λ0B ⊕ · · · ⊕ λnB by

T (u, v) =

{
(−1)` TrdλkB (uγ`(v)) if k + ` = n,

0 if k + ` 6= n,

for any u ∈ λkB and v ∈ λ`B.

Proof. We prove this by Galois descent. Fix a separable closure Fs of F and let
Γ := Gal(Fs/F ) be the absolute Galois group. We fix a vector space V over F
such that dimF V = degB = n and let Vs = V ⊗F Fs. We fix also an Fs-algebra
isomorphism ϕ : B ⊗F Fs ∼−→ EndF (V ) ⊗F Fs. Every σ ∈ Γ acts canonically
on Vs and EndFs(Vs) = EndF (V )⊗F Fs; we denote again by σ these canonical
actions, so that σ(f) = σ ◦ f ◦ σ−1 for f ∈ EndFs(Vs). On the other hand, the
canonical action of Γ on B ⊗F Fs corresponds under ϕ to some twisted action
∗ on EndFs(Vs). Since every Fs-linear automorphism of EndFs(Vs) is inner, we
may find gσ ∈ GL(Vs) such that

σ ∗ f = gσ ◦ σ(f) ◦ g−1
σ = Int(gσ) ◦ σ(f) for all f ∈ EndFs(Vs).

Then ϕ induces an F -algebra isomorphism from B onto the F -subalgebra

{
f ∈ EndFs(Vs) | gσ ◦ σ(f) ◦ g−1

σ = f for all σ ∈ Γ
}
.

The ∗-action of Γ on EndFs(Vs) induces twisted actions on EndFs
(
∧n(Vs ⊕

Vs)
)

and on EndFs
(
⊕nk=0 EndFs(∧kVs)

)
such that the F -algebras of Γ-invariant
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elements are λn
(
M2(B)

)
and EndF (⊕nk=0λ

kB) respectively. To prove the first
assertion of the theorem, we will show that these actions correspond to each
other under the isomorphism

EndFs
(
∧n(Vs ⊕ Vs)

) ∼−→ EndFs
(
⊕nk=0 EndFs(∧kVs)

)

derived from (2.1) and (2.2).
For σ ∈ Γ and k = 0, . . . , n, define ∧kgσ ∈ GL(∧kVs) by

∧kgσ(x1 ∧ . . . ∧ xk) = gσ(x1) ∧ . . . ∧ gσ(xk).

Then ϕ induces an F -algebra isomorphism from λkB onto the F -subalgebra

{
f ∈ EndFs(∧kVs) | ∧kgσ ◦ σ(f) ◦ (∧kgσ)−1 = f for all σ ∈ Γ

}
,

hence also from EndF (⊕nk=0λ
kB) to

{
f ∈ EndFs

(
⊕nk=0 EndFs(∧kVs)

)
|

(
⊕k Int(∧kgσ)

)
◦ σ(f) = f ◦

(
⊕k Int(∧kgσ)

)
for all σ ∈ Γ

}
.

Similarly, define ∧n(gσ ⊕ gσ) ∈ GL
(
∧n(Vs ⊕ Vs)

)
by

∧n (gσ ⊕ gσ)
(
(x1, y1) ∧ . . . ∧ (xn, yn)

)
=

(
gσ(x1), gσ(y1)

)
∧ . . . ∧

(
gσ(xn), gσ(yn)

)
,

so that λn
(
M2(B)

)
can be identified through ϕ with

{
f ∈ EndFs

(
∧n(Vs ⊕ Vs)

)
|

∧n (gσ ⊕ gσ) ◦ σ(f) = f ◦ ∧n(gσ ⊕ gσ) for all σ ∈ Γ
}
.

Certainly, ∧n(gσ ⊕ gσ) = ⊕nk=0(∧kgσ ⊗∧n−kgσ) under (2.1), and computation
shows that ∧kgσ ⊗ ∧n−kgσ = (det gσ) Int(∧kgσ) under (2.2). Therefore, (2.1)
and (2.2) induce an isomorphism of F -algebras

Φ: λn
(
M2(B)

) ∼−→ EndF (⊕nk=0λ
kB).

To complete the proof of the theorem, we show that the canonical involution γ
on λn

(
M2(B)

)
corresponds to the adjoint involution with respect to T under

Φ. In order to do so, we view λn
(
M2(B)

)
and EndF (⊕nk=0λ

kB) as the fixed

subalgebras of EndFs
(
∧n(Vs ⊕ Vs)

)
and EndFs

(
⊕nk=0 EndFs(∧kVs)

)
, and show

that the canonical involution γ on EndFs
(
∧n(Vs ⊕ Vs)

)
corresponds to the

adjoint involution with respect to T (extended to Fs) under the isomorphism
induced by (2.1) and (2.2).
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Taking any nonzero element e ∈ ∧nVs, the identification ∧2n(Vs⊕Vs) = ∧nVs⊗
∧nVs allows us to write e⊗ e for a nonzero element of ∧2n(Vs ⊗ Vs). Then γ is
adjoint to the bilinear form

Θ: ∧n (Vs ⊕ Vs)× ∧n(Vs ⊕ Vs)→ Fs

given by

Θ(x, y) e⊗ e = x ∧ y for x, y ∈ ∧n(Vs ⊕ Vs)
as was mentioned in the introduction. Using the identification of ∧kVs⊗∧n−kVs
as a subspace of ∧n(Vs ⊕ Vs), we have that for xi, yi ∈ ∧iVs,

Θ(xk ⊗ xn−k, y` ⊗ yn−`) =
{

(−1)`θk(xk, y`)θn−k(xn−k, yn−`) if k + ` = n,
0 if k + ` 6= n.

We translate this into terms involving B, using the isomorphism ϕ to identify
λkBs := (λkB)⊗F Fs with EndFs(∧kVs). In particular, we know that

TrdλkBs(xk ⊗ xn−k) = θn−k(xn−k, xk)

for Trd the reduced trace, and that

θk(xk, xn−k) = (−1)k(n−k)θn−k(xn−k, xk).

So for x = xk ⊗ xn−k ∈ λkBs and y = y` ⊗ yn−` ∈ λ`Bs,

Θ(x, y) =

{
(−1)` TrdλkBs(γ`(y)x) if k + ` = n,
0 if k + ` 6= n.

Of course, in the k + ` = n case we could just as easily have taken

Θ(x, y) = (−1)` Trdλ`Bs(γk(x)y).

So, the vector space isomorphism derived from (2.1) and (2.2) is an isometry of
Θ and T , and it follows that the canonical involution γ adjoint to Θ corresponds
to the adjoint involution to T under Φ.

For later use, we prove a little bit more about this isomorphism Φ. Let us
consider the elements e1 = ( 1 0

0 0 ) and e2 = ( 0 0
0 1 ) ∈ M2(B), and let t be an

indeterminate over F . We write λn for the map M2(B) → λnM2(B) defined
in [7, 14.3], which is a homogeneous polynomial map of degree n. In the
split case where M2(B) is identified with EndF (V ⊕ V ) and λnM2(B) with
EndF

(
∧n(V ⊕ V )

)
, the map is given by

(λnf)(w1 ∧ · · · ∧ wn) = f(w1) ∧ · · · ∧ f(wn)

for f ∈ EndF (V ⊕ V ) and w1, . . . , wn ∈ V ⊕ V . Whether or not B is split,
there exist `0, . . . , `n ∈ λnM2(B) such that

λn(e1 + te2) = tn`0 + tn−1`1 + · · ·+ t`n−1 + `n.

We then have
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Lemma 2.6. For k = 0, . . . , n, the image of `k under Φ is the projection on
λkB. Moreover, we have γ(`k) = `n−k.

Proof. It is enough to prove it in the split case. Hence, we may assume B =
EndF (V ), and use identification (2.2) of the previous section. An element of
λkB = EndF (∧kV ) can be written as (x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k), where
x1, . . . , xk, y1, . . . , yn−k ∈ V . The endomorphism λn(e1 + te2) acts on this
element as follows:

λn(e1 + te2) ((x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k))
= (x1, 0) ∧ · · · ∧ (xk, 0) ∧ (0, ty1) ∧ · · · ∧ (0, tyn−k)
= tn−k(x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k).

Hence, the image under `i of this element is itself if i = k and 0 otherwise.
This proves the first assertion of the lemma. By Theorem 2.5, to prove the
second one, one has to check that for any u, v ∈ λ0B ⊕ · · · ⊕ λnB, we have
T (`i(u), v) = T (u, `n−i(v)), which follows easily from the description of T given
in that theorem.

Remark 2.7. By the previous lemma, the elements `0, . . . , `n ∈ λnM2(B) are
orthogonal idempotents. Hence, the fact that γ(`k) = `n−k for all k = 0, . . . , n
implies that the involution γ is hyperbolic if n is odd and Witt-equivalent to
its restriction to `mλ

nM2(B)`m if n = 2m.

We will also use the following:

Lemma 2.8. For any b ∈ F×, consider g0 := ( 0 b
1 0 ) ∈ M2(B), and set g :=

λn(g0). We have:

1. for any u ∈ λkB, Φ(g)(u) = bn−kγk(u) ∈ λn−kB;

2. g2 = bn and γ(g) = (−1)ng;

3. For any k = 0, . . . , n, g`k = `n−kg.

Proof. Again, it is enough to prove it in the split case. A direct computation
then shows that for any x⊗ y ∈ ∧kV ⊗ ∧n−kV = λkB, we have

g(x⊗ y) = (−1)k(n−k)bn−k(y ⊗ x),

which combined with (2.4) gives (1), which in turn easily implies (3). The first
part of (2) is because λn restricts to be a group homomorphism on M2(B)∗ [7,
14.3], and the second part then follows since γ(g)g = NrdλnM2(B)(g) = (−b)n
by [7, 14.4].
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3 Description of λn(Q⊗B)

We suppose that Q = (a, b)F is a quaternion F -algebra and B is an arbitrary
central simple F -algebra of degree n. We will describe λn(Q ⊗ B) by Galois
descent from K = F (α), where α ∈ Fs is a fixed square root of a. More pre-
cisely, let us identify Q with the F -subalgebra of M2(K) generated by

(
α 0
0 −α

)

and g0 = ( 0 b
1 0 ), i.e.,

Q = {x ∈M2(K) | g0x̄g
−1
0 = x},

where ¯ denotes the non-trivial automorphism of K/F . We also have

Q⊗B = {x ∈M2(BK) | g0x̄g
−1
0 = x},

where BK = B ⊗F K, and g0 is now viewed as an element of M2(BK).
The canonical map λn : A → λnA restricts to be a group homomorphism on
A∗ [7, 14.3]. Moreover, when degA = 2n, for a ∈ A∗, Int(λn(a)) preserves the
canonical involution γ on λnA [7, 14.4], and so we get a map

λn : Aut(A)→ Aut(λnA, γ).

In particular this holds for A = M2(BK). This induces a map on Galois
cohomology

H1(K/F,Aut(M2(BK)))
H1(λn)−−−−−→ H1(K/F,Aut(λnM2(BK), γ)).

The image under this map of the 1-cocycle ¯ 7→ Int(g0) is the 1-cocycle ¯ 7→
Int(λng0), as in the preceding section. Since the former 1-cocycle corresponds
to Q⊗B, the latter corresponds to λn(Q⊗B), so

λn(Q⊗B) = {x ∈ λnM2(BK) | gx̄g−1 = x}(3.1)

for g := λn(g0). We fix this definition of g for the rest of the paper.

4 The n odd case

This section is essentially the proof of Theorem 1.1.
We set λevenB := ⊕0≤k<n

k even
λkB. For 0 ≤ k ≤ n, we let tk be the reduced trace

quadratic form on λkB as in (1.2). We then have the following:

Lemma 4.1. When n = degB is odd, the algebra with involution (λn(Q⊗B), γ)
is isomorphic to (Q, γQ)⊗ (C, σ), where (C, σ) is isomorphic to EndF (λevenB)
endowed with the adjoint involution with respect to

∑
0≤k<n
k even

tk.

Proof. If i, j ∈ Q satisfy i2 = a, j2 = b and ij = −ji, then since λn restricts to
be a group homomorphism on (Q⊗B)∗, λn(i⊗ 1) and λn(j ⊗ 1) ∈ λn(Q⊗B)
anticommute and satisfy

λn(i⊗ 1)2 = an, λn(j ⊗ 1)2 = bn,
γ(λn(i⊗ 1)) = −λn(i⊗ 1), γ(λn(j ⊗ 1)) = −λn(j ⊗ 1).
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110 R. S. Garibaldi, A. Quéguiner-Mathieu, J.-P. Tignol

(For the bottom two equations, see [7, (14.4)].) Hence, these two elements
generate a copy of Q in λn(Q⊗B) on which γ restricts to be γQ and we have
(λn(Q⊗B), γ) ' (Q, γQ)⊗ (C, σ), where C is the centralizer of Q in λn(Q⊗B)
and σ denotes the restriction of γ to C [7, 1.5].
To describe C, we take i = α(e1 − e2) and j = g0, as in the beginning of the
previous section, so that λn(j ⊗ 1) = g and

λn(i⊗ 1) = αn((−1)n`0 + (−1)n−1`1 + · · ·+ `n) = −αn(`even − `odd),

where `even =
∑

0≤k≤n
k even

`k and `odd =
∑

0≤k≤n
k odd

`k.

Let us consider the map Ψ: `evenλ
n(M2(B))`even → λn(M2(BK)) defined by

Ψ(x) = x+ gxg−1. A direct computation shows that Ψ is an F -algebra homo-
morphism, amazingly. Clearly, Ψ(x) = Ψ(x) and since g2 = bn is central (see
Lemma 2.8), gΨ(x) = Ψ(x)g for all x. Hence, the image of Ψ is contained in
λn(Q⊗B) and is centralized by g. Moreover,

λn(i⊗ 1)Ψ(x) = −αn(x− gxg−1) = Ψ(x)λn(i⊗ 1).

Hence, the image of Ψ also centralizes λn(i ⊗ 1), and is therefore con-
tained in C. Now, since `even is an idempotent of λn(M2(B)), the algebra
`evenλ

n(M2(B))`even is simple, hence Ψ is injective. By dimension count it
follows that its image is exactly C.
Since γ(Ψ(x)) = Ψ(g−1γ(x)g), the involution σ on C corresponds via Ψ to
Int(g−1) ◦ γ on `evenλ

n(M2(B))`even. Note that if x ∈ `evenλ
n(M2(B))`even,

then γ(x) ∈ `oddλ
n(M2(B))`odd and g−1γ(x)g ∈ `evenλ

n(M2(B))`even. By
Theorem 2.5, we get that (C, σ) is isomorphic to EndF (λevenB) endowed
with the involution adjoint to the quadratic form T ′ defined by T ′(u, v) =
T (u,Φ(g)(v)). Using the description of T given in Theorem 2.5 and
Lemma 2.8(1), it is easy to check that the λkB are pairwise orthogonal for
T ′ and that T ′ restricts to be 〈(−b)n−k〉tk on λkB. Thus T ′ is similar to∑

0≤k<n
k even

tk.

Let us now prove Theorem 1.1. If n = 2m+1, then the algebra with involution
(Q, γQ)⊗n is isomorphic to (Q, γQ)⊗ (EndF (Q), adnQ)⊗m, where adnQ denotes
the adjoint involution with respect to the quadratic form nQ. Indeed, one may
easily check that (Q⊗Q, γQ⊗γQ) is isomorphic to

(
EndF (Q), adT(Q,γQ)

)
, where

T(Q,γQ) is the quadratic form defined by T(Q,γQ)(x) = TrdQ(xγQ(x)). Since for

any x ∈ Q, we have xγQ(x) = nQ(x) ∈ F , T(Q,γQ) = 〈2〉nQ, and (Q⊗2, γ⊗2
Q ) '

(EndF (Q), adnQ). Therefore, to prove Theorem 1.1, it suffices to show that the
algebras with involution (Q, γQ)⊗(C, σ) and (Q, γQ)⊗(EndF (Q), adnQ)⊗m are
Witt-equivalent. We will use the following lemma:

Lemma 4.2. Let (U, q) and (U ′, q′) be two quadratic spaces over F . There
exists an isomorphism

(Q, γQ)⊗ (EndF (U), adq) ' (Q, γQ)⊗ (EndF (U ′), adq′)

if and only if the quadratic forms nQ ⊗ q and nQ ⊗ q′ are similar.
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Proof. Consider the right Q-vector space UQ = U ⊗F Q. The quadratic form
q on U induces a hermitian form h : UQ × UQ → Q (with respect to γQ) such
that

h(u⊗ x, u′ ⊗ x′) =
1

2

(
q(u+ u′)− q(u)− q(u′)

)
γQ(x)x′

for u, u′ ∈ U and x, x′ ∈ Q. The adjoint involution adh satisfies

(EndQ(UQ), adh) = (EndF (U), adq)⊗ (Q, γQ).(4.3)

The trace form of h, which is by definition the quadratic form

U ⊗F Q→ F, x 7→ h(x, x),

is q ⊗ nQ. Similarly, we denote by h′ the hermitian form induced by q′. By a
theorem of Jacobson [13, 10.1.7], the hermitian modules (UQ, h) and (U ′Q, h

′)
are isomorphic if and only if their trace forms are isometric. Hence, if the
quadratic forms q ⊗ nQ and q′ ⊗ nQ are similar, i.e., q ⊗ nQ ' 〈µ〉q′ ⊗ nQ for
some µ ∈ F ∗, then the hermitian forms h and 〈µ〉h′ are isomorphic, which
proves that

(Q, γQ)⊗ (EndF (U), adq) ' (Q, γQ)⊗ (EndF (U ′), adq′).

Conversely, if there is such an isomorphism, then equation (4.3) shows that
the hermitian forms h and h′ are similar, hence their trace forms q ⊗ nQ and
q′ ⊗ nQ also are similar.

These two lemmas reduce the proof of Theorem 1.1 to showing that the

quadratic forms nQ ⊗
∑

0≤k<n
k even

tk and n
⊗(m+1)
Q are Witt-equivalent, up to a

scalar factor.
On the one hand, we have n

⊗(m+1)
Q = 4mnQ, since n⊗2

Q = 4nQ. On the other
hand, since the algebra B is split by an odd-degree field extension, Springer’s
Theorem [8, VII.2.3] shows that tk is isometric to the trace form of

λk(Mn(F )) = M(nk)
(F )

which is Witt-equivalent to
(
n
k

)
〈1〉. Hence the Witt class of nQ⊗

∑
0≤k<n
k even

tk is

∑
0≤k<n
k even

(
n

k

)
nQ = 2n−1nQ = 4mnQ,

which completes the proof of Theorem 1.1.

5 The n even case

In this section, we prove Theorems 1.3, 1.4, and Corollary 1.5.
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Assume from now on that n is even and write n = 2m. Consider the element
of λn(M2(BK))

h = α(1− b−mg)(`0 + · · ·+ `m−1 + 1
2`m) + (1 + b−mg)( 1

2`m + `m+1 + · · ·+ `n).

One can check that

h−1 = 1
2

(
(α−1 + b−mg)(`0 + · · ·+ `m) + (1− b−mgα−1)(`m + · · ·+ `n)

)

and g = bm hh
−1

.
Therefore, it follows from (3.1) that

λn(Q⊗B) = hλnM2(B)h−1 ⊂ λnM2(B)K .

Using the isomorphism Φ of Theorem 2.5 as an identification, we then have

λn(Q⊗B) = EndF
(
h(λ0B)⊕ · · · ⊕ h(λnB)

)
,

and the canonical involution on λn(Q ⊗ B) is adjoint to the restriction of the
bilinear form TK to the F -subspace h(λ0B)⊕ · · · ⊕ h(λnB). This restriction is
given by the following formula:

Lemma 5.1. The F -subspaces h(λkB) are pairwise orthogonal. Moreover, for
u, v ∈ λkB we have

TK (h(u), h(v)) =



−2a(−1)kbm−k TrdλkB(uv) if k < m,

(−1)m
(

1+a
2 TrdλmB

(
γm(u)v

)
+ 1−a

2 TrdλmB(uv)
)

if k = m,

2(−1)kbm−k TrdλkB(uv) if k > m.

Proof. Using Lemmas 2.6 and 2.8(1), one may easily check that for any u ∈
λkB, we have

h(u) =





α(u− bm−kγk(u)) if k < m,
1
2

[
(1 + α)u+ (1− α)γk(u)

]
if k = m,

u+ bm−kγk(u) if k > m.

The claim then follows from the description of T given in Theorem 2.5 and
Lemma 2.8(1) by some direct computations. For instance, if u, v ∈ λmB, we
get

TK
(
h(u), h(v)

)
= (−1)m TrdλmBK

[
h(u)γm

(
h(v)

)]
(5.2)

by Theorem 2.5, and

h(u)γm
(
h(v)

)
=

1
4

[
(1 + α)2uγm(v) + (1− a)

(
uv + γm(u)γm(v)

)
+ (1− α)2γm(u)v

]
.

(5.3)
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Since TrdλmB
(
uγm(v)

)
= TrdλmB

(
γm(u)v

)
and TrdλmB

(
γm(u)γm(v)

)
=

TrdλmB(uv), it follows that

TrdλmBK
[
(1 + α)2uγm(v) + (1− α)2γm(u)v

]
= 2(1 + a) TrdλmB

(
γm(u)v

)

and

TrdλmBK
[
(1− a)(uv + γm(u)γm(v))

]
= 2(1− a) TrdλmB(uv).

Therefore, (5.2) and (5.3) yield

TK
(
h(u), h(v)

)
= (−1)m

1 + a

2
TrdλmB

(
γm(u)v

)
+ (−1)m

1− a
2

TrdλmB(uv).

This lemma provides a first description of the similarity class of qA:

Proposition 5.4. If n is even, the similarity class of qA contains the quadratic
form:

(
⊕0≤k<m〈2(−1)kbm−k〉〈1,−a〉tk

)
⊕ 〈(−1)m〉(t+m ⊕ 〈−a〉t−m).

Proof. Since the anti-isomorphism γk defines an isometry tk ' tn−k, the re-
striction of TK to h(λkB ⊕ λn−kB), for all k < m, is

〈2(−1)kbm−k〉〈1,−a〉tk.

Moreover, we have

1 + a

2
TrdλmB

(
γm(u)v

)
+

1− a
2

TrdλmB(uv) =
{

TrdλmB(uv) if u ∈ Sym(λmB, γm),

−aTrdλmB(uv) if u ∈ Skew(λmB, γm).

Hence, the proposition clearly follows from the lemma.

5.5. Proof of Theorem 1.3.
Theorem 1.3 is a consequence of the preceding results in the special case where
Q = (a, b)F is split. In that case, we may take b = 1 so that the matrix
g0 = ( 0 1

1 0 ) then decomposes as g0 = f0f̄
−1
0 , where f0 =

(
1 −α
1 α

)
. Hence,

if we let f = λnf0, we have g = f f̄−1. On the other hand, we also have
g = hh̄−1, for h as in the preceding section, hence f−1h = f−1h, which means
that f−1h ∈ λn

(
M2(B)

)
. Considering the isomorphism Φ of Theorem 2.5

as an identification as we did in the preceding section, we get that f−1h ∈
EndF (λ0B ⊕ · · · ⊕ λnB), hence

h(λ0B ⊕ · · · ⊕ λnB) = f(λ0B ⊕ · · · ⊕ λnB).
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To prove Theorem 1.3, we compute the restriction of TK to this F -subspace in
two different ways. First, we use [7, (14.4)], which says that f is a similarity
for TK with similarity factor NrdM2(BK)(f0) = (−2α)n = 2nam. Hence, for
any u, v ∈ λ0B ⊕ · · · ⊕ λnB, we have

TK(f(u), f(v)) = 2namT (u, v).

By Remark 2.7 and Theorem 2.5, the form T is Witt-equivalent to its restriction
to λmB, which is isometric to 〈(−1)m〉(t+m ⊕ 〈−1〉t−m).
Second, the restriction of TK to h(λ0B ⊕ · · · ⊕ λnB) has been computed in
Lemma 5.1 and the proof of Proposition 5.4. Comparing the results, we get
that the quadratic forms

(
⊕0≤k<m〈2(−1)k〉〈1,−a〉tk

)
⊕ 〈(−1)m〉(t+m ⊕ 〈−a〉t−m)

and

〈2nam〉〈(−1)m〉(t+m ⊕ 〈−1〉t−m)

are Witt-equivalent. If m is even, we get that the following equality holds in
the Witt ring:

(∑
0≤k<m

〈2(−1)k〉〈1,−a〉tk
)

+ t+m + 〈−a〉t−m = t+m − t−m,

from which we deduce

〈1,−a〉
((∑

0≤k<m
〈2(−1)k〉tk

)
+ t−m

)
= 0.

To finish the proof, we may assume a is an indeterminate over the base field
F . The previous equality then implies that the quadratic form

(⊕
0≤k<m

〈2(−1)k〉tk
)
⊕ t−m

is hyperbolic, which proves the theorem in this case. A similar argument fin-
ishes the proof for the m odd case.

Remark 5.6. Let t(λmB,γm) : λmB → F be the quadratic form

t(λmB,γm)(x) = TrdλmB(γm(x)x).

Using Theorem 1.3, together with the facts that tn−k = tk, t(λmB,γm) = t+m−t−m,
and that 2q ' 2〈2〉q for an arbitrary quadratic form q since 2〈2〉 = 2〈1〉, we
obtain the following memorable formula:

n∑

k=0

(−1)ktk = t(λmB,γm) in WF.
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5.7. Proof of Theorem 1.4. Consider first the case where m is even. In
that case, Theorem 1.3 yields

∑
0≤k<m
k even

〈2〉tk + t−m =
∑

0≤k<m
k odd

〈2〉tk.

Substituting in the formula given in Proposition 5.4, we get that the similarity
class of qA contains a quadratic form whose Witt class is

∑
0≤k<m
k even

〈2,−2a〉tk +
∑

0≤k<m
k even

〈−2b, 2ab〉tk + 〈−a,−b, ab〉t−m + t+m

=
∑

0≤k<m
k even

〈2〉nQtk + t+m − t−m + nQt
−
m.

Now, suppose m is odd. Multiplying by 〈a〉 the quadratic form given in Propo-
sition 5.4 does not change its similarity class, and shows that the similarity
class of qA contains a quadratic form whose Witt class is

〈1,−a〉 ·
(
t+m +

∑
0≤k<m

〈2(−b)k+1〉tk
)

+ t−m − t+m.

Substituting for t+m the formula of Theorem 1.3 simplifies the expression in

brackets to 〈1,−b〉 ·
(∑

0≤k<m
k even

〈2〉tk
)

and completes the proof.

5.8. Proof of Corollary 1.5. Let us assume that B is of exponent at most
2. Then, for any even k, the algebra λkB is split. Hence, its trace form tk is
Witt-equivalent to

(
n
k

)
. Since m is even, λmB is also split, and its canonical

involution γm is adjoint to a quadratic form qB . This form is only defined up
to a scalar factor, but its square is defined up to isometry. Now [7, 11.4] gives
relationships between qB and the forms t+m and t−m:

t+m − t−m ' q2
B and − t−m ' 〈1/2〉 ∧2 qB .

Hence, by Theorem 1.4, the similarity class of qA contains a form whose Witt
class is

q2
B + nQ

(
〈−2〉(∧2qB) +

∑
0≤k<m
k even

(
n
k

)
〈2〉
)
.

One may easily check that, since 〈2, 2〉 ' 〈1, 1〉 and qB is even-dimensional,
q2
B ' 〈2〉q2

B . Since we are concerned only with the similarity class of qA, we
may therefore forget the factors 〈2〉 throughout. Moreover, since m is even,∑

0≤k<m
k even

(
n
k

)
= 2n−2 − 1

2

(
n
m

)
, and Corollary 1.5 follows.

6 Another approach to the n even case

Let us decompose B = B0 ⊗ B1, where degB0 = 2m0 is a power of 2 and
degB1 = m1 is odd. We have m = m0m1, and m is even if and only if m0 > 1.
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We write T0 for the trace form of B0. Under the assumption that B⊗2
0 is split

(which is automatic if m is odd), we will give a different characterization of qA
for A = Q⊗B than the one in Theorem 1.4. Corollaries 1.6 and 1.7 will follow
from this.

Proposition 6.1. Suppose that B⊗2
0 is split. Then the similarity class of qA

contains a form whose Witt class is

2n−1 +
2n−3

m0
T0(nQ − 2) if m is even

and

2n−2(nQ − nB0
) if m is odd.

(Note that B0 is a quaternion algebra if m is odd.)

This result is already known for m odd: If A is a biquaternion algebra (i.e.,
m = 1) it is [3, 6.2], and in general it follows from [3, 6.4] by a straightforward
computation, using the fact that for any integer k ≥ 1, one has nkQ = 22(k−1)nQ.
However, the results from [3] make use of Clifford algebras, which seems a long
way to go. So we include a direct proof.
We start with a lemma.

Lemma 6.2. Suppose that B⊗2
0 is split. Then the quadratic form tk is Witt-

equivalent to
(
n
k

)
if k is even and 1

2m0

(
n
k

)
T0 if k is odd. Moreover, we have:

t−m =
2n−3

m0
〈2〉T0 −

(
2n−2 − 1

2

(
n
m

))
〈2〉 if m is even,

and

t+m = 2n−2〈2〉 −
(

2n−3 − 1
4

(
n
m

))
〈2〉T0 if m is odd.

This lemma actually specifies t+m and t−m whatever the parity of m since in both
cases tm = t+m + t−m, and tm is known.

Proof. Since B1 is split by an odd-degree field extension, Springer’s Theorem
shows that tk is isometric to the trace form of λk

(
B0 ⊗Mm1

(F )
)
. If k is even,

this algebra is split, and the result is clear. If k is odd, the algebra is Brauer-
equivalent to B0, hence isomorphic to Mp(F ) ⊗ B0, where p = 1

2m0

(
n
k

)
. The

form of tk for k odd then follows from the fact that the trace form of a tensor
product of central simple algebras is isometric to the product of the trace forms
of each factor.
We have m = m0m1, and m is odd if and only if m0 = 1. Recall that

∑
0≤k<m
k even

(
n
k

)
=

{
2n−2 if m is odd,

2n−2 − 1
2

(
n
m

)
if m is even,
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and

∑
0≤k<m
k odd

(
n
k

)
=

{
2n−2 − 1

2

(
n
m

)
if m is odd,

2n−2 if m is even.

The second part of the lemma then follows from Theorem 1.3 by a direct
computation.

Let us now prove Proposition 6.1. Assume first that m is even. The preceding
lemma yields

t−m +
∑

0≤k<m
k even

〈2〉tk =
2n−3

m0
〈2〉T0

and

t+m − t−m =
(
n
m

)
− 2t−m = 2n−1〈2〉 − 2n−2

m0
〈2〉T0 +

(
n
m

)
〈1,−2〉.

Since
(
n
m

)
is even, the last term on the right side vanishes, hence the quadratic

form given by Theorem 1.4 is

〈2〉
(

2n−1 − 2n−2

m0
T0 +

2n−3

m0
nQT0

)
.

This finishes the m even case.
Assume now that m is odd. Then, B0 is a quaternion algebra, and T0 =
〈2〉(2− nB0

). The preceding lemma yields

∑
0≤k<m
k even

〈2〉tk = 2n−2〈2〉

and

t−m − t+m = 1
2

(
n
m

)
T0 − 2t+m = 1

2

(
n
m

)
T0 − 2n−1〈2〉+

(
2n−2 − 1

2

(
n
m

))
〈2〉T0.

If m = 1, then this reduces to t−m − t+m = −〈2〉nB0
, and Theorem 1.4 gives the

desired result. Otherwise, since m is odd and m ≥ 3, the integer 2n−2 − 1
2

(
n
m

)

is even, by [7, (10.29)], hence
(
2n−2 − 1

2

(
n
m

))
〈2〉 = 2n−2 − 1

2

(
n
m

)
and the right

side of the last displayed equation simplifies to yield

t−m − t+m = −2n−2〈2〉nB0
.

Therefore, the quadratic form given by Theorem 1.4 is 2n−2〈2〉(nQ − nB0
),

which is isometric to 2n−2(nQ − nB0
) since 2n−2〈2〉 = 2n−2, and the proof of

Proposition 6.1 is complete.

6.3. Proof of Corollary 1.6. Corollary 1.6 can be proved by induction,
using the formula given in Corollary 1.5, but it can also be directly deduced
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from Proposition 6.1. Indeed, let us assume A = Ar = Q1 ⊗ · · · ⊗ Qr is a
product of r ≥ 3 quaternion algebras. We let B = Q2 ⊗ · · · ⊗ Qr. Its degree
n = 2r−1 is a power of 2, and since r ≥ 3, m = 2r−2 is even. In the notation
from earlier in this previous section, we have B0 = B and B⊗2

0 is split. Hence,
we may apply Proposition 6.1. The form T0 is the trace form of B, that is the
tensor product of the trace forms of the quaternion algebras Qi for i = 2, . . . , r.
Hence, we have T0 = 〈2r−1〉(2−nQ2

) · · · (2−nQr ), and Proposition 6.1 tells us
that the similarity class of qA contains a form whose Witt class is

2n−1 +
2n−3

2r−2
〈2r−1〉(nQ1

− 2)(2− nQ2
) · · · (2− nQr ) =

= 2n−1〈2r−1〉 − 2n−r−1〈2r−1〉(2− nQ1
)(2− nQ2

) · · · (2− nQr )
= 〈2r−1〉2n−r−1

(
2r − (2− nQ1

) · · · (2− nQr )
)
,

which proves the corollary.

6.4. Proof of Corollary 1.7. Let us now consider a central simple algebra
A as in the statement of Corollary 1.7. Then A is isomorphic to Mk(Ar), where
Ar = Q1 ⊗ · · · ⊗ Qr is a product of r quaternion algebras. If A is split then
qA is hyperbolic and the result is clear, so we may assume that r 6= 0. Because
degA ≡ 0 mod 4 by hypothesis, we may further assume that r 6= 1 (so that
r ≥ 2), with perhaps some of the Qi being split.

We first treat the k = 1 case. If r = 2, then A is biquaternion algebra and qA
is an Albert form, which lies in I2F . If r ≥ 3, then by Corollary 1.6 we have to
prove that

2n−1 − 2n−r−1(2− nQ1
) · · · (2− nQr )

lies in InF . When we expand this product, the terms of the form 2n−1 cancel,
and we are left with a sum of terms of the form ±2n−`−1nQi1 · · ·nQi` , where

` ≥ 1. Since for any i the form nQi lies in I2F , 2n−`−1nQi1 · · ·nQi` belongs to

In−`−1+2`F = In+`−1F , and hence to InF .

Now suppose that k ≥ 2. Since r ≥ 2, we have deg(Ar) ≡ 0 mod 4 and we
can apply [3, 6.3(1)]. Hence, the similarity class of qA contains a form which
is Witt-equivalent to q⊗kAr . Since the result holds for Ar by the k = 1 case, we
are done.
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corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220.

Documenta Mathematica 6 (2001) 99–120
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In his recent book [4], Neeman introduces a class of triangulated categories
which he calls well generated. Although Neeman’s definition is not easily stated,
it becomes quite clear that for triangulated categories ‘well generated’ is the
appropriate generalization of ‘compactly generated’ [3]. The well generated
categories share many important properties with the compactly generated cat-
egories. In addition, the class of well generated categories is closed under
various natural constructions, for instance, passing to appropriate localizing
subcategories and localizations. Our aim in this note is to provide an equiva-
lent definition for well generated categories which seems to be more natural.

Theorem A. Let T be a triangulated category with arbitrary coproducts. Then
T is well generated in the sense of [4] if and only if there exists a set S0 of
objects satisfying:

(G1) an object X ∈ T is zero provided that (S,X) = 0 for all S ∈ S0;
(G2) for every set of maps Xi → Yi in T the induced map (S,

∐
iXi) →

(S,
∐
i Yi) is surjective for all S ∈ S0 provided that (S,Xi) → (S, Yi)

is surjective for all i and S ∈ S0;
(G3) the objects in S0 are α-small for some cardinal α.

Here, (X,Y ) denotes the maps X → Y . In addition, we recall that an object S
is α-small if every map S → ∐

i∈I Xi factors through
∐
i∈J Xi for some J ⊆ I

with card J < α. Conditions (G1) and (G3) are fairly natural to consider; (G2)
is taken from [2] where it is shown that Brown’s Representability Theorem holds
for a triangulated category T whenever there is a set S0 of objects satisfying
(G1) – (G2).
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Neeman’s definition and our characterization of well generated triangulated
categories are based on the concept of compactness. Let us explain this. We fix
a triangulated category T with arbitrary coproducts and a cardinal α. Clearly,
there exists a unique maximal class S of α-small objects in T such that the
following holds:

(G4) every map S → ∐
iXi from S ∈ S into a coproduct in T factors through

a map
∐
iφi :

∐
i Si →

∐
iXi with Si ∈ S for all i.

Simplifying Neeman’s terminology, we call the objects in S α-compact and write
T α for the full subcategory of α-compact objects. We have now the following
more explicit description of such compact objects.

Theorem B. Let T be a well generated triangulated category and let S0 be a
set of objects satisfying (G1) – (G2). Then there exists for every cardinal α a
cardinal β ≥ α such that X ∈ T is β-compact if and only if card(S,X) < β for
all S ∈ S0.

The characterization of well generated triangulated categories uses a result
which relates condition (G2) and (G4) to another condition. To state this, let
C be a small additive category and fix a regular cardinal α, that is, α is not the
sum of fewer than α cardinals, all smaller than α. An α-product is a product
of less than α factors, and we suppose that α-products exist in C. We denote
by Prodα(C,Ab) the category of functors C → Ab into the category of abelian
groups which preserve α-products; the morphisms between two functors are
the natural transformations.

Theorem C. Let T be a triangulated category with arbitrary coproducts and
α be a regular cardinal. Let S0 be a set of objects in T and denote by S the full
subcategory of α-coproducts of objects in S0. Then the following are equivalent:

(1) (G2) holds for S0 and every object in S0 is α-small.
(2) (G4) holds for S and every object in S is α-small.
(3) The functor T → Prodα(Sop,Ab), X 7→ (−, X)|S , preserves arbitrary

coproducts.

Proofs

Let us start with some preparations. Throughout we fix a triangulated category
T with arbitrary coproducts. Let C be an additive category C. A functor
F : Cop → Ab into the category of abelian groups is coherent if there exists an
exact sequence

(−, X) −→ (−, Y ) −→ F −→ 0.

The natural transformations between two coherent functors form a set, and the
coherent functors Cop → Ab form an additive category with cokernels which

we denote by Ĉ. A basic tool is the Yoneda functor

C −→ Ĉ, X 7→ HX = (−, X).

Note that Ĉ is a cocomplete category if C has arbitrary coproducts; in this case
the Yoneda functor preserves all coproducts. Recall from [1] that an object
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X in a cocomplete category is α-presentable if the functor (X,−) preserves
α-directed colimits.

Lemma 1. Let C be an additive category with arbitrary coproducts. Then an

object X ∈ C is α-small if and only if (−, X) is α-presentable in Ĉ.

Proof. Straightforward.

Suppose that C has kernels and α-products. Then we denote by Lexα(C,Ab)
the category of left exact functors C → Ab which preserve α-products. Given
a class S of objects in T , we denote by AddS the closure of S in T under all
coproducts and direct factors.

Lemma 2. Let S be a small additive subcategory of T and let α be a regular
cardinal. Suppose that every X ∈ S is α-small and that S is closed under
α-coproducts in T . Then the assignment F 7→ F |S induces an equivalence

f : ÂddS → Prodα(Sop,Ab).

Proof. First observe that HX is α-presentable in ÂddS for every X ∈ S
by Lemma 1. The inclusion i : S → AddS induces a right exact functor

i∗ : Ŝ → ÂddS which sends HX to HiX . This functor identifies Ŝ with the
full subcategory of all α-colimits of objects in {HX | X ∈ S}. It follows from

Satz 7.8 in [1] that i∗ induces a fully faithful functor j : Lexα(Ŝop,Ab)→ ÂddS
which sends a representable functor (−, X) to i∗X and identifies Lexα(Ŝop,Ab)
with the full subcategory of all colimits of objects in {HX | X ∈ S}. Thus j

is an equivalence. Now consider the Yoneda functor h : S → Ŝ. It is easily
checked that the restriction functor

h∗ : Lexα(Ŝop,Ab) −→ Prodα(Sop,Ab), F 7→ F ◦h,

is an equivalence. We have f ◦ j ∼= h∗ and conclude that f is an equivalence.

Lemma 3. Let S0 be a set of objects in T and let S = AddS0. Then the functor

T −→ Ŝ, X 7→ (−, X)|S ,
preserves coproducts if and only if (G2) holds for S0.

Proof. See Lemma 3 in [2].

Lemma 4. Let S be a set of α-small objects in T which is closed under α-
coproducts. Then (G2) and (G4) are equivalent for S.

Proof. It is clear that (G4) implies (G2). To prove the converse, let S → ∐
iXi

be a map in T with S ∈ S. Choose for every i a map ψi :
∐
j Sij → Xi

with Sij ∈ S for all j such that every map X → Xi with X ∈ S factors
through ψi. Then (G2) implies that the map S → ∐

iXi factors through
∐
iψi :

∐
i

∐
j Sij →

∐
iXi. Using the fact that S is α-small and that S has α-

coproducts, we can replace for each i the coproduct
∐
j Sij by some Si ∈ S.
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Proof of Theorem C. The equivalence of (1) and (2) is Lemma 4 and it remains
to show that (1) and (3) are equivalent. We fix a set of objects S0 in T and
a regular cardinal α. The full subcategory of α-coproducts of objects in S0 is
denoted by S. We can write

f : T −→ Prodα(Sop,Ab), X 7→ (−, X)|S ,
as composite

f : T g−→ ÂddS0 = ÂddS h−→ Prodα(Sop,Ab)

where gX = (−, X)|AddS0
and hF = F |S . Now suppose that every object in S0

is α-small and that (G2) holds. Then it follows from Lemma 3 that g preserves
coproducts and Lemma 2 implies that h is an equivalence. We conclude that
f preserves coproducts.
Conversely, suppose that f preserves coproducts. It follows that the right exact

functor f∗ : T̂ → Prodα(Sop,Ab) which sends HX to fX preserves colomits.

Now identify Prodα(Sop,Ab) with Lexα(Ŝop,Ab) as in the proof of Lemma 2.
Using Satz 5.5 in [1], it is not hard to see that f ∗ has a left adjoint which sends
(−, X) in Prodα(Sop,Ab) to HX . A left adjoint of a functor which preserves
α-directed colimits, sends α-presentable objects to α-presentable objects. But
the representable functors are α-presentable in Prodα(Sop,Ab). We conclude
from Lemma 1 that every X ∈ S is α-small. The first part of the proof shows
that (G2) holds as well.

Remark. The proof of Theorem C does not use the triangulated structure of
T . One needs that T is an additive category with arbitrary coproducts and
that weak kernels exist in T .

Recall that a full triangulated subcategory S of T is localizing if S is closed
under arbitrary coproducts. Given a regular cardinal α, we call S α-localizing
if S is closed under α-coproducts and direct factors. For example, the full
subcategory Tα of α-small objects in T is α-localizing. The full subcategory
T α of α-compact objects is α-localizing as well.

Lemma 5. Let S0 be a set of α-small objects satisfying (G1) – (G2) and de-
note by S the smallest α-localizing subcategory containing S0. Then S = T α.
Moreover:

(1) The objects in S form, up to isomorphism, a set of α-small objects satis-
fying (G2).

(2) Every set of α-small objects satisfying (G2) is contained in S.

Proof. First we prove (1) and (2); the proof for S = T α is given at the end.
(1) Using the equivalent condition (G4) from Lemma 4, it is straightforward to
check that (G2) is preserved if we pass to the closure with respect to forming
triangles and α-coproducts. The closure S can be constructed explicitly, and
this shows that the isomorphism classes of objects form a set.
(2) Let S1 be a set of α-small objects satisfying (G2). We denote by S ′ the
smallest α-localizing subcategory containing S0 ∪ S1 and claim that S ′ = S.
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Consider the full subcategory T ′ of objects Y ∈ T such that every map X → Y
with X ∈ S ′ factors through some object in S. Using the fact that (G4)
holds for S ′ by Lemma 4, it is straightforward to check that T ′ is a localizing
subcategory containing S0. The Corollary of Theorem A in [2] shows that T
has no proper localizing subcategory containing S0. Thus T ′ = T and idX
factors through some object in S for every X ∈ S ′. We conclude that S ′ = S.
The proof for the equality S = T α is the same as in (2) if we replace S ′ by
T α.

Lemma 6. Suppose that the isomorphism classes of objects in T α form a set.
Then an object X ∈ T belongs to T α if and only if X is α-compact in the sense
of [4].

Proof. It is automatic from the Definition 1.9 of an α-compact object in [4]
that X ∈ T belongs to T α if X is α-compact in the sense of [4]. Theorem 1.8
in [4] shows that the objects in T which are α-compact in the sense of [4],
form the unique maximal subcategory S ⊆ Tα such that the canonical functor
T → Prodα(Sop,Ab) preserves coproducts. On the other hand, Theorem C
shows that T α has precisely this property.

We are now in a position to prove our main result. To this end recall from
Definition 1.15 in [4] that T is well generated if there is a regular cardinal α
such that condition (2) in the following theorem holds.

Theorem A. Let T be a triangulated category with arbitrary coproducts. Then
the following are equivalent for a regular cardinal α:

(1) There exists a set of α-small objects satisfying (G1) – (G2).
(2) The isomorphism classes of objects in T α form a set, and T is the smallest

localizing subcategory containing T α.

Proof. (1) ⇒ (2) Let S0 be a set of α-small objects satisfying (G1) – (G2).
It follows from Lemma 5 that the isomorphism classes in T α form a set. The
Corollary of Theorem A in [2] shows that T has no proper localizing subcate-
gory containing S0.
(2) ⇒ (1) Choose a representative set S0 of objects in T α. It follows from
Lemma 4 that (G2) holds for S0. To check (G1) let Y be the class of objects
Y ∈ T satisfying (S, Y ) = 0 for all S ∈ S0. Then the objects X ∈ T satisfying
(X,Y ) = 0 for all Y ∈ Y form a localizing subcategory X containing S0. Thus
X = T and Y = {0}. We conclude that S0 is a set of α-small objects satisfying
(G1) – (G2).

The following immediate consequence of Theorem A is due to Neeman [4].

Corollary. Let T be a well generated triangulated category. Then T =⋃
α T α where α runs through all cardinals.

We end this note with a proof of Theorem B.
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Proof of Theorem B. Let S0 be a set of objects satisfying (G1) – (G2) and fix
a cardinal α. We suppose that T is well generated. Therefore the objects in S0

are α′-small for some cardinal α′. It follows from Theorem C in [2] that there
is a cardinal β ≥ α + α′ such that an object X ∈ T belongs to the smallest
β-localizing subcategory containing S0 if and only if card(S,X) < β for all
S ∈ S0. The assertion now follows from Lemma 5.

Remark. There is an explicit description for the cardinal β in Theorem B; see
Theorem C in [2].
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0 Introduction.

Given a locally compact group G and a C∗-algebra B equipped with a point-
wise continuous action of G by ∗-automorphisms, Baum, Connes and Higson
constructed in [2] the topological K-theory Ktop

∗ (G;B) of G with coefficients in
B and an assembly map

µG,B : Ktop
∗ (G;B)→ K∗(B or G).
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The Baum-Connes conjecture (with coefficients, cf. [2, §9]) asserts that µG,B
is an isomorphism for all G and for every G-C∗-algebra B. For convenience,
we will use the following

Notation. We say that G satisfies BCC (Baum-Connes conjecture with co-
efficients) if µG,B is an isomorphism for every G-algebra B. Moreover, we say
that G satisfies BCI (resp. BCS) if the assembly map is injective (resp. sur-
jective) for all B. In case we want to specify the coefficient algebra, we simply
say that G satisfies BCC (resp. BCI, BCS) for B.

Although BCC has been shown to be true for many groups (for a general
overview of recent results we recommend the surveys [24, 28]), it seems now
to be clear that there exist examples of groups for which the assembly map
is not always surjective (there are counterexamples due to Higson, Lafforgue,
Osawa, Skandalis and Yu, which base on a recent announcement by Gromov
on the existence of finitely presented groups with certain graph-theoretic prop-
erties). However, knowing that the conjecture fails in some cases makes it even
more important to be able to describe the class of groups which do satisfy the
conjecture. A natural problem in this direction is to investigate how the con-
jecture behaves under certain standard operations on the group, like passing
to (closed) subgroups or taking group extensions.

Partial answers to the extension problem were given in [5], for the case of
semi-direct products by a totally disconnected or almost connected group. The
argument in [5] is based on the construction of a partial assembly map associ-
ated to a semi-direct product, which generalizes and factors the assembly map
of the Baum-Connes conjecture.

In [6] we extended the definition of this partial assembly map in order to
decompose the assembly map for arbitrary (non-split) group extension: If N
is any closed normal subgroup of G and B is a G-algebra, we constructed a
natural homomorphism (the partial assembly map)

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N),

which factorizes the assembly map for G in the sense that

µG,B = µG/N,BorN ◦ µG,NN,B ,

where µG/N,BorN denotes the assembly map for G/N with (twisted) coefficient
algebra B or N . For this construction, we had to use Green’s notion of twisted
actions which allows to decomposeBorG as an iterated twisted crossed product
BorNorG/N . To make sense of topological K-theory with twisted coefficients,
we had to adapt Kasparov’s equivariant KK-theory to cover twisted group
actions on C∗-algebras. The main results on extensions obtained in [6] are the
following: Assume that G has a γ-element (see Definition 1.7 below), and that
G/N is either almost connected or totally disconnected. Then G satisfies BCC
if G/N and any compact extensions of N in G satisfy BCC.
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In this article we want to generalize these results in two directions: Remove the
assumption on the topology of the quotient group and lift the requirement that
the group has a γ-element. We reached the latter objective in full generality in
the case when G/N is totally disconnected (see Theorem 3.3 below), inspired
from some ideas exposed in [22], where Oyono-Oyono obtains quite similar
results for discrete G. We were also able to reach the other objectives to a very
far extend (see the discussion below).
For the investigation of the subgroup problem we study a natural induction
homomorphism

IndGH : Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B),

which provides a link between the assembly map for a subgroup H of a group
G, with coefficient algebra B and the assembly map for G with coefficients in
the induced G-algebra IndGH B (see Proposition 2.3 below). For discrete G, this
map has been studied by Guentner, Higson and Trout in [11] (in the frame of
E-theory), where they showed that it is an isomorphism if H is finite. Later,
in [21], H. Oyono-Oyono was able to prove the bijectivity of the induction map
for arbitrary subgroups of discrete groups. Here we prove that

• The induction homomorphism IndGH : Ktop
∗ (H;B) → Ktop

∗ (G; IndGH B) is
always bijective (Theorem 2.2).

As a direct consequence we get

• If G satisfies BCC (resp. BCI, BCS), the same is true for every closed
subgroup H of G (Theorem 2.5).

Combining this with our previous results on group extensions we are able to
make further progress in this direction. In fact we show

• Suppose that N is a closed normal subgroup of G such that N satisfies
the Haagerup property (in particular, if N is amenable). Then, if G/N
satisfies BCC (resp. BCS), the same is true for G (Corollary 3.14; but
see Theorem 3.12 for a more general statement).

• A direct product G1 ×G2 satisfies BCC if and only if G1 and G2 satisfy
BCC (Theorem 3.17).

Another application of the bijectivity of the induction homomorphism is given
in [7], where it is shown that the generalized Green-Julg theorem (i.e., BCC
for proper G-algebras) holds for all (second countable) locally compact groups
G. Further, in §4 below, we apply the induction isomorphism in a specific
example, which hints into the direction of a more general “Mackey-Machine”
for the investigation of the Baum-Connes conjecture.
The outline of the paper is as follows: After a short preliminary section (§1),
we give a detailed discussion on the induction homomorphism in §2, where we
prove all relevant results, except of the bijectivity of this map. In §3 we briefly
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discuss the partial assembly map and prove most of our results on group exten-
sions, except of our main technical result on extensions by totally disconnected
groups. In §4 we present an example, which illustrates how our results can
be used towards a Mackey-Machine approach to the Baum-Connes conjecture.
Using some general ideas, we show that for K = R or C the Baum-Connes
conjecture with trivial coefficients is true for the groups KnoSLn(K), a result
which has been known, so far, only for the cases n ≤ 2.
The most difficult (and technical) results of this paper are the proofs of The-
orem 2.2 and Theorem 3.3 on the bijectivity of the induction homomorphism
and the bijectivity of the partial assembly map for totally disconnected quo-
tients, respectively. For this reason we decided to devote two extra sections (§5
and §6) to the proofs of these results. There are some substantial similarities
in the proofs of these theorems: Both depend deeply on a certain realization of
the universal example E(G) for proper actions of G (which is an important in-
gredient in the computation of topological K-theory), using the fact that E(G)
can be realized as a simplicial complex if G is totally disconnected. Since the
proof of Theorem 3.3 seemed a bit easier (and perhaps more illustrative), we
decided to do this result first (§5). Note that the approach via our special
realization of E(G) seems to have a bunch of other important consequences.
So, as a further example for the usefulness of this approach, we show in our
final section, §7, that the topological K-theory of a group G is continuous in
the coefficient algebras, i.e.,

Ktop
∗ (G; lim

i
Ai) = lim

i
Ktop
∗ (G;Ai)

for any inductive limit limiAi of G-algebras Ai. This result plays an important
role in the proof of the generalized Green-Julg theorem given in [7].
In order to avoid unnecessary repetitions, we have chosen to make the following
general conventions: All C∗-algebras (except of multiplier algebras)
are supposed to be separable and by group we mean a locally
compact second countable Hausdorff topological group.

1 Some preliminaries

Let G be a group. By a proper G-space we shall always understand a lo-
cally compact space X endowed with an action of G such that the map
G × X → X × X, (g, x) 7→ (gx, x) is continuous and proper (inverse im-
ages of compact sets are compact). A universal example for the proper actions
of G, E(G), is a proper G-space such that for any other proper G-space Z, there
is a continuous and G-equivariant map F : Z → E(G) which is unique up to G-
equivariant homotopy. Note that E(G) is uniquely defined up to G-homotopy.
The existence of universal proper spaces is shown in [17].
Now let N denote a closed normal subgroup of G. A twisted action of (G,N)
on a C∗-algebra D (in the sense of Green, [12]) consists of a strongly continuous
action by ∗-automorphisms α : G→ Aut(D) together with a strictly continuous
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homomorphism τ : N → UM(D) of N into the group of unitaries of the
multiplier algebra M(D) of D, such that

αn(d) = τndτ
∗
n and αs(τn) = τsns−1 , for all d ∈ D, s ∈ G,n ∈ N.

If equipped with such a twisted action, D will be called a (G,N)-algebra.
Note that a twisted action of (G,N) should be viewed as a generalization of
a G/N -action. In particular, every G/N -algebra can be regarded as a (G,N)-
algebra by inflating a given action β of G/N to the twisted action (Inf β, 1N ) of
(G,N), and the corresponding twisted crossed products by (G,N) coincide with
the ordinary crossed products by G/N . The main advantage of working with
twisted actions is, that they allow to decompose crossed products: If B is a G-
algebra, then BorN becomes a (G,N)-algebra in a canonical way, so that the
iterated (twisted) crossed product BorNor(G,N) is canonically isomorphic to
BorG. We refer to [6] for more details on these facts and for the construction
of the bifunctor KKG,N

∗ (D1, D2) for pairs (D1, D2) of (G,N)-algebras, which

extends Kasparov’s equivariant KKG/N -theory for G/N -algebras.

Definition 1.1. Let D be a (G,N)-algebra. The topological K-theory of G/N
with coefficient algebra D is

Ktop
∗ (G/N ;D) = lim

Y
KKG,N
∗

(
C0(Y ), D

)
,

where the limit is taken over the directed system of all G/N -compact subspaces
Y (i.e., (G/N)\Y is compact) of a given universal example E(G/N) for the
proper actions of G/N .

Remark 1.2. In this work we are using a notion of proper G-spaces (resp.
G/N -spaces) which differs from the notion used in [2]. This leads to different
notions of universal proper G-spaces (resp. G/N -spaces). However, it is shown
in [7] that both notions of properness lead to equivalent definitions of the
topological K-theory of G (resp. G/N).

If D is a G/N -algebra (viewed as a (G,N)-algebra as explained above), then
the above definition of the topological K-theory of G/N with coefficient alge-
bra D coincides with the usual definition of the topological K-theory of G/N
with untwisted coefficient algebra D (this follows from [6, Corollary 3.14]). In
particular, if N = {e} in the above definition, we recover the usual topological
K-theory of G with coefficients in the G-algebra D.

For any proper G-space Z, Cc(Z) carries a canonical C0(G\Z) − Cc(G × Z)
bimodule structure, where we regard Cc(G × Z) as a dense subalgebra of
C0(Z)oG. This bimodule structure extends to give a C0(G\Z)− C0(Z)oG
Hilbert bimodule ΛZ,G. For reference, the module operations are given on the
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dense subspaces by

(ϕ · ξ)(z) = ϕ(Gz)ξ(z)

〈ξ, η〉(s, z) = ∆G(s)−1/2ξ(z)η(s−1z)

(ξ · f)(z) =

∫

G

ξ(s−1z)f(s−1, s−1z)∆G(s)−1/2ds,

(1.1)

with ϕ ∈ C0(G\Z), ξ, η ∈ Cc(Z), and f ∈ Cc(G× Z). Together with the zero
operator, we obtain an element (also denoted ΛZ,G) of the Kasparov group
KK0

(
C0(G\Z), C0(Z) o G

)
(see [6, §5] for more details). Moreover, if Z is

G-compact, i.e., G\Z is compact, then we can pair ΛZ,G with the unital homo-
morphism C→ C(G\Z) to obtain a canonical element λZ,G ∈ K0

(
C0(Z)oG

)
.

We now recall the definition of the twisted Baum-Connes assembly map as
introduced in [6]:

Definition 1.3. Let D be a (G,N)-algebra. The twisted assembly map for
G/N with coefficients in D, µG/N,D : Ktop

∗ (G/N ;D) → K∗
(
D or (G,N)

)
, is

defined inductively by the maps

µG/N,D[Y ] : KKG,N
∗

(
C0(Y ), D

)
→ K∗

(
D or (G,N)

)
,

where Y runs through the G/N -compact subspaces of a given realization of
E(G/N) and µG/N,D[Y ] is defined via the composition of maps

KKG,N
∗

(
C0(Y ), D

)

jGN,r �� ������������������

��������� K∗
(
D or (G,N)

)

KK∗
(
C0(Y )o (G,N), D or (G,N)

)
λY,G/N⊗·

� �

Here jGN,r denotes the descent in twisted equivariant KK-theory as described
in [6, §4].

Remark 1.4. For a G/N -algebra D, viewed as a (G,N)-algebra via inflation,
the assembly map of the above definition coincides with the usual Baum-Connes
assembly map for G/N with coefficient algebra D. This follows directly from
[6, Corollary 3.14]. Of course, if N = {e}, we get the usual assembly map for
G.
It is important to note that by a result of [10], any twisted action of (G,N)
is Morita equivalent, and hence KKG,N -equivalent, to an untwisted action of
G/N , so that bijectivity, injectivity or surjectivity of the assembly map of
Definition 1.3 is equivalent to the corresponding properties of the usual Baum-
Connes assembly map for G/N with the corresponding G/N -algebra as coeffi-
cient (see [6, 5.6]).

The introduction of twisted coefficients enabled us in [6] to define a partial
assembly map for (G,N), which will also play a central role in this paper. We
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will recall the precise definition of this partial assembly map in §3 below. For
its construction we shall need to work with a kind of fundamental class

ΛG,NX,N ∈ KKG,N
0

(
C0(N\X), C0(X)oN

)
, (1.2)

associated to a proper G-space X, which will play a similar role in the definition
of the partial assembly map as the class λY,G/N in Definition 1.3. We briefly
recall its construction: If X is a proper G-space, the given G-action restricts
to a proper action of N on X. Thus we can form the C0(N\X)− C0(X)oN
bimodule ΛX,N as described above. As was shown in [6, §5], there exists a
canonical (twisted) action of (G,N) on ΛX,N , which (again together with the

zero operator) provides the element ΛG,NX,N of (1.2).
Recall that for two locally compact spaces X and Y , any ∗-homomorphism
ψ : C0(X)→ C0(Y ) is a composition

C0(X)
ψ1−−−−→ C0(Z)

ψ2−−−−→ C0(Y ),

where Z is an open subset of Y , ψ2 is the canonical inclusion and ψ1 is induced
by a continuous proper map, say ϕ : Z → X, via ψ1(f)(z) = f

(
ϕ(z)

)
, f ∈

C0(X). In fact, Z is the open subset of Y corresponding to the ideal ψ
(
C0(X)

)
·

C0(Y ) ⊆ C0(Y ) (note that by an easy application of Cohen’s factorization
theorem, ψ

(
C0(X)

)
· C0(Y ) = {ψ(f) · g | f ∈ C0(X), g ∈ C0(Y )} is a closed

ideal of C0(Y )), and ϕ is the proper map induced from the non-degenerate
∗-homomorphism C0(X)→ ψ

(
C0(X)

)
· C0(Y ) = C0(Z); f 7→ ψ(f).

If X and Y are G-spaces and ψ is G-equivariant, then all maps in the above
decomposition (and also the map ϕ : Z → X) are G-equivariant. If, moreover,
G acts properly on X and Y , and N is a closed normal subgroup of G, then
there exist canonical maps

C0(N\X)
ψ1,N−−−−→ C0(N\Z)

ψ2,N−−−−→ C0(N\Y ),

where the first homomorphism is induced by the proper map

ϕN : N\Z → N\X, ϕN (Nz) = Nϕ(z),

and the second map is induced via the inclusion of the open set N\Z into N\Y .
Note that the composition ψN := ψ2,N ◦ ψ1,N satisfies the equation

ψ(g · f) = ψN (g) · ψ(f), g ∈ C0(N\X), f ∈ C0(X).

The following lemma will be used frequently throughout this work.

Lemma 1.5 (cf. [6, Lemma 5.13]). Let ψ : C0(X) → C0(Y ) and ψN :
C0(N\X)→ C0(N\Y ) be as above. Then

[ΛG,NX,N ]⊗ jN{e},r([ψ]) = [ψN ]⊗ [ΛG,NY,N ] in KKG,N
0

(
C0(N\X), C0(Y )oN

)
,

where jN{e},r : KKG
(
C0(X), C0(Y )

)
→ KKG,N

(
C0(X)oN,C0(Y )oN

)
denotes

the partial descent of [6, §4]. (Note that by the properness of the N -actions,
the maximal crossed products coincide with the reduced crossed products.)
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Proof. By the decomposition argument presented above, it is sufficient to prove
each of the following special cases:

(1) ψ is induced by a continuous and proper G-map ϕ : Y → X (as explained
above), or

(2) X is an open subset of Y and ψ : C0(X)→ C0(Y ) is the inclusion.

Since all operators in the Kasparov triples defining the KK-elements of
the lemma are the zero operators, it is enough to show that the two
C0(N\X) − C0(Y ) o N Hilbert bimodules C0(N\X) ⊗C0(N\Y ) ΛG,NY,N and

ΛG,NX,N ⊗C0(X)oN
(
C0(Y ) o N

)
are equivariantly isomorphic. Using the for-

mulas for the module operations as given in Equation (1.1) above, we see that

C0(N\X)⊗C0(N\Y ) ΛG,NY,N is just the closure of ψN
(
Cc(N\X)

)
·Cc(Y ) ⊆ ΛG,NY,N

(pointwise multiplication). Now consider the map

Φ : Cc(X)¯ Cc(N × Y )→ Cc(Y )

defined by

Φ(ξ ⊗ f)(y) =

∫

N

ψ(ξ)(ny)f(n, ny)∆N (n)−1/2dn.

A lengthy but straightforward computation shows that Φ is an isometry with
respect to the right inner products on ΛG,NX,N ⊗C0(X)oN

(
C0(Y )oN

)
and ΛG,NY,N ,

respectively, and therefore extends to an isometry

Φ : ΛG,NX,N ⊗C0(X)oN
(
C0(Y )oN

)
→ ΛG,NY,N .

Factoring Cc(X) as Cc(N\X) · Cc(X), it follows directly from the formula for

Φ that it has its image in ψN
(
C0(N\X)

)
· ΛG,NY,N . Another short computation

shows that Φ respects the module actions and that it is equivariant for the
given (G,N)-actions on the modules and algebras (see [6, §5] for the precise
formulas of those actions).
Thus the only thing which remains to be checked is the surjectivity of Φ, at
least if ψ satisfies either (1) or (2). This is trivial in the case of (2) and we
restrict ourselves to (1).
Consider any functions h ∈ Cc(N\X) and η ∈ Cc(Y ). We want to construct
ξ ∈ Cc(X) and f ∈ Cc(N × Y ) such that Φ(ξ ⊗ f) = ψN (h) · η. For this we
choose a function c : X → R such that c2 is a cut-off function for the action of
N on X (i.e., the restriction of c2 to any N -compact subset of X has compact
support and

∫
N
c2(nx)dn = 1 for all x ∈ X). We define ξ ∈ Cc(X) by ξ(x) =

h(Nx)c(x), and we define f ∈ Cc(N×Y ) by f(n, ny) = ∆N (n)1/2c
(
nϕ(y)

)
η(y).

Then

Φ(ξ ⊗ f)(y) =

∫

N

ξ
(
nϕ(y)

)
f(n, ny)∆N (y)−1/2dn

=

∫

N

h
(
Nϕ(y)

)
c2
(
nϕ(y)

)
η(y) dn

=
(
ψN (h) · η

)
(y).
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This finishes the proof.

In what follows, we will frequently have to work with the notion of a γ-element,
which goes back to the pioneering work of Kasparov [15, 14], and which turned
out to be the most important tool for the investigation of the Baum-Connes
conjecture. We first have to introduce the notion of proper G-algebras:

Definition 1.6. A G-C∗-algebra A is called a proper G-algebra, if there exists
a proper G-space X and a non-degenerate G-equivariant homomorphism Φ :
C0(X)→ ZM(A), the center of the multiplier algebra of A.

We can now recall the abstract definition of a γ-element:

Definition 1.7 (cf. [25, §5], [14, §3 - 5]). Let G be a group. An element
γG ∈ KKG

0 (C,C) is called a γ-element for G if

(1) there exists a proper G-algebra A and (Dirac and dual-Dirac) elements
D ∈ KKG

0 (A,C), η ∈ KKG
0 (C,A) such that γG = η ⊗A D;

(2) for any proper G-space Z we have p∗(γG) = 1Z ∈
RKKG

0

(
Z;C0(Z), C0(Z)

)
, where p maps Z to the one-point set {pt}

(see [14, Proposition 2.20]).

Remark 1.8. If G has a γ-element, then it follows from the work of Kasparov
and Tu (see [14, 25]) that G satisfies BCI (i.e., the assembly map µG,B is

injective for any coefficient algebra B). Moreover, if γG = 1 ∈ KKG
0 (C,C),

then G satisfies BCC (we refer to [27] for a concise proof of this result). By a
result of Higson and Kasparov ([13], but see also [26]), every group G which
satisfies the Haagerup property (in particular every amenable group G) has
1 ∈ KKG

0 (C,C) as a γ-element, and hence all such groups satisfy BCC for
every coefficient algebra B. Moreover, by the work of Kasparov, [15, 14], every
group which can be embedded as a closed subgroup of an almost connected
group (i.e., a group with compact component group G/G0) has a γ-element.
We refer to [6, §6] for a slightly more detailed account on γ-elements.

2 Induction and the Baum-Connes conjecture for subgroups

Let H be a closed subgroup of the group G and let B be an H-algebra. In this
section we want to discuss the induction homomorphism

IndGH : Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B)

between the topological K-theory of H with coefficients in B and the topological
K-theory of G with coefficients in the induced algebra IndGH B. We will then
use this homomorphism to show that BCC passes to closed subgroups.
Recall that the induced algebra IndGH B is defined as

{
f ∈ Cb(G,B)

∣∣∣ h(f(s)) = f(sh−1) for all s ∈ G, h ∈ H
and sH 7→ ‖f(s)‖ ∈ C0(G/H)

}
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together with the pointwise operations and the supremum norm. If B = C0(X)
is abelian, then IndGH C0(X) is canonically isomorphic to C0(G ×H X), where
G×HX = (G×X)/H (with respect to the diagonal action h(g, x) = (gh−1, hx))
denotes the classical induced G-space.
If A and B are two H-algebras, then Kasparov constructed a natural induction
homomorphism

iGH : KKH
∗ (A,B)→ KKG

∗ (IndGH A, IndGH B)

(see [15, §5] and [14, §3]). Let us briefly recall its construction: Suppose that
x ∈ KKH

∗ (A,B) is represented by a Kasparov triple (E,Φ, T ). Similar to the
construction of the induced algebras we can form the induced IndGH B-Hilbert
module IndGH E as the set

{
ξ ∈ Cb(G,E)

∣∣∣ h(ξ(s)) = ξ(sh−1) for all s ∈ G, h ∈ H
and sH 7→ ‖ξ(s)‖ ∈ C0(G/H)

}
,

equipped with the pointwise actions and inner products. Pointwise action
on the left provides an obvious induced representation IndGH Φ : IndGH A →
L(IndGH E). Using a cut-off function c : G → [0,∞[ for the right translation
action of H on G, Kasparov constructs an operator T̃ ∈ L(IndGH E) by the
formula:

T̃ ξ(g) =

∫

H

c(gh)h(T (ξ(gh)))dh, ξ ∈ IndGK E (2.1)

(see [15, Lemma 2 of §5]), to obtain the Kasparov triple (IndGH E, IndGH Φ, T̃ )
which represents the element iGH(x) ∈ KKG

∗ (IndGH A, IndGH B).
Now suppose that X is an H-compact proper H-space. Then G ×H X is a
G-compact proper G-space and, therefore, there exists a continuous G-map
F : G×H X → E(G) with G-compact image Y ⊆ E(G). The composition

KKH
∗
(
C0(X), B

)

iGH �� ����������������
������ KKG

∗ (C0(Y ), IndGH B)

KKG
∗
(

IndGH C0(X), IndGH B
)

F∗

� �

provides a well defined homomorphism

IndGH [X] : KKH
∗ (C0(X), B)→ Ktop

∗ (G; IndGH B), (2.2)

and it is straightforward to check (using a special case of Lemma 1.5) that the
maps IndGH [X] are compatible with taking inclusions i : X1 → X2 (i.e., that
IndGH [X2] ◦ i∗ = IndGH [X1]). Thus, if we let X run through the H-compact
subsets of E(H) we obtain a well defined homomorphism

IndGH : Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B).
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Definition 2.1. The homomorphism IndGH : Ktop
∗ (H;B) → Ktop

∗ (G; IndGH B)
is called the induction homomorphism between Ktop

∗ (H;B) and
Ktop
∗ (G; IndGH B).

The following theorem is one of the main results of this paper. Since the proof
is rather complex and technical, we postpone it to §6 below. For discrete G and
finite subgroups H, a similar result (using E-theory) was obtained by Guentner,
Higson and Trout in [11], and they asked the question whether the result could
be true in more generality. In [21], Oyono-Oyono proves a similar result for
arbitrary subgroups of discrete groups.

Theorem 2.2. Let H be a closed subgroup of G, and let B be an H-algebra.
Then the induction map IndGH : Ktop

∗ (H;B)→ Ktop
∗ (G; IndGH B) is an isomor-

phism.

The above theorem has many interesting consequences. It provides a connection
between the Baum-Connes conjectures for G and H, as we shall study in more
details below. It also allows to prove the fact that the Baum-Connes assembly
map

µG,A : Ktop
∗ (G;A)→ K∗(Aor G)

is an isomorphism whenever A is a proper G-algebra, as is worked out in more
detail in [7]. Note that this was an open question for quite some time, and was
only known for discrete groups by the work of Guentner, Higson and Trout in
[11]. Another use of this isomorphism theorem will be indicated in §4 below.

Proposition 2.3. Let H be a closed subgroup of the group G, and let B be an
H-algebra. Let x ∈ KK0

(
B or H, (IndGH B) or G

)
be defined by the canonical

Morita equivalence between (IndGH B)orG and BorH (e.g., see [12, Theorem
17]). Then the following diagram commutes:

Ktop
∗ (H;B)

µH,B−−−−→ K∗(B or H)

IndGH

y ∼=
y·⊗x

Ktop
∗ (G; IndGH B)

µ
G,IndG

H
B−−−−−−→ K∗

(
(IndGH B)or G

)
.

For the proof we need

Lemma 2.4. Let H be a closed subgroup of G. If E(G) is a universal example
for the proper actions of G, then, by restricting the action to H, it is also a
universal example for the proper actions of H.

Proof. Since E(G) is unique up to G-homotopy (which certainly implies H-
homotopy), it is sufficient to show that the result holds for one particular
realization of E(G). By [17], a realization can be constructed as follows: Choose
any proper G-space Z and let E(G) be the set of positive Radon-measures on
Z with total mass in the half open interval ] 1

2 , 1], equipped with the weak∗-
topology and the canonical G-action. Now since the action of G on Z restricts
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to a proper action of H on Z, the same set of Radon measures provides a
realization of E(H).

Proof of Proposition 2.3. By the definition of IndGH and Lemma 2.4, it is
enough to show that, for a given realization of E(G), the diagram

KKH
∗
(
C0(X), B

) [ΛX,H ]⊗jH{e},r(·)
−−−−−−−−−−→ K∗(B or H)

IndGH

y
y·⊗x

KKG
∗
(
C0(G×H X), IndGH B

) [ΛG×HX,G]⊗jG{e},r(·)
−−−−−−−−−−−−−→ K∗

(
(IndGH B)or G

)

F∗
y

y=

KKG
∗
(
C0(G ·X), IndGH B

) [ΛG·X,G]⊗jG{e},r(·)
−−−−−−−−−−−−→ K∗

(
(IndGH B)or G

)

(2.3)

commutes, where X is any H-compact subset X of E(G) (also serving as a
universal example for proper actions of H). An easy application of Lemma 1.5
implies that the bottom square commutes, so we may restrict our attention to
the upper square.
Let y denote the invertible element of KK0

(
C0(G×HX)oG,C0(X)oH

)
which

is implemented by the canonical Morita equivalence between C0(G×H X)oG
and C0(X)oH. Then it follows from [14, corollary on p. 176]) that the square

KKH
∗
(
C0(X), B

) jH{e},r−−−−→ KK∗
(
C0(X)oH,B or H

)

IndGH

y
yy⊗·⊗x

KKG
∗
(
C0(G×H X), IndGH B

) jG{e},r−−−−→ KK∗
(
C0(G×HX)oG, (IndGH B)or G

)

commutes. So the commutativity of (2.3) will follow if we can show that

KK∗
(
C0(X)oH,B or H

) y⊗·⊗x
��

[ΛX,H ]⊗·
��

KK∗
(
C0(G×H X)oG, (IndGH B)or G

)

[ΛG×HX,G]⊗·
��

KK∗
(
C0(H\X), B or H

)
·⊗x �� KK∗

(
C0(H\X), (IndGH B)or G

)

commutes. For this it is enough to prove that

[ΛG×HX,G]⊗ y = [ΛX,H ] in KK0

(
C0(H\X), C0(X)oH

)
, (2.4)

where we identify G\(G ×H X) with H\X via G[x, s] 7→ Hx. All KK-classes
appearing in this equation are given by a Hilbert bimodule together with the
zero operator: ΛG×HX,G (resp. ΛX,H) is the Hilbert module obtained by taking
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the completion of Cc(G×HX) (resp. Cc(X)) with respect to the inner product,
the right action of C0(G×H X)oG (resp. C0(X)oH) and the left action of
C0

(
G\(G×H X)

)
(resp. C0(H\X)) as given in (1.1). The underlying module

M for y is obtained by taking the completion of the Cc
(
G,C0(G ×H X)

)
−

Cc
(
H,C0(X)

)
bimodule Cc

(
G,C0(X)

)
with respect to the formulas:

(ϕ · η)(s)(x) =

∫

G

ϕ(t)(s, x)η(t−1)(x)dt

〈η1, η2〉(u)(x) =

∫

G

∆G(t)1/2∆H(t)−1/2η1(t)(x)η2(tu)(u−1x)dt

(η · f)(s)(x) = ∆G(s)1/2∆H(s)−1/2

∫

H

η(su)(u−1x)f(u−1)(u−1x)du,

where ϕ ∈ Cc
(
G,C0(G×HX)

)
, η1, η2 ∈ Cc

(
G,C0(X)

)
and f ∈ Cc

(
H,C0(X)

)
.

Consider the assignment Φ : Cc(G ×H X) ¯ Cc
(
G,C0(X)

)
→ Cc(X) defined

by

Φ(ξ ⊗ η)(x) =

∫

G

ξ(t−1, x)η(t−1)(x)∆G(t)−1/2dt,

ξ ∈ Cc(G×HX), η ∈ Cc
(
G,C0(X)

)
. One can check that this map extends to a

well defined morphism Φ : ΛG×HX,G⊗C0(G×HX)oGM → ΛX,H which respects
the corresponding left and right actions and which is isometric with respect
to the C0(X) o H-valued inner products. To see that it is also surjective let
c : G · X → [0,∞[ be a continuous function such that c2 is a cut-off function
for the proper G-space G ·X (cf. proof of Lemma 1.5). Set ξ(s, x) = c(sx). For
any ζ ∈ Cc(X), set η(s)(x) = c(sx)ζ(x)∆G(s)1/2. Then ζ = Φ(ξ ⊗ η) ∈ ΛX,H .
This proves (2.4).

As a direct consequence of Theorem 2.2 and Proposition 2.3 we get

Theorem 2.5. Let H be a closed subgroup of G and let B be an H-algebra.
Then the following statements are equivalent:

(i) H satisfies BCC (resp. BCI, resp. BCS) for B;

(ii) G satisfies BCC (resp. BCI, resp. BCS) for IndGH B.

In particular, if G satisfies BCC (resp. BCI, resp. BCS) for all coefficients,
the same is true for H.

We say that a group G satisfies the Baum-Connes conjecture with abelian
coefficients if the assembly map

µG,A : Ktop
∗ (G;A)→ K∗(Aor G)

is an isomorphism for every commutative C∗-algebra A. Since any commutative
H-algebra induces to a commutative G-algebra, we get the following direct
corollary of Theorem 2.5:

Corollary 2.6. Let H be a closed subgroup of G. If G satisfies the Baum-
Connes conjecture with abelian coefficients, then the same is true for H.
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3 The Baum-Connes conjecture for group extensions

In this section we want to present our new results on the stability of the Baum-
Connes conjecture for group extensions. For this we have to recall from [6] the
definition of the partial assembly map

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N),

where B or N is equipped with the decomposition twisted action of (G,N).
Let B be any G-algebra and let X be a G-compact proper G-space. Let

ΛG,NX,N ∈ KKG,N
0

(
C0(N\X), C0(X)oN

)

be the fundamental class associated to X as described in §1, (1.2). The com-
position of maps

KKG
∗
(
C0(X), B

)

jN{e},r �� ����������������

����� KKG,N
∗

(
C0(N\X), B or N

)

KKG,N
∗

(
C0(X)oN,B or N

)
ΛG,NX,N⊗·

� �

determines a map

ν[X] : KKG
∗
(
C0(X), B

)
→ KKG,N

∗
(
C0(N\X), B or N

)
. (3.1)

Now observe that if X is a proper G-space, then N\X is a proper G/N -space,
and therefore there exists a homotopically unique continuous G/N -equivariant
map F : N\X → E(G/N). In particular, there exists a homotopically unique
continuous G/N -map F : N\E(G)→ E(G/N).

Definition 3.1. Let F : N\E(G) → E(G/N) be as above. For each G-
compact subset X ⊆ E(G) let

µG,NN,B [X] = F ∗ ◦ ν[X] : KKG
∗
(
C0(X), B

)
→ KKG,N

∗
(
C0

(
F (N\X)

)
, B or N

)
.

Then it follows from Lemma 1.5 that the maps µG,NN,B [X] are compatible with
respect to taking inclusions, and, therefore, they determine a well defined ho-
momorphism

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N).

µG,NN,B is called the partial assembly map for (G,N) with coefficient algebra B.

The following result was one of the main outcomes of [6], and it is central
for the investigations in this section. Recall that if B is a G-algebra and N
is a closed normal subgroup of G, then B or G is canonically isomorphic to
B or N or (G,N).
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Proposition 3.2 (cf. [6, Proposition 5.15]). The diagram

Ktop
∗ (G;B)

µG,B−−−−→ K∗(B or G)

µG,NN,B

y
x∼=

Ktop
∗ (G/N ;B or N)

µG/N,BorN−−−−−−−→ K∗
(
(B or N)or (G,N)

)

commutes. Thus, if the partial assembly map

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;B or N)

is bijective, then G satisfies BCC (resp. BCI, resp. BCS) for B if and only if
G/N satisfies BCC (resp. BCI, resp. BCS) for B or N .

Proposition 3.2 gives a strong motivation to study the conditions under which
the partial assembly map is an isomorphism. The main technical result in this
direction is the following theorem. The proof will be given in §5 below.

Theorem 3.3. Let 1 → N → G
q→ G/N → 1 be an extension of groups

such that G/N has a compact open subgroup. Let B be any G-algebra and
assume that for every compact open subgroup K̇ of G/N , the subgroup q−1(K̇)
of G satisfies BCC with coefficients in B. Then the partial assembly map
µG,NN,B : Ktop

∗ (G;B)→ Ktop
∗ (G/N ;B or N) is bijective.

As a direct corollary of the theorem and of Proposition 3.2 we get:

Corollary 3.4. Assume that G, N , G/N and B satisfy all assumptions of
Theorem 3.3. Then G satisfies BCC (resp. BCI, resp. BCS) for B if and only
if G/N satisfies BCC (resp. BCI, resp. BCS) for B or N .

Note that we obtained a similar result in [6, Proposition 7.8] under the addi-
tional assumption that G has a γ-element. Although the proof of that special
case is easier than the proof of the above result, it can be quite difficult to
check the existence of a γ-element in practice. For discrete G, a similar result
(without requiring a γ-element) has been obtained by Oyono-Oyono in [22],
and the proof of Theorem 3.3, as presented in §5 below, is partly inspired by
the ideas of [22].
In [8, Example 3, §5.1] it is shown that if N is a normal subgroup of a group K
such that K/N is compact, and if N satisfies the Haagerup property, then K
satisfies the Haagerup property. We mentioned earlier (see Remark 1.8) that
it follows from the work of Higson, Kasparov and Tu [13, 25] that such groups
satisfy BCC. Thus we get

Corollary 3.5. Let 1 → N → G
q→ G/N → 1 be an extension of groups

such that G/N has a compact open subgroup. Suppose further that N satisfies
the Haagerup property (e.g., if N is amenable). Then, if B is a G-algebra, G
satisfies BCC (resp. BCI, resp. BCS) for B if and only if G/N satisfies BCC
(resp. BCI, resp. BCS) for B or N .
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Let G be a group and let G0 denote the connected component of the identity of
G. Then G0 is a closed normal subgroup of G and G/G0 is totally disconnected.
Thus we may apply the above results to the extension 1→ G0 → G→ G/G0 →
1. In particular, we get

Corollary 3.6. Assume that G0 satisfies the Haagerup property and let B be
a G-algebra. Then G satisfies BCC (resp. BCI, resp. BCS) for B if and only
if G/G0 satisfies BCC (resp. BCI, resp. BCS) for B or G0.

In what follows we want to get rid of the condition of G/N having a compact
open subgroup. It turns out that, at least if we restrict our attention to prop-
erty BCC or BCS, we can indeed obtain very far reaching generalizations. A
very important tool for this is the use of Theorem 2.2 and its consequences as
described in the previous section. The main idea is to reduce to the two cases
where the quotient group is either totally disconnected or almost connected
(i.e., (G/N)/(G/N)0 is compact). The first case is the one treated above,
and the second case was treated in [6] (under the assumption that G has a
γ-element). In fact, combining [6, (2) of Proposition 6.7] (note that the injec-
tivity condition in that statement is satisfied by Remark 1.8 if G/N is almost
connected) with [6, Proposition 7.6], we get

Theorem 3.7. Let 1 → N → G
q→ G/N → 1 be an extension of groups

such that G/N is almost connected and such that G has a γ-element. Let
B be a G-algebra, and assume that for the maximal compact subgroup K̇ of
G/N , the group q−1(K̇) satisfies BCC for B. Then the partial assembly map

µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G/N ;BorN) of Definition 3.1 is bijective. It then
follows that G satisfies BCC (resp. BCI, resp. BCS) for B if and only if G/N
satisfies BCC (resp. BCI, resp. BCS) for B or N .

As indicated above, we want to combine Theorem 3.7 with Theorem 3.3 in
order to cover arbitrary quotients G/N . But before we do this, we want to
weaken the assumption on the γ-element in the above theorem. This is done
in Lemma 3.9 below, where we show that it is actually enough to assume the
existence of a γ-element for the inverse image K = q−1(K̇) ⊆ G of the maximal
compact subgroup K̇ of G/N . But for the proof of this, we first need another
lemma.
For notation: If A is a C∗-algebra and X is a locally compact space, we will
write A(X) := A⊗C0(X). If A is a G-algebra and X is a G-space, then A(X)
carries the diagonal action. Recall that if X is aG-space, K is a closed subgroup
of G, and A is a K-algebra, then IndGK(A(X)) ∼=

(
IndGK A

)
(X) (cf. [14, 3.6]).

In fact, both algebras can be viewed as a subalgebra of Cb(G × X,A): The
elements F ∈ IndGK(A(X)) satisfy the equation F (gk, x) = k−1

(
F (g, kx)

)
and

the elements G ∈
(

IndGK A
)
(X) satisfy the equation G(gk, x) = k−1

(
G(g, x)

)
.

It is then easy to check that

Φ : IndGK(A(X))→
(

IndGK A
)
(X); Φ(F )(g, x) = F (g, g−1x) (3.2)

is the desired isomorphism.
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Lemma 3.8. Let K be a closed subgroup of G, and let A and B be two K-
algebras. Let X be a locally compact G-space. Then the following diagram
commutes

KKK
∗ (A,B)

iGK
��

p∗X ��

KKG
∗ (IndGK A, IndGK B)

p∗X��

RKKK
∗
(
X;A(X), B(X)

)

iK,G
��

RKKG
∗
(
X; (IndGKA)(X),(IndGKB)(X)

)

RKKG
∗
(
G×K X; IndGK(A(X)), IndGK(B(X))

)

� �����������������������

where p∗X is induced by the map pX : X → {pt} (see [14, Proposition 2.20]), iGK
is the induction morphism defined in [15, Theorem 1 of §5] (see §2 above), iK,G

is the induction morphism defined in [14, §3.6], and the bottom slant arrow is
obtained by first identifying G×K X with G/K×X via [g, x] 7→ (gK, gx), then
forgetting the action of C0(G/K), and eventually identifying IndGK(A(X)) with
(IndGK A)(X) (resp. IndGK(B(X)) with (IndGK B)(X)) via the isomorphism of
(3.2) above.

Proof. Let (E ,Φ, T ) be any cycle in EK(A,B). By construction,
the image of the class of this cycle by p∗X ◦ iGK is the class in

RKKG
∗
(
X; (IndGK A)(X), (IndGK B)(X)

)
of the cycle

P =
(
(IndGK E)⊗ C0(X), (IndGK Φ)⊗ 1, T̃ ⊗ 1

)
, (3.3)

where the action of C0(X) is given via the natural inclusions

C0(X)→M
(
(IndGK A)⊗ C0(X)

)
, M

(
(IndGK B)⊗ C0(X)

)
; f 7→ 1⊗ f,

and where the operator T̃ on IndGK E is given by Equation (2.1).
On the other hand, the composition iK,G ◦ p∗X maps the class of (E ,Φ, T ) to
the class of the triple

Q =
(

IndGK(E ⊗ C0(X)), IndGK(Φ⊗ 1), T̃ ⊗ 1
)
,

where the C0(G ×K X)-actions on the algebras IndGK(A ⊗ C0(X)) (resp.
IndGK(B ⊗ C0(X))) are given by

(ϕ ·F )(g, x) = ϕ([g, x])F (g, x), for all ϕ ∈ C0(G×KX), F ∈ IndGK(A⊗C0(X))

(resp. F ∈ IndGK(B ⊗ C0(X))). We now apply the isomorphism (3.2) to the
algebras IndGK(A⊗C0(X)) and IndGK(B⊗C0(X)). The same formula provides
an isomorphism of Hilbert modules Ψ : IndGK(E ⊗C0(X))→ (IndGK E)⊗C0(X).
If we now identify G ×K X with G/K × X as in the lemma, and if we then
forget the C0(G/K) action on the algebras, then a straightforward computation
shows that these isomorphisms turn Q into the cycle P of (3.3).
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Lemma 3.9. Let 1→ N → G
q→ G/N → 1 be an extension of groups such that

G/N is almost connected. Let K̇ be the maximal compact subgroup of G/N and
let K = q−1(K̇). Assume that K has a γ-element. Then G has a γ-element.

Proof. Let AK , (resp. DK , ηK) be the proper algebra (resp. the Dirac, dual-
Dirac element) associated to γK , the γ-element of K. By Remark 1.8, G/N
also has a γ-element, and we write γG/N , AG/N , DG/N and ηG/N accordingly.
Let V be the tangent space of G/K at the point eK and let C

V
be the Clifford

algebra of V . When viewed as a G-algebra (with trivial N -action), the algebra
AG/N is given by AG/N = IndGK CV (denoted Cτ (G/K) in [14]).
Define

DG : = iGK
(
σC

V
(DK)

)
⊗AG/N DG/N ∈ KKG

0

(
IndGK(AK ⊗ CV ),C

)
and

ηG : = ηG/N ⊗AG/N iGK
(
σC

V
(ηK)

)
∈ KKG

0

(
C, IndGK(AK ⊗ CV )

)
,

where DG/N and ηG/N are viewed as elements of the respective KKG-

groups by inflating the actions of G/N to G, and iGK : KKK
∗ (A,B) →

KKG
∗ (IndGK A, IndGK B) denotes Kasparov’s induction homomorphism. Since

AK is K-proper, the algebra IndGK(AK ⊗ CV ) is G-proper.
Thus, to see that γG = ηG⊗DG ∈ KKG

0 (C,C) is a γ-element for G (cf. Defini-
tion 1.7), it suffices to check that p∗X(γG) = 1 ∈ RKKG

0

(
X;C0(X), C0(X)

)
for

every proper G-space X, where pX denotes the map from X to the one-point
set.
Let z = σC

V
(γK) ∈ KKK

0 (C
V
, C

V
). Since X is a proper K-space, it follows that

p∗X(γK) = 1, and, therefore, that p∗X(z) = 1 ∈ RKKK
(
X;C

V
(X), C

V
(X)

)
. It

then follows that iK,G ◦ p∗X(z) = 1, and hence, by Lemma 3.8, that

p∗X◦iGK
(
σC

V
(γK)

)
= p∗X◦iGK(z) = 1 ∈ RKKG

(
X; (IndGKCV )(X), (IndGKCV )(X)

)
.

On the other hand, the map pX : X → {pt} factors G/N -equivariantly
through N\X, which is a proper G/N -space. Thus, p∗X(γG/N ) = 1 ∈
RKKG

0

(
X;C0(X), C0(X)

)
. But this implies

p∗X(γG) = p∗X
(
ηG/N ⊗ iGK

(
σC

V
(γK)

)
⊗DG/N

)

= p∗X
(
ηG/N

)
⊗ p∗X

(
iGK(σC

V
(γK))

)
⊗ p∗X

(
DG/N

)

= p∗X
(
ηG/N

)
⊗ p∗X

(
DG/N

)
= p∗X(γG/N ) = 1.

As a consequence of the above lemma and of Theorem 3.7 we obtain

Corollary 3.10. Assume that 1→ N → G
q→ G/N → 1 is a group extension

such that G/N is almost connected. Assume further that the inverse image
K = q−1(K̇) ⊆ G of the maximal compact subgroup K̇ of G/N has a γ-element
and satisfies BCC for the given G-algebra B (which is always true if N has the
Haagerup property). Then G satisfies BCC (resp. BCI, resp. BCS) for B if
and only if G/N satisfies BCC (resp. BCI, resp. BCS) for B or N .
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The following proposition is the main step for linking our previous results in
order to cover general quotients G/N :

Proposition 3.11. Let 1 → N → G
q→ G/N → 1 be an extension of groups

and let B be a G-algebra. Denote by (G/N)0 the connected component of the
identity in G/N and let M := q−1

(
(G/N)0

)
⊆ G. If Ḧ is a compact subgroup

of G/M , we denote by Ḣ ⊂ G/N the inverse image of Ḧ in G/N , and we let
H denote the inverse image of Ḧ in G. Then the following are true:

(i) If for every Ḧ as above, the group H satisfies BCC for B, then the partial
assembly map for (G,M) with coefficients in B is bijective.

(ii) If G/N satisfies BCC (resp. BCS) for every coefficient algebra, then
G/M satisfies BCC (resp. BCS) for B or M .

Proof. For (i), let us consider the extension 1 → M → G
p→ G/M → 1. Note

that G/M is isomorphic to (G/N)/(M/N) ∼= (G/N)/(G/N)0, and hence it is
totally disconnected. The condition in (i) is then precisely what we need to
apply Theorem 3.3 to this extension.
For (ii), we write G/N as an extension of M/N by G/M :

1→M/N → G/N
r→ G/M → 1. (3.4)

Note that G/M is totally disconnected and that the crossed product BorM is
isomorphic to (BorN)or (M,N). Thus, applying Proposition 3.2 to extension
(3.4), the result will follow if the partial assembly map corresponding to (3.4)
with coefficients in B or N is a bijection: If G/N satisfies BCC (resp. BCS)
for the coefficient algebra B or N , G/M will satisfy BCC (resp. BCS) for the
crossed product B or M ∼= (B or N)or (M,N).
To see that the partial assembly map for (3.4) with coefficients in B or N is
bijective, we apply Theorem 3.3 to this extension. It then follows that it is
enough to check that, whenever Ḧ is a compact subgroup of G/M , the group
Ḣ ⊆ G/N satisfies BCC for BorN . We do this by using the hereditarity result
of Theorem 2.5: Ḣ is a subgroup of G/N which is assumed to satisfy (at least)
BCS with arbitrary coefficients. Thus, Theorem 2.5 implies that Ḣ satisfies (at
least) BCS, too. Since Ḣ is almost connected (as a compact extension of the
connected group M/N ∼= (G/N)0), it also satisfies BCI for arbitrary coefficient
algebras by Remark 1.8.

We now formulate and prove our extension result for arbitrary quotients G/N .

Theorem 3.12. Let 1 → N → G
q→ G/N → 1 be an extension of groups and

let B be any G-algebra. Assume that for every compact subgroup Ċ of G/N ,
the group C = q−1(Ċ) has a γ-element and satisfies BCC for B. Then, if G/N
satisfies BCC (resp. BCS) for arbitrary coefficients, then G satisfies BCC
(resp. BCS) for B.
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Proof. We are going to use the reduction argument of Proposition 3.11: Denote
by (G/N)0 the connected component of the identity in G/N and let M =
q−1
(
(G/N)0

)
⊆ G. Let Ḧ be any compact subgroup of G/M , let Ḣ ⊂ G/N

be the inverse image of Ḧ in G/N , and let H denote the inverse image of
Ḧ in G. Note that Ḣ is an almost connected group. Let K̇ be its maximal
compact subgroup. Then K̇ is a compact subgroup of G/N , so, by assumption,
K = q−1(K̇) has a γ-element and satisfies BCC for B. Lemma 3.9 now implies
that H itself has a γ-element. Applying Theorem 3.7 to the extension 1 →
N → H → Ḣ → 1, it follows that H satisfies BCC for B: Since G/N satisfies
BCS for all coefficients, the same is true for Ḣ ⊆ G/N by Theorem 2.5. Since
Ḣ is almost connected, it also satisfies BCI. Thus Theorem 3.7 applies.
We can now apply Proposition 3.11: By (i), the partial assembly map for (G,M)
with coefficients in B in bijective, and, by (ii), G/M satisfies BCC (resp. BCS)
for B or M . Thus, Proposition 3.2 implies that G satisfies BCC (resp. BCS)
for B.

Remark 3.13. Note that the statement of Theorem 3.12 is a bit weaker than
the statements of Theorems 3.3 and 3.7 above, since it requires that G/N
satisfies BCC (resp. BCS) for all coefficients, while the previous results only
required that G/N satisfies BCC (resp. BCI, BCS) for BorN . Also, Theorem
3.12 does not give any information on condition BCI.
If we could show that Theorem 3.7 holds without requiring a γ-element for
G, then no reference to γ-elements would be needed in Theorem 3.12 above.
However, note that the assumption on the existence of γ-elements for the com-
pact extensions of N in G is much easier to check than the assumption on the
existence of a γ-element for G, as we did in [6]. A particularly nice application
is given when N satisfies the Haagerup property. As mentioned earlier (see
the discussions before Corollary 3.5) the Haagerup property for N implies the
Haagerup property for every compact extension of N in G. Thus, all compact
extensions of N in G have a γ-element and satisfy BCC (see Remark 1.8).
Thus, the following is a direct corollary of Theorem 3.12:

Corollary 3.14. Let N be a closed normal subgroup of G such that N sat-
isfies the Haagerup property (e.g., if N is amenable). Then, if G/N satisfies
BCC (resp. BCS), the same is true for G.

In what follows next, we want to look at the consequences of the above results
on the stability of the Baum-Connes conjecture under taking direct products
of groups. We need:

Lemma 3.15. Let G1 and G2 be groups. Suppose that G1 has a compact open
subgroup, or is an almost connected group, and that G2 has a compact open
subgroup. Let B be a G1 × G2-algebra, and assume that for every compact
subgroup K2 of G2, G1 satisfies BCC for B oK2. Then the partial assembly
map µG1×G2,G1

G1,B
: Ktop

∗ (G1 ×G2;B) → Ktop
∗ (G2;B or G1) of Definition 3.1 is

bijective.
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Proof. Take any compact subgroup K2 of G2. If G1 has a compact open sub-
group, we can apply Theorem 3.3 to the extension K2×G1 of K2 by G1. Since
G1 satisfies BCC for BoK2 by assumption, it is enough to check that for every
compact subgroup K1 of G1, the group K2×K1 satisfies BCC (which is clear).
It follows that for every compact subgroup K2 of G2, G1 ×K2 satisfies BCC
for B. Thus the result follows from applying Theorem 3.3 to G1 ×G2.
If G1 is almost connected, the same is true for G1×K2 (since K2 is compact),
so G1×K2 has a γ-element by Remark 1.8. Replacing Theorem 3.3 by Theorem
3.7 in the above argument gives the result.

Remark 3.16. In the prove of the theorem below, we shall also need a twisted
version of the above lemma, i.e., a version in which the quotient group G/N has
a product structure as above. However, this extension follows from the above
lemma by the result of [10] that every (G,N)-algebra is Morita equivalent to
some G/N -algebra.

Theorem 3.17. Let G1 and G2 be two groups. Then the following statements
are true:

(i) The product group G = G1 ×G2 satisfies BCC if and only if G1 and G2

satisfy BCC.

(ii) Suppose that G1 satisfies BCC. Then G = G1 ×G2 satisfies BCS if and
only if G2 satisfies BCS.

(iii) Suppose that G1 has a compact open subgroup, or is almost connected.
Suppose further that G2 has a compact open subgroup. If G1 satisfies
BCC and G2 satisfies BCI, then G = G1 ×G2 satisfies BCI.

Proof. We first prove (i) and (ii). If G = G1 ×G2 satisfies BCC (resp. BCS),
the same is true for G1 and G2 by Theorem 2.5. Assume now that G1 satisfies
BCC. Let G0 (resp. G1,0, G2,0) denote the connected component of G (resp.
G1, G2). It is clear that G0 = G1,0 ×G2,0. Consider the extension 1→ G0 →
G → G/G0 → 1. The quotient group is totally disconnected. Let B be any
G-algebra. By Corollary 3.4, to see that G satisfies BCS (resp. BCC) for B, it
is enough to show that

(a) any compact extension of G0 satisfies BCC, and

(b) G/G0 satisfies BCS (resp. BCC) for B or G0.

For (a), note that if L is a compact extension of G0, L is contained in
a direct product L1 × L2, where L1 is a compact extension of G1,0 and
L2 is a compact extension of G2,0. Being a subgroup of G1 (resp. G2),
L1 (resp. L2) satisfies BCS by Theorem 2.5. Both groups being al-
most connected, they also satisfy BCI, whence BCC. Consider the extension
1→ L1 × {e} → L1 × L2 → L2 → 1. By Theorem 3.7, to see that L1×L2 satis-
fies BCC (and hence that L satisfies BCC by Theorem 2.5), it suffices to check
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that L1 ×K2 satisfies BCC whenever K2 is a compact subgroup of G2. To see
this, we use again Theorem 3.7 to reduce to the group K1 ×K2, where K1 is
an arbitrary compact subgroup of G1. But compact groups satisfy BCC.
In order to check (b), first observe that we just saw in particular, that compact
extensions of G1,0 in G1 (resp. of G2,0 in G2) satisfy BCC. Hence it follows
from Theorem 3.3 and Proposition 3.2 that G1/G1,0 satisfies BCC with twisted
coefficients in A or G1,0, where A1 is any G1-algebra. A similar result holds
for G2/G2,0.
In particular, it follows that G1/G1,0 satisfies BCC with (twisted) coefficients
in

B or G0 or K̇2 = B or G2,0 or K̇2 or G1,0 = B or K2 or G1,0,

where K̇2 is any compact subgroup of G2/G2,0 and K2 denotes its inverse image
in G2. Note that in the above formula we took the freedom to write the twisted
crossed products by the pairs (K2×G1,0, G0) (in the first crossed product) and
(K2, G2,0) (in the second crossed product) simply as crossed products by the

common quotient K̇2. Using the definition of the twisted crossed products (see
[6]), it is fairly straightforward (but tedious) to check that all three crossed
products in the above formula do coincide.
A similar argument shows that G2/G2,0 satisfies BCS (resp. BCC) with coef-
ficients in the algebra

B or G0 or G1/G1,0 = B or G1 or G2,0.

Using the twisted version of Lemma 3.15 (replacing G1 by G1/G1,0, G2 by
G2/G2,0 and B by B or G0 = B or G1,0 or G2,0), we see that the partial
assembly map for the extension of G1/G1,0 by G2/G2,0 and with coefficients in
Bor G0 is bijective. Composing this with the assembly map for G2/G2,0 with
coefficient algebra B or G0 or G1/G1,0 = B or G1 or G2,0, we get (b).
We have now completed the proofs of (i) and (ii). (iii) is a direct consequence
of Lemma 3.15 and Proposition 3.2.

4 An example for the Baum-Connes conjecture with trivial co-
efficients

In this section we want to show how the results of the previous sections may be
combined in order to produce new examples for the validity of the Baum-Connes
conjecture without coefficients. The methods we use here give a hint into a
direction of a more general “Mackey-machine” for computing the topological
K-theory of group extensions via an induction process.
The basic idea is to use our partial assembly map to write Ktop

∗ (G;C) as
Ktop
∗ (G/N ;C∗r (N)), where N is a closed normal subgroup of G (see the main

results of §3 above). In good cases, we might be able to decompose C∗r (N) into
finitely many pieces (i.e., G-invariant subquotients) which are induced from
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smaller groups, which satisfy the conjecture for the respective coefficient alge-
bras. The bijectivity of the induction homomorphism (see Theorem 2.2) then
gives the conjecture for the original pieces, and, using excision, we end up with
the desired result for G. Below, we will give some explicit examples for this
procedure.

But before we present the examples, we need to mention some results on the
functorial properties of the topological K-theory of a fixed group G, viewed as
a functor on the category of G-C∗-algebras.

By a result of Kasparov and Skandalis (see [17, Appendix]), it is known that for
any proper G-algebra D the functor A 7→ KKG(D,A) is half exact. Replacing
D by C0(X), for X a G-compact subspace of E(G), and taking the limit over
X, implies that the topological K-theory functor A 7→ Ktop

∗ (G;A) is half exact,
too. Since this functor is also homotopy invariant and satisfies Bott-periodicity,
it follows from some general arguments (which, for instance, are outlined in
[4, Chapter IX]) that it satisfies excision in the sense that every short exact
sequence

0→ I → A→ A/I → 0

of G-algebras induces a natural six-term exact sequence

Ktop
0 (G; I) −−−−→ Ktop

0 (G;A) −−−−→ Ktop
0 (G;A/I)

∂

x
y∂

Ktop
1 (G;A/I) ←−−−− Ktop

1 (G;A) ←−−−− Ktop
1 (G; I).

If G satisfies BCC, then it follows from the half exactness of Ktop
∗ (G, ·) and the

naturality of the assembly map that the functor

A 7→ K∗(Aor G)

has to be half exact, too. Thus we see that BCC can only hold for G if G is K-
exact in the sense that for every short exact sequence 0→ I → A→ A/I → 0
of G-algebras, the natural sequence

K∗(I or G)→ K∗(Aor G)→ K∗(A/I or G)

is exact in the middle term. By the same general arguments as used above,
K-exactness of G implies that every short exact sequence of G-algebras induces
a natural six-term exact sequence for the K-theories of the reduced crossed
products.

Proposition 4.1. Assume that G is K-exact and that 0→ I → A→ A/I → 0
is a short exact sequence of G-algebras. Let ∂ : Ktop

∗+1(G;A/I)→ Ktop
∗ (G; I) and

δ : K∗+1(A/I or G)→ K∗(I or G) denote the boundary maps in the respective
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six-term exact sequences. Then the diagram

Ktop
∗+1(G;A/I)

∂−−−−→ Ktop
∗ (G; I)

µG,A/I

y
yµG,I

K∗+1(A/I or G) −−−−→
δ

K∗(I or G)

commutes. In fact, the assembly map commutes with all maps in the respective
six-term exact sequences.

Proof. This result follows easily from the naturality of the assembly map and
the general construction of the boundary maps: By [4, Theorem 21.4.3], it
follows that the boundary maps can be factorized via K-theory maps coming
from ∗-homomorphisms Φ : C0(R) ⊗ A/I → Cq and e : I → Cq, where Cq
denotes the mapping cone for the quotient map q : A → A/I. More precisely,
using suspension, the above diagram splits into the diagram

Ktop
∗
(
G;C0(R)⊗A/I

) Φ∗−−−−→ Ktop
∗ (G;Cq)

e∗←−−−−∼= Ktop
∗ (G; I)

µG,C0(R)⊗A/I

y µG,Cq

y
yµG,I

K∗
(
(C0(R)⊗A/I)or G

)
−−−−→

Φ∗
K∗(Cq or G)

∼=←−−−−
e∗

K∗(I or G),

which commutes by the naturality of the assembly map. The result then follows
from the fact that the assembly map commutes with Bott periodicity.

Using the above observations, an easy application of the Five Lemma gives the
following general principle:

Proposition 4.2. Suppose that G is K-exact and let 0→ I → A→ A/I → 0
be a short exact sequence of G-algebras. If G satisfies BCC for two of the
algebras I, A and A/I, then it satisfies BCC for all three algebras.

We are now ready to present our example.

Example 4.3. Let K = R or C. The semi-direct product groups Kn o
SLn(K), n ∈ N∗, (where the action of SLn(K) on Kn is by matrix multi-
plication) satisfy the Baum-Connes conjecture without coefficients (i.e., with
coefficient algebra C). We believe that this was known before only for the
cases n ≤ 2.

The proof is by induction on n. For short, let us write Hn = SLn(K) and
Gn = Kn o Hn. For n = 1, the conclusion holds. By induction, take n > 1
and let us assume that the conclusion holds for n− 1.

Since Kn is abelian, hence amenable, it follows from Theorem 3.7 that Gn
satisfies the Baum-Connes conjecture for C if and only Hn satisfies BCC for
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C∗r (Kn) ∼= C0(Kn). Moreover, the Gelfand transform carries the decompo-
sition action of Hn on C∗(Kn) to the action of Hn on C0(Kn) given by the
formula

(x · f)(η) = f(x∗ · η), x ∈ SLn(K), η ∈ Kn,

where x∗ denotes the adjoint of the matrix x.
There are two orbits under this action of Hn on Kn: {0} and Kn r {0}. Let
η = (1, 0, . . . , 0)t ∈ Kn. Then a short computation shows that the stabilizer
of η under the above action is isomorphic to Kn−1 o SLn−1(K) = Gn−1, and
therefore we get

C0(Kn \ {0}) ∼= C0(Hn/Gn−1) ∼= IndHnGn−1
C.

By [19], we know that the semi-simple group SLn(K) satisfies BCC for C and
by the induction assumption we know that Gn−1 also satisfies BCC for C.
Using Theorem 2.5 it follows that Hn satisfies BCC for C0(Kn \ {0}). Thus,
applying Proposition 4.2 to the short exact sequence 0 → C0(Kn \ {0}) →
C0(Kn)→ C→ 0 gives the result.

Remark 4.4. A similar argument can be used to show that Qnp o GLn(Qp)
satisfies BCC with coefficients in C. Since GLn(Qp) can be written as the
product Qp1 ·GLn(O), where GLn(O) is the compact group of invertible ma-
trices with p-adic integer entries, it is a (non-direct) product of an amenable
group and a compact group, and therefore exact by a standard argument (e.g.,
see [18]). Moreover, by results of Baum, Higson and Plymen [3] and Lafforgue
[19], it is known that GLn(Qp) satisfies BCC for C. Now the same procedure
as used in the above example, using Theorem 3.3 instead of Theorem 3.7, gives
the result.

5 Proof of Theorem 3.3

In this section we give the proof of Theorem 3.3. As indicated in the introduc-
tion, some of the main ideas (and intermediate results) used in this proof will
also be applied in the proofs of the bijectivity of the induction homomorphism
as given in §6, and the continuity of topological K-theory with respect to the
coefficients as presented in §7. First we recall the statement of the theorem.

Theorem 3.3. Let 1 → N → G
q→ G/N → 1 be an extension of groups such

that G/N has a compact open subgroup. Let B be a G-algebra and assume
that for every compact open subgroup K̇ of G/N , the subgroup q−1(K̇) of G

satisfies BCC for B. Then the partial assembly map µG,NN,B : Ktop
∗ (G;B) →

Ktop
∗ (G/N ;B or N) of Definition 3.1 is bijective.

As mentioned in the introduction, the proof relies on a special realization of a
universal example for the proper actions of G. In order to obtain this special
realization, we start with the following easy observation:
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Lemma 5.1. Let G1 and G2 be groups. If E(G1) (resp. E(G2)) is a realization
of the universal example for the proper actions of G1 (resp. G2), then E(G1)×
E(G2), equipped with the product action of G1 × G2, is a realization of the
universal example for the proper actions of G1 ×G2.

Proof. The action of G1 × G2 on E(G1) × E(G2) is clearly proper. To show
the universal property, take any space X endowed with a proper action of
G1 × G2. This action restricts to proper actions of G1 and G2 on X, so
there exist continuous Gi-maps Fi : X → E(Gi), i = 1, 2. Then F : X →
E(G1)×E(G2);F (x) = (F1(x), F2(x)) is a continuous G1×G2-equivariant map.
Conversely, every continuous G1×G2-map is of this form. Thus the uniqueness
(up to homotopy), follows from the uniqueness of E(G1) and E(G2).

If a group G has at least one compact open subgroup, the constructions in [17]
provide a realization of E(G) as a simplicial complex (the constructions in [17]
are given for discrete G; the adaptations for the more general case of groups
with compact open subgroup are given in the discussion following [6, Lemma
7.10]). Summing up the results of [17] and [6, §7], we obtain

Proposition 5.2. Let G be a group having a compact open subgroup K. Then
there exists a realization E(G) of the universal example for proper actions of
G, such that

(i) E(G) is the geometric realization of a locally finite simplicial complex on
which G acts properly and simplicially,

(ii) If S is any simplex of E(G),
o

S its interior, and g ∈ G, then either g acts

as the identity on S or g
o

S ∩
o

S= ∅.

In this section we will from now on assume that N is a closed normal subgroup
of G such that G/N has a compact open subgroup. Thus, in what follows next,
we can always assume that E(G/N) has the structure of a simplicial complex
as described in Proposition 5.2 above. The following lemma shows how this
provides a special realization for the universal example for the proper actions
of G:

Lemma 5.3. Let E(G) be a universal example for the proper actions of G.
Then the Cartesian product E(G)×E(G/N), endowed with the diagonal action
g(x, y) = (gx, ġy), is also a universal example for the proper actions of G.

Proof. E(G) × E(G/N) is a universal example for G × G/N by Lemma 5.1.
Because G can be seen as a closed subgroup of G×G/N via the map g 7→ (g, ġ),
the result follows from Lemma 2.4.

The main advantage of taking E(G) × E(G/N) as a universal example for the
proper actions of G comes from the fact that the simplicial structure of E(G/N)
allows us to use induction arguments on the dimension of simplices and to
“compress” to smaller subgroups.
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Remark 5.4. In what follows we will denote by π2 the projection of E(G) ×
E(G/N) onto the second factor E(G/N). Moreover, if we restrict the diagonal
G-action on E(G) × E(G/N) to N , the quotient space N\(E(G) × E(G/N))
can be identified with (N\E(G)) × E(G/N), and we will always denote by p2

the second projection of (N\E(G))× E(G/N) onto E(G/N). Note that by the
universal property of E(G/N), p2 : N\(E(G) × E(G/N)) → E(G/N) is the
unique (up to G/N -equivariant homotopy) continuous G/N -equivariant map.

We are now using E(G) × E(G/N) to compute the topological K-theory of G.
We start with

Definition 5.5. Let Y be a G/N -compact subset of E(G/N). Then we define
Ktop
∗ 〈Y 〉(G;B) to be the inductive limit

Ktop
∗ 〈Y 〉(G;B) := lim

X
KKG
∗
(
C0(X), B

)
,

over all G-compact subspaces X of E(G)× E(G/N) which satisfy π2(X) = Y .

Lemma 5.6. Assume that G/N has a compact open subgroup and that E(G/N)
has the simplicial structure described in Proposition 5.2. Let F denote the fam-
ily of subsets Y of E(G/N) such that Y is the G/N -saturation of a finite union
of simplices of E(G/N). Then the topological K-theory of G with coefficients
in the G-algebra B can be computed by the formula

Ktop
∗ (G;B) = lim

Y ∈F
Ktop
∗ 〈Y 〉(G;B).

Proof. Using E(G) × E(G/N) as a realization of the universal example for
the proper actions of G, Ktop

∗ (G;B) can be computed as Ktop
∗ (G;B) =

limZ KKG
∗
(
C0(Z), B

)
, where Z runs through the family of G-compact sub-

sets of E(G) × E(G/N). Clearly, any such Z is contained in a G-compact
subset X of E(G) × E(G/N) satisfying π2(X) = Y for some Y ∈ F : Choose
any Y ∈ F such that π2(Z) ⊆ Y . Y can be written as Y = G/N · K,
where K is a compact subset of E(G/N). Take any point x in E(G) and
put X = Z ∪G ·

(
{x} ×K

)
⊆ E(G)× E(G/N).

To each piece of the above decomposition of Ktop
∗ (G;B) via the elements Y ∈ F

corresponds a piece of the partial assembly map for (G,N): If Y is a G-compact
subset of E(G/N) and X is a G-compact subset of E(G)×E(G/N) (viewed as a
universal example for the proper actions of G) such that π2(X) = Y , we obtain
from Definition 3.1 a well defined morphism

µG,NN,B [X] : KKG
∗ (C0(X), B)→ KKG,N

∗ (C0(Y ), B or N)

(note that the map F : N\E(G) → E(G/N) of Definition 3.1 is given by
the projection p2 : N\

(
E(G) × E(G/N)

)
→ E(G/N), and that p2(X) = Y ).

It follows from Lemma 1.5 that the maps µG,NN,B [X] commute with the maps
induced by taking inclusions. Thus we may define
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Definition 5.7. For any G/N -compact subset Y of E(G/N) we define

µG,NN,B〈Y 〉 : Ktop
∗ 〈Y 〉(G;B)→ KKG,N

∗
(
C0(Y ), B or N

)

as the map which is obtained inductively from the morphisms

KKG
∗
(
C0(X), B

) µG,NN,B [X]
−−−−−→ KKG,N

∗
(
C0(Y ), B or N

)
,

where X runs through all G-compact subspaces of E(G)×E(G/N) which satisfy
π2(X) = Y .

We observe that not only Ktop
∗ (G;B) but also the partial assembly map associ-

ated to (G,N) can be recovered from the decomposition described above. This
follows directly from the definitions.

Lemma 5.8. Let N , G, E(G/N), and F be as in Lemma 5.6. Then the partial

assembly map µG,NN,B : Ktop
∗ (G;B)→ Ktop

∗ (G;B or N) of Definition 3.1 can be
computed inductively from the maps

µG,NN,B〈Y 〉 : Ktop
∗ 〈Y 〉(G;B)→ KKG,N

∗
(
C0(Y ), B or N

)
, Y ∈ F .

In view of Lemma 5.8, the proof of Theorem 3.3 reduces to the proof of:

Proposition 5.9. Let N , G, E(G/N) and F be as in Lemma 5.6. Let q : G→
G/N be the quotient map and let B be any G-algebra. Assume further that for
any compact open subgroup K̇ of G/N , the subgroup q−1(K̇) of G satisfies BCC
for B. Then, for any Y ∈ F , the map

µG,NN,B〈Y 〉 : Ktop
∗ 〈Y 〉(G;B)→ KKG,N

∗
(
C0(Y ), B or N

)

is bijective.

To prove Proposition 5.9, we use two ingredients (which goes back to some ideas
used in [11, Chapter 12] and [21, §5]). The first is to make an induction on
the maximal dimension of the simplices generating Y , using a Mayer-Vietoris
argument. For this we need a relative version of Definition 5.7:

Definition 5.10. Let Y be a G/N -compact subset of E(G/N) and let Y0

be an open (in the relative topology) G/N -equivariant subset of Y . For any
G-compact set X ⊆ E(G) × E(G/N) satisfying π2(X) = Y we put X0 =
X ∩ π−1

2 (Y0). Consider the composition of maps

KKG
∗
(
C0(X0), B

)

ν[X0]
�� ����������������

������ KKG,N
∗

(
C0(Y0), B or N

)

KKG,N
∗

(
C0(N\X0), B or N

)
p∗2

� �

Documenta Mathematica 6 (2001) 127–183



Permanence Properties of the Baum-Connes Conjecture 155

where p2 : N\(E(G) × E(G/N)) → E(G/N) denotes the projection onto the
second factor and ν[X0] is as in Equation (3.1). Using Lemma 1.5 we see that
these maps induce a well defined map

µG,NN,B〈Y0〉 : lim
X

KKG
∗
(
C0(X0), B

)
→ KKG,N

∗
(
C0(Y0), B or N

)
,

on the inductive limit, where X runs through all G-compact subsets of E(G)×
E(G/N) which project onto Y .

Remark 5.11. It is important to note that both, the limit
limX KKG

∗
(
C0(X0), B

)
, and the map µG,NN,B〈Y0〉, only depend on the space Y0

and not on the particular choice of the G-compact set Y ⊇ Y0. To see this, it is
enough to observe that, if Y0 ⊆ Y ⊆ Y1 such that Y and Y1 are G/N -compact
and Y0 is open in Y1, then for any G-compact set X ⊆ E(G) × E(G/N)
with π2(X) = Y , there exists a G-compact set X1 ⊆ E(G) × E(G/N) with
π2(X1) = Y1 and X ⊆ X1 (then X0 ⊆ X1,0, and, conversely, if X1 is given,
and if we put X = X1 ∩ π−1

2 (Y ), we get X1,0 ⊆ X0).

We will make use of Definition 5.10 in our Mayer-Vietoris argument. The
second ingredient for the proof of Proposition 5.9 is a reduction argument
based on an isomorphism in KK-theory, which makes it possible to simplify
the group KKG,N

∗
(
C0(Y0), B or N

)
, if Y0, as a G-space, is induced from an

open subgroup of G. The following characterization of induced spaces is taken
from [9]:

Proposition 5.12 (cf. [9, Corollary 2]). Let Y be a locally compact G-
space and let C be a closed subgroup of G. Then Y is G-homeomorphic to
an induced space G ×C T , for some C-space T , if and only if there exists a
continuous G-equivariant map p : Y → G/C. In that case, the C-space T can
be chosen as T = p−1({eC}) ⊆ Y , and a G-homeomorphism is given by the
mapping G×C T → Y ; [(s, x)] 7→ sx.

Remark 5.13. Assume that G/N has a compact open subgroup and that
E(G/N) has the simplicial structure of Proposition 5.2. By part (ii) of that
proposition, the above characterization of induced spaces shows immediately
that any subspace Z of E(G) × E(G/N) which projects onto the G-saturation

of the interior
o

S of a simplex S of E(G/N) is an induced space Z = G ×C T ,

where C is the stabilizer of S under the action of G and T = π−1
2 (

o

S)∩Z. Since
the action of G/N on E(G/N) is continuous, simplicial, and proper, C is an
open subgroup of G and C/N is a compact subgroup of G/N .

One of the basic ideas of the proof of Theorem 3.3 is to “compress” to the open
subgroup C ⊆ G of the above remark. For this we want to use a more general
compression isomorphism in twisted equivariant KK-theory, which we are now
going to describe.
So assume that C is an open subgroup of G containing the closed normal
subgroup N of G, and let A be a (C,N)-algebra. Let IndGC A denote the
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induced algebra of A. Then IndGC A is a (G,N)-algebra in a canonical way: If
τ : N → UM(A) is the twist for the original C-action on A, then the twist
Ind τ : N → UM(IndGC A) for the induced G-action on IndGC A is given by the
formula

(
Ind τn · F

)
(g) = τg−1ng · F (g), F ∈ IndGC A.

Since C is open in G, there exists a canonical (C,N)-equivariant embedding
iA : A→ IndGC A, given by

(
iA(a)

)
(g) =

{
g−1(a) if g ∈ C;

0 if g /∈ C.

For any (G,N)-algebra D, the compression homomorphism

compGC : KKG,N
∗

(
IndGC A,D

)
→ KKC,N

∗ (A,D),

is then defined as the composition

KKG,N
∗

(
IndGC A,D

) resGC→ KKC,N
∗

(
IndGC A,D

) i∗A→ KKC,N
∗ (A,D).

It is shown in [5] (extending earlier results of [11] and [21]) that the compression
map is an isomorphism if N = {e} and C is a compact open subgroup of G.
But for our purposes it is necessary to get rid of these assumptions. Thanks to
a recent result of Ralf Meyer, this is indeed possible:

Proposition 5.14. The map

compGC : KKG,N
∗

(
IndGC A,D

)
→ KKC,N

∗ (A,D)

is an isomorphism.

Proof. We first note that the result is invariant under passing to Morita equiv-
alent twisted actions in both variables: First, if we replace D by a Morita
equivalent (G,N)-algebra D′, say, and if y ∈ KKG,N

0 (D,D′) is the correspond-
ing invertible element, then the statement follows from the commutativity of
the diagram

KKG,N
∗

(
IndGC A,D

) compGC−−−−→ KKC,N
∗ (A,D)

·⊗y
y∼= ∼=

y·⊗resGC(y)

KKG,N
∗

(
IndGC A,D

′) compGC−−−−→ KKC,N
∗ (A,D′).

Secondly, if we replace A by a Morita equivalent (C,N)-algebra A′, and if

x ∈ KKC,N
0 (A′, A) denotes the corresponding invertible element, the statement
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follows from the commutativity of

KKG,N
∗

(
IndGC A,D

) compGC−−−−→ KKC,N
∗ (A,D)

iGC(x)⊗·
y∼= ∼=

yx⊗·

KKG,N
∗

(
IndGC A

′, D
) compGC−−−−→ KKC,N

∗ (A′, D),

which follows from the equation [i′A] ⊗ resGC
(
iGC(x)

)
= x ⊗ [iA] in

KKC,N
0 (A′, IndGC A).

Since every twisted action of (G,N) (resp. (C,N)) is Morita equivalent to an
ordinary action of G/N (resp. C/N) by [10, Theorem 1], it follows from the
results of [6, §3] that we may assume without loss of generality that N = {e}
and all actions are untwisted. Moreover, since an action α : C → Aut(A) is
Morita equivalent to the stabilized action α⊗Adλ : C → Aut

(
A⊗K(L2(C))

)
,

where λ denotes the left regular representation of C (a Morita equivalence is
given by (A ⊗ L2(C), α ⊗ λ)), we can use [20, Proposition 3.2] in order to
assume without loss of generality that every element α ∈ KKC(A,D) can be
represented by a Kasparov triple (E ,Φ, T ), such that Φ(A)E = E and such that
T is a C-equivariant operator on E . Moreover, by [20, Proposition 3.4], we
can also assume that the homotopies between equivalent triples have the same
properties.
Using these reductions, we can now follow the constructions of [5, Lemma 4.11]
(see also [21]) to build an inverse

infGC : KKC
∗ (A,D)→ KKG

∗ (IndGC A,D)

for the compression homomorphism compGC : Let α ∈ KKC
∗ (A,D) be repre-

sented by a Kasparov triple (E ,Φ, T ) with the properties as described above.
Consider the complex vector space E consisting of all continuous functions
ξ : G→ E such that

• ξ(gc) = c−1(ξ(g)) for all g ∈ G, c ∈ C;

• the map gC 7→ ‖ξ(g)‖ has finite support in G/C.

Then E becomes a G-equivariant pre-Hilbert D-module by defining the D-
valued inner product, the right D-action on E, and the action of G on E by

〈ξ, η〉D =
∑

ġ∈G/C
g(〈ξ(g), η(g)〉D), (ξ · d)(g) = ξ(g) · g−1(d), and

(g · ξ)(g′) = ξ(g−1g′),

for all g, g′ ∈ G, ξ, η ∈ E and d ∈ D. Let Ẽ denote the completion of E and
define Φ̃ : IndGC A→ L(Ẽ) and an operator T̃ ∈ L(Ẽ) by

(
Φ̃(F ) · ξ

)
(g) = Φ

(
F (g)

)
·
(
ξ(g)

)
and

(
T̃ ξ
)
(g) = T

(
ξ(g)

)
,
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for F ∈ IndGC A and ξ ∈ E. We want to define

infGC
(
[(E ,Φ, T )]

)
= [(Ẽ , Φ̃, T̃ )] ∈ KKG

(
IndGC A,D

)
. (5.1)

For this we first have to show that (Ẽ , Φ̃, T̃ ) is a Kasparov triple in
EG(IndGC A,D). Since T̃ is clearly G-equivariant, it is enough to check that
[T̃ , Φ̃(F )], (T̃ 2− 1)Φ̃(F ), and (T̃ ∗− T̃ )Φ̃(F ) are compact operators on Ẽ for all
F ∈ IndGC A. Since T̃ is G-equivariant, we may replace F by any translate of
it, and since the finite sums of the translates of the elements of the form iA(a),
a ∈ A, are dense in IndGC A, we may even assume that F = iA(a) for some
a ∈ A. Now observe that E embeds (C-equivariantly) as a direct summand of
Ẽ via (

iE(w)
)
(g) =

{
g−1(w) if g ∈ C,

0 if g /∈ C.

This induces a corresponding embedding iK(E) : K(E) → K(Ẽ), and it fol-

lows directly from the formulas that [T̃ , Φ̃(iA(a))] = iK(E)

(
[T,Φ(a)]

)
, (T̃ 2 −

1)Φ̃(iA(a)) = iK(E)

(
(T 2−1)Φ(a)

)
, and (T̃ ∗−T̃ )Φ̃(iA(a)) = iK(E)

(
(T ∗−T )Φ(a)

)
,

and hence all three elements are in K(Ẽ). Since the assignment (E ,Φ, T ) 7→
(Ẽ , Φ̃, T̃ ) preserves homotopy (we just apply the same construction to a homo-
topy), it is now clear that (5.1) determines a well defined map in KK-theory.
It is easy to check that compGC ◦ infGC is the identity on KKC(A,D): Write
Ẽ = E⊕F , with respect to the C-equivariant embedding iE : E → Ẽ consid-
ered above. Then show that Φ̃ ◦ iA decomposes as Φ

⊕
0 under the above

decomposition of Ẽ , from which it follows that compGC ◦ infGC
(
[E ,Φ, T ])

)
=

[(E ,Φ, T )]
⊕

[(F , 0, T̃ )] = [(E ,Φ, T )] ∈ KKC(A,D).
Conversely, to see that infGC ◦ compGC = idKKG(IndGC A,D), we start with a Kas-

parov triple (F ,Ψ, S) representing a class in KKG(IndGC A,D). Passing to the
stabilization A⊗K(L2(G)), if necessary (equipped with action α⊗AdλG), we
can use the equation IndHC

(
A⊗K(L2(G))

)
=
(

IndGH A
)
⊗K(L2(G)) in order to

apply Meyer’s result [20, Proposition 3.2] to the induced algebra IndGC A. Thus
we may assume without loss of generality that

(1) Ψ(IndGC A)F = F , and

(2) the operator S ∈ L(F) is G-equivariant.

We can use (1) to define a family {pġ | ġ ∈ G/C} of projections on F by

pġ
(
Ψ(F )ξ

)
= Ψ(F |gC)ξ, for F ∈ IndGC A. We may then assume additionally

that

(3) pġS = Spġ for all ġ ∈ G/C.

In fact, if S does not satisfy this condition, then we pass to the compact per-
turbation S′ =

∑
ġ∈G/C pġSpġ of S, which then satisfies (1)–(3) (to see that

S′ is a compact perturbation of S, i.e., that (S − S ′)Ψ(F ) ∈ K(F) for all
F ∈ IndGC A, one first observes that (S − S ′)Ψ(F ) =

∑
G/C(S − pġS)Ψ(F |gC),
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where the sum converges in the norm topology, and then one uses the com-
pactness of [S,Ψ(F |gC)] to see that each summand is a compact operator).
Using these properties, we easily check that (E ,Φ, T ) := (pėF , pėΨpė, pėSpė)
is a representative for compGC([F ,Ψ, S]). A straightforward computation then
shows that

Θ : Ẽ → F ; Θ(ξ) =
∑

ġ∈G/C
g(ξ(g))

is an isomorphism which intertwines Φ̃ with Ψ and T̃ with S.

The main reduction argument for the proof of Proposition 5.9 is contained in
the following lemma. We resume the situation of Lemma 5.6, i.e., we assume
that G/N has a compact open subgroup, and E(G/N) has the structure of a
simplicial complex as in Proposition 5.2. Moreover, for a simplex S of E(G/N)

we let
o

S denote its interior, n its dimension and C the open subgroup of G
which stabilizes S (with respect to the inflated action of G on E(G/N)).

Lemma 5.15. For any simplex S of E(G/N), let Y ∈ F be the G-saturation

of S in E(G/N), and let Y0 be the open subset of Y generated by
o

S under the
action of G. Let X be a G-compact subspace of E(G) × E(G/N) such that
π2(X) = Y , and let X0 be the open subset of X defined by X0 = X ∩ π−1(Y0).
Then:

(i) After enlarging X, if necessary, we may assume that there exists a C-
compact subset T of E(G) such that X0 is G-homeomorphic to the induced

space G×C (T×
o

S).

(ii) For every G-algebra B, the diagram

KKG
i

(
C0(X0), B

) µG,NN,B [X0]
−−−−−−→ KKG,N

i

(
C0(Y0), B or N

)

compGC

y∼= ∼=
ycompGC

KKC
i

(
C0(T×

o

S), B
) µC,NN,B [T×

o
S]

−−−−−−−→ KKC,N
i

(
C0(

o

S), B or N
)

β⊗.
y∼= ∼=

yβ⊗.

KKC
i+n

(
C0(T ), B

) µC,NN,B [T ]
−−−−−→ KKC,N

i+n (C, B or N)

commutes, where β ∈ KKn

(
C, C0(Rn)

)
denotes the Bott element.

Proof. Since S generates Y as a G-space, we can choose a compact subset
L ⊆ E(G)×S such that L generates X as a G-space and such that π2(L) = S.
Let T = C · π1(L), where π1 : E(G)× E(G/N)→ E(G) denotes the projection
on the first factor, and let X ′ = G · (T × S). Then X ⊆ X ′, X ′ is G-compact,

and X ′0 ∼= G×C (T×
o

S) by Remark 5.13. Thus, replacing X by X ′ gives (i).
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For the proof of (ii), first note that β can be seen as an element of

KKC,N
n

(
C, C0(

o

S)
)

because the action of C on
o

S is trivial and
o

S is homeo-
morphic to Rn. To see the commutativity of the upper square of the diagram,
we first have to introduce some notation:

• i1 : C0(T×
o

S) → C0(X0) and i2 : C0(
o

S) → C0(Y0) denote the canonical

inclusions (recall that because C is open in G,
o

S and T×
o

S are open
subsets of Y0 and X0 respectively).

• q1 : C0(Y0) → C0(N\X0) and q2 : C0(
o

S) → C0

(
N\(T×

o

S)
)

are

the homomorphisms induced by the second projection p2 : N\
(
E(G) ×

E(G/N)
)
→ E(G/N) (note that the restrictions of p2 to N\X0 → Y0 and

to N\(T×
o

S)→
o

S are proper maps).

The corresponding elements in the various equivariant KK-groups are de-

noted by the same letters. Using the definitions of µC,NN,B [X0], µC,NN,B [T×
o

S]

and compGC (see Definition 5.10 and Proposition 5.14 above), we get for all
α ∈ KKG

∗
(
C0(X0), B

)
:

µC,NN,B [T×
o

S] ◦ compGC(α) = q2 ⊗ ΛC,N
T×

o
S,N
⊗ jN{e},r(i1 ⊗ resGC(α)).

On the other hand we have

compGC ◦µG,NN,B [X0](α) = i2 ⊗ resGC
(
q1 ⊗ ΛG,NX0,N

⊗ jN{e},r(α)
)
.

But it is clear from Equation (1.1) that resGC(ΛG,NX0,N
) is nothing but ΛC,NX0,N

.

Using the fact that resGC(jN{e},r(α)) = jN{e},r(resGC(α)) (cf. [6, (2) Remark 4.6]),
we note that the commutativity of the upper square of the diagram reduces to
the equality:

i2 ⊗ resGC(q1)⊗ ΛC,NX0,N
= q2 ⊗ ΛC,N

T×
o
S,N
⊗ jN{e},r(i1),

which follows from Lemma 1.5.

To see the commutativity of the lower square of the diagram, we first observe

that, since N (as a subgroup of C) acts trivially on
o

S, we have

p∗2(ΛC,N
T×

o
S,N

) = σ
C0(

o
S)

(
p∗2(ΛC,NT,N )

)
and jN{e},r

(
σC(T )(β)

)
= σC(T )oN (β),

where for any (C,N)-algebra D, σD : KKC,N (A,B)→ KKC,N (A⊗D,B ⊗D)
denotes the external tensor product operator. Using this and the commutativ-
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ity of the Kasparov product over C, we compute for α ∈ KKC,N
i (C0(T×

o

S), B):

µC,NN,B [T ](β ⊗ α) = p∗2
(
ΛC,NT,N

)
⊗C(T )oN jN{e},r

(
σC0(T )(β)⊗

C0(T×
o
S)
α
)

= p∗2
(
ΛC,NT,N

)
⊗C(T )oN

(
σC0(T )oN (β)

)
⊗
C0(T×

o
S)oN

(
jN{e},r(α)

)

=
(
p∗2(ΛC,NT,N )⊗C β

)
⊗
C0(T×

o
S)oN

(
jN{e},r(α)

)

=
(
β ⊗C p∗2(ΛC,NT,N )

)
⊗
C0(T×

o
S)oN

(
jN{e},r(α)

)

=
(
β ⊗

C0(
o
S)
σ
C0(

o
S)

(
p∗2(ΛC,NT,N )

))
⊗
C0(T×

o
S)oN

(
jN{e},r(α)

)

= β ⊗
C0(

o
S)

(
p∗2
(
ΛC,N
T×

o
S,N

)
⊗
C0(T×

o
S)oN

(
jN{e},r(α)

))

= β ⊗ µC,NN,B [T×
o

S](α).

In what follows next, we still assume that G/N has a compact open subgroup,
and that E(G/N) has the structure of a simplicial complex. As before, F
denotes the family of G-saturations of a finite union of simplices in E(G/N).

Proposition 5.16. Let B be a G-algebra such that for every compact subgroup
K̇ of G/N the group K = q−1(K̇) ⊆ G satisfies BCC for B. Let Y ∈ F and let
W be a finite set of simplices whose union generates Y as a G/N -space. Define
dim(Y ) to be the highest dimension of simplices in W and let Y0 ⊆ E(G/N)
be the G/N -saturation of the interiors of the simplices of dimension dim(Y ) in
W .

(i) Assume that dim(Y ) = n > 0. Then the partial assembly map

µG,NN,B〈Y0〉 : lim
X

KKG
∗
(
C0(X0), B

)
→ KKG,N

∗
(
C0(Y0), B or N

)

of Definition 5.10 is bijective (recall that the limit is taken over the G-
compact subsets X of E(G) × E(G/N) which satisfy π2(X) = Y and
X0 = X ∩ π−1

2 (Y0)).

(ii) Assume dim(Y ) = 0. Then the partial assembly map

µG,NN,B〈Y 〉 : lim
X

KKG
∗
(
C0(X), B

)
→ KKG,N

∗
(
C0(Y ), B or N

)

of Definition 5.7 is bijective.

Proof. To show that (i) holds, note first that Y0 is a finite union of disjoint

spaces, each being the G-saturation of the interior
o

S of only one simplex S in
E(G/N). We can therefore assume that Y is the G-saturation of S. It is not
hard to check that the diagram of Lemma 5.15 is compatible with taking the
inductive limit over the G-compact subsets X of E(G)×E(G/N) which satisfy
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π2(X) = Y . Moreover, by part (i) of Lemma 5.15, it follows that taking the
limits over all X0 = X ∩ π−1

2 (Y0) such that X projects onto Y is the same

as taking the limit over the sets G ×C (T×
o

S), where T runs through the C-
compact subsets of E(G). Thus, taking the limit over T of the diagram in part
(ii) of Lemma 5.15 gives:

limX KKG
i

(
C0(X0), B

) µG,NN,B 〈Y 〉−−−−−→ KKG,N
i

(
C0(G/C), B or N

)

∼=
y

y∼=

limT KKC
i+n(C0(T ), B) KKC,N

i+n (C, B or N)

=

y
y=

Ktop
i+n(C;B) −−−−→

µC,NN,B

Ktop
i+n(C/N ;B or N),

where the first upper vertical arrows are given by the compositions
Bott ◦ compGC . We now use the assumption that C satisfies BCC for B:
Since C/N is compact (and thus satisfies BCC), Proposition 3.2 implies

that the partial assembly map µC,NN,B is a bijection. The above diagram then
completes the proof of part (i) of the proposition.
For (ii), the same argument applies, starting from the fact that Y is a finite
union of disjoint “induced spaces” G/N ·x ∼= G/C, where x denotes a vertex of
E(G/N) and C its stabilizer under the action of G. No Bott map (and thus no
dimension shift) is required to get the analogue of the above diagram in this
case.

As we have already suggested, we are going to use Proposition 5.16 for an
induction argument on the maximal dimension of the simplices involved. To
do this, we need to be able to put the above maps into a six-term exact sequence
in KK-theory, namely the Mayer-Vietoris sequence associated to the inclusion
Y0 → Y .

Lemma 5.17. Let Y , n = dim(Y ), and Y0 be as in Proposition 5.16. Assume
further that n > 0. Then Y0 is a nonempty open subset of Y and Y1 = Y r Y0

is an element of F and satisfies dim(Y1) = n − 1. Furthermore, for any G-
compact subset X of E(G) × E(G/N) such that π2(X) = Y , we write X0 =
X ∩ π−1

2 (Y0) and X1 = X ∩ π−1
2 (Y1). Then we get two equivariant exact

sequences of commutative C∗-algebras:

δ : 0→ C0(X0)→ C0(X)→ C0(X1)→ 0 and

d : 0→ C0(Y0)→ C0(Y )→ C0(Y1)→ 0

which determine elements [δ] ∈ KKG
1

(
C0(X1), C0(X0)

)
and [d] ∈

KKG
1

(
C0(Y1), C0(Y0)

)
such that

[p∗2]⊗[ΛG,NX1,N
]⊗jN{e},r([δ]) = [d]⊗[p∗2]⊗[ΛG,NX0,N

] ∈ KKG,N
1

(
C0(Y1), C0(X0)oN

)
.
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Proof. The existence of [δ] ∈ KKG
1

(
C0(X1), C0(X0)

)
and [d] ∈

KKG
1

(
C0(Y1), C0(Y0)

)
is a particular case of [16, Corollary of Proposition 6.2].

For the equation, we first consider the extensions

d : 0 −−−−→ C0(Y0) −−−−→ C0(Y ) −−−−→ C0(Y1) −−−−→ 0,
yp∗2

yp∗2
yp∗2

δN : 0 −−−−→ C0(N\X0) −−−−→ C0(N\X) −−−−→ C0(N\X1) −−−−→ 0.

Applying [23, Lemma 1.5] to this diagram implies that [p∗2]⊗ [δN ] = [d]⊗ [p∗2] ∈
KKG,N

1

(
C0(Y1), C0(N\X0)

)
. Thus, it is enough to check that

[ΛG,NX1,N
]⊗ jN{e},r([δ]) = [δN ]⊗ [ΛG,NX0,N

] ∈ KKG,N
1

(
C0(N\X1), C0(X0)oN

)
.

(5.2)

According to [1, Remarque 7.5, (2)], [δN ] and [δ] are obtained from the Bott
element β ∈ KK1

(
C, C0(]0, 1[)

)
. To be more precise, recall from [4, §19.5] that

if

c : 0→ J → A→ A/J → 0

is a semi-split short exact sequence of C∗-algebras (i.e., there exists a completely
positive section q : A/J → A), then the canonical embedding

e : J → Cq := C0

(
[0, 1[, A

)
/C0

(
]0, 1[, J

)

determines a KK-equivalence [e] ∈ KK0(J,Cq). The same computations show
that if the above short exact sequence is equivariant with respect to an action
of a group G and if q can be chosen to be equivariant as well, then e : J →
Cq := C0

(
[0, 1[, A

)
/C0

(
]0, 1[, J

)
determines a KK-equivalence [e] ∈ KKG

0 (J,Cq)
(where G acts trivially on [0, 1]). Moreover, if we also consider the canonical
inclusion

i : C0

(
]0, 1[, A/J

)
→ Cq,

then it follows from [1, Remarque 7.5, (2)] that the element [c] ∈ KKG
1 (A/J, J)

coming from any equivariantly semi-split short exact sequence as above satisfies
the equation

[e]⊗ [c] = σA/J(β)⊗ [i]. (5.3)

We want to apply this to the short exact sequences δ and δN . For this define Z
by Z =

(
X × [0, 1[

)
r
(
X0×]0, 1[

)
. Then C0(Z) is the algebra Cq correspond-

ing to the extension δ, and C0(N\Z) becomes the substitute for Cq with respect
to the extension δN . Let e : C0(X0)→ C0(Z) and eN : C0(N\X0)→ C0(N\Z)
denote the canonical inclusions (which, by the above discussion, are KK-
equivalences) and let i and iN denote the canonical inclusions of C0

(
X1×]0, 1[

)
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and C0

(
N\(X1×]0, 1[)

)
into C0(Z) and C0(N\Z), respectively. Using this no-

tation we now compute

ΛG,NX1,N
⊗ jN{e},r([δ]) = [δN ]⊗ ΛG,NX0,N

⇔ ΛG,NX1,N
⊗ jN{e},r([δ]⊗ [e]) = [δN ]⊗ ΛG,NX0,N

⊗ jN{e},r([e])
⇔ ΛG,NX1,N

⊗ jN{e},r([δ]⊗ [e]) = [δN ]⊗ [eN ]⊗ ΛG,NZ,N , by Lemma 1.5

⇔ ΛG,NX1,N
⊗ jN{e},r

(
σC0(X1)(β)⊗ [i]

)
= σC0(N\X)(β)⊗ [iN ]⊗ ΛG,NZ,N , by (5.3)

⇔ ΛG,NX1,N
⊗ jN{e},r

(
σC0(X1)(β)⊗ [i]

)
= σC0(N\X)(β)⊗ ΛG,NX1×]0,1[,N ⊗ jN{e},r([i])

where the last line uses Lemma 1.5. Since G acts trivially on ]0, 1[, it follows
that

ΛG,NX1×]0,1[,N = σ
C0

(
]0,1[
)(ΛG,NX1,N

). (5.4)

On the other hand, since β ∈ KK1

(
C, C0

(
]0, 1[

))
(inflated to the various equiv-

ariant KK-groups), it follows that

jN{e},r
(
σC0(X1)(β)

)
= σC0(X1)oN (β). (5.5)

Using (5.4) and (5.5), the above computation shows that it is

enough to prove that
(
ΛG,NX1,N

⊗ σC0(X1)oN (β)
)
⊗ jN{e},r([i]) is equal to(

σC0(N\X)(β)⊗ σC0(]0,1[)(Λ
G,N
X1,N

)
)
⊗ jN{e},r([i]) to get Equation (5.2). Using

Kasparov’s notations, this becomes

(
ΛG,NX1,N

⊗C β
)
jN{e},r([i]) =

(
β ⊗C ΛG,NX1,N

)
jN{e},r([i]),

which is a consequence of the commutativity of the Kasparov product over C
(see [14, Theorem 2.14]). This finishes the proof.

We are now able to complete the proof of Proposition 5.9. This will also
complete the proof of Theorem 3.3 since, as noted earlier, the theorem is a
consequence of Proposition 5.9 and Lemma 5.8.

Proof of Proposition 5.9. We are going to make an induction on the dimension
of Y ∈ F . Let Y ∈ F such that dim(Y ) = 0. Then µG,NN,B〈Y 〉 is bijective by (ii)
of Proposition 5.16.
Let n be an arbitrary non-negative integer, and assume that µG,NN,B〈Z〉 is bijec-
tive for all Z ∈ F such that dim(Z) ≤ n.
Take Y ∈ F such that dim(Y ) = n + 1, and let W be a finite set of simplices
in E(G/N) which generate Y under the action of G. Define Y0 to be the G-
saturation of the union of the interiors of the simplices of dimension n+1 in W .
Then Y0 is open in Y and Y1 = Y rY0 is an element of F which has dimension
less or equal to n.
Consider any G-compact subset X of E(G)×E(G/N) which satisfies π2(X) = Y
and put X0 = X ∩ π−1

2 (Y0) and X1 = X ∩ π−1
2 (Y1). Using Lemma 5.17, we
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obtain two long exact sequences in equivariant KK-theory, where the boundary
maps are given by Kasparov product with the elements [δ] and [d], respectively.
Using [23, Lemma 1.5] we see that the sequence for X is compatible with taking
inclusions of G-compact sets. Thus we can form the inductive limit over the
G-compact subsets X of E(G)×E(G/N) which satisfy π2(X) = Y , to obtain a
diagram

limX KKG
i+1

(
C0(X1), B

) µG,NN,B 〈Y1〉
��

� �

KKG,N
i+1

(
C0(Y1), B or N

)

� �

limX KKG
i

(
C0(X0), B

) µG,NN,B 〈Y0〉
��

� �

KKG,N
i

(
C0(Y0), B or N

)

� �

limX KKG
i

(
C0(X), B

) µG,NN,B 〈Y 〉
��

� �

KKG,N
i

(
C0(Y ), B or N

)

� �

limX KKG
i

(
C0(X1), B

) µG,NN,B 〈Y1〉
��

� �

KKG,N
i

(
C0(Y1), B or N

)

� �

limX KKG
i+1

(
C0(X0), B

) µG,NN,B 〈Y0〉
��

� �

KKG,N
i+1

(
C0(Y0), B or N

)

� �

� � � �

in which the vertical sequences are exact. Using Lemma 5.17, it follows from the
definition of the horizontal maps that the diagram commutes. By the induction
hypothesis, the two horizontal arrows corresponding to Y1 are bijective, and
part (i) of Proposition 5.16 ensures that those corresponding to Y0 are also

bijective. Thus, it follows from the Five Lemma that µG,NN,B〈Y 〉 is bijective,
too.

6 Proof of the induction isomorphism

In this section we give the proof of the bijectivity of the induction homomor-
phism as stated in Theorem 2.2. For convenience, let’s restate the theorem:

Theorem 2.2. Let H be a closed subgroup of a group G, and let B be an
H-algebra. Then the map IndGH : Ktop

∗ (H;B) → Ktop
∗ (G; IndGH B) is an iso-

morphism.

As in the proof of Theorem 3.3 (see §5), we will use a special realization of
the universal proper space for G to obtain a certain simplicial structure which
allows an induction argument based on excision. In fact, if G0 denotes the
connected component of the identity in G, then G/G0 is a totally disconnected
group, and therefore has a compact open subgroup. Thus, by Proposition
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5.2, there exists a realization of E(G/G0) as a simplicial complex. If E(G) is
any realization of the universal proper G-space, then, by Lemma 5.3, E(G) ×
E(G/G0) equipped with the diagonal G-action is also a universal proper G-
space, which we will use throughout this section to compute the topological
K-theories of G and H.
The strategy used in the previous section will allow us to reduce the problem of
the bijectivity of the induction homomorphism to the case of almost connected
groups. But by Kasparov’s work, every almost connected group has a γ-element
(see Definition 1.7 and Remark 1.8). So, as a first step, we start with giving
the proof under the extra condition that G has a γ-element. For this we have
to use the following general lemma about the image of the assembly map in
the presence of a γ-element for G. Note that this lemma is well known to the
experts (it is implicitly contained in the work of Kasparov and Tu [15, 14, 25]).
However, it seems that there exist no direct references. Thus, for the reader’s
convenience, we present a short argument building on [25, Proposition 5.23].

Lemma 6.1. Assume that G has a γ-element γ = η ⊗A D ∈ KKG(C,C) (see
Definition 1.7). Then, for every G-algebra B, the assembly map induces an
isomorphism between Ktop

∗ (G;B) and the γ-part

γ
(

K∗(B or G)
)

:= K∗(B or G)⊗ jGr (σB(γ)) ⊆ K∗(B or G)

of K∗(B or G).

Proof. We will use the facts that the assembly map µG,B is injective, whenever
G has a γ-element ([25, Proposition 5.23]) and that µG,D is surjective if D
is a proper G-algebra (which follows from the descent isomorphism of [17]).
It follows from part (2) of Definition 1.7 (see [6, Remark 6.4]) that the right
Kasparov product with σB(γ) determines the identity map on KKG

∗ (C0(X), B)
for every proper G-space X. Thus, γ acts as the identity on Ktop

∗ (G;B) via
right Kasparov product. This easily implies that the image of the assembly
map µG,B lies in the γ-part of K∗(BorG), and we get a commutative diagram

Ktop
∗ (G;B)

µG,B(·)−−−−−→ γG
(

K∗(B or G)
)

·⊗η
y

y·⊗jGr
(
σB(η)

)

Ktop
∗ (G;B ⊗A)

µG,B⊗A(·)−−−−−−−→ γG

(
K∗
(
(B ⊗A)or G

))

·⊗D
y

y·⊗jGr
(
σB(D)

)

Ktop
∗ (G;B)

µG,B(·)−−−−−→ γG
(

K∗(B or G)
)
.

Since B⊗A is a proper G-algebra, the middle horizontal row is a bijection, and,
by the above discussion, the composition of the left-hand side vertical rows is
the identity on Ktop

∗ (G;B). Finally, since γ is an idempotent in KKG
0 (C,C) by

[25, Proposition 5.20], the composition of the right-hand side vertical arrows
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is the identity of γ
(

K∗(B or G)
)
. Now a straightforward diagram chase gives

the result.

Lemma 6.2. Let H be a closed subgroup of G and assume that G has a γ-
element. Then, for every G-algebra B, the induction homomorphism IndGH :
Ktop
∗ (H;B)→ Ktop

∗ (G; IndGH B) is bijective.

Proof. Let γG be the γ-element of G. Then γH = resGH(γG) is the γ-element

of H by [6, Remark 6.4]. Let x ∈ KK∗
(
(IndGH B) or G,B or H

)
denote

the invertible element implementing the canonical Morita equivalence between
(IndGH B)or G and B or H. As was already noted for the proof of [6, Propo-
sition 6.9], the corollary on page 176 of [14] and item (2) of [15, Theorem 1 of
§5] imply:

jGr
(
σIndGH B(γG)

)
= x⊗BorH jHr

(
σB(γH)

)
⊗BorH x−1. (6.1)

Together with Proposition 2.3, this implies that the two squares of the following
diagram are commutative:

Ktop
∗ (H;B)

IndGH−−−−→ Ktop
∗ (G; IndGH B)

µH,B

y
yµG,IndG

H
B

K∗(B or H)
·⊗x−1

−−−−→ K∗
(
(IndGH B)or G

)

·⊗jHr
(
σB(γH)

)y
y·⊗jGr

(
σ

IndG
H
B

(γG)
)

γH
(

K∗(B or H)
)
−−−−→
·⊗x−1

γG

(
K∗
(
(IndGH B)or G

))
,

where γH
(

K∗(B or H)
)

(resp. γG

(
K∗
(
(IndGH B)or G

))
) denotes the γ-part

of K∗(B or H) (resp. K∗
(
(IndGH B) or G

)
). But Lemma 6.1 implies that the

compositions of the vertical arrows are isomorphisms. Further, since the middle
row of the above diagram is an isomorphism, Equation 6.1 also implies that
the bottom arrow is an isomorphism. But then the top arrow has to be an
isomorphism, too.

As noted above, our aim is to reduce the proof of the general result of The-
orem 2.2 to the special case where G is almost connected, in which case the
result follows from Lemma 6.2. We start the reduction argument with some
preliminaries:

Lemma 6.3. Let H be a closed subgroup of G, let C be an open subgroup of
G, and let B be an H-algebra. For each g̈ in the double coset space H\G/C
(which is a discrete countable space) we put CgH = C ∩ g−1Hg ⊆ C, and we
view B as a CgH-algebra by putting g−1hg · b := h · b, h ∈ H, b ∈ B. Then the

induced algebra IndGH B is C-equivariantly isomorphic to
⊕

g̈∈H\G/C IndCCgH
B.
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Similarly, if E is an H-equivariant B-Hilbert module, there is a C-equivariant
isomorphism between IndGH E, viewed as a C-equivariant IndGH B-Hilbert mod-
ule, and the

⊕
IndCCgH

B-Hilbert module
⊕

g̈∈H\G/C IndCCgH
E.

Proof. Chose a set of representatives Γ = {g0, g1, ..., gn, ...} for H\G/C in
G. By definition, IndGH B is the subalgebra of Cb(G,B) (the C∗-algebra of
continuous bounded functions on G with values in B) consisting of all functions
f which satisfy the conditions:

(i) f(st) = t−1 · f(s) for any s ∈ G and t ∈ H,

(ii) sH 7→ ‖f(s)‖ is an element of C0(G/H).

The G action is given by (s · f)(t) = f(s−1t), for s, t ∈ G.
For f in IndGH B and g ∈ Γ, we define φg̈ : IndGH B → IndCCgH

B by

(
φg̈(f)

)
(s) = g−1

(
f(sg−1)

)
, for all s ∈ C.

It is straightforward to check that φg̈ is a well defined C-equivariant ∗-
homomorphism. Note that for any f in IndGH B and any ε > 0, there is a
compact set K ⊆ G/H such that, for all s in G, s belongs to K if ||f(s)|| ≥ ε/2.
Thus, if we denote by K̈ the image of K−1 in H\G/C, we see that ||φg̈(f)|| < ε

whenever g̈ does not belong to the compact set K̈. Hence the sequence
Φ(f) =

(
φg̈(f)

)
g∈Γ

belongs to
⊕

g̈∈H\G/C IndCCgH
B. It is readily seen that

this defines an isomorphism Φ between IndGH B and
⊕

g̈∈H\G/C IndCCgH
B: If

λ = (λg)g∈Γ ∈
⊕

g̈∈H\G/C IndCCgH
B, we define Ψ(λ) ∈ Cb(G,B) by Ψ(λ)(s) =

h−1g−1
i λgi(c), whenever s is equal to cgih with gi ∈ Γ. Then Ψ takes values in

IndGH B and Ψ is inverse to Φ.
A similar computation implies the decomposition IndGH E ∼=

⊕
IndCCgH

E .

Lemma 6.4. Let H be a closed subgroup of G, let C be an open subgroup of G,
and let A and B be two H-algebras. For g ∈ G let

λg : IndCCgH
A→

⊕

g̈′∈H\G/C
IndC

Cg
′
H

A and ρg :
⊕

g̈′∈H\G/C
IndC

Cg
′
H

B → IndCCgH
B

denote the canonical C-equivariant inclusions and projections, respectively.
Then, using the direct sum decomposition provided by Lemma 6.3, the diagram

KKH
∗ (A,B)

iGH−−−−→ KKG
∗ (IndGH A, IndGH B)

resH
C
g
H

y
yresGC

KK
CgH∗ (A,B) KKC

∗ (
⊕

IndC
Cg
′
H

A,
⊕

IndC
Cg
′′
H

B)

iC
C
g
H

y
yρ∗g

KKC
∗ (IndCCgH

A, IndCCgH
B) ←−−−−

λg,∗
KKC
∗ (
⊕

IndC
Cg
′
H

A, IndCCgH
B)
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commutes (here the restriction resH
CgH

: KKH
∗ (A,B) → KK

CgH∗ (A,B) is defined

by first restricting to H∩gCg−1 = gCgHg
−1 and then identifying this group with

CgH via conjugation). Moreover, if Hg′C 6= HgC, then [λg] ⊗ resGC ◦iGH(α) ⊗
[ρg′ ] = 0 for all α ∈ KKH

∗ (A,B).

Proof. Note that for the proof of the commutativity of the above diagram we
may replace A by any H-algebra A′ which is H-equivariantly Morita equivalent
to A (a similar statement holds for B, but we only need this for A). This follows
easily from the fact that any H-equivariant Morita equivalence X between two
H-algebras A and A′ induces to a G-equivariant Morita equivalence IndGH X
between IndGH A and IndGH A

′, which by Lemma 6.3 also has a C-equivariant
direct sum decomposition. Using this one checks that each map in the above
diagram commutes with the respective Morita equivalences.
Replacing A by the Morita equivalent H-algebra A ⊗ K(L2(H)), if necessary
(with action given by α ⊗ Adλ, where α : H → Aut(A) denotes the given
action on A and λ denotes the right regular representation of H), we can
now use Meyer’s result [20, Proposition 3.2] in order to assume that every
α ∈ KKH

∗ (A,B) can be represented by a Kasparov triple (E ,Φ, T ) ∈ EH(A,B)
such that Φ(A)E = E and such that T is H-equivariant. Using the formulas
for the definitions of iGH and iC

CgH
, respectively (see §2), it follows from the

decomposition of IndGH E as given in Lemma 6.3 and the H-equivariance of T ,
that

resGC
(

IndGH E , IndGH Φ, T̃
) ∼=

( ⊕

H\G/C
IndCCgH

Eg,
⊕

H\G/C
IndCCgH

Φg,
⊕

H\G/C
T̃g

)

in EC(IndGH A, IndGH B), where (Eg,Φg, Tg) denotes the cycle in EC
g
H∗ (A,B) ob-

tained by first restricting the H action to gCg−1 ∩ H, and then identifying
gCg−1 ∩ H with CgH via the isomorphism given by conjugation with g. The
result now follows immediately from this decomposition.

The next result will be extended to arbitrary groups in §7 below (see Propo-
sition 7.1). We only need here the weaker version where we assume that G is
an almost connected group. As for the induction homomorphism, the proof
of the general case will be done by a reduction to this case where G is almost
connected.

Lemma 6.5. Let G be an almost connected group and let B = limiBi be an
inductive limit of G-algebras Bi, i ∈ I (with G-equivariant structure maps).
Then

Ktop
∗ (G;B) ∼= lim

i
Ktop
∗ (G;Bi),

where the isomorphism is obtained from the morphisms fi,∗ : Ktop
∗ (G;Bi) →

Ktop
∗ (G;B), which are induced by the canonical maps fi : Bi → B.
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Proof. Because G is almost connected, the functor which associates to a G-
algebra the corresponding reduced crossed-product algebra is continuous with
respect to taking inductive limits (in fact this holds whenever G is an exact
group in the sense of [18]). We also know that G has a γ-element. So the lemma
is an immediate consequence of the isomorphism Ktop

∗ (G;B) ∼= γ
(

K∗(BorG)
)

of Lemma 6.1 and of the continuity of K-theory ([4]).

We now come back to the proof of Theorem 2.2. As noted before, we use E(G)×
E(G/G0) as a universal example for the proper actions of G and H (see Lemmas
5.3 and 2.4 above), and assume that E(G/G0) has the simplicial structure
described in Proposition 5.2. As mentioned before, we can do this because
G/G0 is totally disconnected and, therefore, it has a compact open subgroup.
In the following, we denote by FG the family of all subsets of E(G/G0) which
are G-saturation of finite unions of simplices of E(G/G0) (cf. Lemma 5.6, the
subscript here is to prevent confusion between G- and H-actions).
As shown in Lemma 5.6, we can use FG to compute Ktop

∗ (G; IndGH B) in the
following way:

Ktop
∗ (G; IndGH B) = lim−→

Z∈FG

lim−→
Y⊂E(G)×Z
Y G−compact

KKG
∗
(
C0(Y ), IndGH B

)
. (6.2)

But since E(G)× E(G/G0) (with action restricted to H) serves also as a real-
ization of the universal example for proper H-actions, we can use FG also for
the computation of Ktop

∗ (H;B):

Ktop
∗ (H;B) = lim−→

Z∈FG

lim−→
Y⊂E(G)×Z
Y G−compact

lim−→
X⊂Y

X H−compact

G·X=Y

KKH
∗
(
C0(X), B

)
. (6.3)

The above formulas correspond to those of Lemma 5.6. Although these for-
mulas look a bit complicated, they offer the advantage of breaking down the
computation of the two topological K-theories into pieces which correspond to
each other via the induction morphism and on which we can do an induction
argument on the dimension dim(Z) of the elements Z ∈ FG.
In effect, using the above notations, note that C0(Y ) = F ∗ ◦ IndGH

(
C0(X)

)
,

where F : G ×H X → E(G) × E(G/G0) is defined by F ([s, x]) = s · x.
Thus, it follows from the definition of the induction homomorphism that, on
KKH
∗ (C0(X), B), it factorizes via the diagram

KKH
∗ (C0(X), B)

F∗◦iGH−−−−→ KKG
∗ (C0(Y ), IndGH B)

y
y

Ktop
∗ (H;B) −−−−→

IndGH

Ktop
∗ (G; IndGH B).
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In what follows next we will simply write IndGH for the map F ∗◦iGH in the above
diagram. Hence, in view of formula (6.2) and (6.3), the conclusion of Theorem
2.2 will follows from:

Proposition 6.6. For each Z ∈ FG, the induction map IndGH induces an
isomorphism

lim−→
Y⊂E(G)×Z
Y G−compact

lim−→
X⊂Y

X H−compact

G·X=Y

KKH
∗
(
C0(X), B

) IndGH−→ lim−→
Y⊂E(G)×Z
Y G−compact

KKG
∗
(
C0(Y ), IndGH B

)
.

As mentioned earlier, we want to use induction on n = dim(Z). As in the
proof of Proposition 5.9, we introduce the following notations: Z0 is the G/G0-
saturation of the interiors of the simplices of dimension n generating Z, Z1 =
Z r Z0; and we put

Y0 = Y ∩ (E(G)× Z0); X0 = X ∩ (E(G)× Z0);

Y1 = Y ∩ (E(G)× Z1); X1 = X ∩ (E(G)× Z1).

Note that

C0(Y ) = F ∗ ◦ IndGH
(
C0(X)

)
, C0(Y0) = F ∗ ◦ IndGH

(
C0(X0)

)
,

and C0(Y1) = F ∗ ◦ IndGH
(
C0(X1)

)
,

and that we have the exact sequences:

δ : 0 −−−−→ C0(X0) −−−−→ C0(X) −−−−→ C0(X1) −−−−→ 0 , and

d : 0 −−−−→ C0(Y0) −−−−→ C0(Y ) −−−−→ C0(Y1) −−−−→ 0.

Each of these two short exact sequences gives rise to a long exact sequence
in equivariant KK-theory, which are linked by the induction homomorphisms
IndGH :
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KKH
i+1

(
C0(X1), B

) IndGH
��

� �

KKG,N
i+1

(
C0(Y1), IndGH B

)
� �

KKH
i

(
C0(X0), B

) IndGH
��

� �

KKG,N
i

(
C0(Y0), IndGH B

)
� �

KKH
i

(
C0(X), B

) IndGH
��

� �

KKG,N
i

(
C0(Y ), IndGH B

)
� �

KKH
i

(
C0(X1), B

) IndGH
��

� �

limY KKG,N
i

(
C0(Y1), IndGH B

)
� �

KKH
i−1

(
C0(X0), B

) IndGH
��

� �

KKG,N
i−1

(
C0(Y0), IndGH B

)
� �

� � � �

(6.4)

We need

Lemma 6.7. The above diagram commutes.

Proof. The only slight difficulty arises at the square

KKH
i+1(C0(X1), B)

IndGH−−−−→ KKG
i+1(C0(Y1), IndGH B)

[δ]⊗
x

x[d]⊗

KKH
i (C0(X0), B)

IndGH−−−−→ KKG
i (C0(Y0), IndGH B).

(6.5)

By the naturality of the boundary maps, we may assume without loss of gen-
erality that Y = G ×H X (and then Yi = G ×H Xi, i = 0, 1), and that IndGH
coincides with Kasparov’s induction iGH . We then follow the constructions in
the proof of Lemma 5.17: Define the spaces

T =
(
X×[0, 1[

)
r
(
X0×]0, 1[

)
and W =

(
(G×HX)×[0, 1[

)
r
(
(G×HX0)×]0, 1[

)
.

Let eX : C0(X0) → C0(T ) and eG×HX : C0(G ×H X0) → C0(W ) denote the
canonical inclusions, and let iX and iG×HX denote the canonical inclusions of
C0

(
X1×]0, 1[

)
and C0

(
(G×H X1)×]0, 1[

)
into C0(T ) and C0(W ), respectively.

A short computation shows that [eG×HX ] = iGH([eX ]) and [iG×HX ] = iGH([iX ])
(where H and G act trivially on [0, 1]). Moreover, we know from the discussion
in the proof of Lemma 5.17 that [eX ] and [eG×HX ] are KK-equivalences and
that

[eX ]⊗[δ] = σC0(X1)(β)⊗[iX ] and [eG×HX ]⊗[d] = σC0(G×HX1)(β)⊗[iG×HX ],
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where β ∈ KK1

(
C, C0(]0, 1[)

)
denotes the Bott-element, viewed as an element

of the equivariant KK-groups with respect to the trivial group actions. Using
the fact that iGH preserves Kasparov products, we now get

[eG×HX ]⊗ [d] = σC0(G×HX1)(β)⊗ [iG×HX ]

= iGH
(
σC0(X1)(β)⊗ [iX ]

)

= iGH
(
[eX ]⊗ δ

)

= [eG×HX ]⊗ iGH([δ]).

Since [eG×HX ] is a KK-equivalence, it follows that [d] = iGH([δ]), which easily
implies the commutativity of (6.5).

We are now taking limits of Diagram (6.4): First we are taking the inductive
limit over the H-compact sets X such that X ⊂ Y and G ·X = Y , and then
we take the limit over the G-compact subsets Y of E(G) × Z. As a result, we
obtain the commutative diagram

limY limX KKG
i+1

(
C0(X1), B

) IndGH
��

� �

limY KKG,N
i+1

(
C0(Y1), IndGH B

)
� �

limY limX KKG
i

(
C0(X0), B

) IndGH
��

� �

limY KKG,N
i

(
C0(Y0), IndGH B

)
� �

limY limX KKG
i

(
C0(X), B

) IndGH
��

� �

limY KKG,N
i

(
C0(Y ), IndGH B

)
� �

limY limX KKG
i

(
C0(X1), B

) IndGH
��

� �

limY KKG,N
i

(
C0(Y1), IndGH B

)
� �

limY limX KKG
i−1

(
C0(X0), B

) IndGH
��

� �

limY KKG,N
i−1

(
C0(Y0), IndGH B

)
� �

� � � �

Using the same induction argument as in the proof of Proposition 5.16 of the
previous section (based on the Five Lemma), the demonstration of Proposition
6.6, and hence the proof of Theorem 2.2 reduces to show

Lemma 6.8. Let Z be an element of the family FG.

(i) If dim(Z) > 0, then the map

lim lim KKH
i

(
C0(X0), B

) IndGH−→ lim KKG
i

(
C0(Y0), IndGH B

)
−→

Y⊂E(G)×Z
Y G−compact

−→
X⊂Y

X H−compact

G·X=Y

−→
Y⊂E(G)×Z
Y G−compact
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is a bijection.

(ii) If dim(Z) = 0, then the map

lim lim KKH
i

(
C0(X), B

) IndGH−→ lim KKG
i

(
C0(Y ), IndGH B

)
−→

Y⊂E(G)×Z
Y G−compact

−→
X⊂Y

X H−compact

G·X=Y

−→
Y⊂E(G)×Z
Y G−compact

is a bijection.

Proof. We will only show part (i), since part (ii) follows by almost the same (but
somewhat easier) arguments. So assume that dim(Z) > 0. By the definition of
FG, the space Z0 is a disjoint union of finitely many spaces Z i0, i = 1, 2, ..., k,

each of the form Zi0 = G/G0·
o

Si, where the Si are simplices of dimensions
dim(Z) of E(G/G0). Setting Zi = G/G0 · Si, Y i0 = Y ∩ (E(G/G0) × Zi0) and
Xi

0 = X ∩ Y i0 , we obtain finite partitions of Y0 and of X0:

C0(Y ) =

k⊕

i=1

C0(Y i0 ) and C0(X) =

k⊕

i=1

C0(Xi
0).

Note that these decompositions are compatible with the morphism IndGH , so
it is enough to give a proof of Lemma 6.8 in the case where Z is the G/G0-
saturation of a single simplex S of E(G/G0). Further, the inductive limits over
Y are taken over the G-compact subspaces of E(G) × Z. But any such space
can be embedded in a G-compact set of the special form Y = G · (K × S),
where K is a compact subset of E(G). Hence, we can assume that every set Y
which appears in the formula of the inductive limit is of this special kind.
Denote by Ċ the stabilizer of S under the action of G/G0, and let C :=
q−1(Ċ) ⊆ G. Then

Y = G · (K × S) = G ·
(
(C ·K)× S

)
and Y0 = G×C

(
(C ·K)×

o

S
)
.

For every double coset g̈ ∈ H\G/C, we consider the space

Y g̈ = Hg · (C ·K × S).

It is a closed H-invariant subspace of Y , and any H-compact subspace X of Y
can be written as

X = ∪g̈∈FXX g̈, with X g̈ := X ∩ Y g̈,

where FX is a finite subset of H\G/C. Put X g̈
0 = X g̈ ∩ Y0. We record the

fact that each X g̈ is an H-compact subspace of Y g̈, and that X0 is the disjoint
union of the X g̈

0 , g̈ ∈ FX . As a consequence, we get

KKH
∗
(
C0(X0), B

)
=
⊕

g̈∈FX
KKH
∗
(
C0(X g̈

0 ), B
)
.
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Moreover, any H-compact subset of Y g̈ = Hg · (C ·K × S) can be realized as
a subset of an H-compact set of the form Hg · (L×S), for L a compact subset
of C ·K satisfying C · L = C ·K. Thus, when taking the inductive limit over
the H-compact sets X which satisfy G · X = Y , we can always enlarge X in
order to assume that for every g̈ ∈ FX , X g̈ = Hg · (L× S), for some compact
subset L ⊆ C ·K such that C · L = C ·K. Moreover, it follows from this that

X g̈
0 = Hg · (L×

o

S). Thus, we obtain:

lim−→
X⊂Y=G·(K×S)

XH−compact

GX=Y

KKH
i

(
C0(X0), B

)
=

⊕

g̈∈H\G/C

lim−→
L⊂C·K
compact

C·L=C·K

KKH
i

(
C0(Hg · (L×

o

S)), B
)
.

Hence, in order to prove the first part of the lemma, it is enough to show the
bijectivity of

lim−→
K⊂E(G)

compact

⊕

g̈

lim−→
L⊂C·K
compact

C·L=C·K

KKH
i

(
C0(Hg ·(L×

o

S)), B
) IndGH−→ lim−→

K⊂E(G)

compact

KKG
i

(
C0(G·(K×

o

S)), IndGHB
)
.

(6.6)

We already noticed that Y0 = G · (K×
o

S) is canonically G-homeomorphic to

the induced space Y0 = G×C (C ·K×
o

S). Correspondingly, we now check that

X g̈
0 = Hg · (L×

o

S) is also an induced space. The composition

X g̈
0 = Hg · (L×

o

S)
π2→ Hg·

o

S → H/(gCg−1 ∩H)
hg · (l, s) 7→ hgs 7→ h(gCg−1 ∩H)

is an H-equivariant map, and the pre-image of the coset gCg−1 ∩ H of the

identity is π−1
2 (g·

o

S) = g · (CgH · L×
o

S), where CgH is the group C ∩ g−1Hg .

Applying Proposition 5.12, we see that X g̈
0 is H-homeomorphic to the induced

space H ×gCg−1∩H
(
g · (CgH · L×

o

S)
)
, with H-homeomorphism given by

X g̈
0 = Hg · (L×

o

S) → H ×gCg−1∩H
(
g · (CgH · L×

o

S)
)

hg · (l, s) 7→
(
h, g · (l, s)

)

Let ϕH := Bott ◦ compH
CgH

be the composition of the sequence of isomorphisms

KKH
i

(
C0(Hg · (L×

o

S)), B
) compH

C
g
H−−−−−→ KK

CgH
i

(
C0(CgH · L×

o

S), B
)

Bott−−−−→ KK
CgH
i+n

(
C0(CgH · L), B

)
,

where n = dim(S). Here the compression isomorphism compH
CgH

has to be

understood as the composition of the compression

compHH∩gCg−1 : KKH
∗
(
C0(X g̈

0 ), B
)
→ KKH∩gCg−1

∗
(
C0(g · (CgH · L×

o

S), B
)
,
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and then making the identification

KKH∩gCg−1

∗
(
C0(g · (CgH · L×

o

S), B
) ∼= KK

CgH∗
(
C0(CgH · L×

o

S), B
)
,

which comes from identifying CgH with H∩gCg−1 via conjugation with g (please
compare with the definition of the restriction map in Lemma 6.4). In particular,
we regard B as a CgH -algebra by setting g−1hg · b := h · b for h ∈ gCg−1 ∩H.
By first taking the direct limit over the compact subsets L ⊆ C ·K, then taking
the algebraic direct sum over the double cosets of H\G/C, and eventually
taking the inductive limit over the compact subsets K ⊆ E(G), we then obtain
an isomorphism

lim−→
K⊂E(G)

compact

⊕

g̈

lim−→
L⊂C·K
compact

C·L=C·K

KKH
i

(
C0(X g̈

0 ), B
) ϕH−→ lim−→

K⊂E(G)

compact

⊕

g̈

lim−→
L⊂C·K
compact

C·L=C·K

KK
CgH
i+n

(
C0(CGH ·L), B

)
.

Note that the direct limit over K and the direct sum over g̈ ∈ H\G/C can be
permuted in the right-hand side term. Thus we get

lim−→
K⊂E(G)

compact

⊕

g̈∈H\G/C

lim−→
L⊂C·K
compact

C·L=C·K

KK
CgH
i+n

(
C0(CGH · L), B

)
=

⊕

g̈∈H\G/C

Ktop
i+n(CgH ;B).

In the end, we see that the left-hand side of (6.6) is isomorphic to⊕

g̈∈H\G/C
Ktop
i+n(CgH ;B).

On the right-hand side of (6.6) we have a corresponding sequence of
isomorphisms: We first consider the composition ϕG := compGC ◦Bott of the
sequence of isomorphisms

KKG
i

(
C0(Y0), IndGH B

) compGC−−−−→ KKC
i

(
C0(C ·K×

o

S), IndGH B
)

Bott−−−−→ KKC
i+n

(
C0(C ·K), IndGH B

)
.

Exactly as above, taking the direct limit over the compact subsets K of E(G),
we obtain an isomorphism for the right-hand side of (6.6):

lim KKG
i

(
C0(G·(K×

o

S)), IndGH B
)

−→
K⊂E(G)

compact

ϕG
��

lim KKC
i+n

(
C0(C ·K), IndGHB

)
−→

K⊂E(G)

compact

∼=
��

Ktop
i+n(C; IndGH B)
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On the other hand, we can use Lemma 6.3 to see that IndGH B is C-isomorphic

to the direct sum
⊕

g̈∈H\G/C
IndCCgH

B. But C is a compact extension of G0, so it

is almost connected . Therefore, Lemma 6.5 implies that

Ktop
∗ (C; IndGH B) ∼= Ktop

∗ (C;
⊕

g̈∈H\G/C
IndCCgH

B) ∼=
⊕

g̈∈H\G/C
Ktop
∗ (C; IndCCgH

B).

Let us now consider the following diagram, where the top line is the map (6.6)

lim−→
Y

⊕
g̈

lim−→
Xg̈⊂Y g̈

KKH
i

(
C0(X g̈

0 ), B
)

IndGH−−−−→ lim−→
Y

KKG
i

(
C0(Y0), IndGH B

)

ϕG

y
ϕH

y Ktop
i+n(C; IndGH B)

∼=
y

⊕
g̈∈H\G/C

Ktop
i+n(CgH ;B) −−−−−−→⊕

IndC
C
g
H

⊕
g̈∈H\G/C

Ktop
i+n(C; IndCCgH

B)
.

(6.7)

The columns of (6.7) are bijections. The bottom line (obtained from the induc-
tion morphisms from CgH to C) is an isomorphism by Lemma 6.2, since C has
a γ-element. Hence, to obtain that the map in (6.6) is an isomorphism, and
thus to conclude the proof of the lemma, we just have to show that Diagram
(6.7) commutes.

For this let g be any element in G, let K be a compact subset of E(G), and let
L be a compact subset of C ·K such that C · L = C ·K. Let

X g̈
0 = Hg · (L×

o

S) and Y0 = G×C (C · L×
o

S).

For each g′′ ∈ G let ρg′′ :
⊕

IndC
Cg
′
H

B → IndC
Cg
′′
H

B denote the canonical pro-

jection. To see that (6.7) commutes, we have to verify the following two state-
ments:
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(i) The diagram

KKH
i

(
C0(X g̈

0 ), B
) IndGH−−−−→ KKG

i

(
C0(Y0), IndGH B

)

compH
C
g
H

y
ycompGC

KK
CgH
i

(
C0(CgH · L×

o

S), B
)

KKC
i

(
C0(C ·K×

o

S), IndGH B
)

y⊗Bott

⊗Bott

y KKC
i+n

(
C0(C ·K), IndGH B

)
yρ∗g

KK
CgH
i+n

(
C0(CgH · L), B

)
−−−−→
IndC

C
g
H

KKC
i+n

(
C0(C ·K), IndCCgH

B
)

commutes, and

(ii) The composition

KKH
i

(
C0(X g̈

0 ), B
) IndGH−−−−→ KKG

i

(
C0(Y0), IndGH B

)

compGC−−−−→ KKC
i

(
C0(C ·K×

o

S), IndGH B
)

Bott−−−−→ KKC
i+n

(
C0(C ·K), IndGH B

)

ρg′′−−−−→ KKC
i+n

(
C0(C ·K), IndC

Cg
′′
H

B
)

is the zero homomorphism whenever g′′ /∈ HgC.

If β ∈ KKn(C, C0(
o

S)) denotes the Bott-element, then the first condition is just
the equation

β ⊗ compGC ◦ IndGH(α)⊗ [ρg] = IndCCgH
(β ⊗ compHCgH

(α)),

for all α ∈ KKH
i

(
C0(X g̈

0 ), B
)
. Since C acts trivially on

o

S, we can permute

IndCCgH
and the product with the Bott element β. Thus, the problem reduces

to showing that

compGC ◦ IndGH(α)⊗ [ρg] = IndHCgH
◦ compHCgH

(α). (6.8)

In order to check this equation, it is useful to introduce the following notations:

• F1 is the G-equivariant map appearing in the definition of IndGH :

F1 : G×H X g̈
0 → Y0 ⊂ E(G)× E(G/N)

[g1, hg · (l, s)] 7→ g1hg · (l, s),

where we used the equation X g̈
0 = Hg(L×

o

S).
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• i1 is the C-equivariant inclusion used to define compGC

i1 : C · L×
o

S → G×C (C · L×
o

S) ∼= Y0,

• i2 is the CgH -equivariant inclusion in the definition of compH
CgH

i2 : CgH · L×
o

S → X g̈
0 = Hg · (L×

o

S)
(c · l, s) 7→ gc · (l, s),

• F2 is the C-equivariant map in the definition of IndCCgH

F2 : C ×CgH (CgH · L×
o

S) → C · L×
o

S
[c, (c′ · l, s)] 7→ (c′c · l, s).

We will also use that i2 induces a C-equivariant injection

I2 : C ×CgH (CgH · L×
o

S) → C ×CgH (X g̈
0 ) = C ×CgH

(
Hg · (L×

o

S)
)

[c1, (c2 · l, s)] 7→ [c1, gc2 · (l, s)].
and we will denote by i3 the C-equivariant inclusion

i3 : C ×CgH X
g̈
0 → G×H (X g̈

0 )

[c, x] 7→ [cg−1, x].

Writing the KK-classes defined by these maps with the same letters, Equation
(6.8) becomes:

[i1]⊗ resGC([F1]⊗ iGH(α))⊗ [ρg] = [F2]⊗ iCCgH ([i2]⊗ resHCGH
(α)).

Since [I2] = Ind
CgH
C ([i2]), this is equivalent to:

[i1]⊗ resGC([F1])⊗ resGC(IndGH(α))⊗ [ρg] = [F2]⊗ [I2]⊗ IndCCgH
(resHCGH

(α)).

(6.9)

A short computation shows that [i1]⊗resGC([F1]) = [F2]⊗[I2]⊗[i3] (just compute
the compositions of the associated ∗-homomorphisms). Thus, Equation (6.9)
reduces to:

[i3]⊗ resGC(iGH(α))⊗ [ρg] = iCCgH
(resHCGH

(α)).

Note now that i3,∗ coincides with the canonical inclusion

λg : IndCCgH
C0(X g̈

0 )→
⊕

g′

IndC
Cg
′
H

C0(X g̈
0 ) ∼= resGC(IndGH C0(X g̈

0 )),

of Lemma 6.4, so that the last equality follows from the statement of that
lemma.
We now have verified statement (i). Using the above computations, the proof
of statement (ii) follows from the equation [i3] ⊗ resGC(iGH(α)) ⊗ [ρ′′g ] = 0, for
g′′ /∈ HgC, which is also a consequence of Lemma 6.4.
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7 Continuity of topological K-theory

The aim of this short section is to state and prove a generalization of Lemma
6.5 which is used in [7]. In a similar way as in §5-6 above, we obtain the result
by using E(G) × E(G/G0) as a universal example for the proper actions of
G, where we assume that E(G/G0) is a simplicial complex (compare with the
discussions preceding Proposition 6.6).

Proposition 7.1. Let G be a group, let (Bi, fij) be an inductive system of
G-algebras, and let B = limBi. Then

Ktop
∗ (G;B) ∼= lim

i
Ktop
∗ (G;Bi),

where the isomorphism is obtained from the morphisms fi,∗ : Ktop
∗ (G;Bi) →

Ktop
∗ (G;B) induced by the canonical maps fi : Bi → B.

Proof. Let f∗ : limi Ktop
∗ (G;Bi)→ Ktop

∗ (G;B) be the homomorphism induced
by the morphisms fi : Bi → B, using the covariance of the topological K-
theory groups as a functor on the category of G-C∗-algebras and the universal
property of the inductive limit. We want to show that f ∗ is an isomorphism.
For every proper G-space X, let

f∗X : lim
i

KKG
∗
(
C0(X), Bi

)
→ KKG

∗
(
C0(X), B

)

denote the canonical morphism on the level of X. Since the structure maps for
taking the limits over X are given by left Kasparov products and the structure
maps for taking limits over the Bi are given by right Kasparov products, it
follows from the associativity of the Kasparov product that the limits can be
permuted. Thus, the map f∗ can be computed via the maps f∗X by

lim
X

(
lim
i

KKG
∗ (C0(X), Bi)

)
f∗X−→ lim

X
KKG
∗ (C0(X), B), (7.1)

where X runs through the G-compact subsets of E(G) × E(G/G0), which we
use as a realization of the universal example for the proper actions of G.
As before, let F denote the family of all G-saturations Z of finite unions of
simplices in E(G/G0). It follows then from Lemma 5.6 that

Ktop
∗ (G;Bi) = lim

Z∈F
lim
X

KKG
∗
(
C0(X), Bi

)
and

Ktop
∗ (G;B) = lim

Z∈F
lim
X

KKG
∗
(
C0(X), B

)
,

where X runs through the G-compact subsets of E(G)×Z such that π2(X) = Z,
and where π2 : E(G) × E(G/G0) → E(G/G0) denotes the projection onto the
second factor. Combining these formulas with (7.1), the result will follow if we
can show that for each Z ∈ F the map

lim
X⊆E(G)×Z
X G−compact

π2(X)=Z

lim
i

KKG
∗ (C0(X), Bi)

f∗X−→ lim
X⊆E(G)×Z
X G−compact

π2(X)=Z

KKG
∗ (C0(X), B) (7.2)
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is an isomorphism. We write Z0 for the union of the interiors
o

S of simplices S
in Z of maximal dimension, and we put Z1 = Z r Z0,

X0 = X ∩
(
E(G)× Z0

)
and X1 = X ∩

(
E(G)× Z1

)
.

Doing a similar, but much easier Five-Lemma argument as in the previous
sections (compare with the discussions preceding Lemma 6.8), the result will
follow if we can show that the following two statements are true:

(i) Assume that Z is generated by a single simplex S in E(G/G0) with
dim(S) > 0. Then

lim
X⊆E(G)×Z
X G−compact

π2(X)=Z

lim
i

KKG
∗ (C0(X0), Bi)

f∗X0−→ lim
X⊆E(G)×Z
X G−compact

π2(X)=Z

KKG
∗ (C0(X0), B)

is bijective.

(ii) Assume that Z is the orbit of a single vertex in E(G/G0). Then the map
in (7.2) is bijective.

Again, the proof of (ii) is slightly easier than the proof of (i) (because we don’t
have to deal with the Bott-map), so we concentrate on (i). By the structure of
Z, we have

Z0 = G/G0·
o

S∼= (G/G0)×Ċ
o

S,

where
o

S denotes the interior of the single simplex S generating Z and Ċ ⊆
G/G0 denotes the stabilizer of S. Thus, if X is a G-compact subset of E(G)×Z
such that π2(X) = Z, then it follows from Proposition 5.12 that X0 is G-

homeomorphic to the induced spaceG×C
(
X ∩ π−1

2 (
o

S)
)
, where C := q−1(Ċ) ⊆

G. Enlarging X, if necessary, we may further assume that X ∩ π−1
2 (

o

S) =

C · K×
o

S for some compact subset K ⊆ E(G). Thus, using compression
and Bott-periodicity, and taking the limit over X, we obtain the following
commutative diagram

lim
K,i

KKG
∗
(
C0

(
G×C (C·K×

o

S)
)
, Bi
) f∗X0−−−−→ lim

K
KKG
∗
(
C0

(
G×C (C·K×

o

S)
)
, B
)

Bott ◦ compGC

y∼= ∼=
yBott ◦ compGC

lim
K

lim
i

KKC
∗
(
C0(C ·K), Bi

) f∗C·K−−−−→ lim
K

KKC
∗
(
C0(C ·K), B

)

∼=
y

y∼=

lim
i

Ktop
∗ (C;Bi)

f∗−−−−→ Ktop
∗ (C;B),

where K runs through the compact subsets of E(G). Note that the left-hand
lower vertical isomorphism is given by permuting the limits. The top horizontal
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line coincides with the map in Item (i) above. Thus, since the bottom horizontal
row is an isomorphism by Lemma 6.5 (again, here C is almost connected), the
result follows.
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Abstract. A tetragonal canonical curve is the complete intersection
of two divisors on a scroll. The equations can be written in ‘rolling
factors’ format. For such homogeneous ideals we give methods to
compute infinitesimal deformations. Deformations can be obstructed.
For the case of quadratic equations on the scroll we derive explicit base
equations. They are used to study extensions of tetragonal curves.
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An easy dimension count shows that not all canonical curves are hyperplane
sections of K3 surfaces. A surface with a given curve as hyperplane section is
called an extension of the curve. With this terminology, the general canonical
curve has only trivial extensions, obtained by taking a cone over the curve. In
this paper we concentrate on extensions of tetragonal curves.
The extension problem is related to deformation theory for cones. This is best
seen in terms of equations. Suppose we have coordinates (x0 : · · · : xn : t) on
Pn+1 with the special hyperplane section given by t = 0. We describe an
extension W of a variety V : fj(xi) = 0 by a system of equations Fj(xi, t) = 0
with Fj(xi, 0) = fj(xi). We write Fj(xi, t) = fj(xi) + tf ′j(xi) + · · · + ajt

dj ,
where dj is the degree of Fj . Considering (x0, . . . , xn, t) as affine coordinates
on Cn+1 × C we can read the equations in a different way. The equations
fj(xi) = 0 define the affine cone C(V ) over V and Fj(xi, t) = 0 describes a 1-
parameter deformation of C(V ). The corresponding infinitesimal deformation
is fj(xi) 7→ f ′j(xi), which is a deformation of weight −1. Conversely, given a
1-parameter deformation Fj(xi, t) = 0 of C(V ), with Fj homogeneous of degree
dj , we get an extension W of V . For most of the cones considered here the
only infinitesimal deformations of negative weight have weight −1 and in that
case the versal deformation in negative weight gives a good description of all
possible extensions.
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As the number of equations typically is much larger than the codimension one
needs good ways to describe them. A prime example is a determinantal scheme
X: its ideal is generated by the t × t minors of an r × s matrix, which gives
a compact description of the equations. Following Miles Reid we call this a
format. Canonical curves are not themselves determinantal, but they do lie on
scrolls: a k-gonal curve lies on a (k − 1)-dimensional scroll, which is given by
the minors of a 2× (g − k + 1) matrix. For k = 3 the curve is a divisor on the
scroll, given by one bihomogeneous equation, and for k = 4 it is a complete
intersection, given by two bihomogeneous equations. In these cases there is a
simple procedure (‘rolling factors’) to write out one resp. two sets of equations
on Pg−1 cutting out the curve on the scroll.

Powerful methods exist to compute infinitesimal deformations without using
explicit equations. We used them for the extension problem for hyperelliptic
curves of high degree [Stevens 1996] and trigonal canonical curves [Drewes–
Stevens 1996]. In these papers also several direct computations with the equa-
tions occur. They seem unavoidable for tetragonal curves, the subject of a
preprint by James N. Brawner [Brawner 1996]. The results of these computa-
tions do not depend on the particular way of choosing the equations cutting
out the curve on the scroll. This observation was the starting point of this
paper.

We distinguish between different types of deformations and extensions. If only
the equations on the scroll are deformed, but not the scroll itself we speak of
pure rolling factors deformations. A typical extension lies then on the pro-
jective cone over the scroll. Such a cone is a special case of a scroll of one
dimension higher. If the extension lies on a scroll which is not a cone, the
equations of the scroll are also deformed. We have a rolling factors deforma-
tion. Finally if the extension does not lie on a scroll of one dimension higher
we are in the situation of a non-scrollar deformation. Non-scrollar extensions
of tetragonal curves occur only in connection with Del Pezzo surfaces. Not ev-
ery infinitesimal deformation of a scroll gives rise to a deformation of complete
intersections on it. One needs certain lifting conditions, which are linear equa-
tions in the deformation variables of the scroll. Our first main result describes
them, depending only on the coefficients of the equations on the scroll.

The next problem is to extend the infinitesimal deformations to a versal de-
formation. Here we restrict ourselves to the case that all defining equations
are quadratic. Our methods thus do not apply to trigonal curves, but we can
handle tetragonal curves. Rolling factors obstructions arise. Previously we ob-
served that one can write them down, given explicit equations on Pn [Stevens
1996, Prop. 2.12]. Here we give formulas depending only on the coefficients of
the equations on the scroll. As first application we study base spaces for hyper-
elliptic cones. The equations have enough structure so that explicit solutions
can be given.

Surfaces with canonical hyperplane sections are a classical subject. References
to the older literature can be found in Epema’s thesis [Epema 1983], which is
especially relevant for our purposes. His results say that apart from K3 surfaces
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only rational surfaces or birationally ruled surfaces can occur. Furthermore he
describes a construction of such surfaces. Extensions of pure rolling factors type
of tetragonal curves fit very well in this description. A general rolling factors
extension is a complete intersection on a nonsingular four-dimensional scroll.
The classification of such surfaces [Brawner 1997], which we recall below, shows
that surfaces with isolated singularities and in particular K3s can only occur
if the degrees of the equations on the scroll differ at most by 4. A tetragonal
curve of high genus with general discrete invariants has no pure rolling factors
deformations. Extensions exist if the base equations have a solution. For low
genus we have more variables than equations. For the maximal genus where
almost all curves have a K3 extension we find:

Proposition. The general tetragonal curve of genus 15 is hyperplane section
of 256 different K3 surfaces.

We also look at examples with genus 16 and 17. It is unclear to us which
property of a curve makes it have an extension (apart from the property of
being a hyperplane section).

The contents of this paper is as follows. First we describe the rolling factors
format and explain in detail the equations and relations for the complete inter-
section of two divisors on a scroll. Next we recall how canonical curves fit into
this pattern. In particular we describe the discrete invariants for tetragonal
curves. The same is done for K3 surfaces. The second section is devoted to
the computation of infinitesimal deformations. First non-scrollar deformations
are treated, followed by rolling factors deformations. The main result here de-
scribes the lifting matrix. As application the dimension of T 1 is determined for
tetragonal cones. In the third section the base equations for complete inter-
sections of quadrics on scrolls are derived. As examples base spaces for hyper-
elliptic cones are studied. The final section describes extensions of tetragonal
curves.

1. Rolling factors format.

A subvariety of a determinantal variety can be described by the determinantal
equations and additional equations obtained by ‘rolling factors’ [Reid 1989]. A
typical example is the case of divisors on scrolls.

We start with a k-dimensional rational normal scroll S ⊂ Pn (for the theory
of scrolls we refer to [Reid 1997]). The classical construction is to take k com-
plementary linear subspaces Li spanning Pn, each containing a parametrized
rational normal curve φi:P1 → Ci ⊂ Li of degree di = dimLi, and to take for
each p ∈ P1 the span of the points φi(p). The degree of S is d =

∑
di = n−k+1.

If all di > 0 the scroll S is a Pd−1-bundle over P1. We allow however that di = 0
for some i. Then S is the image of Pd−1-bundle S̃ over P1 and S̃ → S is a
rational resolution of singularities.

To give a coordinate description, we take homogeneous coordinates (s : t) on
P1, and (z(1) : · · · : z(k)) on the fibres. Coordinates on Pn are z(i)

j = z(i)sdi−jtj ,
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with 0 ≤ j ≤ di, 1 ≤ i ≤ k. We give the variable z(i) the weight −di. The
scroll S is given by the minors of the matrix

Φ =

(
z(1)

0 . . . z(1)

d1−1 . . . z(k)

0 . . . z(k)

dk−1

z(1)

1 . . . z(1)

d1
. . . z(k)

1 . . . z(k)

dk

)
.

We now consider a divisor on S̃ in the linear system |aH − bR|, where the

hyperplane class H and the ruling R generate the Picard group of S̃. When we
speak of degree on S̃ this will be with respect to H. The divisor can be given
by one bihomogeneous equation P (s, t, z(i)) of degree a in the z(i), and total
degree −b. By multiplying P (s, t, z(i)) with a polynomial of degree b in (s :t) we
obtain an equation of degree 0, which can be expressed as polynomial of degree
a in the z(i)

j ; this expression is not unique, but the difference of two expressions

lies in the ideal of the scroll. By the obvious choice, multiplying with sb−mtm,
we obtain b+ 1 equations Pm. In the transition from the equation Pm to Pm+1

we have to increase by one the sum of the lower indices of the factors z(i)

j in
each monomial, and we can and will always achieve this by increasing exactly
one index. This amounts to replacing a z(i)

j , which occurs in the top row of the

matrix, by the element z(i)

j+1 in the bottom row of the same column. This is
the procedure of ‘rolling factors’.

Example 1.1. Consider the cone over 2d− b points in Pd, lying on a rational
normal curve of degree d, with b < d. Let the polynomial P (s, t) = p0s

2d−b +
p1s

2d−b−1t + · · · + p2d−bt2d−b determine the points on the rational curve. We
get the determinantal ∣∣∣∣

z0 z1 . . . zd−1

z1 z2 . . . zd

∣∣∣∣

and additional equations Pm. To be specific we assume that b = 2c:

P0 = p0z
2
0 + p1z0z1 + · · ·+ p2d−2c−1zd−c−1zd−c + p2d−2cz

2
d−c

P1 = p0z0z1 + p1z
2
1 + · · ·+ p2d−2c−1z

2
d−c + p2d−2czd−czd−c+1

...
P2c = p0z

2
c + p1zczc+1 + · · ·+ p2d−2c−1zd−1zd + p2d−2cz

2
d .

The ‘rolling factors’ phenomenon can also occur if the entries of the matrix are
more general.

Example 1.2. Consider a non-singular hyperelliptic curve of genus 5, with
a half-canonical line bundle L = g2

1 + P1 + P2 where the Pi are Weierstrass
points. According to [Reid 1989], Thm. 3, the ring R(C,L) =

⊕
H0(C, nL) is

k[x1, x2, y1, y2, z1, z2]/I with I given by the determinantal

∣∣∣∣
x1 y1 x2

2 z1

x2 x2
1 y2 z2

∣∣∣∣
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and the three rolling factors equations

z2
1 = x2

1h+ y3
1 + x4

2y2

z1z2 = x1x2h+ y2
1x

2
1 + x2

2y
2
2

z2
2 = x2

2h+ y1x
4
1 + y3

2

where h is some quartic in x1, x2, y1, y2.

The description of the syzygies of a subvariety V of the scroll S proceeds in two
steps. First one constructs a resolution of O

Ṽ
by vector bundles on S̃ which

are repeated extensions of line bundles. Schreyer describes, following Eisenbud,
Eagon-Northcott type complexes Cb such that Cb(a) is the minimal resolution of

i∗
(
O
S̃

(−aH + bR)
)

as OPn -module, if b ≥ −1 [Schreyer 1986]. Here i: S̃ → Pn
is the map defined by H. The resolution of OV is then obtained by taking an
(iterated) mapping cone.
The matrix Φ defining the scroll can be obtained intrinsically from the multi-
plication map

H0O
S̃

(R)⊗H0O
S̃

(H −R) −→ H0O
S̃

(H) .

In general, given a map Φ:F → G of locally free sheaves of rank f and g
respectively, f ≥ g, on a variety one defines Eagon-Northcott type complexes
Cb, b ≥ −1, in the following way:

Cbj =

{∧j
F ⊗ Sb−jG, for 0 ≤ j ≤ b∧j+g−1

F ⊗Dj−b−1G
∗ ⊗∧g G∗, for j ≥ b+ 1

with differential defined by multiplication with Φ ∈ F ∗ ⊗G for j 6= b + 1 and∧g
Φ ∈ ∧g F ∗ ⊗ ∧g G for j = b + 1 in the appropriate term of the exterior,

symmetric or divided power algebra.
In our situation F ∼= OdPn(−1) and G ∼= O2

Pn with Φ given by the matrix of the
scroll. Then Cb(−a) is for b ≥ −1 the minimal resolution of O

S̃
(−aH + bR) as

OP-module [Schreyer 1986, Cor. 1.2].
Now let V ⊂ S ⊂ Pn be a ‘complete intersection’ of divisors Yi ∼ aiH −
biR, i = 1, . . . , l, on a k-dimensional rational scroll of degree d with bi ≥ 0.
The resolution of OV as OS-module is a Koszul complex and the iterated
mapping cone of complexes Cb is the minimal resolution [Schreyer 1986, Sect. 3,
Example].
To make this resolution more explicit we look at the case l = 2, which is relevant
for tetragonal curves. The iterated mapping cone is

[
Cb1+b2(−a1 − a2) −→ Cb1(−a1)⊕ Cb2(−a2)

]
−→ C0

To describe equations and relations we give the first steps of this complex. We
first consider the case that b1 ≥ b2 > 0. We write O for OPn . We get the
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double complex

O ←−
∧2Od(−1) ←−

∧3Od(−1)⊗O2

x
x

Sb1O
2(−a1)⊕Sb2O

2(−a2)←−Od(−1)⊗Sb1−1O2(−a1)⊕Od(−1)⊗Sb2−1O2(−a2)
x

Sb1+b2
O2(−a1−a2)

The equations for V consist of the determinantal ones plus two sets of additional
equations obtained by rolling factors: the two equations P (1), P (2) defining V
on the scroll give rise to b1 + 1 equations P (1)

m and b2 + 1 equations P (2)
m .

To describe the relations we introduce the following notation. A column in the
matrix Φ has the form (z(i)

j , z
(i)

j+1). We write symbolically (zα, zα+1), where the

index α stands for the pair (i)

j and α + 1 means adding 1 to the lower index.

More generally, if α = (i)

j and α′ = (i′)
j′ then the sum α + α′ := j + j′ only

involves the lower indices. To access the upper index we say that α is of type
i. The rolling factors assumption is that two consecutive additional equations
are of the form

Pm =
∑

α

pα,mzα,

Pm+1 =
∑

α

pα,mzα+1.

where the polynomials pα,m depend on the z-variables and the sum runs over
all possible pairs α = (i)

j . To roll from Pm+1 to Pm+2 we collect the ‘coefficients’
in the equation Pm+1 in a different way: we also have Pm+1 =

∑
α pα,m+1zα.

We write the scrollar equations as fαβ = zαzβ+1 − zα+1zβ . The relations
between them are

Rα,β,γ = fα,βzα − fα,γzβ + fβ,γzα,

Sα,β,γ = fα,βzα+1 − fα,γzβ+1 + fβ,γzα+1,

which corresponds to the term
∧3Od(−1) ⊗O2 in Schreyer’s resolution. The

second line yields relations involving the two sets of P (n)
m :

Rnβ,m = P (n)

m+1zβ − P (n)

m zβ+1 −
∑

α

fβ,αp
(n)

α,m,

where n = 1, 2 and 0 ≤ m < bi. We note the following relation:

Rnβ,mzγ −Rnβ,mzβ −
∑

Rnβ,γ,αp
(n)

α,m = P (n)

m fβ,γ − fβ,γP (n)

m .

The right hand side is a Koszul relation; the second factor in each product
is considered as coefficient. There are similar expressions involving zγ+1, zβ+1
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and Sβ,γ,α. Finally by multiplication with suitable powers of s and t the Koszul
relation P (1)P (2)−P (2)P (1) gives rise to b1 + b2 + 1 relations — this is the term
Sb1+b2O2(−a1 − a2).
In case b1 > b2 = 0 the resolution is

O ← ∧2Od(−1) ← ∧3Od(−1)⊗O2

x
x

Sb1O2(−a1)⊕O2(−a2) ← Od(−1)⊗ Sb1−1O2(−a1)⊕∧2Od(−1− a2)
x

Sb1O2(−a1 − a2)

The new term expresses the Koszul relations between the one equation P (2) and
the determinantal equations (which had previously been expressible in terms of
rolling factors relations). For the computation of deformations these relations
may be ignored.
Finally, if b2 = −1, the equations change drastically.

(1.3) Canonical curves [Schreyer 1986].
A k-gonal canonical curve lies on a (k−1)-dimensional scroll of degree d = g−
k+1. We write D for the divisor of the g1

k. To describe the type S(e1, ..., ek−1)
of the scroll we introduce the numbers

fi = h0(C,K − iD)− h0(C,K − (i+ i)D) = k + h0(iD)− h0((i+ 1)D)

for i ≥ 0 and set
ei = #{j | fj ≥ i} − 1 .

In particular, e1 is the minimal number i such that h0((i+ 1)D)− h0(iD) = k
and it satisfies therefore e1 ≤ 2g−2

k .
A trigonal curve lies on a scroll of type S(e1, e2) and degree d = e1 +e2 = g−2
with

2g − 2

3
≥ e1 ≥ e2 ≥

g − 4

3

as a divisor of type 3H − (g − 4)R. The minimal resolution of OC is given by
the mapping cone

Cd−2(−3) −→ C0 .

Introducing bihomogeneous coordinates (x : y; s : t) and coordinates xi =
xse1−iti, yi = yse2−iti we obtain the scroll

(
x0 x1 . . . xe1−1 y0 y1 . . . ye2−1

x1 x2 . . . xe1 y1 y2 . . . ye2

)

and a bihomogeneous equation for C

P = A2e1−e2+2x
3 +Be1+2x

2y + Ce2+2xy
2 +D2e2−e1+2y

3
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where A2e1−e2+2 is a polynomial in (s : t) of degree 2e1−e2 +2 and similarly for
the other coefficients. By rolling factors P gives rise to g − 3 extra equations.
The inequality e1 ≤ 2g−2

3 can also be explained from the condition that the
curve C is nonsingular, which implies that the polynomial P is irreducible, and
therefore the degree 2e2− e1 + 2 = 2g− 2− 3e1 of the polynomial D2e2−e1+2 is
nonnegative. The other inequality follows from this one because e1 = g−e2−2,
but also by considering the degree of A2e1−e2+2.
A tetragonal curve of genus g ≥ 5 is a complete intersection of divisors Y ∼
2H − b1R and Z ∼ 2H − b2R on a scroll of type S(e1, e2, e3) of degree d =
e1 + e2 + e3 = g − 3, with b1 + b2 = d− 2, and

g − 1

2
≥ e1 ≥ e2 ≥ e3 ≥ 0

We introduce bihomogeneous coordinates (x: y : z; s : t). Then Y is given by an
equation

P = P1,1x
2 + P1,2xy + · · ·+ P3,3z

2

with Pij (if nonzero) a polynomial in (s : t) of degree ei + ej − b1 and likewise
Z has equation

Q = Q1,1x
2 +Q1,2xy + · · ·+Q3,3z

2

with degQij = ei + ej − b2.
The minimal resolution is of type discussed above, because the condition −1 ≤
b2 ≤ b1 ≤ d−1 is satisfied: the only possibility to have a divisor of type 2H−bR
with b ≥ d is to have e1 = e2 = d/2, e3 = 0 and b = d, but then the equation
P is of the form αx2 + βxy + γy2 with constant coefficients, so reducible. If
b2 = −1 also cubics are needed to generate the ideal, so the curve admits also
a g1

3 or g2
5 ; this happens only up to g = 6. We exclude these cases and assume

that b2 ≥ 0.

Lemma 1.4. We have b1 ≤ 2e2 and b2 ≤ 2e3.

Proof . If b1 > 2e2 the polynomials P22, P23 and P33 vanish so P is reducible
and therefore C. If b2 > 2e3 then P33 and Q33 vanish. This means that the
section x = y = 0 is a component of Y ∩ Z on the P2-bundle whose image in
Pg−1 is the scroll (if e3 > 0 the scroll is nonsingular, but for e3 = 0 it is a cone).
As the arithmetic genus of Y ∩ Z is g and its image has to be the nonsingular
curve C of genus g, the line cannot be a component. ¤

This Lemma is parts 2 – 4 in [Brawner 1997, Prop. 3.1]. Its last part is incorrect.
It states that b1 ≤ e1 + e3 if e3 > 0, and builds upon the fact that Y has only
isolated singularities. However the discussion in [Schreyer 1986] makes clear
that this need not be the case.
The surface Y fibres over P1. There are now two cases, first that the general
fibre is a non-singular conic. In this case one of the coefficients P13, P23 or P33

is nonzero, giving indeed b1 ≤ e1 + e3.
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The other possibility is that each fibre is a singular conic. Then Y is a bi-
rationally ruled surface over a (hyper)elliptic curve E with a rational curve
E of double points, the canonical image of E, and C does not intersect E.
This means that the section E of the scroll does not intersect the surface Z,
so if one inserts the parametrisation of E in the equation of Z one obtains a
non-zero constant. Let the section be given by polynomials in (s : t), which if
nonzero have degree ds− e1, ds− e2, ds− e3. Inserting them in the polynomial
Q gives a polynomial of degree 2ds − b2. So b2 is even and 2ds = b2 ≤ 2e3.
On the other hand ds − e3 ≥ 0 so ds = e3 and b2 = 2e3. The genus of E
satisfies pa(E) = b2/2 + 1. If b1 > e1 + e3, then Y is singular along the section
x = y = 0. An hyperelliptic involution can also occur if b1 ≤ e1 + e3.

We have shown:

Lemma 1.5. If Y is singular, in particular if b1 > e1 + e3, then b2 = 2e3.

Finally we analyze the case b2 = 0 (cf. [Brawner 1996]).

Lemma 1.6. A nonsingular tetragonal curve is bi-elliptic or lies on a Del Pezzo
surface if and only if b2 = 0. The first case occurs for e3 = 0, and the second for
the values (2, 0, 0), (1, 1, 0), (2, 1, 0), (1, 1, 1), (3, 1, 0), (2, 2, 0), (2, 1, 1), (3, 2, 0),
(2, 2, 1), (4, 2, 0), (3, 2, 1) or (2, 2, 2) of the triple (e1, e2, e3).

Proof . If the curve is bielliptic or lies on a Del Pezzo, the g1
4 is not unique,

which implies that the scroll is not unique. This is only possible if b2 = 0 by
[Schreyer 1986], p. 127. Then C is the complete intersection of a quadric and
a surface Y of degree g − 1, which is uniquely determined by C.

The inequality e1 + e2 + e3 − 2 = b1 ≤ 2e2 shows that e3 ≤ e2 − e− 1 + 2 ≤ 2.
If the general fibre of Y over P1 is non-singular we have b1 ≤ e1 + e3. This
gives e2 ≤ 2 and b1 ≤ 4. The possible values are now easily determined. If
the general fibre of Y is singular then e3 = b2/2 = 0 and Y is an elliptic cone.
¤

(1.7) K3 surfaces.

Let X be a K3 surface (with at most rational double point singularities) on
a scroll. If the scroll is nonsingular the projection onto P1 gives an elliptic
fibration on X, whose general fibre is smooth. This is even true if the scroll is
singular: the strict transform X̃ on S̃ has only isolated singularities.

We start with the case of divisors. A treatment of such scrollar surfaces with
an elliptic fibration can be found in [Reid 1997, 2.11]. One finds:

Lemma 1.8. For the general F ∈ |3H−kR| on a scroll S(e1, e2, e3) the general
fibre of the elliptic fibration is a nonsingular cubic curve if and only if k ≤ 3e2

and k ≤ e1 + 2e3.

If one fixes k and e1 + e2 + e3 these conditions limit the possible distribution of
the integers (e1, e2, e3). By the adjunction formula one has k = e1+e2+e3−2 for
a K3 surface. In this case we obtain 12 solutions, which fall into 3 deformation
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types of scrolls, according to
∑
ei (mod 3):

(e+ 2, e, e− 2)→ (e+ 1, e, e− 1)→ (e, e, e)

(e+ 3, e, e− 2)→ (e+ 2, e, e− 1)→ (e+ 1, e+ 1, e− 1)→ (e+ 1, e, e)

(e+4, e, e−2)→ (e+3, e, e−1)→ (e+2, e+1, e−1)→ (e+2, e, e)→ (e+1, e+1, e)

The general element of the linear system can only have singularities at the base
locus. The base locus is the section (0:0 :1) if and only if k > 3e3 and there is a
singularity at the points (s:t) where both Ae1+2e3−k and Ae2+2e3−k vanish. The
assumption that the coefficients are general implies now that degAe2+2e3−k < 0
and degAe1+2e3−k > 0.

In the 12 cases above this occurs only for (e+ 3, e, e− 1) and (e+ 2, e, e− 1).
In the first case the term y2z is also missing, yielding that there is an A2-
singularity at the only zero of Ae2+2e3−k, whereas the second case gives an A1.
The scroll Se+4,e,e−2 deforms into Se+3,e,e−1, but the general K3-surface on it
does not deform to a K3 on Se+3,e,e−1, but only those with an A2-singularity.
These results hold if all ei > 0; we leave the modifications in case e3 = 0 to the
reader.

The tetragonal case is given as exercise in [Reid 1997] and the complete solution
(modulo some minor mistakes) can be found in [Brawner 1997]. We give the
results:

Lemma 1.9. For the general complete intersection of divisors of type 2H−b1R
and 2H − b2R on a scroll Se1,e2,e3,e4 the general fibre of the elliptic fibration is
a nonsingular quartic curve if and only if either

α: b1 ≤ e1 + e3, b1 ≤ 2e2 and b2 ≤ 2e4, or

β: b1 ≤ e1 + e4, b1 ≤ 2e2, 2e4 < b2 ≤ 2e3 and b2 ≤ e2 + e4.

Proposition 1.10. The general element is singular at a point of the section
(0 : 0 : 0 : 1) if the invariants satisfy in addition one of the following conditions:

1α: b2 < 2e4, b1 > e1 + e4.
1βi: b2 ≤ e3 + e4, e2 + e4 < b1 < e1 + e4.

1βii: b2 > e3 + e4, and e1 + e2 + 2e4 > b1 + b2.
There is a singularity with z 6= 0 if

2α: b1 > e2 + e3, e1 + e3 > b1 > e1 + e4.
2αβ: e1 + e4 ≥ b1 > e2 + e3 and

i: if b2 ≤ 2e4 then 2(e1 + e3 + e4) > 2b1 + b2
ii: if 2e4 < b2 ≤ e3 + e4 then e1 + 2e3 + e4 > b1 + b2

iii: e3 + e4 < b2 < 2e3

For K3 surfaces we need b1 + b2 = e1 + e2 + e3 + e4− 2. We give a table listing
the possibilities under this assumption, cf. [Brawner 1997, Table A.1–A.4].

The table lists the possible values for (b1, b2) and gives for each pair the in-
variants (e1, e2, e3, e4) of the scrolls on which the curve can lie. These form
one deformation type with adjacencies going vertically, except Se+2,e,e,e and
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(b1, b2) (e1, e2, e3, e4) M base sings

(2e, 2e− 2) (e+ 3, e+ 1, e− 1, e− 3) 17 Be−1 −−
(e+ 3, e, e− 1, e− 2) 15 Be−1 A3

(e+ 2, e+ 1, e− 1, e− 2) 16 Be−1 A1

(e+ 2, e, e, e− 2) 16 Be−2 −−
(e+ 2, e, e− 1, e− 1) 15 Be−1 2A1

(e+ 1, e+ 1, e− 1, e− 1) 16 Be−1 −−
(e+ 1, e, e, e− 1) 17 Be−1 −−

(e, e, e, e) 17 ∅ −−
(2e− 1, 2e− 1) (e+ 1, e+ 1, e, e− 2) 17 Be−2 −−

(e+ 1, e, e, e− 1) 17 Be−1 −−
(e, e, e, e) 18 ∅ −−

(2e+ 1, 2e− 2) (e+ 4, e+ 1, e− 1, e− 3) 17 Be−1 −−
(e+ 3, e+ 1, e− 1, e− 2) 16 Be−1 A1

(e+ 2, e+ 1, e− 1, e− 1) 16 Be−1 −−
(e+ 1, e+ 1, e, e− 1) 17 Be −−

(2e, 2e− 1) (e+ 2, e+ 1, e, e− 2) 17 Be−2 −−
(e+ 2, e, e, e− 1) 15 Be−1 A1

(e+ 1, e+ 1, e, e− 1) 17 Be−1 −−
(e+ 1, e, e, e) 18 ∅ −−

(2e+ 2, 2e− 2) (e+ 5, e+ 1, e− 1, e− 3) 18 Be−1 −−
(e+ 4, e+ 1, e− 1, e− 2) 17 Be−1 A1

(e+ 3, e+ 1, e− 1, e− 1) 17 Be−1 −−
(e+ 2, e+ 1, e, e− 1) 18 Be −−

(e+ 1, e+ 1, e+ 1, e− 1) 18 Be−1 −−
(2e+ 1, 2e− 1) (e+ 3, e+ 1, e, e− 2) 16 Be −−

(e+ 2, e+ 1, e, e− 1) 16 Be −−
(e+ 1, e+ 1, e, e) 17 Be −−

(2e, 2e) (e+ 2, e+ 2, e, e− 2) 17 Be−2 −−
(e+ 2, e+ 1, e, e− 1) 16 Be−1 A1

(e+ 1, e+ 1, e+ 1, e− 1) 17 Be−1 −−
(e+ 2, e, e, e) 15 ∅ −−

(e+ 1, e+ 1, e, e) 17 ∅ −−
(2e+ 2, 2e− 1) (e+ 4, e+ 1, e, e− 2) 16 Be A1

(e+ 3, e+ 1, e, e− 1) 16 Be A1

(e+ 2, e+ 1, e, e) 17 Be A1

(e+ 1, e+ 1, e+ 1, e) 17 Be A1

(2e+ 1, 2e) (e+ 3, e+ 2, e, e− 2) 17 Be −−
(e+ 3, e+ 1, e, e− 1) 15 Be A2

(e+ 2, e+ 2, e, e− 1) 16 Be A1

(e+ 2, e+ 1, e+ 1, e− 1) 17 Be−1 −−
(e+ 2, e+ 1, e, e) 16 Be −−

(e+ 1, e+ 1, e+ 1, e) 18 Be −−
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Se+1,e+1,e+1,e−1 which do not deform into each other but are both deforma-
tions of Se+2,e+1,e,e−1 and both deform to Se+1,e+1,e,e. Furthermore we give
the number of moduli for each family, in the column M.
In the table we also list the base locus of |2H − b1R| (which contains that
of |2H − b2R|). The base locus is a subscroll, for which we use the following
notation [Reid 1997, 2.8]: we denote by Ba the subscroll corresponding to the
subset of all ei with ei ≤ a, defined by the equations z(j) = 0 for ej > a.
We give the number and type of the singularities of the general element; the
number given in the second half of [Brawner 1997, Table A.2] is not correct.
As example of the computations we look at (e+3, e, e−1, e−2) with (b1, b2) =
(2e, 2e− 2). The two equations have the form

p1xw + p2xz + p0y
2 + p3yx+ p6x

2

q0z
2 + q0yw + q3xw + q1yz + q4xz + q2y

2 + q5yx+ q8x
2 ,

where the index denotes the degree in (s : t). We first use coordinate trans-
formations to simplify these equations. By replacing y, z and w by suitable
multiples we may assume that the three constant polynomials are 1. Now re-
placing z by z − 1

2q1y − 1
2q4x removes the yz and xz terms. We then replace

y by y − q3x to get rid of the xw term. By changing w we finally achieve the
form z2 + yw + q8x

2. By a change in (s : t) we may assume that p1 = s. We
now look at the affine chart (w = 1, t = 1) and find y = −z2 − q8x

2, which we
insert in the other equation to get an equation of the form x(s+p2z+ · · ·)+z4,
which is an A3.
We leave it again to the reader to analyze which further singularities can occur
if e4 = 0.

2. Infinitesimal deformations.

Deformations of cones over complete intersections on scrolls need not preserve
the rolling factors format. We shall study in detail those who do. Many
deformations of negative weight are of this type.

Definition 2.1. A pure rolling factors deformation is a deformation in which
the scroll is undeformed and only the equations on the scroll are perturbed.

This means that the deformation of the additional equations can be written
with the rolling factors. Such deformations are always unobstructed. However
this is not the only type of deformation for which the scroll is not changed.
In weight zero one can have deformations inside the scroll, where the type
(b1, . . . , bl) changes.

Definition 2.2. A (general) rolling factors deformation is a deformation in
which the scroll is deformed and the additional equations are written in rolling
factors with respect to the deformed scroll.

The equations for the total space of a 1-parameter rolling factors deforma-
tion describe a scroll of one dimension higher, containing a subvariety of the
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same codimension, again in rolling factors format. Deformations over higher
dimensional base spaces may be obstructed. Again in weight zero one can have
deformations of the scroll, where also the type (b1, . . . , bl) changes.

Finally there are non-scrollar deformations, where the perturbation of the scrol-
lar equations does not define a deformation of the scroll. Examples of this
phenomenon are easy to find (but difficult to describe explicitly). A trigonal
canonical curve is a divisor in a scroll, whereas the general canonical curve of
the same genus g is not of this type: the codimension of the trigonal locus in
moduli space is g − 4.

Example 2.3. To give an example of a deformation inside a scroll, we let C be
a tetragonal curve in P9 with invariants (2, 2, 2; 3, 1). Then there is a weight 0
deformation to a curve of type (2, 2, 2; 2, 2). To be specific, let C be given by
P = sx2 + ty2 + (s + t)z2, Q = t3x2 + s3y2 + (s3 − t3)z2. We do not deform
the scroll, but only the additional equations:

x2
0 + y0y1 + z2

0 + ε(z2
1 − x2

1)
x0x1 + y2

1 + z0z1 + ε(z1z2 − x1x2)
x2

1 + y1y2 + z2
1 + ε(y0y1 + z0z1)

x1x2 + y2
2 + z1z2 + ε(y2

1 + z2
1)

x1x2 + y2
0 + z2

0 − z1z2

x2
2 + y0y1 + z0z1 − z2

2

For ε 6= 0 we can write the ideal as

x2
0 + y0y1 + z2

0 + ε(z2
1 − x2

1)
x0x1 + y2

1 + z0z1 + ε(z1z2 − x1x2)
x2

1 + y1y2 + z2
1 + ε(z2

2 − x2
2)

x0x1 + y2
1 + z0z1 + ε(y2

0 + z2
0)

x2
1 + y1y2 + z2

1 + ε(y0y1 + z0z1)
x1x2 + y2

2 + z1z2 + ε(y2
1 + z2

1)

We can describe this deformation in the following way. Write Q = sQs + tQt.
The two times three equations above are obtained by rolling factors from sP −
εQt and tP + εQs. We may generalize this example.

Lemma 2.4. Let V be a complete intersection of divisors of type aH − b1R,
aH − b2R, given by equations P , Q. If it is possible to write Q = sQs +
tb1−b2−1Qt then the equations sP − εQt, tb1−b2−1P + εQs give a deformation
to a complete intersection of type aH − (b1 − 1)R, aH − (b2 + 1)R.

In general one has to combine such a deformation with a deformation of the
scroll.
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(2.5) Non-scrollar deformations.

Example 2.6. As mentioned before such deformations must exist in weight
zero for trigonal cones. We proceed with the explicit computation of embedded
deformations. We start from the normal bundle exact sequence

0 −→ NS/C −→ NC −→ NS ⊗OC −→ 0 .

As C is a curve of type 3H − (g − 4)R on S we have that C · C = 3g + 6
and H1(C,NS/C) = 0. So we are interested in H0(C,NS ⊗ OC), and more
particularly in the cokernel of the map H0(S,NS) −→ H0(C,NS ⊗ OC), as
H0(S,NS) gives deformations of the scroll.

Proposition 2.7. The cokernel of the map H0(S,NS) −→ H0(C,NS ⊗ OC)
has dimension g − 4.

Proof . An element of H0(C,NS⊗OC) is a function ϕ on the equations of the
scroll such that the generators of the module of relations map to zero in OC
and it lies in the image of H0(S,NS) if the function values can be lifted to OS
such that the relations map to 0 ∈ OS . Therefore we perform our computations
in OS .
We have to introduce some more notation. Using the equations described
in (1.3) we have three types of scrollar equations, fi,j = xixj+1 − xi+1xj ,
gi,j = yiyj+1−yi+1yj and mixed equations hi,j = xiyj+1−xi+1yj . The scrollar
relations come from doubling a row in the matrix and there are two ways to
do this. The equations resulting from doubling the top row can be divided by
s, and the other ones by t, so the result is the same.
A relation involving only equations of type fi,j gives the condition

xse1−i−1tiϕ(fj,k)− xse1−j−1tjϕ(fi,k) + xse1−k−1tkϕ(fi,j) = 0 ∈ OC

which may be divided by x. As the image ϕ(fi,j) is quadratic in x and y the
resulting left hand side cannot be a multiple of the equation of C, so we have

se1−i−1tiϕ(fj,k)− se−1−j−1tjϕ(fi,k) + se1−k−1tkϕ(fi,j) = 0 ∈ OS

and the analogous equation involving only the gi,j equations.
For the mixed equations we get

xse1−i−1tiϕ(hj,k)− xse1−j−1tjϕ(hi,k) + yse2−k−1tkϕ(fi,j) = ψi,j;kP ∈ OS

with ψi,j;k of degree e1 + e2 − 3 = g− 5 and analogous ones involving gi,j with
coefficients ψi;j,k. These coefficients are not independent, but satisfy a systems
of equations coming from the syzygies between the relations. They can also be
verified directly. We obtain

se1−i−1tiψj,k;l − se1−j−1tjψi,k;l + se1−k−1tkψi,j;l = 0 ∈ OS
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and

xse1−i−1tiψj;k,l − xse1−j−1tjψi;k,l + yse2−k−1tkψi,j;l − yse2−l−1tlψi,j;k = 0

The last set of equations shows that se2−k−1tkψi,j;l = se2−l−1tlψi,j;k (rolling
factors!) and therefore ψi,j;k = se2−k−1tkψi,j; with ψi,j; of degree e1 − 2. This
yields the equations

se1−i−1tiψj,k; − se1−j−1tjψi,k; + se1−k−1tkψi,j; = 0

Our next goal is to express all ψi,j; in terms of the ψi,i+1; (where 0 ≤ i ≤
e1 − 2). First we observe by using the last equation for the triples (0, i, i + 1)
and (i, i + 1, e1 − 1) that ψi,i+1; is divisible by ti and by se1−i−2 so ψi,i+1; =
se1−i−2tici for some constant ci. By induction it then follows that ψi,j; =
se1−i−2ticj−1 + se1−i−3ti+1cj−2 + · · · + se1−j−1tj−1ci, so the solution of the
equations depends on e1 − 1 constants. Similarly one finds e2 − 1 constants di
for the ψi;j,k so altogether e1 + e2 − 2 = g − 4 constants.
Finally we can solve for the perturbations of the equations. We give the formu-
las in the case that all di and all ci but one are zero, say cγ = 1. This implies
that ψi,j; = 0 if γ /∈ [i, j) and ψi,j; = se1−i−j+γ−1ti+j−γ−1 if γ ∈ [i, j); under
the last assumption ψi,j;k = sg−4−i−j−k+γti+j+k−γ−1. We take ϕ(fi,j) = 0 if
γ /∈ [i, j). It follows that for a fixed k the ϕ(hi,k) with i ≤ γ are related by
rolling factors, as are the ϕ(hi,k) with i > γ. This reduces the mixed equations
with fixed k to one, which can be solved for in a uniform way for all k. To this
end we write the equation P as

(s2e1−e2−γ+2A+
γ + tγ+1A−2e1−e2−γ+1)x3 + y(Be1+2x

2 +Ce2+2xy+D2e2−e1+2y
2)

which we will abbreviate as (s2e1−e2−γ+2A+ + tγ+1A−)x3 + yE. We set

ϕ(fi,j) = 0, if γ /∈ [i, j)

ϕ(fi,j) = se1−i−j−1+γti+j−γ−1E, if γ ∈ [i, j)

ϕ(gi,j) = 0,

ϕ(hi,k) = −se2−1−k−i+γti+kA−x2, if i ≤ γ
ϕ(hi,k) = s2e1+1−i−kti+k−γ−1A+x2, if i > γ

This is well defined, because all exponents of s and t are positive. ¤
A similar computation can be used to show that all elements of T 1(ν) with
ν > 0 can be written rolling factors type. However, even more is true, they can
be represented as pure rolling factors deformations, see [Drewes–Stevens 1996],
where a direct argument is given.

We generalize the above discussion to the case of a complete intersection of
divisors of type aH − biR (with the same a ≥ 2) on a scroll

(
z(1)

0 . . . z(1)

d1−1 . . . z(k)

0 . . . z(k)

dk−1

z(1)

1 . . . z(1)

d1
. . . z(k)

1 . . . z(k)

dk

)
.
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We have equations f
(αβ)
ij = z(α)

i z(β)

j+1−z(α)

i+1z
(β)

j . The lowest degree in which non
rolling factors deformations can occur is a− 3. We get the conditions

z(α)sdα−i−1tiϕ
(
f

(βγ)
jk

)
− z(β)sdβ−j−1tjϕ

(
f

(αγ)
ik

)
+ z(γ)sdγ−k−1tkϕ

(
f

(αβ)
ij

)

=
∑

l

ψ
(αβγ)
ijk;l P

(l)

with the ψ
(αβγ)
ijk;l homogeneous polynomials in (s:t) of degree bl−1. The relations

between these polynomials come from the syzygies of the scroll: we add four of
these relations, multiplied with a term linear in the z(α); then the left hand side
becomes zero, leading to a relation (in OS) between the P (l). As we are dealing
with a complete intersection, the relations are generated by Koszul relations.
Because the coefficients of the relation obtained are linear in the z(α), they
cannot lie in the ideal generated by the P (l) (as a ≥ 2), so they vanish and we
obtain for each l equations

z(α)sdα−i−1tiψ
(βγδ)
jkm;l − z(β)sdβ−j−1tjψ

(αγδ)
ikm;l

+ z(γ)sdγ−k−1tkψ
(αβδ)
ijm;l − z(δ)sdδ−m−1tmψ

(αβγ)
ijk;l = 0 .

Here some of the α, . . . , δ may coincide. If e.g. δ is different from α, β and γ,

then ψ
(αβγ)
ijk;l = 0. If there are at least four different indices (e.g. if the scroll

is nonsingular of dimension at least four) then δ can always be chosen in this
way, so all coefficients vanish and every deformation of degree a−3 is of rolling
factors type.
Suppose now the scroll is a cone over a nonsingular 3-dimensional scroll, i.e.

we have three different indices at our disposal. Then every ψ
(αβγ)
ijk;l with at most

two different upper indices vanishes, and the ones with three different indices
satisfy rolling factors equations. We conclude that for pairwise different α, β, γ

ψ
(αβγ)
ijk;l = sd−i−j−k−3ti+j+kψ′l

with d = dα + dβ + dγ the degree of the scroll.
Finally, for the cone over a 2-dimensional scroll we get similar computations as
in the trigonal example above.

Proposition 2.8. A tetragonal cone (with g > 5) has non-scrollar defor-
mations of degree −1 if and only if b2 = 0. If the canonical curve lies on a
Del Pezzo surface then the dimension is 1. If the curve is bielliptic then the
dimension is b1 = g − 5.

Proof . First suppose e3 > 0. Then the only possibly non zero coefficients are
the ψ′l, which have degree bl + 2 −∑ ei. As b1 + b2 =

∑
ei − 2 they do not

vanish iff b2 = 0. In this case the computation yields one non rolling factors
deformation of the Del Pezzo surface on which the curve lies.
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If e3 = 0, then b2 = 0. For a bielliptic curve the methods above yield (e1 −
1) + (e2− 1) = b1 = g− 5 non-scrollar deformations (a detailed computation is
given in [Brawner 1996]). Suppose now that the curve lies on a (singular) Del
Pezzo surface. If b1 = e1 > e2 = 2 then the equation P contains the monomial
xz with nonzero coefficient, which we take to be 1, while there is no monomial
yz. After a coordinate transformation we may assume that the same holds in
case e1 = e2 = 2. Let ϕ(hi,k) ≡ ζi,kz mod (x, y). In the equation

xse1−i−1tiϕ(gj,k)− yse2−j−1tjϕ(hi,k) + yse2−k−1tkϕ(hi,j) = ψi;j,kP

holding in OS the monomial yz occurs only on the left hand side, which shows
that the ζi,k are of rolling factors type in the first index. Being constants, they
vanish. This means that in the equation

xse1−i−1tiϕ(hj,k)− xse1−j−1tjϕ(hi,k) + yse2−k−1tkϕ(fi,j) = ψi,j;kP

the monomial xz does not occur on the left hand side and therefore ψi,j;k = 0.
We find only e2 − 1 = 1 non rolling factors deformation. If e1 = 2, e2 = 1 we
find one deformation. Finally, if e1 = 3, e2 = 1 then there is only one type of
mixed equation. We have two constants c0 and c1. Let the coefficient of xz in
P be p0s+ p1t. We obtain the equations

sζ1,0 − tζ0,0 = c0(p0s+ p1t)

sζ2,0 − tζ1,0 = c1(p0s+ p1t)

from which we conclude that p0c0 +p1c1 = 0, giving again only one non rolling
factors deformation. ¤
(2.9) Rolling factors deformations of degree −1.
We look at the miniversal deformation of the scroll:

(
z(1)

0 . . . z(1)

d1−2 z(1)

d1−1 z(2)

0 . . . z(k)

dk−2 z(k)

dk−1

z(1)

1 + ζ(1)

1 . . . z(1)

d1−1 + ζ(1)

d1−1 z(1)

d1
z(2)

1 . . . z(k)

dk−1 + ζ(k)

dk−1 z(k)

dk

)

To compute which of those deformations can be lifted to deformations of a
complete intersection on the scroll we have to compute perturbations of the
additional equations.
We assume that we have a complete intersection of divisors of type aH − biR
(with the same a ≥ 2).
Extending the notation introduced before we write the columns in the matrix
symbolically as (zα, zα+1+ζα+1). In order that this makes sense for all columns
we introduce dummy variables ζ (i)

0 and ζ(i)

di
with the value 0.

The Koszul type relations give no new conditions, but the relation

Pm+1zβ − Pmzβ+1 −
∑

α

pα,mfβα = 0
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gives as equation in the local ring for the perturbations P ′m of Pm:

P ′m+1zβ − P ′mzβ+1 −
∑

α

pα,m(ζα+1zβ − zαζβ+1) = 0 .

In particular we see that we can look at one equation on the scroll at a time.
As
∑
pα,mzα = Pm the coefficient of ζβ+1 vanishes. Because tzβ − szβ+1 = 0

we get a condition which is independent of β:

sP ′m+1 − tP ′m − s
∑

α

pα,mζα+1 = 0

This has to hold in the local ring, but as the degree of the pα,m is lower than
that of the equations defining the complete intersection on the scroll (here we
use the assumption that all degrees a are equal), it holds on the scroll. From
it we derive the equation

sbP ′b − tbP ′0 =

b−1∑

m=0

∑

α

sm+1tb−m−1pα,mζα+1 (S)

which has to be solved with P ′b and P ′0 polynomials in the zα of degree a− 1.
We determine the monomials on the right hand side.
The result depends on the chosen equations, but only on P0 and Pb and not on
the intermediate ones, provided they are obtained by rolling factors.

Example 2.10. Let b = 4. We take variables yi = s3−itiy, zi = s3−itiz with
deformations ηi, ζi, and roll from y0z0 to y2z2 in two different ways:

y0z0 → y1z0 → y1z1 → y2z1 → y2z2

y0z0 → y0z1 → y0z2 → y1z2 → y2z2

This gives as right-hand side of the equation (S) in the two cases

s4t3zη1 + s4t3yζ1 + s5t2zη2 + s5t2yζ2

s4t3yζ1 + s5t2yζ2 + s4t3zη1 + s5t2zη2

which is the same expression. Similarly, if we roll from z2
0 to z2

2 we get

2s4t3zζ1 + 2s5t2zζ2

However, if we roll in the last step from y1z2 to y1z3 we get

s4t3yζ1 + s5t2yζ2 + s4t3zη1

(remember that we have no deformation parameter ζ3).
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To analyze the general situation it is convenient to use multi-index notation.
The equation P of a divisor in |aH − bR| may then be written as

P =
∑

|I|=a

〈e,I〉−b∑

j=0

pI,js
〈e,I〉−b−jtjzI .

Here e = (e1, . . . , ek) is the vector of degrees and zI stands for (z(1))i1 · . . . ·
(z(k))ik .

Proposition 2.11. The lifting condition for the equations Pm is that for each
I with |I| = a− 1 and 〈e, I〉 < b− 1 the following b−〈e, I〉− 1 linear equations
hold:

k∑

l=1

〈e,I+δl〉−b∑

j=0

(il + 1)pI+δl,jζ
(l)

j+n = 0 ,

where 0 < n < b− 〈e, I〉
Proof . We look at a monomial s〈e,I

′〉−b−jtjzI
′
. In rolling from P0 to Pm

we go from zA to zA+B . Here we write a monomial as product of a factors:
zα1
· · · zαa with i′l factors of type l. Let I ′ = I + δl with δl the lth unit vector.

The monomial leads to an expression in which the coefficient of zI is

∑

{q|αq of type l}

βq∑

r=1

s〈e,I〉+r−j+αq tb−r+j−αqζαq+r

We stress that the choice of αq can be very different for different j.
We collect all contributions and look at the coefficient of s〈e,I〉+ntb−nzI with
0 < n < b − 〈e, I〉. This cannot be realized as left-hand side of equation (S).
Because b− n = b− r + j − αq this coefficient is

k∑

l=1

〈e,I+δl〉−b∑

j=0

(il + 1)pI+δl,jζ
(l)

j+n = 0 ,

We note that all terms really occur: in rolling from zA to zA+B we have to
increase the qth factor sufficiently many times, because 〈e, I〉 < b− 1. ¤
Example 2.12: trigonal cones. Let the curve be given by the bihomogeneous
equation

F = A2a−m+2z
3 +Ba+2z

2w + Cm+2zw
2 +D2m−a+2w

3

then there are only conditions for I = (0, 2), i.e. for w2, as a+m = g−2 > b−1.
So if 2m < b − 1 = g − 5 we get b − 2m − 1 = a − m − 3 equations on the
deformation variables ζ1, . . . , ζa−1, ω1, . . . , ωm−1

m+2∑

j=0

cjζj+n + 3

2m−a+2∑

j=0

djωj+n = 0 ,
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as stated in [Drewes–Stevens 1996, 3.11]. We have a system of linear equations
so we can write the coefficient matrix. It consists of two blocks ( C | D ) with C
of the form




c0 c1 c2 . . . cm+2 0 0 . . . 0 0 0
0 c0 c1 . . . cm+1 cm+2 0 . . . 0 0 0
0 0 c0 . . . cm cm+1 cm+2 . . . 0 0 0

. . .
. . .

0 0 0 . . . c0 c1 c2 . . . cm+2 0 0
0 0 0 . . . 0 c0 c1 . . . cm+1 cm+2 0
0 0 0 . . . 0 0 c0 . . . cm cm+1 cm+2




and D similarly. Obviously this system has maximal rank.

The Proposition gives a system of linear equations and we call the coefficient
matrix lifting matrix. It was introduced for tetragonal cones in [Brawner 1996].
In general the lifting matrix will have maximal rank, but it is a difficult question
to decide when this happens.

Example 2.13: trigonal K3s. We take the invariants (e, e, e), b = 3e− 2 with
e ≥ 3. The K3 lies on P2 × P1 and is given by an equation of bidegree (3, 2).
Now there are six Is with |I| = 2 each giving rise to e− 3 equations in 3(e− 1)
deformation variables. In general the matrix has maximal rank, but for special
surfaces the rank can drop. Consider an equation of type p1x

3+p2y
3+p3z

3 with
the pi quadratic polynomials in (s:t) without common or multiple zeroes. Then
the surface is smooth. The lifting equations corresponding to the quadratic
monomials xy, xz and yz vanish identically and the lifting matrix reduces to
a block-diagonal matrix of rank 3(e− 3). The kernel has dimension 6, but the
corresponding deformations are obstructed: an extension of the K3 would be
a Fano 3-fold with isolated singularities lying as divisor of type 3H − bR on
a scroll S(e1, e2, e3, e4), and a computation reveals that such a Fano can only
exist for

∑
ei ≤ 8.

We can say something more for the lifting conditions coming from one quadratic
equation.

Proposition 2.14. The lifting matrix for one quadratic equation has depen-
dent rows if and only if the generic fibre has a singular point on the subscroll
Bb−1.

Proof . The equation P on the scroll can be written in the form tzΠz
with Π a symmetric k × k matrix with polynomials in (s : t) as entries.
The condition that there is a singular section of the form z = (0, . . . , 0,
z(l+1)(s, t), . . . , z(k)(s, t)) with el > b− 1 is that tzΠ = 0 or tz>lΠ>l = 0 where
z>l = (z(l+1)(s, t), . . . , z(k)(s, t)) and Π>l is the matrix consisting of the last
k − l rows of Π. The resulting system of equations for the coefficients of the
polynomials z(i)(s, t) gives exactly the lifting matrix. ¤
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(2.15) Tetragonal curves. Most of the following results are contained in the
preprint [Brawner 1996]. We have two equations on the scroll and the lifting
matrix M can have rows coming from both equations. We first suppose that
b2 > 0. Then also e3 > 0 and the number of columns of M is always

∑
(ei−1) =

g − 6, but the number of rows depends on the values of (e1, e2, e3; b1, b2): it is∑
i,j max(0, bi − ej − 1).

Theorem 2.16. Let X be the cone over a tetragonal canonical curve and
suppose that b2 > 0. Then dimT 1

X(−2) = 0. Suppose that the g1
4 is not

composed with an involution of genus b2
2 + 1.

1) If b1 < e1 + 1 or b2 < e3 + 1 or g ≤ 15 then dimT 1
X(−1) = 9 + dim CorkM .

2) If b1 ≥ e1 +1, b2 ≥ e3 +1 and g > 15 then 9+dim CorkM ≤ dimT 1
X(−1) ≤

g+3
6 +6+dim CorkM and the maximum is obtained for g of the form 6n−3

and (e1, e2, e3; b1, b2) = (3n− 2, 2n− 2, n− 2; 4n− 4, 2n− 4).
3) For generic values of the moduli dim CorkM = 0.

Proof . If b2 > 0 there are only rolling factors deformations in negative degrees.
In particular dimT 1

X(−2) = 0. The number of pure rolling factors deformations
is ρ =

∑
i,j max(ej − bi + 1, 0). The number of rows in the lifting matrix is∑

i,j max(0, bi − ej − 1) = 3(b1 + b2)− 2(e1 + e2 + e3 + 3) + ρ = g − 15 + ρ. If

ρ > 9 the number of rows exceeds the number of columns and dimT 1
X(−1) =

ρ+ dim CorkM ; otherwise it is 9 + dim CorkM . So we have to estimate ρ.
As the g1

4 is not composed we have b1 ≤ e1 + e3. Together with b1 ≤ 2e2 we
get 3b1 ≤ 2g − 6 and 3b2 ≥ g − 9; from e1 ≤ g−1

2 we now derive e1 − b2 + 1 ≤
g−1

2 + 1− g−9
3 . Also b2 = e1 + e2 + e3 − 2− b1 ≥ e2 − 2, so e2 − b2 + 1 ≤ 3.

2) Suppose first that b1 ≥ e1 + 1 and b2 ≥ e3 + 1. Then ρ = max(0, e1 − b2 +
1) + max(0, e2 − b2 + 1) ≤ g+3

6 + 6. Equality is achieved iff e1 = (g − 1)/2,
b2 = (g−9)/3 and e2 = b2 +2, so g has the form 6n−3 and (e1, e2, e3; b1, b2) =
(3n− 2, 2n− 2, n− 2; 4n− 4, 2n− 4).
1) In all other cases ρ ≤ 9: if b1 ≥ e1 + 1, but b2 < e3 + 1 then ρ = (e1 − b2 +
1) + (e2 − b2 + 1) + (e3 − b2 + 1) = g − 3b2 ≤ 9. If e2 + 1 ≤ b1 < e1 + 1 then
ρ = (e1 − b1 + 1) + (e1 − b2 + 1) + max(0, e2 − b2 + 1) + max(0, e3 − b2 + 1) =
2e1 + 7− g+ max(0, e2 − b2 + 1) + max(0, e3 − b2 + 1). As b2 > 0 we have that
max(0, e2 − b2 + 1) + max(0, e3 − b2 + 1) > max(0, e2 + e3 − b2 + 1). But from
b1 ≤ e1 it follows that b2 ≥ e2 + e3 − 2. So ρ ≤ (g − 1) + 7 − g + 3 = 9. If
b1 < e2 + 1 then ρ ≤ 2e1 + 2e2 + 4− 2b1 − 2b2 + 2e3 = 8.
3) It is easy to construct lifting matrices of maximal rank for all possible num-
bers of blocks occurring. ¤

Now we consider the case that the g1
4 is composed with an involution of genus

g′ = b2
2 + 1. So if b2 > 0, then g′ > 1. After a coordinate transformation

we may assume that the surface Y is singular along the section x = y = 0,
so its equation depends only on x and y: P = P (x, y; s, t). We may assume
that Q has the form Q = z2 + Q′(x, y; s, t). Let Mxy be the submatrix of the
lifting matrix consisting of the blocks coming from P and Q′ and the ξ and η
deformations.
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Theorem 2.17. Let X be a tetragonal canonical cone such that the g1
4 is

composed with an involution of genus g′ > 1. Then dimT 1
X(−1) = e1 + e2 −

2e3 + 6 + CorkMxy.

Proof . The rows in the lifting matrix M coming from the first equation and
the variable z vanish identically. The second equation gives a z-block which
is an identity matrix of size b2 − e3 − 1 = e3 − 1, so all ζ variables have to
vanish. What remains is the matrix Mxy which has e1 + e2 − 2 columns. The
number of rows is max(0, e2 − e3 − 3) + max(0, e1 − e3 − 3) + max(0, 2e3 −
e1 − 1) + max(0, 2e3 − e2 − 1). We estimate the last two terms with e3 − 1
and the first two by e2 − e3, resp. e1 − e3. Therefore the number of rows is at
most e1 + e2 − 2. For each term which contributes 0 to the sum we have pure
rolling factors deformations, so if the matrix has maximal rank the dimension
of T 1

X(−1) is e1 + e2 − 2− (2e3 − 8). ¤
Example 2.18. It is possible that the lifting matrix M does not have full rank
even if the g1

4 is not composed. An example with invariants (6, 5, 5; 7, 7) is the
curve given by the equations (s5 + t5)x2 +s3y2 + t3z2, s5x2 +(s3− t3)(y−z)2 +
2t3z2. The matrix is




0 . . . 0 | 2 0 0 0 | 0 0 0 0
0 . . . 0 | 0 0 0 0 | 0 0 0 2

0 . . . 0 | 2 0 0 −2 | −2 0 0 2
0 . . . 0 | −2 0 0 2 | 2 0 0 2


 .

Finally we mention the case b2 = 0. Bielliptic curves (e3 = 0) are treated
in [Ciliberto–Miranda 1992], curves on a Del Pezzo in [Brawner 1996] (but he
overlooks those with e3 = 0). Now there is only one equation coming from Q,
which can be perturbed arbitrarily. As the z variable does not enter the scroll,
we have one coordinate transformation left. The lifting matrix involves only
rows coming from the equation P . One checks that the matrix M resp. Mxy has
maximal rank and the number of rows does not exceed the number of columns.
Together with the number of non-scrollar deformations (Prop. 2.8) this yields
the following result, where we have excluded the complete intersection case
g = 5.

Proposition 2.19. Let X be the cone over a tetragonal canonical curve C
with b2 = 0 and g > 5. Then dimT 1

X(−2) = 1.
1) If C lies on a Del Pezzo surface then dimT 1

X(−1) = 10.
2) If C is bielliptic (e3 = 0), then dimT 1

X(−1) = 2g − 2.

Remark 2.20. For all non-hyperelliptic canonical cones the dimension of T 1
X(ν)

with ν ≥ 0 is the same. The Wahl map easily gives dimT 1
X(0) = 3g − 3,

dimT 1
X(1) = g, dimT 1

X(2) = 1 and dimT 1
X(ν) = 0 for ν ≥ 3 (see e.g. [Drewes–

Stevens 1996], 3.3).

3. Rolling factors obstructions.

Rolling factors deformations can be obstructed. We first give a general result
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on the dimension of T 2. For the case of quadratic equations on the scroll one
can actually write down the base equations.

Proposition 3.1. Let X be the cone over a complete intersection of divisors
of type aH − biR with bi > 0 (and the same a ≥ 2) on a scroll. If a > 2, then
dimT 2

X(−a) =
∑

(bi − 1), and dimT 2
X(−a) ≥∑(bi − 1) in case a = 2.

Proof . Let ψ ∈ Hom(R/R0,OX) be an homogeneous element of degree −a.
The degree of ψ(Rα,β,γ) is 3 − a, so ψ vanishes on the scrollar relations, if
a > 2. If a = 2 we can assert that the functions vanishing on the scrollar
relations span a subspace of T 2

X(−2).
As the degree of the relation Rnα,m is a + 1, the image ψ(Rnα,m) is a linear
function of the coordinates. The relations

Rnα,mzβ −Rnβ,mzα −
∑

Rnj,k,γp
n
γ,m = P (n)

m fα,β − fα,βP (n)

m .

imply that the ψ(Rnα,m) are also in rolling factors form. A basis (of the relevant

subspace) of Hom(R/R0,OX)(−a) consists of the 2
∑
bi elements ψil,s(R

j
α,m) =

δijδlmzα, ψil,t(R
j
α,m) = δijδlmzα+1, where 0 ≤ m < bj . The image of P (i)

m in

Hom(R/R0,OX)(−a) is ψim−1,s − ψim,t, if 0 < m < bi, −ψi0,t for m = 0, and

ψibi−1,s for m = bi. The quotient has dimension
∑

(bi − 1). ¤
For a = 2 only the rolling factors obstructions will contribute to the base
equations. A more detailed study could reveal if there are other obstructions.
Typically this can happen, if there exist non-scrollar deformations. As example
we mention Wahl’s result for tetragonal cones that dimT 2

X(−2) = g − 7 =
b1 + b2 − 2, if b2 > 0, whereas for a curve on a Del Pezzo the dimension is
2(g − 6) [Wahl 1997, Thm. 5.6].
In the quadratic case we can easily write the base equations, given a first order
lift of the scrollar deformations. We can consider each equation on the scroll
separately, so we will suppress the upper index of the additional equations in
our notation. We may assume that we have pure rolling factors deformations
ρα and that the lifting conditions are satisfied. We can write the perturbation
of the equation Pm as

Pm(z) + P ′m(z, ζ, ρ) .

Note that P ′m is linear in z. Now we have the following result [Stevens 1996].

Proposition 3.2. The maximal extension of the infinitesimal deformation
defined by the P ′m is given by the b− 1 base equations

P ′m(ζ, ζ, ρ)− Pm(ζ) = 0 ,

with 1 ≤ m ≤ b− 1.

Proof . We also suppress ρ from the notation. We have to lift the relations
Rβ,m. As the lifting equations are satisfied we can write

P ′m+1(z, ζ)zβ − P ′m(z, ζ)zβ+1 −
∑

pα,m(z)ζα+1zβ =
∑

fβγdγ(ζ) ,
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because the left hand side lies in the ideal of the scroll. This identity involving
quadratic monomials in the z-variables can be lifted to the deformation of the
scroll. We write f̃βα for the deformed equation zβ(zα+1 + ζα+1) − (zβ+1 +
ζβ+1)zα. We get

P ′m+1(z+ζ, ζ)zβ−P ′m(z, ζ)(zβ+1+ζβ+1)−
∑

pα,m(z+ζ)zα+1zβ =
∑

f̃βγdγ(ζ).

We now lift the relation Rβ,m:

(
Pm+1(z) + P ′m+1(z + ζ, ζ)− Pm+1(ζ)

)
zβ − (Pm(z) + P ′m(z, ζ)) (zβ+1 + ζβ+1)

−
∑

f̃βαpα,m(z)−
∑

f̃βγdγ(ζ) = 0.

If 1 ≤ m ≤ b − 1, then Pm occurs in a relation as first and as second term.
Therefore P ′m(z, ζ) and P ′m(z+ζ, ζ)−Pm(ζ) have to be equal. These equations
correspond to the b− 1 elements of T 2

X(−2), constructed above. ¤
Example 3.3. We continue with our rolling factors example 2.10. We look at
two ways of rolling:

y0z0 → y1z0 → y1z1 → y2z1 → y2z2

y0z0 → y0z1 → y0z2 → y1z2 → y1z3

The equation for P ′0 and P ′4 has a unique solution with P ′0 = 0. We get

P ′0 = 0, 0
P ′1 = η1z0, y0ζ1
P ′2 = η1z1 + y1ζ1, y1ζ1 + y0ζ2
P ′3 = η1z2 + y2ζ1 + η2z1, y2ζ1 + y1ζ2 + η1z2

P ′4 = η1z3 + y3ζ1 + η2z2 + y2ζ2, y3ζ1 + y2ζ2 + η1z3

The resulting base equations are in both cases

0, η1ζ1, η1ζ2 + η2ζ1

In general the quadratic base equations are not uniquely determined. They can
be modified by multiples of the linear lifting equations, if such are present. The
other source of non-uniqueness is the possibility of coordinate transformations
using the pure rolling factors variables.

Theorem 3.4. Let P =
∑
pI,ks

〈e,I〉−b−ktkzI define a divisor of type 2H−bR.
It leads to quadratic base equations π1, . . . , πb−1. The coefficient pI,k gives
the following term in πm. We write zI = xy and assume that ex ≥ ey.

I. If ex < b then for m ≤ k the term is −∑k
l=m ηk−l+mξl, while for m > k it

is
min(ex−1,m−1)∑

l=max(k+m−ey+1,k+1)

ηk−l+mξl .
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II. If ex ≥ b then for m ≤ k+ b− ex the term is −∑k
l=m+ex−b ηk−l+mξl, while

for m > k + b− ex it is

min(ex−b+m−1,k+m−1)∑

l=max(k+m−ey+1,k+1)

ηk−l+mξl .

Furthermore, if ex ≥ b the ex − b + 1 pure rolling factors deformations
involving x contribute ρ0ξm + · · ·+ ρex−bξm+ex−b to πm.

Proof . We need explicit equations Pm. The monomial se−x+ey−b−ktkxy gives
a rolling monomial xi(m)yj(m), where i(m) + j(m) = k + m. Let i(0) = i,
i(b) = i′, j(0) = j and j(b) = j′. We have to compute P ′m. Equation (S) gives

sbP ′b − tbP ′0 =

j′−j∑

l=1

sex−k+j+ltk+b−j−lxηj+l +
i′−i∑

n=1

sey−k+i+ntk+b−i−nyξi+n ,

which we rewrite as

sbP ′b − tbP ′0 =

j′∑

l=j+1

sex−k+ltk+b−lxηl +

i′∑

l=i+1

sey−k+ltk+b−lyξl .

Case I: ex < b. The condition k+ b ≤ ex+ ey implies k < ey. We solve for P ′0:

P ′0 = −
k∑

l=j+1

xk−lηl −
k∑

l=i+1

yk−lξl .

For the P ′m we formally write the formula

P ′m = −
k∑

l=j+1

xk−l+mηl −
k∑

l=i+1

yk−l+mξl +

j(m)∑

l=j+1

xk−l+mηl +

i(m)∑

l=i+1

yk−l+mξl .

This expression can involve non-existing x or y variables: for y this happens
if k − l + m > ey, or l < m + k − ey. The terms in the two sums involving y
cancel. If i(m) < k, then the smallest non-canceling term has l = i(m) + 1 and
i(m) + 1 ≥ i(m) + j(m) − ey = k + m − ey. If i(m) > k we a sum of positive
terms starting with k+1. If k < l < m+k−ey then our monomial contributes
to the lifting conditions, and we can leave out this term. The sum therefore
now starts at max(k + 1,m+ k − ey). Keeping this in mind we determine the
term in the base equation πm from the formal formula. To this end we change
the summation variable in the sums containing x-variables and arrive, using
i(m) + j(m) = k +m, at

−
m+i−1∑

l=m

ξlηk−l+m−
k∑

l=i+1

ηk−l+mξl+
m+i−1∑

l=i(m)

ξlηk−l+m+

i(m)∑

l=i+1

ηk−l+mξl−ξi(m)ηj(m)

= −
m+i−1∑

l=m

ξlηk−l+m −
k∑

l=i+1

ηk−l+mξl +

m+i−1∑

l=i+1

ηk−l+mξl .
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If k ≥ m the terms from l = m to l = k occur twice with a minus sign and
once with a plus. Otherwise all negative terms cancel, but we have to take the
lifting conditions into account.

Case II: ex ≥ b. Now there are ex − b + 1 pure rolling factors deformations
present: we can perturb Pm with ρ0xm+ · · ·+ρex−bxm+ex−b. These contribute
ρ0ξm + · · ·+ ρex−bξm+ex−b to the equation πm.
We can roll using only the x variable: xi+myj , with i + j = k and i + b ≤ ex.
We take i = k if k + b ≤ ex and i = ex − b otherwise. We get

sbP ′b − tbP ′0 =

i+b∑

l=i+1

sey−k+ltk+b−lyξl .

We solve:

P ′0 = −
k∑

l=i+1

pyk−lξl

and

P ′m = −
k∑

l=i+1

yk−l+mξl +
i+m∑

l=i+1

yk−l+mξl .

Again if k < l < m+k− ey our monomial contributes to the lifting conditions,
and the sum starts at max(k + 1,m+ k − ey). We get as contribution to πm

−
k∑

l=i+1

ηk−l+mξl +

i+m−1∑

l=i+1

ηk−l+mξl .

Taking the lifting conditions and our choice of i into account we get the state-
ment of the theorem. ¤
Example 3.5: Case I . Let b = 7, ex = 5 and ey = 4. Consider the equation
P = (p0s

2 + p1st+ p2t
2)xy. This leads to the following six equations:

π1 = − p2(ξ1η2 + ξ2η1)
π2 = p0ξ1η1 − p2ξ2η2

π3 = p0(ξ1η2 + ξ2η1) + p1ξ2η2

π4 = p0(ξ1η3 + ξ2η2) + ξ3η1 + p1(ξ2η3 + ξ3η2) + p2ξ3η3

π5 = p0(ξ2η3 + ξ3η2) + ξ4η1 + p1(ξ3η3 + ξ4η2) + p2ξ4η3

π6 = p0(ξ3η3 + ξ4η2) + p1ξ4η3

If we write a matrix with the coefficients of the pi in the columns with rows
coming from the equations πm we find that the first k + 1 rows form a skew
symmetric matrix. This is due to the specific choices made in the above proof.
One can also get any other block to be skew symmetric by using the lifting
conditions. In this example they are p0η1+p1η2+p2η3 = 0, p0ξ1+p1ξ2+p2ξ3 = 0
and p0ξ2 + p1ξ3 + p2ξ4 = 0. From the skew symmetry we can conclude:
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Proposition 3.6. If ey ≤ ex < b then the b − 1 equations πm coming from

the equation P = (
∑k
j=0 pjs

k−jtk)xy, where b+ k = ex + ey, satisfy b− k − 1

linear relations
∑k
j=0 pjπi+j = 0, for 0 < i < b− k.

Example 3.7: case II . Let b = 4, ex = 5 and ey = 3. Consider the equation
P = (p0s

4 + p1s
3t+ p2s

2t2 + p3st
3 + p4t

4)xy. This leads to the following three
equations:

π1 = ρ0ξ1 + ρ1ξ2 − p2ξ2η1 − p3(ξ2η2 + ξ3η1)p4(ξ3η2 + ξ4η1)
π2 = ρ0ξ2 + ρ1ξ3 + p0ξ1η1 + p1ξ2η1 − p3ξ3η2 − p4ξ4η2

π3 = ρ0ξ3 + ρ1ξ4 +p0(ξ1η2 + ξ2η1) + p1(ξ2η2 + ξ3η1) + p2ξ3η2

(3.8) Hyperelliptic cones (cf. [Stevens 1996]). Let X be the cone over a hy-
perelliptic curve C embedded with a line bundle L of degree d ≥ 2g + 3. Then
dimT 1

X(−1) = 2g+ 2. The curve lies on a scroll of degree d− g− 1 as curve of
type 2H − (d− 2g− 2)R. The number of rolling factors equations is d− 2g− 3,
so we have at least as many equations as variables if d > 4g + 4. In that
case only conical deformations exist, so all deformations in negative degree are
obstructed.
The easiest case to describe is L = ng1

2 . The curve C has an affine equation y2 =∑2g+2
k=0 pkt

k, which gives the bihomogeneous equation (
∑2g+2
k=0 pks

2g+2−ktk)x2−
y2 = 0. The line bundle L embeds C in a scroll S(n, n− g − 1), and there are
2n−2g−1 rolling factors equations Pm, coming from p(s, t)x2−y2. The lifting
matrix is a block diagonal matrix with the y-block equal to −2In−g−2, and the
x-block a (n− 2g− 3)× (n− 1) matrix, so the dimension of the space of lifting
deformations of the scroll is 2g + 2 if n ≥ 2g + 3. If n ≤ 2g + 3, the x-block is
not present, and all n− 1 ξ-deformations lift. Furthermore there are 2g+ 3−n
pure rolling factors deformations. This shows again that dimT 1

X(−1) = 2g+ 2.

Proposition 3.9. If n ≥ 2g + 3 the base space in negative degrees is a zero-
dimensional complete intersection of 2g + 2 quadratic equations.

Proof . We may assume that the highest coefficient p2g+2 in p(s, t) equals 1.
The lifting equations allow now to eliminate the variables ξ2g+3, . . . , ξn−1. The
base equations πm involve only the ξi and are therefore not linearly indepen-
dent. Because p2g+2 = 1 we can discard all πm with m > 2g + 2. The first
2g+2 equations involve only the first 2g+2 variables. This shows that we have
the same system of equations for all n ≥ 2g + 3. As we know that there are
no deformations over a positive dimensional base, we conclude that the base
space is a complete intersection of 2g + 2 equations. ¤

Remark 3.10. The fact that the system of equations above defines a complete
intersection can also be seen directly. In fact we have the following result:

Lemma 3.11. The system of e = b−1 equations πm in e−1 variables ξi coming
from one polynomial Pb−2(s, t)x2 is a zero-dimensional complete intersection if
and only if Pb−2(s, t) has no multiple roots.
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Proof . First we note that there are only b−2 linearly independent equations.
We put ξi = sb−i−1ti. Then

πm =
b−2∑

k=0

(m− k − 1)pks
2b−k−m−2tk+m−2

= sb−mtm−2
(∑

(b− 2− k)pks
b−2−ktk + (m+ 1− b)

∑
pks

b−2−ktk
)

.

The form P (s, t) has multiple roots if and only if P (s, t) and s ∂∂sP (s, t) have a

common zero (s0 : t0). Then ξi = sb−i−1
0 ti0 is a nontrivial solution to the system

of equations.

We show the converse by induction. One first checks that a linear transforma-
tion in (s : t) does not change the isomorphism type of the ideal. We apply a
transformation such that s = 0 is a single root of P , so p0 = 0 but p1 6= 0.
The equations π2, . . . , πb−1 now do not involve the variable ξ1 and are by
the induction hypotheses a complete intersection in e − 2 variables, so their
zero set is the ξ1-axis with multiple structure. The equation π1 has the form
−p1ξ

2
1 + . . ., so the whole system has a zero-dimensional solution set. ¤

Remark 3.12. For degL = 4g + 4 the base space is a cone over 22g+1 points
in a very special position: there exist 2g+2 hyperplanes {li = 0} such that the
base is given by l2i = l2j [Stevens 1996]. We can make this more explicit in the

case L = (2g + 2)g1
2 . Again the y-block of the lifting matrix is a multiple of

the identity, but now there is also one rolling factors deformation parameter ρ.
More generally, we look the equations coming from p(s, t)x2 with deg p = b = e.
We get base equations Πm = ρξm + πm, where πm is a quadratic equation in
the ξ-variables only. One solution is clearly ξi = 0 for all i. To find the others
we eliminate ρ:

Rank

(
π1 π2 . . . πe−1

ξ1 ξ2 . . . ξe−1

)
≤ 1 . (∗∗)

The equations Πm can be changed by changing ρ, but this system is indepen-
dent of such changes. Write inhomogeneously p(t) = p0 +p1t+ . . .+pe−1t

e−1 +
te =

∏
(t− αi), where the αi are the roots of p(t).

Lemma 3.13. The e points Pi = (1 : αi : α2
i : · · · : αe−2

i ) are solutions to the
system (∗∗).

Proof . Let α be a root of p and insert ξi = αi−1 in the system (∗∗). We
simplify the matrix by column operations: subtract α times the jth column
from the (j + 1)st column, starting at the end. The matrix has clearly rank
1, if πj+1(α)− απj(α) = 0, where πj(α) is the result of substituting ξi = αi−1

in the equation πj . The coefficient pk occurs in πj(α) in the term lpkα
j+k−2

for some integer l, and in the term (l + 1)pkα
j+k−1 in πj+1(α). Therefore

πj+1(α)− απj(α) = −∑ pkα
j+k−1 = −αj−1p(α) = 0. ¤
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The remaining solutions are found in the following way. Divide the set of
roots into two subsets I and J . The points Pi lie on a rational normal curve.
Therefore the points Pi with i ∈ I span a linear subspace LI of dimension
|I| − 1.

Claim. The intersection point PI := LI ∩ LJ is a solution to (∗∗).
The proof is a similar but more complicated computation. We determine here
only the point PI . The condition that the point

∑
i∈I λiPi lies in LJ is that

Rank




∑
λi . . .

∑
λiα

e−2
i

1 . . . αe−2
j1

...
...

1 . . . αe−2
j|J|


 = |J | .

We find the resulting linear equations on the λi by extending the matrix to a
square matrix by adding |I| − 2 rows of points on the rational normal curve,
for which we take roots. Then only two λi survive, and they come with a
Vandermonde determinant as coefficient. Upon dividing by common factors
we get (

∏
i6=i1,i2(αi1 − αi))λi1 + (

∏
i6=i1,i2(αi2 − αi))λi2 = 0. We multiply with

αi1 − αi2 . Noting that
∏
i6=i1(αi1 − αi) = p′(αi1) (with p′(t) the derivative of

p(t)) we get p′(αi1)λi1 = p′(αi2)λi2 .
We write out the equations for e = 5:

ρξ1 − p1ξ
2
1 − 2p2ξ1ξ2 − p3ξ

2
2 − 2p4ξ2ξ3 − p5(2ξ2ξ4 + ξ2

3)

ρξ2 + p0ξ
2
1 − p2ξ

2
2 − p4ξ

2
3 − 2p5ξ3ξ4

ρξ3 + 2p0ξ1ξ2 + p1ξ
2
2 − p3ξ

2
3 − p5ξ

2
4

ρξ4 + p0(2ξ1ξ3 + ξ2
2) + 2p1ξ2ξ3 + p2ξ

2
3 + 2p3ξ3ξ4 + p4ξ

2
4

Let α be a root of p0 +p1t+p2t
2 +p3t

3 +p4t
4 + t5, and β, . . . , ε the remaining

roots. Write σ′i for the ith symmetric function of these four roots. Then a
solution is ξi = αi−1, ρ = α4−α3σ′1−α2σ′2−ασ′3 +σ′4. Given two roots α and
β we get a solution ξi = (γ − β)(δ− β)(ε− β)αi + (α− γ)(α− δ)(α− ε)βi. To
write ρ we set µ = (γ − β)(δ− β)(ε− β), λ = (α− γ)(α− δ)(α− ε) and σ′′i the
ith symmetric function in γ, δ and ε. Then and ρ = µ(α4 − α2(α + 2β)σ′′1 −
α2σ′′2 − ασ′′3 ) + λ(β4 − β2(α+ 2α)σ′′1 − β2σ′′2 − βσ′′3 ). The hyperplane through
(1 : 0 : 0 : 0 : 0), Pγ , Pδ and Pε is l−αβ = σ′′3 ξ1−σ′′2 ξ2 +σ′′1 ξ3− ξ4. In it lie also Pγδ,

Pγε, Pδε and Pαβ . The hyperplane containing the remaining points is l+αβ =

ρ− (α+β)l−αβ +2σ′′3 ξ2 +2αβξ3. We put la = ρ−2σ′4ξ1 +2σ′3ξ2 +2ασ′1ξ3−2αξ4.

Then l2α − l2β = 4(α− β)l−αβl
+
αβ .

4. Tetragonal curves.

An extension of a canonical curve yields a surface with the given canonical
curve as hyperplane section. Surfaces with canonical hyperplane sections were
studied in Dick Epema’s thesis [Epema 1983]. Only a limited list of surfaces
can occur.
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Theorem 4.1([Epema 1983], Cor. I.5.5 and Cor. II.3.3). Let W be a surface
with canonical hyperplane sections. Then one of the following holds:
(a) W is a K3 surface with at most rational double points as singularities,
(b) W is a rational surface with one minimally elliptic singularity and possibly

rational double points,
(c) W is a birationally ruled surface over an elliptic curve Γ with as non-

rational singularities either
i) two simple elliptic singularities with exceptional divisor isomorphic to

Γ, or
ii) one Gorenstein singularity with pg = 2,

(d) W is a birationally ruled surface over a curve Γ of genus q ≥ 2 with one
non-rational singularity with pg = q+1, whose exceptional divisor contains
exactly one non-rational curve isomorphic to Γ.

Case (c) occurs for bi-elliptic curves (see below). If we exclude them and curves
of low genus on Del Pezzo surfaces, then all extensions of tetragonal curves are
of rolling factors type. The surface W has therefore to occur in our classification
of complete intersection surfaces on scrolls. In particular, K3 surfaces can only
occur if b1 ≤ b2 + 4. This has consequences for deformations of tetragonal
cones.

Proposition 4.2. Pure rolling factors deformations are always unobstructed.
If e3 > 0 and b1 > b2 + 4 the remaining deformations are obstructed.

Proof . The first statement follows directly from the form of the equations.
For the second we note that the total space of a nontrivial one-parameter
deformation of a scroll with e3 > 0 is a scroll with e4 > 0. ¤
By taking hyperplane sections of a general element in each of the families of
the classification we obtain for all g tetragonal curves with b1 ≤ b2 + 4 lying
on K3 surfaces (with at most rational double points). To realize the other
types of surfaces we give a construction, which goes back to [Du Val 1933].
His construction was generalized to the non-rational case in [Epema 1983]. In
our situation we want a given curve to be a hyperplane section. A general
construction for given hyperplane sections of regular surfaces is given in [Wahl
1998].

Construction 4.3. Let Y be a surface containing the curve C and let D ∈
| −KY | be an anticanonical divisor. Let Ỹ be the blow up of Y in the scheme
Z = C∩D. If the linear subsystem C ′ of |C| with base scheme Z has dimension

g, it associated map contracts D and blows down Ỹ to a surface Y with C as
canonical hyperplane section.

Let IZ be the ideal sheaf of Z. Then we have the exact sequence

0 −→ OY −→ IZOY (C) −→ OC(C − Z) −→ 0

and by the adjunction formula OC(C − Z) = KC . If h0(IZOY (C)) = g + 1
then the map H0(IZOY (C)) −→ H0(KC) is surjective, a condition which is
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automatically satisfied if Y is a regular surface. This yields that the special
hyperplane section is the curve C in its canonical embedding.
Suppose that Y is not regular. By Epema’s classification Y is then a bira-
tionally ruled surface, over a curve Γ of genus q. Let C̃ be the strict transform
of C on Ỹ and C its image on Y . Then H0(IZOY (C)) = H0(O

Ỹ
(C̃)) =

H0(OY (C)). We look at the exact sequence

0 −→ OY −→ OY (C) −→ OC(C) = KC −→ 0 .

We compute H1(OY ) with the spectral sequence for the map π: Ỹ −→ Y . This
gives us the long exact sequence

0 −→ H1(OY ) −→ H1(O
Ỹ

) −→ H0(R1π∗OỸ ) −→ H2(OY ) −→ 0

in which dimH1(O
Ỹ

) = q. We choose D in such a way that the composed map

H1(OΓ) −→ R1π∗OỸ −→ H1(O
D̃

), where D̃ is the exceptional divisor of the

map π, is injective. Then the map H0(IZOY (C)) −→ H0(KC) is surjective.
To apply the construction we need a surface on which the curve C lies. In the
tetragonal case a natural candidate is the surface Y of type 2H − b1R on the
scroll.
We first assume that e1 < b1, so there are no pure rolling factors deformations
coming from the first equation on the scroll. The canonical divisor of the scroll
S is −3H + (b1 + b2)R [Schreyer 1986, 1.7]. So an anticanonical divisor on
Y is of type H − b2R. Let T = τe1−b2(s, t)x + τe2−b2(s, t)y + τe3−b2(s, t)z be
the equation of such a divisor. Sections of IZOY (C) are Q (which defines C),
and xiT = se1−itixT , yiT and ziT . With coordinates (t : xi : yi : zi) on Pg we

get by rolling factors b2 + 1 equations Q̃m from the relation Q(τe1−b2(s, t)x +
τe2−b2(s, t)y+τe3−b2(s, t)z) = (Q1,1x

2+· · ·+Q3,3z
2)T . As t is also a coordinate

on the four-dimensional scroll, which is the cone over S, we can write the
equation on the scroll as

Q1,1x
2 + · · ·+Q3,3z

2 − (τe1−b2x+ · · ·+ τe3−b2z)t .

We analyze the resulting singularities. If Y is a rational surface, we have
a anticanonical divisor D which has arithmetic genus 1, giving a minimally
elliptic singularity on the total space of the deformation.
If Y is a ruled surface over a hyperelliptic curve Γ, then D passes through the
double locus. This gives an exceptional divisor with Γ as only non-rational
curve.

Example 4.4. Let (e1, e2, e3; b1, b2) = (3n−2, 2n−2, n−2; 4n−4, 2n−4). If the
coefficient of xz does not vanish, we may bring the equation P onto the form
xz − y2. The second equation has the form z2 + qnzy + q2nzx+ q3nxy + q4nx

2

from which z may be eliminated to obtain a quartic equation for y. The case
of a cyclic curve y4 + q4nx

4 is a special instance. The equation P gives a
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square lifting matrix in which the antidiagonal blocks are square unit matrices.
Therefore the only deformations are pure rolling factors deformations, coming
from the second equation, in number (n + 3) + 3 = g+3

6 + 6. We have T =
τn+2x + τ2y. The section (0 : 0 : 1) is always a component of D. If t2 6≡ 0 we
have a cusp singularity, but if τ2 ≡ 0 the section occurs with multiplicity 2 in
D.
If however the coefficient of xz vanishes, the surface Y is singular. After a
coordinate transformation its equation is y2 + p2nx

2, the other equation being
z2 + q3nxy + q4nx

2. In this case the lifting matrix has (up to a factor 1
2 ) the

following block structure 


Π 0 0
0 I 0
0 0 0
0 0 I




so there are 2n ξ-deformations, on which we have 4n−5 base equations coming
from the equation P . Of these are only 2n linearly independent, defining a
zero-dimensional complete intersection (see Lemma 3.11). These deformations
are therefore obstructed, leaving us again with only the pure rolling factors
deformations. The curve D consists of the double locus and in general 2n+ 4
lines.

The same computation as above works for bielliptic cones. In that case one has
a deformation of weight −2. The total space is a surface in weighted projective
space P(1, . . . , 1, 2). Replacing the deformation parameter t by t2 we get a
surface in ordinary Pg. This is a surface with two simple elliptic singularities.
The most general surface of this type is the intersection of our elliptic cone
with one dimensional vertex with the hypersurface given by

Q̃ = z2 +Q(xi, yi) + tl(xi, yi) + at2 ,

where l(xi, yi) is a linear form in the coordinates xi, yi. If the coefficient a
vanishes, we get a surface with one singularity with pg = 2. The construction

above gives an equation of the form Q̃ = z2 + · · ·+azt, which after a coordinate
transformation becomes z2 + · · · − 1

4a
2t2.

Proposition 4.5. For bielliptic cones of genus g > 10 the only deformations
of negative weight are pure rolling factors deformations.

Proof . Each infinitesimal deformation of the bielliptic cone induces an in-
finitesimal deformation of the cone over the projective cone over the elliptic
curve. The same holds therefore for complete deformations of negative weight.
It is well-known that the cone over an elliptic curve of degree at least 10 has
only obstructed deformations of negative weight. Therefore the deformation of
the elliptic cone is trivial and the only possibility is to deform the last quadratic
equation. ¤
On the other hand, non-scrollar extension do occur for bielliptic curves with
g ≤ 10 and for tetragonal curves on Del Pezzo surfaces.
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Example 4.6. A bielliptic curve of genus 10 lies on the projective cone over
an elliptic curve of degree 9. Such a cone is can be smoothed to the triple
Veronese embedding of P2. Let W be a K3 surface of degree 2, a double cover
of P2 branched along a sextic curve. We re-embed W with |3L|, where L is
the pull-back of a line on P2. The image lies on the cone over the Verones
embedding. A hyperplane section through the vertex of the cone is a bielliptic
curve, whereas the general hyperplane section has a g2

6 . This example, due to
[Donagi–Morrison 1989], is the only case where the gonality of smooth curves in
a base-point-free ample linear system on aK3 surface is not constant [Ciliberto–
Pareschi 1995].

Now we look at the case that also the first set of equations admit pure rolling
factors deformations.

Lemma 4.7. If e1 ≥ b1 then e1 ≤ b1 + 2 and b1 ≤ b2 + 4.

Proof . Under the assumption e1 ≥ b1 we have e2 + e3 − 2 ≤ b2 ≤ 2e3 so
e2 ≤ e3 + 2 and b1 ≤ 2e2 ≤ e2 + e3 + 2 ≤ b2 + 4. Furthermore e − 1 =
b1 + b2 + 2− e2 − e3 ≤ b1 + 2. ¤

It is now easy to list all 18 possibilities, ranging from (2e + 2, e, e; 2e, 2e) to
(2e + 4, e + 2, e; 2e + 4, 2e). A look at the table of tetragonal K3 surfaces
reveals that all possibilities are realizable as special sections of K3-surfaces;
e.g., the hyperplane section xe+2 = y0 of a K3 with invariants (e+ 2, e+ 2, e+
2, e; 2e+ 4, 2e) yields the last case.
On the other hand, every family of K3 surfaces contains degenerate elements
with singularities of higher genus. Those can be constructed with Epema’s
construction and in fact he gives rather complete results for quartic hypersur-
faces [Epema 1983]. The classification of such surfaces is due to [Rohn 1884]
and is quite involved. In those cases the rational or ruled surfaces on which
the canonical curve lies are not evident. For pure rolling factors extensions the
situation is better; in fact, we can make the following simple observation.

Proposition 4.8. Let W be a pure rolling factors extension of tetragonal
curve, which is not bi-elliptic. It lies on the cone over the 3-dimensional scroll
S with vertex in p = (0 : . . . : 0 : 1) and the projection from the point p yields a
surface Y ⊂ Pg−1 on which C lies.

Example 4.9. If b1 > e1 then X lies on the cone over the surface Y on the scroll
and the projection is just this surface Y , so we get the construction described
above.

Example 4.10. Consider the curve with invariants (8, 4, 2; 8, 4). In general a
pure rolling factors extension leads to a K3-surface (with an ordinary double
point). It is the case e = 3 of (e+ 5, e+ 1, e− 1, e− 3; 2e+ 2, 2e− 1) from the
table; the singularity appears because the section (0 : 0 : 0 : 1) is contracted. To
find the equation of Y on the scroll we have to eliminate the last coordinate w.
The deformed equation P̃ is P + axw, while Q̃ = Q+ byw + c2(s, t)xw with a
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and b nonzero constants. The equation of Y is therefore (by+c2(s, t)x)P−axQ,
which defines a divisor of type 3H − (b1 + b2)R on the scroll.

Example 4.11: the case (2e+ 2, e, e; 2e, 2e). We first derive a normal form for
the equations P and Q. We start with the restriction to x = 0. We have a
pencil of quadrics so we may choose the first equation as y2 and the second as
z2. We get:

P : y2 + pe+2xz + p2e+4x
2

Q: z2 + qe+2xy + q2e+4x
2 .

There are 3 + 3 pure rolling factors deformations:

P̃ : P + (ρ0s
2 + ρ1st+ ρ2t

2)x

Q̃: Q+ (τ0s
2 + τ1st+ τ2t

2)x .

If the polynomials ρ := ρ0s
2 + ρ1st + ρ2t

2 and τ := τ0s
2 + τ1st + τ2t

2 are
proportional, so λρ + µτ = 0, then the surface Y is the surface λP + µQ = 0
from the pencil. In general the anticanonical divisor D contains the two sections
given by x = 0, λy2 +µz2 = 0 and the singularity on the deformation is a cusp
singularity. If ρ and τ have 0 ≤ γ < 2 roots in common, the projected surface
is a divisor of type 2H − (2e − 2 + γ)R. In general we get a simple elliptic
singularity.
To describe the remaining deformations we look at the lifting matrix, which is
a block matrix 


0 2I 0

Πe+2 0 0
Ξe+2 0 0

0 0 2I




of size (4e − 4) × (4e − 1). Its rank is 2e − 2 if pe+2 and qe+2 both vanish
identically, and lies between 3e − 3 and 4e − 4 otherwise. The solution space
has dimension γ ≥ 3 with strict inequality iff the polynomials pe+2 and qe+2

have γ roots in common. The η and ζ deformations vanish. Therefore the
base equations depend only on p2e+4 and q2e+4. They are 2(2e− 1) quadratic
equations on 2e+ 1 + 6 variables, which may or may not have solutions.

We now turn to the other deformations in general. A dimension count shows
that the general tetragonal curve of genus g > 15 cannot lie on a K3 surface,
so the deformations are obstructed. For a general tetragonal cone we have that
dimT 1

X = 9. There are (b1 − 1) + (b2 − 1) = g − 7 quadratic base equations.
Compare this with the dimension of T 2:

Theorem 4.12([Wahl, Thm. 5.9]). Let X be a tetragonal cone with e3 > 0.
Then dimT 2

X(−k) = 0 for k > 2 and dimT 2
X(−k) = g − 7 if b2 > 0. If b2 = 0,

then dimT 2
X(−k) = 2(g − 6).

In particular, if g > 15 we have more equations than variables and in general
there are no solutions. For special moduli solutions do exist and one expects
in general exactly one solution.
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(4.13) The case g = 15. Consider the most general situation, of equal invari-
ants: e1 = e2 = e3 = 4, b1 = b2 = 5. In this case there are no pure rolling
factor deformations and no lifting conditions.

Proposition 4.14. The general tetragonal curve with e1 = e2 = e3 = 4,
b1 = b2 = 5 is hyperplane section of 256 different K3 surfaces.

Proof . We have 8 homogeneous quadratic equations in 9 variables, which
define a complete intersection of degree 28. We give an explicit example. Take
the curve, given by the equations

(s3 + t3)x2 + (s3 + 2t3)y2 + (s3 − 2t3)z2

(s2 + t2)(s− t)x2 + s2(s+ t)y2 + t3z2

on the scroll. The base equations are formed according to Thm. 3.4. One
computes that indeed we have a complete intersection, which is non-singular.
¤
It is very difficult to find solutions to such equations, and I have not succeeded
to do so in the specific example. Note that the absence of mixed terms in x, y
and z on the scroll means that the automorphism group of the curve has order
at least eight and it operates on the base space: given one solution one finds
three other ones by multiplying all ξi or all ζi by −1.

Remark 4.15. Alternatively one can start with a K3 surface and take a general
hyperplane section. Therefore we look at complete intersections of two surfaces
of type 2H − 5R on a scroll of type (3, 3, 3, 3). Such a K3 surface can have
infinitesimal deformations of negative weight (which are always obstructed).
The lifting matrix for the K3 has size 8 × 8. The equations P and Q on the
scroll are pencils of quadrics. In general such a pencil has 4 singular fibres and
by taking a suitable linear combination we may suppose that P has the form

sX2 + tY 2 + (s+ t)Z2 + (s− t)W 2 .

The polynomial Q is then a general pencil with 20 coefficients, of which one can
be made to vanish by subtracting a multiple of P . This shows that these K3
surfaces depend on 18 moduli. Let Q = (a11s+ b11t)X

2 + 2(a12s+ b12t)XY +
. . .+ (a44s+ b44t)W

2. Then the lifting matrix is

2




1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 −1
a11 b11 a12 b12 a13 b13 a14 b14

a12 b12 a22 b22 a23 b23 a24 b24

a13 b13 a23 b23 a33 b33 a34 b34

a14 b14 a24 b24 a34 b34 a44 b44




.
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For nonsingular K3 surfaces this matrix has at least rank 5, and it is possible to
write down examples with exactly rank 5. Rank 4 can be realized with surfaces
with isolated singularities. An explicit example (with a slightly different basis
for the pencil) is

P = sX2 + tY 2 + (s+ t)Z2

Q = sX2 − tY 2 + (s− t)W 2

with ordinary double points at sX = tY = (s + t)Z = (s − t)W = 0. The
hyperplane section X3 + Z2 + W1 + Y0 = t3X + s2tZ + st2W + s3Y does not
pass through the singular points and defines a smooth tetragonal curve with
ei = 4. The base space for this curve is still a complete intersection, but the
line corresponding to the singular K3 surface is a multiple solution.

(4.16) The case g = 16. The curves lying on a K3 form a codimension one
subspace in the moduli space of tetragonal curves of genus g = 16. In terms
of the coefficients of the equations of the scroll one gets an equation of high
degree. It makes no sense to write it. We will not study the most general case
(5, 4, 4; 6, 5) but (5, 5, 3; 6, 5). These curves form a codimension two subspace in
moduli. The computations will show that the condition of being a hyperplane
section has again codimension one. The lifting matrix need not have full rank.
We have b1 = 2e3, and the g1

4 can be composed.
Suppose that the coefficient of z2 in the first equation on the scroll does not
vanish. With a coordinate transformation we may assume that the equation
has the form z2 + P4(s, t;x, y) with P4 of degree 4 in (s : t) and quadratic in
(x : y). Then we can take Q to be without z2 term. Let q0;1s

3 + . . .+ q3;1t
3 be

the coefficient of xz and q0;2s
3 + . . .+ q3;2t

3 that of yz. The rows of the 3× 8
lifting matrix come only from the monomial z:




0 0 0 0 | 0 0 0 0 | 1 0
0 0 0 0 | 0 0 0 0 | 0 1

q0;1 q1;1 q2;1 q3;1 | q0;2 q1;2 q2;2 q3;2 | 0 0




The matrix has rank 3 if some qi,j does not vanish, but rank 2 if they all vanish;
then the surface {Q = 0} has a singular line.
The deformation variables ζ1, ζ2 vanish. We have two pure rolling factors
deformations ρ1 and ρ2 in the second set of additional equations, and there are
scrollar deformations ξ1, . . . , η4. Between those exist a linear relation given by
the third line of the matrix. The equations for the base can be written down
independently of this linear relation, because the ζi vanish.
We give a specific example: z2 + t4y2 + (s4 + t4)x2 and (s5 + t5)x2 + (s5 −
t5)y2 + q1(s, t)xz + q2(s, t)yz. We get the following nine equations:

−2ξ2ξ3 − 2ξ1ξ4 − 2η2η3 − 2η1η4

ξ2
1 − ξ2

3 − 2ξ2ξ4 − η2
3 − 2η2η4

2ξ1ξ2 − 2ξ3ξ4 − 2η3η4
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2ξ1ξ3 + ξ2
2 − ξ2

4 − η2
4

2ξ1ξ4 + 2ξ2ξ3

ρ1ξ1 + ρ2η1 − ξ2
3 − 2ξ2ξ4 + η2

3 + 2η2η4

ρ1ξ2 + ρ2η2 + ξ2
1 + η2

1 − 2ξ3ξ4 + 2η3η4

ρ1ξ3 + ρ2η3 + 2ξ1ξ2 + 2η1η2 − ξ2
4 + η2

4

ρ1ξ4 + ρ2η4 + 2ξ1ξ3 + ξ2
2 + 2η1η3 + η2

2

Also in general we have 5 equations πm and 4 equations ρ1ξm + ρ2ηm + χm.
The pure rolling factors equations are never obstructed. We have as solution to
the equations therefore the (ρ1, ρ2)-plane with a non reduced structure. Given
a general value of (ρ1, ρ2) we can eliminate say the ηi variables. We are then
left with 5 equations πi depending only on the xi. Their quadratic parts satisfy
a relation with constant coefficients, but even more is true: this relation can
be lifted to the equations themselves. So the component has multiplicity 16.
The general fibre over the reduced component has a simple elliptic singularity
of degree 10.
To find the other solutions we eliminate ρ1 and ρ2. This gives the condition

Rank



χ1 χ2 χ3 χ4

ξ1 ξ2 ξ3 ξ4
η1 η2 η3 η4


 ≤ 2

which defines a codimension 2 variety of degree 11. In general the 5 equations
πm cut out a subset of codimension 7 and degree 352. But if

Rank

(
ξ1 ξ2 ξ3 ξ4
η1 η2 η3 η4

)
≤ 1 (R)

the full equations have only solutions in the (ρ1, ρ2)-plane. Even if this rank
condition defines a codimension 3 subspace, there are always solutions. To see
this we set ξi = s4−iti−1ξ and ηi = s4−iti−1η. The equations πm are satisfied if
∂
∂sP4(s, t; ξ, η) = 0 and ∂

∂tP4(s, t; ξ, η) = 0. This is the intersection of two curves
of type (2, 3) on the scroll S3,3

∼= P1 × P1 and there are 12 such intersection
points. Those points give multiple solutions. One can compute that the rank
of the Jacobi matrix of the system of equations (R) together with the πm is
five. By taking a suitable general example one finds that the multiplicity is in
fact 4, and 48 is the degree of the solution of the system.

Proposition 4.17. The general tetragonal cone with invariants (5, 5, 3; 6, 5),
which is composed with an involution of genus 4, has 302 smoothing com-
ponents. The base space of a non-composed cone can be identified with a
hyperplane section of the base of the corresponding composed one and only the
smoothing components of lying in this hyperplane give smoothing components
of the non-composed cone.

This means that for fixed polynomials P , Q the existence of smoothings depends
on an equation of degree 302 in the eight variables qi;j . For special values the
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number of smoothing components may go down. This happens in the specific
example given, where the condition (R) gives two-dimensional ‘false’ solutions.
Here there are only 238 smoothing components. Besides the hyperelliptic invo-
lution the curve has another automorphism which acts on the base space. The
only solutions I have found are easy to see:

η1 = η2 = ξ3 = ξ4 = ξ1 + ξ2 = η3 + η4 = ρ1 + ξ1 = ρ2 + η4 = ξ2
1 − η2

4 = 0

We take ξ1 = η3 = ρ2 = δ and ξ2 = η4 = ρ1 = −δ. The total space is a surface
on a scroll of type (4, 3, 3, 3) with bihomogeneous coordinates (W,X, Y, Z; s, t).
We set Yi = yi, Xi = xi+2 and Zi = zi for i = 0, . . . , 3. The hyperplane section
is δ = W2 +X0 +X1 + Y2 + Y3, so if δ = 0 we have X = t2x, Y = s2y, Z = z
and W = −(s+t)(x+y). The lifting equation is now q0;1−q1;1 +q2;2−q3;3 = 0.
One computes that the surface is given by

2X2 + Y 2 − 2(X − Y )W (s− t) +W 2(s− t)2 + Z2

2Y 2s−XW (s2 − 2st+ 2t2) + YW (2s2 − 2st+ t2) +W 2(s− t)(s2 − st+ t2)

−XZ(sq2;2 + tq3;2)−Y Z(sq0;1 + tq1;1)−ZW (s2q0;1 + st(q2;2− q3;2) + t2q3;2)

This is a K3 surface with an A1-singularity.
For even more special values of the coefficients there may be higher dimensional
smoothing components. This happens e.g. for P = z2+t4y2+s4x2 and the same
Q as above, where the equations πm have the solution ξ1 = ξ2 = η3 = η4 = 0,
giving rise to an extra component of degree 15, which is the cone over three
rational normal curves of degree 5. Then all tetragonal on Y have smoothings,
but depending on the position of the hyperplane the number may increase.

(4.18) The case (b1, b2) = (8, 4). In this case there exist five families of K3-
surfaces, three of which have the maximal dimension 18. The general hy-
perplane section of the scroll S8,4,2,0 is a scroll S8,4,2 while for both S5,4,3,2

and S4,4,4,2 it is S5,5,4. One computes that the tetragonal curves of type
(2H − 8R, 2H − 4R) on S8,4,2 depend on 29 moduli and those on S5,5,4 de-
pend on 34 moduli.

Proposition 4.19. The general tetragonal curve of type (8, 4, 2; 8, 4) has only
pure rolling factors extensions. If the g1

4 is composed with an involution of genus
3, then there are in general 91 smoothing components not of this type.

Remark 4.20. The tetragonal curve can be a special hyperplane section of
a K3 surface on S7,4,2,1, S6,4,2,2, S5,4,3,2 or S4,4,4,2. Therefore the genericity
assumption cannot be dropped.

Proof . After a coordinate we may assume that P has the form p8x
2+y2+p2xz.

The g1
4 is composed with an involution of genus 3 if and only if p2 ≡ 0. In that

case Q may be taken in the form q12x
2+q8xy+z2. That the curve is nonsingular

implies that p8 has no multiple roots. If the g1
4 is not composed, the term z2
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may be absent in Q, and p8 may have multiple roots. For the general curve
this does not occur. We look therefore at curves given by

P : p8x
2 + y2 + p2xz

Q: q12x
2 + q8xy + z2 .

The lifting matrix is a block matrix



0 2I 0
Π 0 0
0 0 2I




with Π giving the equations p2,0ξi + p2,1ξi+1 + p2,2ξi+2 = 0. There is one pure
rolling factors deformation for the first equation, and 5 + 1 for the second. The
equation P leads to 7 base equations πm in the 8 variables ρ, ξ1, . . . , ξ7. The
128 solutions are described above. The equations coming from Q are

ρ1ξ1 + ρ2ξ2 + ρ3ξ3 + ρ4ξ4 + ρ5ξ5 + χ1 = 0

ρ1ξ2 + ρ2ξ3 + ρ3ξ4 + ρ4ξ5 + ρ5ξ6 + χ2 = 0

ρ1ξ3 + ρ2ξ4 + ρ3ξ5 + ρ4ξ6 + ρ5ξ7 + χ3 = 0

We view this as inhomogeneous linear equations for the ρi. The coefficient
matrix

M =



ξ1 ξ2 ξ3 ξ4 ξ5
ξ2 ξ3 ξ4 ξ5 ξ6
ξ3 ξ4 ξ5 ξ6 ξ7




is the transpose of the coefficient matrix of the equations p2,0ξi + p2,1ξi+1 +
p2,2ξi+2 = 0, viewed as equations for the coefficients of p2. If for a given solution
of the equations πm the matrix M has not full rank, then there exists a non-
composed pencil admitting the same solution. But then also p2,0χ1 + p2,1χ2 +
p2,2χ3 = 0, an equation which in general is not satisfied. We have 8 solutions
which lie on a rational normal curve and 28 solutions on the secant variety of
this curve. The equations of the secant variety are the maximal minors of M .
Only for 91 solutions the matrix M has full rank. ¤
In the general case we get components of dimension 3 + 1 (the y-rolling factors
deformation does not enter the equations), for solutions not on the rational
curve, but on its secant variety the component has dimension 5, while we get
a 6-dimensional component if p8 and q12 have a common root. This does not
contradict the fact that all smoothing components of Gorenstein surface singu-
larities have the same dimension, because we here only look at the restriction
to negative degree.

Proposition 4.21. The general hyperplane section of a K3 surface of type
(5, 4, 3, 2; 8, 4) or (4, 4, 4, 2; 8, 4) is a tetragonal curve of type (5, 5, 4; 8, 4), which
lies on a rational surface with two double points.

Proof . We use coordinate transformations on the scroll to bring the hy-
perplane section into a normal form, while we suppose the coefficients of
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the equations to be general. Let as usual (X,Y, Z,W ; s, t) be coordinates
on the scroll. Let the hyperplane section be a0W0 + a1W1 + a2W2 + · · · =
(a0s

2 + a1st + a2t
2)W + · · ·. By a transformation in (s, t) we achieve that

a0 = a2 = 0, so the equation is W1 + · · ·. First consider the case (4, 4, 4, 2). By
a suitable transformation w 7→W+a2(s, t)X+b2(s, t)Y +c2(s, t)Z we remove all
terms with index 1, 2 or 3, leaving W1+a0X0+b0Y0+c0Z0+a4X4+b4Y4+c4Z4.
Taking a0X + b0Y + c0Z as new X and a4X + b4Y + c4Z as new Y brings us
finally to X4+W1+Y0. With coordinates (x, y, z; s, t) for the scroll S5,5,4 we get
the hyperplane section by setting Z = z, X = sx, Y = ty and W = −t3x−s3y.
The equation P does not involve the variable W so we have quadratic sin-
gularities if sx = ty = z = 0, which gives the points s = y = z = 0 and
t = x = z = 0.
In the case (5, 4, 3, 2) we can achieve W1 + Z0 + Z3 and we get the curve by
X = x, Y = z, Z = sty and W = −(s3 + t3)y. The equation P : p2X

2 +
p1XY + p0Y

2 +XZ now gives p2x
2 + p1xz+ p0z

2 + stxy, which for general pi
has singular points at x = z = st = 0. ¤
To investigate the sufficiency of these conditions we look at the general cone
of type (5, 5, 4; 8, 4). We may suppose that P has the form z2 + P2(x, y). The
equation P2(x, y) describes a curve of type (2, 2) on S5,5

∼= P1×P1. If this curve
has a singular point, we may assume that it lies in the point x = s = 0. Under
the assumption that the coefficient of stxy does not vanish we can transform
the equation into the form (as2 + bt2)x2 + 2stxy + cs2y2 and unfolding the
singularity we get the equation

P2 = (as2 + bt2)x2 + 2stxy + (cs2 + dt2)y2 .

One can then write out the lifting conditions and base equations coming from
the equation P . The result is that they have only trivial solutions if and only if
abcd((ad+ bc− 1)2− 4abcd) 6= 0, if and only if the curve P2 is nonsingular. If a
singularity is present we assume it to be in x = s = 0, so d = 0. The equation Q
gives three base equations, in which 2+2 pure rolling factors variables can enter.
We analyze what happens if there is a second singularity. For b = d = 0 the
equation P2 is divisible by s, and we do not find extensions. In case a = d = 0
the curve P2 splits into two curves of type (1, 1); we get two components with
deformed scroll S4,4,4,2. For c = d = 0 we have intersection of a line with a
curve of type (2, 1) and we find two components with deformed scroll S5,4,3,2.

Remark 4.22. For the general tetragonal cone with large g we found
dimT 1(−1) = 9, but all deformations are obstructed. For special curves exten-
sions may exist; also the dimension can be higher. Both conditions seem to be
independent. As the number of base equations we find is always g − 7, having
more variables increases the chances of finding solutions. In the borderline case
studied above this may suffice to force the existence, but in general it does not.
On the other, taking a general hyperplane section of a general tetragonal K3
surface will give a cone with dimT 1(−1) = 9. It would be interesting to find a
property of a canonical curve which gives a sufficient condition for the existence
of an extension.
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The product of closed forms is closed again. The analogous statement for
harmonic forms, however, fails. A priori, there is no reason why the product
of harmonic forms should be harmonic again. This phenomenon was recently
studied by Merkulov [8]. He shows that it leads to a natural A∞-structure on a
Kähler manifold. In the context of mirror symmetry Polishchuk made use of (a
twisted version of) this A∞-structure on elliptic curves to confirm Kontsevich’s
homological version of mirror symmetry in this case [9].

In the present paper we show that this failure of harmonicity in fact happens
quite frequently. It usually is related to certain geometric properties of the
manifold and to the existence of rational curves in particular. In fact, we are
only interested in the product of harmonic (1, 1)-forms, as this is the geometric
relevant case. We wish to emphasize that the interplay between harmonicity
and geometry is by far not completely understood. The results of this paper
just seem to indicate that there is in fact a relationship. As the failure of
harmonicity is related to the shape of the ‘non-linear Kähler cone’ (cf. 1.2,
2.3), the results of this paper can roughly be phrased by saying that the ge-
ometry of the manifold forces the non-linear Kähler cone to be curved. For
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a deeper understanding of the situation one will have to study the shape of
the non-linear Kähler cone or, equivalently, the non-harmonicity of products of
harmonic forms.
Let us briefly indicate the main results for the special case of compact Ricci-flat
Kähler manifolds. For a Kähler class ω ∈ H2(X,R) on such a manifold there
exists a unique Ricci-flat Kähler form ω̃ representing it. Let H1,1(ω̃) denote
the space of (1, 1)-forms harmonic with respect to ω̃. Of course, for a different
Kähler class ω′ and the representing Ricci-flat Kähler form ω̃′ this space might
be different.
The main technical result (Prop. 2.3) says that H1,1(ω̃) is independent of ω
if and only if the top exterior power of any harmonic form α ∈ H1,1(ω̃) is
again harmonic. This can be used to interpret the failure of harmonicity of
the top exterior power geometrically. Proposition 3.2 asserts that there always
exist harmonic (1, 1)-forms with non-harmonic top exterior power, whenever
the Kähler cone (or ample cone) does not form a connected component of the
(integral) cone of all classes α ∈ H1,1(X,R) with

∫
X
αN > 0.

Note that there are many instances where the Kähler cone is strictly smaller.
E.g. this is the case for any Calabi-Yau manifold that is birational to a non-
isomorphic Calabi-Yau manifold (Prop. 6.1).
In Section 4 we apply the result for K3 surfaces. One finds that on any K3
surfaces containing a rational curve there exists a harmonic (1, 1)-form α such
that α2 is not harmonic. This can be extended to arbitrary K3 surfaces by
using the existence of rational curves on nearby K3 surfaces.

1 Preparations

Let X be a compact Kähler manifold. Then KX ⊂ H1,1(X,R) denotes
the Kähler cone, i.e. the open set of all Kähler classes on X. For a class
α ∈ H1,1(X,R) we usually denote by α̃ ∈ A1,1(X)R a closed real (1, 1)-form
representing α. Let us recall the Calabi-Yau theorem [3].

Theorem 1.1 — Let X be an N -dimensional compact Kähler manifold with a

given volume form vol ∈ AN,N (X)R. For any Kähler class ω ∈ KX there exists

a unique Kähler form ω̃ ∈ A1,1(X)R representing ω, such that ω̃N = c · vol,

with c ∈ R.

Since ω̃N is harmonic with respect to ω̃, this can be equivalently expressed by
saying that any Kähler class ω can uniquely be represented by a Kähler form
ω̃ with respect to which the given volume form is harmonic. Note that the
constant c can be computed as c =

∫
X
ωN/vol(X).

Definition 1.2 — For a given volume form vol ∈ AN.N (X)R we let K̃X ⊂
A1,1(X)R be the set of Kähler forms ω̃ with respect to which vol is harmonic.

By the Calabi-Yau theorem the natural projection K̃X → KX is bijective. The
Kähler cone KX is an open subset of H1,1(X,R), whereas K̃X is in general not
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contained as an open subset in a linear subspace of A1,1(X) (cf. 2.1). Thus it
might be appropriate to call K̃X the non-linear Kähler cone.
Let ω̃ ∈ K̃X and c =

∫
X
ωN/vol(X). The tangent space of K̃X at ω̃ can be

computed as follows. Firstly, we may write K̃X = R+ × K̃cX , where K̃cX =
{ω̃ ∈ K̃X |ω̃N = c · vol}. Secondly, the infinitesimal deformations of ω̃ in the
direction of K̃cX are of the form ω̃+ εṽ, where ṽ is a closed real (1, 1)-form and
such that (ω̃ + εṽ)N = ω̃N . The latter condition gives ω̃N +Nεω̃N−1ṽ = ω̃N ,
i.e. ṽ is primitive. As any closed primitive (1, 1)-form is harmonic, this shows
that the tangent space of K̃cX at ω̃ is the space H1,1(ω)R,prim of real ω̃-primitive
ω̃-harmonic (1, 1)-forms. Thirdly, the R+-direction corresponds to the scaling
of ω̃ and this tangent direction is therefore canonically identified with Rω̃.
Altogether, one obtains that Tω̃K̃X = H1,1(ω̃)R is the space of real ω̃-harmonic
(1, 1)-forms. In particular, K̃X is a smooth connected submanifold of A1,1(X)R.
To make this approach rigorous, one first completesA1,1(X) in the L2

k-topology,

where k > N . The Sobolev embedding theorem then shows that L2
k(Λ1,1

R )cl →
L2
k(ΛN,NR ) given by α 7→ αN is a well-defined continuous multi-linear map and

hence differentiable. Then, K̃X is contained as an open subset in the fibre
over vol. It inherits the differentiable structure and the above calculation then
shows that it is smooth. Also note that the projection from the closed L2

k forms

onto cohomology is differentiable. Hence, K̃X → KX is a differentiable map.
Moreover, again due to the description of the tangent space, this map is in fact
a diffeomorphism. In particular, the bijection K̃X → KX yields a differentiable
map KX → A2(X) (in the L2

k-topology). This fact is used in 2.2.

Definition 1.3 — Let X be a compact Kähler manifold with a given volume

form. Then one associates to a given Kähler class ω ∈ KX the space Hp.q(ω) :=

Hp,q(ω̃) of (p, q)-forms that are harmonic with respect to the unique ω̃ ∈ K̃X
representing ω.

Note that two different Kähler forms ω̃1 and ω̃2 representing the same Kähler
class ω1 = ω2 always have different spaces of harmonic (1, 1)-forms. Indeed, ω̃1

and ω̃2 are ω̃1-harmonic respectively ω̃2-harmonic. Since any class, in particular
ω1 = ω2, is represented by a unique harmonic form and ω̃1 6= ω̃2, this yields
H1,1(ω̃1) 6= H1,1(ω̃2). But one might ask whether H1,1(ω̃1) and H1,1(ω̃2) can
be equal for two Kähler forms ω̃1, ω̃2 not representing the same class, e.g.
ω̃1, ω̃2 ∈ K̃X . It is quite interesting to observe that the dependence of H1,1(ω̃)
on the Kähler class ω is related to the problem discussed in the introduction.
This is explained in the next section.

2 How ‘harmonic’ depends on the Kähler form

As before, we consider a compact Kähler manifold X with a fixed volume form
and we let K̃X be the associated non-linear Kähler cone. Let us begin with
the following fact which relates the shape of K̃X to the dependence of H1,1(ω)
on ω.
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Proposition 2.1 — The subspace H1,1(ω) ⊂ A1,1(X) is independent of ω if

and only if K̃X spans an R-linear subspace of dimension h1,1(X).

Proof. Let H1,1(ω) ⊂ A1,1(X) be independent of ω ∈ KX . Since for any
ω ∈ KX the unique ω̃ ∈ K̃X representing it is ω̃-harmonic, the assumption
immediately yields K̃X ⊂ H1,1(ω)R for any ω ∈ KX .
Conversely, if K̃X spans an R-linear subspace of dimension h1,1(X), then this
subspace coincides with the tangent space of K̃X at every point ω̃ ∈ K̃X . But
the latter was identified with H1,1(ω)R. Hence, the linear subspace equals
H1,1(ω)R for any ω ∈ KX and H1,1(ω), therefore, does not depend on ω. 2

Remark 2.2 — The assertion might be rephrased from a slightly different

point of view as follows. Use the differentiable map KX → A2(X). The

proposition then just says that this map is linear if and only if the Gauss map

is constant. It might be instructive to rephrase some of the results later on in

this spirit, e.g. Proposition 3.2.

The next proposition states that the ‘global’ change of H1,1(ω) for ω ∈ KX is
determined by the ‘harmonic’ behavior with respect to a single ω ∈ KX .

Proposition 2.3 — Let X be a compact Kähler manifold of dimension N

with a fixed Kähler form ω̃0 and volume form ω̃N0 /N !. Then the following

statements are equivalent:

i) The linear subspace H1,1(ω)R ⊂ A1,1(X)R does not depend on ω ∈ KX .

ii) For all α ∈ H1,1(ω0) one has αN ∈ HN,N (ω0).

Proof. Let us assume i). By the previous proposition the lifted Kähler cone
K̃X spans the C-linear subspace H1,1(ω0). Since K̃X is open in H1,1(ω0)R and
all α ∈ K̃X satisfy the C-linear equation

αN = (

∫

X

αN/

∫

X

ωn0 ) · ωN0 (1)

which is an algebraic condition, in fact all α ∈ H1,1(ω0) satisfy (1). Hence, for
all α ∈ H1,1(ω0) the top exterior power αN is harmonic, i.e. ii) holds true.
Let us now assume ii). If α ∈ H1,1(ω0), such that its cohomology class ω := [α]
is a Kähler class, let ω̃ ∈ K̃X denote the distinguished Kähler form representing
ω. If α itself is strictly positive definite, then the unicity of ω̃ and ii) imply α =
ω̃. Thus, the intersection of the closed subset H1,1(ω0)R with the open cone of
strictly positive definite real (1, 1)-forms is contained in K̃X . This intersection
is non-empty, as it contains ω̃0. Since K̃X is a closed connected subset of this
open cone of the same dimension as H1,1(ω0)R this yields K̃X ⊂ H1,1(ω0)R. By
Prop. 2.1 one concludes that H1,1(ω) does not depend on ω ∈ KX . 2
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3 The positive cone

The next proposition is a first step towards a geometric understanding of the
failure of harmonicity of αN for a harmonic form α. To state it we recall the
following notation.

Definition 3.1 — For a compact Kähler manifold X the positive cone CX ⊂
H1,1(X,R) is the connected component of {α ∈ H1,1(X,R) |

∫
X
αN > 0} that

contains the Kähler cone.

Note that by definition KX ⊂ CX . Also note that the positive cone CX might
not be convex. However, for hyperkähler manifolds also CX is convex, as it
coincides with the cone defined by the Beauville-Bogomolov quadratic form
(see Sect. 5).

Proposition 3.2 — If X is a compact Kähler manifold such that KX is

strictly smaller than CX , then for any Kähler form ω̃ there exists a ω̃-harmonic

(1, 1)-form α such that αN is not ω̃-harmonic.

Proof. Assume that there exists a Kähler form ω̃0 such that for all α ∈ H1,1(ω̃0)
also αN is ω̃0-harmonic. We endow X with the volume form ω̃N0 /N !. By
Prop. 2.3 the lifted Kähler cone K̃X is contained in H1,1(ω̃0). Since KX is
strictly smaller than CX there exists a sequence ωt ∈ KX converging towards
a ω ∈ CX \ KX . As K̃X is contained in the finite-dimensional space H1,1(ω̃0)
the lifted Kähler forms ω̃t ∈ K̃X will converge towards a form (!) and just
only a current ω̃ ∈ H1,1(ω̃0) \ K̃X . As a limit of strictly positive definite forms
ω̃ is still semi-positive definite. Moreover, ω̃ is strictly positive definite at
x ∈ X if and only if ω̃N does not vanish at x. By assumption ω̃N = c · ω̃N0
with c =

∫
X
ωN/

∫
X
ωN0 . Since ω ∈ CX , the scalar factor c is strictly positive.

Hence, ω̃N is everywhere non-trivial. Thus ω̃ is strictly positive definite. This
yields the contradiction. 2

The interesting thing here is that the proposition in particular can be used
to determine the positivity of a class with positive top exterior power just by
studying the space of harmonic forms with respect to a single given, often very
special Kähler form:

Corollary 3.3 — Let X be a compact Kähler manifold with a given Kähler

form ω̃0. If for all ω̃0-harmonic (1, 1)-forms α the top exterior power αN is

also ω̃0-harmonic, then any class ω ∈ CX is a Kähler class. 2

Here is another version of the same corollary in a more algebraic spirit.

Corollary 3.4 — Let X be a compact Kähler manifold with a given Kähler

form ω̃0, such that for every ω̃0-harmonic (1, 1)-form α the top exterior power

αN is also ω̃0-harmonic. Then, a line bundle L on X is ample if and only if

c1(L) ∈ CX . 2
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We conclude this section with a few examples, where the assumption of the
corollary is met a priori. In the later sections we will discuss examples where
KX is strictly smaller than CX and where Prop. 3.2 can be used to conclude
the ‘failure’ of harmonicity.

Examples 3.5 — i) If X is a complex torus and ω is a flat Kähler form,

then harmonic forms are constant forms and their products are again constant,

hence harmonic. In particular, one recovers the fact that on a torus the Kähler

cone and the positive cone coincide.

ii) If for two Kähler manifolds (X, ω̃) and (X ′, ω̃′) with b1(X) · b1(X ′) = 0 the

top exterior power of any harmonic (1, 1)-forms on X or on X ′ is again har-

monic, then the same holds for the product (X ×X ′, ω̃× ω̃′). The additional

assumption on the Betti-numbers is necessary as the product of two curves of

genus at least two shows. Indeed, any ϕ ∈ H1,0(X), for a curve X, is harmonic,

but ϕ∧ ϕ̄ is not. Hence, α = ϕ× ϕ̄+ ϕ̄×ϕ is a harmonic (1, 1)-form on X×X ′
with non-harmonic α2.

iii) Let X be a Kähler manifold and X → X ′ a smooth finite quotient.

Consider the non-linear Kähler cone on X with respect to the pull-back of a

volume form on X ′. Then H1,1(ω) with ω ∈ KX does not depend on ω if and

only if the same holds true for X ′.
iv) For hermitian symmetric spaces of compact type it is known that the

space of harmonic forms equals the space of forms invariant under the real

form. As the latter space is invariant under products, the Kähler cone of an

irreducible hermitian symmetric space coincides with the positive cone.

4 K3 surfaces

As indicated earlier the behavior of the Kähler cone is closely related to the
geometry of the manifold. We shall study this in more detail for K3 surfaces.
The next proposition follows directly from the well-known description of the
Kähler cone of a K3 surface.

Proposition 4.1 — Let X be a K3 surface containing a smooth rational

curve. Then for any Kähler form ω̃ there exists an ω̃-harmonic form (1, 1)-form

α such that α2 is not harmonic.

Proof. If X contains a smooth rational curve, then KX is strictly smaller than
CX and we apply Prop. 3.2. Indeed, a smooth rational curve C ⊂ X determines
a (−2)-class [C], whose perpendicular hyperplane [C]⊥ cuts CX into two parts
and KX is contained in the part that is positive on C. 2

If the harmonicity of the top exterior powers fails for a Kähler manifold with
a given Kähler form (X, ω̃) then it should do so for any small deformation of
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(X, ω̃). For a Ricci-flat Kähler structure on a K3 surface the argument can be
reversed and one can use the existence of rational curves on arbitrarily near
deformations to prove the assertion in the above proposition on any K3 surface
with respect to a Ricci-flat Kähler form.

Corollary 4.2 — Let X be an arbitrary K3 surface. If ω̃ is any hyperkähler

form on X, then there exists an ω̃-harmonic (1, 1)-form α such that α2 is not

ω̃-harmonic.

Proof. Let H0(X,Ω2
X) = Cσ. Then

H2(ω̃) = H1,1(ω̃)⊕H2,0(ω̃)⊕H0,2(ω̃)
= H1,1(ω̃)⊕ Cσ ⊕ Cσ̄

As the space of harmonic forms only depends on the underlying hyperkähler
metric g, the space H1,1(ω̃) ⊕ Cσ ⊕ Cσ̄ contains H1,1(ω̃aI+bJ+cK) for all
(a, b, c) ∈ S2. Here, I, J, and K are the three complex structures associated
with the hyperkähler metric g (cf. Sect. 5).
Assume α2 is g-harmonic for all α ∈ H1,1(ω̃). Since σ = ω̃J + iω̃K (up to a
scalar factor) and since the product of a harmonic form with the Kähler form
is again harmonic, also σσ̄ is harmonic. This implies that α2 is harmonic for
all α ∈ H2(ω̃), as σ2 = σ̄2 = ασ = ασ̄ = 0 for α ∈ H1,1(ω̃). Thus, α2 is
g-harmonic for all α ∈ H1,1(ω̃aI+bJ+cK) and all (a, b, c) ∈ S2. On the other
hand, it is well-known that for a non-empty (dense) subset of S2 the K3 surface
(X, aI + bJ + cK) contains a smooth rational curve. Indeed, if e ∈ H2(X,Z)
is any (−2)-class, then the subset of the moduli space of marked K3 surfaces
for which e is of type (1, 1) is a hyperplane section. This hyperplane section,
necessarily, cuts the complete curve given by the base P1 = S2 of the twistor
family. Hence, on one of the K3 surfaces (X, aI + bJ + cK) the class e is a
(−2)-class of type (1, 1) and, thus, X contains a smooth rational curve. This
yields a contradiction to Prop. 4.1. 2

Remark 4.3 — What are the bad harmonic (1, 1)-forms? Certainly ω̃2 is

harmonic and for any harmonic form α also ω̃α is harmonic. So, if there is

any bad harmonic (1, 1)-form there must be also one that is ω̃-primitive. Most

likely, it is even true that the square of any primitive harmonic form is not

harmonic. The proof of it should closely follow the arguments in the proof

of Proposition 3.2, but there is a slight subtlety concerning the existence of

sufficiently many (−2)-classes, that I do not know how to handle. We sketch

the rough idea:

Assume there exists a ω̃-harmonic ω̃-primitive real (1, 1)-form α such that α2

is ω̃-harmonic. As an ω̃-harmonic ω̃-primitive (1, 1)-form, the form α is also of

type (1, 1) with respect to any complex structure λ = aI+ bJ + cK induced by
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the hyperkähler metric corresponding to ω̃ (see Prop. 7.5 [6]). Moreover, α is

also primitive with respect to all Kähler forms ω̃λ.

Assume that there exists a complex structure λ ∈ S2, such that CX ∩R[α]⊕Rωλ
is not contained in KX . This condition can be easily rephrased in terms of (−2)-

classes and thus becomes a question on the lattice 3U⊕2(−E8). It looks rather

harmless, but for the time being I do not know a complete proof of it. Under

this assumption, we may even assume that in fact λ = I. Since α2 is harmonic,

in fact β2 is harmonic for all β ∈ Rα⊕Rω̃ ⊂ H1,1(ω). Going back to the proof

of Prop. 3.2, we see that the second part of it can be adapted to this situation

and shows that ψ−1(KX ∩ R[α] ⊕ Rω) ⊂ Rα ⊕ Rω̃, where ψ : K̃X → KX .

The space ψ−1(KX ∩R[α]⊕Rω) is the space of the distinguished Kähler forms

whose classes are linear combinations of [α] and ω. Therefore, all these forms

are harmonic and linear combinations of α and ω̃ themselves. To conclude, we

imitate the proof of Prop. 3.2 and choose a sequence ωt ∈ KX ∩ R[α] ⊕ Rω
converging towards ω′ ∈ CX \ KX . The corresponding sequence ω̃t ∈ K̃X is

contained in Rα ⊕ Rω̃ and converges towards a form ω̃′. As in the proof of

Prop. 3.2 this leads to a contradiction.

5 Hyperkähler manifolds

We will try to improve upon Proposition 3.2 in the case of hyperkähler mani-
folds. In particular, we will replace the question whether the top exterior power
αN of an harmonic form α is harmonic by the corresponding question for the
square of α. The motivation for doing so stems from the general philosophy
that hyperkähler manifolds should be treated in almost complete analogy to
K3 surfaces, whereby the top intersection pairing should be replaced by the
Beauville-Bogomolov form [2], which is the higher dimensional analogue of the
intersection pairing on a K3 surface.
Let us begin by recalling some notations and basic facts. By a compact hy-
perkähler manifold X we understand a simply-connected compact Kähler mani-
fold, such that H0(X,Ω2) = Cσ, where σ is an everywhere non-degenerate holo-
morphic two-form. A Ricci-flat Kähler form ω̃ turns out to be a hyperkähler
form (cf. [2]), i.e. there exists a metric g and three complex structures I, J ,
and K := IJ , such that the corresponding Kähler forms ω̃aI+bJ+cK are closed
for all (a, b, c) ∈ S2, such that I is the complex structure defining X, and such
that ω̃ = ω̃I . One may renormalize σ, such that σ = ω̃J + iω̃K . In particular,
multiplying with σ maps harmonic forms to harmonic forms, for this holds true
for the Kähler forms ω̃J and ω̃K .
The positive cone CX ⊂ H1,1(X,R) is a connected component of {α ∈
H1,1(X,R) | qX(α) > 0}, where qX is the Beauville-Bogomolov form (cf. [2]).

Proposition 5.1 — Let X be a 2n-dimensional compact hyperkähler manifold

with a fixed hyperkähler form ω̃0 and the unique holomorphic two-form σ. Then,
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α2(σσ̄)n−1 is harmonic for all α ∈ H1,1(ω0) if and only if the linear subspace

H1,1(ω) ⊂ A1,1(X) does not depend on ω ∈ KX .

Proof. Assume that for all α ∈ H1,1(ω0) also α2(σσ̄)n−1 is harmonic. If
α is in addition strictly positive definite and ω̃ ∈ K̃X with [α] = ω, then
α2(σσ̄)n−1 = ω̃2(σσ̄)n−1. We adapt Calabi’s classical argument to deduce that
in this case α = ω̃: If α2(σσ̄)n−1 = ω̃2(σσ̄)n−1, then (α−ω̃)(α+ω̃)(σσ̄)n−1 = 0.
Since α and ω̃ are strictly positive definite, also (α + ω̃) is strictly positive
definite. It can be shown that also (α + ω̃)(σσ̄)n−1 is strictly positive. As
[α] = ω = [ω̃], the difference α−ω̃ can be written as ddcϕ for some real function
ϕ. But by the maximum principle the equation (α+ω̃)(σσ̄)n−1ddcϕ = 0 implies
ϕ ≡ const. Hence, α = ω̃.
As in the proof of Proposition 3.2 this shows that the intersection of the
closed subset H1,1(ω0)R with the open cone of strictly positive definite forms
in A1,1(X)R is contained in K̃X and one concludes that K̃X ⊂ H1,1(ω0)R.
Hence, K̃X spans a linear subspace of the same dimension and, by Lemma 2.1
this shows that H1,1(ω) is independent of ω ∈ KX .
Conversely, let H1,1(ω) be independent of ω ∈ KX . Then K̃X ⊂ H1,1(ω)R
for any ω ∈ KX . Therefore, α2(σσ̄)n−1 = c(σσ̄)n with c ∈ R for α in the
Zariski-dense open subset K̃X ⊂ H1,1(ω)R. Hence, α2(σσ̄)n−1 is harmonic for
any α ∈ H1,1(ω) (cf. the proof of Prop. 2.3). 2

Similar to Proposition 3.2 one has

Corollary 5.2 — Let X be a 2n-dimensional compact hyperkähler manifold.

If the positive cone CX is strictly smaller than the Kähler cone, then for any

hyperkähler form ω̃0 there exists a harmonic form α ∈ H1,1(ω̃0), such that

α2(σσ̄)n−1 is not harmonic. 2

Of course, one expects that H1,1(ω) does in fact depend on ω, as it is the
case for K3 surfaces. This would again follow from the existence of rational
curves in nearby hyperkähler manifolds in the twistor space. In fact, for the
two main series of examples of higher dimensional hyperkähler manifolds, i.e.
Hilbert schemes of points on K3 surfaces and generalized Kummer varieties,
this trivially holds true, since in these cases CX is strictly bigger that KX
and so Corollary 5.2 applies. But already for global deformations of these
examples the situation is not clear. One might speculate that Hilbert schemes
respectively Kummer varieties are dense in their deformation spaces, so that
arguments similar to those in the proof of Corollary 4.2 could be applied. But
an understanding of the global deformations of Hilbert schemes respectively
Kummer varieties seems difficult.
Actually, it would be more interesting to reverse the argument: Assume that
X is a hyperkähler manifold, such that for any small deformation X ′ of X the
Kähler cone KX′ equals CX′ . I expect that this is equivalent to saying that
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H1,1(ω) does not depend on ω. If for some other reason than the existence of
rational curves as used in the K3 surface case this can be excluded, then one
could conclude that there always is a nearby deformation X ′ for which KX′ is
strictly smaller than CX′ . The latter implies the existence of rational curves on
X ′ (cf. [6]). Along these lines one could try to attack the Kobayashi conjecture,
as the existence of rational curves on nearby deformations would say that X
itself cannot be hyperbolic. Unfortunately, I cannot carry this through even
for K3 surface.

6 Various other examples

Here we collect a few examples where algebraic geometry predicts the failure of
harmonicity of the top exterior power of harmonic (1, 1)-forms. In all examples
this is linked to the existence of rational curves.

Varieties of general type. Let X be a non-minimal smooth variety of
general type. As I learned from Keiji Oguiso this immediately implies that
the Kähler cone is strictly smaller than the positive cone. His proof goes as
follows: By definition the canonical divisor KX is big and by the Kodaira
Lemma (cf. [7]) it can therefore be written as the sum KX = H + E of an
ample divisor H and an effective divisor E (with rational coefficients). Consider
the segment Ht := H + tE with t ∈ [0, 1). If all Ht were contained in the
positive cone CX , then KX would be in the closure of CX . If the Kähler cone
coincided with the positive cone CX , then KX would be nef, contradicting the
hypothesis that X is not minimal. Hence t0 := sup{t|Ht ∈ CX} ∈ (0, 1).
If Ht0 is not nef, then KX is strictly smaller than CX . Thus, it suffices to
show that Ht0 is not nef. If Ht0 were nef then all expressions of the form
HN−i
t0 .Hi−1.E would be non-negative. Then 0 = HN

t0 = HN−1
t0 (H + t0E) =

HN−1
t0 .H + t0H

N−1
t0 .E, so both summands must vanish. In particular, 0 =

HN−1
t0 .H = H2.HN−2

t0 + t0H.H
N−2
t0 .E. Again this yields the vanishing of both

terms and in particular 0 = H2.HN−2
t0 . By induction we eventually obtain

0 = HN−1.Ht0 and, furthermore, 0 = HN−1.Ht0 = HN + t0H
N−1.E. But this

time HN > 0 yields the contradiction. Therefore, for a non-minimal variety of
general type one has KX 6= CX and hence there exist harmonic (with respect to
any Kähler metric) (1, 1)-forms with non-harmonic top exterior power. Note
that a non-minimal variety contains rational curves. As the reader will notice,
the above proof goes through on any manifold X that admits a big, but not nef
line bundle L (replacing the canonical divisor). Also in this case the positive
cone and the Kähler cone differ.

For a Calabi-Yau manifold X the following proposition shows that if X
admits a ‘special’ Kähler form in the sense that the top power of any harmonic
(1, 1)-form is harmonic, then X is a unique birational model.
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Proposition 6.1 — If ϕ : X − − → X ′ is a birational map between two

Calabi-Yau manifolds, then either ϕ can be extended to an isomorphism or KX
is strictly smaller than the positive cone CX . In the latter case, there exists for

any Kähler form ω̃ a ω̃-harmonic (1, 1)-form α with αN not harmonic.

Proof. The arguments are very similar to the one in the previous example.
Let H1,1(X,R) ∼= H1,1(X ′,R) be the natural isomorphism induced by the
birational map. Let ω′ ∈ H1,1(X,R) correspond to a Kähler class on X ′. By
[5] the class ω′ can be represented by a closed positive current. Furthermore,
the birational map ϕ extends to an isomorphism if and only if ω′ ∈ KX . Assume
this is not the case. Then ω′ 6∈ KX . If ω′ ∈ CX one can apply Prop. 3.2 and
we are done. If ω′ 6∈ CX we may assume that it is also not in the boundary of
CX , as we can change ω′ slightly in the open cone KX′ . If ω is a small enough
Kähler class on X, then the difference α := ω′ − ω can still be represented by
a positive current. Let t0 := sup{t|ωt := ω + tα ∈ CX}. Then t0 ∈ (0, 1). If
KX = CX then ωN−it0 ωi−1α ≥ 0 for all i. Then the above induction argument
goes through and we eventually get ωN−1α = 0. Since α is a positive current,
this is only possible for α = 0. Hence KX 6= CX . Note that for hyperkähler
manifolds one knows that KX′ ⊂ CX . This simplifies the argument. 2

Remark 6.2 — i) Again, a non-trivial birational correspondence produces

rational curves. We thus have another instance, where the special geometry of

the variety is related to the non-harmonicity of products of harmonic forms.

ii) Most likely, finer information is encoded by Ricci-flat metrics. Those prob-

ably ‘feel’ contractible curves in small deformations. So, as for hyperkähler

manifolds I would expect that H1,1(ω) depends on the Ricci-flat Kähler form

representing ω.

iii) The arguments of the proof of 6.1 can be applied to the case of different

birational minimal models (minimal models are not unique!). This shows that

in the previous example the Kähler cone could be strictly smaller than the

positive cone, even when KX is nef or ample.

Blow-ups. This example is very much in the spirit of the previous two. Let f :
X → Y be a non-trivial blow-up of a projective variety Y . Then KX is strictly
smaller than CX and, therefore, for any Kähler structure on X there exist
harmonic (1, 1)-forms with non-harmonic maximal exterior power. Indeed, if
L is an ample line bundle on Y then f∗(L) is nef, but not ample, and it is
contained in the positive cone. Hence, f ∗(L) ∈ CX \ KX . Note that also the
first example could be proved along these lines. By evoking the contraction
theorem one shows that any non-minimal projective variety X admits a non-
trivial contraction to a projective variety Y . The above argument then yields
that KX and CX are different.
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7 Chern forms

Let X be a compact Kähler manifold with a Ricci-flat Kähler form ω̃. If
F denotes the curvature of the Levi-Cevita connection ∇, then the Bianchi
identity reads ∇F = 0. The Kähler-Einstein condition implies ΛωF = 0. The
last equation can be expressed by saying that F is ω̃-primitive. Analogously
to the fact that any closed primitive (1, 1)-form is in fact harmonic, one has
that for F with ∇F = 0 the primitivity condition Λω̃F = 0 is equivalent to
the harmonicity condition ∇ ∗ F = 0. As for untwisted harmonic (1, 1)-forms
one might ask for the harmonicity of the product Fm. Slightly less ambitious,
one could ask whether the trace of this expression, an honest differential form,
is harmonic. This trace is, in fact, a scalar multiple of the Chern character
chm(X, ω̃) ∈ Am,m(X)R.

Question. — Let (X, ω̃) be a Ricci-flat Kähler manifold. Are the Chern forms
chm(X, ω̃) harmonic with respect to ω̃ ?

By what was said about K3 surface we shall expect a negative answer to this
question at least in this case:

Problem. — Let X be a K3 surface with a hyperkähler form ω̃. Let c2 ∈
A2,2(X) be the associated Chern form. Show that c2 is not harmonic with
respect to ω̃ !

So, this should be seen in analogy to the fact that α2 is not harmonic for
any primitive harmonic (1, 1)-form α. Here, α is replaced by the curvature F
and α2 by trF 2. It is likely that the non-harmonicity of c2 can be shown by
standard methods in differential geometry, in particular by using the fact that
c2 is essentially ‖F‖ · ω̃2 (see [3]), but I do not know how to do this.
Furthermore, it is not clear to me what the relation between the above question
and the one treated in the previous sections is. I could imagine that the non-
harmonicity of chm in fact implies the existence of harmonic (1, 1)-forms with
non-harmonic top exterior power.
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Abstract. We show that an extension of two stable C∗-algebras
need not be stable. More explicitly we find an extension

0→ C(Z)⊗K → A→ K → 0

for some (infinite dimensional) compact Hausdorff space Z such that
A is not stable. The C∗-algebra A in our example has an approximate
unit consisting of projections.
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1 Introduction

It follows from BDF-theory, [1], that for every extension 0→ K → A→ B → 0
of separable C∗-algebras one has A is stable if and only if B is stable. This fact
prompted the question if every extension of two (separable) stable C∗-algebras
is stable, a question we here answer in the negative.
In an earlier paper with J. Hjelmborg, [3], we derived a characterization of
stability for C∗-algebras, actually in the hope of providing a positive answer to
the extension problem. Later, in [5], the author showed that stability is not a
nicely behaved property by providing an example of a (simple, separable) C∗-
algebra A such that M2(A) is stable while A is non-stable. The construction of
that example was inspired by ideas of Villadsen from [9]. Again using ideas of
Villadsen and of results obtained in [5] and [6] the author found in [8] an exam-
ple of a simple C∗-algebra that contains both a non-zero finite and an infinite
projection. A key ingredient in this construction was a study of projections in
the multiplier algebra of C(Z) ⊗ K, where Z is the infinite Cartesian product
of 2-spheres. In particular, a recipe was derived for deciding when certain pro-
jections in this multiplier algebra, arising as infinite sums of Bott projections,
are properly infinite. This recipe (restated here in Proposition 2.1) is also a
crucial ingredient in the construction of the example given in this note.
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2 The Construction

We review some of the notation and some of the results from [8]. Let
Z denote the infinite dimensional Cartesian product space

∏∞
n=1 S

2. Let
p ∈ M2(C(S2)) = C(S2,M2) be the Bott projection over S2, so that p is a
one-dimensional projection whose Euler class in H2(S2,Z) is non-zero. For
each non-empty finite subset I = {i1, i2, . . . , ik} of N and for each point
x = (x1, x2, x3, . . . ) ∈ Z we define the Bott projections over the copies of
S2 indexed by the set I to be

pI(x1, x2, x3, . . . ) = p(xi1)⊗ p(xi2)⊗ · · · ⊗ p(xik), (2.1)

so that pI belongs to C(Z,M2 ⊗ · · · ⊗M2). Identifying M2 ⊗ · · · ⊗M2 with
a sub-C∗-algebra of the algebra K of compact operators we may view pI as
an element in C(Z,K) = C(Z) ⊗ K. (It is for our purposes only necessary to
define pI up to Murray–von Neumann equivalence.)
Choose a sequence {Sj}∞j=1 of isometries inM(C(Z)⊗K) with orthogonal range

projections such that
∑∞
j=1 SjS

∗
j converges strictly to 1. For each sequence

{qj}∞j=1 of projections in C(Z)⊗K or in M(C(Z)⊗K) define

∞⊕

j=1

qj
def
=

∞∑

j=1

SjqjS
∗
j ∈M(C(Z)⊗K).

A projection p in a C∗-algebra A is said to be properly infinite if there are
subprojections p1 and p2 of p in A satisfying p ∼ p1 ∼ p2 and p1 ⊥ p2.
Equivalently, p is properly infinite if p is non-zero and

(
p 0
0 p

)
-
(
p 0
0 0

)
,

(i.e., p⊕ p - p.)
The following proposition was proved in [8, Proposition 4.4 (i)].

Proposition 2.1 Let I1, I2, . . . be a sequence of non-empty, finite subsets of
N, and suppose that

∣∣⋃
j∈F Ij

∣∣ ≥ |F | for all finite subsets F of N. It follows

that the projection
⊕∞

j=1 pIj in M(C(Z)⊗K) is not properly infinite.

The next lemma is similar to [8, Lemma 3.1].

Lemma 2.2 Let I be a non-empty finite subset of N and let e be a constant
one-dimensional projection in C(Z) ⊗ K (so that e corresponds to the trivial
complex line bundle over Z). Then e -

⊕n
j=1 pI whenever n > |I|.

Proof: Write I = {i1, i2, . . . , ik}, define ρ : Z → (S2)k by

ρ(x1, x2, x3, . . . ) = (xi1 , xi2 , . . . , xik), (x1, x2, x3, . . . ) ∈ Z,
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and let ρ̂ : C((S2)k) → C(Z) be its induced map. Use (2.1) to see that pI
belongs to the image of ρ̂ ⊗ idK, and hence that

⊕n
j=1 pI = (ρ̂ ⊗ idK)(q) for

some n-dimensional projection q in C((S2)k)⊗K. The projection q corresponds
to an n-dimensional complex vector bundle ξ over (S2)k. Since

dim(ξ) = n > (n− 1) ≥ k ≥ 1
2

(
dim((S2)k)− 1

)
,

it follows from Husemoller, [4, 9.1.2], that ξ dominates a trivial complex line
bundle. Translated into a statement about projections, this means that f - q,
where f is a constant one-dimensional projection in C((S2)k)⊗K. But then

e ∼ (ρ̂⊗ idK)(f) - (ρ̂⊗ idK)(q) =

n⊕

j=1

pI .

¤

We also need the following lemma to decide that our extension is not stable.
The lemma is contained in [7, Proposition 6.8] and it is a consequence of [3,
Corollary 4.3]. Recall that the multiplier algebra of a stable C∗-algebra contains
B(H), the bounded operators on a separable Hilbert space H, as a unital sub-
C∗-algebra, so the unit of the multiplier algebra of a stable C∗-algebra is a
properly infinite projection.

Lemma 2.3 Let A be a separable C∗-algebra and let I be an essential ideal in
A (so that A is a sub-C∗-algebra of M(I)). If A contains a projection Q such
that 1−Q is not a properly infinite projection in M(I), then A is not stable.

Proof: Assume to reach a contradiction that A is stable and let Q be a
projection in A. It then follows from [3, Corollary 4.3] that (1 − Q)A(1 − Q)
is stable. The C∗-algebra (1−Q)I(1−Q) must also be stable, being an ideal
in the stable C∗-algebra (1 − Q)A(1 − Q), and so its multiplier algebra is
properly infinite. The multiplier algebra of (1 − Q)I(1 − Q) is isomorphic to
(1−Q)M(I)(1−Q). Therefore 1−Q is a properly infinite projection inM(I),
in contradiction with the assumption in the lemma. ¤

Our main result below shows that not all extensions of two stable C∗-algebras
are stable. We keep the notation Z for the space

∏∞
j=1 S

2, and K is the algebra
of compact operators.

Theorem 2.4 There is an extension of C∗-algebras

0 �� C(Z)⊗K �� A �� K �� 0 (2.2)

such that A is non-stable and such that A contains an approximate unit con-
sisting of projections.
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Proof: Let J denote the C∗-algebra C(Z) ⊗ K. Choose a one-dimensional
constant projection e in J . Choose mutually disjoint subset I2, I3, . . . of N
such that In has n− 1 elements. Choose mutually orthogonal projections qn,j
in M(J), for n ∈ N and 1 ≤ j ≤ n, such that the sum

Q =

∞∑

n=1

n∑

j=1

qn,j

converges strictly in M(J) and such that

q1,1 ∼ e, qn,1 ∼ qn,2 ∼ · · · ∼ qn,n ∼ pIn , n ≥ 2.

We claim that Q ∼ 1 in M(J). Indeed, observe that

1 ∼
∞⊕

n=1

e -
∞∑

n=1

n∑

j=1

qn,j = Q ≤ 1,

where the second relation follows from Lemma 2.2. This shows that Q⊕Q ≤
1⊕1 - 1 - Q because the unit 1 is properly infinite, and hence Q is a properly
infinite projection. The two projections 1 and Q define the same element of
K0(M(J)) because this group is trivial. It therefore follows from Cuntz [2,
Section 1] that Q ∼ 1.
Choose an isometry S in M(J) such that SS∗ = Q. Upon replacing Q
and qn,j by S∗QS and S∗qn,jS we can assume that Q = 1 and hence that∑∞
n=1

∑n
j=1 qn,j = 1. Put

Qj =

∞∑

n=j

qn,j , j ∈ N,

so that {Qj}∞j=1 is a sequence of mutually orthogonal projections in M(J)

with
∑∞
j=1Qj = 1. Notice that Qj ∼ Qj+1 + qj,1 for all j. With π : M(J) →

M(J)/J the quotient mapping we get π(Q1) ∼ π(Q2) ∼ · · · . It follows that
there is a ∗-homomorphism ϕ : K →M(J)/J such that ϕ(ejj) = π(Qj) where
{eij}∞i,j=1 is a system of matrix units for K. Put A = π−1(ϕ(K)) so that we
get the following commutative diagram with exact rows:

0 �� J
�

�

�� A
ρ

����

��

K ��

ϕ
��

0

0 �� J
�

�

�� M(J)
π �� M(J)/J �� 0

The projection Q1 belongs to A and

1−Q1 =

∞∑

j=2

Qj =

∞∑

j=2

∞∑

n=j

qn,j =

∞∑

n=2

n∑

j=2

qn,j ∼
∞⊕

n=2

n⊕

j=2

pIn .

Documenta Mathematica 6 (2001) 241–246



Extensions of Stable C∗-Algebras 245

It follows from Proposition 2.1 and the choice of the sets In that 1−Q1 is not
properly infinite, and Lemma 2.3 now yields that A is not stable.
Put Pn = Q1 + · · · + Qn. We show that {Pn}∞n=1 is an approximate unit for
A. Notice that {ρ(Pn)}∞n=1 is an approximate unit for K and that Pn → 1
strictly. Let a in A and ε > 0 be given. Then ‖ρ(a−Pma)‖ ≤ ε/2 for some m.
Find x in J such that ‖ρ(a− Pma)‖ = ‖a− Pma− x‖. Find next n such that
‖x− Pnx‖ ≤ ε/2. Then ‖a− Pma− Pnx‖ ≤ ε, and therefore

‖(1− Pk)a‖ ≤ ε+ ‖(1− Pk)(Pma+ Pnx)‖ = ε

for all k ≥ max{n,m}. ¤

Our example leaves open several questions regarding extensions of stable C∗-
algebras (see also [7]).

Question 2.5 Let

0 �� J �� A
π

�� B
λ

�� �� 0

be a split exact extension with J and B stable (and separable). Does it follow
that A is stable?

Question 2.6 Suppose that I and J are stable (separable) ideals of a C∗-al-
gebra A. Does it follow that I + J is stable?

Question 2.6 can equivalently be phrased as follows: Does every (separable)
C∗-algebra A have a greatest stable ideal, i.e., a stable ideal that contains all
stable ideals of A? (See [7].) It can be shown that the canonical ideal C(Z)⊗K
of the C∗-algebra A appearing in Theorem 2.4 is a greatest stable ideal in A.
Hence even when a C∗-algebra A has a greatest stable ideal I it may be that
the quotient A/I has a non-zero stable ideal.
The two questions below were suggested by Eberhard Kirchberg.

Question 2.7 Suppose that

0 �� J �� A �� B �� 0

is an extension of (separable) C∗-algebras, and suppose that J and B are stable
and that A is of real rank zero. Does it follow that A is stable?

Question 2.8 Suppose that

0 �� J �� A �� O2 ⊗K �� 0

is an extension where J is stable and separable. Does it follow that A is stable?
What if we replace O2 ⊗K by its cone C0((0, 1])⊗O2 ⊗K?
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Abstract. Let F be a totally real number field. We define global
L-packets for GSp(2) over F which should correspond to the elliptic tem-
pered admissible homomorphisms from the conjectural Langlands group
of F to the L-group of GSp(2) which are reducible, or irreducible and
induced from a totally real quadratic extension of F . We prove that the
elements of these global L-packets occur in the space of cusp forms on
GSp(2) over F as predicted by Arthur’s conjecture. This can be regarded
as the GSp(2) analogue of the dihedral case of the Langlands-Tunnell
theorem. To obtain these results we prove a nonvanishing theorem for
global theta lifts from the similitude group of a general four dimensional
quadratic space over F to GSp(2) over F .

2000 Mathematics Subject Classification: Primary 11F70; Secondary
11F27, 11R39.
Keywords and Phrases: L-packets, Arthur’s conjecture, GSp(2), theta
lifts

Introduction

Let F be a number field with adeles A and Weil group WF , and let ϕ : WF →
GL(n,C) be an irreducible continuous representation. There is a unique real
number t such that the twist of ϕ by the canonical norm function on WF

raised to the t-th power has bounded image, so assume ϕ(WF ) is bounded; if ϕ
factors through Gal(F/F ) this is automatic. For all places v of F , let πv be the
tempered irreducible admissible representation of GL(n, Fv) corresponding to
the restriction ϕv under the local Langlands correspondence; then conjecturally
⊗vπv is an irreducible unitary cuspidal automorphic representation (hereafter,
cuspidal automorphic representation) of GL(n,A). This conjecture is known in

This work was partially supported by a NSA Young Investigators Grant.
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some cases. For example, if n = 2 and the image of ϕ in PGL(2,C) is not the
icosahedral group A5, then the Langlands-Tunnell theorem asserts π is cuspidal
automorphic.

Inspired by this, one can ask for a complete parameterization of the tempered
cuspidal automorphic representations of GL(n) and of other groups ([Ko], Sec-
tion 12; [LL]). Since there are tempered cuspidal automorphic representations of
GL(2,AQ) which do not correspond to any ϕ : WQ → GL(2,C), the Weil group
is inadequate. Conjecturally, there exists a locally compact group LF , called
the Langlands group of F , which is an extension of WF by a compact group
and is formally similar to the Weil group; locally, if v is an infinite place of F ,
then LFv = WFv and if v is finite, then LFv = WFv ×SU(2,R). Moreover, the
tempered cuspidal automorphic representations of GL(n,A) should be in bijec-
tion with the n dimensional irreducible continuous complex representations of
LF with bounded image. For other connected reductive linear algebraic groups
G over F the conjecture is more intricate, and involves L-packets attached to
appropriate L-parameters LF → LG. In this paper we prove results about local
and global theta lifts which yield parameterizations of some tempered cuspidal
automorphic representations of GSp(2,A) in agreement with this conjecture.

To motivate the results we recall the conjecture, taking into account simplifi-
cations for GSp(2). Assume LF exists. Then for GSp(2) one considers elliptic

tempered admissible homomorphisms from LF to L GSp(2) = ĜSp(2) oWF .
Concretely, since GSp(2) is split and one can fix an isomorphism between the

dual group ĜSp(2) and GSp(2,C), such homomorphisms amount to continu-
ous homomorphisms ϕ : LF → GSp(2,C) such that ϕ(x) is semi-simple for all
x ∈ LF and ϕ(LF ) is bounded and not contained in the Levi subgroup of a
proper parabolic subgroup of GSp(2,C). Since LF should be an extension of
WF a basic example is a continuous homomorphism Gal(F/F ) → GSp(2,C)
which is irreducible as a four dimensional complex representation. Fix such
a ϕ : LF → GSp(2,C). The conjecture first asserts that for each place v
of F one can associate to the restriction ϕv : LFv → GSp(2,C) a finite set
Π(ϕv) of irreducible admissible representations of GSp(2, Fv), the L-packet of
ϕv. These packets should have a number of properties [B], but minimally we
require that Π(ϕv) consists of tempered representations, and if v is finite and
ϕv is unramified, then Π(ϕv) consists of a single representation unramified
with respect to GSp(2,OFv ) with Satake parameter ϕv(Frobv) where Frobv is
a Frobenius element at v; also, the common central character of the elements of
Π(ϕv) should correspond to λ◦ϕv, where λ : GSp(2,C)→ C× is the similitude
quasi-character. Define

Π(ϕ) = {Π = ⊗vΠv ∈ Irradmiss(GSp(2,A)) : Πv ∈ Π(ϕv) for all v}
= ⊗vΠ(ϕv).

Arthur’s conjecture ([LL], [Ko], [A1], [A2]) now asserts that if Π ∈ Π(ϕ) then
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Π occurs with multiplicity

m(Π) =
1

|S(ϕ)|
∑

s∈S(ϕ)

〈s,Π〉

in the space of cusp forms on GSp(2,A) with central character λ◦ϕ. Here, S(ϕ)
is the connected component group π0(S(ϕ)/C×), where S(ϕ) is the centralizer
of the image of ϕ, and 〈·, ·〉 : S(ϕ)×Π(ϕ)→ C is defined by

〈s,Π〉 =
∏

v

〈sv, Πv〉v,

where sv is the image of s under the natural map S(ϕ) → S(ϕv) and Π =
⊗vΠv; the 〈·, ·〉v : S(ϕv)×Π(ϕv)→ C should be functions such that 〈·, Πv〉v is
the character of a finite dimensional complex representation of S(ϕv) which is
identically 1 if Πv is unramified.
By looking at cases we can be more specific. Elliptic tempered admissible
homomorphisms ϕ : LF → GSp(2,C) can be divided into three types: (a)
those which are irreducible and induced as a representation; (b) those which
are reducible as a representation; and (c) those which are irreducible and
primitive as a representation, i.e., not induced. Our result is motivated by
what the conjecture predicts for ϕ of the first two types.
Suppose ϕ is of type (a). Then one can show that ϕ is equivalent to ϕ(η, ρ)

for some η and ρ, where ϕ(η, ρ) = IndLF
LE
ρ, E is a quadratic extension of F ,

ρ : LE → GL(2,C) is an irreducible continuous representation with bounded
image such that ρ is not Galois invariant but det ρ is, and η : LF → C× extends
det ρ; the symplectic form on ϕ(η, ρ) (regarded as ρ⊕ ρ) is 〈v1 ⊕ v2, v

′
1 ⊕ v′2〉 =

η(h)〈v1, v
′
1〉 + 〈v2, v

′
2〉 where 〈·, ·〉 is any fixed nondegenerate symplectic form

on C2 (up to multiplication by nonzero scalars there is only one) and h is a
representative for the nontrivial coset of LE \LF . Evidently,

λ ◦ ϕ(η, ρ) = η, S(ϕ(η, ρ)) = 1.

The conjecture thus predicts that every element Π of Π(ϕ) = Π(ϕ(η, ρ)) should
be cuspidal automorphic with m(Π) = 1; that is, Π(ϕ) should be a stable global
L-packet.
Type (b) parameters, however, will in general give unstable L-packets. Suppose
ϕ is of type (b). Then ϕ ∼= ϕ(ρ1, ρ2), where ϕ(ρ1, ρ2) = ρ1 ⊕ ρ2, ρ1, ρ2 :
LF → GL(2,C) are inequivalent irreducible continuous representations with
bounded image and the same determinant, and the symplectic form on ϕ(ρ1, ρ2)
is 〈v1 ⊕ v2, v

′
1 ⊕ v′2〉 = 〈v1, v

′
1〉+ 〈v2, v

′
2〉. We see that

λ ◦ ϕ(ρ1, ρ2) = det ρ1 = det ρ2, Sϕ = {
[
a · I2 0

0 ±a · I2

]
: a ∈ C×}.

Thus,
S(ϕ(ρ1, ρ2)) ∼= Z2.
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Let s ∈ S(ϕ(ρ1, ρ2)) be nontrivial. If Π ∈ Π(ϕ) = Π(ϕ(ρ1, ρ2)), the conjecture
predicts

m(Π) =
1

2
(1 +

∏

v

〈sv, Πv〉v).

Now for each v, S(ϕv) = 1 or Z2; and if S(ϕv) = Z2, then sv is a nontrivial
element of S(ϕv). Thus, if M is the number of times S(ϕv) = Z2 and Πv

induces the nontrivial character of S(ϕv), then

m(Π) =
1

2
(1 + (−1)M ).

By the conjecture, Π is cuspidal automorphic if and only if M is even; if so,
m(Π) = 1. The conjecture thus provides exact predictions for ϕ of types (a)
and (b).
But as precise as they are, these predictions concern conjectural objects. Glob-
ally, the hypothetical Langlands group underlies Arthur’s conjecture; locally,
the existence of L-packets is required. There are at least two approaches to the
avoiding LF and testing the conjecture. One natural alternative is to consider
only L-parameters that factor through the Weil group or the Galois group. An-
other approach is to move matters, when possible, entirely to the automorphic
side of the picture and render Arthur’s conjecture into a statement involving
only automorphic data. Base change and automorphic induction for GL(n) are
important examples of such a shift. There is also a translation for parameters
of type (a) and (b). The reason is that for ϕ of type (a), η corresponds to a
Hecke character χ of A× by Abelian class field theory and ρ should correspond
to a non-Galois invariant tempered cuspidal automorphic representation τ of
GL(2,AE) whose central character factors through NE

F via χ; for ϕ of type (b),
ρ1 and ρ2 should correspond to a pair of inequivalent tempered cuspidal auto-
morphic representations τ1 and τ2 of GL(2,A) with the same central character
χ. Our first main result proves the automorphic version of Arthur’s conjecture
for ϕ of types (a) and (b).
To explain this automorphic analogue, suppose we are given, without reference
to the global Langlands group, (A) a quadratic extension E of F and a non-
Galois invariant tempered cuspidal automorphic representation τ of GL(2,AE)

whose central character factors through NE
F via a character χ, or (B) a pair

of inequivalent tempered cuspidal automorphic representations τ1 and τ2 of
GL(2,A) with common central character χ. Then we have a corresponding
conjectural ρ or ρ1 and ρ2, a corresponding ϕ of type (a) or (b), and using ϕ,
the statement of Arthur’s conjecture. However, ϕ can be avoided entirely in
arriving at a formulation of Arthur’s conjecture starting from (A) or (B). This
is due to two observations: first, the local L-parameters ϕv are defined via the
local Langlands correspondence for GL(2) independent of the existence of ϕ;
and second, the predictions of Arthur’s conjecture for parameters of type (a)
and (b) only involve local data.
To be specific, let v be a place of F , Ev = Fv ⊗F E, and let τv be the irre-
ducible admissible representation ⊗w|vτw of GL(2, Ev), where w runs over the
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places of E lying over v (in case (B), Ev = Fv × Fv, and τv = τ1,v ⊗ τ2,v).
Then, as mentioned and using no conjecture, we can associate to χv and τv a
canonical local L-parameter ϕ(χv, τv) : LFv → GSp(2,C). The automorphic
version of Arthur’s conjecture now presumes that we can further associate to χv
and τv a local L-packet, satisfying certain basic requirements connected with
ϕ(χv, τv), and in the unstable case (B) a local pairing. This we do in Section
8: if F ′ is a local field of characteristic zero, E ′ is a quadratic extension of
F ′ or E′ = F ′ × F ′, and τ ′ is an infinite dimensional irreducible admissible

representation of GL(2, E′) with central character factoring through NE′
F ′ via

a quasi-character χ′ (if F ′ is nonarchimedean of even residual characteristic
we do also assume τ ′ is tempered; if F ′ is archimedean we assume F ′ = R
and E′ = R × R), then we define a finite set Π(χ′, τ ′) of irreducible admissi-
ble representations of GSp(2, F ′). We show that this local L-packet has the
desired essential properties: the common central character of the elements of
Π(χ′, τ ′) is χ′, the character corresponding to λ ◦ ϕ(χ′, τ ′); if τ ′ is tempered,
then ϕ(χ′, τ ′) and the elements of Π(χ′, τ ′) are tempered; and if τ ′ is unitary
and E′/F ′ and τ ′ are unramified, then Π(χ′, τ ′) is a singleton whose Satake
parameter is ϕ(χ′, τ ′)(FrobF ′) (if E′ = F ′ × F ′, then we say that E′/F ′ is un-
ramified). We also show |Π(χ′, τ ′)| = 1 or 2 and |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| at
least if F ′ is not of even residual characteristic and E ′ is a field. Additionally,
when E′ = F ′ × F ′ we define a function 〈·, ·〉F ′ : S(ϕ(χ′, τ ′)) × Π(χ′, τ ′) → C,
and show that for all Π ∈ Π(χ′, τ ′), 〈·, Π〉F ′ is a character of S(ϕ(χ′, τ ′)), and
if |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| = 2 then both characters of S(ϕ(χ′, τ ′)) arise in
this way. The following theorem is now the automorphic version of Arthur’s
conjecture for parameters of type (a) and (b).

8.6 Theorem. Let F be a totally real number field and let E be a totally
real quadratic extension of F or E = F × F . Let τ be a non-Galois invari-
ant tempered cuspidal automorphic representation of GL(2,AE) whose central

character factors through the norm NE
F via a Hecke character χ of A×. Thus,

if E = F×F , then τ is a pair τ1, τ2 of inequivalent tempered cuspidal automor-
phic representations of GL(2,A) sharing the same central character χ. Define
the global L-packet:

Π(χ, τ) = {Π = ⊗vΠv ∈ Irradmiss(GSp(2,A)) : Πv ∈ Π(χv, τv) for all v}
= ⊗vΠ(χv, τv).

(1) If E is a field, then every element of Π(χ, τ) occurs with multiplicity
one in the space of cusp forms on GSp(2,A) with central character χ.

(2) Suppose E = F × F . Let Π ∈ Π(χ, τ), and let TΠ be the set of places
v such that S(ϕ(χv, τv)) = Z2 and 〈·, Πv〉v is the nontrivial character
of S(ϕ(χv, τv)). If |TΠ | is even, then Π occurs with multiplicity one in
the space of cusp forms on GSp(2,A) with central character χ. Con-
versely, if Π occurs in the space of cusp forms on GSp(2,A) with central
character χ, then |TΠ | is even.
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We hope this result will be of some use to investigators of rank four motives,
four dimensional symplectic Galois representations, Siegel modular forms or
varieties of degree two, or Abelian surfaces. One way to think of this theorem
is as an analogue for GSp(2) of the dihedral case of the Langlands-Tunnell
theorem. Of course, some applications might require more information about
the local L-packets of Theorem 8.6. For example, we still need to prove the
sole dependence of the Π(χv, τv) on the ϕ(χv, τv), i.e., if ϕ(χv, τv) ∼= ϕ(χ′v, τ

′
v),

then Π(χv, τv) = Π(χ′v, τ
′
v). Also, detailed knowledge about the local L-packets

at the ramified places and at infinity would be useful. We will return to these
local concerns in a later work. The intended emphasis of this paper is, as much
as possible, global.
As remarked, the proof of Theorem 8.6 uses theta lifts. Locally, χ and τ give ir-
reducible admissible representations of GO(X,Fv) for various four dimensional
quadratic spaces X over Fv; theta lifts of these define the local L-packets.
Globally, χ and τ induce cuspidal automorphic representations of GO(X,A)
for various four dimensional quadratic spaces X over F . The automorphicity
asserted in Theorem 8.6 is a consequence of our second main result, which
gives a fairly complete characterization of global theta lifts from GO(X,A) to
GSp(2,A) for four dimensional quadratic spaces X over F . In particular, it
shows that the nonvanishing of the global theta lift to GSp(2,A) of a tempered
cuspidal automorphic representation of GO(X,A) is equivalent to the nonvan-
ishing of all the involved local theta lifts; in turn, these local nonvanishings are
equivalent to conditions involving distinguished representations.

8.3 Theorem. Let F be a totally real number field, and let X be a four dimen-
sional quadratic space over F . Let d ∈ F×/F×2 be the discriminant of X(F ),
and assume that the discriminant algebra E of X(F ) is totally real, i.e., either

d = 1 or d 6= 1 and E = F (
√
d) is totally real. Let σ ∼= ⊗vσv be a tempered

cuspidal automorphic representation of GO(X,A) with central character ωσ.
Let Vσ be the unique realization of σ in the space of cusp forms on GO(X,A)
of central character ωσ (Section 7). Then the following are equivalent:

(1) The global theta lift Θ2(Vσ) of Vσ to GSp(2,A) is nonzero.
(2) For all places v of F , σv occurs in the theta correspondence with

GSp(2, Fv).
(3) For all places v of F , σv is not of the form π−v for some distinguished

πv ∈ Irr(GSO(X,Fv)) (Section 3).

Let σ lie over the cuspidal automorphic representation π of GSO(X,A) (Section
7), and let s ∈ O(X,F ) be the element of determinant −1 from Lemma 6.1.
If s · π À π and one of (1), (2) or (3) holds, then Θ2(Vσ) 6= 0, Θ2(Vσ) is
an irreducible unitary cuspidal automorphic representation of GSp(2,A) with
central character ωσ, and

Θ2(Vσ) ∼= ⊗vθ2(σ∨v ) = ⊗vθ2(σv)
∨,

where θ2(σv) is the local theta lift of σv. For all v, θ2(σv) is tempered.
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In this theorem we make no assumptions about Howe duality at the even places:
we prove a version of Howe duality for the case at hand in Section 1.

As mentioned, in the proof of Theorem 8.6 we use Theorem 8.3 to show that
those elements of a global L-packet which should occur in the space of cusp
forms really do. Theorem 8.6 also asserts that such elements occur with mul-
tiplicity one, and in the case of an unstable global L-packet, if Π is a cuspidal
automorphic element, then |TΠ | is even. To prove these two remaining claims
the key step is to show that if Π is an element of a global L-packet and V is
a subspace of the space of cusp forms on GSp(2,A) with V ∼= Π, then V has
a nonzero theta lift to GO(X,A) for some four dimensional quadratic space X

with discX = d, where E = F (
√
d) with d = 1 if E = F × F . This step is

a consequence of a theorem of Kudla, Rallis and Soudry, which implies that if
Π1 is a cuspidal automorphic representation of Sp(2,A), V1 is a realization of
Π1 in the space of cusp forms, and some twisted standard partial L-function
LS(s,Π1, χ) has a pole at s = 1, then V1 has a nonzero theta lift to O(X,A) for
some four dimensional quadratic space X with (·,discX)F = χ. Using this key
result, multiplicity one follows from the Rallis multiplicity preservation princi-
ple and multiplicity one for GO(X,A) for four dimensional quadratic spaces X;
our understanding of the involved local theta lifts and especially the relevant
theta dichotomy also plays an important role. The proof of the evenness of
|TΠ | also uses the key step, local theory, and finally the fact that a quaternion
algebra over F must be ramified at an even number of places.

Theorems 8.3 and 8.6 depend on many previous works. Locally, we use the
papers [R1], [R2] and [R3] which dealt with the local nonarchimedean theta
correspondence for similitudes, the nonarchimedean theta correspondence be-
tween GO(X,F ) and GSp(2, F ) for dimF X = 4, and tempered representations
and the nonarchimedean theta correspondence, respectively. Globally, the crit-
ical nonvanishing results for theta lifts of this paper depend on the main result
of [R4]. In turn, the essential idea of [R4] is based on an ingenious insight of
[BSP]; [R4] also uses some strong results and ideas from [KR1] and [KR2]. The
multiplicity one part of Theorem 8.6 uses one of the main results of [KRS],
along with the multiplicity preservation principle of [Ra]. We use nonvanishing
results for L-functions at s = 1 from [Sh] to satisfy the hypothesis of Corollary
1.2 of [R4]. Various results and ideas from [HST] are used in this paper. We
would also like to mention as inspiration the papers of H. Yoshida [Y1] and
[Y2] which first looked at theta lifts of automorphic forms on GSO(X,AQ) for
dimQX = 4 to GSp(2,AQ). Using results from [HPS], the paper [V] also de-
fined local discrete series L-packets for GSp(2) using theta lifts in the case of
odd residual characteristic.

This paper is organized as follows. In Section 1 we consider the local theta cor-
respondence for similitudes. The first main goal of this section is to extend the
results of [R1] to the even residual characteristic and real cases. This requires
that we prove a version of Howe duality in the even residual characteristic
case: we do this for tempered representations when the underlying quadratic
and symplectic bilinear spaces have the same dimension. The second main goal
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is to prove a case of S.S. Kudla’s theta dichotomy conjecture, which is required
for a complete theta lifting theory for similitudes for the relevant case. In
Section 2 we review the basic theory of four dimensional quadratic spaces and
their similitude groups. In particular, we define the four dimensional quadratic
spaces XD,d of discriminant d over a field F not of characteristic two; here,
D is a quaternion algebra over F and d ∈ F×/F×2. Up to similitude, every
four dimensional quadratic space over F is of the form XD,d. The character-
ization of what irreducible representations of GO(X,F ), dimF X = 4, occur
in the theta correspondence with GSp(2, F ) when F is a local field is given
in Section 3. The case when F is nonarchimedean of odd residual character-
istic was worked out in [R2] and the remaining cases are similar, but require
additional argument. In Section 4 we define the local L-parameters and L-
packets of Theorem 8.6; in fact, the L-parameters and L-packets are associated
to irreducible admissible representations of GSO(XM2×2,d, F ) where XM2×2,d

is the four dimensional quadratic space from Section 2 over the local field F .
The information is summarized in three tables which appear in the Appendix.
Section 5 reviews the theory of global theta lifts for similitudes. Sections 6
and 7 explain the transition from cuspidal automorphic representations of a
quaternion algebra over a quadratic extension to those of similitude groups of
four dimensional quadratic spaces. Finally, in Section 8 we prove the main
theorems.
I would like to thank N. Nygaard for suggesting this line of research, and S.S.
Kudla, S. Rallis and J. Arthur for their interest and encouragement.

Notation. Let F be a field not of characteristic two. A quadratic space over
F is a finite dimensional vector space X over F equipped with a nondegenerate
symmetric bilinear form (·, ·). Let X be a quadratic space over F . In this and
the next two paragraphs, also denote the F points of X by X; the same conven-
tion holds when we are considering quadratic spaces solely over a local field, as
in Sections 1, 3 and 4. The discriminant discX ∈ F×/F×2 of X is (−1)k detX
where dimX = 2k or 2k + 1. If (X ′, (·, ·)′) is another quadratic space over F
then a similitude fromX toX ′ is an F linear map t : X → X ′ such that for some
λ ∈ F×, (tx, tx′) = λ(x, x′) for x, x′ ∈ X; λ is uniquely determined, and we
write λ(t) = λ. The group GO(X,F ) is the set of h ∈ GLF (X) which are simil-
itudes from X to X. The group O(X,F ) is the kernel of λ : GO(X,F )→ F×,
and SO(X,F ) is the subgroup of h ∈ O(X,F ) with deth = 1. Assume dimX
is even. Then GSO(X,F ) is the kernel of sign : GO(X,F ) → {±1} defined
by h 7→ det(h)/λ(h)dimX/2; SO(X,F ) = GSO(X,F ) ∩ O(X,F ). Let n be a
positive integer. Then GSp(n, F ) is the group of g ∈ GL(2n, F ) such that for
some λ ∈ F×

tg

[
0 1n
−1n 0

]
g = λ

[
0 1n
−1n 0

]
;

λ is uniquely determined, and we write λ(h) = λ. The group Sp(n, F ) is the
kernel of λ : GSp(n, F ) → F×. M2×2 = M2×2(F ) is the quaternion algebra of
2× 2 matrices over F with canonical involution ∗.
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Suppose F is a nonarchimedean field of characteristic zero with integers OF ,
prime ideal pF = πFOF ⊂ OF , Hilbert symbol (·, ·)F , and valuation | · | = | · |F
such that if µ is an additive Haar measure on F , then µ(xA) = |x|µ(A) for
x ∈ F and A ⊂ F . Let G be a group of td-type, as in [C]. Then Irr(G) is
the set of equivalence classes of smooth admissible irreducible representations
of G. If π ∈ Irr(G), then π∨ ∈ Irr(G) is the contragredient of π and ωπ is
the central character of π. The trivial representation of G is 1 = 1G. If H
is a closed normal subgroup of G, π ∈ Irr(H) and g ∈ G, then g · π ∈ Irr(H)
has the same space as π and action defined by (g · π)(h) = π(g−1hg). If G
is the F -points of a connected reductive algebraic group defined over F , then
π ∈ Irr(G) is tempered (square integrable) if and only if ωπ is unitary and every
matrix coefficient of π lies in L2+ε(G/Z(G)) for all ε > 0 (lies in L2(G/Z)).
Let X be a quadratic space over F . The quadratic character χX : F× → {±1}
associated to X is (·,discX)F . We say σ ∈ Irr(O(X,F )) (σ ∈ Irr(GO(X,F ))
is tempered if all the irreducible components of σ|SO(X,F ) (σ|GSO(X,F ))) are
tempered. A self-dual lattice L in X is a free OF submodule of rank dimX
such that L = {x ∈ X : (x, y) ∈ OF for all y ∈ L}. Dram is the division
quaternion algebra over F with canonical involution ∗. If E/F is a quadratic
extension the quadratic character of F× associated to E/F is ωE/F .

Suppose F = R. Let | · | = | · |R be the usual absolute value on R, and let
(·, ·)R be the Hilbert symbol of R. If X is quadratic space over R, then the
quadratic character χX : R× → {±1} associated to X is (·,discX)R. Let G be
a real reductive group as in [Wal]. Let K be a maximal compact subgroup of
G, and let g be the Lie algebra G. Let Irr(G) be the set of equivalence classes
of irreducible (g,K) modules. The trivial (g,K) module will be denoted by
1 = 1G. If K1 is a closed normal subgroup of K, π is a (g,K1) module and
s ∈ K, then s · π is the (g,K1) module with the same space as π and action
defined by (s · π)(k) = π(s−1ks) for k ∈ K1 and (s · π)(X) = π(Ad(s)X)
for X ∈ g. When G satisfies Go = o(Go) ([Wal], p. 48-9) the concepts of
tempered and square integrable (g,K) modules are defined in [Wal], 5.5.1;
this includes G = Sp(n,R), O(p, q,R) and SO(p, q,R) for p and q not both
1. When Go = o(Go), then π ∈ Irr(G) is tempered (square integrable) if and
only if π is equivalent to the underlying (g,K) module of an irreducible unitary
representation Π of G such that g 7→ 〈Π(g)v, w〉 lies in L2+ε(G) for all v, w ∈ π
and ε > 0 (lies in L2(G) for all v, w ∈ π). When G = GSp(n,R), GO(p, q,R) or
GSO(p, q,R) with p and q not both 1, then we say that π ∈ Irr(G) is tempered
(square integrable) if π is equivalent to the underlying (g,K) module of an
irreducible unitary representation Π of G such that g 7→ 〈Π(g)v, w〉 lies in
L2(R×\G) for all v, w ∈ π and ε > 0 (lies in L2(R×\G) for all v, w ∈ π);
this is equivalent to the irreducible constituents of π|(g1,K1) being tempered
(square integrable), where g1 is the Lie algebra and K1 ⊂ K is the maximal
compact subgroup of Sp(n,R), O(p, q,R) or SO(p, q,R), respectively. Dram is
the division quaternion algebra over R with canonical involution ∗.
Suppose F is a number field with adeles A and finite adeles Af ; set F∞ =
F ⊗Q R. The Hilbert symbol of F is (·, ·)F . If X is quadratic space over F ,
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then the quadratic Hecke character χX : A×/F× → {±1} associated to X is
(·,discX(F ))F . Let G be a reductive linear algebraic group defined over F ,
let g be the Lie algebra of G(F∞), and let K be a maximal compact subgroup
of G(F∞). Then Irradmiss(G(A)) is the set of equivalence classes of irreducible
admissible G(Af ) × (g,K) modules. If π ∈ Irradmiss(G(A)) then the central
character of π is ωπ and π = ⊗vπv is tempered if πv is tempered for all places v
of F . A cuspidal automorphic representation of G(A) is a π ∈ Irradmiss(G(A))
which is isomorphic to an irreducible submodule of the G(Af )× (g,K) module
of cuspidal automorphic forms on G(A) of central character ωπ; such a π is
unitary.

1. The local theta correspondence for similitudes

In this section we recall and prove results about the local theta correspondence
for similitudes. The paper [R1] dealt with the nonarchimedean odd residual
characteristic case. Here we do the even residual characteristic and real cases
and prove a very special, but adequate, case of S.S. Kudla’s theta dichotomy
conjecture. We also show that the theta correspondence for similitudes is in-
dependent of the additive character, compatible with contragredients, and re-
spects unramified representations.
Fix the following notation. Let F be a local field of characteristic zero, with
F = R if F is archimedean. Let n be a positive integer, and let X be a quadratic
space of nonzero even dimension m over F . To simplify notation, denote the F
points of X by X. Let d = discX. Fix a nontrivial unitary character ψ of F .
The Weil representation ω = ωX = ωn = ωX,n of Sp(n, F ) × O(X,F ) defined
with respect to ψ is the unitary representation on L2(Xn) given by

ω(1, h)ϕ(x) = ϕ(h−1x),

ω(

[
a 0
0 ta−1

]
, 1)ϕ(x) = χX(det a)|det a|m/2ϕ(xa),

ω(

[
1 b
0 1

]
, 1)ϕ(x) = ψ(

1

2
tr(bx, x))ϕ(x),

ω(

[
0 1
−1 0

]
, 1)ϕ(x) = γϕ̂(x).

Here, ϕ̂ is the Fourier transform defined by

ϕ̂(x) =

∫

Xn
ϕ(x′)ψ(tr(x, x′)) dx′

with dx such that ˆ̂ϕ(x) = ϕ(−x) for ϕ ∈ L2(Xn) and x ∈ Xn, and γ is
a certain fourth root of unity depending only on the anisotropic component
of X, n and ψ. If h ∈ O(X,F ), a ∈ GL(n, F ), b ∈ Mn(F ) with tb = b and
x = (x1, . . . , xn), x′ = (x′1, . . . , x

′
n) ∈ Xn, we write h−1x = (h−1x1, . . . , h

−1xn),
xa = (x1, . . . , xn)(aij), (x, x′) = ((xi, x

′
j)), bx = bt(x1, . . . , xn). Also, χX is the
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quadratic character of F× defined by χX(t) = (t, d)F ; χX depends only on the
anisotropic component of X.
Suppose F is nonarchimedean. We will work with smooth representations of
groups of td-type such as Sp(n, F ) and O(X,F ). We thus consider the restric-
tion of ω to a smaller subspace. Let S(Xn) be the space of locally constant,
compactly supported functions on Xn. Then ω preserves S(Xn). By ω we
will usually mean ω acting on S(Xn); context will give the meaning. Let
Rn(O(X,F )) be the set of elements of Irr(O(X,F )) which are nonzero quo-
tients of ω, and define RX(Sp(n, F )) similarly.
Suppose F = R. In the analogy to the last case, we will work with Harish-
Chandra modules of real reductive groups. This requires definitions. Fix
K1 = Sp(n,R) ∩ O(2n,R) as a maximal compact subgroup of Sp(n,R). The
Lie algebra of Sp(n,R) is g1 = sp(n,R). Let X have signature (p, q). We
parameterize the maximal compact subgroups of O(X,R) as follows. Let X+

and X− be positive and negative definite subspaces of X, respectively, such
that X = X+ ⊥ X−. Then the maximal compact subgroup J1 = J1(X+, X−)
associated to (X+, X−) is the set of k ∈ O(X,R) such that k(X+) = X+ and
k(X−) = X−. Of course, J1 = O(X+,R)×O(X−,R) ∼= O(p,R)×O(q,R). Fix
one such J1 = J1(X+, X−). The Lie algebra of O(X,R) is h1 = o(X,R). Let
S(Xn) = Sψ(Xn) be the subspace of L2(Xn) of functions

p(x) exp[−1

2
|c|(tr(x+, x+)− tr(x−, x−))].

Here, p : Xn → C is a polynomial function on Xn, and (x+, x+) and (x−, x−)
are the n×n matrices with (i, j)-th entries (x+

i , x
+
j ) and (x−i , x

−
j ) respectively,

where xi = x+
i + x−i , with x+

i ∈ X+ and x−i ∈ X− for 1 ≤ i ≤ n; c ∈ R× is
such that ψ(t) = exp(ict) for t ∈ R. Then S(Xn) is a (g1×h1,K1×J1) module
under the action of ω. By ω we will usually mean the (g1×h1,K1×J1) module
S(Xn). Let Rn(O(X,R)) be the set of irreducible (g1, J1) modules which are
nonzero quotients of ω, and define RX(Sp(n,R)) similarly. For uniformity,
write HomSp(n,F )×O(X,F )(ω, π ⊗ σ) for Hom(g1×h1,K1×J1)(ω, π ⊗ σ).
We have the following foundational result on the theta correspondence for
isometries.

1.1 Theorem ([H], [W1]). Suppose F is real or nonarchimedean of odd resid-
ual characteristic. The set

{(π, σ) ∈ RX(Sp(n, F ))× Rn(O(X,F )) : HomSp(n,F )×O(X,F )(ω, π ⊗ σ) 6= 0}
is the graph of a bijection between RX(Sp(n, F )) and Rn(O(X,F )), and

dimCHomSp(n,F )×O(X,F )(ω, π ⊗ σ) ≤ 1

for π ∈ RX(Sp(n, F )) and σ ∈ Rn(O(X,F )).

When F is nonarchimedean of even residual characteristic partial results are
known. For us the following unconditional result suffices. If F is nonar-
chimedean and σ ∈ Irr(O(X,F )) we say that σ is tempered if all the ir-
reducible constituents of σ|SO(X,F ) are tempered.
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1.2 Theorem. Suppose F is nonarchimedean of even residual characteristic
and m = 2n. Let RX(Sp(n, F ))temp and Rn(O(X,F ))temp be the subsets of
Rn(O(X,F )) and RX(Sp(n, F )) of tempered elements, respectively. Then the
statement of Theorem 1.1 holds with RX(Sp(n, F ))temp and Rn(O(X,F ))temp

replacing the sets RX(Sp(n, F )) and Rn(O(X,F )), respectively.

Proof. Let σ ∈ Rn(O(X,F ))temp. By 2) a), p. 69 of [MVW], there exists π ∈
RX(Sp(n, F )) such that the homomorphism space of Theorem 1.1 is nonzero; π
is tempered by (1) of Theorem 4.2 of [R3], and is unique by Theorem 4.4 of [R3].
To prove the map from Rn(O(X,F ))temp to RX(Sp(n, F ))temp is injective and
the homomorphism space has dimension at most one, let π ∈ Irr(Sp(n, F ))temp.
By putting together the proofs of Proposition II.3.1 of [Ra] and Theorem 4.4
of [R3] one can show that there is a C linear injection

⊕
σ∈Irr(O(X,F ))
σ unitary

HomSp(n,F )×O(X,F )(ω, π ⊗ σ)

↪→ HomSp(n,F )×Sp(n,F )(S(Sp(n, F )), π ⊗ π∨),

where S(Sp(n, F )) is the space of locally constant compactly supported func-
tions on Sp(n, F ) and the action of Sp(n, F )×Sp(n, F ) on S(Sp(n, F )) is defined
by ((g, g′) · φ)(x) = φ(g−1xg′). The last space is one dimensional as

π ⊗ π∨ ∼= S(Sp(n, F ))/ ∩
f∈HomSp(n,F )(S(Sp(n,F )),π⊗U),

U a C vector space

ker(f);

see the lemma on p. 59 of [MVW]. This proves the claims about injectivity
and dimension. For surjectivity, let π ∈ RX(Sp(n, F ))temp. As above, there
exists σ ∈ Rn(O(X,F )) such that the homomorphism space is nonzero. An
argument as in the proof of (1) of Theorem 4.2 of [R3] shows that σ must be
tempered. See also [Mu]. ¤

It is worth noting the following from the proof of Theorem 1.2: Let m = 2n,
π ∈ Irr(Sp(n, F )) and σ ∈ Irr(O(X,F )). If HomSp(n,F )×O(X,F )(ω, π ⊗ σ) 6= 0,
then π is tempered if and only if σ is tempered.

When F is nonarchimedean of odd residual characteristic or F = R, then the
bijection from Theorem 1.1 and its inverse are denoted by

θ : RX(Sp(n, F ))
∼−→ Rn(O(X,F )), θ : Rn(O(X,F ))

∼−→ RX(Sp(n, F ));

if F is nonarchimedean of even residual characteristic we use the same nota-
tion for the bijections between RX(Sp(n, F ))temp and Rn(O(X,F ))temp from
Theorem 1.2.

Next we recall and prove a special case of a conjecture of S.S. Kudla on the theta
correspondence for isometries. This conjecture has important implications for
the theta correspondence for similitudes.
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1.3 Theta dichotomy conjecture (S.S. Kudla). Assume F is nonar-
chimedean. Let m be a positive even integer, let d ∈ F×/F×2, and let n be a
positive integer such that m ≤ 2n. There exist at most two quadratic spaces Y
and Y ′ over F of dimension m and discriminant d; assume both exist. Then
RY (Sp(n, F )) ∩ RY ′(Sp(n, F )) = ∅.
We can prove the conjecture when m is small in comparison to 2n:

1.4 Lemma. Suppose that the notation is as in Conjecture 1.3, and assume the
two quadratic spaces Y and Y ′ exist. If m ≤ n + 2, then the theta dichotomy
conjecture holds for m and n.

Proof. Let Z be the quadratic space over F of dimension 2m with four di-
mensional anisotropic component. To prove the theta dichotomy conjecture
for m and n it suffices to show that 1Sp(n) /∈ RZ(Sp(n, F )). This reduction
is well known, but we recall the proof for the convenience of the reader. As-
sume 1Sp(n) /∈ RZ(Sp(n, F )), and suppose π ∈ RY (Sp(n, F )) ∩ RY ′(Sp(n, F )).
To get a contradiction, let g0 ∈ GSp(n, F ) be such that λ(g0) = −1. By the
first theorem on p. 91 of [MVW], g0 · π ∼= π∨. Thus, there is a nonzero
Sp(n, F ) × Sp(n, F ) map from ωY,n ⊗ g0 · ωY ′,n to π ⊗ π∨. By Lemma 1.6
below, g0 · ωY ′,n ∼= ω−Y ′,n, where −Y ′ has the same space as Y ′ and form
multiplied by −1. Also, (ωY,n⊗ω−Y ′,n)|∆ Sp(n,F )

∼= ωY⊥−Y ′,n|Sp(n,F ). Clearly,
Y ⊥ −Y ′ ∼= Z. Since HomSp(n,F )((π ⊗ π∨)|∆ Sp(n,F ),1Sp(n,F )) 6= 0, there now
is a nonzero Sp(n, F ) map from ωZ,n to 1Sp(n,F ), i.e., 1Sp(n,F ) ∈ RZ(Sp(n, F )).
We now show 1Sp(n) /∈ RZ(Sp(n, F )) for m ≤ n + 2. Let i be the Witt index
of Z, i.e., i = m − 2, and write Vi = Z to indicate that Z is the orthogonal
direct sum of the four dimensional anisotropic quadratic space over F with i
hyperbolic planes. We must show 1Sp(n) /∈ RVi(Sp(n, F )) for 0 ≤ i ≤ n; we do
this by induction on n. The case n = 1 follows from Lemma 7.3 of [R2] (see
its proof, which is residual characteristic independent). Let n > 1, and assume
the claim for n − 1. Let i ≤ n, and assume 1Sp(n,F ) ∈ RVi(Sp(n, F )). To
find a contradiction we reduce dimensions using Jacquet functors and Kudla’s
filtration of the Jacquet module of the Weil representation. We use the notation
of [R3]: write ωi,n = ωVi,n. Since 1Sp(n,F ) ∈ RVi(Sp(n, F )), by 2) a) of the
Theorem on p. 69 of [MVW], there exists σ ∈ Irr(O(Vi, F )) and a nonzero
Sp(n, F )×O(Vi, F ) map

ωi,n → 1Sp(n,F ) ⊗ σ.

Let N ′1 be the unipotent radical of the standard maximal parabolic of Sp(n, F )
with Levi factor isomorphic to GL(1, F )× Sp(n− 1, F ). Applying the normal-
ized Jacquet functor with respect to N ′1, which is exact, we obtain a nonzero
GL(1, F )× Sp(n− 1, F )×O(Vi, F ) map

RN ′1
(ωi,n)→ RN ′1

(1Sp(n))⊗ σ = | · |−n ⊗ 1Sp(n−1,F ) ⊗ σ.

Suppose first i = 0, so that V0 is four dimensional and anisotropic. By Kudla’s
computation of the Jacquet functors of ω0,n, (see [R3] for a statement in
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our notation), RN ′1
(ω0,n)|Sp(n−1,F )

∼= ω0,n−1|Sp(n−1,F ). Thus, 1Sp(n−1,F ) ∈
RVi(Sp(n − 1, F )). Since i = 0 ≤ n − 1, by the induction hypothesis this is a
contradiction.
Suppose i > 0. By Kudla’s filtration (two step, in this case) of RN ′1

(ωi,n) either

there exists a nonzero GL(1, F )× Sp(n− 1, F )×O(Vi, F ) map

| · |dimVi/2−n ⊗ ωi,n−1 → | · |−n ⊗ 1Sp(n−1,F ) ⊗ σ,
or there exists a nonzero GL(1, F )×GL(1, F )×Sp(n−1, F )×O(Vi−1, F ) map

ξ1ξ
′
1σ1 ⊗ ωi−1,n−1 → | · |−n ⊗ 1Sp(n−1,F ) ⊗ RN1

(σ);

here, ξ1 and ξ′1 are quasi-characters of GL(1, F ) and σ1 is a represen-
tation of GL(1, F ) × GL(1, F ) whose precise definitions we will not need,
| · |−n is regarded as a quasi-character of GL(1, F ), N1 is the unipotent rad-
ical of the standard parabolic of O(Vi, F ) with Levi factor isomorphic to
GL(1, F ) × O(Vi−1, F ), and RN1

(σ) = RN1
(σ∨)∨. The first case is ruled out

since | · |dimVi/2−n 6= | · |−n. Since the second case must therefore hold, we get
HomSp(n−1,F )(ωi−1,n−1,1Sp(n−1,F )) 6= 0, i.e., 1Sp(n−1,F ) ∈ RVi−1

(Sp(n−1, F )).
This contradicts the induction hypothesis since i− 1 ≤ n− 1. ¤
The real analogue of the theta dichotomy conjecture is known. The assumption
of the evenness of p and q in the following lemma is a consequence of the same
assumptions in [M].

1.5 Lemma. Suppose F = R. Let m be a positive even integer and let n be a
positive integer such that m ≤ 2n. Then the sets RY (Sp(n,R)) as Y runs over
the isometry classes quadratic spaces over R of dimension m and signature of
the form (p, q) with p and q even are mutually disjoint.

Proof. We argue as in the second paragraph of the proof of Lemma 1.8 of
[AB]. Suppose Y and Y ′ are quadratic spaces of dimension m with signa-
tures (p, q) and (p′, q′) with p, q, p′ and q′ even. Assume π ∈ RY (Sp(n,R)) ∩
RY ′(Sp(n,R)). We must show that Y ∼= Y ′, i.e., p = p′ and q = q′. We
have Hom(g1,K1)(ωY,n, π) 6= 0 and Hom(g1,K1)(ωY ′,n, π) 6= 0; as in the proof
of Lemma 1.4 this implies Hom(g1,K1)(ωZ,n, (π ⊗ π∨)|∆(g1,K1)) 6= 0, where
Z = Y ⊥ −Y ′, and −Y ′ is the quadratic space with same space as Y ′

but with form multiplied by −1; Z has signature (p + q′, p′ + q). Hence,
1Sp(n,R) ∈ RZ(Sp(n,R)). We now use [M] to complete the proof. The rep-
resentation 1Sp(n,R) has only one K1-type, namely the trivial representation
of K1. As 1Sp(n,R) ∈ RZ(Sp(n,R)), the trivial representation of K1 appears
in the joint harmonics H(K1,O(p + q′,R) × O(p′ + q,R)) for this theta cor-
respondence (see I.1 and the second paragraph of II.1 of [M]). By Corollaire
I.4 of [M], which computes the representations of K1 occurring in the joint
harmonics, p+ q′ = p′+ q; since p+ q = p′+ q′, we have p = p′ and q = q′. ¤
We now recall the extended Weil representation which will be used to define
the theta correspondence for similitudes; see [R1] for references. Define

R = RX = Rn = RX,n = {(g, h) ∈ GSp(n, F )×GO(X,F ) : λ(g) = λ(h)}.
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The Weil representation ω of Sp(n, F ) × O(X,F ) on L2(Xn) extends to a
unitary representation of R via

ω(g, h)ϕ = |λ(h)|−mn4 ω(g1, 1)(ϕ ◦ h−1),

where

g1 = g

[
1 0
0 λ(g)

]−1

∈ Sp(n, F ).

Evidently, the group of elements (t, t) = (t·1, t·1) for t ∈ F× is contained in the
center of R, and we have ω(t, t)ϕ = χX(t)nϕ for ϕ ∈ L2(Xn) and t ∈ F×. If
F is nonarchimedean, then the extended Weil representation preserves S(Xn);
when F is nonarchimedean, by ω we shall often mean ω acting on S(Xn).
Suppose F = R; then ω extended to R also preserves S(Xn), but only at the
level of Harish-Chandra modules. We need definitions. As a standard maximal
compact subgroup K of GSp(n,R) take the group generated by K1 and the
order two element

k0 =

[
1 0
0 −1

]
.

The Lie algebra g = gsp(n,R) of GSp(n,R) is the direct sum of its center R
and g1 = sp(n,R). If p 6= q, then any maximal compact subgroup of GO(X,R)
is a maximal compact subgroup of O(X,R), and we let J denote the sub-
group J1 from above. Suppose p = q. Then every maximal compact subgroup
of GO(X,R) contains a unique maximal compact subgroup of O(X,R) as a
subgroup of index two, and any maximal compact subgroup of O(X,R) is con-
tained in a unique maximal compact subgroup of GO(X,R) as a subgroup of
index two. As a maximal compact subgroup for GO(X,R) we take the maxi-
mal compact subgroup J = J(X+, X−) containing J1 = J1(X+, X−). To get
a coset representative j0 for the nontrivial coset of J1 in J , let i : X+ → X−

be an isomorphism of R vector spaces such that (i(x+), i(x+)) = −(x+, x+) for
x+ ∈ X+ and using X = X+ ⊥ X− set

j0 =

[
0 i−1

i 0

]
.

The Lie algebra h = go(n,R) of GO(X,R) is the direct sum of its center R and
h1 = o(n,R). The group R is a real reductive group containing (Sp(n,R) ×
O(X,R)){(t, t) : t ∈ R×} as an open subgroup of index one if p 6= q, and index
two if p = q. As a maximal compact subgroup L of R we take L = K1 × J1 if
p 6= q; if p = q, then we take L to be generated by K1 × J1 and (k0, j0). The
Lie algebra r of R is the set of pairs (x, y) ∈ g × h such that x = z + x1 and
y = z + y1 for some z ∈ R, x1 ∈ g1 and y1 ∈ h1. The space S(Xn) is evidently
closed under the action of ω restricted to L and r. The (g1 × h1,K1 × J1)
module S(Xn) thus extends to an (r, L) module, which we will also denote by
ω.

Documenta Mathematica 6 (2001) 247–314



262 Brooks Roberts

Before discussing the theta correspondence for similitudes it will be useful to
describe the relationship between the extended Weil representations for similar
quadratic spaces, and what happens to the extended Weil representation when
the additive character is changed. For λ ∈ F× and g ∈ GSp(n, F ) write

g[λ] =

[
1 0
0 λ

]
g

[
1 0
0 λ

]−1

.

1.6 Lemma. Let X ′ another quadratic space over F , and suppose t : X → X ′

is a similitude with similitude factor λ. Let ω′ be the Weil representation of
RX′,n on L2(X ′n). Then

ω(g, h)(ϕ′ ◦ t) = [ω′(g[λ], tht−1)ϕ′)] ◦ t

for (g, h) ∈ RX,n and ϕ′ ∈ L2(X ′n).

Proof. By the formulas for the Weil representation the statement holds for
g ∈ Sp(n, F ) and h = 1, up to a factor α(g) in the fourth roots of unity µ4.
The function α : Sp(n, F ) → µ4 is a character. The only normal subgroups of
Sp(n, F ) are {±1} and Sp(n, F ); α must be trivial. It is now easy to check that
the formula holds for all (g, h) ∈ R. ¤
In the next result the dependence of ω on ψ is indicated by a subscript. Its
proof is similar to that of Lemma 1.6.

1.7 Lemma. Let ψ′ be another nontrivial unitary character of F . Let a ∈ F×
be such that ψ′(t) = ψ(at) for t ∈ F . Then there is an isomorphism

(ωψ′ , L
2(Xn))

∼−→ ((

[
1 0
0 ε

]
, 1) · ωψ, L2(Xn))

of representations of R, where ε = a if F is nonarchimedean and ε = sign(a)
if F = R. If F is nonarchimedean, the isomorphism is the identity map; if

F = R, the isomorphism sends ϕ′ to ϕ, where ϕ(x) = ϕ′(
√
|a|−1

x). This
isomorphism maps Sψ′(X

n) onto Sψ(Xn) (the subscripts ψ and ψ′ are relevant
when F = R).

With this preparation, we recall the theta correspondence for similitudes from
[R1]. In analogy to the case of isometries, we ask when does HomR(ω, π⊗σ) 6= 0
for π ∈ Irr(GSp(n, F )) and σ ∈ Irr(GO(X,F )) define the graph of a bijec-
tion between appropriate subsets of Irr(GSp(n, F )) and Irr(GO(X,F ))? In
considering this, two initial observations come to mind. First, R only in-
volves GSp(n, F )+, the subgroup of GSp(n, F ) (of at most index two) of
g ∈ GSp(n, F )+ with λ(g) ∈ λ(GO(X,F )); thus, at first it might be bet-
ter to look at representations of GSp(n, F )+ instead of GSp(n, F ). Sec-
ond, there should be a close relationship between HomR(ω, π ⊗ σ) 6= 0 and
HomSp(n,F )×O(X,F )(ω, π1 ⊗ σ1) 6= 0 for π1 and σ1 irreducible constituents of
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π|Sp(n,F ) and σ|O(X,F ), respectively. The basic result that builds on these

remarks is Lemma 4.2 of [R1]. It asserts that if π ∈ Irr(GSp(n, F )+),
σ ∈ Irr(GO(X,F )) and HomR(ω, π ⊗ σ) 6= 0, then

π|Sp(n,F ) = m · π1 ⊕ · · · ⊕m · πM , σ|O(X,F ) = m′ · σ1 ⊕ · · · ⊕m′ · σM

with θ(πi) = σi for 1 ≤ i ≤ M and m = 1 if and only if m′ = 1. Here
the πi ∈ Irr(Sp(n, F )) and σi ∈ Irr(O(X,F )) are mutually nonisomorphic.
Actually, [R1] considers the nonarchimedean case of odd residual characteristic,
but the same proof works if F has even residual characteristic, dimX = 2n
and π and σ are tempered, so that Theorem 1.2 applies, or if F = R; in this
case m = m′ = 1, as [GSp(n,R)+ : R× Sp(n,R)], [GO(X,R) : R×O(X,R)] ≤ 2
(see Table 1 in the appendix for data on GSp(n,R)+). With this in place, [R1]
shows that the condition HomR(ω, π ⊗ σ) 6= 0 defines the graph of a bijection
between RX(GSp(n, F )+) and Rn(GO(X,F )), where RX(GSp(n, F )+) is the
set of π ∈ Irr(GSp(n, F )+) such that π|Sp(n,F ) is multiplicity free and has an
irreducible constituent in RX(Sp(n, F )) and Rn(GO(X,F )) is similarly defined
(again, this also holds if F has even residual characteristic or F = R).
Finally, when GSp(n, F )+ is proper in GSp(n, F ), [R1] shows HomR(ω, π⊗σ) 6=
0 defines the graph of a bijection between suitable subsets of Irr(GSp(n, F ))
and Irr(GO(X,F )) provided m ≤ 2n and the relevant case of Conjecture 1.3
holds. The idea is that if [GSp(n, F ) : GSp(n, F )+] = 2, then X has a certain
companion nonisometric quadratic space X ′ with the same dimension and dis-
criminant (this determines X ′ if F is nonarchimedean; if F = R, then X ′ is the
quadratic space of signature (q, p)). When it holds and m ≤ 2n, Conjecture 1.3
implies that together the two theta correspondences between GSp(n, F )+ and
GO(X,F ) and between GSp(n, F )+ and GO(X ′, F ) give one theta correspon-
dence between GSp(n, F ) and GO(X,F ) (which is the same as that between
GSp(n, F ) and GO(X ′, F ), using GO(X,F ) = GO(X ′, F )). Since [R1] explains
this in somewhat different language, we recall the argument in the proof of the
summary theorem below.
For the statement of the theorem we need some notation. If F is nonar-
chimedean, define Rn(GO(X,F )) and RX(GSp(n, F )+) as above, and let
RX(GSp(n, F )) be the set of π ∈ Irr(GSp(n, F )) such that some irreducible
constituent of π|GSp(n,F )+ is contained in RX(GSp(n, F )+). If F = R, let
Rn(GO(X,R)) be the set of σ ∈ Irr(GO(X,R)) such that σ|O(X,R) has an
irreducible constituent in Rn(O(X,R)), and let RX(GSp(n,R)) be the set
of π ∈ Irr(GSp(n,R)) such that π|Sp(n,R) has an irreducible constituent in
RX(Sp(n,R)). Here σ|O(X,R) and π|Sp(n,R) mean σ|(h1,J1) and π|(g1,K1), re-
spectively. If σ ∈ Irr(GO(X,F )) and F is nonarchimedean we say that σ is
tempered if all the irreducible constituents of σ|GSO(X,F ) are tempered; evi-
dently, σ is tempered if and only if the irreducible constituents of σ|O(X,F ) are
tempered and σ has unitary central character, and this happens if and only
if the irreducible constituents of σ|SO(X,F ) are tempered and σ has unitary
central character.
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1.8 Theorem. Suppose first F is real or nonarchimedean of odd residual char-
acteristic. Then

{(π, σ) ∈ RX(GSp(n, F ))× Rn(GO(X,F )) : HomR(ω, π ⊗ σ) 6= 0}

is the graph of a bijection between RX(GSp(n, F )) and Rn(GO(X,F )), and

dimCHomR(ω, π ⊗ σ) ≤ 1

for π ∈ RX(GSp(n, F )) and σ ∈ Rn(GO(X,F )), in the following cases:

(1) F is nonarchimedean and d = 1;
(2) F is nonarchimedean, d 6= 1, and m ≤ n+ 2;
(3) F = R and p = q;
(4) F = R, p 6= q, p and q are even, and p+ q ≤ 2n.

Now assume F is nonarchimedean of even residual characteristic and m =
2n. As in Theorem 1.2, let the subscript temp denote the subset of tem-
pered elements. Then the above statement holds with RX(GSp(n, F ))temp and
Rn(GO(X,F ))temp in place of RX(GSp(n, F )) and Rn(GO(X,F )), respec-
tively, in the following cases:

(5) d = 1 and m = 2n;
(6) d 6= 1 and m = 2n = n+ 2 = 4.

Proof. (1). Since d = 1, GSp(n, F )+ = GSp(n, F ), and the statement follows
from Theorem 4.4 of [R1].
(2). This is dealt with in [R1], but we shall briefly recall the argument for the
purposes of explanation. In this case we have [GSp(n, F ) : GSp(n, F )+] = 2.
Let g ∈ GSp(n, F ) be a representative for the nontrivial coset of GSp(n, F )+

in GSp(n, F ). As mentioned above, by Theorem 4.4 of [R1] the condi-
tion HomR(ω, π′ ⊗ σ) 6= 0 defines a bijection between RX(GSp(n, F )+) and
Rn(GO(X,F )), and dimCHomR(ω, π′ ⊗ σ) ≤ 1 for π′ ∈ RX(GSp(n, F )+)
and σ ∈ Rn(GO(X,F )). To prove the theorem in this case, we first
claim that if π′ ∈ RX(GSp(n, F )+) and σ ∈ Rn(GO(X,F )) are such that

HomR(ω, π′ ⊗ σ) 6= 0, then g · π′ À π′ (so that π = Ind
GSp(n,F )
GSp(n,F )+ π

′ is irre-

ducible), and HomR(ω, π ⊗ σ) ∼= HomR(ω, π′ ⊗ σ); also, if π ∈ RX(GSp(n, F ))
then π|GSp(n,F )+ has two irreducible components. Let X ′ be the other qua-
dratic space of dimension m and discriminant d nonisometric to X. We may
assume that X ′ is obtained from X by multiplying the form on X by λ(g); then
GO(X ′, F ) = GO(X,F ) and RX′,n = R = RX,n. Let ω′ = ωX′ ; by Lemma 1.6,
g ·ω ∼= ω′. Now since HomR(ω, π′⊗σ) 6= 0 we have HomR(g ·ω, g ·π′⊗σ) 6= 0,
and so HomR(ω′, g · π′ ⊗ σ) 6= 0. This gives g · π′ ∈ RX′(GSp(n, F )+). If now
π′ ∼= g · π′, then RX(Sp(n, F )) ∩ RX′(Sp(n, F )) 6= ∅ (see Lemma 4.2 of [R1]),
contradicting Lemma 1.4. Thus, g · π′ À π′. Composing with the projection
π → π′ gives a map HomR(ω, π⊗σ)→ HomR(ω, π′⊗σ); by arguments similar to
those just given, this map is a C linear isomorphism. Let π ∈ RX(GSp(n, F )),
and suppose π|GSp(n,F )+ = π′ is irreducible. Then π′ ∈ RX(GSp(n, F )+), and
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so g · π′ À π′, a contradiction. This completes the proof of our claim. Using
the claim, it is straightforward to prove the theorem in this case via analogous
arguments.
(3) and (4). The arguments are similar to the nonarchimedean case in [R1]. In
fact, they are easier since the indices of the various relevant subgroups are at
most two. Thus, the analogues of the lemmas about induction and restriction
from [GK] used in [R1] take on a simple form. For the convenience of the reader
wishing to look closely at the arguments we present a table of data (See Table
1 in the Appendix). The p = q and p 6= q cases should be regarded as being
analogous to the d = 1 and d 6= 1 nonarchimedean cases, respectively. In the
table K+ is a maximal compact subgroup of GSp(n,R)+.
(5) and (6). The arguments are similar to those for (1) and (2) as we have the
inputs Theorem 1.2 and Lemma 1.4. The proofs of section 4 of [R1] are made
in an abstracted context and thus residual characteristic independent; these
arguments also go through with the restriction to tempered representations.
The arguments in (2) for the case [GSp(n, F ) : GSp(n, F )+] = 2 also work with
the restriction to tempered representations. The reader wishing to go through
the details should note the remark after Theorem 1.2. ¤
The proof of Theorem 1.8 only used Lemmas 1.4 and 1.5 when F is nonar-
chimedean and d 6= 1 and F = R and p 6= q, respectively. However, Lemmas
1.4 and 1.5 have important applications when F is nonarchimedean and d = 1,
and F = R and p = q: see Lemma 8.4 and the proof of Proposition 4.1.
We note that if π ∈ Irr(GSp(n, F )), σ ∈ Irr(GO(X,F )) and HomR(ω, π⊗σ) 6= 0
then χnX = ωπωσ where ωπ and ωσ are the central characters of π and σ,
respectively. Here, if F = R then the central character of π ∈ Irr(GSp(n,R))
is defined by ωπ(ez) = exp(π(z)) for z ∈ R ⊂ g, and ωπ(−1) = π(−1), where
−1 ∈ K; ωσ is defined similarly.
The theta correspondence for similitudes from Theorem 1.8 is independent of
the choice of character ψ.

1.9 Proposition. Let ψ′ be another nontrivial unitary character of F , and
let ωψ′ be the Weil representation of R on Sψ′(X

n) corresponding to ψ′ (the
subscript ψ′ in Sψ′(X

n) is relevant when F = R). Let σ ∈ Irr(GO(X,F )) and
π ∈ Irr(GSp(n, F )). Then HomR(ωψ, π ⊗ σ) 6= 0 if and only if HomR(ωψ′ , π ⊗
σ) 6= 0.

Proof. This follows from Lemma 1.7. ¤
Assume we are in one of the cases of Theorem 1.8. We then denote the bijection
between RX(GSp(n, F )) and Rn(GO(X,F )) by θ:

θ : RX(GSp(n, F ))
∼−→ Rn(GO(X,F )),

θ : Rn(GO(X,F ))
∼−→ RX(GSp(n, F )).

If π ∈ RX(GSp(n, F )) and σ ∈ Rn(GO(X,F )) then HomR(ω, π ⊗ σ) 6= 0 if
and only if θ(π) = σ and θ(σ) = π; if F has even residual characteristic we
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use RX(GSp(n, F ))temp and Rn(GO(X,F ))temp. If σ ∈ Rn(GO(X,F )) we say
that σ occurs in the theta correspondence with GSp(n, F ); similarly,
if π ∈ RX(GSp(n, F )) we say that π occurs in the theta correspondence with
GO(X,F ). The above definition of θ is not quite compatible with the global
definition; a contragredient must be introduced. If π is a cuspidal automorphic
representation of GSp(X,A), the global theta lift Θ(π) is nonzero and cuspidal,
and Theorem 1.8 applies at every place, then π∨v ∈ RX(GSp(n, F )) for all places
v of F , and Θ(π) = ⊗vθ(π∨v ) (See Section 5). However, we have the following
proposition. It guarantees that if σv = θ(π∨v ) then θ(σ∨v ) = πv.

1.10 Proposition. Let π ∈ Irr(GSp(n, F )) and σ ∈ Irr(GO(X,F )) be uni-
tary. Then HomR(ω, π⊗σ) 6= 0 if and only if HomR(ω, π∨⊗σ∨) 6= 0. Suppose
one of (1)–(6) of Theorem 1.8 holds. Then π ∈ RX(GSp(n, F )) if and only
if π∨ ∈ RX(GSp(n, F )) and if π ∈ RX(GSp(n, F )), then θ(π∨) = θ(π)∨.
Similarly, σ ∈ Rn(GO(X,F )) if and only if σ∨ ∈ Rn(GO(X,F )), and if
σ ∈ Rn(GO(X,F )) then θ(σ∨) = θ(σ)∨. (If F has even residual character-
istic, replace RX(GSp(n, F )) and Rn(GO(X,F )) by RX(GSp(n, F ))temp and
Rn(GO(X,F ))temp, respectively, in these statements.)

Proof. Since π and σ are unitary, there exist C antilinear isomorphisms π
∼−→ π∨

and σ
∼−→ σ∨ intertwining the actions of GSp(n, F ) and GO(X,F ), respectively.

It follows that there is a C antilinear isomorphism π⊗σ ∼−→ π∨⊗σ∨ intertwining
the action of GSp(n, F )×GO(X,F ). Let ω be the representation of R on S(Xn)

defined by ω(r)ϕ = ω(r)ϕ for r ∈ R and ϕ ∈ S(Xn). Let t : ω → π ⊗ σ be
a nonzero R map; then sending ϕ to t(ϕ) gives a nonzero C antilinear R map
ω → π ⊗ σ. Composing, we get a nonzero R map ω → π∨ ⊗ σ∨. On the other
hand, there is an R isomorphism

ω ∼= (

[
1 0
0 −1

]
, 1) · ω.

This implies that there is a nonzero R map ω → π∨ ⊗ σ∨. The remaining
claims of the proposition follow. ¤
Finally, using [H], we consider how the theta correspondence for similitudes
treats unramified representations. This requires some definitions. Assume F
is nonarchimedean, and let H be the hyperbolic plane over F . Then X ∼= H ⊥
· · · ⊥ H ⊥ X0, where X0 is an anisotropic quadratic space over F of dimension
0, 2 or 4. In particular, if dimF X0 = 2, then d 6= 1 and X0

∼= (E, δNE
F ), for a

quadratic extension E/F , where δ = 1 or is a representative for the nontrivial

coset of F×/NE
F (E×). We say that X is unramified if either dimX0 = 0

or dimX0 = 2, E/F is unramified and δ = 1. If X is unramified, then there
exists a lattice L ⊂ X which is self-dual, and if L′ is any other self-dual lattice
in X, then there exists h ∈ SO(X,F ) such that h(L) = L′. If dimF X0 = 0 or
dimF X0 = 2 and E/F is unramified, we define a maximal compact subgroup
J of GO(X,F ) in the following way. First, if X is unramified, we let J be the
stabilizer in GO(X,F ) of a fixed self-dual lattice L, i.e., J is the set of k ∈
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GO(X,F ) such that k(L) = L. Next assume dimF X0 = 2, E/F is unramified
but δ 6= 1. Then there exists a similitude h from X to the unramified quadratic
space of the same dimension and discriminant with anisotropic component
(E,NE

F ); we let J be the set of k ∈ GO(X,F ) of the form h−1k′h were k′ is
in the maximal compact subgroup of GO(X ′, F ) we have already defined. The
definition of J depends on choices, but any two subgroups defined by different
choices are conjugate. Let K = GSp(n,OF ).

1.11 Proposition. Suppose F is nonarchimedean of odd residual charac-
teristic and X is such that J is defined. Let σ ∈ Rn(GO(X,F )) and π ∈
RX(GSp(n, F )) and assume HomR(ω, π ⊗ σ) 6= 0. Then π is unramified with
respect to K if and only if σ is unramified with respect to J .

Proof. By Proposition 1.9 we may assume ψ(OF ) = 1 but ψ(π−1
F OF ) 6= 1; by

Lemma 1.6 we may assume X is unramified. We have K = O×FK1 ∪ k0O
×
FK1

and J = O×F J1 ∪ joO×F J1, where K1 = K ∩ Sp(n, F ), J1 = J ∩ O(X,F ),

λ(k0) = λ(j0) = µ, and µ is a representative for the nontrivial coset of O×F /O
×2
F .

For some irreducible component π′ of π|GSp(n,F )+ , we have HomR(ω, π′⊗σ) 6= 0.

As K ⊂ GSp(n, F )+, it will suffice to show that σ is unramified with respect
to J if and only if π′ is unramified with respect to K. By the proof of Lemma
4.2 of [R1] we can write

π′|Sp(n,F ) = π1 ⊕ · · · ⊕ πM , σ|O(X,F ) = σ1 ⊕ · · · ⊕ σM
where the πi ∈ Irr(Sp(n, F )) and the σi ∈ Irr(O(X,F )) are mutually noniso-
morphic and σi = θ(πi). Let Vi and Wi be the spaces of πi and σi, respectively.
Assume σ is unramified with respect to J . Let w1 ∈ σ be nonzero and fixed
by J . Since σ|O(X,F ) has exactly one irreducible constituent unramified with
respect to J1, we may assume, say, w1 ∈ W1. Evidently, σ(j0)W1 = W1. By
(b) of Theorem 7.1 of [H], π1 = θ(σ1) is unramified with respect to K1. Let
v1 ∈ V1 be nonzero and fixed by K1. We will show that v1 is in fact fixed by
K, i.e., π′(k0)v1 = v1. As π′|Sp(n,F ) has exactly one irreducible constituent

unramified with respect to K1 we have π′(k0)V1 = V1. Since V K1
1 is one

dimensional, π′(k0)v1 = εv1 for some ε ∈ {±1}. We must show ε = 1. Let
T : ω → π′⊗σ be a nonzero R map, and let p : π′⊗σ → π1⊗σ1 be projection.
Let T1 = p ◦ T : ω → π1 ⊗ σ1; this is a nonzero Sp(n, F ) × O(X,F ) map. Let
ϕ ∈ ω be such that T1(ϕ) = v1 ⊗ w1; we may assume ϕ is fixed by K1 × J1.
By the top of p. 107 of [MVW], there exists a locally constant compactly
supported K1 bi-invariant function f : Sp(n, F )→ C such that

ϕ =

∫

Sp(n,F )

f(g)ω(g, 1)ϕ0 dg;

here ϕ0 ∈ ω is a certain element fixed by K1 × J1. One can check that ϕ0 is
also fixed by (k0, j0). We have T1(ω(k0, j0)ϕ) = ε(v1 ⊗ w1). However,

ω(k0, j0)ϕ =

∫

Sp(n,F )

f(k−1
0 gk0)ω(g, 1)ϕ0 dg.
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Let g ∈ Sp(n, F ). We claim f(k−1
0 gk0) = f(g). Write g = kak′ with k, k′ ∈ K1

and a a diagonal matrix. Since we may assume

k0 =

[
1 0
0 µ

]
,

we have k−1
0 gk0 = k−1

0 kk0ak
−1
0 k′k0; hence, f(k−1

0 gk0) = f(a) = f(g). Thus,
ω(k0, j0)ϕ = ϕ. This implies v1 ⊗ w1 = T1(ϕ) = ε(v1 ⊗ w1), so that ε = 1.

The implication in the other direction has a similar argument. ¤

2. Four dimensional quadratic spaces

In this section we recall background on four dimensional quadratic spaces X
over a base field F and their similitude groups. We begin by characterizing the
special similitude group GSO(X,F ) of X via its even Clifford algebra. We also
obtain canonical coset representatives for the nontrivial coset of GSO(X,F ) in
GO(X,F ); these correspond to quaternion algebras over F contained in the
even Clifford algebra over F , which in turn are in bijection with Galois ac-
tions on the even Clifford algebra. This leads to the concept of a quadratic
quaternion algebra over F , an abstraction of the even Clifford algebra of a four
dimensional quadratic space. We construct examples of four dimensional qua-
dratic spaces from a given quadratic quaternion algebra over F and quaternion
algebras over F contained in the quadratic quaternion algebra, or equivalently,
Galois actions on the quadratic quaternion algebra. We prove that any four
dimensional quadratic space over F is, up to similitude, one of these exam-
ples. We also describe the relationship between the examples that arise from
a given quadratic quaternion algebra. To close the section, we consider four
dimensional quadratic spaces over local and number fields. The material in this
section is essentially well known. As some basic references we use [E], [Sch] and
[Kn].

To begin, let F be a field not of characteristic two, and let (X, (·, ·)) be a four
dimensional quadratic space over F . For simplicity denote the F points of X
by X. Set d = discX. Let x1, x2, x3, x4 be an orthogonal basis for X. Let C
be the Clifford algebra of X, let B = B(X) be the even Clifford algebra of X in
C, let E = E(X) be the center of B, and let C1 = C1(X) be the subspace of C
of odd elements. Then C, B, E and C1 are 16, 8, 2 and 8 dimensional over F ,
respectively. The F algebra E is called the discriminant algebra of X and
is reduced, i.e., has no nonzero nilpotent elements. Hence, E is either a field
or is isomorphic to F × F ; these happen when d 6= 1 and d = 1, respectively.
Let Gal(E/F ) = {1, α}. Let NE

F and TEF be the norm and trace from E to F

defined by NE
F (z) = zα(z) and TEF (z) = z + α(z), respectively. Let ∗ be the

involution of C which takes a product of the xi to the product of the same xi
in the reverse order. Clearly, ∗ preserves B and C1. If x ∈ B, then x ∈ E if
and only if x∗ = x. For x ∈ C, define N(x) = x∗x. Then N(x) ∈ E for x ∈ B.
We may regard X as contained in C1. Evidently, X is the set of x ∈ C1 such
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that x∗ = x. For x ∈ X, (x, x) = N(x). Also, for z ∈ E and x ∈ C1 we have
xz = α(z)x.
To further describe the structure of B and E, suppose B is an arbitrary F
algebra with center E and involution ∗ which is the identity on E. Then
we say that B is a quadratic quaternion algebra over F if E is two
dimensional over F and reduced, and there exists a quaternion algebra D over
F contained in B such that the natural map E⊗F D → B given by z⊗x 7→ zx
is an isomorphism of E algebras and ∗ induces the canonical involution on D.
Let B be a quadratic quaternion algebra over F with center E and involution
∗. We define the norm N : B → E and trace T : B → E by N(x) = xx∗ = x∗x
and T(x) = x + x∗ respectively. We also define a symmetric E-bilinear form
(·, ·) : B × B → E by (x, y) = T(xy∗)/2. This form is nondegenerate, i.e.,
if x ∈ B is nonzero, there exists y ∈ B such that (x, y) 6= 0. The definition
of a quadratic quaternion algebra B includes a particular quaternion algebra
over F in B, but the next straightforward result shows that all the quaternion
algebras over F in B have equal status.

2.1 Proposition. Let B be a quadratic quaternion algebra over F with center
E and involution ∗. Let D be any quaternion algebra over F in B. The natural
map E⊗FD → B is an isomorphism of E algebras, and ∗ induces the canonical
involution on D.

Given a quadratic quaternion algebra B as above, in general there may be
infinitely many nonisomorphic quaternion algebras D over F in B. However,
if E ∼= F × F , then B ∼= D × D, and any quaternion algebra over F in B is
isomorphic to D.

2.2 Proposition. Let X be a four dimensional quadratic space over X. The
F algebra B(X) is a quadratic quaternion algebra over F .

We characterize GSO(X,F ). Write B = B(X). Define a left action of F××B×
on C1 by ρ(t, g)x = t−1gxg∗. This action preservesX, and a computation shows

that if x ∈ X and (t, g) ∈ F× × B×, then N(ρ(t, g)x) = t−2 NE
F (N(g)) N(x);

thus, ρ(t, g) ∈ GO(X,F ), with similitude factor t−2 NE
F (N(g)). In fact, if

(t, g) ∈ F× × B×, then ρ(t, g) ∈ GSO(X,F ). For the following see for ex-
ample V (4.6.1) of [Kn], p. 273.

2.3 Theorem. Let X be a four dimensional quadratic space over X, and write
B = B(X) and E = E(X). Define an inclusion of E× into F× × B× by

a 7→ (NE
F (a), a). Then the following sequence is exact:

1→ E× → F× ×B× ρ−→ GSO(X,F )→ 1.

This theorem determines GSO(X,F ). We also need to understand GO(X,F ),
and we now explain how to describe certain canonical coset representatives for
the nontrivial coset of GSO(X,F ) in GO(X,F ). These coset representatives
will correspond to choices of quaternion algebras over F in B. The following
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lemma is the key structural result for the construction of the coset represen-
tatives. It is an elaboration of a general result about Clifford algebras of even
dimensional quadratic spaces (Chapter 9, Theorem 2.10 of [Sch], p. 332).

2.4 Lemma. Let X be a four dimensional quadratic space over X, and write
B = B(X) and E = E(X). Let D be a quaternion algebra over F contained
in B. Let D′ be the F algebra of elements of C which commute with all the
elements of D. Then D′ is a quaternion algebra over F and X ∩ D′ is one
dimensional and spanned by an anisotropic vector y, so that D′ = E+Ey. The
map x′ ⊗ x 7→ x′x determines an isomorphism D′ ⊗F D ∼−→ C of F algebras.
Conversely, if y ∈ X is an anisotropic vector, then the set D of elements of B
commuting with y is a quaternion algebra over F in B.

The maps from the previous lemma are evidently inverses of each other; that
is, there is a bijection

Quaternion algebras over F in B ←→ Anisotropic lines in X.

For the description of the nontrivial coset representatives of GSO(X,F ) in
GO(X,F ) we also need the following. Suppose B is any quadratic quaternion
algebra over F with center E with Gal(E/F ) = {1, α}. Then a Galois action
on B is an F -automorphism a : B → B such that a2 = 1 and a(zx) = α(z)a(x)
for z ∈ E and x ∈ B. If a is a Galois action on B, then the fixed points of a are
a quaternion algebra over F contained in B; conversely, if D is a quaternion
algebra over F contained in B, and a : B → B is defined by a(z⊗x) = α(z)⊗x,
then a is a Galois action on B. These two maps are inverses of each other, and
establish a bijection:

Quaternion algebras over F in B ←→ Galois actions on B.

Direct computation gives the following:

2.5 Proposition. Let X be a four dimensional quadratic space over X, and
write B = B(X) and E = E(X). Let D be a quaternion algebra over F
contained in B, and let D′ be as in Lemma 2.4. Let # be the involution of
C obtained via the isomorphism D′ ⊗ D ∼= C from the tensor product of the
canonical involutions on D′ and D. Then X# = X; define s : X → X by
s(x) = −x#. Then s ∈ O(X,F ), s2 = 1, and det s = −1. Moreover, the
following diagram commutes:

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

α

y 1×a
y conj. by s

y

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

.

Here, a is the Galois action on B determined by D.

When F is a local field we shall deal with representations of GSO(X,F ) dis-
tinguished with respect to subgroups SO(Y, F ), where Y is a three dimensional
subspace of X. The above development leads to a compatible characterization
of such subgroups. For the exactness of the first sequence in the next result see
for example [Kn], p. 264.
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2.6 Proposition. Let X be a four dimensional quadratic space over X, and
write B = B(X) and E = E(X). Let y ∈ X be anisotropic, and set Y = (F ·y)⊥

in X. Let D be the quaternion algebra over F in B corresponding to y. For
g ∈ D× and x ∈ Y , define ρ(g)x = gxg−1. Then ρ(g) ∈ SO(Y, F ) for g ∈ D×,
the sequence

1→ F× → D×
ρ−→ SO(Y, F )→ 1

is exact, there is a commutative diagram

1 −−−−→ F× −−−−→ D×
ρ−−−−→ SO(Y, F ) −−−−→ 1

y
y

y

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

where the inclusion of D× in F××B× is given by g 7→ (N(g), g), and SO(Y, F )
is included in GSO(X,F ) by regarding SO(Y, F ) as the stabilizer of y in
GSO(X,F ). Moreover, the element s from Proposition 2.5 corresponding to D
is such that s(y) = y and s is multiplication by −1 on Y , so that s|Y ∈ O(Y, F ),
with det s|Y = −1.

It will be important to have some explicitly constructed four dimensional
quadratic spaces, and we now reverse matters and construct such examples
from a given quadratic quaternion algebra over F equipped with a Galois ac-
tion. Let B be a quadratic quaternion algebra over F with center E with
Gal(E/F ) = {1, α}, involution ∗, and let a : B → B be a Galois action on
B. Let D be the quaternion algebra over F in B corresponding to a, i.e., the
fixed points of a. We let Xa be the set of x ∈ B such that a(x) = x∗. Then
Xa is a four dimensional vector space over F , and equipped with the symmet-
ric bilinear form induced by the norm of B, Xa is a quadratic space over F .
Define an explicit action of F× × B× on Xa by ρa(t, g)x = t−1gxa(g)∗. Then
ρa(t, g) ∈ GSO(Xa, F ) for (t, g) ∈ F× × B×. The relationship between the
previous characterization of GSO(Xa, F ) and the homomorphism ρa is given
by the following proposition.

2.7 Proposition. Let B be a quadratic quaternion algebra over F with center
E with Gal(E/F ) = {1, α}, involution ∗, and let a : B → B be a Galois action
on B. Then the sequence

1→ E× → F× ×B× ρa−→ GSO(Xa, F )→ 1,

is exact, where the inclusion of E× is defined by z 7→ (NE
F (z), z). There exists

a unique F algebra isomorphism B(Xa)
∼−→ B sending E(Xa) onto E so that

the diagram

1 −−−−→ E(Xa)× −−−−→ F× ×B(Xa)×
ρ−−−−→ GSO(Xa, F )→ 1

o
y o

y id

y

1 −−−−→ E× −−−−→ F× ×B× ρa−−−−→ GSO(Xa, F )→ 1
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commutes. The map defined by x 7→ a(x) = x∗ maps Xa onto Xa, and is the
element s ∈ O(Xa, F ) from Proposition 2.5 associated to the quaternion algebra
over F in B(Xa) corresponding to a.

Explicit quadratic quaternion algebras equipped with Galois actions may con-
structed as follows. Let E be a two dimensional reduced F algebra, so that E
is either a quadratic extension of F , or E ∼= F × F . Let Gal(E/F ) = {1, α},
and let D be a quaternion algebra over F with canonical involution ∗. Set
BD,E = E⊗F D, endow BD,E with the involution defined by (z⊗x)∗ = z⊗x∗,
and define a = a(D,E) : BD,E → BD,E by a(z ⊗ x) = α(z)⊗ x. Clearly BD,E
is a quadratic quaternion algebra over F , and a is a Galois action on BD,E ;
we will write XD,E = Xa. To be even more concrete, let d ∈ F×/F×2. If

d 6= 1, let Ed = F (
√
d); if d = 1, let Ed = F × F . We write BD,d = BD,Ed and

XD,d = XD,Ed . Evidently discXD,d = d. Assume further d = 1. Then there is

a canonical isomorphism D×D ∼−→ BD,1 of F algebras. With respect to this iso-
morphism, a is given by a(x, x′) = (x′, x), and ∗ is given by (x, x′)∗ = (x∗, x′∗).
Thus, XD,1 is the set of pairs (x, x∗) for x ∈ D, which can be identified with
D. With respect to these identifications, ρa(t, (g, g′))x = t−1gxg′∗ for t ∈ F×,
x ∈ D, and g, g′ ∈ D×.
Before turning to specific fields we address two natural questions. First, if X is
an arbitrary four dimensional quadratic space over F , when can X be related
to an XD,E?

2.8 Proposition. Let X be a four dimensional quadratic space over F and
write B = B(X) and E = E(X). There exists a quaternion algebra D over F
in B and a similitude T : X → XD,E so that

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

id

y o
y

yT ·T−1

1 −−−−→ E× −−−−→ F× ×B×D,E
ρa(D,E)−−−−−→ GSO(XD,E , F ) −−−−→ 1

commutes, and the element s ∈ O(X,F ) corresponding to D from Proposition
2.5 is mapped to the element of O(XD,E , F ) defined by x 7→ a(x) = x∗, where
a = a(D,E). If X represents 1, then we may further choose T to be an isom-
etry. Conversely, if X is isometric to XD,E for some D, then X represents
1.

Given a quadratic quaternion algebra over F , what is the relationship between
the Xa for different Galois actions a on the quadratic quaternion algebra? The
main ingredient for the following is the Skolem-Noether theorem.

2.9 Proposition. Let B be a quadratic quaternion algebra over F with center
E, let Gal(E/F ) = {1, α}, and let a and a′ be Galois actions on B. There
exists u ∈ B×, uniquely determined up to multiplication by elements of E×,
such that a′(x) = u−1a(x)u for x ∈ B. We have ua(u) = ua′(u) ∈ F×. Let
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µ = ua(u) = ua′(u). Then u can be chosen so that N(u) = µ; choose such a u.
The map T : Xa → Xa′ given by T (x) = xu is a well-defined similitude with
similitude factor λ(T ) = µ. The diagram

1 −−−−→ E× −−−−→ F× ×B× ρa−−−−→ GSO(Xa, F ) −−−−→ 1

id

y id

y
yT ·T−1

1 −−−−→ E× −−−−→ F× ×B× ρa′−−−−→ GSO(Xa′ , F ) −−−−→ 1

commutes.

To close this section we consider choices of F . Suppose F is nonarchimedean
of characteristic zero. Let d ∈ F×/F×2. Up to isometry, there are two four
dimensional quadratic spaces of discriminant d; these are distinguished by their
Hasse invariant. Both spaces represent 1. One space is isometric to XM2×2,d,
where M2×2 = M2×2(F ) is the quaternion algebra of 2×2 matrices over F ; the
other is isometric to XDram,d, where Dram is the division quaternion algebra
over F . These spaces have Hasse invariant ε(d) and −ε(d), respectively, where
ε(d) = (−1,−d)F . If d = 1, then XM2×2,1 is isometric to M2×2(F ) equipped
with the determinant, and XDram,1 is isometric to Dram equipped with the
norm; see the remarks before Proposition 2.8. Suppose d 6= 1. Then XM2×2,d

and XDram,d are both isotropic. Also, BM2×2,d and BDram,d are both isomorphic
to M2×2(Ed). Explicitly, let δ be a representative for the nontrivial coset of

F×/NEd
F (E×d ). Then we can take

Dram = {
[

e fδ
α(f) α(e)

]
: e, f ∈ Ed} ⊂ M2×2(Ed).

The Galois actions a = a(M2×2, Ed) and a′ = a(Dram, Ed) on M2×2(Ed) corre-
sponding to M2×2(F ) and Dram are given by

(2.1) a(

[
e f
g h

]
) =

[
α(e) α(f)
α(g) α(h)

]
and a′(

[
e f
g h

]
) =

[
α(h) δα(g)
α(f)/δ α(e)

]
,

respectively, and XM2×2,d and XDram,d are the set of elements in M2×2(Ed)

[
e f

√
d

g
√
d α(e)

]
and

[
f −δe
α(e) g

]
,

respectively, for e ∈ Ed and f, g ∈ F . The element u from Proposition 2.9 can
be taken to be √

d

[
0 δ
1 0

]
.

Evidently, if the residual characteristic of F is odd and Ed/F is unramified,
then XM2×2,d is unramified but XDram,d is not. The quadratic spaces XM2×2,d

and XDram,d have isomorphic similitude groups, and from the point of view
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of the theta correspondence for similitudes, they are grouped together. The
two quadratic spaces with discriminant 1, however, do not have isomorphic
similitude groups and and are distinct from the point of view of the theta
correspondence for similitudes. See the remarks before Theorem 1.8 and the
proof of Theorem 1.8.
Suppose F = R. Let d ∈ R×/R×2. If d = 1, then up to isometry there
are three four dimensional quadratic spaces of discriminant 1, with signatures
(4, 0), (2, 2) or (0, 4). The quadratic space with signature (4, 0) is XDram,1; the
ramified quaternion algebra Dram over R is the Hamilton quaternion algebra.
The quadratic space with signature (2, 2) is XM2×2,1 where M2×2 = M2×2(R).
Finally, the quadratic space with signature (0, 4) is not of the form XD,1. How-
ever, as predicted by Proposition 2.8, there is an intertwining similitude with
the space XDram,1: the quadratic space with signature (0, 4) can be taken to be
XDram,1 with form multiplied by −1. Then the intertwining similitude is just
the identity function. If d = −1, then up to isometry there are two quadrat-
ics spaces of discriminant −1, with signatures (1, 3) or (3, 1). The quadratic
space with signature (3, 1) is XM2×2,−1, while the quadratic space with signa-
ture (1, 3) is XDram,−1. From the point of view of the theta correspondence for
similitudes, the spaces with signature (4, 0) and (0, 4) are grouped together, the
spaces with signature (3, 1) and (1, 3) are grouped together, and the space of
signature (2, 2) is not grouped with another four dimensional quadratic space.
When F = R there are further exact sequences. Let X be a four dimensional
quadratic space over R, with even Clifford algebra B; let E be the center
of B. We regard F = R, E and B as the Lie algebras of F× = R×, E×
and B×, respectively. We take the Lie algebra gso(X,R) of GSO(X,R) to
be the subalgebra of h ∈ EndRX for which there exists a λ ∈ R such that
(hx, x′) + (x, hx′) = λ(x, x′) for x, x′ ∈ X; then λ = tr(h)/2. Define an action
of R×B on X by ρ(r, h)x = −rx+hx+xh∗, and an inclusion of E into R×B
by b 7→ (TEF (b), b). By Theorem 2.3,

(2.2) 0→ E → R×B ρ−→ gso(X,R)→ 0

is an exact sequence of Lie algebras. Any two maximal compact subgroups
of GSO(X,R) are conjugate. Let J0 be a maximal compact subgroup of
GSO(X,R). Then there exists a unique maximal compact subgroup KB of
B× such that ρ({±1} × KB) = J0. The normalizer of J0 is R×J0, and J0 is
contained in a unique maximal compact subgroup of GO(X,R). There is an
exact sequence

(2.3) 1→ KB ∩ E× → {±1} ×KB
ρ−→ J0 → 1.

Suppose that y ∈ X is anisotropic and Y and D are as in Proposition 2.6. We
take the Lie algebra of so(Y,R) of SO(Y,R) to be the subalgebra of h ∈ EndR Y
such that (hx, x′) + (x, hx′) = 0 for x, x′ ∈ Y . We regard D as the Lie algebra
of D×, and define an action of D on X by ρ(h)x = hx − xh. By Proposition
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2.6 there is an exact sequence

0→ R→ D → so(Y,R)→ 0,

and a commutative diagram

0 −−−−→ R −−−−→ D
ρ−−−−→ so(Y,R) −−−−→ 0

y
y

y

0 −−−−→ E −−−−→ R×B ρ−−−−→ gso(X,R) −−−−→ 0

where D is included in R × B via h 7→ (T(h), h) and so(Y,R) is included in
gso(X,R) by setting the elements of so(Y,R) to be 0 on R ·y. Any two maximal
compact subgroups of SO(Y,R) are conjugate. Let JY be a maximal compact
subgroup of SO(Y,R). Then there exists a unique maximal compact subgroup
KD of D× such that JY = ρ(KD), and JY is contained in a unique maximal
compact subgroup J0 = ρ({±1} × KB) of GSO(X,R). Also, KD ⊂ KB , the
diagram

1 −−−−→ {±1} −−−−→ KD
ρ−−−−→ JY −−−−→ 1

y
y

y

1 −−−−→ KB ∩ E× −−−−→ {±1} ×KB
ρ−−−−→ J0 −−−−→ 1

commutes, and the element s ∈ O(X,R) from Proposition 2.6 normalizes JY
and J0. Conversely, if J0 = ρ({±1} ×KB) is a maximal compact subgroup of
GSO(X,R) there exists an anisotropic y ∈ X and a maximal compact subgroup
JY = ρ(KD) ⊂ SO(Y,R) such that JY ⊂ J0; in particular, the unique maximal
compact subgroup of GSO(X,R) which contains J0 is generated by J0 and s.
Finally, suppose F is a number field with adeles A, X is a four dimensional
quadratic space over F , B is the even Clifford algebra of X, and E is the center
of B. Using Theorem 2.3 one can show that the sequence

1→ A×E → A× ×B×(A)
ρ−→ GSO(X,A)→ 1

is exact; we identify E×(A) and A×E . Similarly, if B is a quadratic quaternion
algebra over F with center E, and a is a Galois action on B, then the sequence

1→ A×E → A× ×B×(A)
ρa−→ GSO(Xa,A)→ 1

is exact. In addition, we have the following useful observation. Suppose D and
D′ are quaternion algebras over F , and E is a two dimensional reduced algebra
over F . Let SD,E be the set of places v of F such that Dv is ramified and v
splits in E; if E ∼= F × F , we will say that every place of F splits in E. Define
SD′,E similarly. Evidently, if SD,E = SD′,E , then BD,E ∼= BD′,E as E algebras.
Thus, if SD,E = SD′,E , then by Proposition 2.9 there exists an intertwining
similitude from XD,E to XD′,E .
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3. Local theta lifts for dimX = 2n = 4

In this section we describe what irreducible representations of GO(X,F ) occur
in the theta correspondence with GSp(2, F ) for X a four dimensional quadratic
space over a local field F . This is needed to define local L-packets for GSp(2, F )
in the next section. The description below involves distinguished representa-
tions, and was given in [R2] when F is a local field of characteristic zero with
odd residual characteristic; we also do the even residual characteristic and real
cases.

Fix the following notation. Let F be a local field of characteristic zero, with
F = R if F is archimedean. Let X be a four dimensional quadratic space
over F ; write X for the F points of X. Let d = discX. As in Section 2,
let B be the even Clifford algebra of X, and let E be the center of B. Let
s ∈ O(X,F ) be an element as in Proposition 2.5, so that s2 = 1, det s = −1,
and s is a representative for the nontrivial coset of GSO(X,F ) in GO(X,F ).
Suppose that F = R. Fix a maximal compact subgroup KB of B×, and
let J0 = ρ({±1} × KB), a maximal compact subgroup of GSO(X,R). As
explained in the penultimate paragraph of Section 2, we may assume that s
normalizes J0, so that the subgroup J generated by J0 and s is a maximal
compact subgroup of GO(X,R). As usual, by Irr(B×) we mean the set of
equivalence classes of irreducible (B,KB) modules, where B is regarded as the
Lie algebra of B×. If τ ∈ Irr(B×), the central character ωτ : E× → C× of τ is
defined by ωτ (ez) = exp(τ(z)) for z ∈ E ⊂ B = Lie(B×), and ωτ (ε) = τ(ε) for
ε ∈ E× ∩KB .

Using the exact sequences of Section 2, we can describe representations of
GSO(X,F ) in terms of representations of B×. Let Irrf (F× × B×) be the set
of pairs (χ, τ), where τ ∈ Irr(B×) is such that ωτ is Galois invariant, and χ

is a quasi-character of F× such that ωτ = χ ◦ NE
F . The exact sequences from

Theorem 2.3, (2.2) and (2.3) give a bijection

Irrf (F× ×B×)
∼−→ Irr(GSO(X,F )), (χ, τ) 7→ π(χ, τ).

If F is nonarchimedean, π(χ, τ) has the same space as τ , and is defined by
π(χ, τ)(ρ(t, g)) = χ(t)−1τ(g). Suppose F = R, and let (χ, τ) ∈ Irrf (R××B×).
Since ωτ is Galois invariant, it follows that there exists a unique R linear map
lτ : R → C such that τ(z) = lτ (TER (z)) for z ∈ E ⊂ Lie(B×). We have
χ(ex) = exp lτ (x) for x ∈ R. Then π(χ, τ) has the same space as τ , and
π(χ, τ) is defined by π(χ, τ)(ρ(ε, k)) = χ(ε)−1τ(k) for ρ(ε, k) ∈ J0, and by
π(χ, τ)(ρ(r, h)) = −lτ (r) + τ(h) for ρ(r, h) ∈ gso(X,R). The central character
of π(χ, τ) is χ.

In addition, if X is of the form Xa for some Galois action a on a quadratic
quaternion algebra B (see Section 2), then it may be convenient to write
π = π(χ, τ) with respect to the first exact sequence from Proposition 2.7. By
Proposition 2.7, the difference between using the exact sequences from Propo-
sition 2.7 and Theorem 2.3 is inessential.
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We describe representations of GO(X,F ) via representations of GSO(X,F ).
Let π ∈ Irr(GSO(X,F )). If the induced representation of π to GSO(X,F ) is
irreducible, we say that π is regular, and write π+ for the induced repre-

sentation. Here, if F = R, Ind
GO(X,R)
GSO(X,R) π is the (go(X,R), J) = (gso(X,R), J)

module with space π ⊕ π and action

π+(k)(w ⊕ w′) = π(k)w ⊕ π(sks)w′, k ∈ J0, π+(s)(w ⊕ w′) = w′ ⊕ w,

and Lie algebra action

π+(X)(w ⊕ w′) = π(X)w ⊕ π(Ad(s)X)w′, X ∈ gso(X,R).

If π is not regular, we say that π is invariant. If π is invariant, then s ·π ∼= π
and π extends to exactly two representations of GO(X,F ); if F = R, by s · π
we mean the (gso(X,R), J0) module with same space as π and action defined
by (s ·π)(k)w = π(sks)w for k ∈ J0 and w ∈ π and (s ·π)(X)w = π(Ad(s)X)w
for X ∈ gso(X,R) and w ∈ π. Before we can describe what representations of
GO(X,F ) occur in the theta correspondence with GSp(2, F ) we must be able
to adequately tell apart the two extensions of an invariant representation to
GO(X,F ). To do so we use distinguished representations.
Let π ∈ Irr(GSO(X,F )) be invariant. We say that π is distinguished if there
exists an anisotropic vector y ∈ X such that HomSO(Y,F )(π,1) 6= 0, and if

d 6= 1, then Y is isotropic. Here, Y = (F · y)⊥, as in Proposition 2.6, and 1
is the trivial representation of SO(Y, F ), i.e., the representation with space C
and trivial action. In the case F = R more comments are required. Let y ∈ X
be anisotropic, and let Y = (F · y)⊥. Let JY be a maximal compact subgroup
of SO(Y,R). Then as mentioned in Section 2, JY is contained in a unique
maximal compact subgroup J ′0 of GSO(X,R). Since J ′0 is conjugate to J0, we
may regard the (gso(X,R), J0) module π as a (gso(X,R), J ′0) module, and by
restriction, as an (so(Y,R), JY ) module. Then we say that π is distinguished
if for some y, Hom(so(Y,R),JY )(π,1) 6= 0, and if d 6= 1, then Y is isotropic. It
is easy to verify that the nonvanishing of this homomorphism space does not
depend on the choice of maximal compact subgroup of SO(Y,R) or element
of GSO(X,R) used to conjugate J ′0 into J0 (use that the normalizer of J0 is
R×J0). Also, π is distinguished with respect to all anisotropic y if and only if
it is distinguished with respect to one anisotropic y. If F is nonarchimedean,
then this was pointed out in [R2]; if F = R it follows by a similar argument.

3.1 Proposition. If F = R assume d = 1. Let π ∈ Irr(GSO(X,F )). Assume
π is invariant. Then for all anisotropic y ∈ X such that Y = (F · y)⊥ is
isotropic if d 6= 1, dimCHomSO(Y,F )(π,1) ≤ 1.

Proof. This was proven in Proposition 4.1 of [R2] if F is nonarchimedean.
Suppose F = R. Since the homomorphism spaces for different anisotropic
y are all isomorphic, it suffices to show this for one y. As d = 1, we have
B ∼= D×D for some quaternion algebra D over R. Identify B with D×D, and
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let y ∈ X be an anisotropic vector such that the line R · y corresponds to ∆D,
where ∆D consists of the (x, x) ∈ B with x ∈ D (see Section 2). Let KD be a
maximal compact subgroup of D×; then ∆KD is a maximal compact subgroup
of ∆D×, ∆KD ⊂ KD ×KD, and JY = ρ(KD) ⊂ ρ({±1} ×KD ×KD). Write
π = π(χ, τ), with τ ∼= τ1 ⊗ τ2, τ1, τ2 ∈ Irr(D×), ωτ1 = ωτ2 = χ. Since π is
invariant, τ1 ∼= τ2. We have HomSO(Y,R)(π,1) ∼= Hom(∆D,∆KD)(τ, χ ◦ N) ∼=
Hom(∆D,∆KD)(τ1 ⊗ τ∨1 ,1). This space is one dimensional. ¤

As we shall see in the theorem below, we can now tell the two extensions of in-
variant representations apart to an extent sufficient for our purposes. Suppose
π ∈ Irr(GSO(X,F )) is distinguished with respect to an anisotropic y ∈ X,
with d = 1 if F = R. Since dimCHomSO(Y,F )(π,1) = 1 by Proposition

3.1, it follows that for exactly one extension π+ of π to GO(X,F ) we have
HomO(Y,F )(π

+,1) 6= 0. Denote the other extension of π to GO(X,F ) by π−.

The definitions of π+ and π− do not depend on the choice of y.
Before characterizing R2(GO(X,F )) we require require two more results.

3.2 Lemma. Let F = R; assume d = 1. Then HomSO(X,R)(ω, π1) 6= 0 for
π1 ∈ Irr(SO(X,R)).

Proof. If the signature of X is (2, 2), this follows from (3.6.10) of [P]. If the
signature of X is (4, 0) or (0, 4) this follows by (6.12) of [KV]. ¤

3.3 Proposition. The elements of Irr(GO(X,F )) have multiplicity free re-
strictions to O(X,F ).

Proof. If F = R then the restriction of any element of Irr(GO(X,R)) is mul-
tiplicity free as [GO(X,R) : R×O(X,R)] ≤ 2. If d = 1 and F is nonar-
chimedean then this is Lemma 7.2 of [HPS]. The case d 6= 1 and F nonar-
chimedean remains. If F is of odd residual characteristic then [GO(X,F ) :

F×O(X,F )] = [NE
F (E×) : F×2] = 2 so the proposition follows from Lemma

2.1 of [GK]. We now give an argument for both the even and odd residual
characteristic cases. There are two four dimensional quadratic spaces over F
of discriminant d. By Proposition 2.9 there is a similitude between them; thus,
it suffices to prove the result for one of them. We take X = XM2×2,d. Us-
ing Proposition 3.2 of [R2] it is easy to verify that the finite dimensional, i.e.,
one or two dimensional, elements of Irr(GO(X,F )) have multiplicity free re-
strictions to O(X,F ). To complete the proof it will suffice to show that for

infinite dimensional π ∈ Irr(GSO(X,F )), the representation σ = Ind
GO(X,F )
GSO(X,F ) π

(which may be reducible) has a multiplicity free restriction to O(X,F ). Let
π ∈ Irr(GSO(X,F )) and using the first exact sequence from Proposition 2.7
write π = π(χ, τ) where τ ∈ Irr(GL(2, E)) and χ is a quasi-character of F×

such that χ◦NE
F = ωτ ; here and below E = Ed. We make take s to be given by

s(x) = a(x), where a is the usual Galois action on M2×2(E) as given in (2.1).
Let V be the space of τ , i.e., the space of π. As a model for σ use V ⊕ V with

(3.1) σ(h)(v⊕v′) = π(h)v⊕π(shs)v′, h ∈ GSO(X,F ), σ(s)(v⊕v′) = v′⊕v.
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We begin with some remarks about the restriction of π to subgroups. Let
ψE : E → C× be a nontrivial quasi-character of E; we may assume ψE is
Gal(E/F ) invariant. Let N be the subgroup of GSO(X,F ) of elements

n = ρa(1,

[
1 x
0 1

]
)

for x ∈ E. Since the space of Whittaker functionals on τ with respect to ψE is
one dimensional, it follows that dim HomN (π, ψE) = 1, where ψE is the charac-
ter of N defined by ψE(n) = ψE(x). This fact allows us to prove the following
statements just as in the proof of Theorem 4.3 of [R2]. Let H0 be a closed
normal subgroup of GSO(X,F ) such that F×H0 is open, GSO(X,F )/F×H0

is finite and Abelian, and N ⊂ H0. Then the restriction π|H0
is multiplicity

free: π|H0
= V1 ⊕ · · · ⊕ VM , where Vi, 1 ≤ i ≤M are mutually nonisomorphic

irreducible H0 subspaces of π (see [GK] for general results about restrictions),
and, say, dimCHomN (V1, ψE) = 1 and dimCHomN (Vi, ψE) = 0 for 2 ≤ i ≤M .
Suppose additionally s · π ∼= π, and let π̂ be an extension of π to GO(X,F ).
Then π̂(s)V1 = V1.
Now we show σ|O(X,F ) is multiplicity free. Suppose first there is no quasi-

character β of E× such that β|F× = 1 and β ⊗ τ ∼= τ ◦ a. Let W be a
nonzero irreducible O(X,F ) subspace of σ. Then either there is an irreducible
SO(X,F ) subspace U of (π, V ) such that W = U⊕U , or there is an irreducible
SO(X,F ) subspace U of (π, V ) and i : U → U such that i2 = 1, i(π(h)u) =
π(shs)i(u) for h ∈ SO(X,F ) and W = {u ⊕ i(u) : u ∈ U}. We assert the
second case is impossible; suppose it holds. Then π|SO(X,F ) and (s · π)|SO(X,F )

share an irreducible component. Since π|SO(X,F ) is multiplicity free by the last
paragraph, by Lemma 2.4 of [GK] there is a quasi-character γ : GSO(X,F )→
C× trivial on F× SO(X,F ) such that s · π ∼= γ ⊗ π. Since

1→ F× SO(X,F )
inc−−→ GSO(X,F )

λ−→ NE
F (E×)/F×2 → 1

is exact, γ = η◦λ for some quasi-character η : NE
F (E×)→ C× with η2 = 1. Let

T : (η ◦ λ) ⊗ π → s · π be a GSO(X,F ) isomorphism. Then for g ∈ GL(2, E)
and v ∈ V ,

T (η(λ(ρa(1, g))) · π(ρa(1, g)v)) = π(sρa(1, g)s)T (v)

(η ◦NE
F )(det g)T (τ(g)v) = τ(a(g))T (v).

This implies (η ◦ NE
F ) ⊗ τ ∼= τ ◦ a, contradicting our assumption; note

(η ◦ NE
F )|F× = 1. Thus, W = U ⊕ U . Let W ′ be another nonzero irreducible

O(X,F ) subspace of σ and assume W ′ ∼= W as O(X,F ) representations; to
show σ|O(X,F ) is multiplicity free it will suffice to show W and W ′ are iden-
tical, i.e., W = W ′. Write W ′ = U ′ ⊕ U ′, with U ′ an irreducible SO(X,F )

subspace of (π, V ). Consider the composition U → W
∼−→ W ′ → U ′ where the
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first map sends u to u⊕ 0, the second is our fixed isomorphism W ∼= W ′, and
the last map sends u ⊕ u′ to u. This is an SO(X,F ) map from (U, π|SO(X,F ))
to (U ′, π|SO(X,F )). We claim it is nonzero; suppose not. Then the same com-
position with the last map replaced by the map sending u ⊕ u′ to u′ gives a
nonzero SO(X,F ) map from (U, π|SO(X,F )) to (U ′, (s · π)|SO(X,F )). However,
we just saw that π|SO(X,F ) and (s ·π)|SO(X,F ) have no common irreducible con-
stituents. Thus, the first composition is nonzero, and U and U ′ are isomorphic
irreducible subspaces of π|SO(X,F ). Since π|SO(X,F ) is multiplicity free, U = U ′

and so W = W ′.
Now suppose there is a quasi-character β of E× such that β|F× = 1 and β⊗τ ∼=
τ ◦ a. Let H0 be the subgroup of SO(X,F ) of ρa(1, g) for g ∈ Sl(2, E), and let
H ⊂ O(X,F ) be generated by H0 and s. To prove σ|O(X,F ) is multiplicity free
it will suffice to prove σ|H is multiplicity free. For this, we replace σ with a
more tractable representation via twisting. Since β|F× = 1, there is a quasi-
character µ of E× such that β(x) = µ(x/a(x)) for x ∈ E×. Letting τ ′ = µ⊗ τ ,
we have τ ′ ◦ a ∼= τ ′. Since ωτ is Galois invariant, β2 = 1, which implies µ2 is
Galois invariant. Let ν be a quasi-character of F× such that µ2 = ν ◦NE

F , and

set χ′ = νχ; then ωτ ′ = χ′ ◦ NE
F . Set π′ = π(χ′, τ ′). Since τ ′ ◦ a ∼= τ ′ we have

s ·π′ ∼= π′. Let σ′ = Ind
GO(X,F )
GSO(X,F ) π

′, and use the same model for σ′ as above, so

the underlying space of σ′ is V ⊕ V . Now σ′ may not be isomorphic to σ, but
it is easy to see that the identity map between the models for σ and σ′ gives an
isomorphism σ|H ∼= σ′|H . We are reduced to showing σ′|H is multiplicity free.
As s ·π′ ∼= π′, we have σ′ ∼= π′1⊕π′2, where π′1 and π′2 are the two extensions of
π′ to GO(X,F ). Since the restrictions π′1|H0

= π′2|H0
= π|H0

are multiplicity
free as N ⊂ H0, it follows that π′1|H and π′2|H are multiplicity free. It will now
suffice to show π′1|H and π′2|H do not share an irreducible component; suppose
they do. By Lemma 2.4 of [GK], π′1|H ∼= π′2|H . Let R : π′1|H → π′2|H be
an H isomorphism. As indicated above, there is an irreducible H0 subspace
V1 ⊂ V such that π′1(s)V1 = π′2(s)V1 = V1, i.e., V1 is also an irreducible H
subspace for π′1|H and π′2|H . Since π′1|H and π′2|H are multiplicity free, we
must have R(V1) = V1. Applying Schur’s lemma to R : V1 → V1, with V1

regarded as an irreducible H0 representation, there exists a nonzero scalar c
such that R(v) = cv for v ∈ V1. This implies π′1(s)v = π′2(s)v for v ∈ V1.
However, π′2(s)v = −π′1(s)v for v ∈ V , a contradiction. ¤
3.4 Theorem. Let σ ∈ Irr(GO(X,F )). If F is nonarchimedean and d 6=
1, assume σ is infinite dimensional; if F = R, assume d = 1. Then σ ∈
R2(GO(X,F )) if and only if σ is not of the form π− for some distinguished
π ∈ Irr(GSO(X,F )).

Proof. Suppose first F is nonarchimedean. Then this theorem was proven in
[R2] in the case F has odd residual characteristic. To verify the theorem if F
has even residual characteristic we proceed as follows. We note first that the
background results of [R2] are valid in any residual characteristic; that is, the
results of sections 2, 3 and 4 hold, and Lemma 6.1, Corollary 6,2, Lemma 6.3
and Lemma 6.4 also hold with the same proofs. We need to show that Lemmas
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6.6 and 6.7 of [R2] also hold if F has even residual characteristic. Consider
first the proof of Lemma 6.6. The first paragraph of the proof of Lemma 6.6 is
independent of the residual characteristic. In the second paragraph, we used a
result from [T] proven only in the case of odd residual characteristic; by [Sa],
this also holds in the case of even residual characteristic. The third paragraph of
the proof is also valid in even residual characteristic (in spite of the unnecessary
mention there of odd residual characteristic). Next, we consider all remaining
paragraphs but the last paragraph: these cover the case d = 1 and ε = −ε(1),
in the notation of [R2]. Letting Dram be the ramified quaternion algebra over
F , we are given τ, τ ′ ∈ Irr(D×ram) with ωτ = ωτ ′ , and we must show that there
exists a quadratic extension E ⊂ Dram of F of such that HomSO(Z)(π,1) 6= 0,

where SO(Z) is the subgroup {ρ(x, x∗−1) : x ∈ E×} and π = π(τ, τ ′). Embed
D×ram into D×ram × D×ram via x 7→ (x, x∗−1), and consider the restriction of
τ ⊗ τ ′ to D×ram. Let τ ′′ be an irreducible component of (τ ⊗ τ ′)|D×ram

; then

ωτ ′′ = 1. By Proposition 18 of [W2], there exists a quadratic extension E of F
in Dram and a nonzero vector v ∈ τ ′′ such that τ ′′(x)v = v for x ∈ E×. This
implies that π(h)v = v for h ∈ SO(Z), proving the required claim. The last
paragraph of the proof of Lemma 6.6 is also valid in the case of even residual
characteristic, thus completing the verification of Lemma 6.6 in this case. Next,
we consider the proof of Lemma 6.7 of [R2]. To make the proof of Lemma
6.7 go through in the case of even residual characteristic it suffices to show
that if K is a quadratic extension of F , τ ∈ Irr(GL(2,K)) is Galois invariant

with ωτ = χ ◦ NK
F and HomGL(2,F )(τ, χ ◦ det) = 0, then there exist quasi-

characters ζ and ζ ′ of K× extending χ such that ε(τ ⊗ ζ−1, 1/2, ψK) = χ(−1)
and ε(τ⊗ζ ′−1, 1/2, ψK) = −χ(−1). To show the existence of ζ, pick ζ extending
χ such that ζ is very ramified (this can be done); then by 3 of Lemma 14 of
[HST], ε(τ⊗ζ−1, 1/2, ψK) = χ(−1). On the other hand, since HomGL(2,F )(τ, χ◦
det) = 0, by the equivalence of 1 and 2 of Theorem 5.3 of [R2], there exists a
quasi-character ζ ′ of K× extending χ such that ε(τ⊗ζ ′−1, 1/2, ψK) = −χ(−1).
(Note that the proof of the equivalence of 1 and 2 of Theorem 5.3 of [R2] works
in any residual characteristic; the use of odd residual characteristic in the proof
of Lemma 5.2 is easily seen to be unnecessary.)

Now suppose F = R and d = 1. Suppose σ ∈ R2(GO(X,R)). Then an
argument as in Theorem 4.3 of [R2] shows that σ cannot be of the form π−

for some distinguished π. Conversely, suppose σ is not of the form π− for
some distinguished π. Then σ ∼= π+ for some regular π or distinguished π.
Using Lemma 3.2, an argument as in Theorem 4.4 of [R2] shows that σ ∈
R2(GO(X,R)). ¤

4. Definition of the local L-packets and parameters

Let F be a local field of characteristic zero, with F = R if F is archimedean.
Let d ∈ F×/F×2; assume d = 1 if F = R. Let XM2×2,d be the four dimensional
quadratic space over F defined after Proposition 2.7 and discussed after Propo-
sition 2.9. We will parameterize Irr(GSO(XM2×2,d, F )) as explained at the be-
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ginning of Section 3. However, since we are dealing with the concrete quadratic
spaces XM2×2,d we will use the first exact sequence from Proposition 2.7; by
Proposition 2.7, the difference is trivial. We let s ∈ O(XM2×2,d, F ), det s = −1,
be defined by s(x) = a(x), where a is the Galois action on M2×2(Ed) defin-
ing XM2×2,d; see (2.1). Using the results of the last section, we will associate
to every element [π] of 〈s〉\ Irr(GSO(XM2×2,d, F )) a packet Π([π]) of elements
of Irr(GSp(2, F )) and a GSp(2) L-parameter ϕ([π]) : LF → GSp(2,C) over
F , where LF is the Langlands group of F (i.e., WF ×SU(2,R) if F is nonar-
chimedean and the Weil group WF if F = R). We expect that Π([π]) is the
L-packet associated to ϕ([π]) under the conjectural Langlands correspondence.
Some evidence is provided by Propositions 4.1, 4.2 and 4.3 below which give
some basic properties of the Π([π]) and ϕ([π]). More work on this issue re-
mains to be done: for example, are the packets Π([π]) disjoint, and if ϕ([π])
and ϕ([π′]) are equivalent, does it follow that Π([π]) = Π([π′])? We will return
to this topic in a subsequent work; the thrust of this paper is global results.
To define the L-packets, we begin by noting that there is a surjective map

Irr(GO(XM2×2,d, F ))→ 〈s〉\ Irr(GSO(XM2×2,d, F ))

which sends σ to the components of σ restricted to GSO(XM2×2,d, F ). We
will define the L-packet of elements of Irr(GSp(2, F )) associated to a point
of 〈s〉\ Irr(GSO(XM2×2,d, F )) by considering the fiber over such a point, and
applying the results of Section 3. For π ∈ GSO(XM2×2,d, F ) denote the ele-
ment of 〈s〉\ Irr(GSO(XM2×2,d, F )) determined by π by [π] = {π, s · π}. Let
[π] ∈ 〈s〉\ Irr(GSO(XM2×2,d, F )). We assume that π is infinite dimensional; if
F is nonarchimedean of even residual characteristic, we assume additionally
that π is tempered. Then how [π] gives rise to irreducible representations of
GSp(2, F ) is described in Tables 2 and 3 of the Appendix. In the first step,
using the results of Section 3, π gives rise to representations of various orthog-
onal similitude groups. This is summarized in the tables, but certain aspects
deserve comment. If d 6= 1, then it may happen that π is invariant but not
distinguished. Then the two extensions of π to GO(XM2×2,d, F ) are denoted by
π1 and π2. When d = 1, then π is either regular or invariant and distinguished;
in the first case π induces to give π+, and in the second case π extends to
give π+ and π−. Additionally, if d = 1 and π is essentially square integrable,
then π gives an element πJL ∈ Irr(GSO(XDram,1, F )) via the Jacquet-Langlands
correspondence, and then analogously elements of Irr(GO(XDram,1, F )). Here,
Dram is the ramified quaternion algebra over F , and π is essentially square
integrable if and only if π = (α ◦ λ) ⊗ π′ for some quasi-character α :
F× → C× and square integrable π′ ∈ Irr(GSO(XM2×2,1, F )). To apply the
Jacquet-Langlands correspondence, we write as in Section 3, π = π(χ, τ) for
τ = τ1 ⊗ τ2 ∈ Irr(GL(2, F ) × GL(2, F )); recall that the exact sequence from
Proposition 2.7 is in this case

1→ F× × F× → F× ×GL(2, F )×GL(2, F )→ GSO(XM2×2,1, F )→ 1.
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We define πJL = π(χ, τJL) ∈ Irr(GSO(XDram,1, F )), where τJL is the irreducible
representation of D×ram×D×ram corresponding to τ under the Jacquet-Langlands
correspondence (π being essentially square integrable means exactly τ1 and τ2
are essentially square integrable); the exact sequence from Proposition 2.7 for
this is

1→ F× × F× → F× ×D×ram ×D×ram → GSO(XDram,1, F )→ 1.

Next, using Theorem 3.4, the thus constructed representations of orthogonal
similitude groups give representations of GSp(2, F ) via theta correspondences;
note that each theta correspondence used is covered by Theorem 1.8. In Tables
2 and 3 of the Appendix we indicate the appropriate theta correspondences
with a subscript. We also indicate when representations do not have theta
lifts. Finally, in the Table 4 of the Appendix the packets of representations
associated to [π] are defined using the representations constructed in Tables 2
and 3 of the Appendix. Note the introduction of the contragredient.
The next proposition describes a few basic properties of the L-packets Π([π]).

4.1 Proposition. Let π ∈ Irr(GSO(XM2×2,d, F )). Assume π is infinite di-
mensional; if F is nonarchimedean of even residual characteristic, assume π is
tempered. Then

(1) The common central character of the elements of Π([π]) is ωπ.
(2) If d = 1 then |Π([π])| = 1 unless π is essentially square integrable; in

this case |Π([π])| = 2. If d 6= 1, then |Π([π])| = 1 unless π is invariant
but not distinguished; in this case |Π([π])| = 2.

(3) If π is tempered, then all the elements of Π([π]) are tempered.

Proof. (1) This follows from the remark on central characters after Theorem
1.8.
(2) Evidently, |Π([π])| = 1 except possibly if d = 1 and π is essentially square
integrable, or d 6= 1 and π is invariant but not distinguished. If d = 1 and π is
essentially square integrable, then |Π([π])| = 2 by Lemma 8.4 below. If d 6= 1
and π is invariant but not distinguished, then |Π([π])| = 2 because θM2×2,d is a
bijection.
(3) If F is nonarchimedean, this follows from (1) of Theorem 4.2 of [R3]. If
F = R, this follows from IV.3, p. 70 and III.2, p. 49 of [M]. ¤
Next, we associate to each [π] ∈ 〈s〉\ Irr(GSO(XM2×2,d, F )) an L-parameter

ϕ([π]) : LF → L GSp(2). Here LF denotes the Langlands group of F ,
i.e., LF = WF ×SU(2,R) if F is nonarchimedean, and LF = WF if F is
archimedean ([Ko], Section 12); WF is the Weil group of F . As is well known,

the dual group ĜSp(2) of GSp(2, F ) ( L GSp(2)0 in the notation of [B]) is
isomorphic to GSp(2,C), and we shall use such an isomorphism. But since
GSp(2,C) has a non-inner automorphism, we need to be specific (the same
issue arises for other groups, but for, say, GL(2) the choice is established). To
do so, we will specify an isomorphism from the based root datum of L GSp(2)
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to the based root datum of GSp(2,C). As a maximal split torus in GSp(2, F )
we take the group T of elements t = t(a, b, c) = diag(a, b, a−1c, b−1c). The
group X∗ of characters of T is the free Abelian group with generators e1, e2

and e3 defined by e1(t) = a, e2(t) = b and e3(t) = c. The group X∗ of
cocharacters of T is the free Abelian group with generators f1, f2 and f3

defined by f1(x) = t(x, 1, 1), f2(x) = t(1, x, 1) and f3(x) = t(1, 1, x). The
roots of GSp(2, F ) with respect to T are {α1 = e1 − e2, α2 = 2e2 − e3, α1 +
α2, 2α1 +α2,−α1,−α2,−(α1 +α2),−(2α1 +α2)}. The coroots are {α∨1 = γ1 =
f1− f2, α

∨
2 = γ2 = f2, (α1 +α2)∨ = γ1 + 2α2, (2α1 +α2)∨ = γ1 + γ2, (−α1)∨ =

−γ1, (−α2)∨ = −γ2, (−(α1+α2))∨ = −(γ1+2γ2), (−(2α1+α2))∨ = −(γ1+γ2)}.
As simple roots we take ∆∗ = {α1, α2}; then ∆∗ = ∆∗∨ = {γ1, γ2}. We have
similar notation for GSp(2,C), which we will indicate with the addition of a
prime. Let Ψ = (X∗,∆∗, X∗,∆∗); the dual of Ψ is Ψ∨ = (X∗,∆∗, X∗,∆∗);
let Ψ′ = (X ′∗,∆′∗, X ′∗,∆

′
∗). Then an isomorphism Ψ∨

∼−→ Ψ′ amounts to an

isomorphism f : X∗
∼−→ X ′∗ of Abelian groups such that f(∆∗) = ∆′∗ and the

matrix of f with respect to our bases is symmetric. One can check that there
are exactly two such isomorphisms f , with matrices




1 1 −1
1 −1 0
−1 0 c


 , c = 0 or 1.

As is done implicitly in [HST], we shall fix the isomorphism corresponding to the

choice c = 1. Our fixed isomorphism of based root data Ψ∨
∼−→ Ψ′ determines

a T conjugacy class of isomorphisms ĜSp(2)
∼−→ GSp(2,C) ([Sp], Theorem

9.6.2); we fix one such isomorphism in the conjugacy class. Additionally, since

the action of WF on ĜSp(2) is trivial, L GSp(2) is the direct product ĜSp(2)×
WF . Thus, in considering L-parameters we may just as well look at maps into

ĜSp(2), which we identify with GSp(2,C) (always via our fixed isomorphism).
We define a GSp(2) L-parameter over F to be a continuous homomorphism
ϕ : LF → GSp(2,C) such that ϕ(x) is semisimple for x ∈ WF , and if F
is nonarchimedean then ϕ|1×SU(2,R) is a smooth representation. Let ϕ be a
GSp(2) L-parameter over F . The similitude quasi-character of ϕ is the
quasi-character of LF given by λ ◦ ϕ, where λ : GSp(2,C) → C× is the usual
similitude homomorphism. If F is nonarchimedean, we say ϕ is unramified
if ϕ(SU(2,R)) = 1 and ϕ is trivial on the inertia subgroup of WF . We say
that ϕ is tempered if ϕ(LF ) is bounded. If ϕ′ : LF → GSp(2,C) is another
GSp(2) L-parameter over F we say that ϕ and ϕ′ are equivalent if there exists
g ∈ GSp(2,C) such that gϕ(x)g−1 = ϕ′(x) for all x ∈ LF . The connected
component group of ϕ is the group S(ϕ) = π0(S(ϕ)/C×), where S(ϕ) is the
group of g ∈ GSp(2,C) such that gϕ(x) = ϕ(x)g for all x ∈ LF .
The parameter ϕ([π]) will be one of two kinds of examples of GSp(2) L-
parameters over F . To define the first kind of example, suppose E/F is a
quadratic extension and let ρ : LE → GL(2,C) be a GL(2) L-parameter over
E such that det ρ is Galois invariant. Let η : LF → C× be a quasi-character
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extending det ρ; there are two such quasi-characters. Let V = C2, and regard ρ
as a representation on V . Define ϕ(η, ρ) : LF → GSp(W ) by letting the space

and action of ϕ(η, ρ) be W = IndLF
LE
ρ and defining a nondegenerate symplectic

form on W by

〈v1 ⊕ v2, v
′
1 ⊕ v′2〉 = η(y)〈v1, v

′
1〉+ 〈v2, v

′
2〉.

Here, y is a fixed representative for the nontrivial coset of LE in LF , we identify
the space of ϕ(η, ρ) with V ⊕ V via the map f 7→ f(1) ⊕ f(y), and we have
fixed a nondegenerate symplectic form on V (note that up to multiplication
by elements of C×, there is only one nondegenerate symplectic form on a two
dimensional complex vector space). Then ϕ(η, ρ) is a GSp(2) L-parameter over
F , and the similitude quasi-character of ϕ(η, ρ) is λ◦ϕ(η, ρ) = η. Suppose next
that ρ1 : LF → GL(2,C) and ρ2 : LF → GL(2,C) are GL(2) L-parameters over
F with det ρ1 = det ρ2. Regard ρ1 and ρ2 as two dimensional representations
of LF on V1 = C2 and V2 = C2, respectively, and fix nondegenerate symplectic
forms 〈·, ·〉1 and 〈·, ·〉2 on the spaces of ρ1 and ρ2, respectively. Define ϕ(ρ1, ρ2) :
LF → GSp(W ) by letting the space and action of ϕ(ρ1, ρ2) be W = ρ1 ⊕ ρ2

and defining a nondegenerate symplectic form on the space of ϕ(ρ1, ρ2) by

〈v1 ⊕ v2, v
′
1 ⊕ v′2〉 = 〈v1, v

′
1〉1 + 〈v2, v

′
2〉2.

Then ϕ(ρ1, ρ2) is a GSp(2) L-parameter over F , and the similitude quasi-
character of ϕ(ρ1, ρ2) is λ ◦ ϕ(ρ1, ρ2) = det ρ1 = det ρ2.
Now let [π] ∈ 〈s〉\ Irr(GSO(XM2×2,d, F )). Write π = π(χ, τ), with τ ∈
Irr(GL(2, Ed)) and χ a quasi-character of F× such that ωτ = χ ◦ NEd

F . Sup-
pose first that d 6= 1. Let ρ : LEd → GL(2,C) be the GL(2) L-parameter
over Ed corresponding to τ , and let η : LF → C× be the quasi-character of
LF corresponding to χ. Then η extends det ρ and the equivalence class of
ϕ(η, ρ) depends only on [π] and not the choice of representative π. We set
ϕ([π]) = ϕ(η, ρ). Suppose next d = 1. Then GL(2, Ed) ∼= GL(2, F )×GL(2, F ).
Let τ ∼= τ1 ⊗ τ2, with τ1, τ2 ∈ Irr(GL(2, F )) such that χ = ωτ1 = ωτ2 . Let
ρ1, ρ2 : LF → GL(2,C) be the GL(2) L-parameters over F corresponding to
ρ1 and ρ2, respectively. Then det ρ1 = det ρ2 and the equivalence class of
ϕ(ρ1, ρ2) depends only on [π] and not the choice of representative π. We set
ϕ([π]) = ϕ(ρ1, ρ2).
The following is an analogue of Proposition 4.1.

4.2 Proposition. Let π ∈ Irr(GSO(XM2×2,d, F )). Assume π is infinite di-
mensional; if F is nonarchimedean of even residual characteristic, assume π is
tempered. Then

(1) The similitude quasi-character of ϕ([π]) corresponds to ωπ.
(2) If d = 1 then |Sϕ([π])| = 1 unless π is a essentially square integrable;

in this case S(ϕ([π])) = Z2. If d 6= 1 and F is not nonarchimedean of
even residual characteristic, then |S(ϕ([π]))| = 1 unless π is invariant
but not distinguished; in this case S(ϕ([π])) = Z2.

(3) If π is tempered, then ϕ([π]) is tempered.
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Proof. (1). This follows from the definitions and above remarks.
(2) This follows by a case by case analysis following Tables 2 and 3 of the
Appendix. We note in particular that by Theorem 5.3 of [R2] if d 6= 1, then
π = π(χ, τ) is distinguished if and only if τ is Galois invariant and τ is the base
change of a τ0 ∈ Irr(GL(2, F )) such that ωτ0 = ωEd/Fχ.
(3) Assume π is tempered. Then ρ and η in the case d 6= 1, and ρ1 and ρ2

in the case d = 1, have bounded image. This implies that ϕ([π]) has bounded
image. ¤

4.3 Proposition. Suppose F is nonarchimedean, Ed/F is unramified (if d = 1
by convention Ed/F is unramified) and π = π(χ, τ) ∈ Irr(GSO(XM2×2,d, F )) is
infinite dimensional with χ and τ unramified. If the residual characteristic of
F is even, assume additionally π is tempered. Then

(1) ϕ([π]) is unramified, |Π([π])| = 1, and if the residual characteristic of
F is odd, then the single element Π of Π([π]) is unramified with respect
to GSp(2,OF ).

(2) ( [HST]) Let Π([π]) = {Π}. If π and Π are unitary (e.g., as in
global applications, or π tempered), then Π is unramified with respect to
GSp(2,OF ) and ϕ([π]) and Π correspond to the same conjugacy class
in GSp(2,C).

Proof. (1) Suppose d = 1. Evidently, ϕ([π]) is unramified. Write π = π(χ, τ).
As mentioned in Section 3 and the beginning of this section, instead of using
the exact sequence of Theorem 2.3, let us use the more convenient sequence
of Proposition 2.7, and let s be the representative for the nontrivial coset of
GSO(XM2×2,1, F ) in GO(XM2×2,1, F ) from Proposition 2.7. Also, make the
identification of XM2×2,1 with M2×2(F ) equipped with the determinant as re-
marked before Proposition 2.8. Then s is given by s(x) = x∗, with ∗ the
canonical involution of matrices, and τ = τ1⊗τ2 with τ1, τ2 ∈ Irr(GL(2, F )) and
ωτ1 = ωτ2 = χ. The lattice M2×2(OF ) ⊂ XM2×2,1 is self-dual, and the maximal
compact subgroups J0 and J of GSO(XM2×2,1, F ) and GO(XM2×2,1, F ) which

are the stabilizers of M2×2(OF ) are ρa(O×F ×GL(2,OF )×GL(2,OF )) and the

subgroup generated by ρa(O×F × GL(2,OF ) × GL(2,OF )) and s, respectively.
Since π is not essentially square integrable, Π([π]) = {Π = θM2×2,1(π+)∨} so
that |Π([π])| = 1. By Proposition 1.11 to show Π is unramified it will suffice to

show π+ is unramified. Suppose τ1 À τ2. Then π+ = Ind
GO(X,F )
GSO(X,F ) π. Using the

model for π+ as in (3.1), we see that if v is an unramified vector with respect
to J0, then v ⊕ v is an unramified vector for π+. Suppose τ1 ∼= τ2, so that
π is distinguished and π+ is the extension to GO(XM2×2,1, F ) of π defined in
Section 3. Let τ = τ1. It will suffice to show π+ = π(χ, τ ⊗ τ)+ is unrami-
fied. Define T : π → π by T (v ⊗ w) = w ⊗ v. To show π+ is unramified it
suffices to show T = π+(s). Let Y = (F · y)⊥, where y ∈ XM2×2,1 is the 2× 2
identity matrix. Then SO(Y, F ), identified as usual with the stabilizer of y
in GSO(XM2×2,1, F ), is the group of ρa(1, g, g∗−1) for g ∈ GL(2, F ). To show
T = π+(s) it will suffice to show Tπ(shs) = π(h)T for h ∈ GSO(XM2×2,1, F ),
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T 2 = 1, and L◦T = L for any nonzero element L of HomSO(Y,F )(π,1). The first
two statements follow from sρa(t, g, g′)s = ρa(t, g′, g) for g, g′ ∈ GL(2, F ). Let
V be the space of τ . Fix a GL(2, F ) isomorphism R : (ω−1

τ ⊗ τ, V )→ (τ∨, V ∨).
Let S = 1 ⊗ R : V ⊗ V → V ⊗ V ∨. We have a nonzero GL(2, F ) invariant
linear form V ⊗ V ∨ → 1 given by v ⊗ f 7→ f(v). The composition of this
with S gives us L ∈ HomSO(Y,F )(π,1). Now L ◦ T = εL for some ε = ±1.
We must show ε = 1. Let v ∈ V be nonzero and fixed by GL(2,OF ). Then
L(v ⊗ v) = L(T (v ⊗ v)) = εL(v ⊗ v). To see L(v ⊗ v) 6= 0 and hence ε = 1,
let V = Cv0⊕W be a GL(2,OF ) decomposition, and define f ∈ V ∨ by letting
f be zero on W and setting f(v) = 1. Then τ∨(k)f = f for k ∈ GL(2,OF ).
Evidently, S(v⊗v) = c(v⊗f) for some c ∈ C× so that L(v⊗v) = cf(v) = c 6= 0.
Now suppose d 6= 1. Again, it is clear that ϕ([π]) is unramified. Write
π = π(χ, τ) again using Proposition 2.7. We will also use the notation af-
ter Proposition 2.9 regarding XM2×2,d. The representative s for the nontrivial
coset of GSO(XM2×2,d, F ) in GO(XM2×2,d, F ) is given by s(x) = x∗ = a(x).
The lattice XM2×2,d ∩M2×2(OEd) is self dual, and the maximal compact sub-
groups J0 and J of GSO(XM2×2,d, F ) and GO(XM2×2,d, F ) which are the sta-

bilizers of XM2×2,d ∩M2×2(OEd) are ρa(O×F × GL(2,OEd)) and the subgroup

generated by ρa(O×F ×GL(2,OEd)) and s, respectively. Since τ is unramified,

τ ∼= Ind
GL(2,Ed)
P (µ1 ⊗ µ2), where B is the usual Borel subgroup of GL(2, Ed)

and µ1 and µ2 are unramified and Galois invariant so that τ is Galois invariant.
This implies s · π ∼= π. In the proof of Theorem 5.3 of [R2] it was shown that
π is distinguished and that L ∈ HomSO(Y,F )(π,1) is given by

L(f) =

∫

T\GL(2,F )

f(g−1
0 g)χ(det g)−1 dg

where T and g0 are as in [R2]; here Y = (F · y)⊥, where y is the 2 × 2
identity matrix in XM2×2,d and SO(Y, F ) is the group of ρa(det g, g) for g ∈
GL(2, F ). By definition, we have Π([π]) = {Π = θM2×2,d(π

+)∨}, so that
|Π([π])| = 1. Again, by Proposition 1.11 to show that Π is unramified with
respect to GSp(2,OF ) when has F has odd residual characteristic it will suffice
to show that π+ is unramified. We proceed as in the case d = 1. Define
T : π → π by T (f) = f ◦ a. As in the d = 1 case, it will suffice to show
L ◦ T = L. For f ∈ π,

(L ◦ T )(f) =

∫

T\GL(2,F )

f(a(g−1
0 g))χ(det g)−1 dg

=

∫

T\GL(2,F )

f(

[
−1 0
0 1

]
g−1

0 g)χ(det g)−1 dg

= µ1(−1)

∫

T\GL(2,F )

f(g−1
0 g)χ(det g)−1 dg

= µ1(−1)L(f).

Since µ1(−1) = 1, we have L ◦ T = L, as desired.
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(2) This follows from Lemmas 10 and 11 of [HST] after one reconciles the
definitions. ([HST] for example uses Whittaker models instead of distin-
guished representations to define extensions to GO(XM2×2,d, F ).) Lemma 1.6
and Proposition 2.9 are also useful for the comparison to [HST]. The reader
should be aware that in Lemma 7 of [HST] the Langlands parameter should
be diag(χ3(v), χ1(v)χ3(v), χ1(v)χ2(v)χ3(v), χ2(v)χ3(v)), and in Lemma 10 of
[HST] the L-parameter should be diag(

√
α,−√α,√β,−√β). ¤

5. Global theta lifts for similitudes

In this section we review some foundational results on global theta lifts for
similitudes ([HK], [HST]). We use the following definitions. Let F be a totally
real number field with ring of integers O, and let X be a even dimensional
quadratic space defined over F of positive dimension. For each infinite place v
of F fix maximal compact subgroups J1,v and Jv of O(X,Fv) and GO(X,Fv),
and let h1,v and hv be the Lie algebras of O(X,Fv) and GO(X,Fv), respectively,
as in Section 1. Let J1,∞ and J∞ be the products of J1,v and Jv, respectively,
over the infinite places of F , and let h1,∞ and h∞ be the direct sums of the h1,v

and hv, respectively, over the infinite places of v. Let n be a positive integer.
For each infinite place v of F let K1,v and Kv be the usual maximal compact
subgroups of Sp(n, Fv) and GSp(n, Fv), and let g1,v and gv be the Lie algebras
of Sp(n, Fv) and GSp(n, Fv), respectively, as in Section 1. Define K1,∞, K∞,
g1,∞ and g∞ as in the case of O(X) and GO(X). For v a place of F , define
R(Fv) ⊂ GSp(n, Fv) × GO(X,Fv) as in Section 1. Let R(F ) and R(A) be
the set of pairs (g, h) in GSp(n, F ) × GO(X,F ) and GSp(n,A) × GO(X,A),
respectively, such that λ(g) = λ(h). For v an infinite place of F , let Lv be the
maximal compact subgroup of R(Fv) as defined in Section 1, and let rv be Lie
algebra of R(Fv). Let L∞ and r∞ be defined analogously to the last two cases.
To define global theta lifts we need a global version of the Weil representation.
Fix a nontrivial unitary character ψ of A/F . For v a place of F , let ωv be
the Weil representation of R(Fv) on L2(X(Fv)

n) defined with respect to ψv
as in Section 1. Again, if v is a place of F then S(X(Fv)

n) ⊂ L2(X(Fv)
n)

is an R(Fv) module if v is finite and an (rv, Lv) module if v is infinite. Let
x1, . . . , xm be a vector space basis for X(F ) over F . Let (g, h) ∈ R(A). Then
for almost all finite v, ωv(gv, hv) fixes the characteristic function of Ovx1 + · ·
·+ Ovxm. Let ⊗vS(X(Fv)

n) be the algebraic restricted direct product over all
the places of F of the complex vector spaces S(X(Fv)

n) with respect to the
characteristic function of Ovx1 + · · · + Ovxm for v finite. We will denote the
restricted algebraic direct product ⊗vS(X(Fv)

n) by S(X(A)n); then S(X(A)n)
is an R(Af ) × (r∞, L∞) module, where R(Af ) has the obvious meaning. Let
ϕ ∈ S(X(A)n) and (g, h) ∈ R(A); assume ϕ = ⊗vϕv. The function ω(g, h)ϕ :
X(A)n → C given by (ω(g, h)ϕ)(x) =

∏
v(ωv(gv, hv)ϕv)(xv) is well defined

(note that for infinite v, ωv(gv, hv)ϕv is a smooth function though it may not
be in S(X(Fv)

n), so that it can be evaluated at a point). Using the universal
property of the algebraic restricted direct product, this definition extends to
all ϕ ∈ S(X(A)n): if (g, h) ∈ R(A) and ϕ ∈ S(X(A)n), then ω(g, h)ϕ may be
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regarded as a function on X(A)n. In particular, the elements of S(X(A)n) may
be regarded as functions on X(A)n.

Global theta lifts are now defined as follows. For ϕ ∈ S(X(A)n) and (g, h) ∈
R(A), set

θ(g, h;ϕ) =
∑

x∈X(F )n

ω(g, h)ϕ(x).

This series converges absolutely and is left R(F ) invariant. Fix a right O(X,A)
invariant quotient measure on O(X,F )\O(X,A). Let f be a cusp form on
GO(X,A) of central character χ and ϕ ∈ S(X(A)n). Let GSp(n,A)+ be the
subgroup of g ∈ GSp(n,A) such that λ(g) ∈ λ(GO(X,A)). For g ∈ GSp(n,A)+

define

θn(f, ϕ)(g) =

∫

O(X,F )\O(X,A)

θ(g, h1h;ϕ)f(h1h) dh1,

where h ∈ GO(X,A) is any element such that (g, h) ∈ R(A). This inte-
gral converges absolutely, does not depend on the choice of h, and the func-
tion θn(f, ϕ) on GSp(n,A)+ is left GSp(n, F )+ invariant. Moreover, θn(f, ϕ)
extends uniquely to a GSp(n, F ) left invariant function on GSp(n,A) with
support in GSp(n, F ) GSp(n,A)+. This extended function, also denoted by
θn(f, ϕ), is an automorphic form on GSp(n,A) of central character χχnX =
χ(·,discX(F ))nF . If V is a GO(X,Af ) × (h∞, J∞) subspace of the space of
cusp forms on GO(X,A) of central character χ, then we denote by Θn(V )
the GSp(n,Af ) × (g∞,K∞) subspace of the space of automorphic forms on
GSp(n,A) of central character χχnX generated by all the θn(f, ϕ) for f ∈ V
and ϕ ∈ S(X(A)n). Similarly, fix a right Sp(n,A) invariant quotient measure
on Sp(n, F )\Sp(n,A), let F be a cusp form on GSp(n,A) of central character
χ′ and ϕ ∈ S(X(A)n). For h ∈ GO(X,A) define

θX(F,ϕ)(h) =

∫

Sp(n,F )\ Sp(n,A)

θ(g1g, h;ϕ)F (g1g) dg

where g ∈ GSp(n,A) is any element such that (g, h) ∈ R(A). Again, this
integral converges absolutely, does not depend on the choice of g, and the
function θX(F,ϕ) is an automorphic form on GO(X,A) of central character
χ′χnX . If W is a GSp(n,Af )× (g∞,K∞) subspace of the space of cusp forms on
GSp(n,A) of central character χ′, then we denote by ΘX(W ) the GO(X,Af )×
(h∞, J∞) subspace of the space of automorphic forms on GO(X,A) of central
character χ′χnX consisting of the θX(F,ϕ) for F ∈ W and ϕ ∈ S(X(A)n).
We shall also occasionally consider global theta lifts of O(X,Af )× (h1,∞, J1,∞)
subspaces of the space of cusp forms on O(X,A) and of Sp(n,Af )×(g1,∞,K1,∞)
subspaces of the space of cusp forms on Sp(n,A). These have the obvious
analogous definitions.

We will need to know how Θn(V ) and ΘX(W ) behave if X is changed by a
similitude. Let X ′ be another quadratic space over F , and suppose there is a
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similitude t : X(F ) → X ′(F ) with similitude factor λ. Then for each place v
of F , there is an isomorphism

GO(X,Fv)
∼−→ GO(X ′, Fv)

sending h to tht−1. For each infinite v, let J ′1,v and J ′v be the maximal compact
subgroups of O(X ′, Fv) and GO(X ′, Fv) which are the images under the above
isomorphism of J1,v and Jv, respectively. If v is infinite, then t also determines
an isomorphism

go(X,Fv)
∼−→ go(X ′, Fv)

given by h 7→ tht−1. Via these two isomorphisms and definitions, for each v we
obtain a bijection

Irr(GO(X,Fv))
∼−→ Irr(GO(X ′, Fv)),

and thus a bijection

Irradmiss(GO(X,A))
∼−→ Irradmiss(GO(X ′,A)).

If f is an automorphic form on GO(X,A), then tf : GO(X ′,A) → C defined
by (tf)(h) = f(t−1ht) is an automorphic form on GO(X ′,A). Under this
map, cusp forms are mapped to cusp forms. Let the right O(X ′,A) invari-
ant quotient measure on O(X ′, F )\O(X ′,A) be obtained from the fixed right
O(X,A) invariant quotient measure on O(X,F )\O(X,A) via the isomorphism
h 7→ tht−1.

5.1 Lemma. Let V be a GO(X,Af )× (h∞, J∞) subspace of the space of cusp
forms on GO(X,A) of central character χ, and let W be a GSp(n,Af ) ×
(g∞,K∞) subspace of the space of cusp forms on GSp(n,A) of central character
χ′. Then Θn(V ) = Θn(tV ) and tΘX(W ) = ΘX′(W ). Moreover, Θn(V ) and
ΘX(W ) do not depend on the choice of nontrivial unitary character ψ of A/F .

Proof. To show Θn(V ) ⊂ Θn(tV ) it will suffice to show that if f ∈ V and
ϕ = ⊗vϕv, then θXn (f, ϕ) ∈ Θn(tV ); here and below the superscript X will
indicate the dependence on X. By Lemma 1.6, if (g, h) ∈ RX,n(A) then

θXn (g, h;ϕ) = θX
′

n (g[λ], tht−1;ϕ ◦ t−1).

Let g = g0g1 ∈ GSp(n, F ) GSp(n,A)+ with g0 ∈ GSp(n, F ) and g1 ∈
GSp(n,A)+. A computation shows that

θXn (f, ϕ)(g) = θXn (f, ϕ)(g1) = θX
′

n (tf, ϕ ◦ t−1)(g
[λ]
1 ).

Write

g
[λ]
1 = g′

[
1 0
0 |λ|−1

∞

]
.
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Here |λ|∞ is the element of A× which is 1 at the finite places and |λ|v at the
infinite place v. Then g′ ∈ GSp(n,A)+. Let h′ ∈ GO(X,A) be such that
λ(h′) = λ(g′). We have

θX
′

n (tf, ϕ ◦ t−1)(g
[λ]
1 ) = θX

′
n (tf, ϕ ◦ t−1)(g′

[
1 0
0 |λ|−1

∞

]
)

=

∫

O(X′,F )\O(X′,A)

θX
′

n (g′
[

1 0
0 |λ|−1

∞

]
, h1h

′√|λ|∞
−1

;ϕ ◦ t−1)

· (tf)(h1h
′√|λ|∞

−1
) dh1

= χ(
√
|λ|∞

−1
)θX′(tf, ϕ

′)(g′),

where

ϕ′ =
∏

v inf.

|λ|n dimX/4
v · (ϕf ◦ t−1)⊗ (ϕ∞ ◦

√
|λ|∞t−1).

Then ϕ′ ∈ S(X ′(A)n), and

θXn (f, ϕ)(g) = χ(
√
|λ|∞

−1
)θX

′
n (tf, ϕ′)(g′)

= χ(
√
|λ|∞

−1
)[

[
1 0
0 λ

]−1

f

[
1 0
0 sign(λ)∞

]−1

θX
′

n (tf, ϕ′)](g).

Here, sign(λ)∞ is the element of A× which is 1 at the finite places and at the
infinite place v is the sign of λ in Fv. If g /∈ GSp(n, F ) GSp(n,A)+, then also

g

[
1 0
0 λ

]−1

f

[
1 0
0 sign(λ)∞

]−1

/∈ GSp(n, F ) GSp(n,A)+,

so that both sides of the last equality are by definition zero, and hence equal.
Since [

1 0
0 sign(λ)∞

]−1

∈ K∞,

it now follows that θXn (f, ϕ) ∈ Θn(tV ), so that Θn(V ) ⊂ Θn(tV ). Similarly,
Θn(tV ) ⊂ Θn(V ). The proof of tΘX(W ) = ΘX′(W ) and the independence of
ψ are analogous. ¤

The next two results are due to Rallis [Ra] in the case of isometries. The first
describes when a theta lift is cuspidal. The second result gives the structure of
a theta lift of a space of cusp forms in the case the theta lift is cuspidal. The
proofs are similar to or use the proofs in [Ra]. Section 1 is also a basic input
for the proof of Proposition 5.3.
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5.2 Proposition (Rallis). Let n ≥ 1 be an integer. Let f be a cusp form on
GO(X,A). Suppose that θk(f, ϕ) = 0 for all 0 ≤ k ≤ n− 1 and ϕ ∈ S(X(A)k).
Then θn(f, ϕ) is cuspidal (though possibly zero) for all ϕ ∈ S(X(A)n).

Here, θ0(f, ϕ) = 0 is taken to mean

(5.1) 0 =

∫

O(X,F )\O(X,A)

f(h1h) dh1

for all h ∈ GO(X,A).
An analogous result holds for lifts from GSp(n) to GO(X). In this case, fix
an even dimensional quadratic space X over F such that X(F ) is anisotropic.
For an integer k ≥ 0, let Xk be the orthogonal direct sum of X with k copies
of the hyperbolic plane over F . Let f be a cusp form on GSp(n,A). Let l ≥ 0
be an integer. If l = 0 and dimX = 0, so that Xl = 0, then θXl(f, ϕ) is not
defined; if l = 0 and dimX > 0 so that Xl = X, then θXl(f, ϕ) is cuspidal
for all ϕ ∈ S(Xl(A)n) since the cuspidal condition is vacuous. Suppose l ≥ 1.
Suppose θXk(f, ϕ) = 0 for all 0 ≤ k ≤ l− 1 and ϕ ∈ S(Xk(A)n); then θXl(f, ϕ)
is cuspidal (though possibly zero) for all ϕ ∈ S(Xl(A)n). Here, if dimX = 0
and k = 0 then the condition θXk(f, ϕ) = 0 is taken to be empty.

5.3 Proposition (Rallis; Multiplicity preservation). Let 2n = dimX.
Let V be a GO(X,Af )× (h∞, J∞) nonzero subspace of the space of cusp forms
on GO(X,A) of central character χ. Assume that for each place v of F , X(Fv)
satisfies one of the conditions of (1)-(6) of Theorem 1.8. Assume that

V = V1 ⊕ · · · ⊕ VM ,

where each Vi, 1 ≤ i ≤ M , is a GO(X,Af )× (h∞, J∞) subspace of V , and all
the Vi are isomorphic to a single nonzero irreducible GO(X,Af ) × (h∞, J∞)
representation σ. Let σ ∼= ⊗vσv, assume σv|O(X,F ) is multiplicity free for
all v, and σv is tempered for v | 2. Suppose that Θn(V ) is contained in the
space of cusp forms on GSp(n,A) (necessarily of central character χχnX =
χ(·,discX(F ))n), and that for any irreducible nonzero GO(X,Af )× (h∞, J∞)
subspace U of V we have Θn(U) 6= 0. Then σv ∈ Rn(GO(X,Fv)) for all v,

Θn(V ) = Θn(V1)⊕ · · · ⊕Θn(VM ),

and each Θn(Vi), 1 ≤ i ≤ M , is isomorphic to Π = ⊗vθ(σ∨v ). An analogous
result holds if the roles of GSp(n) and GO(X) are interchanged.

6. Tempered cuspidal automorphic representations of B(A)× and
GSO(X,A)

Let F be a totally real number field, and let X be a four dimensional quadratic
space over F . As in Section 2, let B be the even Clifford algebra of X(F ), and
let E be the center of B. Let d = discX(F ). In this section we describe the
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relationship between tempered cuspidal automorphic representations of B×(A)
and GSO(X,A). From Section 2, we have exact sequences

1→ E× → F× ×B×(F )
ρ−→ GSO(X,F )→ 1

and
1→ A×E → A× ×B×(A)

ρ−→ GSO(X,A)→ 1.

6.1 Lemma. There exist s ∈ O(X,F ), and for each infinite v, a maximal
compact subgroup J0,v of GSO(X,Fv), such that det s = −1, s2 = 1, and
sJ0,vs = J0,v for all infinite v.

Proof. Let y ∈ X(F ) be anisotropic, and let Y ⊂ X be the three dimensional
quadratic space over F such that Y (F ) = (F ·y)⊥. Let s ∈ O(X,F ) be defined
with respect to y as in Propositions 2.5 and 2.6. Then det s = −1 and s2 = 1.
For each infinite v, choose a maximal compact subgroup JY,v of SO(Y, Fv), and
let J0,v be the unique maximal compact subgroup of GSO(X,Fv) containing
JY,v mentioned in the penultimate paragraph of Section 2. Then s normalizes
JY,v and J0,v for each infinite v. ¤
For the remainder of this paper we fix the following choices of compact sub-
groups. Let s and the maximal compact subgroups J0,v of GSO(X,Fv) be as
in Lemma 6.1. For each infinite place v of F , let KB,v be the unique maximal
compact subgroup of B×(Fv) such that ρ({±1} ×KB,v) = J0,v. Let J0,∞ be
the product of the J0,v over the infinite places v of F , and let h∞ be the direct
sum of the hv = gso(X,Fv) = go(X,Fv) over the infinite places v of F . Let
KB,∞ be the product of the KB,v over the infinite places v of F and let B∞ be
the direct sum over the infinite places v of the Lie algebra B(Fv) of B×(Fv).
We consider B×(Af )× (B∞,KB,∞) and GSO(X,Af )× (h∞, J0,∞) modules.
We will use the following facts about the tempered cuspidal automorphic rep-
resentations of B×(A). Let Irrtemp

cusp (B×(A)) be the set of tempered cuspidal

automorphic representations τ of B×(A). It is well known that B×(A) has
the multiplicity one property, i.e., the elements of Irrtemp

cusp (B×(A)) of a fixed
central character occur with multiplicity one in the space of cusp forms on
B×(A) of that central character. If τ ∈ Irrtemp

cusp (B(A)×), then the unique

space of cusp forms on B×(A) isomorphic to τ will be denoted by Vτ . Also,
B×(A) has the strong multiplicity one property: if τ, τ ′ ∈ Irrtemp

cusp (B×(A))
share the same central character and τv ∼= τ ′v for all but finitely many v,
then τ ∼= τ ′, so that Vτ = Vτ ′ . In addition, the Jacquet-Langlands corre-
spondence gives an injection of Irrtemp

cusp (B×(A)) into Irrtemp
cusp (GL(2,AE)). This

map is constructed as follows. Suppose E is a field. Since B has center E,
we may regard B as an algebra over E, and by Section 2, B is a quater-
nion algebra over E. There is a canonical isomorphism B×(A) ∼= B×(AE),

and thus a bijection Irrtemp
cusp (B×(A))

∼−→ Irrtemp
cusp (B×(AE)). Composing with

the Jacquet-Langlands map from Irrtemp
cusp (B×(AE)) to Irrtemp

cusp (GL(2,AE)), we

get an injection Irrtemp
cusp (B×(A)) ↪→ Irrtemp

cusp (GL(2,AE)) which we also call the
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Jacquet-Langlands correspondence, and denote by τ 7→ τ JL. If E ∼= F ×F , we
get a similar injection, with GL(2,AE) taken to be GL(2,A)×GL(2,A).
Tempered cuspidal automorphic representations of GSO(X,A) and B×(A) may

be related as in the local case. Let Irrtemp
cusp,f(A× × B×(A)) be the set of pairs

(χ, τ), where τ ∈ Irrtemp
cusp (B×(A)) and χ is a Hecke character of A× such that

ωτ = χ ◦ NE
F . Let Irrtemp

cusp (GSO(X,A)) denote the set of tempered cuspidal
automorphic representations of GSO(X,A). The above exact sequences give a
bijection

Irrtemp
cusp,f(A

× ×B×(A))
∼−→ Irrtemp

cusp (GSO(X,A)).

If (χ, τ) ∈ Irrtemp
cusp,f(A× × B×(A)), then π(χ, τ) ∈ Irrtemp

cusp (GSO(X,A)) corre-

sponding to (χ, τ) consists of the space of functions F : GSO(X,A) → C for
which there exists f ∈ τ so that F (ρ(t, g)) = χ(t)−1f(g). The central character
of π(χ, τ) is χ. If d = 1, so that E ∼= F × F and B×(A) ∼= D×(A) × D×(A)
(see Section 2), then every element τ ∈ Irrtemp

cusp (B×(A)) is of the form τ1 ⊗ τ2
for some τ1, τ2 ∈ Irrtemp

cusp (D×(A)), and the condition that ωτ factors through

NE
F amounts to ωτ1 = ωτ2 . In this case ωτ factors uniquely through NE

F via
χ = ωτ1 = ωτ2 . Also, when dealing with a four dimensional quadratic space
Xa over F defined by a Galois action a on a given quadratic quaternion al-
gebra B over F with center E (Section 2), we will occasionally parameterize
Irrtemp

cusp (GSO(Xa,A)) with respect to the explicit exact sequence

1→ A×E → A× ×B×(A)
ρa−→ GSO(Xa,A)→ 1

derived from Proposition 2.7; by that proposition, the difference between the
two parameterizations is insignificant.
Tempered cuspidal automorphic representations of GSO(X,A) inherit similar
properties from those of B×(A). The elements of Irrtemp

cusp (GSO(X,A)) have
the multiplicity one property and the strong multiplicity one property. If
π ∈ Irrtemp

cusp (GSO(X,A)) then the unique space of cusp forms on GSO(X,A)
isomorphic to π will be denoted by Vπ. If π ∈ Irradmiss(GSO(X,A)), then we
denote by s · π the GSO(X,Af ) × (h∞, J0,∞) module with the same space as
π, but with twisted action (s · π)(h) = π(shs) for h ∈ GSO(X,Af ) × J0,∞
and (s · π)(x) = π(Ad(s)x) for x ∈ h∞. Let π ∈ Irrtemp

cusp (GSO(X,A)).
Then we denote by sVπ the space of cusp forms sf on GSO(X,A) defined
by (sf)(h) = f(shs) for h ∈ GSO(X,A) and f ∈ Vπ. The map f 7→ sf from
Vπ with the twisted action s ·π to sVπ with the usual action is an isomorphism;
by multiplicity one, s · π ∼= π if and only if sVπ = Vπ.

7. From GSO(X,A) to GO(X,A)

In this section F is a totally real number field and X is a four dimensional
quadratic space over F . Let the notation be as in Section 6; following [HST],
we explain how cuspidal automorphic representations of GO(X,A) are obtained
from those of GSO(X,A). For each infinite place v of F let J0,v be the maximal
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compact subgroup of GSO(X,Fv) defined in Section 6, and let Jv denote the
maximal compact subgroup of GO(X,Fv) generated by J0,v and s, where s is
as in Lemma 6.1. Let J∞ be the product of the Jv over the infinite places of
F . We consider GO(X,Af ) × (h∞, J∞) modules. Let Irrtemp

cusp (GO(X,A)) be
the set of tempered cuspidal automorphic representations of GO(X,A).

7.1 Theorem ([HST]). The group GO(X,A) has the multiplicity one prop-
erty; if σ ∈ Irrtemp

cusp (GO(X,A)), denote by Vσ the unique space of cusp forms

isomorphic to σ. Let σ ∈ Irrtemp
cusp (GO(X,A)), and let V 0

σ be the nonzero space
of cusp forms on GSO(X,A) obtained by restricting the functions in Vσ to
GSO(X,A). Either V 0

σ is irreducible as a GSO(X,Af ) × (h∞, J0,∞) module,

or there exists π ∈ Irrtemp
cusp (GSO(X,A)) such that s · π À π and V 0

σ = Vπ ⊕ sVπ
(internal direct sum). Thus, there is a map

Irrtemp
cusp (GO(X,A))→ 〈s〉\ Irrtemp

cusp (GSO(X,A)),

and if σ 7→ [π] = {π, s · π}, then

(7.1) σv ↪→ Ind
GO(X,Fv)
GSO(X,Fv) πv

for all v. The map σ 7→ [π] is surjective. If [π] ∈ 〈s〉\ Irrtemp
cusp (GSO(X,A)) and

s · π À π, then the fiber over [π] is the set of all σ ∈ Irradmiss(GO(X,A)) such
that (7.1) holds for all places v of F .

Proof. See Section 1 of [HST]. ¤

8. Proofs of the main theorems

Let F be a totally real number field. In this final section we prove the main re-
sults Theorems 8.3 and 8.6 presented in the Introduction. Besides the general
foundational work of Sections 1, 2 and 5, the main ingredients for Theorem
8.3 are the local results of Section 3 and the general nonvanishing result for
global theta lifts from [R4]. Globally, the result from [R4] requires the nonva-
nishing of a certain L-function at s = 1; in the case at hand, this L-function
turns out to be either a partial GL(2)×GL(2) L-function or a partial twisted
Asai L-function, so that the nonvanishing at s = 1 follows from [Sh]. To
prove Theorem 8.6 we actually first prove a different version, Theorem 8.5.
In this version, using Section 4, a global L-packet Π([π]) of tempered irre-
ducible admissible representations of GSp(2,A) is assigned to every element
π of Irrtemp

cusp (GSO(XM2×2,d,A)). When s · π À π, Theorem 8.5 determines ex-
actly what elements of Π([π]) are cuspidal automorphic and shows that the
cuspidal automorphic elements occur with multiplicity one. In addition to an
understanding of the local situation, the main tool for showing cuspidality is
Theorem 8.3. For multiplicity one, we use the Rallis multiplicity preservation
principle in the context of similitudes (Proposition 5.3), along with the non-
vanishing result for global theta lifts from Sp(2,A) from [KRS]. This result
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shows that if a twisted partial standard L-function of a cuspidal automorphic
representation of Sp(2,A) has a pole at s = 1, then it has a nonzero theta lift
to the isometry group of a certain four dimensional quadratic space. Theorem
8.6 follows directly from Theorem 8.5.
We begin with a lemma which computes the standard partial L-function of
an O(X,A) component of a cuspidal automorphic representation of GO(X,A)
for a four dimensional quadratic space X over F . In the following lemma,
Lv(s, τ

JL, χ−1,Asai) is the v-th Euler factor of the Asai L-function of τ JL

twisted by χ−1 ([HLR], p. 64–5); and Lv(s, τ
JL
1 × τJL∨

2 ) is the v-th Euler
factor of the usual Rankin–Selberg GL(2)×GL(2) L-function of τ JL

1 and τJL∨
2 ;

here, the superscript JL indicates the corresponding element under the Jacquet-
Langlands correspondence (Section 6). Also, under the assumption that X(Fv)
is unramified (Section 1), when we say that an irreducible admissible represen-
tation of GO(X,Fv) (or of O(X,Fv) and SO(X,Fv)) is unramified we mean
with respect to the stabilizer in GO(X,Fv) ( or in O(X,Fv) and SO(X,Fv),
respectively) of a self-dual lattice in X(Fv).

8.1 Lemma. Let X be a four dimensional quadratic space over F , let B be the
even Clifford algebra of X(F ), and let E be the center of B. Let d = discX(F ).
Let σ ∈ Irrtemp

cusp (GO(X,A)), and assume that σ lies over [π = π(χ, τ)] (See
Sections 6 and 7). Let v be a finite place of F such that X(Fv) and σv are
unramified. Let σ1,v be the unramified component of σv|O(X,Fv). Then the
standard L-function of σ1,v is

L(s, σ1,v) =

{
Lv(s, τ

JL, χ−1,Asai) if d 6= 1,

Lv(s, τ
JL
1 × τJL

2
∨) if d = 1 and τ ∼= τ1 ⊗ τ2.

Proof. By definition, L(s, σ1,v) (see Section 2 of [KR1]) is the standard L-
function of any irreducible unramified component of σ1,v|SO(X,Fv). It will thus
suffice to show that the standard L-function of any irreducible unramified com-
ponent of σv|SO(X,Fv) has the stated form; and since πv is an irreducible com-
ponent of σv|GSO(X,Fv), it will be enough to show that the standard L-function
of any irreducible unramified component of πv|SO(X,Fv) or (s · πv)|SO(X,Fv) has
the above form (s is as in Lemma 6.1). Since over a local nonarchimedean
field a four dimensional quadratic space represents 1, by Proposition 2.8 there
exists a quaternion algebra D over Fv contained in B(Fv) and an isometry
T : X(Fv)→ XD,Ev such that

1 −−−−→ E×v −−−−→ F×v ×B×(Fv)
ρ−−−−→ GSO(X,Fv) −−−−→ 1

id

y o
y

yT ·T−1

1 −−−−→ E×v −−−−→ F×v ×B×D,Ev
ρa(D,Ev)−−−−−→ GSO(XD,Ev , Fv) −−−−→ 1

commutes, where B×(Fv)
∼−→ B×D,Ev is the isomorphism induced by the natural

isomorphism B(Fv) ∼= Ev⊗Fv D of Ev algebras; Ev = E(Fv) = Fv⊗F E. Since
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X(Fv) is unramified, D is in particular split, i.e., there exists an isomorphism

D
∼−→ M2×2(Fv) of quaternion algebras over Fv. From this, we obtain an

isomorphism BD,Ev
∼−→ M2×2(Ev) of Ev algebras and an isometry t : XD,Ev

∼−→
Xa so that

1 −−−−→ E×v −−−−→ F×v ×B×D,Ev
ρa(D,Ev)−−−−−→ GSO(XD,Ev , Fv) −−−−→ 1

id

y o
y

yt·t−1

1 −−−−→ E×v −−−−→ F×v ×GL(2, Ev)
ρa−−−−→ GSO(Xa, Fv) −−−−→ 1

commutes. Here, a is the Galois action on M2×2(Ev) defined by the formula

(2.1). Composing, we now have an isomorphism i : B(Fv)
∼−→ M2×2(Ev) of Ev

algebras and isometry r : X(Fv)
∼−→ Xa such that

1 −−−−→ E×v −−−−→ F×v ×B×(Fv)
ρ−−−−→ GSO(X,Fv) −−−−→ 1

id

y o
y

yr·r−1

1 −−−−→ E×v −−−−→ F×v ×GL(2, Ev)
ρa−−−−→ GSO(Xa, Fv) −−−−→ 1

commutes. Let π′v be the representation of GSO(Xa, Fv) corresponding to πv.
By definition, (τv)

JL = τv ◦ i, and we have π′v = π(χv, (τv)
JL). Since the

standard L-function of any unramified irreducible component of πv|SO(X,Fv) is
the same as the standard L-function of any irreducible unramified component
of π′v|SO(Xa,Fv), and the same holds for (s · πv)|SO(X,Fv) and (s · π′v)|SO(Xa,Fv),
it will now suffice to show that the the standard L-function of any irreducible
unramified component of π′v|SO(Xa,Fv) or (s · π′v)|SO(Xa,Fv) has the above form.
Assume first d 6= 1 (i.e., E is a field) and v stays prime in E; let w be the
place of E lying over v. Then Ew = Ev. Since π′v is unramified, so are χv
and (τJL)w = (τv)

JL ∈ Irr(GL(2, Ew)). Let (τJL)w = Ind
GL(2,Ew)
P (µ1 ⊗ µ2),

where P is the usual upper triangular Borel subgroup of GL(2, Ew), induction
is normalized, µ1 and µ2 are unramified quasi-characters of E×w , and µ1 ⊗ µ2

is defined by

(µ1 ⊗ µ2)(

[
a b
0 c

]
) = µ1(a)µ2(c).

The space Xa was explicitly described in Section 2. With respect to the ordered
basis [

0
√
d

0 0

]
,

[
1 0
0 1

]
,

[√
d 0

0 −
√
d

]
,

[
0 0

−(2/d)
√
d 0

]

the symmetric bilinear form on Xa, which is given by the determinant, has the
form 


0 0 0 1
0 1 0 0
0 0 −d 0
1 0 0 0


 .
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The stabilizer in GSO(Xa, Fv) of the isotropic subspace spanned by the first
basis vector is a Borel subgroup P ′ of GSO(Xa, Fv), and P ′ = ρα(F×v ×P ). In
particular, we have

ρα(t,

[
a ∗
0 c

]
) = t−1




NEw
Fv

(a) ∗ ∗
0 h ∗
0 0 NEw

Fv
(c)


 ,

with

h =

[
a1c1 − a2c2d (a2c1 − a1c2)d
a2c1 − a1c2 a1c1 − a2c2d

]
,

where a = a1 +a2

√
d and c = c1 + c2

√
d. Here, the middle block h corresponds

to multiplication by aα(c) on the two dimensional subspace spanned by the
two middle basis vectors, using the obvious identification of this subspace with
Ew. Recalling that χv ◦NEw

Fv
= µ1µ2, a computation shows that

π′v = π(χv, (τ
JL)w) = Ind

GSO(Xa,Fv)
P ′ µ,

where induction is normalized, and on the typical element of P ′ µ takes the
value

µ(



a ∗ ∗
0 h ∗
0 0 λa−1


) = (µ2/χv)(λa

−1)µ1(h),

where again we identify the elements of the middle block with E×w and a, λ ∈
F×v . There is an SO(Xa, Fv) isomorphism

π′v|SO(Xa,Fv)
∼−→ Ind

SO(Xa,Fv)
P ′∩SO(Xa,Fv) µ|P ′∩SO(Xa,Fv)

given by restriction of functions. We have

µ|P ′∩SO(Xa,Fv)(



a ∗ ∗
0 h ∗
0 0 a−1


) = (χv/µ2)(a)

since NEw
Fv

(h) = 1, so that h ∈ O×w . By definition, the standard L-function of
any irreducible unramified component of π′v|SO(Xa,Fv) is now

L(s, χv/µ2)L(s, µ2/χv)ζFv (2s) = det(1− χ(πFv )−1A|πFv |s)−1

= Lv(s, τ
JL, χ−1,Asai),

where

A =



µ1(πFv ) 0 0 0

0 0 µ1(πFv ) 0
0 µ2(πFv ) 0 0
0 0 0 µ2(πFv )


 .
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For the last equality, see p. 64-65 of [HLR]. Since s · π′v = π(χv, (τ
JL)w ◦ α),

a similar computation shows that the standard L-function of any irreducible
unramified component of (s · π′v)|SO(Xa,Fv) is also Lv(s, τ

JL, χ−1,Asai).
Now suppose E is a field and v splits in E. Then Fv contains a square root of
d; fix such a square root

√
d in F×v . Define an embedding of fields i1 : E ↪→ Fv

by sending a fixed square root of d in E to
√
d, and define another embedding

i2 : E ↪→ Fv by sending the fixed square root of d in E to−
√
d. We denote by w1

and w2 the places of E determined by i1 and i2, respectively. Then w1 and w2

are the two places of E lying over v, and via i1 and i2 we take Fv to be the com-
pletions Ew1

and Ew2
of E at w1 and w2, respectively. We also have an identifi-

cation of Ev = Fv⊗FE with Ew1
×Ew2

and hence with Fv×Fv. Using the iden-
tification Ev ∼= Fv×Fv we may identify M2×2(Ev) with M2×2(Fv)×M2×2(Fv),
GL(2, Ev) with GL(2, Fv)×GL(2, Fv) and a with the Galois action defined by
(x1, x2) 7→ (x2, x1). Further, as explained after Proposition 2.7, we may identify
Xa with M2×2(Fv) and ρa with ρa(t, (g1, g2))x = t−1g1xg

∗
2 . Using the canonical

isomorphisms B(Fv) ∼= B(Ew1
)×B(Ew2

) ∼= D ×D write τv ∼= τw1
⊗ τw2

with

τw1
, τw2

∈ Irr(D×); then (τv)
JL ∼= τJL

w1
⊗ τJL

w2
. Let τJL

w1
= Ind

GL(2,Fv)
P (µ1 ⊗ µ2)

and τJL
w2

= Ind
GL(2,Fv)
P (µ′1 ⊗ µ′2), with the notation analogous to the previous

case. Note that χ = µ1µ2 = µ′1µ
′
2. With respect to the ordered basis

[
0 1
0 0

]
,

[
1 0
0 0

]
,

[
0 0
−2 0

]
,

[
0 0
0 2

]

the symmetric bilinear form on Xa has the matrix




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 .

The stabilizer in GSO(Xa, Fv) of the isotropic flag

Fv ·
[

0 1
0 0

]
⊂ Fv ·

[
0 1
0 0

]
+ Fv ·

[
1 0
0 0

]

is a Borel subgroup P ′, and P ′ = ρα(F×v × P × P ). We have

ρα(t,

[
a ∗
0 c

]
,

[
a′ ∗
0 c′

]
) = t−1



aa′ ∗ ∗ ∗
0 ac′ ∗ ∗
0 0 cc′ ∗
0 0 0 a′c


 .

Using µ1µ2 = µ′1µ
′
2, a computation shows that

π′v ∼= Ind
GSO(Xa,Fv)
P ′ µ
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with

µ(



a ∗ ∗ ∗
0 b ∗ ∗
0 0 λa−1 ∗
0 0 0 λb−1


) = µ2(λ)(µ′1/µ2)(a)(µ′2/µ2)(b).

Again there is an SO(Xa, Fv) isomorphism

π′v|SO(Xa,Fv)
∼−→ Ind

SO(Xa,Fv)
P ′∩SO(Xa,Fv) µ|P ′∩SO(Xa,Fv)

given by restriction of functions. We have

µ|P ′∩SO(Xa,Fv)(



a ∗ ∗ ∗
0 b ∗ ∗
0 0 a−1 ∗
0 0 0 b−1


) = (µ′1/µ2)(a)(µ′2/µ2)(b).

We now have that the standard L-function of any irreducible unramified com-
ponent of π′v|SO(Xa,Fv) is

L(s, µ′1/µ2)L(s, µ2/µ
′
1)L(s, µ′2/µ2)L(s, µ2/µ

′
2) = det(1− χ(πFv )−1A|πFv |s)−1

= Lv(s, τ
JL, χ−1,Asai),

where

A =




(µ1µ
′
1)(πFv ) 0 0 0
0 (µ2µ

′
2)(πFv ) 0 0

0 0 (µ1µ
′
2)(πFv ) 0

0 0 0 (µ2µ
′
1)(πFv )


 ;

here we have used χv = µ1µ2 = µ′1µ
′
2. For the last equality, again see p.

64-65 of [HLR]. Since s · π′v = π(χv, τ
JL
w2
⊗ τJL

w1
), a similar computation shows

that the standard L-function of any irreducible unramified component of (s ·
π′v)|SO(Xa,Fv) is also Lv(s, τ

JL, χ−1,Asai).
The argument in the case d = 1 is similar to the last case and will be omit-
ted. ¤
To prove the nonvanishing part of the main result Theorem 8.3 we will use the
following theorem, which follows from Corollary 1.2 of [R4]. In the following
LS(s, σ1) is the standard partial L-function of σ1 (see Section 2 of [KR1]).

8.2 Theorem ([R4]). Let F be a totally real number field, and let X be a four
dimensional quadratic space over F . Let d ∈ F×/F×2 be the discriminant of
X(F ), and assume that the discriminant algebra E of X(F ) is totally real, i.e.,

either d = 1 or d 6= 1 and E = F (
√
d) is totally real. Let σ1 be a tempered

cuspidal automorphic representation of O(X,A) with σ1
∼= ⊗vσ1,v, and let Vσ1

be a realization of σ1 in the space of cusp forms on O(X,A). Assume σ1,v
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occurs in the theta correspondence for O(X,Fv) and Sp(2, Fv) for all places v.
If LS(s, σ1) does not vanish at s = 1 then Θ2(Vσ1

) 6= 0.

Proof. This follows from Corollary 1.2 of [R4] (see also the following remark
below). Note that by the assumption on E, at each infinite place v of F we
have d = 1 in F×v /F

×2
v , so that the signature of X(Fv) is (4, 0), (2, 2) or (0, 4)

and the signature assumptions from Corollary 1.2 of [R4] are satisfied. ¤

We take the opportunity here to make a correction to [R4]. Namely, in Theo-
rem 1.1 of [R4] hypothesis (2) should be replaced with the statement: for all
places v, σv is tempered and if σv first occurs in the theta correspondence with
Sp(n′, Fv) with 2n′ > dimX, then the first occurrence of σv is tempered; in
Corollary 1.2 of [R4] σv should also be assumed to be tempered for infinite
v; and finally in Lemma 2.1 of [R4] the assumption on σ (in both the nonar-
chimedean and real cases) should be that σ is tempered, and if σ first occurs
in the theta correspondence with Sp(n′, F ) with 2n′ > dimX, then the first
occurrence of σ is tempered. The corrections thus also introduce temperedness
assumptions at the infinite places entirely analogous to those at the finite places
(note that in the corrections to Theorem 1.1 and Lemma 2.1 we have actually
weakened the nonarchimedean assumption; this was mentioned in [R4], but not
explicitly stated as part of Theorem 1.1 and Lemma 2.1). The omission of these
temperedness assumptions at infinity was due to a misreading of [M], Corol-
laire IV.5 (ii). The only place where the result from [M] is used in [R4] is in the
proof of Lemma 2.1 of [R4] where it is asserted that, in the terminology of that
lemma, θk+1(σ) = L(χX | · |sX(k+1)⊗ δ2 · · ·⊗δt⊗ τ). The argument for this is as
follows. Assume σ first occurs in the theta correspondence with Sp(n′,R) with
n′ ≤ dimX/2. Then σ occurs in the theta correspondence with Sp(dimX/2,R)
(Lemme I.9, p. 14, [M]) and θdimX/2(σ) = ΨdimX/2(σ) (Théorème IV.3, p. 70,
[M]). Since σ is tempered, by the definition of ΨdimX/2(σ) (III.2, p. 49, [M]),
θdimX/2(σ) = ΨdimX/2(σ) is also tempered. The Langlands data for θk+1(σ)
is obtained from the Langlands data of θdimX/2(σ) by adjoining the quasi-

characters of R×: χX | · |sX(k+1), . . . , χX | · |sX(dimX/2)+2, χX | · |sX(dimX/2)+1

(Corollaire IV.5 (ii), p. 71, [M]). Since θdimX/2(σ) is tempered, this im-
plies θk+1(σ) has the claimed form. Next, assume σ first occurs in the
theta correspondence with Sp(n′,R) with n′ > dimX/2. Then θn′(σ) is
tempered by assumption. Again, the Langlands data of θk+1(σ) is obtained
from the Langlands data of θn′(σ) by adjoining the quasi-characters of R×:

χX | · |sX(k+1), . . . , χX | · |sX(n′)+2, χX | · |sX(n′)+1 (Corollaire IV.5 (ii), p. 71,
[M]). Again, since θn′(σ) is tempered, this implies θk+1(σ) has the claimed
form. This completes the corrected argument for the new statement of Lemma
2.1 of [R4]. The corrected statements of Theorem 1.1 and Corollary 1.2 have
exactly the same proofs as in [R4].

Proof of Theorem 8.3. (1) =⇒ (2). Suppose Θ2(Vσ) 6= 0. Suppose Θ2(Vσ)
is contained in the space of cusp forms. Then by Proposition 5.3, (2) holds.
Suppose Θ2(Vσ) is not contained in the space of cusp forms. Since σv is in-
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finite dimensional for at least one v (5.1) holds. By Proposition 5.2, Θ1(Vσ)
is contained in the space cusp forms; also, Θ1(Vσ) is nonzero, for otherwise,
by Proposition 5.2, Θ2(Vσ) would be contained in the space of cusp forms. A
standard argument as in the proof of Proposition 5.3 now shows that for all
v, σv ∈ R1(GO(X,Fv)). This implies (2) (Lemma 4.2 of [R1]; b), p. 67 of
[MVW]; Lemme I.9 of [M]).

(2) ⇐⇒ (3). This is Theorem 3.4. Note that if discX(Fv) 6= 1, then X(Fv)
is isotropic, and so σv is infinite dimensional (as σv is tempered).

(2) =⇒ (1). Suppose (2) holds. Let σ lie over [π] (Section 7). Restrict the
functions in Vσ to O(X,A) to obtain the space of functions V 1

σ . Then V 1
σ is

nonzero and contained in the space of cusp forms on O(X,A); let W be an
irreducible nonzero O(X,Af )× (h1,∞, J1,∞) component of V 1

σ , and denote the
isomorphism class of W by σ1. To show Θ2(Vσ) 6= 0 it will suffice to show
Θ2(W ) 6= 0 (for if θ2(f, ϕ) 6= 0 for some f ∈ W and ϕ ∈ S(X(A)2), then
θ2(F,ϕ)|Sp(2,A) = θ2(f, ϕ) 6= 0 for any F ∈ Vσ with F |O(X,A) = f). For this,
we will use Theorem 8.2. We need to see that the hypotheses of Theorem
8.2 are satisfied. For all places v of F , σ1,v is an irreducible constituent of
σv|O(X,Fv). Since σv is tempered for all v, σ1,v is tempered for all v. Also, it
is a basic consequence of (2) that σ1,v ∈ R2(O(X,Fv)) for all v (Lemma 4.2 of
[R1]; see the discussion before Theorem 1.8). Finally, we need to see that the
partial standard L-function LS(s, σ1) of σ1 does not vanish at s = 1. Writing
π = π(χ, τ), by Lemma 8.1 we have

LS(s, σ1) =

{
LS(s, τJL, χ−1,Asai) if d 6= 1

LS(s, τJL
1 × τJL

2
∨) if d = 1 and τ ∼= τ1 ⊗ τ2.

Showing the nonvanishing of LS(s, σ1) at s = 1 is thus reduced to showing the
nonvanishing of these two types of L-functions at s = 1. For the nonvanishing
of LS(s, τJL

1 × τJL∨
2 ) at s = 1 see Theorem 5.2 of [Sh]. The nonvanishing of

LS(s, τJL, χ−1,Asai) at s = 1 also follows from [Sh]. For an explanation of this,
see p. 296–7 of [F]. Note that LS(s, τJL, χ−1,Asai) is of the form LS(s, τ ′,Asai):
there exists a Hecke character χ̂ of A×E extending χ, and for such a χ̂ we have
LS(s, τ ⊗ χ̂−1,Asai) = LS(s, τJL, χ−1,Asai). By Theorem 8.2 we now have
Θ2(W ) 6= 0, and so Θ2(Vσ) 6= 0.

Now suppose that one of (1), (2) or (3) holds, and s · π À π. By what we have
already shown, Θ2(Vσ) 6= 0. We claim that Θ2(Vσ) is contained in the space of
cusp forms. Suppose not. Then as in the proof of (1) =⇒ (2), Θ1(Vσ) is nonzero
and contained in the space of cusp forms, and in particular σv ∈ R1(GO(X,Fv))
for all v. By Theorem 7.4 of [R2] this implies s · πv ∼= πv at least for all
finite v of odd residual characteristic. However, by strong multiplicity one for
GSO(X,A) (Section 6) and s · π À π, we have s · πv À πv for infinitely many
v, a contradiction. Thus, Θ2(Vσ) is contained in the space of cusp forms. By
Proposition 5.3, Θ2(Vσ) is a cuspidal automorphic representation of GSp(2,A)
of central character ωσ and Θ2(Vσ) = ⊗vθ2(σ∨v ); by Proposition 1.10 this is
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also ⊗vθ2(σv)
∨. The proof that θ2(σv) is tempered for all v is as in the proof

of (3) of Proposition 4.1. ¤

The next lemma was used in the proof of Proposition 4.1 to show that the two
elements of an L-packet defined there are in fact distinct. It will also be used
in the proof of Theorem 8.5.

8.4 Lemma. Let v be a place of F . Let Dram be the division quaternion algebra
over Fv, and define the four dimensional quadratic spaces XM2×2,1 and XDram,1

over Fv as in Section 2. Then RXM2×2,1
(GSp(2, Fv))∩RXDram,1

(GSp(2, Fv)) =

∅.

Proof. We will use the notation of Section 1. By Lemmas 1.4 and 1.5 it will
suffice to show that if

RXM2×2,1
(GSp(2, Fv)) ∩ RXDram,1

(GSp(2, Fv)) 6= ∅

then

RXM2×2,1
(Sp(2, Fv)) ∩ RXDram,1

(Sp(2, Fv)) 6= ∅.

Suppose Π ∈ RXM2×2,1
(GSp(2, Fv)) ∩ RXDram,1

(GSp(2, Fv)). Since Π is con-

tained in RXM2×2,1
(GSp(2, Fv)), by definition Π|Sp(2,Fv) is multiplicity free;

let Π|Sp(2,Fv) = W1 ⊕ · · · ⊕ WM with the Wi, 1 ≤ i ≤ M , mutually non-
isomorphic irreducible Sp(2, Fv) subspaces of Π. Also by definition, some
Wi, say W1, is in RXM2×2,1

(Sp(2, Fv)). We assert that all the Wi are con-

tained in RXM2×2,1
(Sp(2, Fv)). Let g ∈ GSp(2, Fv) be such that π(g)W1 = Wi

(if Fv ∼= R then M = 1 or 2 and we may take g = k0 with k0 as in Sec-
tion 1). Since W1 ∈ RXM2×2,1

(Sp(2, Fv)) there exists a nonzero Sp(2, Fv) map

t : ωXM2×2,1
→ W1. Let h ∈ GO(XM2×2,1, Fv) be such that (g, h) ∈ RXM2×2,1

(if Fv ∼= R we take h = j0 so that (g, h) ∈ L). Consider the composition

ωXM2×2,1

ω(g,h)−1

−−−−−−→ ωXM2×2,1

t−→W1
π(g)−−→Wi.

This is a nonzero Sp(2, F ) map. Thus, Wi ∈ RXM2×2,1
(Sp(2, Fv)). On the

other hand, since Π ∈ RXDram,1
(GSp(2, Fv)) we have by definition that some

irreducible component of Π|Sp(2,Fv) is contained in RXDram,1
(Sp(2, Fv)). We

now have RXM2×2,1
(Sp(2, Fv)) ∩ RXDram,1

(Sp(2, Fv)) 6= ∅ as desired. ¤

We come now to the definition and analysis of global L-packets for GSp(2).
We begin by proving Theorem 8.5, a version of the main result Theorem
8.6. In this version, global L-packets for GSp(2) are associated to elements
of Irrtemp

cusp (GSO(XM2×2,d,A)); Theorem 8.6 will follow easily from Theorem 8.5.

As in Section 2, let d ∈ F×/F×2, and let E = Ed be F (
√
d) if d 6= 1 and

E = Ed = F × F if d = 1. Assume E is totally real, i.e., in the case d 6= 1
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assume E is totally real. Let π ∈ Irrtemp
cusp (GSO(XM2×2,d,A)). The packet of irre-

ducible admissible representations of GSp(2,A) corresponding to [π] is defined
to be

Π([π]) = {Π = ⊗vΠv ∈ Irradmiss(GSp(2,A)) : Πv ∈ Π([πv]) for all v}.

Here, Π([πv]) is defined in Section 4. By Proposition 4.3, for almost all nonar-
chimedean v, Π([πv]) consists of a single representation unramified with respect
to GSp(2,Ov). Thus,

Π([π]) = ⊗vΠ([πv]).

Also, by (3) of Proposition 4.1, Π([πv]) consists of tempered representations
for all v. If S is any finite set of places such that for v /∈ S, v is nonar-
chimedean and Π([πv]) consists of a single representation unramified with re-
spect to GSp(2,Ov), then the cardinality of Π([π]) is:

|Π([π])| =
∏

v∈S
|Π([πv])| = 2M , where M =

∑

v∈S
(|Π([πv])| − 1).

For Π = ⊗vΠv ∈ Π([π]), let TΠ be the set of places v of F such that v splits
in E (as usual, if d = 1 so that E = F × F we say that every place of F
splits in E) and Πv is of the form θDram,1(πJL+

v )∨ (so necessarily πv is square
integrable); see Section 4.

8.5 Theorem. Assume F is totally real, d ∈ F×/F×2, and let E = Ed be

F (
√
d) if d 6= 1 and F × F if d = 1. Assume E is totally real, i.e., in the case

d 6= 1 assume E is totally real. Let π ∈ Irrtemp
cusp (GSO(XM2×2,d,A)) and assume

s · π À π.

(1) If d 6= 1, then all the elements of Π([π]) occur with multiplicity one in
the space of cusp forms on GSp(2,A) with central character ωπ.

(2) Assume d = 1. Let Π ∈ Π([π]). If |TΠ | is even, then Π occurs with
multiplicity one in the space of cusp forms on GSp(2,A) with central
character ωπ. Conversely, if Π occurs in the space of cusp forms on
GSp(2,A) then |TΠ | is even.

Proof. Let Π ∈ Π([π]); if d = 1 assume |TΠ | is even. We begin by showing that
Π occurs in the space of cusp forms on GSp(2,A) of central character ωπ. To
prove this we will construct a four dimensional quadratic space X over F and
a σ ∈ Irrtemp

cusp (GO(X,A)) such that σv ∈ R2(GO(X,Fv)) and θ2(σv)
∨ = Πv

for all v; we will then apply Theorem 8.3 to show Π is cuspidal automorphic.
To start, let us set up some definitions involving π. As in Section 6, write
π = π(χ, τ); however instead of the abstract exact sequence of Theorem 2.3,
let us use the concrete exact sequence

1→ A×E → A× ×GL(2,AE)
ρa(M2×2,E)−−−−−−−→ GSO(XM2×2,d,A)→ 1
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of Proposition 2.7; by this proposition there is no real distinction. Thus, π =
π(χ, τ), with τ ∈ Irrtemp

cusp (GL(2,AE)) and χ a Hecke character of A× such that

ωτ = χ ◦ NE
F . The X we will use will be of the form XD,d. Specifically, let

D be any quaternion algebra over F which is ramified at the places in TΠ ,
and which is unramified at any other of the places of F which split in E; note
that if d = 1, we use the evenness of |TΠ | for the existence of D (again, our
convention is that if d = 1 so that E = F × F then every place of F is split in
E). Evidently, if d = 1, then D is uniquely determined, but if d 6= 1, then there
will be infinitely many choices for D. Nevertheless, if we let B = E⊗F D, then
B is uniquely determined (in the case d 6= 1, regarded as a quaternion algebra
over E, B is split at any place of E lying over a nonsplit place of F ), and XD,d

is uniquely determined up to similitudes by Proposition 2.9. By Lemma 5.1,
it thus follows that our construction will realize Π as a cuspidal automorphic
representation in exactly one way in spite of the ambiguity in the choice of D
when d 6= 1. To define the σ mentioned above, note that again by Proposition
2.7 we have an exact sequence

1→ A×E → A× ×B×(A)
ρa(D,E)−−−−−→ GSO(XD,d,A)→ 1.

By the definition of TΠ , τ is in the image of the Jacquet-Langlands correspon-
dence from B×(A) discussed in Section 6; let τ JL ∈ Irrtemp

cusp (B×(A)) correspond

to τ . Let π′ = π(χ, τJL); this is contained in Irrtemp
cusp (GSO(XD,d,A)). We claim

that for each place v there exists σv ∈ R2(GO(XD,d, Fv)) such that

σv ↪→ Ind
GO(XD,d,Fv)

GSO(XD,d,Fv) π
′
v

and θ(σv)
∨ = Πv. This is clear from the definition of Π([πv]) and D if v is not a

nonsplit place withD(Fv) ramified; assume we are in this last case. Let w be the
place of E lying over v. By Proposition 2.9 and the consideration of examples
after this proposition, there exists an isomorphism i : B(Fv)

∼−→ M2×2(Ew) of
Ew algebras and a similitude T : XD,d(Fv)→ XM2×2,d(Fv) such that

1 −−−−→ E×w −−−−→ F×v ×B×(Fv) −−−−→ GSO(XD,d, Fv) −−−−→ 1
yid

yid×i
yT ·T−1=j

1 −−−−→ E×w −−−−→ F×v ×GL(2, Ew) −−−−→ GSO(XM2×2,d, Fv) −−−−→ 1

commutes. By the definition of Π([πv]), there exists π̂v ∈ Irr(GO(XM2×2,d, Fv))
such that πv ↪→ π̂v|GSO(XM2×2,d

,Fv) and θ(π̂v) = Π∨v , i.e.,

HomRXM2×2,d
(Fv)(ωXM2×2,d

(Fv), Π
∨
v ⊗ π̂v) 6= 0.

By Lemma 1.6, we obtain

HomRXD,d (Fv)(ωXD,d(Fv), Π
∨
v ⊗ σv) 6= 0,
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where σv = π̂v ◦ j, so that θ(σv) = Π∨v . Since πv ◦ j ↪→ σv|GSO(XD,d,Fv) and
πv ◦ j = π′v by the commutativity of the diagram, we get π′v ↪→ σv|GSO(XD,d,Fv)

as desired. Now Πv is unramified for almost all finite v, and so by Proposition
1.11 σv is unramified for almost all finite v. We may form the restricted direct
product σ = ⊗vσv ∈ Irradmiss(GO(X,A)). Since s · π À π we have s · π′ À π′.
By Theorem 7.1 it follows that σ ∈ Irrtemp

cusp (GO(X,A)), and σ lies over [π′]. By
Theorem 8.3, Θ2(Vσ) is cuspidal and Θ2(Vσ) ∼= Π.
Having shown that Π occurs in the space of cusp forms on GSp(2,A) of central
character ωπ, we will now show that the multiplicity with which Π occurs is
one. Our strategy will be to use the multiplicity preservation principle of Rallis
(Proposition 5.3) along with the fact that for a four dimensional quadratic space
X over F , GO(X,A) has the (weak) multiplicity one property (Theorem 7.1).
Let W be the GSp(2,Af )× (g∞,K∞) subspace of cusp forms on GSp(2,A) of
central character ωπ generated by the subspaces isomorphic to Π. Let U be
an irreducible nonzero GSp(2,Af ) × (g∞,K∞) subspace of W . Then U ∼= Π.
To be in a position to apply Proposition 5.3 we must show that ΘXD,d(U)
is nonzero and contained in the space of cusp forms on GO(X,A) of central
character ωπ.
As a first step, we will prove that ΘXD′,d(U) is nonzero and cuspidal for

some quaternion algebra D′ over F . In the following argument showing that
ΘXD′,d(U) is nonzero and cuspidal for some D′ we ask the reader to take note

that we only use that Π ∈ Π([π]); this will be germane in a subsequent part
of the proof. We begin with a reduction to isometries. Restrict the func-
tions in U to Sp(2,A). This space of restricted functions is nonzero and is an
Sp(2,Af )×(g1,∞,K1,∞) subspace of the space of cusp forms on Sp(2,A); let U1

be a nonzero Sp(2,Af )×(g1,∞,K1,∞) irreducible subspace of this space, and let
Π1 be the isomorphism class of U1. As in the proof of (2) =⇒ (1) of Theorem
8.3, to show ΘXD′,d(U) 6= 0 for some D′ it will suffice to show ΘXD′,d(U1) 6= 0

for some D′. To prove this, we will use Theorem 7.1 of [KRS]. This appli-
cation requires an understanding the behavior of the partial twisted standard
L-function LS(s,Π1, χXD,d) at s = 1; we now compute this L-function. As
U ∼= Π, Π1,v is an irreducible component of Πv|Sp(n,Fv) for all v. Let S be a fi-
nite set of places of F such that for v /∈ S, v is finite, XM2×2,d(Fv) is unramified
(i.e., v is odd and v is unramified in Ed) and χv and τw for w|v are unramified.
For v /∈ S, by Proposition 4.3 and its proof, |Π([πv])| = 1, Πv is the single el-
ement of Π([πv]), Πv is unramified and Πv = θM2×2,d(σ

′
v)
∨ = θM2×2,d(σ

′
v
∨),

with σ′v = π+
v ∈ Irr(GO(XM2×2,d, Fv)) unramified. Let v /∈ S; we assert

that there exists an unramified component σ′1,v of σ′v|O(XM2×2,d
,Fv) such that

Π1,v = θ(σ′1,v
∨). To see this let, as in Section 1, GSp(2, Fv)

+ be the subgroup

of g ∈ GSp(2, Fv) such that λ(g) ∈ λ(GO(XD,d, Fv)); again, GSp(2, Fv)
+ has

index one or two in GSp(2, Fv). Let Πv|GSp(2,Fv)+ = Π1
v ⊕ · · · ⊕ ΠM

v , where

the Πi
v ∈ Irr(GSp(2, Fv)

+) are mutually nonisomorphic and M = 1 or 2. We
have by construction

HomRXM2×2,d
(Fv)(ωXM2×2,d

(Fv), Πv ⊗ σ′v∨) 6= 0.
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This implies that for some i,

HomRXM2×2,d
(Fv)(ωXM2×2,d

(Fv), Π
i
v ⊗ σ′v∨) 6= 0.

By the proof of Proposition 1.11, Π i
v is unramified with respect to GSp(2,Ov)

(which is contained in GSp(2, Fv)
+). As Πv|Sp(2,Fv) has only one irreducible

component unramified with respect to Sp(2,Ov), namely Π1,v, it follows that
Π1,v is an irreducible component of Π i

v|Sp(2,Fv). By Lemma 4.2 of [R1], there
exists an irreducible component σ′1,v of σ′v such that

HomSp(2,Fv)×O(XM2×2,d
,Fv)(ωXM2×2,d

(Fv), Π1,v ⊗ σ′1,v∨) 6= 0.

By (b) of Theorem 7.1 of [H], σ′1,v is unramified. This proves our assertion.
By Section 7 of [KR2] and Lemma 8.1 (or rather its proof), the twisted partial
standard L-function of Π1 now is

LS(s,Π1, χXD,d) = ζSF (s)
∏

v/∈S
L(s, σ′1,v)

=

{
ζSF (s)LS(s, τ, χ−1,Asai) if d 6= 1

ζSF (s)LS(s, τ1 × τ2∨) if d = 1 and τ ∼= τ1 ⊗ τ2,

where ζSF (s) is the partial zeta function of F . We noted in the proof of Theorem
8.3 that L-functions of the type LS(s, τ, χ−1,Asai) or LS(s, τ1 × τ∨2 ) do not
vanish at s = 1; hence, LS(s,Π1, χXD,d) has a pole at s = 1 (in fact, by
Corollary 7.2.3 of [KR2] the pole must be simple).
Now we apply [KRS]. By Lemma 1.1 of [L], for some f ∈ U1, f has a nonzero
T -th Fourier coefficient with detT 6= 0. Here, T ∈ M2(F ) is a symmetric
matrix. Define a quadratic Hecke character χ of A× by χXD,d = χTχ, where
we also write T for the two dimensional quadratic space defined by T . Since
LS(s,Π1, χTχ) = LS(s,Π1, χXD,d) has a pole at s = 1, by (i) and (ii) of
Theorem 7.1 of [KRS], ΘX′(U1) 6= 0, where X ′ = XT ⊥ X ′′, with X ′′ some
two dimensional quadratic space over F such that χX′′ = χ. We have

χX′ = χXT · χX′′ = χXT · χ = χ2
XT · χXD,d = χXD,d

which implies discX ′(F ) = discXD,d(F ) = d. By Proposition 2.8 and Lemma
5.1, we now know that ΘXD′,d(U1) 6= 0 for some quaternion algebra D′ over F .

As mentioned, this implies ΘXD′,d(U) 6= 0.

Next, we claim ΘXD′,d(U) is contained in the space of cusp forms on

GO(XD′,d,A) of central character ωπ; suppose not. Then by the remark af-
ter Proposition 5.2 there exists a two dimensional quadratic space X0 over
F such that ΘX0

(U) is nonzero and is contained in the space of cusp forms
of central character ωπ on GO(X0,A). By a standard argument as in the
proof of Proposition 5.3, for all but finitely many places v of F , X0(Fv) is
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unramified, Πv is unramified with respect to GSp(2,Ov), there exists a uni-
tary ρv ∈ Irr(GO(X0, Fv)) which is unramified with respect to the stabilizer in
GO(X0, Fv) of a self-dual lattice and

HomRX0
(Fv)(ωX0(Fv), Π

∨
v ⊗ ρv) 6= 0.

Let v be one such place. Let ρ0 be an irreducible unramified component of
ρv|O(X0,Fv). By Lemma 4.2 of [R1], there exists an irreducible component Π0

of Π∨v |Sp(2,Fv) such that

HomSp(2,Fv)×O(X0,Fv)(ωX0(Fv), Π0 ⊗ ρ0) 6= 0.

Now SO(X0, Fv) is Abelian as dimX0 = 2; since ρ0 is unitary, ρ0 is therefore
tempered. (Recall the definition of a tempered representation of O(X0, Fv) pre-
ceding Theorem 1.2). Also, it is not difficult to show that ρ0 ∈ R1(O(X0, Fv))
(in fact, the only element of Irr(O(X0, Fv)) not contained in R1(O(X0, Fv)) is
sign). Applying now Theorem 4.4 of [R3], we conclude that Π0 is not tem-
pered, contradicting the temperedness of Πv (see (3) of Proposition 4.1). We
have shown ΘXD′,d(U) 6= 0 is nonzero and cuspidal for some D′; as promised,
the argument used only that the cuspidal automorphic representation Π is
contained in Π([π]).
Now we will show that ΘXD,d(U) is nonzero and contained in the space of
cusp forms of central character ωπ. By Lemma 5.1, it will suffice to show that
there is a similitude between XD,d(F ) and XD′,d(F ). Let B′ = E ⊗F D′. We
assert that B ∼= B′ as E algebras. As in the last paragraph of Section 2, let
SD,E be the set of places v of F such that v splits in E and D(Fv) is ramified;
define SD′,E similarly. As observed in Section 2, it will suffice to show that
SD,E = SD′,E . Let v be a place of F that splits in E. As v splits in E, d = 1
in F×v /F

×2
v . By Proposition 5.3, since ΘXD′,d(U) is nonzero and cuspidal,

Πv ∈ RXD′,d(Fv)(GSp(2, Fv)); by construction, Πv ∈ RXD,d(Fv)(GSp(2, Fv)).

By Lemma 8.4 we must have XD′,d(Fv) ∼= XD,d(Fv). This implies D′(Fv) ∼=
D(Fv) so that D is ramified at v if and only if D′ is ramified at v. This proves
SD,E = SD′,E . Since B ∼= B′ as E algebras, by Proposition 2.9 there exists a
similitude between XD,d(F ) and XD′,d(F ).
We now apply Proposition 5.3 to conclude that the multiplicity of Π in W is the
same as the multiplicity of ΘXD,d(U) in the space of cusp forms on GO(XD,d,A)
of central character ωπ. By part of Theorem 7.1, this multiplicity is one.
To complete the proof we still must show that if d = 1, Π ∈ Π([π]) and Π
occurs in the space of cusp forms on GSp(2,A), then |TΠ | is even. Let U be a
realization of Π in the space of cusp forms on GSp(2,A) of central character ωπ.
An argument just as above (which just used Π ∈ Π([π]) and nothing about the
parity of |TΠ |) shows that ΘXD′,1(U) is nonzero and cuspidal for some quater-

nion algebra D′ over F . We claim that TΠ is exactly the set of places where
D′ is ramified; this will show that |TΠ | is even. Let v ∈ TΠ . Then by the defi-
nition of TΠ , Πv ∈ RXDram,1

(GSp(2, Fv)). On the other hand, since ΘXD′,1(U)
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is nonzero and cuspidal, Πv ∈ RXD′(Fv),1(Fv)(GSp(2, Fv)) (Proposition 5.3). By

Lemma 8.4, XDram,1(Fv) ∼= XD′(Fv),1(Fv), which implies D′(Fv) is ramified.
Suppose next D′(Fv) is ramified. Again, Πv ∈ RXD′(Fv),1(Fv)(GSp(2, Fv)). By

Lemma 8.4 and the definition of Π([πv]), we must have v ∈ TΠ . ¤
Finally, we prove Theorem 8.6. This result is essentially a restatement of
Theorem 8.5, and will follow immediately from that theorem after we make
some definitions.
First we make the definitions mentioned preceding the statement of Theorem
8.6 in the Introduction. Let F ′ be a local field of characteristic zero, and let E ′

be a quadratic extension of F ′ or E′ = F ′ × F ′; if F ′ is archimedean, assume
F ′ = R and E′ = R×R. If E′ is a field, write E′ = F ′(

√
d); otherwise, let d = 1.

Let τ ′ ∈ Irr(GL(2, E′)) be infinite dimensional and assume the central character

of τ ′ factors through NE′
F ′ via χ′; if F ′ has even residual characteristic, assume

additionally that τ ′ is tempered. By Proposition 2.7 the following sequence is
exact:

1→ E′× → F ′× ×GL(2, E′)
ρa(M2×2,E

′)−−−−−−−→ GSO(XM2×2,d, F
′)→ 1.

Using this exact sequence, define π′ = π(χ′, τ ′) ∈ Irr(GSO(XM2×2,d, F
′)) as in

Section 3. Define ϕ(χ′, τ ′) = ϕ([π′]) and Π(χ′, τ ′) = Π([π′]), where ϕ([π′]) and
Π([π′]) are defined as in Section 4. If E ′ = F ′ × F ′, define

〈·, ·〉F ′ : S(ϕ(χ′, τ ′))×Π(χ′, τ ′)→ C

as follows. If |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| = 1 set 〈·, ·〉F ′ to be identically 1;
if |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| = 2 (see Propositions 4.1 and 4.2) then define
〈·, θM2×2,1(π′+)∨〉F ′ = 1 and let 〈·, θDram,1(π′JL+)∨〉F ′ to be the nontrivial char-
acter of S(ϕ(χ′, τ ′)) = Z2 (see Table 4). The claims from the Introduction
concerning these definitions follow from Propositions 4.1, 4.2 and 4.3.
Next, let E, τ and χ be as in the statement of Theorem 8.6. If E is a field, write
E = F (

√
d); otherwise, let d = 1. By Proposition 2.7 the following sequence is

exact:

1→ A×E → A× ×GL(2,AE)
ρa(M2×2,E)−−−−−−−→ GSO(XM2×2,d,A)→ 1.

Using this exact sequence, define π = π(χ, τ) ∈ Irrtemp
cusp (GSO(XM2×2,d,A)) as

in Section 6.

Proof of Theorem 8.6. This follows from the definitions involved and Theorem
8.5. ¤
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Appendix

p = q p 6= q

λ(GO(X,R)) R× R×>0

[GSp(n,R) : GSp(n,R)+] 1 2

GSp(n,R)+ GSp(n,R) =
R×(Sp(n,R) ∪ Sp(n,R)k0)

Sp(n,R)R×

K+ K = K1 ∪K1k0 K1

GO(X,R) R×(O(X,R) ∪O(X,R)j0) O(X,R)R×
J J1 ∪ J1j0 J1

L (K1 × J1) ∪ (K1 × J1)(k0, j0) K1 × J1

TABLE 1

d6=1

π regular: π → π+ → θM2×2,d
(π+)

π regular or

distinguished

π distinguished:

π+ → θM2×2,d
(π+)

↗
π

↘
π− does not lift to GSp(2,F )

π invariant but

not distinguished

π1 → θM2×2,d
(π1)

↗
π

↘
π2 → θM2×2,d

(π2)

TABLE 2
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d=1

π regular: π → π+ → θM2×2,1
(π+)

π not

essentially

square

integrable

π+ → θM2×2,1
(π+)

↗
π invariant and

hence distinguished:
π

↘
π− does not lift to GSp(2,F )

π regular:

π → π+ → θM2×2,1
(π+)

↓
πJL → πJL+ → θDram,1(πJL+)

π essentially

square

integrable

π invariant and

hence distinguished:

π+ → θM2×2,1
(π+)

↗
π → π− does not lift to GSp(2,F )

↓
πJL → πJL+ → θDram,1(πJL+)

↘
πJL− does not lift to GSp(2,F )

TABLE 3

d [π] Π([π])

1
π not essentially

square integrable
{θM2×2,1

(π+)∨}

1
π essentially

square integrable
{θM2×2,1

(π+)∨,θDram,1(πJL+)∨}

6=1
π regular or invariant

and distinguished
{θM2×2,d

(π+)∨}

6=1
π invariant but

not distinguished
{θM2×2,d

(π1)∨,θM2×2,d
(π2)∨}

TABLE 4
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1 Introduction

Let K be a non-archimedean local field and V a finite-dimensional vector space
over K. In this paper we construct a compactification of the Bruhat-Tits
building X associated to the group PGL(V ) by attaching all the Bruhat-Tits
buildings of PGL(W ) for non-trivial subspaces W of V as a boundary. Since
the vertices of such a building correspond to homothety classes of lattices of full
rank in W , we can also view this process as attaching to X (whose underlying
simplicial complex is defined by lattices of full rank in V ) all the lattices in V
of smaller rank.

This compactification differs from both the Borel-Serre compactification and
Landvogt’s polyhedral compactification of X. The different features of these
three constructions can be illustrated in the case of a three-dimensional V by
looking at the compactification of one apartment:
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Borel-Serre Landvogt Our compactification

In the Borel-Serre compactification, the points on the boundary correspond to
the rays, i.e. to the half-lines emanating from the origin, and parallel lines have
the same limits. In Landvogt’s compactification, parallel lines have different
limit points, whereas the rays in one segment (chamber) all converge to the
corner vertex. In our compactification all rays contained in the two chambers
around a boundary vertex converge to this vertex, and so do lines which are
parallel to the middle axis. The two rays at the boundary of this double
chamber (they look shorter in our picture) converge to points on the boundary
lines, and their parallels converge to different points on these lines.
The idea to attach lattices of smaller rank to compactify X already appeared in
Mustafin’s paper [Mu]. The goal of this paper is a generalization of Mumford’s
p-adic Schottky uniformization to higher dimensions. Mustafin’s construction
and investigation of the compactified building take up about one page. He
works with lattices and defines the compactification as the union of X and
all the lattices in V of smaller rank, i.e. he only uses a set of vertices as the
boundary. His construction remains rather obscure (at least to the author),
and does not include proofs.
The construction of our compactification is based on the same idea of attaching
lattices of smaller rank, but is entirely different. First we compactify one apart-
ment Λ in X (corresponding to a maximal torus T in PGL(V )) by attaching
some apartments of lower dimension corresponding to certain tori which are
quotients of T . We define a continuous action of the normalizer N of T on
this compactification Λ. Then we glue all the compactified apartments cor-
responding to maximal tori in PGL(V ) together. To be precise, we take a
certain compact subgroup U∧0 in G, and we define for each x ∈ Λ a subgroup
Px of G, which turns out later to be the stabilizer of x. Our compactification
X is defined as the quotient of U∧0 × Λ by the following equivalence relation:
(g, x) ∼ (h, y) iff there exists some n in N such that nx = y and g−1hn lies in
Px. This is similar to the construction of the building X.
Then we prove the following results: X is an open, dense subset of X, and X
carries a G-action compatible with the one on X. Besides, X is compact and
contractible and can be identified with the union of all Bruhat-Tits buildings
corresponding to non-zero subspaces W of V .
In order to prove these results, we have to investigate in detail the structure of
our stabilizer groups Px. In particular, we show a mixed Bruhat decomposition
theorem for them.
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It is of course a natural question whether a similar compactification also exists
for other groups. At present, I can see no generalization of this approach
to arbitrary reductive groups, but probably some other cases can be treated
individually. In order to facilitate such generalizations we work in a group
theoretic set up where possible, and do not use the realization of X as the
space of norms up to similarity.
Moreover, it would be interesting to see if there exists an analogue of our
construction in the archimedean world of symmetric spaces.
Acknowledgements: I would like to thank C. Deninger, E. Landvogt and
P. Schneider for helpful discussions concerning this paper.

2 The Bruhat-Tits building for PGL

Throughout this paper we denote by K a non-archimedean local field, by R its
valuation ring and by k the residue class field. Besides, v is the valuation map,
normalized so that it maps a prime element to 1.
We adopt the convention that “⊂” always means strict subset, whereas we
write “⊆”, if equality is permitted.
Let V be an n-dimensional vector space over K. Let us recall the definition of
the Bruhat-Tits building for the group G = PGL(V ) (see [Br-Ti] and [La]).
We fix a maximal K-split torus T and let N = NGT be its normalizer. Note
that T is equal to its centralizer in G. We write G = G(K), T = T(K) and
N = N(K) for the groups of rational points. By X∗(T) respectively X∗(T)
we denote the cocharacter respectively the character group of T. We have a
natural perfect pairing

<,>: X∗(T)×X∗(T) −→ Z
(λ, χ) 7−→< λ, χ >,

where < λ, χ > is the integer such that χ ◦ λ(t) = t<λ,χ> for all t ∈ Gm. Let
Λ be the R-vector space Λ = X∗(T)⊗Z R. We can identify the dual space Λ∗

with X∗(T)⊗Z R, and extend <,> to a pairing

<,>: Λ× Λ∗ −→ R.

Since <,> is perfect, there exists a unique homomorphism ν : T → Λ such
that

< ν(z), χ >= −v(χ(z))

for all z ∈ T and χ ∈ X∗(T) (compare [La], Lemma 1.1). Besides, by [La],
Proposition 1.8, there exists an affine Λ-space A together with a homomorphism
ν : N → Aff(A) extending ν : T → Λ. Here Aff(A) denotes the space of affine
bijections A → A. The pair (A, ν) is unique up to unique isomorphism. It is
called the empty appartment defined by T.
Let g be the Lie algebra of G. We have the root decomposition

g = gT ⊕
⊕

a∈Φ

ga,
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where Φ = Φ(T,G) is the set of roots and where gT = {X ∈ g : Ad(t)X =
X for all t ∈ T} and ga = {X ∈ g : Ad(t)X = a(t)X for all t ∈ T} for all
a ∈ Φ (see [Bo], 8.17 and 21.1). By [Bo], 21.6, Φ is a root system in Λ∗ with
Weyl group W = N/T . For all a ∈ Φ there exists a unique closed, connected,
unipotent subgroup Ua of G which is normalized by T and has Lie algebra ga
(see [Bo], 21.9). We denote the K-rational points of Ua by Ua.
In our case G = PGL(V ) we can describe these data explicitly. Our torus T
is the image of a maximal split torus T∼ in GL(V ). Hence there exists a basis
v1, . . . , vn of V such that T∼ is the group of diagonal matrices in GL(V ) with
respect to v1, . . . , vn. From now on we will fix such a basis. Let N∼ be the
normalizer of T∼ in GL(V ). Then N is the image of N∼ in PGL(V ). Hence
N is the semidirect product of T and the group of permutation matrices, which
is isomorphic to W = N/T .
Since W is the Weyl group corresponding to Φ, it acts as a group of reflections
on Λ, and we have a natural homomorphism

W −→ GL(Λ).

Since Aff(Λ) = Λ o GL(Λ), we can use this map together with ν : T → Λ to
define

ν : N = T oW −→ ΛoGL(Λ) = Aff(Λ).

Hence (Λ, ν) is an empty apartment, and we write from now on A = Λ.
Denote by χi the character

χi : T∼ −→ Gm


t1
. . .

tn


 7−→ ti.

Then for all i and j we have characters aij := χi − χj , and

Φ = {aij : i 6= j}.

For a = aij we define now U∼a as the subgroup of GL(V ) such that U∼a (K)
is the group of matrices U = (ukl)k,l such that the diagonal elements ukk are
equal to one, uij is an element in K and the rest of the entries ukl is zero.
Its image in PGL(V ) is isomorphic to U∼a and coincides with the group Ua.
Define

ψa : Ua −→ Z ∪ {∞}
by mapping the matrix U = (ukl)k,l to v(uij). Then we put for all l ∈ Z

Ua,l = {u ∈ Ua : ψa(u) ≥ l}.

We also define Ua,∞ = {1}, and Ua,−∞ = Ua. An affine function θ : Λ → R
of the form θ(x) = a(x) + l for some a ∈ Φ and some l ∈ Z is called an affine
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root. We can define an equivalence relation ∼ on Λ as follows:

x ∼ y iff θ(x) and θ(y) have the same sign

or are both equal to 0 for all affine roots θ.

The equivalence classes with respect to this relation are called the faces of Λ.
These faces are simplices which partition Λ (see [Bou], V, 3.9). There exists a
W -invariant scalar product on Λ (uniquely determined up to scalar factor), see
[Bou], VI, 1.1 and 1.2, and all the reflections at affine hyperplanes are contained
in ν(N).
For all x ∈ Λ let Ux be the group generated by Ua,−a(x) = {u ∈ Ua : ψa(u) ≥
−a(x)} for all a ∈ Φ. Besides, put Nx = {n ∈ N : ν(n)x = x}, and

Px = UxNx = NxUx.

Now we are ready to define the building X = X(PGL(V )) as

X = G× Λ/ ∼,

where the equivalence relation ∼ is defined as follows (see [La], 13.1):

(g, x) ∼ (h, y) iff there exists an element n ∈ N
such that ν(n)x = y and g−1hn ∈ Px.

We have a natural action of G on X via left multiplication on the first factor.
The G-action on X continues the N -action on Λ, so that we will write nx for
our old ν(n)x if x ∈ Λ and n ∈ N . Besides, we can embed the apartment
Λ in X, mapping a ∈ Λ to the class of (1, a). (This is injective, see [La],
Lemma 13.2.) For x ∈ Λ the group Px is the stabilizer of x. A subset of X
of the form gΛ for some g ∈ G is called apartment in X. Similarly, we define
the faces in gΛ as the subsets gF , where F is a face in Λ. Then two points
(and even two faces) in X are always contained in a common apartment ([La],
Proposition 13.12 and [Br-Ti], 7.4.18). Any apartment which contains a point
of a face contains the whole face, and even its closure (see [La], 13.10, 13.11, and
[Br-Ti], 7.4.13, 7.4.14). We fix once and for all a W -invariant scalar product
on Λ, which induces a metric on Λ. Using the G-action it can be continued to
a metric d on the whole of X (see [La], 13.14 and [Br-Ti], 7.4.20).
Note that if n = 2, then X is an infinite regular tree, with q+ 1 edges meeting
in every vertex, where q is the cardinality of the residue field.
We denote by X0 the set of vertices (i.e. 0-dimensional faces) in X. We define
a simplex in X0 to be a subset {x1, . . . , xk} of X0 such that x1, . . . , xk are the
vertices of a face in X.
Let ηi : Gm → T be the cocharacter induced by mapping x to the diagonal
matrix with diagonal entries d1, . . . , dn such that dk = 1 for k 6= i and di = x.
Then η1, . . . , ηn−1 is an R-basis of Λ, and the set of vertices in Λ is equal to⊕n−1

i=1 Zηi.
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Let L be the set of all homothety classes of R-lattices of full rank in V . We
write {M} for the class of a lattice M . Two different lattice classes {M ′} and
{N ′} are called adjacent, if there are representatives M and N of {M ′} and
{N ′} such that

πN ⊂M ⊂ N.
This relation defines a flag complex, namely the simplicial complex with vertex
set L such that the simplices are the sets of pairwise adjacent lattice classes.
We have a natural G-action on L preserving the simplicial structure.
Moreover, there is a G-equivariant bijection

ϕ : L −→ X0

preserving the simplicial structures. If {N} ∈ L can be written as {N} = g{M}
for some g ∈ G and M = πk1Rv1 + . . .+ πknRvn, then ϕ({N}) is given by the
pair (g, ϕ{M}) ∈ G× Λ, where

ϕ({M}) =

n−1∑

i=1

(kn − ki)ηi

is a vertex in Λ.

3 Compactification of one apartment

We write n for the set {1, . . . , n}. We continue to fix the basis v1, . . . , vn of V

and the maximally split torus T from section 2. Recall that Λ =
⊕n−1

i=1 Rηi, and
that ηn satisfies the relation η1+. . .+ηn = 0. We will often write Λ =

∑n
i=1 Rηi,

bearing this relation in mind.
Let now I be a non-empty subset of n, and let VI be the subspace of V generated
by the vi for i ∈ I. We write GVI for the subgroup of G = PGL(V ) consisting
of the elements fixing the subspace VI , and GI for the group PGL(VI). Then
we have a natural restriction map

ρI : GVI −→ GI .

The torus T is contained in GVI , and its image under ρI is a maximal K-split
torus TI in GI , namely the torus induced by the diagonal matrices with respect
to the base {vi : i ∈ I} of VI . As usual, we write TI , GI and GVI for the groups
of K-rational points.
We put ΛI = X∗(TI) ⊗Z R. Then ρI induces a surjective homomorphism
ρI∗ : X∗(T)→ X∗(TI), hence a surjective homomorphism of R-vector spaces

rI : Λ −→ ΛI .

For all i ∈ I we write ηIi for the cocharacter of TI induced by mapping x to
the diagonal matrix with entry x at the i-th place, i.e. ηIi = ρI∗ηi.
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Then ΛI =
∑
i∈I RηIi , subject to the relation

∑
i∈I η

I
i = 0. In particular,

Λ{i} = 0. Note that rI(
∑n
i=1 xiηi) =

∑
i∈I xiη

I
i .

Let νI : TI → ΛI be the unique homomorphism satisfying < νI(z), χ >=
−v(χ(z)) for all χ ∈ X∗(TI). It is compatible with ν, i.e. the following
diagram is commutative:

T
ν−−−−→ Λ

ρI

y
yrI

TI
νI−−−−→ ΛI

Now we define
Λ = Λ ∪

⋃

∅6=I⊂n
ΛI =

⋃

∅6=I⊆n
ΛI .

Recall that we write “⊂” for a strict subset, and “⊆” if equality is permitted.
Here Λn = Λ and rn is the identity.

Let us now define a topology on Λ. For all I ⊂ n we put

DI =
∑

i/∈I
R≥0(−ηi).

We think of DI as a “corner” around ΛI . For all open and bounded subsets
U ⊂ Λ we define

CIU = (U +DI) ∪
⋃

I⊆J⊂n
rJ(U +DI).

We take as a base of our topology on Λ the open subsets of Λ together with
these sets CIU for all non-empty I ⊂ n and all open bounded subsets U of Λ.
Note that every point x ∈ Λ has a countable fundamental system of neighbor-
hoods. This is clear for x ∈ Λ. If x is in ΛI for some I ⊂ n, then choose some
z ∈ Λ with rIz = x, and choose a countable decreasing fundamental system of
bounded open neighborhoods (Vk)k≥1 of z in Λ. Put Uk = Vk +

∑
i/∈I k(−ηi).

This is an open neighborhood of z + k
∑
i/∈I(−ηi). Then (CIUk)k≥1 is a funda-

mental system of open neighborhoods of x.
Hopefully the next result will shed some light on the definition of the topological
space Λ.
Recall from section 2, that we have a G-equivariant bijection ϕ between equiv-
alence classes of lattices of full rank in V and vertices in the building X. If we
restrict ϕ to lattices which can be diagonalized with respect to v1, . . . , vn, i.e.
which have an R-basis consisting of multiples of these elements, then we get a
bijection between these diagonal lattices and vertices in Λ. Applying this to
the group GI = PGL(VI), we get a bijection ϕI between classes of diagonal
lattices in VI with respect to the vi for i ∈ I, and vertices in ΛI .

Proposition 3.1 Let (Mk)k≥1 be a sequence of diagonal lattices in V and let
N be a diagonal lattice in VI . The sequence of vertices ϕ({Mk}) converges to the
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vertex ϕI({N}) ∈ ΛI in our topology on Λ iff after passing to a subsequence
there are lattices M ′k equivalent to Mk such that M ′k+1 ⊆ M ′k and such that⋂
kM

′
k is equivalent to N .

Proof: We can write M ′k =
⊕n

i=1 π
ai,kRvi for some integers ai,k. Since

M ′k+1 ⊂ M ′k, we have ai,k+1 ≥ ai,k. Therefore for all i the sequence ai,k
becomes stationary or goes to infinity, so that

⋂
kM

′
k =

⊕
i∈I′ π

aiRvi, where
I ′ is the set of all i, such that ai,k becomes stationary, i.e. ai,k = ai for all k
big enough. Let us call this intersection module N ′. It is a lattice in VI′ , and
by assumption equivalent to N , so that I = I ′.
Besides, we have ϕ({M ′k}) =

∑n
i=1(−ai,k)ηi, and ϕI({N ′}) =

∑
i∈I(−ai)ηIi . If

k is big enough, we have ϕ({M ′k}) =
∑
i∈I(−ai)ηi +

∑
i/∈I(−ai,k)ηi, with ai,k

arbitrarily large. If we take one of the systems of fundamental neighborhoods
of ϕI({N}) = ϕI({N ′}) constructed previously, we find that every one of them
must contain a point ϕ({M ′k}), so that ϕ({Mk}) converges indeed to ϕI({N}).
To prove the other direction, assume that ϕ({Mk}) converges to ϕI({N}) for
Mk =

⊕n
i=1 π

ai,kRvi and N =
⊕

i∈I π
biRvi. Looking at the fundamental

neighborhoods as above, we find that for any fixed i0 ∈ I the sequence ai,k −
ai0,k is unbounded for i /∈ I, and goes to bi − bi0 for i ∈ I. This implies our
claim. ¤
We will now show that the space Λ is compact.
Fix some i ∈ n. We write Di for D{i} =

∑
j 6=iR≥0(−ηj), the “corner in Λ

around the point Λ{i}”. Besides, let

Ei = Di ∪
⋃

i∈J⊂n
rJ(Di) ⊂ Λ,

the “closed corner in Λ around the point Λ{i}”.

Lemma 3.2 i) Each point in Λ lies in one of the Ei.
ii) Each Ei is closed in Λ.

Proof: i) Let x =
∑n
j=1 xj(−ηj) be a point in Λ. Note that the relation∑n

j=1 ηj = 0 implies that we can write x =
∑
j 6=i(xj − xi)(−ηj) for all i. Now

Ei ∩ Λ = Di is the set of all x such that all xj − xi are non-negative. In other
words, a point x =

∑n
j=1 xj(−ηj) is in Di iff xi is the minimum of all the

coefficients xj . This implies that for given x we always find some Ei containing
it. As similar argument holds if x is contained in a boundary piece ΛJ , since
if J contains i, the boundary piece Ei ∩ΛJ is the set of all x =

∑
j∈J xj(−ηJj )

such that xi is the minimum of all the xj for j ∈ J . (If i is not contained in J ,
then of course Ei ∩ ΛJ is empty.)
ii) Take some x ∈ Λ not contained in Ei. Then x is in some ΛJ for J ⊆ n
(possibly n). Since the point Λ{i} is contained in Ei, we know that J 6= {i}.
Let us first assume that i is contained in J . We write x =

∑
j∈J,j 6=i xj(−ηJj ).

Since x is not in Ei, our considerations in part i) imply that one of the xj
for j ∈ J , say xj0 , must be negative. The point z =

∑
j∈J,j 6=i xj(−ηj) in Λ
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projects to x, i.e. rJ (z) = x. This point must also be in the complement of Ei.
Since Ei ∩ Λ = Di is closed, we find a bounded open neighborhood U of z in
Λ which is disjoint from Ei, and which contains only points y =

∑
j 6=i yj(−ηj)

with yj0 < 0. Then the open neighborhood CJU of x is also disjoint from Ei,
which proves our claim.
If i /∈ J and x =

∑
j∈J xj(−ηJj ), we choose some j0 ∈ J and some xi > xj0 .

The point z =
∑
j∈J xj(−ηj) + xi(−ηi) ∈ Λ is not contained in Ei. Hence we

can again find a bounded open neighborhood U of z in Λ which is disjoint from
Ei, and which contains only points y =

∑
j 6=i yj(−ηj) with yj0 < 0. Then CJU

is an open neighborhood of x contained in the complement of Ei. ¤
Let R≥0,∞ be the compactified half-line R≥0∪{∞} with the topology generated
by all intervals [0, a[, ]b, c[ and ]b,∞] for a > 0 and b, c ≥ 0. The space R≥0,∞
is compact and contractible. A contraction map r : R≥0,∞ × [0, 1]→ R≥0,∞ is
given by

r(x, t) =
(1− t)x
1 + tx

for x ∈ R, and r(∞, t) =

{
∞, if t = 0
1−t
t , if t 6= 0

,

see [La], 2.1. Let us fix some i ∈ n. We will now compare Ei to Rn−1
≥0,∞, which we

write as
⊕

j 6=iR≥0,∞ej for a basis ej . Recall from the proof of Lemma 3.2 that

in the case i ∈ I we can describe Ei∩ΛI as the set of all x =
∑
j∈I,j 6=i xj(−ηIj )

with non-negative xj . Hence the following map is a bijection

αI : Ei ∩ ΛI → {
∑

j 6=i
xjej ∈

⊕

j 6=i
R≥0,∞ej : xj =∞ iff j /∈ I}

∑
j∈I,j 6=i xj(−ηIj ) 7→

∑

j∈I,j 6=i
xjej +

∑

j /∈I
∞ ej .

For I = n the map αn : Ei ∩ Λ = Di →
⊕

j 6=i R≥0ej can be continued to a
homomorphism of R-vector spaces

αΛ : Λ −→
⊕

j 6=i
Rej ,

which is a homeomorphism. Putting all the maps αI together, we get a bijection

α : Ei −→
⊕

j 6=i
R≥0,∞ej ,

whose restriction to Ei ∩ Λ is a homeomorphism. We even have the following
fact:

Lemma 3.3 With respect to the topology on Ei induced by Λ, the map α is a
homeomorphism on the whole of Ei.

Proof: For all j 6= i choose an open interval Aj in R≥0,∞, which is either of
the form Aj = [0, aj [ or Aj =]bj , cj [ or of the form Aj =]bj ,∞]. We claim that
the preimage of A =

∑
j 6=iAjej is open in Ei.
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We put A′j =] − 1, aj [, if Aj = [0, aj [. In all the other cases we put A′j = Aj .
Let A′ =

∑
j 6=iA

′
jej and put

W = α−1
Λ (A′ ∩

⊕

j 6=i
Rej).

Since αΛ is a homeomorphism, W is open in Λ. Obviously, we have W ∩Ei =
α−1(A) ∩ Λ. Now put

I = {j ∈ n :∞ /∈ Aj} ∪ {i}.

We can assume that I 6= n. Choose some positive real number b strictly bigger
than all the bj for j /∈ I. Then U = W ∩{x =

∑
j 6=i xj(−ηj) : xj < b for j /∈ I}

is an open bounded subset of Λ. Note that U + DI = W . We claim that
α−1(A) = CIU ∩ Ei.
Indeed, every element u in W = U + DI can be written as u =

∑
j 6=i xj(−ηj)

with xj ∈ A′j . Let J be a subset of n containing I. If rJ (u) =
∑
j∈J,j 6=i xj(−ηJj )

is in Ei, we have xj ∈ Aj for all j ∈ J not equal to i. This implies that α(rJ (u))
is contained in A. On the other hand, let y =

∑
j 6=i yjej be an element in A,

i.e. yj ∈ Aj . Put J = {j 6= i : yj 6= ∞} ∪ {i}. Then J contains I. We put
xj = yj , if j 6= i is in J . If j /∈ J , we choose an arbitrary element in Aj ∩ R
and call it xj . Then x =

∑
j 6=i xj(−ηj) is contained in W ∩Di, so that rJ(x)

is an element in CIU ∩ Ei which satisfies α(rJ (x)) = y. Hence we also find
α−1(A) ⊂ CIU ∩ Ei.
Therefore α is continuous. It remains to show that α is open. Let U be an
open, bounded subset of Λ and I ⊂ n non-empty. We will show that α(CIU∩Ei)
is open. Let x be a point in CIU ∩ Ei lying in ΛJ for some J containing I and
i. Hence x =

∑
j∈J,j 6=i xj(−ηJj ) with non-negative xj . Since x is contained in

CIU , we can find some z =
∑
j 6=i zj(−ηj) in U +DI such that rJ(z) = x (hence

zj ≥ 0 for j ∈ J) and zj > 0 for j /∈ J . Then z ∈ (U +DI) ∩ Ei.
Since the restriction of α to Ei ∩ Λ is open, we find open intervals Aj (of the
form [0, aj [ or ]bj , cj [) in R≥0 such that A =

∑
j 6=iAjej is an open neighborhood

of α(z) in
⊕

j 6=iR≥0ej which is contained in α((U + DI) ∩ Ei). We can also
assume that for j /∈ J the interval Aj does not contain 0.
Now put A′j = Aj if j 6= i is contained in J , and put A′j =]bj ,∞] if j is not
contained in J , and Aj =]bj , cj [. (The interval Aj looks indeed like this since
we took care to stay away from zero.)
It is easy to see that A′ =

∑
j 6=iA

′
jej is contained in α(CIU ∩ Ei). Hence we

found an open neighborhood A′ around α(x) in α(CIU ∩ Ei). ¤

Theorem 3.4 The topological space Λ is compact and contractible, and Λ is
an open, dense subset of Λ.

Proof: By the previous result, all Ei are compact and contractible. Since Λ
is the union of the Ei, it is also compact. A straightforward calculation shows
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that the contraction maps are compatible, so that Λ is contractible. It is clear
that Λ is open and dense in Λ. ¤
Our next goal is to extend the action of N on Λ to a continuous action on the
compactification Λ. Recall that we identified W with the group of permutation
matrices in N , so that N = T o W . For w ∈ W we denote the induced
permutation of the set n also by w, i.e. we abuse notation so that w(vi) = vw(i).
Let I be a non-empty subset of n. We define a map

w : ΛI −→ Λw(I)

by sending ηIi to η
w(I)
w(i) . This gives an action of W on Λ. Note that it is

compatible with rJ , i.e. we have

w ◦ rJ = rw(J) ◦ w

on Λ. Besides, we can combine the maps νI : TI → ΛI with the restriction
map ρI : T → TI to define a map νI ◦ ρI : T → ΛI , so that T acts by affine
transformations on ΛI . Recall that rI(ν(t)) = νI(ρI(t)) for all t ∈ T .
It is easy to check that these two actions give rise to an action of N = T oW
on Λ, which we denote by ν.

Lemma 3.5 The action ν : N × Λ −→ Λ is continuous and extends the action
of N on Λ.

Proof: Let first w be an element of W , and let CIU one of our open basis
sets. Then ν(w)(U + DI) = ν(w)(U) + Dw(I), since ν(w) is a linear map on
Λ. Besides, we have ν(w)(rJ (U + DI)) = rw(J)(ν(w)(U) + Dw(I)), so that

ν(w)(CIU ) = C
w(I)
ν(w)(U).

Now take some element t ∈ T . Then ν(t)(U +DI) = ν(t)(U) +DI , since ν(t)
acts by translation. Besides, we have ν(t)(rJ (U +DI)) = rJ(ν(t)(U +DI)), so
that ν(t)(CIU ) = CIν(t)(U).

Hence for all n ∈ N the action ν(n) on Λ is continuous. Since the kernel of the
map ν : T → Λ is an open subgroup of N (see [La], Prop. 1.2), which obviously
acts trivially on Λ, we find that the action is indeed continuous. ¤

4 Compactification of the building

We can now define the compactification of the building X. For all non-empty
subsets Ω of Λ and all roots a ∈ Φ we put

fΩ(a) = inf {t : Ω ⊆ {z ∈ Λ : a(z) ≥ −t}}
= − sup{t : Ω ⊆ {z ∈ Λ : a(z) ≥ t}}

Here we put inf ∅ = supR =∞ and inf R = sup ∅ = −∞. Moreover, if Ω = {x}
consists of one point only, then we write fx(a) = f{x}(a). Note that

fx(a) = −a(x) for all x ∈ Λ,
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and that
fΩ1

(a) ≤ fΩ2
(a), if Ω1 ⊆ Ω2.

Recall our generalized valuation map ψa : Ua → Z ∪ {∞} from section 2. We
can now define a subgroup

Ua,Ω = Ua,fΩ(a) = {u ∈ Ua : ψa(u) ≥ fΩ(a)}

of Ua, where Ua,∞ = 1 and Ua,−∞ = Ua. By UΩ we denote the subgroup of
G generated by all the Ua,Ω for roots a ∈ Φ. Note that if Ω = {x} for some
point x ∈ Λ, then this coincides with our previous definition of Ux. We will
now investigate these groups Ux for boundary points of Λ.

Proposition 4.1 Recall that we denote by aij the root of T induced by the
character χi − χj. Put a = aij , and let x be a point in ΛI for some I ⊆ n.
i) If j /∈ I, we have fx(a) = −∞, so that Ua,x is the whole group Ua.
ii) If j ∈ I and i /∈ I, then we have fx(a) =∞, so that Ua,x = 1.
iii) If i and j are contained in I, then a is equal to ρ∗I(b) for some root b of
the torus TI in GI . In this case we have fx(a) = −b(x). For any z ∈ Λ with
rI(z) = x we also have fx(a) = −a(z).

Proof: i) Choose some z ∈ Λ such that rI(z) = x. If i is contained in I, put
zk = z+

∑
l/∈I k(−ηl). If i is not in I, then we define zk = z+

∑
l/∈I,l 6=j k(−ηl)−

2kηj . In both cases we find that a(zk) equals a(z) +k, hence it goes to infinity.
Since the zk converge to x, we find that x lies indeed in the closure of any set
of the form {a ≥ s}, which implies our claim.
ii) We choose again some z ∈ Λ with rI(z) = x. Let Vk be a countable
decreasing fundamental system of bounded open neighborhoods of z. This
defines a fundamental system of open neighborhoods CIUk around x, where
Uk = Vk +

∑
i/∈I k(−ηi). Now suppose that x is contained in the closure of the

set {z ∈ Λ : a(z) ≥ s}. Then we find for all k some yk in CIUk ∩ Λ satisfying
a(yk) ≥ s. We can write yk = zk+λk for some zk ∈ Vk and λk =

∑
l/∈I λk,l(−ηl)

with λk,l ≥ k. Now a(zk) is bounded, but a(λk) = −λk,i, so that a(yk) cannot
be bounded from below. Hence we find indeed that fx(a) must be ∞.
iii) Recall that GI is the group PGL(VI), and TI is the maximal K-split torus
induced by the diagonal matrices with respect to the vi for i ∈ I. Then the
root system corresponding to TI and GI is

ΦI = {bij : i 6= j in I}

where bij is the character mapping a diagonal matrix with entries ti for i ∈ I
to ti/tj . Hence it is clear that in our case i, j ∈ I the root a = ai,j of T is
induced by the root b = bij of TI . Note that this implies that for all z ∈ Λ we
have a(z) = b(rI(z)).
It suffices to show that

{z ∈ Λ : a(z) ≥ s} ∩ ΛI = {x ∈ ΛI : b(x) ≥ s}.
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Take some x contained in the left hand side, and choose some z ∈ Λ with
rI(z) = x. Besides, we take again fundamental neighborhoods Vk around z
and use them to construct the open neighborhoods CIUk around x. Each CIUk
must contain some yk ∈ Λ satisfying a(yk) ≥ s. Note that we can write
yk = zk + λk, where zk is in Vk and λk is a linear combination of ηi for i /∈ I.
Besides a(yk) = a(zk), so that the sequence of a(yk) converges to a(z). Since
all a(yk) are ≥ s, we find b(x) = b(rIz) = a(z) ≥ s.
On the other hand, suppose that x is a point in ΛI satisfying b(x) ≥ s. Again,
we choose some z ∈ Λ with rI(z) = x, and neighborhoods Vk around z. For
any k the point zk = z + k

∑
l/∈I(−ηl) lies in CIUk . Besides, a(zk) = a(z) =

b(rI(z)) = b(x) is bounded below by s. This implies that x lies indeed in the
closure of {z ∈ Λ : a(z) ≥ s}. ¤

Proposition 4.2 Let x be in ΛI and let a = aij ∈ Φ be a root.
i) Each Ua,x (and hence also Ux) leaves the vector space VI invariant. Hence
Ua,x is contained in GVI .
ii) If i and j are not both in I, we have ρI(Ua,x) = 1. If i and j are both in I,
and the root a is induced by the root b of TI , then ρI induces an isomorphism
Ua,x → U Ib,x, where U Ib,x is defined with the root group U Ib in GI as described
in section 2.

Proof: Recall that u ∈ Ua maps vl to itself, if l is not equal to j, and it
maps vj to vj + ωvi, where ψa(u) = v(ω). Hence our claim in i) is clear if j is
not contained in I or if both i and j are contained in I. In the remaining case
we saw in 4.1 that Ua,x is trivial, so that i) holds in any case.
Let us now prove ii). If j is not contained in I, then each u ∈ Ua induces the
identity map on VI . If j is in I, but i is not, then Ua,x is trivial. Hence in both
cases we find that ρI(Ua,x) = 1. Let us assume that both i and j are contained
in I, and let u be an element of Ua,x. Then ρI(u) ∈ PGL(VI) is induced by
the matrix mapping vl to vl for all l 6= j in I, and vj to vj + ωvi with some ω
having valuation ≥ fx(a). By our description of the groups U Ib in section 2 we
find that ρI(u) is contained in U Ib and has valuation ψb(ρIx) = v(ω) ≥ fx(a).
By 4.1, fx(a) = −b(x), so that ρI(u) lies indeed in U Ib,x. The homomorphism

ρI : Ua,x → U Ib,x is obviously bijective. ¤
Note that the map x 7→ fx(a) is in general not continuous on Λ. Take some
z ∈ Λ and define a sequence xk = z +

∑
i/∈I k(−ηi) for some non-empty I

such that the complement n\I contains at least two elements i and j. Then
a = aij has the property that a(xk) = a(z), so that fxk(a) is constant. But
the sequence xk converges to the point rI(z) in ΛI , for which frI(z)(a) = −∞
holds.
Nevertheless, we have the following result:

Lemma 4.3 Let xk be a sequence of points in Λ, which converges to x ∈ Λ. Let
uk ∈ Ua,xk be a sequence of elements, converging to some u in the big group
Ua. Then u lies in fact in Ua,x.
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Proof: Note first of all, that the statement is clear if fx(a) = −∞, since
then Ua,x = Ua. It is also clear if fxk(a) converges to fx(a), since the map
ψa : Ua → Z ∪ {∞} is continuous. Assume that fx(a) = ∞. Then any set
{z : a(z) ≥ s} contains only finitely many elements xk. This implies that the
sequence fxk(a) goes to ∞ = fx(a), so that in this case our claim holds by
continuity.
The only case which is left is that fx(a) is real. Assume that x ∈ ΛI . By 4.1,
we must have a = aij with i and j in I. Choose some z ∈ Λ with rI(z) = x,
and a decreasing fundamental system of open neighborhoods Vk around z. As
before, we use them to define neighborhoods CIUk around x. Since xk converges

to x, we can assume that xk is contained in CIUk . Then xk ∈ ΛJk for some Jk
containing I. By definition of CIUk we find some yk ∈ Vk and some coefficients
αl such that zk = yk +

∑
l/∈I αl(−ηl) satisfies rJk(zk) = xk. By 4.1 we have

fxk(a) = −a(zk) = −a(yk) and fx(a) = −a(z). Hence fxk(a) converges to
fx(a), and our claim follows again by continuity. ¤
Proposition 4.4 For x ∈ Λ, n ∈ N and a ∈ Φ we have

nUa,xn
−1 = Un(a),ν(n)(x),

where ν denotes the action of N on Λ, and n 7→ n denotes the quotient map
from N to the Weyl group W (which acts on the roots). In particular, we have
nUxn

−1 = Uν(n)(x).

Proof: Fix some n ∈ N and denote by p the permutation matrix mapping
to n, i.e. n = tp for some t ∈ T . We denote by p also the corresponding
permutation of n. If a = aij , then n(a) = ap(i)p(j). By 4.1 we find that
if x ∈ ΛI and j /∈ I both fx(a) and fν(n)(x)(na) are equal to −∞. Since
nUan

−1 = Una, our claim holds in this case. Similarly, if j ∈ I and i /∈ I both
fx(a) and fν(n)(x)(na) are equal to ∞, so that both Ua,x and Una,ν(n)(x) are
trivial.
We can therefore assume that x is in some ΛI such that both i and j are
contained in I. Recall that we composed the action of N on Λ from the natural
action of the Weyl group on Λ and translation by ν(t) for elements in the torus
T . Hence for all z ∈ Λ we have ν(n)(z) = ν(n)(0)+n(z). We can now calculate

a(ν(n)(z)) = a(ν(n)(0)) + a(n(z))

= a(ν(n)(0)) + (n−1a)(z),

so that ν(n−1){z ∈ Λ : (na)(z) ≥ s} = {z ∈ Λ : a(z) ≥ a(ν(n−1)(0)) + s}.
Since ν(n−1) is a homeomorphism, we also have

ν(n−1){z : na(z) ≥ s} = {z : a(z) ≥ a(ν(n−1)(0)) + s}.
Hence

fν(n)(x)(n(a)) = inf{t : ν(n)(x) ∈ {n(a) ≥ −t}}
= inf{t : x ∈ {z : a(z) ≥ a(ν(n−1)(0))− t}}
= fx(a) + a(ν(n−1)(0)).
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Since we have nUa,sn
−1 = Un(a),s+a(ν(n−1)(0)) for all real numbers s (see [La],

11.6), we find that indeed

nUa,xn
−1 = Un(a),fx(a)+a(ν(n−1)(0)) = Un(a),fν(n)(x)(n(a)) = Un(a),ν(n)(x),

whence our claim. ¤
Recall that - forgetting about the special nature of our ground field - our
root system Φ in Λ∗ defines a finite set of hyperplanes in Λ∗ and therefore a
decomposition of Λ∗ into faces (see [Bou],V,1). The maximal faces are called
(spherical) chambers. Any chamber defines an order on Λ∗ ([Bou], VI, 1.6).
We denote the positive roots with respect to this order by Φ+ = Φ+(C), and
the negative roots by Φ− = Φ−(C). In fact, for any subset Ψ of Φ such that
Ψ is additively closed and Φ is the disjoint union of Ψ and −Ψ, there exists a
chamber C such that Ψ = Φ+(C) (see [Bou], VI, 1.7). In particular, Φ− is the
set of positive roots for a suitable chamber.
The following lemma will be useful to reduce claims about the groups Ua,Ω for
Ω ⊂ Λ to claims about subsets of Λ, where we can apply the “usual” theory of
the Bruhat-Tits building.

Lemma 4.5 Let Ω ⊂ Λ be a non-empty set, and fix some chamber C. Put
Φ+ = Φ+(C). Assume that for every a ∈ Φ+ we have m elements

ua,1, . . . , ua,m ∈ Ua,Ω,

such that at least one of all these ua,i’s is non-trivial. Then there exists a non-
empty subset Ω′ of Λ such that ua,i ∈ Ua,Ω′ for all i = 1, . . . ,m and such that

Ω ⊂ Ω
′
. In particular, we have Ua,Ω′ ⊂ Ua,Ω for all roots a ∈ Φ.

Proof: We denote by la the infimum of all ψa(ua,i) for i = 1, . . . ,m. If all
ua,i are trivial, then la =∞. This cannot happen for all a ∈ Φ+. Then we put

Ω′a = {z ∈ Λ : a(z) ≥ −la}.

(If la = ∞, then Ω′a = Λ.) Besides, put Ω′ = Λ ∩ ⋂a∈Φ+ Ω′a. Note that Ω′

contains the intersection of all sets {z ∈ Λ : a(z) ≥ −la} for a ∈ Φ+. If l is the
minimum of all the la, then this set contains all z ∈ Λ satisfying a(z) ≥ −l for
all a ∈ Φ+. By looking at a base of Φ corresponding to Φ+, we see that such
z’s exist. Hence Ω′ is non-empty.
By construction, fΩ′a(a) = la, and the inclusion Ω′ ⊂ Ω′a gives us fΩ′(a) ≤
fΩ′a(a). Therefore ψa(ua,i) ≥ la ≥ fΩ′(a), which implies that ua,i is indeed

contained in Ua,Ω′ for all i = 1, . . . ,m. It remains to show that Ω ⊂ Ω
′
.

Since fΩ′(a) = fΩ
′(a) for all roots a, this implies that fΩ(a) ≤ fΩ′(a), hence

Ua,Ω′ ⊂ Ua,Ω for all a ∈ Φ.
We are done if we prove the following claim:

(∗) For any Ψ ⊆ Φ+ and real numbers sawe have
⋂

a∈Ψ

{a ≥ sa} =
⋂

a∈Ψ

{a ≥ sa}.
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It is clear that the right hand side is contained in the left hand side. So suppose
x is an element in

⋂
a∈Ψ{a ≥ sa}. Let I be the subset of n such that x ∈ ΛI .

We choose a system of open neighborhoods Vk of some point in Λ projecting
to x and construct CIUk . We are done if we can show that any CIUk intersects⋂
a∈Ψ{a ≥ sa} non-trivially. Let zk be a point in Uk = Vk + k

∑
l/∈I(−ηl) with

rI(zk) = x. Besides, let sk be the maximum of 0 and all the numbers sa−a(zk)
for all a ∈ Ψ.
Note that Φ+ defines a linear ordering of the set n = {1, . . . , n}, namely i ≺ j,
iff aij ∈ Φ+. Hence there is a permutation π of n satisfying π(1) ≺ π(2) ≺
. . . ≺ π(n). Put z = zk −

∑
l/∈I(k + π−1(l)sk)ηl. This is an element of CIUk . It

remains to show that indeed a(z) ≥ sa for all a ∈ Ψ.
Let a = aij be a root in Ψ. If both i and j are in I, we can apply 4.1 to deduce
a(z) = a(zk) = −fx(a) ≥ sa. Since x is contained in {a ≥ sa}, it cannot
happen that j is in I, but i is not. If j is not in I, we find that

a(z) =

{
a(zk) + k + π−1(j)sk ≥ sa ,if i ∈ I

a(zk) + (π−1(j)− π−1(i))sk ≥ sa ,if i /∈ I ,

since a ∈ Φ+ implies that π−1(i) < π−1(j). Hence we get a(z) ≥ sa for all
a ∈ Ψ, which proves (∗). ¤

Corollary 4.6 Assume that a and b are roots in Φ which are not linear
equivalent (i.e. a 6= ±b), and so that a+ b is in Φ. If both fΩ(a) and fΩ(b) are
real numbers, then

fΩ(a+ b) ≤ fΩ(a) + fΩ(b).

If fΩ(a) = −∞ and fΩ(b) 6=∞, then fΩ(a+ b) = −∞.

Proof: By (∗) in the proof of the preceding lemma, we have

{a ≥ s} ∩ {b ≥ r} = {a ≥ s, b ≥ r} ⊂ {a+ b ≥ s+ r},

which implies our claim. ¤
Recall that UΩ is the subgroup of G generated by all the Ua,Ω. Now we prove
a statement about the structure of these groups UΩ which will we crucial for
our later results.
For Φ+ = Φ+(C) we denote by UΦ+ the corresponding subgroup of G (see
[Bo], 21.9), and by UΦ+ the set of K-rational points. Similarly, we have UΦ−

and UΦ− . For any non-empty subset Ω of Λ define

U+
Ω = UΦ+ ∩ UΩ and U−Ω = UΦ− ∩ UΩ.

Of course, these groups depend on the choice of some chamber C. We can use
them to get some information about UΩ.

Theorem 4.7 i) The multiplication map induces a bijection

∏

a∈Φ±

Ua,Ω −→ U±Ω ,
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where the product on the left hand side may be taken in arbitrary order.
ii) Ua ∩ UΩ = Ua,Ω for all a ∈ Φ.
iii) UΩ = U−Ω U

+
Ω (N ∩ UΩ).

Proof: Note that by [La], 12.5, our claim holds for all non-empty subsets
Ω ⊂ Λ. Now take Ω ⊆ Λ, and denote by La the group generated by Ua,Ω and
U−a,Ω, and by Y the subgroup of N generated by all N ∩ La for a ∈ Φ. For
all a ∈ Φ+ choose an element ua ∈ Ua,Ω. By 4.5 we find a subset Ω′ of Λ such
that ua ∈ Ua,Ω′ . Hence by [La], 12.5, the product of the ua in arbitrary order
lies in U+

Ω′ ⊂ U+
Ω .

A similar argument using 4.5 shows that the image of
∏
a∈Φ+ Ua,Ω under the

multiplication map is indeed a subgroup of U+
Ω , which is independent of the

ordering of the factors. We denote it by H+. Similarly, we define the subgroup
H− of U−Ω as the image of

∏
a∈Φ− Ua,Ω under the multiplication map. Now

we can imitate the argument in [La], Proposition 8.9, to prove that the set
H−H+Y does not depend on the choice of the chamber defining Φ+ and is
invariant under multiplication from the left by Y and Ua,Ω for arbitrary roots
a ∈ Φ. Hence H−H+Y = UΩ.
Since UΦ+∩UΦ− = {1} and N∩UΦ+UΦ− = {1} (by [BoTi], 5.15), we find U−Ω =
(H−H+Y ) ∩ UΦ− = H− and U+

Ω = H+, which proves i) and ii). Similarly,
N ∩ UΩ = Y , whence iii). ¤
For any subset Ω of Λ we write NΩ = {n ∈ N : ν(n)x = x for all x ∈ Ω}.
Besides, put

PΩ = UΩNΩ = NΩUΩ,

which is a group since as in 4.4 one can show that NΩ normalizes UΩ. If
Ω = {x} we write PΩ = Px.
We can now also describe the groups PΩ for any non-empty subset Ω of Λ:

Corollary 4.8 Fix some Φ+ = Φ+(C) as above, and let Ω be a non-empty
subset of Λ.
i) PΩ = U−Ω U

+
ΩNΩ = NΩU

+
ΩU
−
Ω .

ii) PΩ ∩ UΦ± = U±Ω and PΩ ∩N = NΩ.

Proof: i) The first equality follows from part iii) of the Theorem, if we show
that N∩UΩ ⊂ NΩ. It suffices to show for each root a that N∩La ⊂ NΩ. If both
fΩ(a) and fΩ(−a) are real numbers, this follows from [La], 12.1. If fΩ(a) =∞
of if fΩ(−a) = ∞, then our claim is trivial. Note that if fΩ(a) = −∞, then
fΩ(−a) is either ∞ (then we are done) or −∞. Hence the only remaining case
is fΩ(a) = fΩ(−a) = −∞. If a = aij , 4.1 implies that Ω∩ΛJ can then only be
non-empty if i and j are not contained in J . Now 4.2 implies our claim.
ii) Let us show first that PΩ ∩ UΦ− = U−Ω . Obviously, the right hand side is
contained in the left hand side. Take some u ∈ PΩ ∩ UΦ− . Using i), we can
write it as u−u+n for u± ∈ U±Ω and n ∈ NΩ. Then n must be in UΦ+UΦ− ∩N ,
which is trivial by [BoTi], 5.15. Hence u+ is contained in UΦ− ∩ UΦ+ , which
is also trivial. Therefore u = u− ∈ U−Ω . The corresponding statement for the

Documenta Mathematica 6 (2001) 315–341



332 Annette Werner

+-groups follows by taking Φ− as the set of positive roots. It remains to show
PΩ∩N = NΩ. Take u ∈ PΩ∩N . Then we write it again as u = u−u+n. Hence
u−u+ is contained in UΦ−UΦ+ ∩ N , which is trivial, so that u = n ∈ NΩ, as
claimed. ¤
Now we can show a weak version of the mixed Bruhat decomposition for our
groups Px. (The weakness lies in the fact that we can not take two arbitrary
points in Λ in the next statement.)

Theorem 4.9 Let x ∈ Λ and y ∈ Λ. Then we have G = PxNPy.

Proof: Let ΛI be the component of Λ containing x. Then we can write
x =

∑
i∈I xiη

I
i with some real coefficients xi. We define a sequence of points

in Λ by

zk =
∑

i∈I
xiηi − k

∑

i/∈I
ηi.

Obviously, zk converges towards x. Now we choose a linear ordering ≺ on the
set n in such a way that i ∈ I and j /∈ I implies i ≺ j. The set Φ+ = {aij ∈
Φ : i ≺ j} defines an order corresponding to some chamber. Note that for any
root aij in Φ− we have

aij(zk) =





xi − xj if i, j ∈ I
−k − xj if i /∈ I, j ∈ I
0 if i, j /∈ I.

Hence aij(zk) is bounded from above by a constant c independent of k and
of the root aij ∈ Φ−. Therefore Uaij ,zk is contained in Uaij ,−c = {u ∈ Uaij :
ψa(u) ≥ −c}, which is a compact subgroup of Uaij . By 4.7, we find that all
U−zk are contained in a compact subset of UΦ− .
We have the “usual” mixed Bruhat decomposition for two points in Λ (see [La],
12.10), hence G = PzkNPy for all k. Using 4.8, we can write an element g ∈ G
as

g = u−k u
+
k nkvk

with u±k ∈ U±zk , nk ∈ N and vk ∈ Uy. Let us denote the kernel of the map
ν : T → Λ by Z ⊂ T . Then the group U∧y = UyZ is compact and open in
G by [La], 12.12. Since all vk lie in this compact subset, by switching to a
subsequence we can assume that vk converges to some element v ∈ U∧y . Hence

the sequence u−k u
+
k nk is also convergent in G. Since the Weyl group W = N/T

is finite, by passing to a subsequence we can assume that nk = tkn for some
tk ∈ T and some fixed n ∈ N . Besides, we can assume that u−k converges to
some u− ∈ UΦ− , since the u−k are contained in a compact subset of UΦ− . Hence
the sequence u+

k tk converges in G. Its limit must be contained in the Borel
group UΦ+T . Hence u+

k converges towards some u+ ∈ UΦ+ , and tk converges
towards some t ∈ T .
Using 4.7, u+

k is a product of ua,k ∈ Ua,zk for all a ∈ Φ+, and, applying 4.3,
we deduce that the ua,k converge towards some element ua ∈ Ua,x. Hence
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we see that u+ is contained in UΦ+ ∩ Ux = U+
x . Similarly, u− lies in U−x .

Therefore g = u−k u
+
k tknvk converges towards u−u+tnv, which is contained in

U−x U
+
x NUy ⊆ PxNPy. Hence g lies indeed in PxNPy. ¤

Recall that Z ⊂ T denotes the kernel of the map ν : T → Λ, and that the group
U∧0 = U0Z is compact. We define our compactification X of the building X as

X = U∧0 × Λ/ ∼,

where the equivalence relation ∼ is defined as follows:

(g, x) ∼ (h, y) iff there exists an element n ∈ N
such that ν(n)x = y and g−1hn ∈ Px.

(Using 4.4, it is easy to check that ∼ is indeed an equivalence relation.) We
equip X with the quotient topology. The inclusion U∧0 × Λ ↪→ G × Λ induces
a bijection (U∧0 ×Λ)/ ∼ → X, which is a homeomorphism if we endow the left
hand side with the quotient topology (see [Bo-Se], p.221). Hence X is open
and dense in X.
We have a natural action of U∧0 on X via left multiplication on the first factor,
which can be continued to an action of G in the following way: If g ∈ G and
(v, x) ∈ U∧0 ×Λ, we can use the mixed Bruhat decomposition to write gv = unh
for some u ∈ U∧0 , n ∈ N and h ∈ Px. Then we define g(v, x) = (u, ν(n)x).
Using 4.4, one can show that this induces a well-defined action on X.
Mapping x to the class of (1, x) defines a map Λ→ X. This is injective, since
by 4.8 we have Px ∩ N = Nx. The G-action on X continues the N -action on
Λ, so that we will write nx instead of ν(n)x for x ∈ X.
The following important fact follows immediately from the definition of X:

Lemma 4.10 For all x ∈ Λ the group Px is the stabilizer of x in G.

We can use the mixed Bruhat decomposition to prove the following important
fact:

Proposition 4.11 For any two points x ∈ X and y ∈ X there exists a com-
pactified apartment containing x and y, i.e. there exists some g ∈ G such that
x and y both lie in gΛ.

Proof: We can assume that y lies in Λ. The point x lies in hΛ for some
h ∈ G, so x = hx′ for some x′ ∈ Λ. By our mixed Bruhat decomposition 4.9
we can write h = qnp for q ∈ Py, n ∈ N and p ∈ Px′ . Therefore x = hx′ =
qnpx′ = qnx′ ∈ qΛ, and y = qy lies also in qΛ, whence our claim. ¤

5 Properties of X

In this section we want to check that X is compact and we want to identify it
with the set

⋃
W⊆V X(PGL(W )).
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Hence we see that we can compactify the Bruhat-Tits building for PGL(V ) by
attaching all the Bruhat-Tits buildings for PGL of the smaller subspaces at
infinity.
The following lemma is similar to [La], 8.11.

Lemma 5.1 Let z be a point in ΛI and y be a point in ΛJ for some I ⊆ J ⊆ n.
Then we find a chamber such that the corresponding set of positive roots Φ+

satisfies U+
y ⊆ U+

z .

Note that the assumptions are fulfilled if J = n, i.e. if y lies in Λ.
Proof: Since I ⊆ J , we can define a projection map ΛJ → ΛI , which
we also denote by rI . To be precise, rI maps a point

∑
i∈J xiη

J
i ∈ ΛJ to∑

i∈I xiη
I
i ∈ ΛI . Put y∗ = rI(y).

Recall that we denote by ΦI the set of roots of TI in GI = PGL(VI). There
exists a chamber in Λ∗I with respect to ΦI such that the corresponding subset
Φ+
I of positive roots satisfies U I+y∗ ⊆ U I+z . Here U I+z is defined exactly as the

groups U+
x for x ∈ Λ in section 4, just replacing Λ by ΛI .

Now ΦI = {bij : i, j ∈ I}, where bij is the character mapping a diagonal matrix
with entries tl (for l ∈ I) to ti/tj . We define a linear ordering on I by i ≺ j iff
bij ∈ Φ+

I . This can be continued to a linear ordering on n in such a way that
i ≺ j whenever i ∈ I and j /∈ I. Let us put Φ+ = {aij : i ≺ j}. We claim that
this satisfies our claim. In fact, take a = aij ∈ Φ+. If i and j are contained in I,
we use 4.2 and the construction of Φ+

I to deduce that Ua,y ⊆ Ua,z. By definition
of Φ+ it cannot happen that j is in I, but i is not. Hence the only remaining
case is that j /∈ I. Then fz(a) = −∞ by 4.1, so that trivially Ua,y ⊆ Ua,z. ¤
Recall that PΩ = NΩUΩ with NΩ = {n ∈ N : nx = x for all x ∈ Ω}.

Theorem 5.2 Fix a nonempty Ω ⊂ Λ. We denote by (∗) the following condi-
tion:

(∗) The set {J ⊆ n : Ω ∩ ΛJ 6= ∅} contains a maximal element

with respect to inclusion.

If (∗) if satisfied, then PΩ = ∩x∈ΩPx. In particular, PΩ is the stabilizer of Ω.

Note that (∗) is satisfied if Ω ∩ Λ is not empty.
Proof: To begin with, the inclusion PΩ ⊆ Px for all x ∈ Ω is trivial. Let J be
the maximal subset of n satisfying Ω ∩ ΛJ 6= ∅, and choose some x0 ∈ Ω ∩ ΛJ .
We will first prove that PΩ∼ ∩ Px = PΩ∼∪{x} for all x ∈ Ω and all subsets Ω∼

of Ω containing x0. Assume that x lies in in ΛI for some I ⊆ J . By 5.1, we
find some set of positive roots Φ+ such that U+

x0
⊆ U+

x , hence also U+
Ω∼ ⊆ U+

x .
Let now g be an element in PΩ∼ ∩Px, and write g = nu−u+ for some n ∈ NΩ∼

and some u± ∈ U±Ω∼ (using 4.8). Since g and u+ are contained in Px, this
also holds for nu−, so that we can write nu− = mv+v− for some m ∈ Nx
and v± ∈ U±x . So m−1n is contained in N ∩ UΦ+UΦ− , hence trivial by [BoTi],
5.15. We find that m = n and u− = v+v−, which implies v+ = 1. Hence n is
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contained in Nx ∩ NΩ∼ = NΩ∼∪{x}, and u− is contained in U−x ∩ U−Ω∼ . Note
that for all a ∈ Φ we have the inclusion Ua,Ω∼ ∩ Ua,x ⊆ Ua,Ω∼∪{x}, so that

we can use 4.7 to deduce u− ∈ U−Ω∼∪{x}. A similar argument as above gives

u+ ∈ U+
Ω∼ ∩ U+

x ⊂ U+
Ω∼∪{x}. Hence our claim is proven.

Therefore any finite subset Ω∼ ⊂ Ω containing x0 satisfies our claim, i.e. PΩ∼ =
∩x∈Ω∼Px.

We can write Ω =
⋃
σ∈Σ Ωσ, where Ωσ for σ ∈ Σ runs over all finite subsets of

Ω containing x0. Let us consider some g ∈ ⋂x∈Ω Px =
⋂
σ∈Σ PΩσ . We fix some

set of positive roots Φ+ and write g = nσu
+
σ u
−
σ for nσ ∈ NΩσ and u±σ ∈ U±Ωσ by

4.8. Put Tx0
= T ∩Nx0

. Then Nx0
/Tx0

is finite. By the pigeon hole principle,
there must be one class m in Nx0

/Tx0
such that the set Σ′ of all the σ ∈ Σ so

that nσ is equal to m modulo Tx0
still has the property that

⋃
σ∈Σ′ Ωσ = Ω. (If

not, we could find for any class in Nx0
/Tx0

an element in Ω not contained in
any Ωσ with the property that nσ lies in our class. Collecting these elements
together with x0 in some finite set gives a contradiction.)

Hence for σ ∈ Σ′ we can write nσ = mtσ for some fixed m ∈ Nx0
and some

tσ ∈ Tx0
. For σ and τ in Σ′ we get tσu

+
σ u
−
σ = tτu

+
τ u
−
τ . Using the fact that T

normalizes UΦ+ and UΦ− and that N ∩ UΦ+UΦ− is trivial, we find u−σ = u−τ ,
u+
σ = u+

τ and tσ = tτ . Therefore the elements t = tσ, u± = u±σ are independent
of the choice of σ ∈ Σ′. Note that by definition of the T -action on Λ the element
t in Tx0

stabilizes not only x0, but also every point in the components ΛI for
I ⊆ J . Thus t ∈ NΩ. Besides, by 4.7 we deduce u+ ∈ ⋂σ∈Σ′ U

+
Ωσ

= U+
Ω .

Similarly, u− ∈ U−Ω . Hence we find indeed that g = mtu+u− is contained in
PΩ. ¤

Corollary 5.3 Let Ω and Ω′ be two non-empty subsets of Λ such that Ω, Ω′

and Ω ∪ Ω′ satisfy condition (∗) in the Theorem. Then PΩ ∩ PΩ′ = PΩ∪Ω′ .

Proof: This is an immediate consequence from 5.2. ¤
The following result is similar to [La], 9.6.

Proposition 5.4 Let g ∈ G and let J be a subset of n so that ΛJ ∩ g−1Λ is
not empty. Then there exists some element n ∈ N such that

gx = nx for all x ∈ g−1Λ ∩ (
⋃

I⊆J
ΛI).

Proof: Note that the set Ω = g−1Λ ∩ (
⋃
I⊆J ΛI) satisfies condition (∗) from

5.2. Fix some x0 ∈ ΛJ ∩ g−1Λ. For all x ∈ Ω we have g−1N ∩ Px 6= ∅, since
x = g−1y for some y ∈ Λ.

We will now show that for all finite subsets ∆ of Ω containing x0 we have
g−1N ∩ P∆ 6= ∅. Let us suppose that this claim holds for some ∆ and let us
show it for ∆ ∪ {x}, where x is some point in Ω. So there is some n∆ ∈ N
with g−1n∆ ∈ P∆. We also find some nx ∈ N satisfying g−1nx ∈ Px. By 5.1,
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we find a set of positive roots Φ+ such that U+
x0
⊆ U+

x , so that also U+
∆ ⊆ U+

x .
Hence we apply 4.8 to deduce

n−1
∆ nx ∈ P∆Px = N∆U

−
∆U

+
∆U

+
x U
−
x Nx = N∆U

−
∆U
−
x U

+
x Nx ⊆ N∆UΦ−UΦ+Nx.

Since N ∩ UΦ−UΦ+ is trivial, we find n′∆ ∈ N∆ and n′x ∈ Nx such that n =
nxn

′
x = n∆n

′
∆ satisfies g−1n ∈ P∆ ∩Px, which is equal to P∆∪{x} by 5.3. This

proves our claim.
Now we write as in Theorem 5.2 Ω =

⋃
σ∈Σ Ωσ, where Ωσ runs over all finite

subsets of Ω containing x0. For all σ we choose some nσ ∈ N such that
g−1nσ ∈ PΩσ . Put nσ = n0 if Ωσ is the set {x0}. The same argument as in 5.2
shows that we can find a subset Σ′ ⊆ Σ such that Ω =

⋃
σ∈Σ′ Ωσ and such that

n−1
σ n0 is equal to some fixed m ∈ Nx0

modulo Tx0
for all σ ∈ Σ′. Since any

element in Tx0
leaves the components ΛI for I ⊆ J pointwise invariant, it also

stabilizes Ω. Therefore n−1
σ n0m

−1 lies in NΩ ⊂ PΩ. Since g−1nσ is contained
in PΩσ , the same holds for g−1n0m

−1, so that g−1n0m
−1 lies in

⋂
σ∈Σ′ PΩσ ,

which is equal to PΩ by 5.3. Hence n = n0m
−1 satisfies nx = gx for all x ∈ Ω,

as desired. ¤
Now we can prove

Theorem 5.5 X is compact.

By [Bou-T], I.10.4, Proposition 8, we know that since U∧0 × Λ is compact, the
quotient after ∼ is Hausdorff (hence compact), iff the relation ∼ is closed in
(U∧0 × Λ)× (U∧0 × Λ).
Let (uk)k and (vk)k be sequences in U∧0 converging to u respectively v, and let
xk and yk be sequences in Λ converging to x respectively y, so that (uk, xk) ∼
(vk, yk). We have to show that (u, x) ∼ (v, y). By definition of ∼ we have
xk = u−1

k vkyk, so that both 0 and xk lie in Λ and in u−1
k vkΛ. Using 5.4, we

find some nk ∈ N such that nkz = v−1
k ukz for all z ∈ Λ∩u−1

k vkΛ. In particular,
nk lies in N0 and nkxk = v−1

k ukxk = yk.
Hence gk = u−1

k vknk lies in Pxk ∩ P0 = P{0,xk}. Since N0 is compact, we can
pass to a subsequence and assume that nk converges towards some n ∈ N0, so
that gk converges towards some u−1vn.
By 4.8, we can write gk = w−k w

+
k mk for some w±k ∈ U±{0,xk} and mk ∈ N{0,xk}.

We can again assume that mk converges towards some m ∈ N0. Since N acts
continuously on Λ, m lies also in Nx. Besides, U−0 is compact, so that we can
assume that w−k converges towards some w− ∈ U−0 . Using 4.7 and 4.3 we find
that w− lies in fact in U−x . Now w+

k also converges towards some w+ which
lies in U+

x by the same argument. Therefore u−1vn lies in Px. Since N acts
continuously on Λ, we have nx = y, so that indeed (u, x) ∼ (v, y). ¤
Theorem 5.6 The space X is contractible.

Proof: Recall from 3.4 that Λ is contractible. If x =
∑
i6=j∈J xj(−ηJj ) is a

point in Ei ∩ ΛJ , where J contains i, then the contraction map is given by

r(x, t) =

{
x, if t = 0∑
i6=j∈J

(1−t)xj
1+txj

(−ηj) +
∑
j /∈I

1−t
t (−ηj), if t 6= 0.
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Now we define

R : U∧0 × Λ× [0, 1] −→ U∧0 × Λ

((g, x), t) 7−→ (g, r(x, t)).

Obviously, R is continuous. In order to show that R is a contraction map for
X, it suffices to prove that it is compatible with our equivalence relation.

Let us first check that nr(x, t) = r(nx, t) for all n ∈ N0 and x ∈ Λ. Write
n = tp for t ∈ T and a permutation matrix p. Then t lies in N0, so that it
acts trivially on all points in Λ. Besides, a straightforward calculation shows
pr(x, t) = r(px, t).

Now assume that (g, x) and (h, y) in U∧0 × Λ are equivalent. Hence there is
some n ∈ N with nx = y and g−1hn ∈ Px. Using 5.4, we can assume that n
lies in fact in N0.

Now fix some t ∈ [0, 1]. We already know that r(y, t) = r(nx, t) = nr(x, t),
so that our claim, namely (g, r(x, t)) ∼ (h, r(y, t)) is proven, if we show that
g−1hn ∈ Pr(x,t). We already know that g−1hn lies in P0∩Px, which is equal to
P{0,x} by 5.3. Let us put xt = r(x, t). We are done if we show that P{0,x} ⊂ Pxt .
We can assume that t > 0. The point x is contained in some Ei ∩ ΛJ . Recall
from 4.8 that P{0,x} = U−{0,x}U

+
{0,x}N{0,x} and Pxt = U−xtU

+
xtNxt for some fixed

Φ+. A straightforward calculation yields

fxt(akl) ≤ fx(akl), if k 6= i and l are in J and fx(akl) ≥ 0,

or if k /∈ J and l ∈ J
fxt(akl) ≤ 0, if k 6= i and l are in J and fx(akl) < 0,

or if k = i and l ∈ J, or if l /∈ J

Hence for all a ∈ Φ we have Ua,0 ⊂ Ua,xt or Ua,x ⊂ Ua,xt , which implies that
U+
{0,x} ⊂ U+

xt and U−{0,x} ⊂ U−xt . Besides, we have N{0,x} ⊂ Nxt , since r is

compatible with the action of N0, so that our claim follows. ¤
The following result shows that the boundary of our compactificationX consists
of the Bruhat-Tits buildings of all groups PGL(W ), where W is a non-trivial
subspace of V :

Theorem 5.7 There is a bijection between X and the set

⋃

06=W⊆V
PGL(W ) = X ∪

⋃

06=W⊂V
PGL(W ).

Proof: Let us first fix some non-empty I ⊂ n. We will start by embedding
the building corresponding to GI = PGL(VI) in X. Recall that we write GVI

for the subgroup of G leaving VI invariant, and ρI for the map GVI → GI .
Then the building for GI is defined as GI ×ΛI/ ∼, where ∼ is the equivalence
relation from section 2 (replacing V by VI everywhere). Let (h, x) be an element
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of GI × ΛI . We choose an arbitrary lift h↑ of h in GVI , and map (h, x) to the
point h↑x in X. This induces a map

jI : GI × ΛI −→ X.

We claim that this is independent of the choice of a lift. We have to show that
any element g in the kernel of ρI stabilizes each x ∈ ΛI . Note that GVI is a
parabolic subgroup of G. Let us fix a Borel group B ⊃ T contained in GVI .
Then there is a set of positive roots Φ+ in Φ such that B = UΦ+T . Besides,
we can write GVI = BW ′B for some subgroup W ′ of W . Hence we find that
GVI = UΦ+NVIUΦ+ , where NVI = N ∩GVI . Note that since UΦ+ is contained
in GVI , no root of the form a = aij such that j ∈ I, but i /∈ I can be contained
in Φ+. We write g = u+nv+ for some n in NVI and u+, v+ in UΦ+ . Using
ρI(g) = 1, we find that ρI(n) = 1 and ρI(u

+v+) = 1. Hence n stabilizes each
x ∈ ΛI , so n ∈ Px ∩N = Nx.

Let us write [I] for the subset of all roots that are linear combinations of
roots aij with i and j in I. We write u+ = u+

1 u
+
2 and v+ = v+

2 v
+
1 for some

u+
1 , v

+
1 ∈ m(

∏
a∈Φ+\[I] Ua) and u+

2 , v
+
2 ∈ m(

∏
a∈Φ+∩[I] Ua), where m is the

multiplication map. As in 4.2, we find that ρI(u
+
1 ) and ρI(v

+
1 ) are trivial, and

that ρI is injective on all Ua for a ∈ Φ+ ∩ [I]. Hence we deduce that u+
2 v

+
2

is trivial. Besides, u+
2 commutes with n, so that g = u+

1 u
+
2 nv

+
2 v

+
1 = u+

1 nv
+
1 .

Recall that the roots aij for i /∈ I and j ∈ I do not lie in Φ+, so that by 4.1 we
have Ua = Ua,x for all a ∈ Φ+\[I] and all x ∈ ΛI . Hence g is indeed contained
in Px for all these x.

Now we claim that jI induces an injection

jI : X(GI) = GI × ΛI/ ∼ ↪→ X.

It suffices to show that for all x ∈ ΛI the map ρI induces a surjection

ρI : Px −→ P Ix ,

where P Ix is defined in the same way as Px (see section 2), just replacing V by
VI . Note that this also implies Px = ρ−1

I (P Ix ).

First of all, let us show that Px is contained in GVI , so that our statement
makes sense. By 4.2, we find that Ux is contained in GVI . Besides, if n is an
element of Nx, we find that n = tp for a torus element t and a permutation
matrix p. The corresponding permutation must leave I intact, so that indeed
n ∈ NVI .

Besides, by 4.2 we know that ρI maps Ux to U Ix , and it is easy to see that ρI
also maps Nx to N I

x , so that we get a homomorphism ρI : Px → P Ix . Now
take some h = nu in P Ix = N I

xU
I
x , and choose a lift n↑ of n in NVI . Since n

stabilizes x (viewed in the apartment ΛI), the lift n↑ stabilizes the point x ∈ Λ.
Hence n↑ lies in Px. By 4.2, the element u has a lift u↑ in Ux, hence h↑ = n↑u↑

is an element in Px projecting to h via ρI . This proves surjectivity.
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Let now W be an arbitrary non-trivial subspace of V . Then there is a linear
isomorphism

f : VI −→W

for some I ⊂ n. Let S be the maximal torus in PGL(W ) induced by the
diagonal matrices with respect to the basis f(vi) (for all i ∈ I). Conjugation
by f induces an isomorphism PGL(W ) → PGL(VI) = GI , which maps S to
TI , and the normalizer N(S) of S to N(TI), the normalizer of TI in GI . Hence
we get an R-linear isomorphism

τ : X∗(S)R
∼−→ X∗(TI)R = ΛI .

One can check that for all x ∈ X∗(S)R and n ∈ N(S) we have τ(nx) =
(f−1nf)τ(x).
Choose some f↑ ∈ G whose restriction to VI is given by f . Then we define a
map

jW : PGL(W )×X∗(S)R −→ GI × ΛI
jI−→ X

f↑−→ X,

where the first map is given by

(g, x) 7−→ (f−1gf, τ(x)).

Since this maps the equivalence relation on PGL(W ) × X∗(S)R defining the
building X(PGL(W )) to the equivalence relation on GI × ΛI defining the
building X(GI), we have an injection

jW : X(PGL(W ))
∼−→ X(GI)

jI−→ X
f↑−→ X.

Of course, we have to check that this is well-defined. First of all, if f is fixed,
then jW does not depend on the choice of a lifting f ↑, since two such liftings
differ by something in the kernel of ρI , and this acts trivially on the image of
jI , as we have seen above.
What happens if we choose another isomorphism g : VJ →W for some J ⊂ n?
First let us consider the case that we construct jW using f ′ = s ◦ f for some
isomorphism s : W → W . Then we also use a different construction of the
building X(PGL(W )), since we use another torus. Following [La], 13.18, we
find that there exists a unique PGL(W )–equivariant isometry between these
two constructions (which we tacitly use to identify them). A straightforward
calculation shows that our map jW is compatible with this isometry.
Now assume that we use an isomorphism g : VJ → W to construct jW . Then
there exists some isomorphism r : VI → VJ mapping the basis vi for i ∈ I to
the basis vj for j ∈ J in some way. The map r can be lifted to a permutation
matrix n ∈ N . It is easy to see that this implies that our construction of jW
does indeed not change if we choose g◦r instead of g. Hence jW is well-defined.
We put all these maps jW together and get a map

j : X ∪
⋃

06=W⊂V
X(PGL(W )) −→ X,
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which is obviously surjective. It remains to show that j is injective. Let us first
assume that we have some (g, x) ∈ PGL(W )×X∗(S)R and (h, y) ∈ PGL(W ′)×
X∗(S′)R such that jW (g, x) = jW ′(h, y). Hence there are isomorphisms fI :

VI → W and fJ : VJ → W ′ and points x0 ∈ ΛI , y0 ∈ ΛJ such that g↑f↑I x0 =

h↑f↑Jy0. In particular, there is some n ∈ N mapping x0 to y0. Hence n maps
ΛI to ΛJ , which implies nVI = VJ . We have already seen that Px0

⊂ GVI , so

that h↑f↑JnVI = g↑f↑I VI , which implies W = fI(VI) = fJ (VJ) = W ′. Since we
already know that jW is injective, our claim follows. ¤
To conclude this paper, let us show that we can identify the vertices in X with
the equivalence classes {N} of R-modules of arbitrary rank in V . Together
with Proposition 3.1, this is the link to Mustafin’s paper [Mu].
We call a point x in Λ, say x ∈ ΛI , a vertex in Λ, if it is a vertex in the
apartment ΛI . By section 2 this means, that x =

∑
i∈I xiη

I
i with integer

coefficients xi. We call a point y in X a vertex if y = gx for some g ∈ G and

some vertex x ∈ Λ, and we denote the set of vertices in X by X
0
.

We call two R-lattices in V equivalent, if they differ by a factor in K×. Let
us denote by L the set of all equivalence classes of R-lattices in V of arbitrary
positive rank. We write {M} for the class of such a lattice.
Our last result shows that the vertices in X correspond to elements of L, i.e.
lattice classes of arbitrary rank, which explains the title of this paper.

Lemma 5.8 The G-equivariant bijection ϕ : L −→ X0 can be continued to a
G-equivariant bijection

ϕ : L −→ X
0

in the following way: We write {M} ∈ L as {M} = g{L}, where L =∑
i∈I π

kiRvi for some non-empty I ⊆ n. Then

ϕ({M}) = g(
∑

i∈I
ki(−ηIi )).

Proof: We only need to check that ϕ is injective and well-defined, which
amounts to the following claim: For the vertex x =

∑
i∈I ki(−ηIi ) ∈ ΛI let

Lx =
∑
i∈I π

kiRvi. Then Px is the stabilizer of {Lx}. Using 4.1, it is easy to
see that all Ua,x leave {Lx} invariant. Besides, Nx leaves {Lx} invariant, so
that Px is contained in S{Lx}, the stabilizer of {Lx}.
Let now g be an element in S{Lx}. Note that Lx is a lattice of full rank in VI ,
so that g is contained in GVI , and ρI(g) ∈ PGL(VI) = GI stabilizes {Lx}. In
GI we have the (usual) Bruhat decomposition ρI(g) = pnq with p and q in P Ix
and n ∈ N(TI) (see [La], 12.10). Here P Ix is the stabilizer of x in the building
for GI , so that p and q leave the class {Lx} in VI invariant. Hence n ∈ GI also
stabilizes {Lx}. A straightforward calculation now shows that n fixes x ∈ ΛI .
Therefore ρI(g) lies in P Ix , so that g is indeed contained in Px, as we have seen
in the proof of 5.7. ¤
Of course, one could also set up a bijection between L and⋃

06=W⊆V X(PGL(W ))0 by using analogues of the map ϕ on every single
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building X(PGL(W )). It is easy to see that this is compatible with the map
we just described, and the identification of X and

⋃
06=W⊆V X(PGL(W ))

given in 5.7.
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Abstract. On a q-deformed Fock space, we define multiple q-Lévy
processes. Using the partition-dependent stochastic measures derived
from such processes, we define partition-dependent cumulants for their
joint distributions, and express these in terms of the cumulant func-
tional using the number of restricted crossings of P. Biane. In the
single variable case, this allows us to define a q-convolution for a large
class of probability measures. We make some comments on the Itô
table in this context, and investigate the q-Brownian motion and the
q-Poisson process in more detail.

2000 Mathematics Subject Classification: Primary 46L53; Secondary
05A18, 47D, 60E, 81S05

1. Introduction

In [RW97], Rota and Wallstrom introduced, in the context of usual probability
theory, the notion of partition-dependent stochastic measures. These objects
give precise meaning to the following heuristic expressions. Start with a Lévy
process X(t). For a set partition π = (B1, B2, . . . , Bk), temporarily denote by
c(i) the number of the class Bc(i) to which i belongs. Then, heuristically,

Stπ(t) =

∫

[0,t)k

all si’s distinct

dX(sc(1))dX(sc(2)) · · · dX(sc(n)).

In particular, denote by ∆n the higher diagonal measures of the process defined
by

∆n(t) =

∫

[0,t)

(dX(s))n.

These objects were used to define the Itô multi-dimensional stochastic integrals
through the usual product measures, by employing the Möbius inversion on
the lattice of all partitions. In particular this approach unifies a number of
combinatorial results in probability theory.
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The formulation of the algebraic (noncommutative, quantum) probability goes
back to the beginnings of quantum mechanics and operator algebras. While
a number of results have been obtained in a general context, in many cases
the lack of tight hypotheses guaranteed that the conclusions of the theory
would be somewhat loose. In the last twenty years of the twentieth century
a particular noncommutative probability theory, the free probability theory
[VDN92, Voi00], appeared, whose wealth of results approaches that of the clas-
sical one. This theory is based on a new notion of independence, the so-called
free independence. In particular, one defines the (additive) free convolution,
a new binary operation on probability measures: µ ¢ ν is the distribution of
the sum of freely independent operators with distributions µ, ν. Note that
this is precisely the relation between independence and the usual convolution.
Many limit theorems for independent random variables carry over to free prob-
ability [BP99] by adapting the method of characteristic functions, using the
R-transform of Voiculescu in place of the Fourier transform. Applications of
the theory range from von Neumann algebras to random matrix theory and
asymptotic representations of the symmetric group.
In [Ans00, Ans01a] (see also [Ans01b]) we investigated the analogs of the mul-
tiple stochastic measures of Rota and Wallstrom in the context of free proba-
bility theory. In this analysis, the starting object X(t) is a stationary process
with freely independent bounded increments. One important fact observed was
that in the classical case the expectation of Stπ(t) is the combinatorial cumu-
lant of the distribution of X(t). This means that the expectation of Stπ(t) is

equal to
∏k
j=1 r|Bj |, where ri is the i-th coefficient in the Taylor series expan-

sion of the logarithm of the Fourier transform of the distribution of X(t). See
[Shi96, Nic95] or Section 6.1. The importance of cumulants lies in their relation
to independence: since independence corresponds to a factorization property
of the joint Fourier transforms, it can also be expressed as a certain additivity
property of cumulants, the “mixed cumulants of independent quantities equal
0” condition. See Section 4.1.
It was observed by Speicher that in free probability, the condition of free in-
dependence can also be expressed in terms of a certain different family of cu-
mulants, the so-called free cumulants; see [Spe97a] for a review. One also
naturally obtains partition-dependent free cumulants, but only for partitions
that are noncrossing. In [Ans00], we showed that in the free case Stπ(t) = 0
if the partition π is crossing, and for a noncrossing partition π the expecta-
tion of Stπ(t) is the corresponding free cumulant of the distribution of X(t).
Thus both in the classical and in the free case Stπ(t) can be considered as an
operator-valued version of combinatorial cumulants (no relation to [Spe98]).
We try out this idea on the q-deformed probability theory. This is a non-
commutative probability theory in an algebra on the q-deformed Fock space,
developed by a number of authors, see the References. Free probability cor-
responds to q = 0, while classical (bosonic) and anti-symmetric (fermionic)
theories correspond to q = 1,−1 (in these cases q-Fock spaces degenerate to

Documenta Mathematica 6 (2001) 343–384



Stochastic Measures and q-Cumulants 345

the symmetric and anti-symmetric Fock spaces, respectively). For the interme-
diate values of q, it is known that the theory cannot be as good as the classical
and the free ones, since one cannot define a notion of q-independence satisfying
all the desired properties [vLM96, Spe97b].
In this paper we try a different approach. As mentioned above, whenever we
have a family of operators which corresponds to a family of measures that
is in some sense infinitely divisible, we should be able to define the partition-
dependent stochastic measures, and then define the combinatorial cumulants as
their expectations. One definition of cumulants appropriate for the q-deformed
probability theory has already been given in [Nic95], based on an analog of
the canonical form introduced by Voiculescu in the context of free probability.
The advantage of the approach of that paper is that Nica’s cumulants are de-
fined for any probability distribution all of whose moments are finite. However,
the canonical form of that paper is not self-adjoint, and it is also not appro-
priate for our approach since it does not provide us with a natural additive
process. Instead, as a canonical form we choose the q-analog of the families of
[HP84, AH84, Sch91, GSS92], which in the classical and the free case provide
representations for all (classically, resp. freely) infinitely divisible distributions
all of whose moments are finite. We provide an explicit formula for the result-
ing combinatorial cumulants, involving as expected a notion of the number of
crossings of a partition. The appropriate one for our context happens to be
the number of “restricted crossings” of [Bia97]; in particular the resulting cu-
mulants are different from those of [Nic95]. Our approach makes sense only for
distributions corresponding to q-infinitely divisible families (although strictly
speaking, one can use our definition in general). However, our canonical form
of an operator is self-adjoint, and this in turn leads to a notion of q-convolution
on a large class of probability measures. The fact that this convolution is not
defined on all probability measures is actually to be expected, see Section 6.1.
After finishing this article, we learned about a physics paper [NS94] which
seems to have been overlooked by the authors of both [Bia97] and [SY00b].
The goals of that paper are different from ours, but in particular it defines and
investigates the same q-Poisson process as we do (Section 6.3) and, in that case,
points out the relation between the moments of the process and the number of
restricted crossings of corresponding partitions. It would be interesting to see
if the results of that paper can be extended to our context, and how our results
fit together with the “partial cumulants” approach.
The paper is organized as follows. Following the Introduction, in Section 2
we provide some background on the combinatorics of partitions and on q-Fock
spaces, and define the q-Lévy processes. In Section 3, we define the joint
moments and q-cumulants, and express partition-dependent q-cumulants in
terms of the q-cumulant functional. In Section 4 we show that the cumulant
functional is the generator, in the sense defined in that section, of the family of
time-dependent moment functionals, and characterize all such generators. We
also discuss the notion of a product state that arises from this construction.
In Section 5, we provide some information about the Itô product formula in
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this context, by calculating the quadratic co-variation of two q-Lévy processes.
In a long Section 6 we define the q-convolution, describe how our construction
relates to the Bercovici-Pata bijection, and investigate the q-Brownian motion
and the q-Poisson process in more detail. Finally, in the last section we make
a few preliminary comments on the von Neumann algebras generated by the
processes.
Acknowledgments: I would like to thank Prof. Bożejko for encouraging me
to look at the q-analogs of [Ans00], and Prof. Voiculescu for many talks I had
to give in his seminar, during which I learned the background for this paper.
I am also grateful to Prof. Speicher for a number of suggestions about Section
7, and to Daniel Markiewicz for numerous comments. This paper was written
while I was participating in a special Operator Algebras year at MSRI, and is
supported in part by an MSRI postdoctoral fellowship.

2. Preliminaries

2.1. Notation. Fix a parameter q ∈ (−1, 1); we will usually omit the depen-
dence on q in the notation. The analogs of the results of this paper for q = ±1
are in most cases well-known; we will comment on them throughout the pa-
per. For n a non-negative integer, denote by [n]q the corresponding q-integer,

[0]q = 0, [n]q =
∑n−1
i=0 q

i.

For a collection
{
y

(i)
j

}
of numbers and two multi-indices ~v = (v(1), . . . , v(k))

and ~u = (u(1), . . . , u(k)), we will throughout the paper use the notation y
(~u)
~v

to denote
∏k
j=1 y

(u(j))
v(j) .

Denote by [k . . . n] the ordered set of integers in the interval [k, n].
For a family of functions {Fj}, where Fj is a function of j arguments, ~v a vector
with k components, and B ⊂ [1 . . . k], denote F (~v) = Fk(~v) and

F (B : ~v) = F|B|(v(i(1)), v(i(2)), . . . , v(i(|B|))),
where B = (i(1), i(2), . . . , i(|B|)). In particular, we use this notation for joint
moments and cumulants (see below).

2.2. Partitions. For an ordered set S, denote by P(S) the lattice of set par-
titions of that set. Denote by P(n) the lattice of set partitions of the set
[1 . . . n], and by P2(n) the collection of its pair partitions, i.e. of partitions into

2-element classes. Denote by ≤ the lattice order, and by 1̂n = ((1, 2, . . . , n))

the largest and by 0̂n = ((1)(2) . . . (n)) the smallest partition in this order.
Fix a partition π ∈ P(n), with classes {B1, B2, . . . , Bl}. We write B ∈ π if B
is a class of π. Call a class of π a singleton if it consists of one element. For a
class B, denote by a(B) its first element, and by b(B) its last element. Order
the classes according to the order of their last elements, i.e. b(B1) < b(B2) <
. . . < b(Bl). Call a class B ∈ π an interval if B = [a(B) . . . b(B)]. Call π an
interval partition if all the classes of π are intervals.
Following [Bia97], we define the number of restricted crossings of a par-
tition π as follows. For B a class of π and i ∈ B, i 6= a(B), denote
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p(i) = max {j ∈ B, j < i}. For two classes B,C ∈ π, a restricted crossing
is a quadruple (p(i) < p(j) < i < j) with i ∈ B, j ∈ C. The number of
restricted crossings of B,C is

rc (B,C) = |{i ∈ B, j ∈ C : p(i) < p(j) < i < j}|
+ |{i ∈ B, j ∈ C : p(j) < p(i) < j < i}| ,

and the number of restricted crossings of π is rc (π) =
∑
i<j rc (Bi, Bj). It has

the following graphical representation. Draw the points [1 . . . n] in a sequence
on the x-axis, and to represent the partition π connect each i with p(i) (if it is
well-defined) by a semicircle above the x axis. Then the number of intersections
of the resulting semicircles is precisely rc (π). See Figure 1 for an example. We
say that a partition π is noncrossing if rc (π) = 0. Denote by NC (n) ⊂ P(n)
the collection of all noncrossing partitions, which in fact form a sub-lattice of
P(n).

Figure 1. A partition of 6 elements with 2 restricted crossings.

We need some auxiliary notation. For σ, π ∈ P(n), we define π ∧ σ ∈ P(n) to
be the meet of π and σ in the lattice, i.e.

i
π∧σ∼ j ⇔ i

π∼ j and i
σ∼ j.

For π ∈ P(n), we define πop ∈ P(n) to be π taken in the opposite order, i.e.

i
πop∼ j ⇔ (n− i+ 1)

π∼ (n− j + 1).

For π ∈ P(n), σ ∈ P(k), we define π + σ ∈ P(n+ k) by

i
π+σ∼ j ⇔ ((i, j ≤ n, i π∼ j) or (i, j > n, (i− n)

σ∼ (j − n))).

We’ll denote mπ = π + π + . . .+ π m times.
Finally, using the above notation, for a subset B ⊂ [1 . . . n] and π ∈ P(n),
(B : π) is the restriction of π to B.

2.3. The q-Fock space. Let H be a (complex) Hilbert space. Let Falg(H)
be its algebraic full Fock space, Falg(H) =

⊕∞
n=0H

⊗n, where H⊗0 = CΩ and
Ω is the vacuum vector. For each n ≥ 0, define the operator Pn on H⊗n by

P0(Ω) = Ω,

Pn(η1 ⊗ η2 ⊗ . . .⊗ ηn) =
∑

α∈Sym(n)

qi(α)ηα(1) ⊗ ηα(2) ⊗ . . .⊗ ηα(n),
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where Sym(n) is the group of permutations of n elements, and i(α) is the
number of inversions of the permutation α. For q = 0, each Pn = Id. For
q = 1, Pn = n! × the projection onto the subspace of symmetric tensors. For
q = −1, Pn = n! × the projection onto the subspace of anti-symmetric tensors.
Define the q-deformed inner product on Falg(H) by the rule that for ζ ∈ H⊗k,
η ∈ H⊗n,

〈ζ, η〉q = δnk 〈ζ, Pnη〉 ,
where the inner product on the right-hand-side is the usual inner product in-
duced on H⊗n from H. All inner products are linear in the second variable.
It is a result of [BS91] that the inner product 〈·, ·〉q is positive definite for

q ∈ (−1, 1), while for q = −1, 1 it is positive semi-definite. Let Fq(H) be the
completion of Falg(H) with respect to the norm corresponding to 〈·, ·〉q. For
q = −1, 1 one first needs to quotient out by the vectors of norm 0 and then
complete; the result is the anti-symmetric, respectively, symmetric Fock space,
with the inner product multiplied by n! on the n-particle space.
For ξ in H, define the (left) creation and annihilation operators on Falg(H) by,
respectively,

a∗(ξ)Ω = ξ,

a∗(ξ)η1 ⊗ η2 ⊗ . . .⊗ ηn = ξ ⊗ η1 ⊗ η2 ⊗ . . .⊗ ηn,

and

a(ξ)Ω = 0,

a(ξ)η = 〈ξ, η〉Ω,

a(ξ)η1 ⊗ η2 ⊗ . . .⊗ ηn =

n∑

i=1

qi−1 〈ξ, ηi〉 η1 ⊗ . . .⊗ η̂i ⊗ . . .⊗ ηn,

where as usual η̂i means omit the i-th term. For q ∈ (−1, 1), both operators can
be extended to bounded operators on Fq(H), on which they are adjoints of each
other [BS91]. They satisfy the commutation relations a(ξ)a∗(η)−qa∗(η)a(ξ) =
〈ξ, η〉 Id. For q = ±1, we first need to compress the operators by the projection
onto the symmetric / anti-symmetric Fock space, respectively, and the resulting
operators differ from the usual ones by

√
n, but satisfy the usual commutation

relations (thanks to a different inner product). For q = 1 the resulting operators
are unbounded, but still adjoints of each other [RS75].
Denote by ϕ the vacuum vector state ϕ [X] = 〈Ω, XΩ〉q.

2.4. Gauge operators. We now need to define differential second quantiza-
tion. Consider the number operator, the differential second quantization of the
identity operator. One choice, made in [Møl93], is to define it as the operator
that has H⊗n as an eigenspace with eigenvalue n. For a general self-adjoint
operator T , this gives the true differential second quantization derived from
the q-second quantization functor of [BKS97]. The resulting operators are self-
adjoint, but do not satisfy nice commutation relations.
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Another choice for the number operator is the operator that has H⊗n as an
eigenspace with eigenvalue [n]q. For a general (bounded) operator T , the cor-
responding construction is

p(T )Ω = 0,

p(T )η1 ⊗ η2 ⊗ . . .⊗ ηn =

n∑

i=1

qi−1η1 ⊗ . . .⊗ (Tηi)⊗ . . .⊗ ηn.

Similar operators were used in [Śni00], where stochastic calculus with respect
to the corresponding processes was developed. They do have nice commutation
properties, but are in general not symmetric.
Finally, another natural choice for the number operator is

∑
i a
∗(ei)a(ei), where

{ei} is an orthonormal basis for H; the resulting operator is then independent
of the choice of the basis. For a general bounded operator T , the correspond-
ing construction is

∑
i a
∗(Tei)a(ei). It is easy to see that this sum converges

strongly, to the following operator.

Definition 2.1. Let T be an operator on H with dense domain D. The cor-
responding gauge operator p(T ) is an operator on Fq(H) with dense domain
Falg(D) defined by

p(T )Ω = 0,

p(T )η1 ⊗ η2 ⊗ . . .⊗ ηn =

n∑

i=1

qi−1(Tηi)⊗ η1 ⊗ . . .⊗ η̂i ⊗ . . .⊗ ηn,

for η1, η2, . . . , ηn ∈ D.

Proposition 2.2. If T is essentially self-adjoint on a dense domain D and
T (D) ⊂ D, then p(T ) is essentially self-adjoint on a dense domain Falg(D).

Proof. We first show that p(T ) is symmetric on Falg(D). Fix n, and denote by
βj the cycle in Sym(n) given by βj = (12 . . . j). For a permutation α ∈ Sym(n),
write α(η1 ⊗ . . .⊗ ηn) = ηα(1) ⊗ . . .⊗ ηα(n). For η1, . . . , ηn, ξ1, . . . , ξn ∈ D,

〈p(T )η1 ⊗ . . .⊗ ηn, ξ1 ⊗ . . .⊗ ξn〉q

=
n∑

j=1

qj−1 〈β−1
j (η1 ⊗ . . .⊗ (Tηj)⊗ . . .⊗ ηn), ξ1 ⊗ . . .⊗ ξn

〉
q

=
n∑

j=1

∑

α∈Sym(n)

qj−1qi(α) 〈β−1
j (η1 ⊗ . . .⊗ (Tηj)⊗ . . .⊗ ηn), α(ξ1 ⊗ . . .⊗ ξn)

〉

=
n∑

j=1

n∑

k=1

∑

α∈Sym(n)
α(1)=k

qj−1qi(α) 〈β−1
j (η1 ⊗ . . .⊗ ηn), α(ξ1 ⊗ . . .⊗ (T ∗ξk)⊗ . . .⊗ ξn)

〉

=
n∑

j=1

n∑

k=1

∑

α∈Sym(n)
α(1)=k

qj−1qi(α) 〈η1 ⊗ . . .⊗ ηn, (βjαβk)β−1
k (ξ1 ⊗ . . .⊗ (T ∗ξk)⊗ . . .⊗ ξn)

〉
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Using the combinatorial lemma immediately following this proof, this expres-
sion is equal to

=
n∑

k=1

∑

γ∈Sym(n)

qk−1qi(γ) 〈η1 ⊗ . . .⊗ ηn, γ(β−1
k (ξ1 ⊗ . . .⊗ (T ∗ξk)⊗ . . .⊗ ξn))

〉

= 〈η1 ⊗ . . .⊗ ηn, p(T ∗)ξ1 ⊗ . . .⊗ ξn〉q .

Now we show that the operator p(T ) is essentially self-adjoint on Falg(D). For
q = 1, the proof is contained in [RS75, X.6, Example 3]. For q ∈ (−1, 1) we
proceed similarly. Let Dn = D⊗n. Let E· be the spectral measure of the closure
T̄ of T , and C ∈ R+. Let {ηi}ni=1 ⊂ (E[−C.C]H)∩D; then ‖Tηi‖ ≤ C ‖ηi‖. Let
~η = η1 ⊗ η2 ⊗ . . .⊗ ηn. Then

∥∥p(T )k~η
∥∥2

q
=
〈
p(T )k~η, Pnp(T )k~η

〉
≤ ‖Pn‖ (nkCk ‖~η‖)2.

It was shown in [BS91] that ‖Pn‖ ≤ [n]|q|! ≤ n!. We conclude that
∥∥p(T )k~η

∥∥
q
≤√

n!nkCk ‖~η‖ and so

lim sup
k→∞

1

k

∥∥p(T )k~η
∥∥1/k

q
= 0.

Therefore ~η is an analytic vector for p(T ). The linear span of such vectors
is invariant under p(T ) and is a dense subset of Dn. Therefore by Nelson’s
analytic vector theorem, p(T ) is essentially self-adjoint on Dn.
The rest of the argument proceeds as in [RS72, VIII.10, Example 2]. An
operator A is essentially self-adjoint iff the range of A± i is dense. Since p(T )
restricted to H⊗n is essentially self-adjoint, this property holds for each such
restriction, and then for the operator p(T ) itself, which therefore has to be
essentially self-adjoint.

Lemma 2.3. For a fixed k, every permutation γ ∈ Sym(n) appears in the col-
lection

{βjαβk : 1 ≤ j ≤ n, α(1) = k}
exactly once. Moreover, for such α, i(βjαβk) = i(α) + j − k.

Proof. It suffices to show the first property for the collection {βjα}. This
collection contains at most n! distinct elements. On the other hand, for γ ∈
Sym(n), let j = γ−1(k), and α = β−1

j γ; then j, α satisfy the conditions and
βjα = γ.
For the second property, first take γ ∈ Sym(n) such that γ(1) = 1 and show
that i(βjγ) = i(γ) + (j − 1). Indeed, βj only reverses the order of (j − 1) pairs
(a, j) with a < j. βj sends such a pair to ((a + 1), 1), and since γ(1) = 1, γ
preserves the order of such a pair.
We conclude that i(βjαβk) = i(αβk) + (j − 1). Now we show that i(αβk) =
i(α) − (k − 1). Indeed, βk only reverses the order of (k − 1) pairs (a, k) for
a < k. The pre-image of such a pair under α is (α−1(a), 1), and so α reverses
its order.

Documenta Mathematica 6 (2001) 343–384



Stochastic Measures and q-Cumulants 351

These gauge operators themselves do not satisfy nice commutation relations.
Nevertheless, we can still calculate their combinatorial cumulants. Another
advantage of this definition is that it naturally generalizes to the “Yang-
Baxter” commutation relations of [BS94]. However, in this more general con-
text partition-dependent cumulants are not expressed in terms of the cumulant
functional, so we do not pursue this direction in more detail.
For q = 0, p(T ) are precisely the gauge operators on the full Fock space as
defined in [GSS92]. For q = 1, again we first need to compress p(T ) by the pro-
jection onto the symmetric Fock space, and the result is the usual differential
second quantization. For q = −1, we first need to compress p(T ) by the projec-
tion onto the anti-symmetric Fock space, and the result is the anti-symmetric
differential second quantization.

2.5. The processes. Let V be a Hilbert space, and let H be the Hilbert space
L2(R+, dx)⊗V . Let ξ ∈ V , and let T be an essentially self-adjoint operator on
a dense domain D ⊂ V so that D is equal to the linear span of {T nξ}∞n=0 and
moreover ξ is an analytic vector for T . Given a half-open interval I ⊂ R+, define
aI(ξ) = a(1I⊗ξ), a∗I(ξ) = a∗(1I⊗ξ), pI(T ) = p(1I⊗T ). Here 1I is the indicator
function of the set I, considered both as a vector in L2(R+) and a multiplication
operator on it. For λ ∈ R, denote pI(ξ, T, λ) = aI(ξ) + a∗I(ξ) + pI(T ) + |I|λ.
Denote by at, a

∗
t , pt the appropriate objects corresponding to the interval [0, t).

We will call a process of the form I 7→ pI(ξ, T, λ) a q-Lévy process. For q = 1
this is indeed a Lévy process.

Now fix a k-tuple {Tj}kj=1 of essentially self-adjoint operators on a common

dense domain D ⊂ V , Tj(D) ⊂ D, a k-tuple {ξj}kj=1 ⊂ D of vectors, and

{λj}kj=1 ⊂ R. We will make an extra assumption that

∀i, j ∈ [1 . . . k], l ∈ N, ~u ∈ [1 . . . k]l,

T~uξi = Tu(1)Tu(2) . . . Tu(l)ξi is an analytic vector for Tj ,

and D = span
({

T~uξi : i ∈ [1 . . . k], l ∈ N, ~u ∈ [1 . . . k]l
})
.

(1)

Denote by X the k-tuple of processes (X (1), . . . , X(k)), where X(j)(I) =
pI(ξj , Tj , λj). In particular X(t) = X([0, t)). We call such a k-tuple a mul-
tiple q-Lévy process.

Remark 2.4. The assumption (1) is not essential for most of the paper. Most
of the analysis could be done purely algebraically: see Remark 5.1. We will
make this assumption to guarantee that we have a correspondence between self-
adjoint processes and semigroups of measures, rather than between symmetric
processes and semigroups of moment sequences.

3. Cumulants

3.1. Joint distribution. Since the processes in X do not necessarily com-
mute, by their joint distribution we will mean the collection of their joint mo-
ments. We organize this information as follows.
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Denote by C〈x〉 = C〈x1, x2, . . . , xk〉 the algebra of polynomials in k formal
noncommuting indeterminates with complex coefficients. Note that in a more
abstract language, this is just the tensor algebra of the complex vector space

V0 with a distinguished basis {xi}ki=1. While we take V0 to be k-dimensional,
the same arguments will work for an arbitrary V0, as long as we use a more
functorial definition of a process, namely for f =

∑
aixi ∈ V0, we would define

T (f) =
∑
aiTi, ξ(f) =

∑
aiξi, λ(f) =

∑
aiλi. See [Sch91] for a more detailed

description of this approach.
Define a functional M on C〈x〉 by the following action on monomials:
M(1, t; X) = 1, for a multi-index ~u,

M(x~u, t; X) = ϕ
[
X(~u)(t)

]
,

and extend linearly. We will call M(·, t; X) the moment functional of the
process X at time t.
If we equip C〈x〉 with a conjugation ∗ extending the conjugation on C so that
each x∗i = xi, it is clear that M is a positive functional, i.e. M(ff ∗, t; X) ≥ 0
for all f ∈ C〈x〉.
For a partition π ∈ P(n) and a monomial x~u of degree n, denote Mπ(x~u, t; X) =∏
B∈πM(x(B:~u), t; X). These are the combinatorial moments of X at time t.

For a one-dimensional process, the functional M(·, t;X) can be extended to a
probability measure µt such that µt(x

n) = M(xn, t;X). Specifically, µt(S) =
ϕ [ES ], where E· is the spectral measure of X(t).

3.2. Multiple stochastic measures and cumulants. For a set S and a
partition π ∈ P(n), denote

Snπ =
{
~v ∈ Sn : v(i) = v(j)⇔ i

π∼ j
}

and

Sn≤π =
{
~v ∈ Sn : v(i) = v(j)⇒ i

π∼ j
}
.

Fix t. For N ∈ N and a subdivision of [0, t) into N disjoint ordered half-open in-
tervals I = {I1, I2, . . . , IN}, let δ(I) = max1≤i≤N |Ii|. Denote Xi, ai, a

∗
i , pi the

appropriate objects for the interval Ii. Fix a monomial x~u ∈ C〈x1, x2, . . . , xk〉
of degree n.

Definition 3.1. The stochastic measure corresponding to the partition π,
monomial x~u, and subdivision I is

Stπ(x~u, t; X, I) =
∑

~v∈[1...N ]nπ

X
(~u)
~v .

The stochastic measure corresponding to the partition π and the monomial x~u
is

Stπ(x~u, t; X) = lim
δ(I)→0

Stπ(x~u, t; X, I)
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if the limit, along the net of subdivisions of the interval [0, t), exists. In partic-
ular, denote by ∆n(x~u, t; X, I) = St1̂(x~u, t; X, I) and

∆n(x~u, t; X) = St1̂(x~u, t; X)

the n-dimensional diagonal measure.

Definition 3.2. The combinatorial cumulant corresponding to the partition
π and the monomial x~u is

Rπ(x~u, t; X) = lim
δ(I)→0

ϕ [Stπ(x~u, t; X, I)]

if the limit exists. In particular, denote by

R(x~u, t; X) = R1̂(x~u, t; X) = lim
δ(I)→0

ϕ [∆n(x~u, t; X, I)]

the n-th joint cumulant of X at time t. Note that the functional R(·, t; X)
can be linearly extended to all of C〈x〉. We call this functional the cumulant
functional of the process X at time t. For t = 1 we call the corresponding
functional the cumulant functional of the process X.

We will omit the dependence on X in the notation if it is clear from the context.
Clearly if Stπ(x~u, t) is well-defined, its expectation is equal to Rπ(x~u, t).
By definition of Snπ , for any I

X(~u)(t) =
∑

π∈P(n)

Stπ(x~u, t; X, I).(2)

If Stπ(x~u, t) are well-defined, then

X(~u)(t) =
∑

π∈P(n)

Stπ(x~u, t; X),

and so

M(x~u, t; X) =
∑

π∈P(n)

Rπ(x~u, t; X);(3)

in fact for this last property to hold it suffices that the combinatorial cumulants
exist.
The following general algebraic notion of independence is due to Kümmerer.

Lemma 3.3. A multiple q-Lévy process X(t) has pyramidally independent in-

crements. That is, for a family of intervals
{
{Ii}n1+n3

i=1 , {Jj}n2

j=1

}
in R+ such

that for all i, j, Ii ∩ Jj = ∅,

ϕ



(
n1∏

i=1

X(u(i))(Ii)

)


n2∏

j=1

X(v(j))(Jj)



(
n1+n3∏

i=n1+1

X(u(i))(Ii)

)


= ϕ

[
n1+n3∏

i=1

X(u(i))(Ii)

]
ϕ



n2∏

j=1

X(v(j))(Jj)


 .
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We record the following facts we will use in the proof. Their own proof is
immediate.

Lemma 3.4. Choose two families of intervals
{
{Ii}n1

i=1 , {Jj}
n2

j=1

}
such that

(
⋃
Ii) ∩ (

⋃
Jj) = ∅. Let y =

∏n1

i=1 y
(u(i))
Ii

, where each y
(s)
I is one of

aI(ξs), a
∗
I(ξs), pI(Ts), |I|λs. Also let ~η1 ∈

⊕n1

j=0(L2(
⋃
Ii) ⊗ V )⊗j and ~η2 ∈⊕n2

i=0(L2(
⋃
Jj) ⊗ V )⊗i, where these two spaces are naturally embedded in

Falg(L2(R+)⊗ V ). Then

y~η2 = ((y − 〈Ω,yΩ〉q)Ω)⊗ ~η2 + 〈Ω,yΩ〉q ~η2

and

〈~η1, ~η2〉q = 〈~η1,Ω〉q 〈Ω, ~η2〉q .

Proof of Lemma 3.3. Fix a family of intervals
{
{Ii}n1+n3

i=1 , {Jj}n2

j=1

}
such that

for all i, j, Ii ∩ Jj = ∅. Denote

~η1 =

(
1∏

i=n1

pIi(ξu(i), Tu(i), λu(i))

)
Ω ∈

n1⊕

j=0

(L2(
⋃
Ii)⊗ V )⊗j ,

~η2 =

(
n2∏

i=1

pJi(ξv(i), Tv(i), λv(i))

)
Ω ∈

n2⊕

j=0

(L2(
⋃
Ji)⊗ V )⊗j ,

~η3 =

(
n1+n3∏

i=n1+1

pIi(ξu(i), Tu(i), λu(i))

)
Ω ∈

n3⊕

j=0

(L2(
⋃
Ii)⊗ V )⊗j .

Then

ϕ



(
n1∏

i=1

X(u(i))(Ii)

)


n2∏

j=1

X(v(j))(Jj)



(
n1+n3∏

i=n1+1

X(u(i))(Ii)

)


=

〈( 1∏

i=n1

pIi(ξu(i), Tu(i), λu(i))
)

Ω,

( n2∏

j=1

pJj (ξv(j), Tv(j), λv(j))

n1+n3∏

i=n1+1

pIi(ξu(i), Tu(i), λu(i))
)

Ω

〉

q

=

〈
~η1,




n2∏

j=1

pJj (ξv(j), Tv(j), λv(j))


 ~η3

〉

q

=
〈
~η1, (~η2 − 〈Ω, ~η2〉q Ω)⊗ ~η3 + 〈Ω, ~η2〉q ~η3

〉
q

= 〈Ω, ~η2〉q 〈~η1, ~η3〉q

= ϕ



n2∏

j=1

X(v(j))(Jj)


ϕ

[
n1+n3∏

i=1

X(u(i))(Ii)

]
.
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Proposition 3.5. For a noncrossing partition σ,

Mσ(x~u, t; X) =
∑

π∈P(n)
π≤σ

Rπ(x~u, t; X)

if the combinatorial cumulants are well-defined.

Proof. A noncrossing partition is determined by the property that it contains a
class that is an interval and the restriction of the partition to the complement of
that class is still noncrossing. Using this fact and Lemma 3.3, we can conclude
that for π ∈ P(n), π ≤ σ and ~v ∈ [1 . . . N ]nπ,

ϕ
[
X

(~u)
~v

]
=
∏

B∈σ
ϕ
[
X

(B:~u)
(B:~v)

]
.

Therefore

ϕ [Stπ(x~u, t; X, I)] =
∏

B∈σ
ϕ
[
St(B:π)(x(B:~u), t; X, I)

]
.

Thus if the combinatorial cumulants are well-defined,

Rπ(x~u, t; X) =
∏

B∈σ
R(B:π)(x(B:~u), t; X),

and so ∑

π∈P(n)
π≤σ

∏

B∈σ
R(B:π)(x(B:~u), t; X) =

∑

π∈P(n)
π≤σ

Rπ(x~u, t; X).

If σ = (B1, B2, . . . , Bl), the left-hand-side of this equation is equal to

l∏

i=1

∑

πi∈P(Bi)

Rπi(x(Bi:~u), t; X).

Combining this equation with equation (3), we obtain

Mσ(x~u, t; X) =
∑

π∈P(n)
π≤σ

Rπ(x~u, t; X).

We emphasize that while σ is noncrossing, π need not be. Note that on the
operator level we have for any σ ∈ P(n),

∑

π∈P(n)
π≤σ

Stπ(x~u, t; X, I) =
∑

~v∈[1...N ]n≤σ

X
(~u)
~v .

Proposition 3.6. For the monomial x~u of degree n, the cumulant functional
of the multiple q-Lévy process X is given by

R(x~u, t) =

{
tλu(1) if n = 1,

t
〈
ξu(1),

∏n−1
j=2 Tu(j)ξu(n)

〉
if n ≥ 2.
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Proof. By definition,

R(x~u, t) = lim
δ(I)→0

ϕ



N∑

i=1

n∏

j=1

pi(ξu(j), Tu(j), λu(j))


 .

For n = 1,

〈Ω, pi(ξ, T, λ)Ω〉q = |Ii|λ,
and so R(x, t) = tλ.
Now let n ≥ 2. Decomposing each pi(ξ, T, λ) into the four defining summands,
we see that

ϕ



N∑

i=1

n∏

j=1

pi(ξu(j), Tu(j), λu(j))


 =

∑

S1,S2,S3,S4

N∑

i=1

〈
Ω, y

(1)
i y

(2)
i . . . y

(n)
i Ω

〉
q
.(4)

Here the sum is taken over all decompositions of [1 . . . n] into four disjoint
subsets S1, S2, S3, S4, and for each choice of these subsets

y
(j)
i =





ai(ξu(j)) if j ∈ S1,

a∗i (ξu(j)) if j ∈ S2,

pi(Tu(j)) if j ∈ S3,

|Ii|λu(j) if j ∈ S4.

The term corresponding to S1 = {1} , S2 = {n} , S3 = [2 . . . (n − 1)], S4 = ∅ is
equal to
〈

1[0,t) ⊗ ξu(1), (1[0,t) ⊗
n−1∏

j=2

Tu(j))(1[0,t) ⊗ ξu(n))

〉
= t

〈
ξu(1),

n−1∏

j=2

Tu(j)ξu(n)

〉
.

We show that the limit of each of the remaining terms is 0. Indeed,

y
(1)
i y

(2)
i . . . y

(n)
i Ω ∈ H⊗(|S2|−|S1|), so if |S1| 6= |S2| the corresponding term in

(4) is 0 even for finite N . Otherwise denote by b(S1, S2) the set of all bijections
S1 → S2. All the terms that are not 0 are of the form

N∑

i=1

(( ∏

j4∈S4

λu(j4)

)
|Ii||S4|

∑

g∈b(S1,S2)

∑

S′j1⊂S3:j1∈S1,⋃
j1∈S1

S′j1=S3

Qg,{Sj1 ,j1∈S1}(q) |Ii|
|S1|

×
∏

j1∈S1

〈
ξu(j1),

∏

j3∈S′j1

Tu(j3)ξu(g(j1))

〉)
,

where each Qg,{S′j1 :j1∈S1}(q) is a polynomial independent of i, and |S1| ≥ 2 or

|S4| ≥ 1, |S1| ≥ 1; in both cases |S4| + |S1| ≥ 2. Thus each of these terms is
bounded by

C

N∑

i=1

|Ii||S1|+|S4| ≤ Cδ(I)t|S1|+|S4|−1,
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where C is a constant independent of the subdivision I. Therefore such a term
converges to 0 as δ(I)→ 0.

Construction 3.7 (An un-crossing map). Fix a partition π with l classes
B1, . . . , Bl. In preparation for the next theorem, we need the following com-
binatorial construction. Define the map F : P(n) → P(n) as follows. If π
is an interval partition, F (π) = π. Otherwise, let i be the largest index of a
non-interval class Bi of π. Let j2 = max {s ∈ Bi : (s− 1) 6∈ Bi} and j1 = p(j2).
Let α be the power of a cycle permutation

((j1 + 1)(j1 + 2) . . . b(Bi))
b(Bi)−j2+1.

Then F (π) = α ◦ π, by which we mean i
π∼ j ⇔ α(i)

F (π)∼ α(j). Also define
cb(π) = |{s : j1 < b(Bs) < b(Bi)}| − |{s : j1 < a(Bs) < b(Bi)}|. Then rc (π) =
rc (F (π))+cb(π). Indeed, for B,C ∈ π,B,C 6= Bi, rc (B,C) = rc (α(B), α(C)).
The number of restricted crossings of Bi, Bj with bi ∈ Bi, bj ∈ Bj and
p(bi) < p(bj) < bi < bj ≤ j1 or p(bj) < p(bi) < bj < bi ≤ j1 is equal to
the corresponding number for α(Bi), α(Bj), while there are no restricted cross-
ings for bi > j2 for Bi and bi > j1 for α(Bi). Finally, there are cb(π) restricted
crossings of the form p(j) < j1 < j < j2 in π. See Figure 2 for an example.

Figure 2. Iteration of F on a partition of 6 elements.

Clearly Fn(π) is an interval partition. Therefore
∑n
s=0 cb(F

sπ) = rc (π).

Theorem 3.8. The combinatorial cumulants can be expressed in terms of the
cumulant functional: for π ∈ P(n) and x~u a monomial of degree n,

Rπ(x~u, t) = qrc(π)
l∏

i=1

R(x(Bi:~u), t).

Proof. The same argument as in the previous proposition shows that

Rπ(x~u, t) = lim
δ(I)→0

ϕ


 ∑

~v∈[1...N ]nπ

y
(1)
v(1)y

(2)
v(2) . . . y

(n)
v(n)


 ,

with

y
(j)
i =





|Ii|λu(j) if (j) is a singleton in π,

ai(ξu(j)) if j is the first element of its class in π,

a∗i (ξu(j)) if j is the last element of its class in π,

pi(Tu(j)) otherwise.

(5)
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Fix ~v. Let B be the class of π containing n. If B is an interval, then by Lemma
3.4
〈

Ω,




n∏

j=1

y
(j)
v(j)


Ω

〉

q

=

〈
Ω,



a(B)−1∏

j=1

y
(j)
v(j)


Ω

〉

q

〈
Ω,




n∏

j=a(B)

y
(j)
v(j)


Ω

〉

q

.

Therefore

Rπ(x~u, t) = R(B1,... ,Bl−1)(x([1...n]\B:~u), t)R(x(B:~u), t).

Now suppose B is not an interval. Use the notation α, j1, j2, cb of Construction
3.7. Denote

η(j2) =




n∏

i=j2

y
(i)
v(i)


Ω ∈ H

and

~η(j1) =




j2−1∏

i=j1+1

y
(i)
v(i)


Ω ∈ H⊗(cb(π)).

Note that y
(j1)
v(j1) is either av(j1)(ξu(j1)) or pv(j1)(Tu(j1)). Then




n∏

i=j1

y
(i)
v(i)


Ω =



j2−1∏

i=j1

y
(i)
v(i)


 η(j2) = y

(j1)
v(j1)



(( j2−1∏

i=j1+1

y
(i)
v(i)

)
Ω
)
⊗ η(j2)




= y
(j1)
v(j1)(~η(j1)⊗ η(j2)) = qcb(π)(y

(j1)
v(j1)η(j2))⊗ ~η(j1)

and

y
(j1)
v(j1)




n∏

i=j2

y
(i)
v(i)

j2−1∏

i=j1+1

y
(i)
v(i)


Ω = y

(j1)
v(j1)




n∏

i=j2

y
(i)
v(i)


 ~η(j1)

= y
(j1)
v(j1)



(( n∏

i=j2

y
(i)
v(i)

)
Ω
)
⊗ ~η(j1)




= y
(j1)
v(j1)(η(j2)⊗ ~η(j1)) = (y

(j1)
v(j1)η(j2))⊗ ~η(j1).

Therefore
〈

Ω,




n∏

j=1

y
(j)
v(j)


Ω

〉

q

= qcb(π)

〈
Ω,




n∏

j=1

y
(α(j))
v(α(j))


Ω

〉

q

.

The right-hand-side contains precisely the product of y’s corresponding to the
partition F (π). The result follows by iterating these two steps.
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Remark 3.9 (Comments on Proposition 3.5). For q = 0, Rπ(x~u, t; X) = 0 un-
less π is noncrossing. Then for σ ∈ NC (n),

Mσ(x~u, t; X) =
∑

π∈NC (n)
π≤σ

Rπ(x~u, t; X).

Therefore for π ∈ NC (n),

Rπ(x~u, t; X) =
∑

σ∈NC (n)
σ≤π

MöbNC (σ, π)Mσ(x~u, t; X),

where MöbNC is the Möbius function on the lattice of noncrossing partitions.
For q = 1, if σ ∈ P(n), σ = (B1, B2, . . . , Bl), then

Mσ(x~u, t; X) =
l∏

i=1

M(x(Bi:~u), t; X)

=
l∏

i=1

∑

πi∈P(Bi)

Rπi(x(Bi:~u), t; X)

=
∑

π≤σ
Rπ(x~u, t; X).

Therefore for π ∈ P(n),

Rπ(x~u, t; X) =
∑

σ∈P(n)
σ≤π

MöbP(σ, π)Mσ(x~u, t; X),

where MöbP is the Möbius function on the lattice of all partitions. Note that
X(I) commute with X(J) for I ∩ J = ∅ on the symmetric Fock space.
Thus for q = 0, 1, the cumulant functional at time 1 can be expressed through
the moment functional at time 1. We will show how to do this for arbitrary q
in the next section.

4. Characterization of generators

Denote by R(f ; X) = R(f, 1; X) the cumulant functional.

Lemma 4.1. The family of the moment functionals of a multiple q-Lévy process
is determined by its cumulant functional. The functional R(·; X) on C〈x〉 is
the generator of the family of functionals M(·, t; X), that is,

d

dt

∣∣∣
t=0

M(f, t; X) = R(f ; X).
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Proof. It suffices to prove these statements for a monomial x~u of degree n. By
equation (3), Theorem 3.8 and Proposition 3.6,

M(x~u, t; X) =
∑

π∈P(n)

Rπ(x~u, t; X)

=
∑

π∈P(n)

qrc(π)
∏

B∈π
R(x(B:~u), t; X)

=
∑

π∈P(n)

qrc(π)t|π|
∏

B∈π
R(x(B:~u), 1; X),

which implies the first statement. By differentiating this equality, we obtain

d

dt

∣∣∣
t=0

M(x~u, t; X) = R1̂(x~u, 1; X) = R(x~u; X).

Definition 4.2. A functional ψ on C〈x〉 is conditionally positive if its restric-
tion to the subspace of polynomials with zero constant term is positive semi-
definite.

We say that the functional ψ is analytic if for any i and any multi-index ~u,

lim sup
n→∞

1

n
ψ[(x~u)∗x2n

i x~u]1/2n <∞.

The following proposition is an analog of the Schoenberg correspondence for
our context. Note that the formulation of the result does not involve q: the
dependence on q is hidden in Theorem 3.8.

Proposition 4.3. A functional ψ is analytic and conditionally positive if and
only if it is the generator of the family of the moment functionals for some
multiple q-Lévy process.

Proof. The proof is practically identical to that of [GSS92], or indeed of [Sch91].
We provide an outline for the reader’s convenience.
Suppose ψ is the generator of the family of moment functionals M(·, t; X) for
a multiple q-Lévy process X(t) = pt(ξ,T, λ). From the fact that each of the
moment functionals is positive and equals 1 on the constant 1 it follows by
differentiating that the cumulant functional is conditionally positive. Since
ψ = R(·; X), for x~u of degree l

lim sup
n→∞

1

n
ψ[(x~u)∗x2n

i x~u]1/2n = lim sup
n→∞

1

n
R((x~u)∗x2n

i x~u, t; X)1/2n

= lim sup
n→∞

1

n

〈
ξu(l),

1∏

j=l−1

Tu(j)T
2n
i

l−1∏

j=1

Tu(j)ξu(l)

〉1/2n

= lim sup
n→∞

1

n

∥∥∥∥∥T
n
i

l−1∏

j=1

Tu(j)ξu(l)

∥∥∥∥∥

1/n

<∞

since the vector
∏l−1
j=1 Tu(j)ξu(l) is analytic for Ti.
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Now suppose ψ is conditionally positive and analytic. Then it gives rise to
a multiple q-Lévy process, as follows. Denote by δ0(f) the constant term of
f ∈ C〈x〉. ψ induces a positive semi-definite inner product on the space C〈x〉
by 〈f, g〉ψ = ψ[(f − δ0(f))∗(g − δ0(g))]. Let Nψ be the subspace of vectors of
length 0 with respect to this inner product. Let V be the Hilbert space obtained
by completing the quotient (C〈x〉)/Nψ with respect to this inner product, with
the induced inner product. Denote by ρ the canonical mapping C〈x〉 → V , let
D be its image, and for f, g ∈ C〈x〉 define the operator Γ(f) : D → D by

Γ(f)ρ(g) = ρ(fg)− ρ(f)δ0(g).

The operator Γ is well defined since, by the Cauchy-Schwartz inequality,

‖Γ(f)ρ(g)‖ψ = ψ[(g − δ0(g))∗f∗f(g − δ0(g))] ≤ ‖ρ(g)‖ψ ‖f∗f(g − δ0(g))‖ψ .

Clearly D is dense in V , invariant under Γ(f), and Γ(f) is symmetric on it if
f is symmetric.
Put, for i ∈ [1 . . . k], λi = ψ[xi], ξi = ρ(xi), Ti = Γ(xi). Each Ti takes D to
itself. By construction, Γ(xi)ρ(x~u) = ρ(xix~u), and so

lim sup
n→∞

1

n
‖Tni ρ(x~u)‖1/nψ = lim sup

n→∞

1

n
‖xni x~u‖1/nψ

= lim sup
n→∞

1

n
ψ[(x~u)∗x2n

i x~u]1/2n <∞

since the functional ψ is analytic. Therefore each of the vectors ρ(x~u) is analytic
for Ti, and the linear span of these vectors is D. In particular, Ti is essentially
self-adjoint on D.
Define the multiple q-Lévy process X by X (i)(t) = pt(ξi, Ti, λi). Then

R(x~u; X) = ψ[x~u].

Indeed, for n = 1

R(xi; X) = λi = ψ[xi].

For n ≥ 2,

R(x~u; X) =

〈
ξu(1),

n−1∏

j=2

T(u(j))ξu(n)

〉
=

〈
ρ(xu(1)),

n−1∏

j=2

Γ(xu(j))ρ(xu(n))

〉

ψ

=

〈
ρ(xu(1)), ρ(

n∏

j=2

xu(j))

〉

ψ

= ψ[
n∏

j=1

xu(j)]

= ψ[x~u].

Therefore ψ is the generator of the moment functional family of X.
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4.1. Product states. For arbitrary q, the relation in the proof of Lemma
4.1 can be inverted.

Definition 4.4. Let Φ be any functional on C〈x〉. Define the functional Ψ =
logq(Φ) on monomials recursively by

Ψ(x~u) = Φ(x~u)−
∑

π∈P(n)

π 6=1̂

qrc(π)
∏

B∈π
Ψ(x(B:~u))

and extend linearly.

The definition has the form

Ψ(x~u) =
∑

σ∈P(n)

c(σ)
∏

B∈σ
Φ(x(B:~u))

for some coefficient family {c(σ) : σ ∈ P(k)}. For q = 1, Φ is the convolution
exponential of Ψ [Sch91]. Lemma 4.1 and the discussion in Section 6 justify the
notations Ψ = logq(Φ), Φ = expq(Ψ). Note that this operation on functionals
appears to bear no relation to the q-exponential power series.
It is clear that for any q-Lévy process, R(·, t; X) = logqM(·, t; X) and, more-
over, that M(·, t; X) = expq(tR(·; X)).

Definition 4.5. Let Φ1 be a functional on C〈x1, x2, . . . , xk1
〉, Φ2 a func-

tional on C〈x1, x2, . . . , xk2
〉. Define their product functional Φ1 ×q Φ2 on

C〈x1, x2, . . . , xk1+k2
〉 by the “mixed cumulants are 0” rule:

logq(Φ1 ×q Φ2)(x~u) =





logq(Φ1)(x~u) if ∀i, u(i) ≤ k1,

logq(Φ2)(x~u) if ∀i, u(i) > k1,

0 otherwise.

Note that it is more natural to think of this construction as taking the product
of two one-parameter families of functionals,

expq(t logq(Φ1))×q expq(t logq(Φ2)) = expq(t logq(Φ1 ×q Φ2)).

Denote

IDc(q, k) = {Φ : Φ = M(·, 1; X) for some k-dimensional q-Lévy process X}
=
{

Φ : logq(Φ) is conditionally positive and analytic
}
.

The notation stands for “combinatorially infinitely divisible”.

Lemma 4.6. For Φ1 ∈ IDc(q, k1),Φ2 ∈ IDc(q, k2), their product functional is
a state, that is, a positive functional that equals 1 on the identity element.

Proof. It suffices to show that Φ1 ×q Φ2 ∈ IDc(q, k1 + k2). Let X1,X2 be
the q-Lévy processes whose distributions at time 1 are Φ1,Φ2, respectively.
Let X(i,1)(t) = pt(ξi,1, Ti,1, λi,1), X(i,2)(t) = pt(ξi,2, Ti,2, λi,2). Here ξi,1 ∈ V1,
Ti,1 is an operator on V1 with domain D1, ξi,2 ∈ V2, Ti,2 is an operator on
V2 with domain D2. Let V = V1 ⊕ V2. Identify ξi,1 with ξi,1 ⊕ 0, ξi,2 with

0 ⊕ ξi,2, Ti,1 with
(
Ti,1 0

0 0

)
and Ti,2 with

(
0 0
0 Ti,2

)
. It is easy to see that this

Documenta Mathematica 6 (2001) 343–384



Stochastic Measures and q-Cumulants 363

identification does not change the cumulants or the moments of the processes
X1,X2, and that condition (1) holds for the (k1 +k2)-dimensional process X =
(X(1,1), . . . , X(k1,1), X(1,2), . . . , X(k2,2)). Then Φ1×q Φ2 is equal to M(·, 1; X).

For q = 1, the product state is the usual (tensor) product state, while for
q = 0 it is the (reduced) free product state. Already for q = −1, the situation
is unclear. The parity of rc (π) can differ from the parity of the number of
left-reduced crossings of [Nic95] even for partitions all of whose classes have
even order. Therefore even for q = −1, our cumulants are different from the
q-cumulants of that paper. In particular, the results of [MN97] about graded
independence do not apply. Note also that our product state construction is
defined only on the polynomial algebras C〈x〉, not on general algebras. So we
do not obtain a universal product in the sense of [Spe97b].
A state Φ is tracial if for all a, b, Φ(ab) = Φ(ba). For q = 0, 1, the product state
of two tracial states is tracial [VDN92]. This property remains true for the q-
Brownian motion (see below). However, the number of the restricted crossings
of a partition is not invariant under cyclic permutations of the underlying set.
For example, rc (((1, 3, 5)(2, 4))) = 2 while rc (((1, 3)(2, 4, 5))) = 1. So for
general q, the product state of two tracial states need not be tracial.

5. The Itô table

In general we do not know how to calculate the partition-dependent stochastic
measures Stπ(X); indeed we don’t expect a nice answer for a general process.
In particular we don’t expect that a functional Itô formula exists for q-Lévy
processes. However, one ingredient of it is present, namely, we can calculate
all the higher diagonal measures. These are higher variations of the processes,
and appear in the functional Itô formula for the free Lévy processes [Ans01b].

Remark 5.1 (Algebraic approach). Unless we are considering higher diagonal
measures of a single one-dimensional process, for this section we also need a
more general setup than the one we had before. First, we need to consider
multiple processes whose components are of the form X(t) = pt(ξ, η, T, λ) =
at(ξ)+a∗t (η)+pt(T )+ tλ. Second, we no longer can require T to be symmetric
and λ to be real. The solution in [Sch91] is to require that T be a linear
operator with domain D, not necessarily dense, so that the restriction of T ∗ to
D is a well-defined linear operator.
We describe briefly how to modify this paper for the algebraic context. The
gauge operators are defined in the same way, and the multiple q-Lévy process
are modified as in the previous paragraph, except that we drop the assumption
(1). The moments and cumulants can be modified to include ∗-quantities, i.e.
use words in both X and X∗ in the definitions, and consider them as function-
als on C〈x1, x2, . . . , xk, x

∗
1, x
∗
2, . . . , x

∗
k〉 with the obvious conjugation. All the

relations between moments and cumulants, and between partition-dependent
cumulants and the cumulant functional, remain the same, and it is clear how to
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modify the formula for the cumulant functional in terms of ξ, η, T, λ. In the al-
gebraic context, generators of the families of moment functionals for symmetric
processes are precisely all the conditionally positive functionals.

For the Itô table, we first need a technical lemma.

Lemma 5.2. For f, g ∈ L2(R+),

lim
δ(I)→0

∣∣∣∣∣
N∑

i=1

(∫

Ii

f(x)dx
)(∫

Ii

g(y)dy
)∣∣∣∣∣ = 0,(6a)

lim
δ(I)→0

∥∥∥∥∥
N∑

i=1

(
1Ii(x)f(x)

)(∫

Ii

g(y)dy
)∥∥∥∥∥

2

= 0,(6b)

lim
δ(I)→0

∥∥∥∥∥
N∑

i=1

(
1Ii(x)f(x)

)(
1Ii(y)g(y)

)∥∥∥∥∥
2

= 0.(6c)

Proof. We repeatedly use the Cauchy-Schwartz inequality for sequences and
functions:
∣∣∣∣∣
N∑

i=1

(∫

Ii

f(x)dx
)(∫

Ii

g(y)dy
)∣∣∣∣∣ ≤

√√√√
N∑

i=1

(∫

Ii

f(x)dx
)2 N∑

j=1

(∫

Ij

g(y)dy
)2

≤

√√√√
N∑

i=1

|Ii|
∫

Ii

f2(x)dx

N∑

j=1

|Ij |
∫

Ij

g2(y)dy

≤ δ(I)

√√√√
N∑

i=1

∫

Ii

f2(x)dx

N∑

j=1

∫

Ij

g2(y)dy

≤ δ(I) ‖f‖2 ‖g‖2 .
∥∥∥∥∥
N∑

i=1

(
1Ii(x)f(x)

)(∫

Ii

g(y)dy
)∥∥∥∥∥

2

=

√√√√
N∑

i=1

(∫

Ii

f2(x)dx
)(∫

Ii

g(y)dy
)2

≤

√√√√
N∑

i=1

∫

Ii

f2(x)dx |Ii|
∫

Ii

g2(y)dy

≤
√
δ(I) ‖f‖2 ‖g‖2 .

The last property requires a bit more work, since uniform estimates do not
hold in this case. By the Cauchy-Schwartz inequality as above, we may assume
that f = g; also without loss of generality we assume that ‖f‖2 = 1. Let
I = (I1, I2, . . . , IM ) be a subdivision of [0, t), and ε > 0. For N > max(M, 8

ε2 )
large enough, we can choose a subdivision J ′ = (J ′1, J

′
2, . . . , J

′
N ) so that all∫

J ′j
f2(x)dx < 2

N and no Ii is a subset of any J ′j . Let J be the smallest
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common refinement of I,J ′. Then J consists of at most M +N intervals Jj ,
and for each of them

∫
Jj
f2(x)dx < 2

N . Therefore

∥∥∥∥∥∥
∑

j

(
1Jj (x)f(x)

)(
1Jj (y)f(y)

)
∥∥∥∥∥∥

2

=

√∑

j

(∫

Jj

f2(x)dx
)(∫

Jj

f2(y)dy
)

≤
√

4(M +N)

N2

≤ ε.

We conclude that
∥∥∥
∑N
i=1

(
1Ii(x)f(x)

)(
1Ii(y)g(y)

)∥∥∥
2

converges to 0 along the

net of subdivisions I as δ(I)→ 0.

Proposition 5.3. The Itô table for q-Lévy processes X (i)(t) = at(ξi)+a∗t (ηi)+
pt(Ti) + tλi is

dX(1)dX(2) da(ξ2) da∗(η2) dp(T2) λ2dt
da(ξ1) 0 〈ξ1, η2〉 dt da(T ∗2 ξ1) 0
da∗(η1) 0 0 0 0
dp(T1) 0 da∗(T1η2) dp(T1T2) 0
λ1dt 0 0 0 0

More precisely, the quadratic co-variation of these processes is

∆2(x1x2, t; (X(1), X(2))) = [X(1), X(2)](t) = pt(T
∗
2 ξ1, T1η2, T1T2, 〈ξ1, η2〉).

Here the convergence in the definition of ∆ is the pointwise convergence on the
dense set Falg(L2(R+)⊗D).

Proof. We need to show that for ~ζ ∈ Falg(L2(R+)⊗D),

lim
δ(I)→0

∥∥∥∥∥

(
N∑

u=1

(y((1),i)
u y((2),j)

u )− y(i,j)

)
~ζ

∥∥∥∥∥
q

= 0,

where y((1),i), y((2),j) are labels for rows, respectively, columns of the Itô table,
and y(i,j) is the corresponding entry of the table. All of these are obtained by
applying Lemma 5.2, possibly with one or both of f, g equal to 1[0,t). More
precisely, we use equation (6a) for the product da(ξ1)da(ξ2), equation (6b) for
the products da∗(η1)da(ξ2), dp(T1)da(ξ2), da(ξ1)dp(T2) and equation (6c) for
the products da∗(η1)da∗(η2), dp(T1)da∗(η2), da∗(η1)dp(T2), dp(T1)dp(T2).
We do the case dp(T1)da∗(η2) as an example. The linear span of the vectors

of the form ~ζ = (f1 ⊗ ζ1) ⊗ (f2 ⊗ ζ2) ⊗ . . . ⊗ (fn ⊗ ζn), for f1, f2, . . . , fn ∈
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L2(R+), ζ1, ζ2, . . . , ζn ∈ D, is dense in Falg(L2(R+)⊗D). For such a vector,

N∑

i=1

pi(T1)a∗i (η2)~ζ =

N∑

i=1

pi(T1)(1Ii ⊗ η2)⊗ ~ζ

=
N∑

i=1

(
(1Ii1Ii ⊗ T1η2)⊗ ~ζ

+

n∑

k=1

qk(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)⊗ (f1 ⊗ ζ1)⊗ . . .⊗ (fn ⊗ ζn)
)

=

N∑

i=1

a∗i (T1η2)~ζ

+

N∑

i=1

n∑

k=1

qk(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)⊗ (f1 ⊗ ζ1)⊗ . . .⊗ (fn ⊗ ζn).

The first term is equal to a∗t (T1η2)~ζ; we need to show that the second term
tends to 0 as δ(I) → 0. It suffices to do so for each fixed k. The operator Pn
is bounded, so it suffices to show that

lim
δ(I)→0

∥∥∥∥∥
N∑

i=1

(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)⊗ (f1 ⊗ ζ1)⊗ . . .⊗ (fn ⊗ ζn)

∥∥∥∥∥ = 0,

where we are using the usual norm on (L2(R+)⊗ V )⊗n. But for this it suffices
to show that

lim
δ(I)→0

∥∥∥∥∥
N∑

i=1

(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)

∥∥∥∥∥ = 0,

and in fact only that limδ(I)→0

∥∥∥
∑N
i=1(1Iifk)⊗ 1Ii

∥∥∥ = 0. Now apply the

lemma.

Remark 5.4. Note that the Itô table does not depend on q. The Itô table was
known for q = 1 [HP84] (with a somewhat different set of convergence), q = −1
[AH84] and q = 0 [Spe91]; for the q-Brownian motion (T = 0) it was known

for all q [Śni00]. In all of these cases it is only a facet of a well-defined theory
of stochastic integration.

Corollary 5.5. For a one-dimensional self-adjoint process X(t) = pt(ξ, T, λ)
and k ≥ 2,

∆k(t;X) = pt(T
k−1ξ, T k,

〈
ξ, T k−2ξ

〉
).
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6. Single-variable analysis

Denote byMc (for “combinatorial”) the space of finite positive Borel measures
on R all of whose moments are finite, and byM1

c ⊂Mc the subset of probability
measures. For µ ∈Mc considered as a functional on C[x], denote its moments
µ(xn) by mn(µ). For µ ∈M1

c and n ≥ 1, the q-cumulants rn(µ) = (logq µ)(xn)
are determined by

rn(µ) = mn(µ)−
∑

π∈P(n)

π 6=1̂

qrc(π)
∏

B∈π
r|B|(µ).(7)

The expressions for the first few cumulants in terms of the moments and q are

r1 = m1,

r2 = m2 −m2
1,

r3 = m3 − 3m2m1 + 2m3
1,

r4 = m4 − 4m3m1 − (2 + q)m2
2 + (10 + 2q)m2m

2
1 − (5 + q)m4

1,

r5 = m5 − 5m4m1 − (5 + 4q + q2)m3m2 + (15 + 4q + q2)m3m
2
1

+ (15 + 12q + 3q2)m2
2m1 − (35 + 20q + 5q2)m2m

3
1 + (14 + 8q + 2q2)m5

1.

While these cumulants are well-defined for arbitrary µ ∈ M1
c , our results ap-

ply only to a special class of them. For a sequence r = (r0 = 0, r1, r2, . . . )
in R, let ψr be the functional on C[x] defined by ψr(

∑n
i=0 aix

i) =
∑n
i=0 airi.

The functional ψr is analytic iff lim supn→∞
1
nr

1/2n
2(n+2) <∞. It is conditionally

positive iff the functional ψ(r2,r3,... ) is positive semi-definite. These condi-
tions imply [Shi96] that for n ≥ 0, rn+2 = mn(τ) for some τ ∈ Mc that is
uniquely determined by its moments. Denote by Mu (for “unique”) the sub-
space of finite positive Borel measures in Mc that are of this form, i.e. for
which lim supn→∞

1
nm2n(τ)1/2n <∞. Equivalently, τ ∈ Mu if its exponential

moment-generating function
∫
R exp(θx)dτ(x) is defined for θ in a neighborhood

of 0.

Definition 6.1. Let τ ∈ Mu, and λ ∈ R. Define LH−1
q (λ, τ) to be the prob-

ability measure in M1
c determined by the cumulant sequence r1 = λ, rn =

mn−2(τ) for n ≥ 2. Equivalently, LH−1
q (λ, τ) is the distribution at time 1 of

the q-Lévy process pt(ξ, T, λ) such that the operator T has distribution τ with
respect to the vector functional 〈ξ, ·ξ〉. Note that LH−1

q (λ, τ) is in fact in M1
u.

Denote by IDc(q) the image of the map LH−1
q ; clearly IDc(q) = IDc(q, 1).

Call a measure in IDc(q) q-infinitely divisible.

It is clear that LH−1
q is injective. We define LHq : IDc(q) → R ×Mu to be

the inverse of LH−1
q . This is an analog of the Lévy-Hinchin representation, or

more precisely of the canonical representation; see Section 6.1.
Note that for the process pt(ξ, T, λ) in the definition above, we can identify the
Hilbert space V with L2(R, τ), so that ξ corresponds to the constant function
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1, and T corresponds to the operator of multiplication by the variable x. The
Hilbert space H is then equal to L2(R+ × R, dx⊗ τ).

Definition 6.2. For µ, ν ∈ IDc(q), define their q-convolution µ ∗q ν by the
rule that LHq(µ ∗q ν) = LHq(µ) + LHq(ν).

Lemma 6.3. (IDc(q), ∗q) is an Abelian semigroup. In particular, the q-
convolution of two positive measures is positive.

Proof. The sum of two measures in Mu is in Mu.

Lemma 6.4 (Relation to product states). For µ1, µ2 ∈ IDc(q),

(µ1 ∗q µ2)(xn) = (µ1 ×q µ2)((x1 + x2)n).

Proof. Using the representation from the proof of Lemma 4.6, let ξ = ξ1⊕ ξ2 ∈
V , T =

(
T1 0
0 T2

)
an operator on V with domain D1⊕D2, λ = λ1 +λ2. Let V ′ be

the closure of the span
({
T jξ

}∞
j=0

)
. Then T

(
span

({
T jξ

}∞
j=0

))
⊂ V ′. Define

T ′ to be the restriction T ¹ V ′. Then X(t) = pt(ξ, T
′, λ) is a q-Lévy process.

Its distribution is equal to µ1 ∗q µ2. Indeed, if we denote this distribution by
µ, then

r1(µ) = λ = λ1 + λ2 = r1(µ1) + r1(µ2),

and for n ≥ 2,

rn(µ) =
〈
ξ, (T ′)n−2ξ

〉
=
〈
ξ1, T

n−2
1 ξ1

〉
+
〈
ξ2, T

n−2
2 ξ2

〉
= rn(µ1) + rn(µ2).

But µ1 ×q µ2 = M(·, 1; (X(1), X(2))), and it is clear that

M(xn, 1;X) = M((x1 + x2)n, 1; (X(1), X(2))).

6.1. The Bercovici-Pata bijection. One would not expect the q-cumulants
to be defined precisely for all probability measures in M1

c , rather than for
more general moment sequences. Indeed, such a construction would provide a
continuous bijection Λ on M1

c with the property that rn(q = 1, µ) = rn(q =
0,Λ(µ)). In particular, this would imply that Λ(µ ∗ ν) = Λ(µ)¢Λ(ν), where ∗
is the usual convolution while ¢ is the additive free convolution. Such a map
is not known, and indeed for the space of all probability measures it is known
not to exist, since the analog of the Cramér theorem does not hold in free
probability [BV95]. However, there is a remarkable bijection [BP99] between
the usual and the free infinitely divisible measures. We now show that as long
as we restrict ourselves to infinitely divisible measures in M1

c , this is precisely
the map obtained by identifying the cumulants as above, and in particular our
spaces IDc(q) provide an interpolation between the usual and the free infinitely
divisible measures in cases q = 0 and q = 1.
The bijection is defined as follows. Let σ be a finite positive Borel measure
on R and γ ∈ R. Denoting by F the Fourier transform, define µγ,σ∗ to be the
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probability measure with the Lévy-Hinchin representation

logFµγ,σ∗ (θ) = iγθ +

∫

R

(
eiθx − 1− iθx

1 + x2

)
1 + x2

x2
dσ(x).

Denoting by R the R-transform [VDN92, Voi00], define µγ,σ¢ to be the proba-
bility measure with the free Lévy-Hinchin representation

Rµγ,σ¢ (z) = γ +

∫

R

z + x

1− zxdσ(x).

Then Λ(µγ,σ∗ ) = µγ,σ¢ .

Lemma 6.5. Let λ ∈ R, τ ∈ Mu. For dσ(x) = 1
1+x2 dτ(x) and γ = λ−m1(σ),

µγ,σ∗ = LH−1
1 (λ, τ) and µγ,σ¢ = LH−1

0 (λ, τ).

Proof. Since σ ∈Mu, µγ,σ∗ has finite variance. Then

logFµγ,σ∗ (θ) = iγθ +

∫

R

(
eiθx − 1− iθx+

iθx3

1 + x2

)
1

x2
dτ(x)

= iλθ +

∫

R

(
eiθx − 1− iθx

) 1

x2
dτ(x)

is the canonical representation of logFµγ,σ∗ . It has a convergent power series
expansion

iλθ +
∞∑

n=2

1

n!
(iθ)nmn−2(τ).

It is well-known [Shi96] that the classical (q = 1)-cumulants of µ are the coef-
ficients in such a power series expansion of logFµ. Similarly,

Rµγ,σ¢ (z) = γ +

∫

R

(
z

1− zx +
x

x2 + 1

)
dτ(x)

= λ+

∫

R

z

1− zxdτ(x),

and for z = iθ, it has an expansion

λ+
∞∑

n=2

(iθ)n−1mn−2(τ).

Here the sum in the last expression need not converge, so what we mean by it
is that for k ≥ 2,

lim
θ→0

1

(iθ)k

(
Rµγ,σ¢ (iθ)− λ−

k∑

n=2

(iθ)n−1mn−2(τ)

)
= mk−1(τ).

Again, it is well-known [Spe97a] that the free (q = 0)-cumulants of µ are the
coefficients in such an expansion of Rµ.

Lemma 6.6. The mapping (q, λ, τ) 7→ LH−1
q (λ, τ) has the following properties.

a. LH−1
q (λ1, τ1) ∗q LH−1

q (λ2, τ2) = LH−1
q (λ1 + λ2, τ1 + τ2).
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b. Denoting by Dc the dilation operator, Dc(µ)(S) = µ(c−1S),

Dc(LH−1
q (λ, τ)) = LH−1

q (cλ, c2Dc(τ)).

c. For any q, LH−1
q (λ, 0) = δλ, and for any µ ∈ IDc(q), µ ∗q δλ = µ ∗ δλ.

d. For q ∈ [−1, 1] and fixed λ, τ , the mapping q 7→ LH−1
q (λ, τ) is weakly

continuous.
e. For a fixed q ∈ [−1, 1], the mapping LH−1

q : R × Mu → IDc(q) is a
homeomorphism in the weak topology.

Proof. The first and the third properties are immediate. For the second one,
we observe that mk(Dc(µ)) = ckmk(µ) and so rk(Dc(µ)) = ckrk(Dc(µ)). The
last two follow from the following fact [Dur91]. Let {µn}∞n=1 be a sequence of
finite measures inMc that converges weakly to a finite measure µ ∈Mc. Then
for all k, mk(µn) → mk(µ). Conversely, let {µn}∞n=1 be a sequence of finite
measures inMc such that for any k, mk(µn)→ mk. If the family {mk}∞k=0 are
the moments of a unique finite positive measure µ, then µn → µ weakly.

For q = 0, 1, it is known [BNTr00] that the map (γ, σ) 7→ LH−1
q (γ +

m1(σ), 1
1+x2σ) can be extended to a weak homeomorphism between the weak

closures of R×Mu and IDc(q).
Corollary 6.7. Let τ ∈ Mu, λ ∈ R. Fix three sequences {A(n)}∞n=1,
{B(n)}∞n=1 ⊂ R, {N(1) < N(2) < . . . } ⊂ N. By limits of sequences of mea-
sures we will always mean weak limits.

a. Every measure in IDc(q) arises as a limit

lim
n→∞

(µn ∗q µn ∗q . . . ∗q µn︸ ︷︷ ︸
N(n) times

) = LH−1
q (λ, τ)(8)

for some {µn}∞n=1 ⊂ IDc(q). The statement (8) is equivalent to

lim
n→∞

(N(n)m1(µn)) = λ, lim
n→∞

(N(n)x2µn) = τ.

b. Let µ ∈ IDc(q). The statement

lim
n→∞

(DB(n)−1(µ ∗q . . . ∗q µ︸ ︷︷ ︸
N(n) times

) ∗q δ−A(n)) = LH−1
q (λ, τ)

is equivalent to

lim
n→∞

(
N(n)

B(n)
m1(µ)−A(n)) = λ, lim

n→∞
N(n)

B(n)2
= t, τ = tδ0.

Hence only LH−1
q (λ, tδ0) arise as such limits.

Proof. Denote by (λn, τn) the components of LHq(µn). From the preceding
Lemma it follows that the statement (8) is equivalent to

lim
n→∞

(N(n)λn) = λ, lim
n→∞

(N(n)τn) = τ.

So to fulfill (8), it suffices to take µn = LH−1
q ( 1

N(n)λ,
1

N(n)τ).
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Now we prove the equivalence. It is clear that λn = r1(µn) = m1(µn). The
family {µn} satisfies (8) iff, in addition, for all k > 1,

mk(N(n)τn) = N(n)mk(τn) = N(n)rk+2(µn)
n→∞−→ mk(τ).

This is equivalent to rk+2(µn) = 1
N(n)mk(τ) + o( 1

N(n) ). By induction on k and

using (7), this is equivalent to

mk(x2µn) = mk+2(µn) =
1

N(n)
mk(τ) + o(

1

N(n)
),

i.e.

mk(N(n)x2µn)
n→∞−→ mk(τ)

and

(N(n)x2µn)
n→∞−→ τ.

The second statement follows from the first one with µn = DB(n)−1(µ)∗qδ− A(n)
N(n)

.

For k ≥ 2,

mk(µn) =
N(n)

B(n)k
mk(µ)

n→∞−→ mk−2(τ).

So limn→∞
N(n)
B(n)2 = t for some t, and mk(τ) = 0 for k ≥ 0, i.e. τ = tδ0. So only

shifted q-Gaussian distributions (see below) can arise as such a limit among
the measures in IDc(q). This means that the combinatorial framework is, in
general, not adequate for identifying the domains of partial attraction.

Remark 6.8. While the results of this section are of most interest in the one-
dimensional case, there is no difficulty with the extension to k dimensions. That
is, to every functional in IDc(q, k) there corresponds a unique conditionally

positive analytic functional, which can be identified with a pair of ~λ ∈ Rk and
a positive analytic functional on C〈x1, x2, . . . , xk〉. Using this bijection, we can
define a convolution on IDc(q, k), as well as a multi-dimensional extension of
the bijection Λ.

Now we consider the q-Lévy processes in the simplest case of one-dimensional
V . There are essentially two distinct situations, T = 0 and T = 1.

6.2. The q-Brownian motion. Denote ω(ξ) = a(ξ) + a∗(ξ).

Definition 6.9. Let V = C, ξ = 1 ∈ V, T = 0, λ = 0 and ξt = 1[0,t). Then the
q-Brownian motion is the process X(t) = p(ξt, 0, 0) = ω(ξt). The distribution
of X(t) is the q-Gaussian distribution with parameter t, given by LH−1

q (0, tδ0).

See, for example, [BKS97] for an explicit form of the q-Gaussian distribution.

Definition 6.10. q-Hermite polynomials are defined by the recursion relation

xHq,n(x, t) = Hq,n+1(x, t) + [n]qtHq,n−1(x, t)

with initial conditions Hq,0(x, t) = 1, Hq,1(x, t) = x.
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Lemma 6.11. The following chaos representation holds:

Hq,n(X(t), t)Ω = ξ⊗nt .

Therefore the q-Gaussian distribution with parameter t is the orthogonalization
measure of the q-Hermite polynomials with parameter t.

Proof. For n = 0, 1Ω = Ω. For n = 1, X(t)Ω = ξt. For n ≥ 2 by induction

Hq,n+1(X(t), t)Ω = X(t)ξ⊗nt − [n]qtξ
⊗(n−1)
t

= ξ
⊗(n+1)
t + [n]qtξ

⊗(n−1)
t − [n]qtξ

⊗(n−1)
t

= ξ⊗nt .

Since ξ⊗nt are orthogonal in Fq(H) for different n, the polynomials Hq,n are
orthogonal for different n with respect to the distribution of X(t).

For the q-Brownian motion, ∆2(t) = t and ∆k(t) = 0 for k > 2. But in this
case, we can in fact calculate all the partition-dependent stochastic measures.
Temporarily denote by s1, s2 the numbers of singleton and 2-element classes of
π, respectively. For a singleton (i), define its depth as

d(i) = |{j|∃a, b ∈ Bj : a < i < b}| .
Define the singleton depth sd (π) to be the sum of depths of all the singletons
of π. In the single-variable case, we will omit the polynomial from the notation
for stochastic measures.

Proposition 6.12. The partition-dependent stochastic measures of the q-
Brownian motion are

Stπ(t;X) =





qrc(π)+sd(π)ts2Hq,s1(X(t), t) if all the classes of π contain

at most 2 elements,

0 otherwise,

where the defining limits are taken in the Lp(ϕ) norm, for any p ≥ 1 (where

‖X‖p = ϕ [|X|p]1/p).

The result is known for q = 1 [RW97] when a different mode of convergence is
used, and for q = 0 [Ans00] when the limit is taken in the operator norm. The
preceding proposition probably holds with the operator norm convergence as
well.
Throughout, we will use the following explicit formula for the moments of the
q-Brownian motion, implicitly contained already in [BS91]:

ϕ [ω(η1)ω(η2) . . . ω(η2n)] =
∑

π∈P2(2n)

qrc(π)
n∏

i=1

〈
ηa(Bi), ηb(Bi)

〉
.

Lemma 6.13. If π has a class of at least three elements, then Stπ(t;X) = 0,
where the limit is taken in the operator norm.
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Proof. For ~v ∈ [1 . . . N ]nπ and B ∈ π, denote by v(B) the value of v on any
element of B. Denote by π(~v) the partition induced by ~v, given by

i
π(~v)∼ j ⇔ v(i) = v(j).

Assume t > 1 to simplify notation.

‖Stπ(t;X, I)‖2k2k =

∥∥∥∥∥∥
∑

~v∈[1...N ]nπ

X~v(t)

∥∥∥∥∥∥

2k

2k

,

which equals to

ϕ







 ∑

~v∈[1...N ]nπ

X~v(t)




 ∑

~v∈[1...N ]nπ

X~v(t)



∗

k



= ϕ




∑

~v=(~v1,~v2,... ,~v2k)
~v2i+1∈[1...N ]nπ ,~v2i∈[1...N ]nπop

X~v(t)




=
∑

~v=(~v1,~v2,... ,~v2k)
~v2i+1∈[1...N ]nπ ,~v2i∈[1...N ]nπop

∑

τ∈P2(2nk)
τ≤π(~v)

qrc(τ)
∏

B∈τ

∣∣Iv(B)

∣∣

≤
∑

τ∈P2(2nk)

qrc(τ)δ(I)k(n−2|π|)t2k|π|

≤ Q2nk(q)δ(I)k(n−2|π|)t2k|π|,

where Q2n(q) =
∑
τ∈P2(2n) q

rc(τ). Therefore

‖Stπ(t;X, I)‖2k ≤ Q2nk(q)1/2kt|π|δ(I)(n−2|π|)/2.

Q2n(q) is the 2n-th moment of the q-Gaussian distribution. By [AB98],
it is equal to

∑
τ∈NC2(2n)

∏
B∈τ [d(B)]q. Here NC 2(2n) is the collection of

noncrossing pair partitions on the set of 2n elements, and for τ ∈ NC (n)
and an arbitrary class B ∈ τ , we can define its depth in τ by d(B) =
|{i : a(Bi) ≤ B ≤ b(Bi)}|; note that this differs by 1 from our definition of
singleton depth above. For q ∈ [−1, 1), [k]q ≤ 2

1−q , and so the sum is

bounded by cn

(
2

1−q

)n
, where cn is the n-th Catalan number. Therefore

Q2nk(q)1/2k ≤ 2n
(

2
1−q

)n/2
. We conclude that

‖Stπ(t;X, I)‖2k ≤ 2n
(

2

1− q

)n/2
t|π|δ(I)(n−2|π|)/2.(9)

All the vectors ξt lie in the real subspace L2(R+,R) of L2(R+,C). The state
ϕ is faithful on the algebra generated by

{
ω(ξ) : ξ ∈ L2(R+,R)

}
, in fact Ω is
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separating for this algebra [BS94]. Therefore the estimate (9) holds for the
operator norm of Stπ(t;X, I). So this norm converges to 0 as δ(I)→ 0.

Lemma 6.14. Let π contain only classes of at most 2 elements. Suppose that
one of the following conditions holds:

a. B,C ∈ π are 2-element classes with a(B) < a(C) = b(B)−1 < b(C). Let
α be the transposition (a(C)b(B)).

b. B ∈ π is a 2-element class and (j) ∈ π is a singleton with a(B) < j =
b(B)− 1. Let α be the transposition (j b(B)).

Then Stπ = qStα◦π, meaning

lim
δ(I)→0

‖Stπ(t;X, I)− qStα◦π(t;X, I)‖p = 0,

for any p ≥ 1.

Proof. We prove only the first case, the proof of the second case is similar. For
a multi-index ~v, denote α(~v) = (v(α(1)), v(α(2)), . . . , v(α(n))).

ϕ







 ∑

~v∈[1...N ]nπ

X~v(t)− qXα(~v)(t)




 ∑

~v∈[1...N ]nπ

X~v(t)− qXα(~v)(t)



∗

k



= ϕ




∑

S⊂[1...2nk]

∑

σ∈P(2nk)

σ∧2k1̂n=
∑2nk
j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−q)|S|X~v(t)


 ,

where

πj(S) =





α ◦ π if j ∈ S, j odd,

(α ◦ π)op if j ∈ S, j even,

π if j 6∈ S, j odd,

πop if j 6∈ S, j even.

First consider all the terms with σ ∈ P2(2nk).

(10) ϕ




∑

S⊂[1...2nk]

∑

σ∈P2(2nk)

σ∧2k1̂n=
∑2nk
j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−q)|S|X~v(t)




=
∑

S⊂[1...2nk]

∑

σ∈P2(2nk)

σ∧2k1̂n=
∑2nk
j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−q)|S|qrc(σ)
∏

B∈σ

∣∣Iv(B)

∣∣ .

Since σ ∈ P2(2nk), it is completely determined by the collection {πj(S)} and

the partition σs induced by σ on the singleton classes of
∑2nk
j=1 πj(S). Note that

there is a natural (order-preserving) identification of the singleton classes of π
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and α ◦ π, so we can consider σs as a partition on the singletons of k(π+ πop).
Denote by σ′ the partition obtained from k(π+πop) by identifying its singleton
classes using σs.
It is easy to see that

rc (σ) = rc (σs) + rc




2nk∑

j=1

πj(S)


+ (2nk)sd (π) .

In its turn, rc
(∑2nk

j=1 πj(S)
)

= (2nk)rc (π)−|S|. Therefore, continuing expres-

sion (10),

= q(2nk)(rc(π)+sd(π))
∑

S⊂[1...2nk]

∑

σ∈P2(2nk)

σ∧2k1̂n=
∑2nk
j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−1)|S|qrc(σs)
∏

B∈σ

∣∣Iv(B)

∣∣

= q(2nk)(rc(π)+sd(π))
∑

σs

∑

~v∈[1...N ]2nk
σ′

qrc(σs)
∏

B∈σ′

∣∣Iv(B)

∣∣ ∑

S⊂[1...2nk]

(−1)|S|.

In this expression, the only dependence on S is in (−1)|S|, and the sum∑
S⊂[1...2nk](−1)|S| = 0.

Therefore the non-zero contributions come only from the terms with σ 6∈
P2(2nk). The rest of the argument proceeds as in the previous lemma, and
shows that ‖Stπ − qStα◦π‖p = 0.

Proof of Proposition 6.12. Using the lemmas, it suffices to prove the proposi-
tion for an interval partition π whose classes have at most 2 elements. Moreover,
by the same arguments as in the preceding lemmas it is easy to see that each
2-element class contributes a factor of t. It remains to show that

St0̂n
(t;X) = Hq,n(X(t), t).

For n = 1,
∑N
i=1Xi(t) = X(t). For n = 2,

N∑

i6=j
Xi(t)Xj(t) =

( N∑

i=1

Xi(t)
)2

−
N∑

i=1

X2
i (t) = X2(t)− t = Hq,2(X(t), t).

For n > 2, it suffices to show that St0̂n
(t;X) satisfy the same recursion relations

as the q-Hermite polynomials. Indeed,

X(t)St0̂n
(t;X, I) = St0̂(n+1)

(t;X, I) +

n+1∑

i=2

Stπi(t;X, I),

where πi = ((1, i)(2) . . . (̂ı) . . . (n+1)) ∈ P(n+1). By the second case of Lemma
6.14 and using induction on n,

Stπi(t;X) = tqi−2St0̂n−1
(t;X).

Therefore

St0̂n+1
(t;X) = X(t)St0̂n

(t;X)−
n+1∑

i=2

tqi−2St0̂n−1
(t;X).
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This implies by induction that St0̂n+1
(t;X) is well-defined, and

X(t)St0̂n
(t;X) = St0̂n+1

(t;X) +

n+1∑

i=2

tqi−2St0̂n−1
(t;X)(11)

= St0̂n+1
(t;X) + t[n]qSt0̂n−1

(t;X).

Remark 6.15 (A combinatorial corollary). Denote by P1,2(n) the collection
of all partitions in P(n) that have classes of only 1 or 2 elements, and by
s1(π), s2(π) the number of 1- and 2-elements classes, respectively. Then using
equation (2), we have a combinatorial corollary of the preceding proposition:

xn =
∑

π∈P1,2(n)

qrc(π)+sd(π)ts2(π)Hq,s1(π)(x, t).

Using the Möbius function on P(n), this relation can be inverted, to obtain

Hq,n(x, t) =
∑

π∈P1,2(n)

(−1)s2(π)qrc(π)+sd(π)ts2(π)xs1(π),

which is a well-known expansion for q-Hermite polynomials. In particular,

X(t)nΩ =
∑

π∈P1,2(n)

qrc(π)+sd(π)ts2(π)Hq,s1(π)(X(t), t)Ω

=
∑

π∈P1,2(n)

qrc(π)+sd(π)ts2(π)ξ
⊗s1(π)
t

= Hq,n(ξt,−t),
where ξt is considered as an element of the tensor algebra, with the tensor
multiplication.

6.3. The q-Poisson process. The following representation is similar to but
different from that of [SY00b].

Definition 6.16. Let V = C, ξ = 1 ∈ V, T = Id, λ = 1 and ξt = 1[0,t), Tt =
1[0,t). The q-Poisson process is the process X(t) = p(ξt, Tt, t). The distribution

of X(t) is the q-Poisson distribution with parameter t, given by LH−1
q (t, tδ1).

We use the definitions of the q-Poisson distribution and the q-Poisson-Charlier
polynomials that were introduced in [SY00a]. See that paper for an explicit
formula for the q-Poisson distribution.

Definition 6.17. q-Poisson-Charlier polynomials are defined by the recursion
relations

xCq,n(x, t) = Cq,n+1(x, t) + ([n]q + t)Cq,n(x, t) + [n]qtCq,n−1(x, t)(12)

with initial conditions Cq,0(x, t) = 1, Cq,1(x, t) = x− t.
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Remark 6.18. Let Sk,n;q =
∑
π∈Π(n,k) q

rc(π), where Π(n, k) is the set of parti-

tions in P(n) with k classes. It is appropriate to call these q-Stirling num-
bers: they interpolate between the usual Stirling numbers for q = 1 and

1
n−k+1

(
n
k

)(
n−1
k−1

)
for q = 0. Then according to [Bia97] (cf. [NS94]), the gen-

erating function
∑

k,n≥0

Sk,n;qt
kzn

has the continued fraction expansion

1

1− ([0]q + t)z − [1]qtz
2

1− ([1]q + t)z − [2]qtz
2

· · ·

.

It is also the moment-generating function (in z) of the probability measure with
q-cumulants rn = t for n ≥ 1. The formula says precisely that the orthogonal
polynomials with respect to that measure satisfy the 3-term recursion relation
(12). These are then the orthogonal polynomials with respect to the q-Poisson
distribution with parameter t. A more direct proof follows from the following
lemma, which is almost verbatim from [SY00b].

Lemma 6.19. The following chaos representation holds:

Cq,n(X(t), t)Ω = ξ⊗nt .

Therefore the distribution of X(t) is the orthogonalization measure of the q-
Poisson-Charlier polynomials.

For the q-Poisson process, for k > 0, ∆k(t) = X(t) independently of k. The
situation with the more general stochastic measures is more complicated. In
particular, it is not true that St0̂n

(t;X) = Cq,n(X(t), t), unlike in the classical
and the free case [RW97, Ans00]. Nevertheless, the analog of equation (11),
which is a form of q-Kailath-Segall formula for centered processes, does hold,
as follows:

Lemma 6.20. For n ≥ 0,

Cq,n+1(X(t), t) = (X(t)− t)Cq,n(X(t), t)

+
n∑

j=1

(−1)j [n]q[n− 1]q . . . [n− j + 1]q∆j+1(t;X)Cq,n−j(X(t), t).

Proof. We need to show that

Cq,n+1(x, t) = (x− t)Cq,n(x, t) +
n∑

j=1

(−1)j [n]q[n− 1]q . . . [n− j + 1]qxCq,n−j(x, t).

(13)
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We will prove this by induction. The formula holds for n = 0. Suppose the
formula true for n− 1, i.e.

Cq,n(x, t) = (x− t)Cq,n−1(x, t) +

n−1∑

j=1

(−1)j [n− 1]q[n− 2]q . . . [n− j]qxCq,n−j−1(x, t).

Then

− [n]qCq,n(x, t)

= −[n]q(x− t)Cq,n−1(x, t) +

n−1∑

j=1

(−1)j+1[n]q[n− 1]q . . . [n− j]qxCq,n−j−1(x, t)

= [n]qtCq,n−1(x, t) +

n−1∑

j=0

(−1)j+1[n]q[n− 1]q . . . [n− j]qxCq,n−j−1(x, t)

= [n]qtCq,n−1(x, t) +
n∑

j=1

(−1)j [n]q[n− 1]q . . . [n− j + 1]qxCq,n−j(x, t).

Add to it the recursion relation (12)

[n]qCq,n(x, t) + Cq,n+1(x, t) = (x− t)Cq,n(x, t)− [n]qtCq,n−1(x, t)

to obtain (13).

7. von Neumann algebras

In this section we list some preliminary results on the algebras generated by
the q-Lévy processes. Throughout the section we consider only q ∈ (−1, 1).
Let X be a centered q-Lévy process with X (i) = p(ξi, Ti, 0), i ∈ [1 . . . k]. We
further assume that the Hilbert space V has a real Hilbert subspace VR so that
V is the complexification of VR. Then the Hilbert space H is the complexifica-
tion of its real subspace L2(R+,R, dx) ⊗ VR. So H has a natural conjugation

¯ defined on it. Assume that {ξi}ki=1 ⊂ VR, and that for each i, Ti(VR) ⊂ VR
and Ti is the complexification of its restriction to VR. Denote by B(Fq(H))
the algebra of all bounded linear operators on Fq(H), and by AX its von Neu-

mann subalgebra generated by
{
X(i)(t) : i ∈ [1 . . . k], t ∈ [0,∞)

}
. As usual, if

the operators comprising X are not bounded, we mean the algebra generated
by their spectral projections.

First consider the multi-dimensional q-Brownian motion. Let {ξi}ki=1 be an

orthonormal basis for V , let VR be the real linear span of {ξi}ki=1, and all
Ti = 0. Since the space of simple functions is dense in L2(R+), the resulting
algebra is the same as the one obtained from the q-Gaussian functor. The
algebra A is known to have the following properties [BS94, BKS97].

a. The vacuum vector Ω is a cyclic vector for A.
b. The vacuum expectation ϕ is a trace on A.
c. The vacuum vector Ω is a cyclic vector for the commutant A′ of A.

Therefore it is a separating vector for A, and the vacuum expectation ϕ
is faithful on A.
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d. Define an anti-linear involution J on Fq(H) by

J(η1 ⊗ η2 ⊗ . . .⊗ ηn) = η̄n ⊗ . . .⊗ η̄2 ⊗ η̄1.

Then A′ = JAJ .
e. A is a factor. Therefore A is a II1 factor in standard form.

We now investigate these properties for more general processes.

Lemma 7.1. If span ({ξi : i ∈ [1 . . . k]}) is dense in V , the vacuum vector Ω is
a cyclic vector for AX.

Proof. For a multi-index ~u of length n and a family of intervals {Ii},
n∏

i=1

X(u(i))(Ii)Ω = (1I1 ⊗ ξu(1))⊗ (1I2 ⊗ ξu(2))⊗ . . .⊗ (1In ⊗ ξu(n)) + ~η,

with ~η ∈ ⊕n−1
j=0 (L2(R+) ⊗ V )⊗j . So if span ({ξi : i ∈ [1 . . . k]}) is dense in V ,

by induction on n we see that Ω is a cyclic vector for AX.

Remark 7.2. We could also consider the algebra generated by the process
and its higher diagonal measures determined in Section 5. We describe the
construction in the one-dimensional case. Let X = p(ξ, T, 0), and define

∆n = p(Tn−1ξ, Tn,
〈
ξ, Tn−2ξ

〉
).

Let AX,∆ be the von Neumann algebra generated by all the processes ∆n(t) for
n ≥ 1. Then Ω is a cyclic vector for AX,∆. We may describe this construction
in more detail elsewhere.

Lemma 7.3. Let q = 0. If the cumulant functional R(·; X) is a trace on C〈x〉,
then ϕ is a trace on AX.

Proof. Let {Ii}li=1 be a family of disjoint intervals. It suffices to show the trace

property for the family of operators
{
X(u(i))(Iv(i))

}n
i=1

for arbitrary multi-
indices ~u,~v. However, it is easy to see that

ϕ

[
n∏

i=1

X(u(i))(Iv(i))

]

=
∑

σ∈NC (n)
σ≤π(~v)

∏

B∈σ
B=(j(1),j(2),... ,j(l))

∣∣∣∣∣∣
⋂

j∈B
Iv(j)

∣∣∣∣∣∣
〈
ξj(1), Tj(2) . . . Tj(l−1)ξj(l)

〉

=
∑

σ∈NC (n)
σ≤π(~v)

Rσ(x~u; X)
∏

B∈σ

∣∣∣∣∣∣
⋂

j∈B
Iv(j)

∣∣∣∣∣∣
.

If R(·; X) is a trace, this expression is symmetric under simultaneous cyclic
permutations of the components of ~u and ~v.
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The hypothesis of Lemma 7.1 is rarely satisfied. It does hold for the q-Brownian
motion, and it also holds for the q-Poisson process. For the remained of the
section we investigate the latter.

Let {ξi}ki=1 be an orthonormal basis for V , with VR the real linear span of

{ξi}ki=1. Let Ti be the orthogonal projection on ξi. The process X with X(i) =
p(ξi, Ti, 0) is the centered k-dimensional q-Poisson process. By Lemma 7.1, Ω
is a cyclic vector for AX; a related statement is contained in Lemma 6.19.
First let q = 0. Then by Lemma 7.3, ϕ is a trace on AX. By the same
arguments used in [BS94] for the q-Brownian motion, it is easy to see that Ω is
separating for AX, and A′X = JAXJ . In fact, using a different representation
of the process [NS96] it follows that AX is the reduced von Neumann algebra of
the free group on infinitely many generators. The preceding discussion shows
that it is given in standard form.
For q 6= 0, for simplicity we consider the 1-dimensional process. Then H =
L2(R+). We extend the mapping I 7→ X(I) to the map on all of HR, namely
for f ∈ L2(R+,R, dx), X(f) = a(f)+a∗(f)+p(Mf ), where Mf is the (possibly
unbounded) operator of multiplication by f . Then AX is the von Neumann
algebra generated by {X(f) : f ∈ HR}.

Proposition 7.4. For the q-Poisson process X, Ω is a separating vector for
AX .

Proof. Define the Wick map W : Falg(HR)→ AX as follows. For f, f1, f2, . . . ∈
HR, let W (Ω) = Id, W (f) = X(f), inductively

W (f ⊗ f1 ⊗ . . .⊗ fn) = X(f)W (f1 ⊗ . . .⊗ fn)

−
n∑

i=1

qi−1 〈f, fi〉W (f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn)

−
n∑

i=1

qi−1W (ffi ⊗ f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn),

and extend R-linearly. Clearly

W (f1 ⊗ . . .⊗ fn)Ω = f1 ⊗ . . .⊗ fn.(14)

For f ∈ HR, define the operator Xr(f) with dense domain Falg(HR) by

Xr(f)f1 ⊗ . . .⊗ fn = W (f1 ⊗ . . .⊗ fn)X(f)Ω = W (f1 ⊗ . . .⊗ fn)f.

Xr(f) commutes with AX on its domain of definition. Indeed,

X(g)Xr(f)Ω = X(g)f = W (g)f = Xr(f)g = Xr(f)X(g)Ω.

Also,

X(g)Xr(f)f1 ⊗ . . .⊗ fn = X(g)W (f1 ⊗ . . .⊗ fn)f
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and

Xr(f)X(g)f1 ⊗ . . .⊗ fn
= Xr(f)X(g)W (f1 ⊗ . . .⊗ fn)Ω

= Xr(f)
[
W (g ⊗ f1 ⊗ . . .⊗ fn) +

n∑

i=1

qi−1 〈g, fi〉W (f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn)

+

n∑

i=1

qi−1W (gfi ⊗ f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn)
]
Ω

= X(g)W (f1 ⊗ . . .⊗ fn)f.

Next,

Xr(fn)Xr(fn−1) . . . Xr(f2)Xr(f1)Ω = W (. . .W (W (f1)f2) . . . fn−1)fn

= f1 ⊗ f2 ⊗ . . .⊗ fn + ~η,

with ~η ∈⊕n−1
i=0 H

⊗i. Therefore Ω is separating for AX .

As a consequence, the map W is in fact determined by the condition (14).

Lemma 7.5. Assume q 6= 0. Then for the q-Poisson process X,

a. ϕ is not a trace on AX .
b. AX and JAXJ do not commute.

Proof. Let I1, I2 be two disjoint intervals. It is easy to see that

ϕ [X(I1)X(I2)X(I1)X(I2)X(I1)] = q2 |I1| |I2| ,
while

ϕ [X(I1)X(I1)X(I2)X(I1)X(I2)] = q |I1| |I2| .
Therefore ϕ is not a trace on AX .
Moreover, for an interval I, (X(I)JX(I)J)(η1 ⊗ η2 ⊗ η3) contains the term
1I⊗η1⊗η2⊗η3 with coefficient q3, while (JX(I)JX(I))(η1⊗η2⊗η3) contains
no such term. So already on H⊗3, AX and JAXJ do not commute.

We conclude that even for the q-Poisson process, the Fock representation of the
corresponding algebra provides little immediate information about the algebra.
The subject certainly deserves further investigation.
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0. Introduction

Let F be a field of characteristic 6= 2 and let ϕ be a regular quadratic form over
F . Then ϕ is said to be excellent if, for any field extension E/F , the anisotropic
part of ϕE := ϕ ⊗F E is defined over F . This notion was introduced by M.
Knebusch in [Kn1, Kn2]. In [KR], a similar notion for semisimple algebraic
groups was introduced and studied for special linear and special orthogonal
groups. Let us recall that the main result of [KR] says that the following
conditions are equivalent.
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(i) The special orthogonal group SO(ϕ) is excellent.
(ii) For every field extension E/F there is an element a ∈ E∗ and a form ψ

over F such that the anisotropic part of ϕE is isomorphic to aψE .

In general, if ϕ is excellent SO(ϕ) is also excellent. The converse holds for odd-
dimensional forms (see [KR]). For even-dimensional forms there are examples
of non-excellent forms ϕ such that the group SO(ϕ) is excellent.

We say that the form ϕ is quasi-excellent if the group SO(ϕ) is excellent.
Taking into account the criterion mentioned above, we can rewrite the definition
as follows: ϕ is quasi-excellent if for any field extension E/F there exists a form
ψ over F such that (ϕE)an is similar to ψE . In this case we write (ϕE)an ∼ ψE .

To study even-dimensional quasi-excellent forms, it is very convenient to give
another definition.

Definition 0.1. We say that a sequence of quadratic forms ϕ0, ϕ1, . . . , ϕh
over F is quasi-excellent if the following conditions hold:

• the forms ϕ0, . . . , ϕh−1 are regular and of dimension > 0 ;
• the form ϕ0 is anisotropic and the form ϕh is zero;
• for i = 1, . . . , h, we have ((ϕ0)Fi)an ∼ (ϕi)Fi where Fi = F (ϕ0, . . . , ϕi−1).

Then the number h is called the height of the sequence. (It coincides with the
height of ϕ0 defined by Knebusch in [Kn1], 5.4.)

It is not difficult to show that we have a surjective map (see Lemma 2.2 and
Corollary 2.4 below):

{quasi-excellent sequences} → {even-dim. quasi-excellent anisotropic forms}
(ϕ0, ϕ1, . . . , ϕh) 7→ ϕ0

Any regular quadratic form of dimension n > 0 over F is isomorphic to a
diagonal form 〈a1, . . . , an〉 := a1X

2
1 + . . . + anX

2
n with a1, . . . , an ∈ F ∗ and

variables X1, . . . , Xn . A d-fold Pfister form is a form of the type

〈〈a1, . . . , ad〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ad〉 .

Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. We prove in Lemma 2.5
that ϕh−1 is similar to some d-fold Pfister form, and then say that d is the
degree of the sequence.

Example 0.2. Let a1, a2, . . . , ad, k0, k1, k2, u, v, c ∈ F ∗. Set

φ0 = k0 〈〈a1, a2, . . . , ad−1〉〉 ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) ,
φ1 = k1 〈〈a1, a2, . . . , ad−1〉〉 ⊗ 〈−u,−v, uv, ad〉 ,
φ2 = k2 〈〈a1, a2, . . . , ad〉〉 ,
φ3 = 0 .

Suppose that φ0 , φ1 and φ2 are anisotropic. Then the sequence (φ0, φ1, φ2, φ3)
is quasi-excellent of degree d (see Lemma 9.1). We notice that dimφh−1 = 2d ,
dimφh−2 = 2d+1 and dimφh−3 = 3 · 2d.
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Clearly, the sequences (φ1, φ2, φ3) and (φ2, φ3) are also quasi-excellent. In
particular, the forms φ0, φ1, φ2, and φ3 are quasi-excellent.

Definition 0.3. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of degree d .
We say that the sequence is of the

• “first type” if dimϕh−2 6= 2d+1 or h = 1
• “second type” if dimϕh−2 = 2d+1 and, if h ≥ 3 , dimϕh−3 6= 3 · 2d
• “third type” if dimϕh−2 = 2d+1 and dimϕh−3 = 3 · 2d , (here h ≥ 3) .

Example 0.4. Let (φ0, φ1, φ2, φ3) be the sequence constructed in Example 0.2.
Assume that φ0 , φ1 and φ2 are anisotropic.

• The sequence (φ2, φ3) is of the first type,
• The sequence (φ1, φ2, φ3) is of the second type,
• The sequence (φ0, φ1, φ2, φ3) is of the third type.

According to Knebusch [Kn2], 7.4, a regular quadratic form ψ is called a
Pfister neighbor, if there exist a Pfister form π , some a ∈ F ∗, and a form η with
dim η < dimψ , such that ψ⊥η ' aπ . The form η is called the complementary
form of the Pfister neighbor ψ .

Example 0.5. Let (ϕ1, . . . , ϕh) be a quasi-excellent sequence. Let ϕ0 be an
anisotropic Pfister neighbor whose complementary form is similar to ϕ1. Then
the sequence (ϕ0, ϕ1, . . . , ϕh) is quasi-excellent. Moreover, this sequence is of
the same type as the sequence (ϕ1, . . . , ϕh). (Note that ((ϕ0)F1

)an ∼ (ϕ1)F1

by [Kn2], p. 3.)

Clearly, Examples 0.4 and 0.5 give rise to the construction of many examples
of quasi-excellent sequences of prescribed type: We start with a quasi-excellent
sequence given in Example 0.4. We can then apply the construction presented
in Example 0.5 to obtain a new quasi-excellent sequence. Since we can apply
the construction in Example 0.5 many times, we get quasi excellent sequences
of arbitrary height.

The main goal of this paper is to prove (under certain assumptions) that all
quasi-excellent sequences can be constructed by using this recursive procedure.
To be more accurate, for sequences of the first type, we prove the following
classification result:

Theorem 0.6. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of the first type.
Then for any i < h the form ϕi is a Pfister neighbor whose complementary
form is similar to ϕi+1.

For sequences of the second and the third type, we state our classification
results as conjectures which we will prove for sequences of degree 1 . For se-
quences of arbitrary degree we will deduce our conjectures from some classical
conjectures which now seem to be settled for all fields of characteristic 0 , cf.
[Vo, OVV].
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Conjecture 0.7. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the
second type. Then for any i < h − 2 the form ϕi is a Pfister neighbor whose
complementary form is similar to ϕi+1. Besides, the forms ϕh−2 and ϕh−1

look as follows:

ϕh−2 ∼ 〈〈a1, . . . , ad−1〉〉 ⊗ 〈−u,−v, uv, ad〉 ,
ϕh−1 ∼ 〈〈a1, . . . , ad−1, ad〉〉 .

(For d = 1 we put 〈〈a1, . . . , ad−1〉〉 = 〈1〉 .)
Conjecture 0.8. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the
third type. Then for any i < h − 3 the form ϕi is a Pfister neighbor whose
complementary form is similar to ϕi+1. Besides, the forms ϕh−3 , ϕh−2 and
ϕh−1 look as follows:

ϕh−3 ∼ 〈〈a1, . . . , ad−1〉〉 ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉),
ϕh−2 ∼ 〈〈a1, . . . , ad−1〉〉 ⊗ 〈−u,−v, uv, ad〉 ,
ϕh−1 ∼ 〈〈a1, . . . , ad−1, ad〉〉 .

The main results of this paper are Theorem 0.6 and the following two theorems.

Theorem 0.9. Conjectures 0.7 and 0.8 are true for quasi-excellent sequences
of degree 1. The well-known so far unpublished result by Rost, that the Milnor
invariant e4 is bijective, implies that 0.7 and 0.8 are also true for sequences of
degree 2 .

Theorem 0.10. Modulo results proved in [Vo, OVV] both Conjectures 0.7 and
0.8 are true over any field of characteristic 0.

All results of this paper are due to the first-named author Oleg Izhboldin. The
second-named author is responsible for a final version of Oleg’s beautiful draft
which he could not complete because of his sudden death on April 17, 2000.

1. Notation and background material

We fix a ground field F of characteristic different from 2 and set F ∗ = F\{0} .
If two quadratic forms ϕ and ψ are isomorphic we write ϕ ' ψ . We say that
ϕ and ψ are similar if ϕ ' aψ for some a ∈ F ∗, and write ϕ ∼ ψ . A regular
quadratic form ϕ of dimension dimϕ > 0 is said to be isotropic if there is a
non-zero vector v in the underlying vector space of ϕ such that ϕ(v) = 0 , and
anisotropic otherwise. The zero form 0 is assumed to be anisotropic. As has
been shown by Witt [W], any regular quadratic form ϕ has a decomposition

ϕ ' i× 〈1,−1〉 ⊥ ϕan

where ϕan is anisotropic and i ≥ 0 . Moreover, the number i =: i(ϕ) and, up
to isomorphism, the form ϕan are uniquely determined by ϕ . We call i(ϕ) the
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Witt index of ϕ . If i(ϕ) > 0 then ϕ is isotropic. A form ϕ 6= 0 is said to be
hyperbolic if ϕan = 0 . We have a Witt equivalence relation ϕ ∼w ψ defined by

ϕ ∼w ψ ⇐⇒ ϕan ' ψan

The Witt equivalence classes [ϕ] of regular quadratic forms ϕ over F form a
commutative ring W (F ) with zero element [0] and unit element [〈1〉] . The
operations in this Witt ring W (F ) are induced by:
〈a1, . . . , am〉⊥ 〈b1, . . . , bn〉 = 〈a1, . . . , am, b1, . . . , bn〉
〈a1, . . . , am〉 ⊗ 〈b1, . . . , bn〉 = 〈a1b1, . . . , a1bn, . . . , amb1, . . . , ambn〉 .

In particular, there is a surjective ring homomorphism

e0 : W (F )→ Z/2Z , [ϕ] 7→ (dimϕ) mod 2Z .
Its kernel I(F ) := ker(e0) is called the fundamental ideal of W (F ). Since
〈a, b〉 ∼w 〈〈−a〉〉⊥−〈〈b〉〉 the ideal I(F ) is generated by the classes of the 1-fold
Pfister forms 〈〈a〉〉 = 〈1,−a〉 with a ∈ F ∗. Consequently, the nth power ideal
In(F ) of I(F ) is generated by the classes of n-fold Pfister forms 〈〈a1, . . . , an〉〉 =
〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 . We will use the Arason-Pfister Hauptsatz [AP]:

Theorem 1.1. (Arason-Pfister) If [ϕ] ∈ In(F ) and dimϕan < 2n then ϕ ∼w 0 .

Put F ∗2 = {x2 ∈ F ∗ |x ∈ F ∗} and d(ϕ) := (−1)(
m
2 ) det(ϕ) with m = dimϕ .

Then there is a surjective group homomorphism

e1 : I(F )→ F ∗/F ∗2, [ϕ] 7→ d(ϕ)F ∗2,

satisfying ker(e1) = I2(F ) , see [Pf1], 2.3.6. For any ideal I in W (F ) we write
ϕ ≡ ψ mod I when [ϕ⊥−ψ] ∈ I . Let µ = 〈a1, . . . , am〉 with a1, . . . , am ∈ F ∗.
If m is odd then d

(
〈a1, . . . , am,−d(µ)〉

)
=
∏m
i=1 a

2
i ∈ F ∗2, and we obtain the

following remark which will be used for the classification of quasi-excellent
sequences of the first type.

Remark 1.2. If dimµ is odd then µ ≡ 〈 d(µ) 〉 mod I2(F ) .

Of special interest for us is the function field F (ϕ) of a regular quadratic form
ϕ . Assuming that dimϕ ≥ 2 and ϕ 6' 〈1,−1〉 we let F (ϕ) be the function field
of the projective variety defined by ϕ . Its transcendence degree is (dimϕ)− 2
and ϕF (ϕ) is isotropic. Moreover, F (ϕ) is purely transcendental over F iff ϕ
is isotropic (cf. [Kn1], 3.8). We denote by F (ϕ,ψ) the function field of the
product of the varieties defined by the forms ϕ and ψ .

We say that ϕ is a subform of ψ, and write ϕ ⊂ ψ , if ϕ is isomorphic to an
orthogonal summand of ψ . We will use the following two consequences of the
Cassels-Pfister Subform Theorem [Pf1], 1.3.4:

Theorem 1.3. ([Kn1], 4.4, and [S], 4.5.4 (ii)) Let λ be an anisotropic form and
ρ be a Pfister form. Then the following conditions are equivalent:

• there exists a form µ such that λ ' ρ⊗ µ ,
• there exists a form ν such that λ ∼w ρ⊗ ν ,
• λF (ρ) is hyperbolic.

Moreover, in these cases kρ ⊂ λ for any k ∈ D(λ) := {a ∈ F ∗ | 〈a〉 ⊂ ϕ} .
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Theorem 1.4. ([Kn1], 4.5) Let ϕ and ψ be forms of dimension ≥ 2 satisfying
ϕ 6' 〈1,−1〉 and ψ 6∼w 0 . If ψF (ϕ) ∼w 0 then ϕ is similar to a subform of ψ ,
hence dimϕ ≤ dimψ .
Consequently, if dimϕ > dimψ then ψF (ϕ) is not hyperbolic.

If, in addition, ϕ and ψ are anisotropic and the dimensions of ϕ and ψ are
separated by a 2-power, then ψF (ϕ) is not isotropic as Hoffmann has shown.

Theorem 1.5. (Hoffmann ([H1], Theorem 1) Let ϕ and ψ be anisotropic forms
with dimψ ≤ 2n < dimϕ for some n > 0 . Then ψF (ϕ) is anisotropic.

In accordance with the definition given in the introduction, a form ϕ is a
Pfister neighbor of a d-fold Pfister form π if dimϕ > 2d−1 and ϕ is similar to
a subform of π .

Theorem 1.6. (Hoffmann [H1], Corollaries 1, 2) Let ϕ be an anisotropic form
of dimension 2n +m with 0 < m ≤ 2n. Then dim(ϕF (ϕ))an ≥ 2n −m.

If, in addition, ϕ is a Pfister neighbor then dim(ϕF (ϕ))an = 2n −m.

The following theorem is a result by Izhboldin on “virtual Pfister neighbors”,
cf. [Izh], Theorem 3.5.

Theorem 1.7. (Izhboldin) Let ϕ be an anisotropic form of dimension 2n +m
with 0 < m ≤ 2n. Assume that there is a field extension E/F such that
ϕE is an anisotropic Pfister neighbor. Then either dim(ϕF (ϕ))an ≥ 2n or
dim(ϕF (ϕ))an = 2n −m .

Theorem 1.8. (Knebusch [Kn2], 7.13) Let ϕ and ψ be anisotropic forms such
that (ϕF (ϕ))an ' ψF (ϕ). Then ϕ is a Pfister neighbor and −ψ is the comple-
mentary form of ϕ.

The following theorem is a special case of the Knebusch-Wadsworth Theorem
[Kn1], 5.8. It will be used in Lemma 2.5 below.

Theorem 1.9. (Knebusch-Wadsworth) Let ϕ be an anisotropic form such that
ϕF (ϕ) is hyperbolic. Then ϕ is similar to a Pfister form.

Knebusch introduced in [Kn1] a generic splitting tower K0 ⊂ K1 ⊂ · · · ⊂ Kh

of a form ψ 6∼w 0 which is easily described as follows. Let K0 = F and ψ0 ' ψan

and proceed inductively by letting Ki = Ki−1(ψi−1) and ψi ' ((ψi−1)Ki)an .
Then h is the height of ψ , that is the smallest number such that dimψh ≤ 1 .

The form ψ is excellent iff all forms ψi are defined over F (that is, for each
i there exists a form ηi over F such that ψi ' (ηi)Ki ), cf. [Kn2], 7.14.

Now assume that dimψ is even. Then ψh−1 ' aπ for some a ∈ K∗h−1 and
some d-fold Pfister form π over Kh−1 by Theorem 1.9. The form π is called
the leading form of ψ and the number d =: degψ the degree of ψ . We say that
ψ is a good form if π is defined over F . Then there is, up to isomorphism, a
unique d-fold Pfister form τ over F such that π ' τKh−1

, cf. [Kn2], 9.2, and
we will refer to this Pfister form over F as the leading form of a good form.
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Saying that all odd-dimensional forms have degree 0 and that the zero form
has degree ∞ we get a degree function, cf. [Kn1], p. 88:

deg : W (F )→ N ∪ {0} ∪ {∞} , [ψ] 7→ [degψ] .

For every n ≥ 0 let Jn(F ) := { [ψ] ∈ W (F ) | degψ ≥ n }. Then Jn(F ) is an
ideal in the Witt ring W (F ) and J1(F ) = I(F ) is the fundamental ideal. We
are now prepared to formulate the next result we will need later.

Theorem 1.10. (Knebusch [Kn2], 9.6, 7.14, and 10.1; Hoffmann [H2])
Let ψ be an anisotropic good form of degree d ≥ 1 with leading form τ . Then

ψ ≡ τ mod Jd+1(F ) .

If, in addition, ψ is of height 2 then one of the following conditions holds.

• The form ψ is excellent. In this case, ψ is a Pfister neighbor whose
complementary form is similar to τ . In particular, dimψ = 2N − 2d with
N ≥ d+ 2 , and ψF (τ) is hyperbolic.

• The form ψ is non-excellent and good. In this case dimψ = 2d+1 and
ψF (τ) is similar to an anisotropic (d+ 1)-fold Pfister form.

We denote by Pd(F ) (resp. GPd(F )) the set of all quadratic forms over F
which are isomorphic (resp. similar) to d-fold Pfister forms.

Finally, we mention the following well-known facts (e.g., [L], IX.1.1, X.1.6).

Remark 1.11. (i) Anisotropic forms over F remain anisotropic over purely
transcendental extensions of F .

(ii) Isotropic Pfister forms are hyperbolic.

2. Elementary properties of quasi-excellent forms and sequences

Lemma 2.1. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Then

• all forms ϕi are forms of even dimension,
• all forms ϕi are anisotropic,
• dimϕ0 > dimϕ1 > · · · > dimϕh = 0,
• for all s = 1, . . . , h, we have

((ϕ0)Fs)an ∼ ((ϕ1)Fs)an ∼ · · · ∼ ((ϕs−1)Fs)an ∼ (ϕs)Fs

where Fs = F (ϕ0, . . . , ϕs−1).

Proof. Obvious from Definition 0.1.

Lemma 2.2. Let ϕ be an anisotropic even-dimensional quasi-excellent form
over F . Then there exists a quasi-excellent sequence (ϕ0, ϕ1, . . . , ϕh) such that
ϕ0 = ϕ.

Proof. Let us define the forms ϕi recursively. We set ϕ0 = ϕ . Now, we suppose
that i > 0 and that all forms ϕ0, . . . , ϕi−1 are already defined. Also, we can
suppose that these forms are of dimension > 0. Put Fi = F (ϕ0, . . . , ϕi−1).
Since ϕ is quasi-excellent, there exists a form ψ over F such that (ϕFi)an is
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similar to ψFi . We put ϕi = ψ . If ϕi = 0 then we are done by setting h = i .
If ϕi 6= 0 we repeat the above procedure.

Lemma 2.3. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. Let E/F be a
field extension such that (ϕ0)E is isotropic, and let i be the maximal integer
such that all forms (ϕ0)E , . . . , (ϕi−1)E are isotropic. Then ((ϕ0)E)an ∼ (ϕi)E .

Proof. Since the forms (ϕ0)E , . . . , (ϕi−1)E are isotropic, the field extension
Ei := E(ϕ0, . . . , ϕi−1) is purely transcendental over E . Since Fi ⊂ Ei and
((ϕ0)Fi)an ∼ (ϕi)Fi , it follows that ((ϕ0)Ei)an ∼ ((ϕi)Ei)an . Since Ei/E is
purely transcendental we can use Springer’s theorem (e.g., [L], 6.1.7) to obtain
((ϕ0)E)an ∼ ((ϕi)E)an . By definition of i, the form (ϕi)E is anisotropic.

Corollary 2.4. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. Then the
form ϕ0 is a quasi-excellent even-dimensional form.

Proof. Obvious from Lemmas 2.1 and 2.3.

Lemma 2.5. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Then the form
ϕh−1 is similar to a Pfister form.

Proof. By Definition 0.1, we have ϕh = 0 and ((ϕh−1)Fh)an ∼ (ϕh)Fh , where
Fh = F (ϕ0, . . . , ϕh−1). Therefore, (ϕh−1)Fh is hyperbolic. Note that Fh '
F (ϕh−1)(ϕ0, . . . , ϕh−2) . Since the dimensions of the forms ϕ0, . . . , ϕh−2 are
strictly greater than dimϕh−1 and (ϕh−1)F (ϕh−1)(ϕ0,...,ϕh−2) is hyperbolic, it
follows from Theorem 1.4 that (ϕh−1)F (ϕh−1) is hyperbolic. By Theorem 1.9,
ϕh−1 is similar to a Pfister form.

Definition 2.6. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence.

• By Lemma 2.5, the form ϕh−1 is similar to some Pfister form τ ∈ Pd(F ) .
We say that τ is the leading form and d is the degree of the sequence.
Besides, we say that h is the height of the sequence.

• The form ϕh−2 is called the pre-leading form of the sequence. Clearly,
here we assume that h ≥ 2.

Remark 2.7. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Then its leading
form is the leading form of ϕ0 as well. In particular, ϕ0 is a good form whose
height and degree coincide with the height and degree of the sequence.

We finish this section with a lemma which we will need for the classification
of quasi-excellence sequences of the second and third type.

Lemma 2.8. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence with h ≥ 2. Let
E/F be an extension such that (ϕ0)E is an anisotropic Pfister neighbor whose
complementary form is similar to (ϕ2)E . Then dimϕ1 is a power of 2 and
dimϕ0 = 2 dimϕ1 − dimϕ2.
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Proof. Let us write dimϕ0 in the form dimϕ0 = 2n + m with 0 < m ≤ 2n.
Since (ϕ2)E is similar to the complementary form of (ϕ0)E , we have dimϕ2 =
2n+1−dimϕ0 = 2n−m. Since dimϕ1 = dim((ϕ0)F (ϕ0))an, Theorem 1.7 shows
that either dimϕ1 ≥ 2n or dimϕ1 = 2n −m. The equality dimϕ1 = 2n −m
is obviously false because dimϕ2 = 2n − m. Therefore, dimϕ1 ≥ 2n. If
dimϕ1 = 2n then dimϕ0 = 2n + m = 2 · 2n − (2n −m) = 2 dimϕ1 − dimϕ2

and the proof is complete. Hence, we can assume that dimϕ1 > 2n. Then
2n < dimϕ1 < dimϕ0 = 2n +m. Therefore dimϕ1 can be written in the form
2n + m1 with 0 < m1 < m ≤ 2n. Let K = F (ϕ0). Then Lemma 2.1 shows
that ((ϕ1)K(ϕ1))an is similar to (ϕ2)K(ϕ1). Hence, dim((ϕ1)K(ϕ1))an = dimϕ2.
Since dimϕ1 = 2n+m1, Theorem 1.6 shows that dimϕ2 = dim((ϕ1)K(ϕ1))an ≥
2n − m1. Since dimϕ2 = 2n − m, we get m1 ≥ m. This contradicts to the
inequality m1 < m proved earlier.

3. Inductive properties of quasi-excellent sequences

In this section we study further properties of a quasi-excellent sequence
(ϕ0, . . . , ϕh) of degree d with leading form τ . Then we derive some results
on its pre-leading form γ := ϕh−2. In particular, we show that dim γ is ei-
ther 2d+1 or 2N − 2d with N ≥ d + 2 and that (ϕi)F (γ,τ) is hyperbolic for all
i = 0, . . . , h− 1 .

Lemma 3.1. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence and let E = F (ϕ1) .

• If (ϕ0)E is isotropic then (ϕ1, ϕ2, . . . , ϕh) is a quasi-excellent sequence
and ((ϕ0)E)an ∼ (ϕ2)E .

• If (ϕ0)E is anisotropic then
(
(ϕ0)E , (ϕ2)E , (ϕ3)E , . . . , (ϕh)E

)
is a quasi-

excellent sequence.

Proof. Let Fi = F (ϕ0, . . . , ϕi−1) and F0,i = F (ϕ1, . . . , ϕi−1). Assume that ϕ0

is isotropic over F (ϕ1) . Then the extension Fi/F0,i is purely transcendental
for all i ≥ 2. By Lemma 2.1, we have ((ϕ1)Fi)an ∼ (ϕi)Fi for all i ≥ 1. Since
Fi/F0,i is purely transcendental for i ≥ 2, we have ((ϕ1)F0,i

)an ∼ (ϕi)F0,i
for all

i ≥ 2. This means that the sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent. Now
Lemma 2.3 implies that ((ϕ0)E)an ∼ (ϕ2)E . The last statement is obvious
from Definition 0.1.

Lemma 3.2. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Suppose that ϕ0

is a Pfister neighbor whose complementary form is similar to ϕ1 . Then the
sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent.

Proof. By Lemma 3.1, it suffices to show that (ϕ0)F (ϕ1) is isotropic. By as-
sumption, there is a form η ∼ ϕ1 and a Pfister form π such that ϕ0⊥η ∼ π .
Since ηF (ϕ1) is isotropic, the form πF (ϕ1) must be hyperbolic. Since dimϕ0 >
dim η it follows that (ϕ0)F (ϕ1) is isotropic.
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Lemma 3.3. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of height h ≥ 2 with
leading form τ ∈ Pd(F ) and let Fi = F (ϕ0, . . . , ϕi−1) . Then the sequence

(
(ϕi)Fi , (ϕi+1)Fi , . . . , (ϕh)Fi

)

is quasi-excellent of height h− i with leading form τFi ∈ Pd(Fi) for 1 ≤ i < h .

Proof. By Lemma 2.1, the forms (ϕs)Fs are anisotropic for s = 1, . . . , h . Thus
(ϕs)Fi is anisotropic for fixed i < h and s = i, . . . , h . In particular, τFi is
anisotropic since τFi ∼ (ϕh−1)Fi by Definition 2.6. Now the result is obvious.

Lemma 3.4. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of degree d with
leading form τ . Then for all i = 0, . . . , h − 1, we have ϕi ≡ τ mod Jd+1(F ) .
In particular, deg(ϕi) = deg(τ) = d for all i = 0, . . . , h− 1 .

Proof. By Remark 2.7 and Theorem 1.10, we have ϕ0 ≡ τ mod Jd+1(F ) . Using
Lemma 3.3 we obtain from Remark 2.7 and Theorem 1.10 that

(ϕi)Fi ≡ τFi mod Jd+1(Fi)

for all i = 1, . . . , h − 1 . Since dimϕ0 > . . . > dimϕh−2 > 2d = dimϕh−1 ,
the canonical map Jd(Fi−1)/Jd+1(Fi−1)→ Jd(Fi)/Jd+1(Fi) is injective for i =
1, . . . , h − 1 and F0 = F as Knebusch [Kn1], 6.11, has shown. Thus the
composed map Jd(F )/Jd+1(F ) → Jd(Fi)/Jd+1(Fi) is also injective. Hence
ϕi ≡ τ mod Jd+1(F ) for i = 1, . . . , h − 1 . The second statement follows from
the first since Jd(F ) is an ideal in the Witt ring W (F ) .

Lemma 3.5. Let γ and τ be anisotropic forms. Suppose that dim γ = 2d+1 and
τ ∈ Pd(F ) for suitable d. Suppose also that γF (γ) is not hyperbolic and γF (γ,τ)

is hyperbolic. Then the form (γF (γ))an is similar to τF (γ) .

Proof. Let K = F (γ). By assumption, the form γK(τ) is hyperbolic. Thus
Theorem 1.3 implies that there exists a K-form µ such that (γK)an ' τK ⊗ µ .
Since dim τ = 2d and dim(γK)an = dim(γF (γ))an < dim γ = 2d+1, it follows

that dimµ < 2d+1/2d = 2 . Hence, dimµ = 0 or 1.
If dimµ = 0 then (γK)an = 0 . Then γF (γ) = γK is hyperbolic. We get

contradiction to the hypothesis of the lemma.
If dimµ = 1, then the isomorphism (γK)an ' τK ⊗ µ shows that (γK)an is

similar to τK . The lemma is proved.

Proposition 3.6. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence with leading
form τ ∈ Pd(F ) and pre-leading form γ = ϕh−2 . Then

(1) dim γ = 2d+1 or dim γ = 2N − 2d with N ≥ d+ 2.

(2) If dim γ = 2d+1 then γ is a good non-excellent form of height 2 and degree
d with leading form τ .

(3) If dim γ 6= 2d+1 then γ is excellent and γF (τ) is hyperbolic.
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Proof. (1). Let E = Fh−2 = F (ϕ0, . . . , ϕh−3). By Lemma 3.3 with i = h − 2,
the sequence (γE , (ϕh−1)E , (ϕh)E) is quasi-excellent of height 2 with leading
form τE ∈ Pd(E) . Thus Remark 2.7 implies that γE is a good form of height
2 , degree d , and leading form τE . By Theorem 1.10, there are two types of
good forms of height 2 , non-excellent and excellent.

If γE is good non-excellent of height 2 and degree d, then dim γ = 2d+1.
If γE is excellent form of height 2 and degree d, then dim γ = 2N − 2d with

N ≥ d+ 2 .
(2). Assume that dim γ = 2d+1. We have to prove that (γF (γ))an is similar

to τF (γ). By Lemma 3.5, it suffices to verify that γF (γ) is not hyperbolic and
γF (γ,τ) is hyperbolic.

Since E(γ) = Fh−1 , we have (γE(γ))an ∼ (ϕh−1)E(γ) ∼ τE(γ) by Lemma 2.1
and Definition 2.6. This shows that γF (γ) is not hyperbolic and that γE(γ,τ) is
hyperbolic. Since E = F (ϕ0, . . . , ϕh−3) is the function field of forms of dimen-
sion > dimϕh−2 = dim γ and γE(γ,τ) is hyperbolic, it follows from Theorem
1.4 that γF (γ,τ) is also hyperbolic. By Lemma 3.5, we are done.

(3). If dim γ 6= 2d+1 then γE is an excellent form of height 2 and degree d
with the leading form τE . In this case γE(τ) is hyperbolic by Theorem 1.10.
Hence γF (τ) is also hyperbolic by Theorem 1.4.

Proposition 3.7. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence with leading
form τ ∈ Pd(F ) and pre-leading form γ = ϕh−2 . Then (ϕi)F (γ,τ) is hyperbolic
for all i = 0, . . . , h− 1.

Proof. If h = 1 then ϕ0 ∼ τ by Definition 2.6, hence (ϕ0)F (τ) is hyperbolic. If
h = 2 then the statement is obvious as well. Thus, we can assume that h ≥ 3.
We use induction on h.

Let E = F (ϕ0). By Lemma 3.3, ((ϕ1)E , (ϕ2)E , . . . , (ϕh)E) is quasi-excellent.
By induction assumption, (ϕi)E(γ,τ) is hyperbolic for all i = 1, . . . , h−1. Since
E(γ, τ) = F (γ, τ, ϕ0) and dimϕ0 is strictly greater than the dimensions of all
forms ϕ1, . . . , ϕh−1, Theorem 1.4 shows that the forms (ϕi)F (γ,τ) are hyperbolic
for all i = 1, . . . , h− 1.

Now, it suffices to prove that (ϕ0)F (γ,τ) is hyperbolic. We consider three
cases and use the following observation. Since (ϕ1)F (γ,τ) is hyperbolic, hence
isotropic, it follows that F (γ, τ, ϕ1) is purely transcendental over F (γ, τ).

Case 1. The form (ϕ0)F (ϕ1) is isotropic.
Then (ϕ0)F (γ,τ,ϕ1) is isotropic. Thus (ϕ0)F (γ,τ) is isotropic too by the above

observation. Since the forms (ϕi)F (γ,τ) are hyperbolic for all i = 1, . . . , h− 1 ,
Lemma 2.3 applies with i = h so that ((ϕ0)F (γ,τ))an ∼ (ϕh)F (γ,τ) = 0 .

Case 2. The form (ϕ0)F (ϕ1) is anisotropic and h = 3.
In this case γ = ϕ1 . Let E = F (ϕ1) = F (γ) . By Lemma 3.1, the sequence

((ϕ0)E , (ϕ2)E , 0) is quasi-excellent of height 2.
Clearly, dimϕ2 = dim τ = 2d , and dimϕ0 > dimϕ1 = dim γ ≥ 2d+1 by

Proposition 3.6. Since dim(ϕ0)E 6= 2d+1 it follows that (ϕ0)E is excellent of
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height 2 with leading form τE . Hence (ϕ0)E(τ) is hyperbolic (see Theorem
1.10). Since E(τ) = F (γ, τ), we are done.

Case 3. The form (ϕ0)F (ϕ1) is anisotropic and h ≥ 4.
Let E = F (ϕ1). By Lemma 3.1, the sequence

((ϕ0)E , (ϕ2)E , . . . , (ϕh−2)E , (ϕh−1)E , 0)

is a quasi-excellent of height h − 1. Clearly, τE is the leading form and γE =
(ϕh−2)E is the pre-leading form of this sequence (we note, that here we use
the condition h ≥ 4). Applying the induction hypothesis, we see that the
form (ϕ0)E(γ,τ) is hyperbolic. Therefore, (ϕ0)F (γ,τ) is hyperbolic by the above
observation.

4. Classification theorem for sequences of the first type

Recall that a quasi-excellent sequence (ϕ0, . . . , ϕh) of degree d is of the first
type if dimϕh−2 6= 2d+1 or if h = 1 .

Lemma 4.1. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of the first type with
leading form τ ∈ Pd(F ) . Then

(i) the form (ϕi)F (τ) is hyperbolic for all i = 0, . . . , h− 1,
(ii) for every i = 0, . . . , h − 1 there exists an odd-dimensional form µi such

that ϕi ' µi ⊗ τ ,
(iii) ϕ0 is a Pfister neighbor, whose complementary form is similar to ϕ1 .

Proof. (i). For h = 1 the statement follows from Remark 1.11. Now assume
that h ≥ 2 , and put γ = ϕh−2 . By Proposition 3.6 (3), the form γF (τ) is
isotropic. Hence, the extension F (γ, τ)/F (τ) is purely transcendental. This
implies, since (ϕi)F (γ,τ) is hyperbolic by 3.7, that (ϕi)F (τ) is hyperbolic.

(ii). By Theorem 1.3 and (i), there exists a form µi such that ϕi ' µi ⊗ τ .
Thus it suffices to prove that dimµi is odd. If we assume that µi is an even-
dimensional form, then we get [ϕi] ∈ I(F ) · Id(F ) = Id+1(F ). This contradicts
to Lemma 3.4, where we have proved that deg(ϕi) = d for all i = 0, . . . , h− 1 ,
since Id+1(F ) ⊂ Jd+1(F ) by [Kn1], 6.6.

(iii). Let K = F (ϕ0). By Definition 0.1, there exists x ∈ K∗ such that
((ϕ0)K)an ' x (ϕ1)K . By (ii), this implies

(∗) (µ0 ⊗ τ)K ∼w x (µ1 ⊗ τ)K .

Let s0 = d(µ0) and s1 = d(µ1). Since µ0 and µ1 are both of odd dimension,
we have µ0 ≡ 〈s0〉 mod I2(F ) and µ1 ≡ 〈s1〉 mod I2(F ) by Remark 1.2. Thus
s0τK ≡ (µ0⊗τ)K mod Id+2(K) and x(µ1⊗τ)K ≡ xs1τK mod Id+2(K) , since
τ ∈ Id(F ). This yields s0τK ≡ xs1τK mod Id+2(K) by (∗). Setting s = s0s1

we obtain sτK ≡ xτK mod Id+2(K) . Theorem 1.1 now shows that sτK ' xτK .
Therefore, (ii) and the above yield ((ϕ0)K)an ' x(ϕ1)K ' x(µ1 ⊗ τ)K '

(µ1)K ⊗ xτK ' s(µ1 ⊗ τ)K ' (sϕ1)K . Theorem 1.8 now shows that ϕ0 is a
Pfister neighbor whose complementary form is isomorphic to −sϕ1 .
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The following theorem proves Theorem 0.6.

Theorem 4.2. Let (ϕ0, . . . , ϕh) be a sequence of anisotropic forms. Then this
sequence is a quasi-excellent sequence of the first type if and only if the following
two conditions hold.

• For any i = 0, . . . , h− 1, the form ϕi is a Pfister neighbor whose comple-
mentary form is similar to ϕi+1 .

• The form ϕh is zero.

Proof. Obvious induction by using Lemma 3.2 and Lemma 4.1 (iii). The
converse direction follows from Example 0.5 starting with the sequence
{ϕh−1, ϕh = 0} .

5. Quasi-excellent sequences modulo some ideals

Let I(F ) be the ideal of classes of even-dimensional forms in the Witt ring
W (F ) , and let In(F ) denote the nth power of I(F ) . We need the following
proposition for the classification of sequences of the second and third type.

Proposition 5.1. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. Suppose
that there exists an integer k such that 1 ≤ k < h with the following property:
for all i = 0, . . . , k− 1, there exists fi ∈ F ∗ such that ϕi ≡ fi ϕk mod Im+1(F )
where m is a minimal integer such that dimϕk < 2m.

Then ϕ0 is a Pfister neighbor whose complementary form is similar to ϕ1 .

Proof. For convenience, we will include in our consideration also the case where
k = 0 and prove, by induction, the following two properties:

(a) If k ≥ 1 then ϕ0 is a Pfister neighbor whose complementary form is
similar to ϕ1 .

(b) If k ≥ 0 then for any x ∈ F ∗ the conditions ϕ0 ≡ xϕ0 mod Im+1(F ) and
dimϕk < 2m imply that ϕ0 ' xϕ0 .

For a given k we denote properties (a) and (b) by (a)k and (b)k correspondingly.
The plan of the proof of Proposition 5.1 will be the following.

• We start with the proof of property (b)0 .
• For k ≥ 1 , we prove that (b)k−1 ⇒ (a)k .
• For k ≥ 1, we prove that (b)k−1 ⇒ (b)k .

Lemma 5.2. Condition (b) holds in the case k = 0 .

Proof. If k = 0 we have in (b) the conditions [ϕ0 ⊥ −xϕ0] ∈ Im+1(F ) and
dimϕ0 < 2m, in particular dim(ϕ0 ⊥ −xϕ0) < 2m+1. By Theorem 1.1, the
form ϕ0 ⊥ −xϕ0 is hyperbolic. Therefore ϕ0 ' xϕ0 .

Lemma 5.3. Let k ≥ 1. Then property (b)k−1 (stated for all quasi-excellent
sequences over all fields of characteristic 6= 2) implies property (a)k .
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Proof. Consider a sequence (ϕ0, . . . , ϕh) as in Proposition 5.1. Then, by as-
sumption, there exist f0, f1 ∈ F ∗ such that ϕ0 ≡ f0ϕk mod Im+1(F ) and
ϕ1 ≡ f1ϕk mod Im+1(F ) . Hence ϕ0 ≡ f0f1ϕ1 mod Im+1(F ) .

Let E = F (ϕ0). By Definition 0.1, there exists x ∈ E∗ such that ((ϕ0)E)an '
x(ϕ1)E . Hence x(ϕ1)E ≡ (ϕ0)E ≡ f0f1(ϕ1)E mod Im+1(E) . Property (b)k−1

stated for the quasi-excellent sequence ((ϕ1)E , (ϕ2)E , . . . , (ϕk)E , . . . , (ϕh)E)
shows that x(ϕ1)E ' f0f1(ϕ1)E . Hence ((ϕ0)E)an ' x(ϕ1)E ' (f0f1ϕ1)E .
By Theorem 1.8, ϕ0 is a Pfister neighbor whose complementary form is similar
to ϕ1 .

Lemma 5.4. Let k ≥ 1 . Then property (b)k−1 (stated for all quasi-excellent
sequences over all fields of characteristic 6= 2) implies property (b)k .

Proof. Consider a sequence (ϕ0, . . . , ϕh) as in Proposition 5.1. We assume that
property (b)k−1 holds. Then property (a)k also holds (see previous lemma).
This means that there exist a, s ∈ F ∗, an integer n > 0 , and an n-fold Pfister
form π such that aπ ' ϕ0 ⊥ −sϕ1 and dimϕ1 < 2n−1.

Since 2n−1 > dimϕ1 ≥ dimϕk , the definition of m yields n − 1 ≥ m .
Therefore [aπ] ∈ In(F ) ⊂ Im+1(F ) . Hence, ϕ0 ≡ sϕ1 mod Im+1(F ) . Now,
let x ∈ F ∗ be as in (b)k . In other words, ϕ0 ≡ xϕ0 mod Im+1(F ) . Then
sϕ1 ≡ ϕ0 ≡ xϕ0 ≡ sxϕ1 mod Im+1(F ) . Hence, ϕ1 ≡ xϕ1 mod Im+1(F ) .
Property (b)k−1, applied to the quasi-excellent sequence

((ϕ1)F (ϕ0), (ϕ2)F (ϕ0), . . . , (ϕk)F (ϕ0), . . . , (ϕh)F (ϕ0))

shows that (ϕ1)F (ϕ0) ' x(ϕ1)F (ϕ0) . Hence the form ϕ1 ⊗ 〈〈x〉〉 is hyperbolic
over F (ϕ0) . Since ϕ0 is a Pfister neighbor of π, it follows that F (ϕ0, π)/F (π)
is purely transcendental. Thus ϕ1 ⊗ 〈〈x〉〉 is also hyperbolic over F (π) . Since
dim(ϕ1 ⊗ 〈〈x〉〉) < 2n−1 · 2 = dimπ , Theorem 1.4 shows that ϕ1 ⊗ 〈〈x〉〉 is
hyperbolic, hence ϕ1 ' xϕ1 . Moreover, aπ ⊗ 〈〈x〉〉 ' (ϕ0⊥ − sϕ1) ⊗ 〈〈x〉〉 is
isotropic and therefore hyperbolic (since π is a Pfister form). Hence aπ ' xaπ .
Since aπ ' ϕ0 ⊥ −sϕ1 and ϕ1 ' xϕ1 , it follows that ϕ0 ' xϕ0 .

Clearly, the three lemmas complete the proof of Proposition 5.1.

6. Five classical conjectures

Let Hn(F ) := Hn(F,Z/2Z) be the nth Galois cohomology group. Let
I0(F ) := W (F ) be the Witt ring and I1(F ) := I(F ) be the fundamental
ideal in W (F ) of classes of even-dimensional forms. In §1, we have considered
the homomorphisms

e0 : I0(F )→ Z/2Z ' H0(F ) and e1 : I1(F )→ F ∗/F ∗2 ' H1(F )

defined by the dimension and the discriminant respectively. Denoting by

2Br(F ) the 2-torsion part of the Brauer group of F we obtain a homomor-
phism e2 : I2(F )→ 2Br(F ) ' H2(F ) defined by the Clifford algebra. We have
ker(en) = In+1(F ) for n = 0, 1, 2 .
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For each integer n > 0 let (a1) · . . . · (an) denote the cup-product where (ai)
is the class of ai ∈ F ∗ in H1(F ) for i = 1, . . . , n . The following five conjectures
are believed to be true for all fields F of characteristic 6= 2 .

Conjecture 6.1. (Milnor conjecture). Let n ≥ 0 be an integer. Then there
exists a homomorphism

en : In(F )→ Hn(F )

such that 〈〈a1, . . . , an〉〉 7→ (a1) · . . . · (an) . Moreover, the homomorphism en

induces an isomorphism

en : In(F )/In+1(F ) ' Hn(F ) .

Conjecture 6.2. For any π ∈ Pm(F ) and all integers n ≥ m ≥ 0 , we have

ker(Hn(F )→ Hn(F (π))) = em(π)Hn−m(F ) .

Conjecture 6.3. We have Jn(F ) = In(F ) for all integers n ≥ 0 .

Conjecture 6.4. Let ϕ be an anisotropic form over F . If [ϕ] ∈ In(F ) and
2n ≤ dimϕ < 2n + 2n−1 then dimϕ = 2n.

Conjecture 6.5. Let γ be an even-dimensional anisotropic form. Assume
that γ is a good non-excellent form of height 2 with leading form τ ∈ Pn(F ) .
Then there exists τ0 ∈ Pn−1(F ) , (τ0 = 〈1〉 if n = 1), and a, b, c ∈ F ∗ such that

• γ is similar to τ0 ⊗ 〈−a,−b, ab, c〉 ,
• τ ' τ0 ⊗ 〈〈c〉〉 .

Remark 6.6. For proving Conjecture 6.5 it suffices to show that there exists
τ0 ∈ Pn−1(F ) such that γ ' τ0 ⊗ γ′ where dim γ′ = 4 .

Proof. Write γ′ = 〈r, s, t, u〉 with r, s, t, u ∈ F ∗. Then setting d = rst , we
obtain dγ′ ' 〈−a,−b, ab, c〉 with a = −st , b = −rt , and c = du . This shows
γ ∼ τ0 ⊗ ψ where ψ = 〈−a,−b, ab, c〉 . Since 〈d(ψ)〉 ' 〈c〉 by definition of

d(ψ) = (−1)(
4
2) det(ψ) and since τ is the leading form of γ , it follows from

[Kn1], 6.12, that τ ' τ0 ⊗ 〈〈c〉〉 .

Remark 6.7. Recent results of Voevodsky [Vo] and Orlov-Vishik-Voevodsky
[OVV] show that Conjectures 6.1, 6.2, and 6.3 hold for all fields of character-
istic 0. These three conjectures were proved earlier in the cases n ≤ 4 and
characteristic 6= 2, (cf. [Pf2], [KRS], and [Kahn]).

Conjecture 6.4 is proved for all fields of characteristic 0 by Vishik [Vi]. In
the case n ≤ 4, it is proved for all fields of characteristic 6= 2 (see [H4]).

Conjecture 6.5 is proved in the case n ≤ 3 for all fields of characteristic 6= 2,
(see Remark 6.6 and [Kahn]). Moreover, it follows from Proposition 3.6 and
from [Kahn], Proposition 4.3 (b), that Conjectures 6.3 and 6.4 for degree n+ 1
imply Conjecture 6.5 for degree n .
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Definition 6.8. Let d ≥ 0 be an integer, and let F be a field. We say that
condition Ad holds for F if F is of characteristic 6= 2 and if for all field extensions
F ′/F the following conjectures hold:

• Conjecture 6.1 for all n ≤ d+ 2 ,
• Conjecture 6.2 for n ≤ d+ 2 ,
• Conjecture 6.3 for n = d+ 1 ,
• Conjecture 6.4 for n = d+ 2 ,
• Conjecture 6.5 for n = d > 0 .

Theorem 6.9. Let F be a field of characteristic 6= 2 . If d = 0 or d = 1 then
condition Ad holds for F . If d = 2 then condition Ad holds for F , possibly
with the exception of the bijectivity of the homomorphism e4 : I4(F )/I5(F )→
H4(F ) .

Proof. Conjecture 6.1 holds for n = 0 by definition of the ideal I(F ) . It has
been proved by Pfister for n = 1, cf. [Pf1], 2.3.6, and by Merkurjev for n = 2,
cf. [M1]. The existence of e3 has been proved by Arason [Ara], Satz 5.7, and
the bijectivity of e3 by Rost [R] and independently by Merkurjev-Suslin [MS].
The existence of e4 has been proved by Jacob-Rost [JR] and independently by
Szyjewsi [Sz]. The bijectivity of e4 was claimed by Rost (unpublished).

Conjecture 6.2 holds n ≤ 4 , cf. [KRS].
Conjecture 6.3. For n = 1, 2 see [Kn1], 6.2; for n = 3 (and n = 4), see

[Kahn], Théorème 2.8.
Conjecture 6.4 is trivial for n = 2. For n = 3 it is due to Pfister and for

n = 4 to Hoffmann, see [H4], Main Theorem for n = 4, and 2.9 for n = 3.
Conjecture 6.5. For n = 1 see [Kn1], 5.10. For for n = 2 see Remark 6.6 and

[Kahn], Corollaire 2.1.

Remark 6.7 gives rise to the following theorem.

Theorem 6.10. Let d ≥ 0 be an integer. Modulo results proved in [Vo, OVV]
condition Ad holds for all fields of characteristic 0 .

We are going to prove some consequences of the above conjectures.

Let GPn(F ) denote the set of quadratics forms over F which are similar to
n-fold Pfister forms, and let Hn(K/F ) = ker(Hn(F )→ Hn(K)).

Lemma 6.11. Let F be a field of characteristic 6= 2 and let π ∈ GPr(F ) for
some integer r ≥ 0 . Suppose that Conjecture 6.2 holds for n = m = r and for
all field extensions of F . Then

(1) for any extension K/F , we have
Hr(K(π)/F ) = Hr(K/F ) +Hr(F (π)/F ) ;

(2) for any form ϕ over F , we have
Hr(F (ϕ, π)/F ) = Hr(F (ϕ)/F ) +Hr(F (π)/F ) .

Proof. (1) Let u ∈ Hr(K(π)/F ). Then uK ∈ Hr(K(π)/K). Conjecture 6.2
applied with n = m = r shows that uK = ` · er(πK) with ` ∈ H0(K) ' Z/2Z .
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Hence (u − ` · er(π)) ∈ Hr(K/F ). Therefore, u ∈ Hr(K/F ) + ` · er(π) ⊂
Hr(K/F ) +Hr(F (π)/F ).

(2) It suffices to set K = F (ϕ) in (1).

Lemma 6.12. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Let γ be an even-dimensional anisotropic form which is good
non-excellent of degree d and height 2. Then

Hd+2(F (γ)/F ) = {ed+2(γ ⊗ 〈〈f〉〉) | f ∈ F ∗ with γ ⊗ 〈〈f〉〉 ∈ GPd+2(F )} .

Proof. Let τ , τ0 and a, b, c ∈ F ∗ be as in Conjecture 6.5. We can assume that
γ = τ0 ⊗ 〈−a,−b, ab, c〉. Let π = τ0 ⊗ 〈〈a, b〉〉 .

Clearly, γ ∼w π⊥− τ . Hence (γF (π))an ' (−τF (π))an. Since dim γ > dim τ ,
it follows that γF (π) is isotropic. Hence F (γ, π)/F (π) is purely transcen-

dental, forcing Hd+2(F (γ)/F ) ⊂ Hd+2(F (π)/F ). Conjecture 6.2 shows that
Hd+2(F (π)/F ) = ed+1(π)H1(F ). Hence, an arbitrary element of the group
Hd+2(F (γ)/F ) is of the form ed+1(π) · (s) = ed+2(π ⊗ 〈〈s〉〉) with s ∈ F ∗. Let
ρ = π ⊗ 〈〈s〉〉. Then ρ ∈ Pd+2(F ) and ed+2(ρF (γ)) = 0. By Conjecture 6.1, the
form ρF (γ) is hyperbolic. Hence γ is similar to a subform of ρ of by Theorem
1.4. Let γ∗ and t ∈ F ∗ be such that tγ ⊥ −γ∗ ' ρ . The forms γ and γ∗ are
half-neighbors. By [H3, Prop. 2.8], there exists k ∈ F ∗ such that γ∗ ' kγ.
Then γ ⊗ 〈〈tk〉〉 ' tρ ∈ GPd+2(F ) . To complete the proof, it suffices to notice
that ed+2(tρ) = ed+2(ρ).

Lemma 6.13. Let d > 0 be an integer and F be a field such that condition Ad
holds for F . Assume that γ is an even-dimensional anisotropic form which is
good non-excellent of height 2 with leading form τ ∈ Pd(F ) . Now, let ϕ be a
form such that ϕ ≡ τ mod Id+1(F ) and ϕF (γ,τ) is hyperbolic. Also assume that

there exists an extension E/F such that dim(ϕE)an = 2d+1. Then the following
is true.

(1) There exists f ∈ F ∗ such that

ϕ ≡ fγ mod Id+2(F ) .

(2) If we suppose additionally that dim(ϕF (γ))an < dim γ , then there exists
f ∈ F ∗ such that

ϕ ≡ fγ mod Id+3(F ) .

Proof. (1). Let ψ = ϕ ⊥ −τ . By assumption, we have [ψ] ∈ Id+1(F ) .
Hence, we can consider the element ed+1(ψ) ∈ Hd+1(F ) . Since ϕF (γ,τ)

and τF (τ) are hyperbolic, it follows that ψF (γ,τ) is also hyperbolic. Hence,

ed+1(ψ) ∈ Hd+1(F (γ, τ)/F ). By Conjecture 6.5, we can assume that γ =
τ0 ⊗ 〈−a,−b, ab, c〉 and τ = τ0 ⊗ 〈〈c〉〉 where τ0 ∈ Pd−1(F ) .
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Let π = τ0 ⊗ 〈〈a, b〉〉 ∈ Pd+1(F ) . Then γ ∼w π⊥− τ . Hence γF (τ) ∼w πF (τ) .
Therefore, by Lemma 6.11(2) and Conjecture 6.2 we have

Hd+1(F (γ, τ)/F ) = Hd+1(F (π, τ)/F )

= Hd+1(F (π)/F ) +Hd+1(F (τ)/F )

= ed+1(π)H0(F ) + ed(τ)H1(F ) .

Since ed(τ)H1(F ) = {ed+1(τ ⊗ 〈〈s〉〉) | s ∈ F ∗}, it follows that any element of
the group Hd+1(F (γ, τ)/F ) has one of the following forms:

• either ed+1
[
π⊥(τ ⊗ 〈〈s〉〉)

]

• or ed+1(τ ⊗ 〈〈s〉〉) .

Since ed+1(ψ) ∈ Hd+1(F (γ, τ)/F ) and ψ = ϕ⊥− τ , Conjecture 6.1 shows that

• either ϕ⊥− τ ≡ π⊥(τ ⊗ 〈〈s〉〉) mod Id+2(F )
• or ϕ⊥− τ ≡ τ ⊗ 〈〈s〉〉 mod Id+2(F ) .

Consider the first case where ϕ⊥ − τ ≡ π⊥(τ ⊗ 〈〈s〉〉) mod Id+2(F ) . Clearly,
we can compute [ϕ] modulo Id+2(F ). In our computation, we note that [π]
and [τ ⊗ 〈〈s〉〉] belong to Id+1(F ) . Hence for any x ∈ F ∗, we have xπ ≡ π and
xτ ⊗〈〈s〉〉 ≡ τ ⊗〈〈s〉〉 mod Id+2(F ) . Besides, we recall that γ ∼w π⊥− τ . Now,
we have the following calculation ϕ ≡ τ⊥π⊥(τ⊗〈〈s〉〉) ≡ τ⊥−π⊥−(τ⊗〈〈s〉〉) ≡
−γ⊥((γ⊥− π)⊗ 〈〈s〉〉) ≡ sπ⊥− π⊥− sγ ≡ −sγ mod Id+2(F ) . Hence ϕ ≡ fγ
mod Id+2(F ) with f = −s .

Now we consider the second case where ϕ⊥ − τ ≡ τ ⊗ 〈〈s〉〉 mod Id+1(F ) .
Here, we get ϕ ≡ τ⊥(τ ⊗ 〈〈s〉〉) ≡ τ⊥ − (τ ⊗ 〈〈s〉〉) ≡ sτ mod Id+2(F ) .
By the assumption of the lemma there exists a field extension E/F such
that dim(ϕE)an = 2d+1. Since ϕ ≡ sτ mod Id+2(F ), we have (ϕE)an ≡
sτE mod Id+2(E) . Since dim(ϕE)an + dim τE = 2d+1 + 2d < 2d+2, Theo-
rem 1.1 shows that (ϕE)an ' s(τE)an . This contradicts to the inequality
dim(ϕE)an = 2d+1 > 2d ≥ dim(τE)an .

(2). Let f be as in (1). Set ψ = ϕ ⊥ −fγ . We have ψ ∈ Id+2(F ) . Since
dim(ϕF (γ))an < dim γ, we have dim(ψF (γ))an < 2 dim γ = 2 · 2d+1 = 2d+2. By

Theorem 1.1, the form ψF (γ) is hyperbolic. Hence ed+2(ψ) ∈ Hd+2(F (γ)/F ).
By Lemma 6.12, there exists s ∈ F ∗ such that γ ⊗ 〈〈s〉〉 ∈ GPd+2(F ) and
ed+2(ψ) = ed+2(γ⊗〈〈s〉〉) . Thus ψ ≡ γ⊗〈〈s〉〉 mod Id+3(F ) by Conjecture 6.1.
Since γ⊗〈〈s〉〉 ∈ GPd+2(F ), we have γ⊗〈〈s〉〉 ≡ −fγ⊗〈〈s〉〉 mod Id+3(F ). There-
fore, ϕ ≡ ψ⊥fγ ≡ (γ⊗〈〈s〉〉)⊥fγ ≡ −f(γ⊗〈〈s〉〉)⊥fγ ≡ fsγ mod Id+3(F ) .

Proposition 6.14. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence with leading
form τ ∈ Pd(F ) and pre-leading form γ = ϕh−2 . Suppose that this sequence is
of the second or third type (in particular h ≥ 2). Let ϕ = ϕi with i ≤ h− 2 .

(1) We have ϕ ≡ τ mod Id+1(F ) .
(2) There exists f ∈ F ∗ such that ϕ ≡ fγ mod Id+2(F ) .
(3) If dim(ϕF (γ))an < dim γ then there exists f ∈ F ∗ such that

ϕ ≡ fγ mod Id+3(F ) .
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Proof. (1). Follows from Lemma 3.4 and Conjecture 6.3.
(2) and (3). Definition 0.3 shows that dim γ = 2d+1. By Proposition 3.6(2),

γ is a good non-excellent form of height 2 and degree d . By Proposition 3.7,
ϕF (γ,τ) is hyperbolic. Lemma 2.1 yields dim(ϕE)an = dimϕh−2 = 2d+1 where
E = Fh−2 = F (ϕ0, . . . , ϕh−3) . Now, Lemma 6.13 completes the proof.

Corollary 6.15. Let (ϕ, γ, τ, 0) be a quasi-excellent sequence with τ ∈ Pd(F )
and dim γ = 2d+1. Then dimϕ ≥ 3 · 2d. Moreover, if dimϕ = 3 · 2d then ϕF (γ)

is anisotropic.

Proof. Let E = F (γ) . If ϕE is anisotropic, then the sequence (ϕE , τE , 0)
is quasi-excellent by Lemma 3.1. Since dimϕE = dimϕ > dim γ = 2d+1,
it follows from Proposition 3.6 that dimϕ = 2N − 2d for some N ≥ d + 2 .
Therefore, dimϕ ≥ 2d+2 − 2d = 3 · 2d.

Now, we assume that ϕE is isotropic. Then (ϕE)an ∼ τE by Lemma 3.1 and
hence dim(ϕE)an = 2d < dim γ . By Proposition 6.14, there exists f ∈ F ∗ such
that ϕ ≡ fγ mod Id+3(F ). Suppose that dimϕ ≤ 3 ·2d . Then dimϕ+dim γ ≤
3 · 2d + 2d+1 < 2d+3. By Theorem 1.1, we get ϕ ' fγ . This is a contradiction
because dimϕ > dim γ .

7. Classification theorem for sequences of the second type

In Definition 6.8 we formulated the condition Ad for a field F . We showed
that Ad is true for d = 0, 1 and char(F ) 6= 2 and that (based on results
in [Vo, OVV]) Ad is true for all d ≥ 0 and all fields of characteristic 0 , cf.
Theorems 6.9 and 6.10.

The main purpose of this section is to prove the following

Theorem 7.1. Let d > 0 be an integer and F be a field such that condition Ad
holds for F . Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the second
type and of degree d . Then

• for all i < h − 2 the form ϕi is a Pfister neighbor whose complementary
form is similar to ϕi+1 ,

• the sequence (ϕh−2, ϕh−1, ϕh) is quasi-excellent of the second type.

First of all, we state the following corollary (which proves Theorems 0.9 and
0.10 for the quasi-excellent sequences of second type).

Corollary 7.2. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Then Conjecture 0.7 holds for all quasi-excellent sequences of
degree d over F .

Proof. By Theorem 7.1, it suffices to consider the case h = 2 . In this case,
the required result follows immediately from Proposition 3.6(2) and Conjecture
6.5.
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Now, we return to Theorem 7.1. We will prove this theorem by using in-
duction on h. In the case where h = 2 the statement is obvious. Thus we can
assume that h ≥ 3. In what follows we will suppose that h ≥ 3 and Theorem
7.1 holds for all quasi-excellent sequences of height < h .

We start with the following lemma.

Lemma 7.3. If (ϕ0)F (ϕ1) is anisotropic then (ϕ0)F (ϕ1) is a Pfister neighbor
whose complementary form is similar to (ϕ2)F (ϕ1) .

Proof. Let E = F (ϕ1). By Lemma 3.1, the sequence ((ϕ0)E , (ϕ2)E , . . . , 0) is
quasi-excellent of height h− 1. Let us consider two cases, h ≥ 4 and h = 3.

If h ≥ 4 then the sequence ((ϕ0)E , (ϕ2)E , . . . , (ϕh)E) is of the second type.
Then Theorem 7.1 (stated for sequences of height < h) completes the proof.

If h = 3 then the quasi-excellent sequence ((ϕ0)E , (ϕ2)E , 0) is of the first
type because dimϕ0 > dimϕ1 = 2d+1. In this case, Theorem 4.2 completes
the proof.

The following lemma shows that the situation described in Lemma 7.3 is
actually impossible.

Lemma 7.4. The form (ϕ0)F (ϕ1) is isotropic.

Proof. Assume the contrary, (ϕ0)F (ϕ1) is anisotropic. Then Lemmas 7.3 and
2.8 show that dimϕ1 is a power of 2 and dimϕ0 = 2 dimϕ1 − dimϕ2 . Let
K = F (ϕ0). The sequence ((ϕ1)K , . . . , (ϕh)K) is quasi-excellent of height h−1
by Lemma 3.3. Clearly, this sequence is of the second type. We consider the
two cases h ≥ 4 and h = 3. If h ≥ 4 then Theorem 7.1 (stated for sequences of
height < h) shows that (ϕ1)K is a Pfister neighbor whose complementary form
is similar to the non-zero form (ϕ2)K . This in particular shows that dimϕ1 is
not a power of 2 . We get a contradiction. Now, we assume that h = 3 . In other
words, we have the sequence (ϕ0, ϕ1, ϕ2, ϕ3) of the second type. By Definitions
0.3 and 2.6, we have dimϕ1 = 2d+1, dimϕ2 = 2d and dimϕ0 6= 3 · 2d. On the
other hand, dimϕ0 = 2 dimϕ1 − dimϕ2 = 2 · 2d+1 − 2d = 3 · 2d. We get a
contradiction.

Corollary 7.5. The sequence (ϕ1, ϕ2, . . . , ϕh) is a quasi-excellent sequence
of the second type and of degree d .

Proof. Follows from Lemmas 7.4, and 3.1.

Lemma 7.6. Let γ = ϕh−2 . Then dim((ϕi)F (γ))an ≤ 2d for all i = 0, . . . , h .

Proof. Using induction and Corollary 7.5 we see that dim((ϕi)F (γ))an ≤ 2d for

all i ≥ 1. Now, it suffices to prove that dim((ϕ0)F (γ))an ≤ 2d. Since h ≥ 3, we

have dim((ϕ1)F (γ))an ≤ 2d = dimϕh−1 < dimϕ1. Hence (ϕ1)F (γ) is isotropic
forcing that F (γ, ϕ1)/F (γ) is purely transcendental. Thus 7.4 yields that
(ϕ0)F (γ) is isotropic. By Lemma 2.3, there exists i > 0 such that ((ϕ0)F (γ))an ∼
(ϕi)F (γ) = ((ϕi)F (γ))an . Hence dim((ϕ0)F (γ))an = dim((ϕi)F (γ))an ≤ 2d .
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Corollary 7.7. There exists fi ∈ F ∗ such that ϕi ≡ fiγ mod Id+3(F ) for all
i = 0, . . . , h− 2 .

Proof. Obvious consequence of Proposition 6.14 and Lemma 7.6.

Corollary 7.8. If h ≥ 3 then ϕ0 is a Pfister neighbor whose complementary
form is similar to ϕ1 .

Proof. Corollary 7.7 shows that the condition of Proposition 5.1 holds in the
case k = h− 2 and m = d+ 2.

Proof of Theorem 7.1. If h ≥ 3 , Corollaries 7.8 and 7.5 show that

• ϕ0 is a Pfister neighbor whose complementary form is similar to ϕ1 ,
• the sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent of the second type.

After that, an evident induction completes the proof.

8. Classification theorem for sequences of the third type

We proceed similarly as in the previous section. The main purpose is to
prove the following theorem.

Theorem 8.1. Let d > 0 be an integer and F be a field such that condition Ad
holds for F . Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the third type
and of degree d. Then

• for all i < h − 3 the form ϕi is a Pfister neighbor whose complementary
form is similar to ϕi+1 ,

• the sequence (ϕh−3, ϕh−2, ϕh−1, 0) is quasi-excellent of the third type.

We will prove this theorem by using induction on h . In the case where h = 3
the statement is obvious. Thus we can assume that h ≥ 4 . In what follows we
will suppose that h ≥ 4 and Theorem 8.1 holds for all quasi-excellent sequences
of height < h .

Lemma 8.2. If (ϕ0)F (ϕ1) is anisotropic then (ϕ0)F (ϕ1) is a Pfister neighbor
whose complementary form is similar to (ϕ2)F (ϕ1) .

Proof. Let E = F (ϕ1) . By Lemma 3.1, the sequence ((ϕ0)E , (ϕ2)E , . . . , 0) is
quasi-excellent of height h− 1 . Let us consider two cases, h ≥ 5 and h = 4.

If h ≥ 5 then the sequence ((ϕ0)E , (ϕ2)E , . . . , (ϕh)E) is of the third type.
Then Theorem 8.1 (stated for sequences of height < h) completes the proof.

If h = 4 then the quasi-excellent sequence ((ϕ0)E , (ϕ2)E , (ϕ3)E , 0) has the
second type because dimϕ0 > dimϕ1 = 3 · 2d. In this case, Theorem 7.1
completes the proof.

Lemma 8.3. The form (ϕ0)F (ϕ1) is isotropic.
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Proof. Assume the contrary, (ϕ0)F (ϕ1) is anisotropic. Then Lemmas 8.2 and
2.8 show that dimϕ1 is a power of 2 . Let K = F (ϕ0) . The sequence
((ϕ1)K , . . . , (ϕh)K) is quasi-excellent of height h − 1 by Lemma 3.3. Clearly,
this sequence is of the third type. We consider two cases, h ≥ 5 and h = 4. If
h ≥ 5 then Theorem 8.1 (stated for sequences of height < h) shows that (ϕ1)K
is a Pfister neighbor whose complementary form is similar to the non-zero form
(ϕ2)K . This in particular shows that dimϕ1 is not a power of 2. We get a
contradiction. Now, we assume that h = 4. Then dimϕ1 = dimϕh−3 = 3 · 2d
is not a power of 2, a contradiction.

Corollary 8.4. The sequence (ϕ1, ϕ2, . . . , ϕh) is a quasi-excellent sequence
of the third type and of degree d .

Proof. Obvious in view of Lemmas 8.3, and 3.1.

In what follows we use the following notation:
τ is the leading form. Clearly, we can assume that ϕh−1 = τ ;
γ = ϕh−2 is the pre-leading form;
λ = ϕh−3 is “pre-pre-leading” form.
Thus, our quasi-excellent sequence looks as follows: (ϕ0, . . . , ϕh−4, λ, γ, τ, 0)

Lemma 8.5. For all i = 0, . . . , h− 1 , we have dim((ϕi)F (λ,γ))an = 2d.

Proof. It follows from Lemma 2.1 that (τ)F (λ,γ) is anisotropic.

Using induction and Corollary 8.4, we see that dim((ϕi)F (λ,γ))an = 2d for all
i = 1, . . . , h−1. In particular, (ϕ1)F (λ,γ) is isotropic. Hence F (λ, γ, ϕ1)/F (λ, γ)
is purely transcendental. Since (ϕ0)F (ϕ1) is isotropic by Lemma 8.3, it follows
that (ϕ0)F (λ,γ) is also isotropic. By Lemma 2.3, there exists i > 0 such that
((ϕ0)F (λ,γ))an ∼ (ϕi)F (λ,γ) = ((ϕi)F (λ,γ))an .

Hence dim((ϕ0)F (λ,γ))an = dim((ϕi)F (λ,γ))an = 2d.

Proposition 8.6. For any i = 0, . . . , h − 3 there exists fi ∈ F ∗ such that
ϕi ≡ fiλ mod Id+3(F ) .

Proof. There is si ∈ F ∗ such that ϕi ≡ siγ mod Id+2(F ) for i = 0, . . . , h − 3
by Proposition 6.14(2).

Changing notation ϕi := siϕi , we can assume that ϕi ≡ γ mod Id+2(F ) for
all i = 0, . . . , h− 3 . In particular, λ = ϕh−3 ≡ γ mod Id+2(F ) . Hence, we get
the element ed+2(λ⊥− γ) ∈ Hd+2(F ) .

Now, we fix an integer i ≤ h − 3 and set ϕ = ϕi . We have ϕ ≡ γ ≡
λ mod Id+2(F ) . Hence, we get the elements ed+2(ϕ⊥− γ) and ed+2(ϕ⊥− λ)
in Hd+2(F ) . Recall that Hn(F ′/F ) := ker(Hn(F )→ Hn(F ′)) .

Lemma 8.7. (1) ed+2(ϕ⊥− γ) ∈ Hd+2(F (λ, γ)/F ) ,
(2) ed+2(ϕ⊥− γ) /∈ Hd+2(F (γ)/F ) ,
(3) ed+2(ϕ⊥− λ) ∈ Hd+2(F (γ)/F ) .

Documenta Mathematica 6 (2001) 385–412



Excellent Special Orthogonal Groups 407

Proof. To prove item (1), it suffices to verify that (ϕ ⊥ −γ)F (λ,γ) is hyperbolic.

By Lemma 8.5, we have dim(ϕF (λ,γ))an ≤ 2d and dim(γF (λ,γ))an ≤ 2d. Hence,

dim((ϕ ⊥ −γ)F (λ,γ))an ≤ 2d+1 < 2d+2. Since [ϕ⊥ − γ] ∈ Id+2(F ), Theorem
1.1 shows that (ϕ ⊥ −γ)F (λ,γ) is hyperbolic.

(2) Assume that ed+2(ϕ⊥−γ) ∈ Hd+2(F (γ)/F ) . Let E = F (ϕ0, . . . , ϕh−4) .
Then (ϕE)an ∼ (ϕh−3)E = λE by Lemma 2.1. Hence, there exists s ∈ E∗ such
that (ϕE)an ' sλE . Therefore, ed+2(sλE⊥ − γE) ∈ Hd+2(E(γ)/E) . Hence
ed+2(sλE(γ)⊥− γE(γ)) = 0 .

Then Conjecture 6.1 implies that [sλE(γ) ⊥ −γE(γ)] ∈ Id+3(E(γ)) . Since

dimλ+ dim γ = 3 ·2d+ 2d+1 < 2d+3, Theorem 1.1 shows that sλE(γ) ⊥ −γE(γ)

is hyperbolic. Thus dim(λE(γ))an ≤ dim γ < dimλ. Hence, λE(γ) is isotropic.
By Lemma 3.3, the sequence (λE , γE , τE , 0) is quasi-excellent. By Corollary
6.15, the form λE(γ) is anisotropic. We get a contradiction.

(3). Set K = F (γ) . Then we have a non-zero element ed+2(ϕK ⊥ −γK) in
the group Hd+2(K(λ)/K) by (1) and (2).

Since (γK)an is similar to τK by Lemma 3.5 and Proposition 3.7, there exists
s ∈ K∗ such that (γK)an ' sτK . Since [λ ⊥ −γ] ∈ Id+2(F ) we obtain that
[λK ⊥ −sτK ] ∈ Id+2(K) . Computing dimλ + dim τ = 3 · 2d + 2d = 2d+2, we
conclude from the Arason-Pfister Hauptsatz that there is a form π ∈ GPd+2(K)
such that π ' λK ⊥ −sτK , (see Theorem 1.1, and [AP], p. 174, Korollar 3). It
follows that λK(π) is isotropic, since dimλ > dim τ , and πK(π) is hyperbolic.
Hence, K(π, λ)/K(π) is purely transcendental. Since by (1) and (2) we have
0 6= ed+2(ϕK ⊥ −γK) ∈ Hd+2(K(π, λ)/K) we see that

0 6= ed+2(ϕK ⊥ −γK) ∈ Hd+2(K(π)/K) .

Thus Conjecture 6.2 shows that ed+2(ϕK ⊥ −γK) = ed+2(π) . Clearly, this
yields ed+2(ϕK ⊥ −γK ⊥ −π) = 0. Since π ' λK ⊥ −sτK ∼w λK ⊥ −γK
we have ϕK ⊥ −γK ⊥ −π ∼w (ϕ ⊥ −λ)K . Hence, ed+2(ϕ ⊥ −λ)K = 0 .
Therefore, ed+2(ϕ ⊥ −λ) ∈ Hd+2(K/F ).

By Proposition 3.6(2), γ is a good non-excellent form of height 2 and degree
d . Now, Lemma 6.12 and item (3) of Lemma 8.7 show that there exists f ∈ F ∗
such that ed+2(λ ⊥ −ϕ) = ed+2(γ ⊗ 〈〈f〉〉) . By Conjecture 6.1, we have

λ ⊥ −ϕ ≡ γ ⊗ 〈〈f〉〉 mod Id+3(F ) .

Since γ ≡ λ mod Id+2(F ) , it follows that λ ⊥ −ϕ ≡ λ ⊗ 〈〈f〉〉 ' λ ⊥ −fλ
(mod Id+3(F )) . Therefore, ϕ ≡ fλ mod Id+3(F ) . This completes the proof
of Proposition 8.6.

Corollary 8.8. If h ≥ 3 then ϕ0 is a Pfister neighbor whose complementary
form is similar to ϕ1.

Proof. Proposition 8.6 shows that the condition of Proposition 5.1 holds in the
case k = h− 3 and m = d+ 2.

Proof of Theorem 8.1. In case h ≥ 4 , Corollaries 8.8 and 8.4 show that
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• ϕ0 is a Pfister neighbor whose complementary form is similar to ϕ1 ,
• the sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent of the third type.

After that, an evident induction completes the proof.

9. Quasi-excellent sequences of type 3 and height 3

The main purpose of this section is to complete the classification of quasi-
excellent sequences of the third type. The results of the previous section show
that it suffices to consider only quasi-excellent sequences of height 3.

Lemma 9.1. The sequence (φ0, φ1, φ2, φ3) in Example 0.2 is quasi-excellent.

Proof. Set % = 〈〈a1, . . . , ad−1〉〉 and K = F (φ0) . Then (φ1)K is anisotropic by
Theorem 1.5. We have i((φ0)K) ≥ dim ρ = 2d−1 by [HR], Lemma 2.5 ii, hence
dim((φ0)K)an ≤ 2d+1 = dim(φ1)K . Set η = k0ρ⊗ 〈〈u, v, c〉〉 . Then

φ0 ⊥ −c k0k1φ1 ' k0ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉 ⊥ −c 〈−u,−v, uv, ad〉)
' k0ρ⊗ (〈〈u, v, c〉〉 ⊥ 〈c ad,−c ad〉)
' η ⊥ ρ⊗ 〈1,−1〉 .

The form ηF (η) is hyperbolic. But (φ1)F (η) is anisotropic by Theorem 1.5,
hence ((φ0)F (η))an ∼ (φ1)F (η) . Since there is an F -place K → F (η) ∪ {∞}
it follows that dim((φ0)K)an ≥ dim(φ1)F (η) = 2d+1, cf [Kn1], Proposition 3.1.

Thus dim((φ0)K)an = 2d+1 = dim(φ1)K .
If ηK is hyperbolic then it follows that ((φ0)K)an ∼ (φ1)K . Otherwise,

ηK is anisotropic, and ((φ0)K)an ⊥ −c k0k1(φ1)K ' ηK . This shows that
for every x ∈ K∗, the forms (x(φ0)K)an and (φ1)K are half-neighbors in the
sense of [H3], p. 258. Since (φ0)K is isotropic there is an x ∈ K∗ such that
x(φ0)K ' (ρ ⊗ 〈〈u, v〉〉)K ⊥ (−ρ ⊗ 〈〈ad〉〉)K , e.g., [HR], Lemma 2.5 i. Thus
(x(φ0)K)an is a (2d+1, 2d)-Pfister form in the sense of [H3], p. 262. Now, [H3],
Proposition 2.8, shows that ((φ0)K)an ∼ (φ1)K .

By Theorem 1.5, the forms φ1, φ2 remain anisotropic over K = F (φ0). Thus
we consider φ1, φ2 as forms over K and show that ((φ1)K(φ1))an) ∼ (φ2)K(φ1).
We have

φ1 ⊥ k1 k2 φ2 ' k1ρ⊗ (〈−u,−v, uv, ad〉 ⊥ 〈〈ad〉〉)
∼w k1ρ⊗ 〈〈u, v〉〉 .

Set ψ = k1ρ ⊗ 〈〈u, v〉〉 . Then dimψ = 2d+1 = dimφ1 . Since (φ2)K(ψ) is
anisotropic by Theorem 1.5 and since ψK(ψ) is hyperbolic, the form (φ1)K(ψ)

is not hyperbolic. There is a K-place K(φ1) → K(ψ) ∪ {∞} forcing that
(φ1)K(φ1) is not hyperbolic. But the form (φ1)K(φ1,φ2) is hyperbolic, for
otherwise, since (φ2)K(φ1,φ2) is hyperbolic, we would have the contradiction

dim((φ1)(K(φ1,φ2))an = dimψ = 2d+1 = dim(φ1)K(φ1,φ2) . Now Lemma 3.5
yields that ((φ1)K(φ1))an) ∼ (φ2)K(φ1) .

The main result of this section is the following
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Proposition 9.2. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Let (ϕ0, ϕ1, ϕ2, ϕ3) be a quasi-excellent sequence of degree d
and of the third type. Then this sequence looks as in Example 0.2.

Clearly, this proposition together with the results of the previous sections
completes the proof of Theorems 0.9 and 0.10.

We say that a form ϕ is divisible by a form ρ if there is a form χ such that
ϕ ' ρ⊗ χ .

Lemma 9.3. Let ϕ and ψ be anisotropic forms. Suppose that ϕ and ψ are
divisible by a Pfister form ρ (including the case ρ = 〈1〉). Then there exist
forms ϕ0, ψ0, µ such that

• ϕ0, ψ0 and µ are divisible by ρ ,
• ϕ ' ϕ0 ⊥ µ and ψ ' ψ0 ⊥ µ ,
• (ϕ ⊥ −ψ)an ' ϕ0 ⊥ −ψ0 .

Proof. Let µ be a form of maximal dimension satisfying the following condi-
tions:

(a) µ is divisible by ρ ,
(b) µ ⊂ ϕ and µ ⊂ ψ .

Then there exist forms ϕ0 and ψ0 such that ϕ ' ϕ0 ⊥ µ and ψ ' ψ0 ⊥ µ .
Since ϕ, ψ and µ are divisible by ρ, it follows from Theorem 1.3 that ϕ0 and ψ0

are also divisible by ρ. Now, it suffices to prove that (ϕ ⊥ −ψ)an ' ϕ0 ⊥ −ψ0 .
Since ϕ ⊥ −ψ ' (ϕ0 ⊥ µ) ⊥ −(ψ0 ⊥ µ) ∼w ϕ0 ⊥ −ψ0 , it suffices to prove

that the form ϕ0 ⊥ −ψ0 is anisotropic. Suppose the contrary. Then the forms
ϕ0 and ψ0 have a common value, say ` ∈ F ∗. By Theorem 1.3, we have `ρ ⊂ ϕ0

and `ρ ⊂ ψ0 . Setting µ̃ = µ ⊥ `ρ , we see that µ̃ satisfies conditions (a) and
(b). Since dim µ̃ > dimµ , we get a contradiction to the definition of µ .

Lemma 9.4. Let ϕ and ψ be anisotropic forms being divisible by a Pfister form
ρ ∈ Pd−1(F ) (where ρ = 〈1〉 if d = 1 ). Suppose that dimϕ = 3 · 2d, dimψ =
2d+1, and (ϕ ⊥ −ψ)an ∈ GPd+2(F ) . Then there exist u, v, ad, c ∈ F ∗ such that

ϕ ∼ ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) and ψ ∼ ρ⊗ 〈−u,−v, uv, ad〉 .
Proof. Let ϕ0, ψ0 and µ be as in Lemma 9.3. We have

2 dimµ = (dimϕ+ dimψ)− (dimϕ0 + dimψ0)

= dimϕ+ dimψ − dim(ϕ ⊥ −ψ)an

= 3 · 2d + 2d+1 − 2d+2 = 2d.

Hence, dimµ = 2d−1. Since µ is divisible by ρ , there exists s ∈ F ∗ such that
µ ' sρ . Clearly, dimψ0 = dimψ− dimµ = 2d+1 − 2d−1 = 3 · 2d−1. Since ψ0 is
divisible by ρ ∈ Pd−1(F ) there exist k, u, v ∈ F ∗ such that

ψ0 ' kρ⊗ 〈1,−u,−v〉 .
Then ψ ' (kρ⊗ 〈1,−u,−v〉) ⊥ sρ ' kuvρ⊗ 〈uv,−v,−u, ad〉 with ad = skuv .
Thus ψ ∼ ρ⊗ 〈−u,−v, uv, ad〉 .

Documenta Mathematica 6 (2001) 385–412



410 Oleg H. Izhboldin and Ina Kersten

Put π := ρ ⊗ 〈〈u, v〉〉 ∈ Pd+1(F ) . Since ψ0 ' kρ ⊗ 〈1,−u,−v〉 , it is easily
checked that kπ ' ψ0 ⊥ kuvρ . Hence, (ψ0)F (π) is isotropic.

Let η := −k(ϕ ⊥ −ψ)an ' −k(ϕ0 ⊥ −ψ0) . By the hypotheses of the lemma,
η ∈ GPd+2(F ) . Since kψ0 ' ρ ⊗ 〈1,−u,−v〉 represents 1 , it follows that η
represents 1 . Hence, η ∈ Pd+2(F ) . Since kψ0 ⊂ η and (ψ0)F (π) is isotropic, it
follows that ηF (π) is isotropic. Thus η ' π ⊗ η0 for some form η0 by Theorem
1.3. Since η ∈ Pd+2(F ) and π ∈ Pd+1(F ), it follows that η ' π ⊗ 〈〈c〉〉 for
suitable c ∈ F ∗. Hence, η ' ρ ⊗ 〈〈u, v, c〉〉. Clearly, uv ∈ D(η) . Since η is a
Pfister form, we obtain η ' uvη , (see [S], 2.10.4). By definition of η we have
kη ∼w ψ ⊥ −ϕ . Hence,

ϕ ∼w ψ ⊥ −kη ' ψ ⊥ −kuvη ' kuvρ⊗ 〈uv,−v,−u, ad〉 ⊥ −kuvρ⊗ 〈〈u, v, c〉〉
∼w kuvρ⊗ (〈〈u, v〉〉 ⊥ − 〈〈ad〉〉) ⊥ −kuvρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈u, v〉〉)
∼w kuvρ⊗ (c 〈〈u, v〉〉 ⊥ − 〈〈ad〉〉) ' kuvcρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) .

Since dimϕ = 3 · 2d = dim ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉), we get
ϕ ' kuvcρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) .

Proof of Proposition 9.2. Let τ ∈ Pd(F ) be the leading form. Clearly, we can
assume that ϕ2 = τ . In other words, we have a quasi-excellent sequence of the
form (λ, γ, τ, 0) with dimλ = 3 · 2d, dim γ = 2d+1 and dim τ = 2d. By Proposi-
tion 6.14, there exists s ∈ F ∗ such that λ ≡ sγ mod Id+2(F ) . Replacing λ by
sλ , we can assume that λ ≡ γ mod Id+2(F ) . Let ξ := (λ ⊥ −γ)an . Clearly,
ξ 6∼w 0 and [ξ] ∈ Id+2(F ) . By Theorem 1.1, we have dim ξ ≥ 2d+2. Since
dim ξ ≤ dimλ+ dim γ = 3 · 2d + 2d+1 = 5 · 2d < 3 · 2d+1 , Conjecture 6.4 yields
dim ξ = 2d+2. Hence (λ ⊥ −γ)an = ξ ∈ GPd+2(F ) , cf. [AP], Kor. 3.

By Proposition 3.6, γ is a good non-excellent form of height 2 with leading
form τ . By Conjecture 6.5, there exists ρ ∈ Pd−1(F ) such that γ and τ are
divisible by ρ . Then γF (ρ) and τF (ρ) are isotropic. Hence F (ρ, γ, τ)/F (ρ) is
purely transcendental. Since the form λF (γ,τ) is hyperbolic by Proposition 3.7,
it follows that λF (ρ) is hyperbolic. Therefore λ is divisible by ρ (see Theorem
1.3). Applying Lemma 9.4 to the forms ρ, ϕ = λ, and ψ = γ, we see that there
exists u, v, ad ∈ F ∗ such that

λ ∼ ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) and γ ∼ ρ⊗ 〈−u,−v, uv, ad〉 .
It follows that τ ∼ ρ⊗ 〈〈ad〉〉 by [Kn1], 6.12. The proof is complete.
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Saerens and Zame [4], and independently Bedford and Dadok [2] proved that
every compact real Lie group K can be realized as the group of holomorphic
automorphisms of a complex manifold as well as the group of isometries of a
Riemannian manifold.
Here we deduce a similar result for countable discrete groups.
Thus the purpose of this paper is to prove the following theorem:

Theorem. Let G be a (finite or infinite) countable group.
Then there exists a (connected) Riemann surface M such that G is isomorphic
to the group AutO(M) of all holomorphic automorphisms of M .
Moreover, there exists a Riemannian metric h on M such that AutO(M) equals
the group of all isometries of (M,h).

Our strategy is as follows: Using Galois theory of coverings, we first construct
a Riemann surface M1 on which G acts. Then we remove a discrete subset
S ⊂M1 to kill excess automorphisms. However, we have to show that passing
from M1 to M1 \ S we do not risk enlarging the automorphism group, i.e.,
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we will show that every automorphism from M1 \ S extends to M1. For this
purpose we employ the Freudenthal’s theory of topological ends.
Finally, hyperbolicity of the Riemann surface is exploited to ensure that there
is a hermitian metric of constant negative curvature such that the group of all
holomorphic automorphisms coincides with the group of all isometries.
Let us remark that by uniformization theory it is well-known that the following
is the list of all Riemann surface with positive-dimensional automorphism group
and that their automorphism groups are well-known:

• P1(C),

• C,

• C∗,
• H+ = {z ∈ C : =(z) > 0},
• Eτ = C/ 〈1, τ〉Z with τ ∈ H+,

• A(r, 1) = {z ∈ C : r < |z| < 1} with 0 ≤ r < +∞.

(See [1] for this and other basic facts on Riemann surfaces.)
Therefore our result yields a complete characterization which groups may occur
as automorphism group of a Riemann surface.
The above list furthermore has the following consequence which we will use
later on:

Fact. Let M be a Riemann surface with non-commutative fundamental group
π1(M). Then AutO(M) is discrete and acting properly discontinuously on M .
In particular, every orbit is closed.

1 Hyperbolic Riemannian Surfaces

A Riemannian surface M is “hyperbolic” (in the sense of Kobayashi) if and only
if its universal covering is isomorphic to the unit disk. In this case the Poincaré
metric on the unit disk induces a unique hermitian metric of constant Gaussian
curvature −1 on M . Every holomorphic automorphism of M is an isometry
and conversely every isometry is either holomorphic or antiholomorphic. Thus
the group of holomorphic automorphisms of M is a subgroup of index 1 or 2
in the group of isometries and the group of isometries coincides with the group
of all holomorphic or antiholomorphic diffeomorphisms of M .

2 Galois theory of coverings

Proposition 1. Let G be a countable group. Let M0 be a Riemann surface
whose fundamental group is not finitely generated.
Then there exists an unramified covering M1 →M0 such that there is an effec-
tive G-action on M1, AutO(M1) is discrete and acting properly discontinuously
on M1.
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Proof. Let F∞ be a free group with countably infinitely many generators
α1, α2, . . .. By standard results on Riemann surfaces (see e.g. [1]) we have
π1(M0) ' F∞. Since G is countable, there is a surjective group homomor-
phism ζ : F∞ → G. Furthermore, we may require that α1, α2 ∈ ker ζ. Then
we obtain a short exact sequence of groups

{e} → N → F∞
ζ→ G→ {e}

where N is non-commutative, because it contains a free group with two gener-
ators (viz. α1 and α2).
By Galois theory of coverings, this implies that there exists an unramified
covering M1 →M0 with π1(M1) ' N and an effective G-action on M1.
Finally, discreteness of AutO(M1) as well as the action of AutO(M1) being
properly discontinuous is implied by the “Fact” established above.

3 Topological ends

Let us recall the basic facts from the theory of ends as developed by Freudenthal
[3].
Let X be a locally compact topological space. Then the set of “ends” e(X) is
defined by

e(X) = lim
K
π0(X \K).

Thus, if Kn is an exhaustion of X by an increasing sequence of compact subsets,
then every end ε ∈ e(X) can be represented by a sequence Un of connected
components of X \Kn with Un ⊃ Un+1. For every connected component Wn,i

of X \ Kn we now define En,i as the set of ends ε which can be represented
with Un = Wn,i. Now X̄ = X ∪ e(X) becomes a compact topological space as
follows: As a basis of the topology we take the family of all open subsets of X
together with Vn,i = Wn,i ∪ En,i for all n, i.
Then every proper continuous map between locally compact topological spaces
X and Y extends to a continuous maps between X̄ and Ȳ . In particular, every
homeomorphism of X extends to a homeomorphism of X̄.

Definition. An end ε of a Riemann surface X is called a “puncture” if there
is an open neighbourhood W of ε in X̄ such that

• W \ {ε} ⊂ X and

• there is a homeomorphism ξ : W → D = {z ∈ C : |z| < 1} such that
ξ|W\{ε} is holomorphic.

We now prove that the ends of a certain special class of Riemann surfaces
cannot be punctures.

Proposition 2. Let an be a diverging sequence in D = {z ∈ C : |z| < 1} and
rn ∈ R>0 such that all the closed balls Bn = {z ∈ C : |z−an| ≤ rn} are disjoint
subsets of D. Then A = ∪nBn is a closed subset of D.
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Let X0 = D \A and let X1 → X0 be an unramified covering.

Then no end of X1 is a puncture.

Proof. First we show that A is indeed closed. Let vol(Bn) = πr2
n denote the

euclidean volume. Since the balls Bn are disjoint, we have
∑
vol(Bn) ≤ π and

therefore lim rn = 0. It follows that for every s < 1 there is a natural number
N such that |an| − rn > s for all n ≥ N . Therefore A = ∪nBn is actually a
locally finite union, and closedness of the Bn implies that A is closed.

Now let us assume that there exists an end which is a puncture. The natu-
ral embeddings X0 ↪→ D ↪→ C composed with the projection π : X1 → X0

yield a bounded holomorphic function f on X1. Let ε ∈ e(X1) be a punc-
ture with a connected open neighbourhood W as in the above definition of
the notion “puncture”. Then the Riemann extension theorem implies that f
extends through ε. In other words, limx→ε f(x) = a exists. Evidently a is
contained in the closure of X0 in C. However, the boundary ∂X0 is given by
∂X0 = ∂D ∪ (∪n∂Bn), and the openness of holomorphic maps implies that a
cannot lie on either ∂D or on one of the sets ∂Bn. Therefore a ∈ X0. Now
choose contractible open neighbourhoods U of a in X0 and V of ε in W such
that V \ {ε} ⊂ π−1(U). Since π : X1 → X0 is an unramified covering and U
is simply-connected, we obtain π−1(U) ' G×U where G is equipped with the
discrete topology. Being connected, V ∗ = V \ {ε} must be contained in one
connected component of π−1(U). This implies the following: If an is a sequence
in V ∗ such that limπ(an) = a, then there is a point p ∈ X1 with lim an = p.
But this contradicts the fact that by construction there is sequence an in V ∗

with lim an = ε 6∈ X1 and limπ(an) = a. Thus this case can be ruled out as
well, i.e., there cannot exist an end which is a puncture.

4 Proof of the theorem

Proof. Let an be a diverging sequence in D = {z ∈ C : |z| < 1} and rn ∈ R>0

such that all the closed balls Bn = {z ∈ C : |z−an| ≤ rn} are disjoint subsets of
D. Let A = ∪nBn. Then A is a closed subset of D and the fundamental group
of X0 = D\A is not finitely generated. Hence, by prop. 1 there is an unramified
covering π : X1 → X0 with an effective G-action on X1. Let AutO(X1) denote
the group of all holomorphic automorphisms of X1 and A the group of all
diffeomorphisms of X1 which are either holomorphic or antiholomorphic. Again
by prop. 1 we may assume that AutO(X1) is discrete and acting properly
discontinuously. Since AutO(X1) is of finite index in A, the group A is likewise
discrete and acting properly discontinuously on X1.

Now, for every g ∈ A \ {e} the fixed point set Xg
1 = {x ∈ X1 : g(x) = x}

is a nowhere dense real analytic subset of X1. Hence Σ = ∪g∈A\{e}Xg
1 is a

set of measure zero. In particular, Σ 6= X1. Let p ∈ X1 \ Σ, S = G(p) and
X = X1 \ S.

Note that the conditions p ∈ X1 \Σ, S = G(p) imply that g(p) 6∈ S if g ∈ A\G.
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Therefore
G = {g ∈ A : g(S) = S}.

Let h be the unique hermitian metric of constant Gaussian curvature −1 on X
and I its isomorphism group. We claim that I = AutO(X) ' G. To show this,
it suffices to show that every holomorphic or antiholomorphic automorphism of
X extends to a holomorphic or antiholomorphic automorphism of X1. If φ is a
holomorphic or antiholomorphic automorphism of X, it is in particular a self-
homeomorphism and therefore extends to a homeomorphism φ̄ of the compact
topological space X̄ = X ∪ e(X) (where e(X) is the set of ends as explained in
§3. above). Now e(X) = e(X1)∪S. Evidently every end of X given by a point
of S is a puncture as defined in §3. On the other hand, due to prop. 2 none
of the ends of X1 is a puncture. Now φ̄|e(X) is a permutation of the elements
of e(X) which stabilizes the set of those ends which are punctures. Hence
φ̄(S) = S. Thus φ extends to a continuous self-map of X1 = X ∪ S. However,
a continuous map which is holomorphic or antiholomorphic everywhere except
for some isolated points, is necessarily holomorphic resp. antiholomorphic ev-
erywhere (by Riemann extension theorem). Hence every φ ∈ I of X extends
to a holomorphic or antiholomorphic automorphism of X1. Consequently

AutO(X) = I = {g ∈ A : g(S) = S} = G.
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Abstract. Mumford has constructed 4-dimensional abelian varieties
with trivial endomorphism ring, but whose Mumford–Tate group is
much smaller than the full symplectic group. We consider such an
abelian variety, defined over a number field F , and study the as-
sociated p-adic Galois representation. For F sufficiently large, this
representation can be lifted to Gm(Qp)× SL2(Qp)

3.

Such liftings can be used to construct Galois representations which
are geometric in the sense of a conjecture of Fontaine and Mazur.
The conjecture in question predicts that these representations should
come from algebraic geometry. We confirm the conjecture for the
representations constructed here.
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Introduction

A construction due to Mumford shows that the Mumford–Tate group of a
polarized abelian variety A/C is not, in general, determined by the polariza-
tion and the endomorphism ring of A. This construction, which can be found
in [Mum69], proves the existence of families of polarized abelian fourfolds where
the general fibre has trivial endomorphism algebra but Mumford–Tate group
much smaller than the full symplectic group of H1

B(A(C),Q).
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Previous papers, [Noo95] and [Noo00], brought to light some properties of an
abelian variety A arising from this construction. For example, if A can be
defined over a number field F , then it can be shown that, after replacing F
by a finite extension, A has good reduction at all non-archimedean places of
F and ordinary reduction at “most” of those places. Many of these results are
derived from the property that the p-adic Galois representations associated to
A factor through maps ρp : GF → G(Qp), where G is the Mumford–Tate group
of A. They are therefore to a large extent results on the properties of Galois
representations of “Mumford’s type”.

The present work continues the study of the Galois representations in question,
in particular their lifting properties. In this respect, this paper is heavily
inspired by Wintenberger’s wonderful paper [Win95], even though the results
proved therein are never actually used. In fact, the conditions of the main
theorem (1.1.3) of that paper are not verified in the case considered here and,
indeed, our conclusions are weaker as well.

Let G be the Mumford–Tate group of an abelian variety A over a number field
F arising from Mumford’s construction. It admits a central isogeny G̃ → G,
where the group G̃ is (geometrically) a product:

G̃Q
∼= Gm × SL3

2.

We fix a prime number p such that G̃ decomposes over Qp and we attempt
to lift the p-adic Galois representation ρ associated to A along the isogeny
G̃(Qp) → G(Qp). This is possible after replacing F by a finite extension.
The resulting lift ρ̃ naturally decomposes as a direct sum of a character and
three 2-dimensional representations. These representations are studied in sec-
tion 1. They have rather nice properties but for each one of them there exists
a finite place of F where it is not potentially semi-stable. To be precise, the
2-dimensional representations are potentially unramified at all finite places of
F of residue characteristic different from p, trivial at certain p-adic places of
F but not potentially semi-stable (not even of Hodge–Tate type) at the other
p-adic places.

In section 1, the properties of the lifting ρ̃ and its direct factors are studied
without using the fact that ρ comes from an abelian variety A with Mumford–
Tate group G. If we do use that fact, we can say more about the representations
in question. This is the subject of section 2, where it is shown in particular
how to distinguish the p-adic places where a given 2-dimensional direct factor
of ρ̃ is trivial, from the p-adic places where it is not. The results of section 2
are used in section 3 to show that considering two abelian varieties A and
A′ of Mumford’s kind, and taking a tensor product of two representations of
the type considered above, one obtains representations which are potentially
crystalline at all p-adic places of F and are potentially unramified at all other
finite places of F . These representations are unramified outside a finite set of
non-archimedean places of F . For a suitable choice of the varieties A and A′,
one obtains an irreducible representation.
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According to a conjecture of Fontaine and Mazur ([FM95, conjecture 1], see
section 0), such a representation should “come from algebraic geometry”, i. e.
be a subquotient of a Tate twist of an étale cohomology group of an algebraic
variety over F . Our construction is geometric in some large sense, but not in
the sense of the conjecture. We show in the beginning of section 4 that, in
general, our representations do not arise (in the sense of Fontaine and Mazur)
from the geometric objects having served in their construction.

It is therefore not clear if the conjecture holds in this case. Nevertheless, it is
shown in section 4 that our representations do come from geometry, even from
the geometry of abelian varieties, in the strong sense of Fontaine and Mazur.
The construction of these abelian varieties is based on a construction going
back to Shimura, cf. [Del72, §6].

In the final section, some generalizations of the construction of geometric rep-
resentations are studied. It is shown in particular that any tensor product
of the representations constructed in section 2 which is geometric comes from
algebraic geometry.

Acknowledgements. It is a great pleasure to thank Johan de Jong for several
extremely useful discussions on the subject of this paper. I thank Don Blasius
for his questions, which led to the addition of section 5 to this paper.

0 Notations and terminology

0.1 Notations. For any field F , we denote by F̄ an algebraic closure of F
and we write GF = Gal(F̄ /F ) = AutF (F̄ ), the group of F -automorphisms of
F̄ . If v̄ is a valuation of F̄ , then IF,v̄ ⊂ DF,v̄ ⊂ GF are the inertia group and
decomposition group of v̄. If F is a local field, we write just IF ⊂ GF for the
inertia subgroup.

In the case of the field Q of rational numbers, we let Q be its algebraic closure
in the field of complex numbers C. As usual, for any prime number p, Qp is
the p-adic completion of Q and Cp is the completion of Qp.

0.2 Representations of Mumford’s type. Let K be a field of charac-
teristic 0, let G be an algebraic group over K and let V be a faithful K-linear
representation of G. As in [Noo00, 1.2], we will say that the pair (G,V ) is of
Mumford’s type if

• Lie(G) has one dimensional centre c,

• Lie(G)K̄
∼= cK̄ ⊕ sl32,K̄ and

• Lie(G)K̄ acts on VK̄ by the tensor product of the standard representa-
tions.

We do not require G to be connected.
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0.3 A conjecture of Fontaine and Mazur. Let F be a number field
and let GF = AutF (F̄ ). Fix a prime number p and suppose that ρ is a finite
dimensional Qp-linear representation of GF . Following Fontaine and Mazur
in [FM95, §1], we will say that ρ is geometric if

• it is unramified outside a finite set of non-archimedean places of F and

• for each non-archimedean valuation v̄ of F̄ , the restriction of ρ to the
decomposition group DF,v̄ is potentially semi-stable.

The meaning of the second condition depends on v̄. If v̄(p) > 0, then the
notion of potential semi-stability is the one defined by Fontaine, see for example
[Fon94]. If v̄(p) = 0 then the fact that ρ is potentially semi-stable means that
the restriction of ρ to the inertia group IF,v̄ is quasi-unipotent.

By Grothendieck’s theorem on semi-stability of p-adic Galois representations,
the condition of potential semi-stability at v̄ is automatically verified in the case
where v̄(p) = 0. We can therefore restrict our attention to valuations v̄ with
v̄|p. The only fact needed in what follows is that a crystalline representation
of DF,v̄ is semi-stable and hence that a potentially crystalline representation is
potentially semi-stable.

We say that a finite dimensional, irreducible, Qp-linear representation of GF
comes from algebraic geometry if it is isomorphic to a subquotient of a Tate
twist of an étale cohomology group of an algebraic variety over F . We cite
conjecture 1 from [FM95].

0.4. Conjecture (Fontaine–Mazur). Let F be a number field. An irre-
ducible p-adic representation of GF is geometric if and only if it comes from
algebraic geometry.

0.5 The “if” part of the conjecture is true. A representation coming from
a proper and smooth F -variety having potentially semi-stable reduction at all
places of residue characteristic p is semi-stable by the Cpst-conjecture, [Fon94],
proven by Tsuji in [Tsu99]. The general case of this part of the conjecture (for
irreducible representations) follows by [dJ96]. The “only if” part is known for
potentially abelian representations by [FM95, §6]. In [Tay00], Taylor proves
the conjecture for representations of GQ with values in GL2(Qp) satisfying
some supplementary conditions. These results can be generalized to certain
two-dimensional Qp-linear representations of GF , for totally real number fields
F .

0.6 Remark. Let F ′ be a finite extension of F . It follows from [FM95, §4],
Remark (b) that the conjecture for representations of GF is equivalent to the
conjecture for representations of GF ′ .

For the implication which is still open, this can be seen as follows. Let ρ be a
representation such that a Tate twist ρ|GF ′ (n) of ρ|GF ′ is a subquotient of an
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étale cohomology group of an algebraic variety X over F ′. Then

IndGF
GF ′

(
ρ|GF ′ (n)

)

is a subquotient of an étale cohomology group of ResF ′/F (X). The represen-
tation ρ(n) is a subquotient of this induced representation.

1 Lifting Galois representations of Mumford’s type

1.1 Let p be a prime number, Gp/Qp an algebraic group and Vp a faithful
representation of Gp such that (Gp, Vp) is of Mumford’s type in the sense of 0.2.
Throughout this section we will assume that F is a number field or a finite
extension of Q` for some prime number ` and that ρ : GF → Gp(Qp) is a
polarizable, continuous representation. The condition that ρ is polarizable
means, by definition, that there exists a non-degenerate, alternating, bilinear,
GF -equivariant map V × V → Qp(−1). Here Qp(−1) is the 1-dimensional Qp-
linear representation where GF acts through χ−1, the inverse of the cyclotomic
character.
We will assume moreover that Gp is connected and that Lie(Gp) ∼= c⊕ sl32. In
this case, there exists a central isogeny

N : G̃p = Gm × SL3
2 −→ Gp

such that the induced representation of G̃p on Vp is isomorphic to the tensor
product V0 ⊗ V1 ⊗ V2 ⊗ V3 of the standard representations of the factors.
We fix a GF -stable Zp-lattice VZp ⊂ Vp such that there exists lattices Vi,Zp ⊂ Vi
with VZp = ⊗4

i=1Vi,Zp and such that, on VZp , the polarization form takes values
in Zp(−1).

1.2 Definition. We say that ρ(GF ) is sufficiently small if it stabilizes VZp

and if all elements of ρ(GF ) are congruent to 1 mod p if p > 2 and congruent
to 1 mod 4 if p = 2.

1.3 Remarks.

1.3.1 For any polarizable, continuous representation ρ : GF → Gp(Qp) as in
the beginning of 1.1, there exist a lattice VZp as in 1.1 and a finite extension
F ′ ⊃ F such that ρ(GF ′) is sufficiently small.

1.3.2 If ρ(GF ) is sufficiently small, then it does not contain any non-trivial
elements of finite order. This implies in particular that ρ is unramified at a
finite place v of F of residue characteristic different from p if and only if it is
potentially unramified at v.

1.4. Lemma. If ρ(GF ) is sufficiently small, then ρ lifts uniquely to a continuous
group homomorphism ρ̃ : GF → G̃p(Qp) with the property that all elements of
ρ̃(GF ) are congruent to 1 mod p if p > 2 and to 1 mod 4 if p = 2.
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Proof. The map GL3
2 → Gp obtained by taking the tensor product of the

standard representations is surjective on Qp-valued points and even on Qp-
valued points of GL3

2 and Gp satisfying the above congruence condition. By
Hensel’s lemma, the determinant of an element of GL2(Qp) which satisfies this
congruence condition is the square of an element of Gm(Qp) satisfying the same
condition, which proves that if ρ(GF ) is sufficiently small, then any element lifts
to an element of G̃p(Qp), congruent to 1 mod 2p.

One has ker(N) = {(ε0, ε1, ε2, ε3) | εi = ±1, ε0ε1ε2ε3 = 1}. As the congruence
condition implies that −1 6≡ 1, the lifting with this property is unique so we
obtain the unique lift ρ̃ : GF → G̃p(Qp) from the lemma, for the moment just a
continuous map. The uniqueness of the lifting from Gp(Qp) to G̃p(Qp) implies
that ρ̃ is a group homomorphism.

1.5 Definition. If ρ(GF ) is sufficiently small, then we call the lifting
ρ̃ : GF → G̃p(Qp) of the lemma the canonical lifting of ρ.

1.6 The representations ρi. For any ρ : GF → Gp(Qp) and any lifting
ρ̃ : GF → G̃p(Qp), there exists a finite extension F ′ of F such that ρ(GF ′) is
sufficiently small and such that the restriction of ρ̃ to GF ′ is its canonical lifting.
Replacing F by such a finite extension F ′, we will assume in the sequel that
this is already the case over F .

By composing ρ̃ with the projections on the factors of G̃p(Qp), we get a char-
acter ρ0 : GF → Gm(Qp) and representations ρi : GF → SL2(Qp) for i = 1, 2, 3.
The facts that the image of ρ is sufficiently small and that ρ̃ is its canonical lift
imply that the ρi(GF ) do not contain any elements of finite order other than
the identity.

The following lemma is obvious.

1.7. Lemma. Let notations and hypotheses be as in 1.6. In particular, ρ(GF )
is sufficiently small and ρ̃ is its canonical lifting. If ρ is unramified at some
finite place of F of residue characteristic different from p, then so are ρ̃ and
the ρi.

1.8. Lemma. Let ρ, ρ̃ and the ρi (for i = 0, 1, 2, 3) be as in 1.6 and lemma 1.7.
Then the character ρ0 satisfies ρ2

0 = χ−1, where χ : GF → Z∗p is the cyclotomic
character.

Proof. The condition that ρ is polarizable means that it respects a symplectic
form up to a scalar and that the multiplier is the inverse of the cyclotomic
character. This means that the determinant of ρ is χ−4. The representation
ρ1 ⊗ ρ2 ⊗ ρ3 has trivial determinant, so the determinant of its product by ρ0

is ρ8
0 and hence ρ8

0 = χ−4. The lemma follows because ρ0(GF ) and ρ(GF ) and
hence χ(GF ) are congruent to 1 mod 2p.
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1.9. Proposition. Under the assumptions of the lemmas, let v be a p-adic
valuation of F and let I = IF,v̄ be the inertia group of a valuation v̄ of F̄ lying
over v. Assume that the restriction of ρ to I is Hodge–Tate (resp. crystalline).
For i ∈ {1, 2, 3}, either

• the restriction of ρi to I is trivial, or

• the restriction of ρ0 · ρi to I is Hodge–Tate (resp. crystalline).

Proof. One has an isomorphism Gad
p (Qp) ∼= PSL2(Qp)

3 and it can be shown
as in [Noo00, 3.5] that the projection of ρ(I) on exactly two of the factors is
trivial. We sketch the argument.
Let µHT : Gm,Cp

→ Gp,Cp
be the cocharacter associated to the Hodge–Tate

decomposition of ρ|I. As the kernel of the isogeny N : G̃p → Gp is annihilated
by 2, the square

µ2
HT : Gm,Cp

→ Gp,Cp

lifts to a cocharacter µ̃ : Gm,Cp
→ G̃p,Cp

. One has µ̃ = (µ̃0, µ̃1, µ̃2, µ̃3), where
µ̃0 : Gm,Cp

→ Gm,Cp
and µ̃i : Gm,Cp

→ SL2,Cp
for i = 1, 2, 3. Since Vp,Cp

is
the direct sum of two eigenspaces for µHT and hence for µ̃, exactly one of the
maps µ̃1, µ̃2, µ̃3 is non-trivial. The Zariski closure of the image of µHT therefore
projects non-trivially on exactly one of the factors of Gad

p,Qp

∼= (PSL2,Qp
)3.

The theorem of Sen, [Ser78, Théorème 2], implies the statement concerning
the projection of ρ(I).
To end the proof, we can assume that the projection of ρ(I) on the first factor
of Gad

p (Qp) is non-trivial. The hypotheses that ρ(GF ) is sufficiently small and
that ρ̃ is the canonical lifting of ρ imply that (ρ2)|I and (ρ3)|I are trivial. Since
the tensor product ρ|I = (ρ0ρ1)|I⊗(ρ2⊗ρ3)|I is Hodge–Tate (resp. crystalline),
this implies that (ρ0ρ1)|I is Hodge–Tate (resp. crystalline) as well.

1.10 Definition. Notations being as above, let 1 ≤ i ≤ 3 and let v̄ be a
p-adic valuation of F̄ . We say that (ρi)|IF,v̄ is of the first kind if (ρ0ρi)|IF,v̄ is
potentially crystalline. We say that (ρi)|IF,v̄ is of the second kind if its image
is trivial.

1.11 Remark. Let (Gp, Vp) be of Mumford’s type as in 1.1, let F be a
number field and assume that A/F is a polarizable abelian fourfold such that,
for some identification Vp = H1

ét(AF̄ ,Qp), the Galois representation of GF on
Vp factors through a map ρ : GF → Gp(Qp). Then ρ is a representation of the
type considered in 1.1. This is the setting in which the results of this section
will be applied.
Abelian varieties with this property exist by [Mum69, §4] and [Noo95, 1.7].
By [Noo00, 2.2], such varieties have potentially good reduction at all non-
archimedean places of F . This implies that for each p-adic place v̄ of F̄ , the
restriction of ρ to the decomposition group DF,v̄ ⊂ GF is potentially crystalline.
At all other finite places, ρ is potentially unramified in any case and unramified
if ρ(GF ) is sufficiently small.
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2 Galois representations of abelian varieties of Mumford’s type

2.1 Fix an abelian fourfold A over a number field F and an embedding
F ⊂ C. Let V = H1

B(A(C),Q) and let G ⊂ GL(V ) be an algebraic sub-
group such that (G,V ) is of Mumford’s type, with G connected. We assume
that the morphism h : S → GL(V ⊗ R) determining the Hodge structure of
AC factors through GR. This condition is equivalent to the condition that the
Mumford–Tate group of AC is contained in G.
Such abelian varieties exist by [Mum69, §4], and [Noo95] implies that there
also exist abelian varieties of this type with the additional property that the
Mumford–Tate group is equal to G. It is explained in [Noo01, 1.5] that any
abelian variety satisfying the above condition whose Mumford–Tate group is
equal to G can be obtained as a fibre of one of the families constructed in
[Mum69, §4]. As in [Noo01] one can draw the following conclusions.
There is a central isogeny G̃→ G, where G̃ = Gm × G̃der and G̃der is an alge-
braic group over Q such that G̃der

Q
∼= SL3

2,Q
. The group G̃der can be described

in the following way. There exist a totally real cubic number field K and a
quaternion division algebra D with centre K, with CorK/Q(D) ∼= M8(Q) and
with D ⊗Q R ∼= M2(R)×H×H such that

G̃der = {x ∈ D | Nrd(x) = 1},

considered as an algebraic group over Q. Here H is the algebra of real quater-
nions and Nrd: D → K is the reduced norm. The group G can be iden-
tified with the image of D× in CorK/Q(D) ∼= M8(Q) under the norm map
N : D → CorK/Q(D) and therefore has a natural 8-dimensional representation.
This representation is isomorphic to V . Note that for any field L containing a
normal closure of K, one has

G̃der
L
∼=

∏

ϕ : K↪→L
Gϕ,

where each Gϕ is an L-form of SL2.
In what follows, we will refer to K and D as the number field and the division
algebra associated to G.

2.2 The Hodge decomposition on VC = H1
B(A(C),C) ∼= H1

dR(AC/C) is de-
termined by a cocharacter

µHdR : Gm,C −→ GC

such that Gm acts by the character ·i on the subspace H i,1−i ⊂ H1
B(A(C),C).

Let CHdR ⊂ GC be the conjugacy class of µHdR. It follows from [Noo01, 1.2]
(and is easy to check) that the field of definition in C of CHdR is isomorphic to
K. In what follows we will identify K with this subfield of C and thus assume
that K ⊂ C. One deduces that CHdR can be defined over F ⊂ C if and only
if K ⊂ F , and hence that, up to replacing F by a finite extension, one can
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assume that CHdR can be defined over F . From now on, we will assume that
this is the case.
The arguments used in the proof of proposition 1.9 also apply to µHdR. Thus
µ2

HdR lifts to a map µ̃ : Gm,C → G̃C. As in loc. cit., the fact that there are
two eigenspaces in VC for the action of Gm implies that the projection of µ̃ on
one and only one factor SL2,C of G̃C is non trivial. This implies that CHdR

projects non-trivially on exactly one factor PSL2,C of Gad
C , namely the factor

corresponding to the embedding K ⊂ C fixed above.

2.3 Let p be a prime number such that G̃Qp
∼= Gm × SL3

2. If K and D
are the number field and the division algebra associated to G, this condition
is equivalent to p being completely split in K and D being split at all places
of K above p. The factors SL2 of the above product correspond to the p-
adic valuations of K. As K ⊂ F by assumption, all Hodge classes on AC

that are invariant for the G(Q)-action on the rational cohomology are defined
over F , so the Galois representation associated to A factors through a map
ρ : GF → G(Qp). This implies that we find ourselves in the situation of 1.1,
with F a number field and with GQp

playing the role of the group Gp.
After further enlarging F , the image of ρ is sufficiently small. The con-
structions of 1.6 provide a character ρ0 : GF → Gm(Qp) and representations
ρ1, ρ2, ρ3 : GF → SL2(Qp). The above remarks give rise to a bijective corre-
spondence between the ρi (i = 1, 2, 3) and the p-adic valuations v1, v2, v3 of K,
with ρi corresponding to vi.

2.4 We summarize the notations and hypotheses in effect at this point.

• (G,V ) is a pair of Mumford’s type (as defined in 0.2) with G connected.

• K is the number field associated to G.

• p is a prime number which splits completely in K and such that the group
G is split at p.

• F ⊂ C is a number field A/F an abelian variety.

• V = H1
B(A(C),Q) is an identification such that the Mumford–Tate group

of A is contained in G.

• Inclusions K ⊂ F ⊂ C are fixed such that the field of definition in C of
the conjugacy class CHdR ⊂ GC of µHdR is equal to K.

• The image of the Galois representation ρ : GF → G(Qp) is sufficiently
small.

2.5. Proposition. Under the above hypotheses, let v be a p-adic valuation of
F and I = IF,v̄ be the inertia group of a valuation v̄ of F̄ lying over v. Suppose
that i ∈ {1, 2, 3}. Then (ρi)|I is of the first kind if and only if v|K = vi.
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Proof. We already saw (cf. proposition 1.9 and its proof) that the projection
of ρ(I) on one and only one factor of Gad(Qp) is non-trivial. This is the factor
corresponding to vi if and only if (ρi)|I is of the first kind. After renumbering
the vi and the ρi, we can assume that v|K = v1 and it suffices to show that the
projection of ρ(I) on the factor of Gad(Qp) corresponding to v1 is non-trivial.
By 2.2, the conjugacy class CHdR ⊂ GC projects non-trivially to exactly one
factor PSL2,C of

Gad
C =

∏

K↪→C

PSL2,C.

Since the field of definition of CHdR is equal to K, this must be the factor
corresponding to the embedding K ⊂ F ⊂ C fixed in 2.2 (cf. 2.4).
Let ι : Q ↪→ Cp be an embedding such that the composite

F ⊂ Q
ι−−−−→ Cp

induces the valuation v on F . For each K-variety Y , we denote by Y ⊗KCp the
base extension of Y to Cp via the embedding induced by ι and the inclusion
K ⊂ Q.
The Hodge–Tate decomposition associated to ρ|I is determined by a cocharacter
µHT : Gm,Cp

→ GCp
and we let CHT be its conjugacy class in GCp

. Since
[Bla94, theorem 0.3] implies conjecture 1 of [Win88], it follows from [Win88,
proposition 7] that CHdR⊗KCp = CHT, as subvarieties of (GK)⊗KCp = GCp

.
The conjugacy class CHT thus projects non-trivially onto the factor of Gad

Cp

corresponding to the inclusion ι. As ι : Q ↪→ Cp restricts to an inclusion
K ↪→ Qp inducing the valuation v1 on K, it follows from proposition 1.9 and
its proof that ρ(I) projects non-trivially to the factor of Gad

Qp
corresponding to

v1.

2.6 The special case. We keep the above notations. In this section, it was
not assumed that the Mumford–Tate group of A is equal to G. We investigate
the case where these two groups are not equal, so let T ⊂ G the Mumford–Tate
group of A and assume that T 6= G. As T is a reductive Q-group containing
the scalars, it has to be a torus of G. This means that A corresponds to a
special point of an appropriate Shimura variety associated to (G,X), where X
denotes the G(R)-conjugacy class of the morphism h : S → GR determining
the Hodge structure on H1

B(A(C),R).
It follows from [Noo01, §3] that there exists a totally imaginary extension L of
K which splits D (with D the division algebra associated to G as in 2.1) and
such that T is the image in G of L× ⊂ D×. If T̃ ⊂ G̃ denotes the connected
component of the inverse image of T , one has T̃ = Gm × (G̃der ∩ L×). There
is an identification

G̃der ∩ L× = {x ∈ L× | xx̄ = 1},
where the right hand side is considered as an algebraic group over Q. Again
by [Noo01, §3], the field L is the reflex field of the CM-type of A.
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Assume that p is completely split in L. Then

T̃Qp
∼= Gm × (Gm)3,

where the first factor lies in the centre of G̃ and the other factors identify with
maximal tori of the factors SL2,Qp

of G̃Qp
. In this case, the representations

ρ1, ρ2 and ρ3 each decompose as a direct sum of two 1-dimensional representa-
tions given by opposite characters, so ρ̃ decomposes as a sum of 1-dimensional
representations.

3 Construction of geometric Galois representations

3.1 Fix two representations (G,V ) and (G′, V ′) of Mumford’s type and as-
sume that the number field associated (as in 2.1) to both groups G and G′ is
the same totally real cubic field K. We will assume that both G and G′ are con-
nected. Also fix a number field F ⊂ C, two 4-dimensional abelian varieties A/F
and A′/F and identifications V = H1

B(A(C),Q) and V ′ = H1
B(A′(C),Q) such

that the Mumford–Tate groups of A and A′ are contained in G and G′ respec-
tively. In analogy with 2.2, let µHdR : Gm,C → GC (resp. µ′HdR : Gm,C → G′C)
be the morphism determining the Hodge decomposition on V ⊗C (resp. V ′⊗C)
and let CHdR (resp. C ′HdR) be the conjugacy class of µHdR (resp. µ′HdR). We
assume that the field of definition in C of CHdR is equal to that of C ′HdR and
we identify K with this field, just as in 2.2. Replacing F by a finite extension
if necessary, we will assume that K ⊂ F .
Let D and D′ be the division algebras associated to G and G′ respectively and
assume that p is a prime number which splits completely in K and such that

D ⊗Q Qp
∼= D′ ⊗Q Qp

∼= M2(Qp)
3.

As in 2.3, the Galois representations associated to A and A′ factor through
morphisms ρ : GF −→ G(Qp) and ρ′ : GF −→ G′(Qp). After replacing F by a
finite extension, we may assume that ρ and ρ′ have sufficiently small image in
the sense of 1.2.
Let v1, v2 and v3 be the p-adic valuations of K and order the factors of

G̃Qp
∼= Gm,Qp

×
∏

K↪→Qp

SL2,Qp
∼= G̃′Qp

in such a way that the ith factor SL2 in each product corresponds to the
embedding K ↪→ Qp inducing vi. Applying the construction of 1.6 to ρ and ρ′,
we obtain a character ρ0 = ρ′0 and Galois representations

ρi, ρ
′
i : GF −→ SL2(Qp)

for i = 1, 2, 3. We will consider the representation

τ = ρ1 ⊗ ρ′1 : GF −→ SL2(Qp)
2 −→ GL4(Qp), (3.1.∗)

where the last arrow is defined by the action of SL2(Qp)
2 on Q2

p ⊗Q2
p
∼= Q4

p.
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3.2 Let v̄ be a p-adic place of F̄ and let I = IF̄ ,v̄ ⊂ GF be the corresponding
inertia group. If the restriction of v̄ to K is equal to v1, then the representations
(ρ1)|I and (ρ′1)|I are both of the first kind by proposition 2.5. It follows that
the tensor product (ρ1 ⊗ ρ′1)|I is potentially crystalline, as it is the twist by
χ of the tensor product of the two potentially crystalline representations ρ0ρ1

and ρ0ρ
′
1.

If the restriction of v̄ to K is different from v1, then the representations (ρ1)|I
and (ρ′1)|I are both of the second kind by proposition 2.5. In this case, the
condition that ρ(GF ) and ρ′(GF ) are sufficiently small implies that (ρ1 ⊗ ρ′1)|I
is trivial. It follows that (ρ1 ⊗ ρ′1)|I is potentially crystalline in this case as well.
In both cases, it follows from [Fon94, 5.1.5] that (ρ1 ⊗ ρ′1)|DF,v̄

is potentially
crystalline. This proves the following theorem.

3.3. Theorem. Assume that the hypotheses of 2.4 are verified for K ⊂ F ⊂ C,
A/F , G, p and ρ : GF → G(Qp) and for K ⊂ F ⊂ C, A′/F , G′, p and
ρ′ : GF → G′(Qp). Let

τ = ρ1 ⊗ ρ′1 : GF −→ SL2(Qp)
2 −→ GL4(Qp)

be the representation of (3.1.∗). Then τ is a geometric Galois representation in
the sense of 0.3. If F is sufficiently large then τ has good reduction everywhere.

3.4. Proposition. Let p, K, G and G′ be as in 3.1, subject to the condition
that the associated division algebras D and D′ both satisfy

D ⊗R ∼= D′ ⊗R ∼= M2(R)×H×H

and are both split at the same real place of K. Then one can choose the
abelian varieties A and A′ used in the construction of τ in 3.1 such that
Lie(τ(GF )) = sl22. In that case τ is an irreducible representation of GF .

Proof. From the surjections Gm,Q × Gder → G and Gm,Q × (G′)der → G′

one deduces a surjection G2
m × Gder × (G′)der → G × G′. Let ∆ ⊂ G2

m be
the diagonal and let G′′ ⊂ G × G′ be the image of ∆ × Gder × (G′)der. The
representations V and V ′ and the projections G′′ → G and G′′ → G′ induce
a representation of G′′ on V ′′ = V ⊕ V ′. The representations V and V ′ both
carry a bilinear form which is G- resp. G′-invariant up to a scalar. These forms
are also G′′-invariant up to a scalar and their multipliers are equal. It follows
that V ′′ can be endowed with a bilinear form, G′′-invariant up to scalars.
Fix isomorphisms D⊗R ∼= M2(R)×H×H ∼= D′⊗R. Any pair of morphisms
hD : S → D×R and hD′ : S → (D′)×R both conjugate to

S −→ GL2,R ×H× ×H×

z = a+ bi 7→
((

a b
−b a

)
, 1, 1

)
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for the above identifications defines a morphism h′′ : S → G′′R. As in [Mum69,
§4], one shows that these data define the Hodge structure of an abelian variety.
One can choose hD and hD′ in such a way that the image of h′′ is Zariski
dense in G′′, i. e. is not contained in a proper subgroup of G′′ defined over Q.
This implies that there exists an abelian variety A′′C over C with Mumford–
Tate group equal to G′′ and such that the representation of its Mumford–Tate
group on H1

B(A′′C(C),Q) is isomorphic to the representation of G′′ on V ′′.
It follows from [Noo95, 1.7] and its proof that there exists an abelian variety
A′′ over a number field F ′′ ⊂ C with Mumford–Tate group G′′, such that the
representation of its Mumford–Tate group on H1

B(A′′(C),Q) is isomorphic to
(G′′, V ′′) and with the property that that the image of the Galois representation
ρ′′ : GF ′′ → G′′(Qp) is open. By construction of the representation (G′′, V ′′) as
a direct sum, A′′ is isogenous to a product A × A′, where the Mumford–Tate
groups of A and A′ are G and G′ respectively. The image of

(ρ, ρ′) : GF −→ G(Qp)×G′(Qp)

is open in G′′(Qp). This implies that the image of τ : GF → GL4(Qp) is open in
H(Qp), where H ⊂ GL4,Qp

is the image of (SL2,Qp
)2 acting on Q2

p⊗Q2
p
∼= Q4

p

by the tensor product of the standard representations. Since the representation
of H on Q4

p is irreducible, the same thing is true for τ .

3.5 Remark. As noted in 2.1, the condition that

D ⊗R ∼= D′ ⊗R ∼= M2(R)×H×H

is equivalent to the conditions that there are abelian varieties A and A′ such
that D and D′ are the algebras associated to the Mumford–Tate groups of A
and A′ respectively.

3.6 A special case. Let us return to the notations of theorem 3.3, i. e. we
assume that the hypotheses of 2.4 are verified for K ⊂ F ⊂ C, A/F , G, p and
ρ : GF → G(Qp) and for K ⊂ F ⊂ C, A′/F , G′, p and ρ′ : GF → G′(Qp).
From now on we moreover assume that the Mumford–Tate group of A is equal
to G whereas that of A′ is strictly contained in G′. The condition on A implies
that End(AF̄ ) = Z. Since the representation ρ is semisimple, as ρ(GF ) ⊂ G(Qp)
and because

EndGF

(
H1

ét(AF̄ ,Qp)
)

= Qp,

one easily deduces that ρ(GF ) is open in G(Qp).
As was seen in 2.6, the condition on A′ implies that, after replacing F by a
finite extension again if necessary, A′ is of CM-type and its Mumford–Tate
group is a maximal torus T ′ ⊂ G′. Let L′ be the reflex field of the CM-type of
A′. The assumption that F is sufficiently large for the Mumford–Tate group
of A′ to be a torus is equivalent to the condition that L′ ⊂ F . By 2.6, the map
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ρ̃′ : GF → G̃′(Qp) factors through T̃ ′(Qp), where T̃ ′ ⊂ G̃′ is a maximal torus
which identifies with a subgroup of Gm × (L′)×.
Suppose that p splits completely in L′. Then the representation ρ′1 decomposes
as a direct sum of two opposite characters ψ1 and ψ−1

1 and it follows from 3.3
that the product ψ1ρ1 is geometric with potentially good reduction everywhere.
By construction, the image of ψ1ρ1 is Zariski dense in GL2, so ψ1ρ1 is an
irreducible representation. Note that, as F contains the reflex field L′ of the
CM-type of A′ (cf. 2.6), it is a totally imaginary field. We have thus constructed
a 2-dimensional geometric representation of the absolute Galois group of a
totally imaginary field F .
Of course, the same statement holds for ψ−1

1 ρ1 and similar constructions can be
carried out using the decompositions of ρ′2 as ψ2⊕ψ−1

2 and of ρ′3 as ψ3⊕ψ−1
3 . All

the above statements are true for the 6 representations ψ±1
i ρi (for i = 1, 2, 3).

The representation that will be of interest in section 4 is the direct sum

σ = ψ1ρ1 ⊕ ψ−1
1 ρ1 ⊕ ψ2ρ2 ⊕ ψ−1

2 ρ2 ⊕ ψ3ρ3 ⊕ ψ−1
3 ρ3. (3.6.∗)

Let TL′ be the kernel of the map (L′)× → K× induced by the field norm
and define TK = K× ∩ TL′ , seen as group schemes over Q. This implies that
TL′ = T̃ ′ ∩ (G̃′)der and TK = {x ∈ K× | x2 = 1}. Let H ′ be the algebraic
Q-group defined by the short exact sequence

1 −−−−→ TK
x7→(x,x−1)−−−−−−−→ G̃der × TL′ −−−−→ H ′ −−−−→ 1. (3.6.†)

The Galois representation on H1
ét(AQ,Qp) ⊗ H1

ét(A
′
Q
,Qp) factors through

(G× T ′/Gm)(Qp), where

Gm,Q −→ G× T ′
z 7→ (z · id, z−1 · id).

The maps G̃der → G and TL′ → T ′ induce a map H ′ → (G× T ′/Gm) and the
representation σ defined in (3.6.∗) is a lifting to H ′(Qp) of the representation
of GF on the Tate twist

H1
ét(AQ,Qp)⊗H1

ét(A
′
Q
,Qp)(1).

The facts that ρ(GF ) is open in G(Qp) and that ρ′(GF ) is open in T ′(Qp) imply
that σ(GF ) is open in H ′(Qp).

4 The geometric origin

4.1. Proposition. Let τ : GF → GL4(Qp) be a representation as in theo-
rem 3.3 and assume that Lie(im(τ)) ∼= sl22 (resp. let ψ±1

i ρi be as in 3.6). Let
A/F and A′/F be the abelian varieties serving in the construction of τ (resp.
ψ±1
i ρi). Then there do not exist n,m ∈ Z such that τ (resp. ψ±1

i ρi) is isomor-
phic to a subquotient of a Tate twist of

H1
ét(AF̄ ,Qp)

⊗n ⊗H1
ét(A

′
F̄ ,Qp)

⊗m.
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Proof. We first give the proof for ψ1ρ1, the other ψ±i ρi are handled by identical
arguments.

Assume that n,m ∈ Z such that ψ1ρ1 is isomorphic to a subquotient of a Tate
twist of H1

ét(AF̄ ,Qp)
⊗n⊗H1

ét(A
′
F̄
,Qp)

⊗m. Then ρ1 is a twist by a character of a
subquotient of H1

ét(AF̄ ,Qp)
⊗n and hence a twist by a character of a subquotient

of

ρ⊗n1 ⊗ ρ⊗n2 ⊗ ρ⊗n3 .

It follows from 3.6 that ρ̃(GF ) is open in Gm(Qp) × SL2(Qp)
3. The represen-

tation theory of SL3
2 therefore implies that ρ⊗n1 contains an irreducible factor

isomorphic to ρ1 and that ρ⊗n2 and ρ⊗n3 both contain an invariant line. The
first condition implies that n is even and the second one that n is odd, a
contradiction which proves the proposition.

To prove the result for τ , we use the notations of theorem 3.3. The condition
on im(τ) implies that ρ(GF ) and ρ′(GF ) are not commutative, so G and G′

are the Mumford–Tate groups of A and A′ respectively. As noted in 3.6, this
implies that ρ(GF ) (resp. ρ′(GF )) is open in G(Qp) (resp. G′(Qp)).

The Mumford–Tate group of A × A′ is the group G′′ ⊂ G × G′ introduced in
the proof of proposition 3.4, so (ρ, ρ′)(GF ) ⊂ G′′(Qp). The Zariski closure Hp

of the image of (ρ, ρ′) is a reductive algebraic subgroup of G′′Qp
containing the

centre.

We will show that Hp = G′′ by proving that its rank is equal to 6. Consid-
ering the restrictions to the different inertia subgroups, it is clear that ρ′1 is
isomorphic to neither ρ2 nor ρ3. The condition on im(τ) implies that ρ′1 is not
isomorphic to ρ1 either. Together with the fact that ρ(GF ) is open in G(Qp),
this implies that the rank of Hp is at least 4.

Let ` be a prime number which is inert in the cubic number field K. The
Zariski closure H` of the `-adic Galois representation associated to A × A′ is
a reductive algebraic subgroup of G′′Q`

. It follows from [Ser81, §3] (cf. [LP92,
6.12, 6.13]) that the ranks of Hp and H` are equal, so H` is of rank at least 4.
As the adjoint group G′′Q`

is a product of two Q`-simple groups of rank 3, this
gives H` = G′′Q`

. We conclude that H` and hence Hp are of rank 6.

The fact that Hp = G′′Qp
implies that (ρ, ρ′)(GF ) is open in G′′(Qp). The

statement about τ can now be proved using the representation theory of SL6
2

in an argument similar to the one used for ψ1ρ1.

4.2 Remark. In the proposition, the condition that Lie(im(τ)) ∼= sl22 implies
that τ is irreducible. This is essential for the conclusion of the proposition
to hold. To see this, consider the representation ρ1 ⊗ ρ1, which is reducible
and decomposes as the sum of the trivial representation ∧2ρ1 and Sym2ρ1.
The only interesting representation of the two is Sym2ρ1. It is a quotient of
H1

ét(AF̄ ,Qp)
⊗2.
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4.3 The special case considered in 3.6. From now on and up to and
including theorem 4.12, we place ourselves in the situation of 3.6. In particular,
the abelian varieties A and A′ have Mumford–Tate groups G and T ′ ⊂ G′

respectively. Moreover, we let D be the division algebra associated to G, as
in 2.1, and let L′ be the reflex field of the CM-type of A′. We saw in in 2.6
that the Mumford–Tate group of A′ is the image of (L′)× in G′.

4.4 The construction of the abelian variety B. By [Noo01, propo-
sition 1.5], the morphism h : S → GR determining the Hodge structure on
V = H1

B(A(C),Q) lifts uniquely to a map

hD : S −→ D×R
∼= GL2,R ×H× ×H×

conjugate to

z = a+ bi 7→
((

a b
−b a

)
, 1, 1

)
.

As D ⊗Q R =
∏
K↪→RD ⊗K R, the factors in the above product correspond

to the real embeddings ϕ1, ϕ2 and ϕ3 of K (in that order) and the composite
of ϕ1 with the inclusion R ⊂ C is the embedding K ↪→ C fixed in 2.2. On the
′-side, there is an isomorphism

(L′)×R
∼=
∏

K↪→R

S, (4.4.∗)

the factors still being indexed by the ϕi. Let

h′L′ = (1, id, id) : S −→
∏

K↪→R

S ∼= (L′)×R, (4.4.†)

where the trivial component is the one corresponding to ϕ1.
Let H denote the algebraic group defined by the short exact sequence

1 −−−−→ K×
x7→(x,x−1)−−−−−−−→ D× × (L′)× −−−−→ H −−−−→ 1. (4.4.‡)

The group H ′ defined by (3.6.†) identifies with a subgroup of this group and H
and H ′ naturally act on WB = D⊗KL′. For any pair of maps h1 : S → D×R and
h2 : S → (L′)×R, we will write h1 · h2 for the composite of the product (h1, h2)
with the projection onto HR.
The morphisms hD and h′L′ give rise to hH = hD ·h′L′ : S → HR and via the ac-
tion of H on WB , this gives a Hodge structure on WB , cf. [Del72, §6]. By [Del72,
pp. 161–162], this is the Hodge structure on the Betti cohomology of some po-
larizable complex abelian variety BC. By construction, WB = H1

B(BC(C),Q)
and dim(BC) = 12. The totally real field K is contained in the centre of D,
so L′ is contained in the centre of D ⊗K L′. It follows that L′ acts on BC by
isogenies.
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4.5. Lemma. Let BC be as above. There exist a number field F ′ ⊂ C and an
abelian variety B over F ′ such that BC = B ⊗F ′ C and L′ ⊂ End0(B).

Proof. It suffices to show that BC admits a model over Q. Let X be the
conjugacy class of the morphism h : S → GR defining the Hodge structure on
H1

B(A(C),Q), let XD be the conjugacy class of hD : S → D× and Y that of hH .
By [Del72, §6], this gives rise to Shimura data (G,X), (D×, XD), ((L′)×, {h′L′})
and (H,Y ) and morphisms (D×, XD)→ (G,X) and

(D× × (L′)×, XD × {h′L′})→ (H,Y ).

For appropriate compact open subgroups C ⊂ G(Af ), CD ⊂ D×(Af ),
CH ⊂ H(Af ) and CD,L ⊂ (D× × (L′)×)(Af ) we obtain a diagram

CD,LMQ(D× × (L′)×, XD × {h′L′}) −−−−→ CHMQ(H,Y )
y

CDMQ(D×, XD)
y

CMQ(G,X)

of morphisms between the weakly canonical models of the associated Shimura
varieties.
We dispose of faithful representations of G and of H, and via these rep-
resentations, the C-valued points of the Shimura varieties CMQ(G,X) and

CHMQ(H,Y ) correspond to isogeny classes of polarized abelian varieties en-
dowed with extra structure. If the above compact subgroups are sufficiently
small, all the Shimura varieties in question are smooth and both CMQ(G,X)
and CHMQ(H,Y ) carry families of abelian varieties such that the fibre over a
C-valued point of the Shimura variety lies in the isogeny class corresponding
to that point. One can moreover choose the compact subgroups above such
that the vertical maps are finite.
After fixing a level structure on AQ, it corresponds to a point

a ∈ CMQ(G,X)(Q).

By construction, there is a C-valued point

ã ∈ CD,LMQ(D× × (L′)×, XD × {h′L′})(C)

in the fibre over a of the vertical map such that ã maps to a point
b ∈ CHMQ(H,Y )(C) corresponding to the isogeny class of BC endowed with
an appropriate level structure. Because the vertical arrows are finite, it follows
that ã and hence b are defined over Q and this implies that BC admits a model
over Q.
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4.6 The construction of the abelian variety C. We keep the no-
tations of 4.3 and 4.4. The morphism h : S → T ′R determining the Hodge
structure of A′C on V ′ = H1

B(A′(C),Q) lifts to a map hL′ : S → (L′)×R inducing
an isomorphism of S with the factor of (L′)×R

∼=
∏
K↪→R S corresponding to

ϕ1 : K ↪→ R and inducing the trivial map on the other factors.
Let h′L′ be as in (4.4.†) and denote by h′L′ its composite with the involution of S
induced by complex conjugation. We define yet another map h′′L′ : S → (L′)×R
as the product h′L′hL′ , where the product is taken for the commutative group
structure on (L′)×R. Together with the natural action of L′ on WC = L′, this
defines a Hodge structure on WC . This Hodge structure is the Hodge structure
of CC for an abelian variety C of CM-type over a number field F ′′ ⊂ C. One
has dim(C) = 3 and L′ ⊂ End0(C). By construction, WC = H1

B(C(C),Q) and
dimL′(WC) = 1.

4.7 Remark. Possibly after replacing the identification of equation (4.4.∗)
on the first factor by its complex conjugate, one can assume that hL′ is given
by

hL′ = (id, 1, 1) : S −→
∏

K↪→R

S ∼= (L′)×R.

Doing so, the map h′′L′ is given by z 7→ (z, z̄, z̄).

4.8 The construction of the motives m′ and m. In what follows, we
will work in the category C of motives for absolute Hodge cycles as described
in [DM82], especially section 6 of that paper. Recall that this category is
constructed as Grothendieck’s category of motives except where it concerns
the morphisms. These are defined to be given by absolute Hodge classes, not
by cycle classes as usual.
We keep the assumptions of 4.3. Replacing F by a finite extension and extend-
ing the base field of the varieties in question, we will assume from now on that
the abelian varieties A and A′ (of 3.6), B (of 4.5) and C (of 4.6) are F -varieties
and that L′ acts on B and C (over F ). The motives h1(B) and h1(C) belong
to the category C(L′) of objects of C endowed with L′-action. One can thus
form the tensor product

m′ = h1(B)⊗L′ h1(C),

still belonging to C(L′), as in [DM82, pp. 155–156].
Let K̃ be the normal closure of K in C. As K is totally real, one has K̃ ⊂ R.
The decomposition of the algebra K ⊗Q K̃ as a product of fields gives rise to a
system (u1, u2, u3) of orthogonal idempotents in K ⊗Q K̃, indexed be the real
embeddings ϕ1, ϕ2, ϕ3 of K. For 1 ≤ i < j ≤ 3, let ui,j = ui + uj .
Let m′ ⊗Q K̃ be the external tensor product as in [DM82, pp. 155–156]. As
K ⊂ L′, it acts on m′ and one deduces a K̃-linear action of K⊗QK̃ on m′⊗QK̃,
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given by a Gal(K̃/K)-equivariant K̃-algebra morphism

K ⊗Q K̃ −→ EndK̃(m′ ⊗Q K̃) = End(m′)⊗Q K̃.

This action induces an action ofK⊗QK̃ on ∧3
K̃

(m′⊗QK̃) given by a Gal(K̃/K)-
equivariant multiplicative map (not a morphism of algebras)

K ⊗Q K̃ −→ EndK̃(∧3
K̃

(m′ ⊗Q K̃)) = End(∧3m′)⊗Q K̃.

For 1 ≤ i < j ≤ 3, let u′i,j be the image of ui,j in End(∧3m′)⊗Q K̃. As

{u2,3, u1,3, u1,2} ⊂ K ⊗Q K̃

is a Gal(K̃/K)-invariant subset, the sum u′2,3 + u′1,3 + u′1,2 ∈ End(∧3m′)⊗Q K̃
is also Gal(K̃/K)-invariant. This element therefore determines an element
u′ ∈ End(∧3m′). The AH-motive m is defined to be the kernel of u′ on ∧3m′.

4.9 Remark. Intuitively, the aim of this construction is to pass from an
object m′ which can be expressed, after tensoring with K̃, as a direct sum, to
the tensor product of the direct factors. This tensor product descends to an
object m over Q.

4.10. Proposition. Let notations and assumptions be as in 4.3–4.8. In par-
ticular, the Mumford–Tate group of A is equal to G, that of A′ is T ′, the
varieties A, A′, B and C are defined over F and L′ acts on B and on C. Then
there is an isomorphism

m ∼= (h1(A)⊗ h1(A′)(−2))8

of absolute Hodge motives.

Proof. The main theorem (2.11) of Deligne’s paper [Del82] states that the
spaces of Hodge cycles and of absolute Hodge cycles on an abelian variety
coincide. As noted in [DM82, 6.25], this implies that to prove the proposition,
it suffices to show that the Hodge structures on the Betti realizations of the
motives m and (h1(A)⊗ h1(A′)(−2))8 are isomorphic.
First consider h1(A), the Betti realization of which is V = H1

B(A(C),Q). The
Mumford–Tate group G of A admits a morphism D× → G, which makes V
into a representation of D×. The Hodge structure on V is determined by the
action of S on VR given by the morphism hD : S → D×R of 4.4. Similarly,
V ′ = H1

B(A′(C),Q), the Betti realization of h1(A′), is made into a represen-
tation of (L′)× by the morphism (L′)× → T ′, and the map hL′ : S → (L′)×R
of 4.6 determines the Hodge structure on V ′.
In these representations, the subgroup K× ⊂ D×, resp. K× ⊂ (L′)× acts
through the map K× → Gm,Q induced by the field norm NK/Q. It follows that
the action of D× × (L′)× on V ⊗Q V ′, the Betti realization of h1(A)⊗ h1(A′),
factors through the group H defined by (4.4.‡). Passing to Q, one has

HQ
∼=
∏

K↪→Q

(
GL2 ×G2

m

/
Gm

)
,
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where the map Gm → GL2×G2
m on each factor is given by z 7→ (z·id, z−1, z−1).

The representation of HQ on V ⊗ V ′ ⊗Q induces a representation of

(
GL2,Q ×G2

m,Q

)3

on this space which is isomorphic to the tensor product of the standard repre-
sentations of its factors GL2 and G2

m on Q
2
.

The Hodge structure on V ⊗ V ′, considered as the Betti realization of
h1(A) ⊗ h1(A′), is given by hD · hL′ : S → HR. Multiplying the composite
map

S
hD·hL′−−−−→ HR −−−−→ GL(V ⊗ V ′ ⊗R)

by the square of the norm map S → Gm,R, one gets the Hodge structure of
the Betti realization of the Tate twist h1(A)⊗ h1(A′)(−2).
The Betti realization of m′ is H1

B(B(C),Q) ⊗L′ H1
B(C(C),Q) = WB ⊗L′ WC

and the group H of (4.4.‡) naturally acts on this space. Over Q we have a
decomposition

(WB ⊗L′ WC)⊗Q Q = (W1 ⊕W2 ⊕W3)
2

of the induced representation of HQ. As before, the factors correspond to the
embeddings K ↪→ Q. The representation of HQ on Wi is isomorphic to the
one induced by the representation of the ith factor GL2 ×G2

m on Q
2 ⊗Q Q

2

by tensor product.
The Hodge structure on the tensor product WB ⊗L′ WC is obtained by mul-
tiplying the map hH defining the Hodge structure of BC by h′′L′ , the map
determining the Hodge structure of C. Since hH is defined in 4.4 as the prod-
uct hD · h′L′ and since h′′L′ = hL′h′L′ , it follows that hHh

′′
L′ = hD · hL′h′L′h′L′ .

Writing N ′ = h′L′h
′
L′ , this implies that the Hodge structure on WB ⊗L′ WC is

determined by

hHh
′′
L′ = hD · hL′N ′ : S −→ HR.

The image of N ′ : S → (L′)×R lies in K×R and N ′ is given by

N ′ : S −→
∏

K↪→R

Gm,R
∼= K×R

z 7→ (1, zz̄, zz̄).

With this information, the Betti realization Wm of m can be computed. It
is the kernel of the endomorphism of ∧3(WB ⊗L′ WC) induced by the map u′

of 4.8. For 1 ≤ i < j ≤ 3, the endomorphism ui,j ∈ EndQ(WB ⊗L′ WC ⊗Q Q)
induces the identity on Wi and Wj and zero on the remaining factor. Since
Wm ⊗Q Q is the kernel of u′

Q
on ∧3(WB ⊗L′ WC)⊗Q Q, it follows that there

is an isomorphism

Wm ⊗Q Q ∼= W 2
1 ⊗W 2

2 ⊗W 2
3 = (W1 ⊗W2 ⊗W3)8
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of representations of HQ. It follows that V ⊗ V ′ ∼= Wm as representations of
H.
We still have to show that the Hodge structures are the same. In view of what
we already know about these Hodge structures, it suffices to show that the
action of S on Wm⊗R defined by N ′ : S → K×R ⊂ HR and the representation of
H onWm is equal to scalar multiplication by the square of the norm S → Gm,R.
This in turn follows immediately from the above description of N ′ and the fact
that K× ⊂ H acts on Wm through the map K× → Gm,Q induced by the field
norm NK/Q.

4.11. Corollary. Keep the hypotheses of the proposition. For any prime
number p, there is an isomorphism of GF -modules between

(
H1

ét(AQ,Qp)⊗Qp
H1

ét(A
′
Q
,Qp)(−2)

)8

and the étale p-adic realization of m. This representation is a subquotient of
H6

ét(BQ × CQ,Qp).

4.12. Theorem. Let notations and assumptions be as in 4.3. In particular,
the Mumford–Tate group of A is equal to G and that of A′ is T ′. Assume
moreover that A, A′, B and C are defined over F and that ρ(GF ) and ρ′(GF )
are sufficiently small. Let the representation

σ : GF → H ′(Qp) ⊂ H(Qp)

be as in (3.6.∗). Then there exists a finite extension F ′ of F such that the
restriction of σ ⊕ σ to GF ′ is isomorphic to the representation of GF ′ on

H1
ét(BQ,Qp)⊗L′⊗Qp

H1
ét(CQ,Qp)(1).

In particular, the representations ψ±i ρi (for i = 1, 2, 3) defined in 3.6 come
from algebraic geometry in the sense of 0.3.

Proof. The first statement of the theorem implies that σ : GF → H ′(Qp) differs
from a representation of GF on a subquotient of an étale cohomology group
of an algebraic variety by a finite character. As σ is the direct sum of the
irreducible representations ψ±i ρi, the second statement of the theorem follows.
This leaves the first statement to be proven. From the constructions of B and
C and from the proof of proposition 4.10, it is clear that the Mumford–Tate
group of the Hodge structure on H1

B(B(C),Q) ⊗L′ H1
B(C(C),Q) is contained

in H and that the Mumford–Tate group of H1
B(B(C),Q)⊗L′ H1

B(C(C),Q)(1)
is contained in H ′. By [Del82, 2.9, 2.11], this implies that there is a finite
extension F ′ of F such that L′ acts on BF ′ and on CF ′ and such that the
representation of GF ′ on

W (p) = H1
ét(BQ,Qp)⊗L′⊗Qp

H1
ét(CQ,Qp)(1)
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factors through a morphism σ′ : GF ′ → H ′(Qp). The hypotheses that
D ⊗Q Qp

∼= M2(Qp)
3 and that p splits completely in L′ imply that W (p)

decomposes as the direct sum of two isomorphic representations of the group
H ′Qp

. We contend that, possibly after replacing F ′ by a finite extension, W (p)

is isomorphic to V (p), the GF ′ module underlying σ ⊕ σ.

The decomposition

σ =
⊕

i=1,2,3

(
ψiρi ⊕ ψ−1

i ρi
)

gives a decomposition V (p) = (V1 ⊕ V2 ⊕ V3)2. As σ lifts the Galois represen-
tation on H1

ét(AQ,Qp) ⊗ H1
ét(A

′
Q
,Qp)(1) from (G × T ′/Gm)(Qp) to H ′(Qp),

one has

H1
ét(AQ,Qp)⊗H1

ét(A
′
Q
,Qp)(1) = V1 ⊗ V2 ⊗ V3.

If u′ ∈ End(∧3V (p)) is constructed as in 4.8, then ker(u′) = (V1 ⊗ V2 ⊗ V3)8.

In analogy with the proof of proposition 4.10, one has W (p) = (W1⊕W2⊕W3)2

as representations of HQp
and (W1 ⊗W2 ⊗W3)8 is the étale p-adic realization

of the motive m. It follows from the corollary 4.11 that

(V1 ⊗ V2 ⊗ V3)
8 ∼= (W1 ⊗W2 ⊗W3)

8

as representations of GF ′ . Hence σ and σ′ have the same projection to
H ′(Qp)/ ker(N)(Qp). Here N : TK → {±1} is the map induced by the norm
NK/Q, where TK is, as in 3.6, the group scheme {x ∈ K× | x2 = 1}. As
TK(Qp) is finite, this implies that σ|GF ′ and σ′|GF ′ differ by a finite character
and thus proves the theorem.

4.13. Corollary. We return to the hypotheses of theorem 3.3, i. e. we only
assume that the Mumford–Tate groups of A and A′ are contained in G and G′

respectively. Then the representation τ : GF → GL4(Qp) of (3.1.∗), which is
geometric by theorem 3.3, comes from algebraic geometry.

Proof. By remark 0.6, it is sufficient to prove this after replacing F by a finite
extension. Apart from the varieties A and A′ serving in the construction of τ
in 3.1, we choose, after enlarging F if necessary, an auxiliary abelian variety
A′′ with Mumford–Tate group contained in a group of Mumford’s type, which
is of CM-type, and such that p splits completely in the reflex field L′′ of its
CM-type. As in 3.6, let ψ1 be one of the characters in which the representation
ρ′′1 decomposes. For F sufficiently large, the above theorem implies that ψ1ρ1

and ψ−1
1 ρ′1 come from algebraic geometry. It follows that the same is true for

τ = (ψ1ρ1)⊗ (ψ−1
1 ρ′1).
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5 Other geometric representations

5.1 Let p be a prime number, F a number field and let Rep(GF ) be the tan-
nakian category of finite dimensional, continuous Qp-linear representations of
the absolute Galois group GF . Consider all abelian fourfolds A/F such that
the conditions of 2.4 are verified for some identification VA = H1

B(A(C),Q)
and some algebraic group GA ⊂ GL(VA). We denote the p-adic Galois repre-
sentation associated to A by ρA : GF → GA(Qp) and define M to be the full
tannakian subcategory of Rep(GF ) generated by the ρA for A running through
the above set of abelian varieties and the Tate object Qp(1).
For any A as above, we denote by ρ̃A the canonical lifting of ρA constructed in
lemma 1.4. Let L be the full tannakian subcategory of Rep(GF ) generated by
all liftings ρ̃A and Qp(1). Obviously, M is a full subcategory of L.
Let ρ̃ be an object of L, it is a representation of GF on a finite dimensional
Qp-vector space V . We let G̃ be the Zariski closure of the image of ρ̃ in GL(V ).
The category generated by ρ̃ contains an object ρ of M such that there is a
central isogeny G̃→ G, where G denotes the Zariski closure of the image of ρ.

5.2. Theorem. Let τ be an irreducible representation of GF contained in L

which is geometric. Then τ comes from algebraic geometry.

Proof. Each ρ̃A is a direct sum of a (fixed) character ρ0 and three 2-dimensional
representations ρA,1, ρA,2 and ρA,3. It follows that L is generated by ρ0 and
the ρA,i, for i = 1, 2, 3 and A running through the abelian varieties considered
in 5.1. This implies that each object of L is a subquotient of a representation
of the form

τ = ρk0 ·
r⊗

j=1

ρj , (5.2.∗)

with k ∈ Z, and where ρj = ρAj ,ij for some an abelian variety Aj of the
type considered above and some integer ij ∈ {1, 2, 3}. It therefore suffices to
consider representations of this form.
Let τ be as in (5.2.∗). It follows from 3.6 and 4.12 that, for each j, there exist
a finite extension Fj of F and a character ψj of GFj such that ψjτ|GFj comes
from algebraic geometry. Let F ′ be a finite extension of F containing all Fj ,
define the character ψ of GF ′ by ψ = (ρ−k0 )

∏
ψj and let

τ ′ =

r⊗

j=1

(ψiρj)|GF ′ = ψτ|GF ′ .

This defines a geometric representation GF ′ . After replacing F ′ by a finite
extension, τ ′ is a Tate twist of a subquotient of an étale cohomology group of
an algebraic (even abelian) variety over F ′.
Now assume that τ and hence τ|GF ′ are geometric. This implies that ψ is a
geometric representation of GF ′ as well. If follows from [FM95, §6], that ψ
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comes from algebraic geometry and this in turn implies that τ|GF ′ = ψ−1τ ′

is a Tate twist of a subquotient of an étale cohomology group of an algebraic
variety. By remark 0.6, the same thing is true for τ .

5.3 Using the proof of theorem 5.2, one can describe the geometric represen-
tations contained in L. We keep the notations used above. Let A/F be an
abelian variety as in 5.1, GA its Mumford–Tate group and v a p-adic valuation
of F . Let

µHT,A,v : Gm,Cp
→ GA,Cp

be the cocharacter defined by the Hodge–Tate decomposition of ρ|IF,v̄ for some
valuation v̄ of F̄ with v = v̄|F . We saw in the proof of proposition 1.9 that
µ2

HT,A,v lifts to µ̃A,v : Gm,Cp
→ G̃A,Cp

. This lifting is conjugate to the map

Gm,Cp
−→ Gm,Cp

× SL2,Cp
× SL2,Cp

× SL2,Cp
∼= G̃A,Cp

z 7→
(
z,

(
z 0
0 z−1

)
, id, id

)
.

The factor SL2 on which µ̃A,v is non trivial is the factor to which the image of
IF,v̄ projects non-trivially.
The representations

ψjρj : GF → GL2(Qp)

occurring in the expression for τ ′ are geometric and the maps µ̃A,v define
cocharacters µ̃j,v : Gm,Cp

→ GL2,Cp
. The above description of the µ̃A,v and

the choice of the ψj imply that each µ̃j,v is a square of a cocharacter of GL2,Cp
.

Similarly, the liftings µ̃A,v and the expression of the character

ψ : GF → Gm(Qp)

as a product of ρ−k0 and the ψj define a map µ̃v : Gm,Cp
→ Gm,Cp

. It follows
from proposition 1.9, its proof, and the description of the µ̃A,v, that ψ|IF,v̄ is
the nth power of (ρ0)|IF,v̄ for some integer n and that µ̃v(z) = zn. This means
that ψ is potentially semi-stable at v if and only if n is even, which is the case
if and only if µ̃v is a square.
The condition that ψ is potentially semi-stable at v is equivalent to τ being po-
tentially semi-stable at v. This proves the following proposition, characterizing
the geometric representations in L.

5.4. Proposition. For each object ρ̃ : GF → GL(V ) of L, there exists a central
isogeny N : G̃ → G of algebraic groups over Qp such that G̃ is the Zariski
closure of the image of ρ̃ and such that N ◦ ρ̃ belongs to M. The representation
ρ is semi-stable at v if and only if the cocharacter

µHT,v : Gm,Cp
→ GCp

,
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defined by the Hodge–Tate decomposition of ρ|IF,v̄ (for a place v̄ of F̄ lying over
v), lifts to G̃Cp

. The representation ρ is geometric if and only if µHT,v lifts for
each valuation v of F .

5.5. Corollary. Let F be a number field, p a prime number and m be a mo-
tive belonging to the category of absolute Hodge motives generated by the mo-
tives of the abelian varieties considered in 5.1. Assume that G is the Mumford–
Tate group of m and let ρ : GF → G(Qp) the associated p-adic Galois repre-
sentation. Suppose that G̃ → G is a central isogeny such that ρ lifts to a
representation ρ̃ : GF → G̃(Qp) belonging to L. Then the following statements
are equivalent.

1. ρ̃ is geometric.

2. For some p-adic valuation v̄ of F̄ , the restriction ρ̃|IF,v̄ is potentially
semi-stable.

3. The cocharacter µHdR : Gm,C → GC defining the Hodge filtration on the
Betti realization of m lifts to G̃C.

4. ρ̃ comes from algebraic geometry.

Proof. By hypothesis, the conjugacy class CHdR of µHdR can be defined over F .
It was noted in the proof of proposition 2.5 that, for any embedding F̄ ↪→ Cp

inducing the valuation v̄, the conjugacy class of µHT,v is equal to CHdR⊗F Cp.
Using proposition 5.4, this proves that 2 implies 3 and that 3 implies 1.
The theorem 5.2 shows that 1 implies 4. The remaining implications are left
to the reader.

5.6 Remarks.

5.6.1 If condition 3 of the corollary is verified, then it follows from [Win95,
Théorème 2.1.7] that there exists a finite extension F ′ of F such that the
representations GF ′ → G(Q`), for ` ranging through the prime numbers, si-
multaneously lift to G̃(Q`).

5.6.2 The geometric representations considered in this paper are obtained
by lifting representations coming from algebraic geometry along isogenies of
algebraic groups H̃ → H over Q. Conjecturally, a representation GF → H(Qp)
which comes from algebraic geometry corresponds to a morphism f : G0

M → H,
where G0

M is the connected component of the motivic Galois group, see for
example [Ser94]. The geometric representations considered in this paper are
obtained by lifting along an isogeny H̃ → H with the property that the mor-
phism Gm × Gm → HC determining the (mixed) Hodge structure on the
corresponding Betti cohomology group lifts to H̃.
In [Ser94, 8.1], Serre asks whether the derived group of G0

M is simply connected.
He notes that an argument due to Deligne shows that if this is the case, then
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the fact that the morphism determining the Hodge structure lifts to H̃ implies
that f : G0

M → H lifts to a morphism G0
M → H̃. This in turn should imply

that the lifted Galois representation comes from algebraic geometry. An affir-
mative answer to Serre’s question, in conjunction with the standard conjectures
involved in the theory of motives, therefore proves the Fontaine–Mazur conjec-
ture for the representations considered in this paper. The above discussion also
indicates that, conversely, the conjecture of Fontaine and Mazur is unlikely to
be true if the answer to Serre’s question is negative.

References

[Bla94] D. Blasius. A p-adic property of Hodge classes on abelian varieties.
In U. Jansen, S. Kleiman, and J.-P. Serre, editors, Motives, Proc.
Sympos. Pure Math. 55, Part 2, pages 293–308. Amer. Math. Soc.,
1994.

[Del72] P. Deligne. Travaux de Shimura. In Séminaire Bourbaki, Lecture
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Abstract. In this paper we generalize work of Amice and Lazard
from the early sixties. Amice determined the dual of the space of
locally Qp-analytic functions on Zp and showed that it is isomorphic
to the ring of rigid functions on the open unit disk over Cp. Lazard
showed that this ring has a divisor theory and that the classes of
closed, finitely generated, and principal ideals in this ring coincide. We
study the space of locally L-analytic functions on the ring of integers
in L, where L is a finite extension of Qp. We show that the dual of this
space is a ring isomorphic to the ring of rigid functions on a certain
rigid variety X. We show that the variety X is isomorphic to the open
unit disk over Cp, but not over any discretely valued extension field
of L; it is a ”twisted form” of the open unit disk. In the ring of
functions on X, the classes of closed, finitely generated, and invertible
ideals coincide, but unless L=Qp not all finitely generated ideals are
principal.

The paper uses Lubin-Tate theory and results on p-adic Hodge theory.
We give several applications, including one to the construction of p-
adic L-functions for supersingular elliptic curves.

2000 Mathematics Subject Classification: 11G05, 11G40, 11S31,
14G22, 46S10
Keywords and Phrases: Fourier transform, character group, locally
analytic distribution, Mahler expansion, p-adic L-function

In the early sixties, Amice ([Am1], [Am2]) studied the space ofK-valued, locally
analytic functions on Zp and formulated a complete description of its dual, the
ring of K-valued, locally Qp-analytic distributions on Zp, when K is a complete
subfield of Cp. She found an isomorphism between the ring of distributions
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and the space of global functions on a rigid variety over K parameterizing K-
valued, locally analytic characters of Zp. This rigid variety is in fact the open
unit disk, a point z of Cp with |z| < 1 corresponding to the locally Qp-analytic
character κz(a) = (1+z)a for a ∈ Zp. The rigid function Fλ corresponding to a
distribution λ is determined by the formula Fλ(z) = λ(κz). Amice’s description
of the ring of Qp-analytic distributions was complemented by results of Lazard
([Laz]). He described a divisor theory for the ring of functions on the open disk
and proved that, when K is spherically complete, the classes of closed, finitely
generated, and principal ideals in this ring coincide.

In this paper we generalize the work of Amice and Lazard by studying the space
Can(o,K) of K-valued, locally L-analytic functions on o, and the corresponding
ring of distributions D(o,K), when Qp ⊆ L ⊆ K ⊆ Cp with L finite over Qp
and K complete and o = oL the additive group of the ring of integers in
L. To clarify this, observe that, as a Qp-analytic manifold, the ring o is a
product of [L : Qp] copies of Zp. The K-valued, Qp-analytic functions on o are
thus given locally by power series in [L : Qp] variables, with coefficients in K.
The L-analytic functions in Can(o,K) are given locally by power series in one
variable; they form a subspace of the Qp-analytic functions cut out by a set of
“Cauchy-Riemann” differential equations. These facts are treated in Section 1.

Like Amice, we develop a Fourier theory for the locally L-analytic functions
on o. We construct (Section 2) a rigid group variety ô, defined over L, whose
closed points z in a field K parameterize K-valued locally L-analytic characters
κz of o. We then show that, for K a complete subfield of Cp, the ring of rigid
functions on ô/K is isomorphic to the ring D(o,K), where the isomorphism
λ 7→ Fλ is defined by λ(κz) = Fλ(z), just as in Amice’s situation.

The most novel aspect of this situation is the variety ô. We prove (Section 3)
that ô is a rigid variety defined over L that becomes isomorphic over Cp to
the open unit disk, but is not isomorphic to a disk over any discretely valued
extension field of L. The ring of rigid functions on ô has the property that
the classes of closed, finitely generated, and invertible ideals coincide; but we
show that unless L = Qp (Lazard’s situation) there are non-principal, finitely
generated ideals, even over spherically complete coefficient fields.

The “uniformization” of ô by the open unit disk follows from a result of Tate’s
in his famous paper on p-divisible groups ([Tat]). We show that over Cp the
group ô becomes isomorphic to the group of Cp-valued points of a Lubin-Tate
formal group associated to L. The Galois cocycle that gives the descent data
on the open unit disk yielding the twisted form ô comes directly out of the
Lubin-Tate group. The period of the Lubin-Tate group plays a crucial role
in the explicit form of our results; in an Appendix we use results of Fontaine
[Fon] to obtain information on the valuation of this period, generalizing work
of Boxall ([Box]).

We give two applications of our Fourier theory. The first is a generalized Mahler
expansion for locally L-analytic functions on o (Section 4). The second is a con-
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struction of a p-adic L-function for a CM elliptic curve at a supersingular prime
(Section 5). Although the method by which we obtain it is more natural, and
we obtain stronger analyticity results, the L-function we construct is essen-
tially that studied by Katz ([Kat]) and by Boxall ([Box]). The paper by Katz
in particular was a major source of inspiration in our work.

Our original motivation for studying this problem came from our work on
locally analytic representation theory. In the paper [ST] we classified the locally
analytic principal series representations of GL2(Qp). The results of Amice and
Lazard played a key role in the proof, and in seeking to generalize those results
to the principal series of GL2(L) we were led to consider the problems discussed
in this paper. The results of this paper are sufficient to extend the methods of
[ST] to the groups GL2(L), though to keep the paper self-contained we do not
give the proof here.

The relationship between formal groups and p-adic integration has been known
and exploited in some form by many authors. We have already mentioned
the work of Katz [Kat] and Boxall [Box]. Height one formal groups and their
connection to p-adic integration is systematically used in [dS] and we have
adapted this approach to the height two case in Section 5 of our paper. Some
other results of a similar flavor were obtained in [SI]. Finally, we point out
that the appearance of p-adic Hodge theory in our work raises the interesting
question of relating our results to the work of Colmez ([Col]).

We would like to thank John Coates, Robert Coleman, Pierre Colmez, and
Ehud deShalit for interesting discussions on this work. The first, resp. sec-
ond, author thanks the Landau Center, resp. the Forcheimer Fellowship Fund,
and Hebrew University for its support and hospitality during the writing of
this paper. The second author was also supported by a grant from the NSA
Mathematical Sciences Program.

1. Preliminaries on restriction of scalars

We fix fields Qp ⊆ L ⊆ K such that L/Qp is finite and K is complete with
respect to a nonarchimedean absolute value | | extending the one on L. We also
fix a commutative d-dimensional locally L-analytic group G. Then the locally
convex K-vector space Can(G,K) of all K-valued locally analytic functions on
G is defined ([Fe2] 2.1.10).

We consider now an intermediate field Qp ⊆ L0 ⊆ L and let G0 denote the
locally L0-analytic group obtained from G by restriction of scalars ([B-VAR]
§5.14). The dimension of G0 is d[L : L0]. There is the obvious injective
continuous K-linear map

(∗) Can(G,K) −→ Can(G0,K) .

We want to describe the image of this map. The Lie algebra g of G can naturally
be identified with the Lie algebra of G0 ([B-VAR] 5.14.5). We fix an exponential
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map exp : g−−− >G for G; it, in particular, is a local isomorphism, and can
be viewed as an exponential map for G0 as well. The Lie algebra g acts in a
compatible way on both sides of the above map by continuous endomorphisms
defined by

(xf)(g) :=
d

dt
f(exp(−tx)g)|t=0

([Fe2] 3.1.2 and 3.3.4). By construction the map x → xf on g, for a fixed
f ∈ Can(G0,K), resp. f ∈ Can(G,K), is L0-linear, resp. L-linear.

Lemma 1.1: The image of (∗) is the closed subspace of all f ∈ Can(G0,K)
such that (tx)f = t · (xf) for any x ∈ g and any t ∈ L.

Proof: We fix an L-basis x1, . . . , xd of g as well an orthonormal basis v1 =
1, v2, . . . , ve of L as a normed L0-vector space. Then v1x1, . . . , vexd is an L0-
basis of g. Using the corresponding canonical coordinates of the second kind
([B-GAL] Chap.III,§4.3) we have, for a given f ∈ Can(G0,K) and a given
g ∈ G, the convergent expansion

f(exp(t11v1x1 + . . .+ tedvexd)g) =
∑

n11,...,ned≥0

cnt
n11
11 . . . tneded ,

with cn ∈ K, in a neighborhood of g (i.e., for tij ∈ L0 small enough). We now
assume that

(vixj)f = vi · (xjf) = vi · ((v1xj)f)

holds true for all i and j. Computing both sides in terms of the above expansion
and comparing coefficients results in the equations

(nij + 1)c(n11,...,nij+1,...,ned) = vi(n1j + 1)c(n11,...,n1j+1,...,ned) .

Introducing the tuple m(n) = (m1, . . . ,md) defined by mj := n1j + . . . + nej
and the new coefficients bm(n) := c(m1,0,...,m2,0,...,md,0,...) we deduce from this
by induction that

cn = bm(n)
m1!

n11! . . . ne1!
. . .

md!

n1d! . . . ned!
vn11+...n1d

1 . . . vne1+...+ned
e .

Inserting this back into the above expansion and setting tj := t1jv1 + . . .+tejve
we obtain the new expansion

f(exp(t1x1 + . . .+ tdxd)g) =
∑

m1,...,md≥0

bmt
m1
1 . . . tmdd

which shows that f is locally analytic on G.

Lemma 1.2: The map (∗) is a homeomorphism onto its (closed) image.
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Proof: Let H ⊆ G be a compact open subgroup. According to [Fe2] 2.2.4) we
then have

Can(G,K) =
∏

g∈G/H
Can(H,K) .

A corresponding decomposition holds for G0. This shows that it suffices to
consider the case where G is compact. In this case (∗) is a compact induc-
tive limit of isometries between Banach spaces ([Fe2] 2.3.2), and the assertion
follows from [GKPS] 3.1.16.

The continuous dual D(G,K) := Can(G,K)′ is the algebra of K-valued distri-
butions on G. The multiplication is the convolution product ∗ ([Fe1] 4.4.2 and
4.4.4).

We assume from now on that G is compact. To describe the correct topology
on D(G,K) we need to briefly recall the construction of Can(G,K). Let G ⊇
H0 ⊇ H1 ⊇ . . . ⊇ Hn ⊇ . . . be a fundamental system of open subgroups such
that each Hn corresponds under the exponential map to an L-affinoid disk.
We then have, for each g ∈ G and n ∈ N, the K-Banach space FgHn(K) of
K-valued L-analytic functions on the coset gHn viewed as an L-affinoid disk.
The space Can(G,K) is the locally convex inductive limit

Can(G,K) = lim−→
n

Fn(G,K)

of the Banach spaces

Fn(G,K) :=
∏

g∈G/Hn
FgHn(K) .

The dual D(G,K) therefore coincides as a vector space with the projective
limit

D(G,K) = lim←−
n

Fn(G,K)′

of the dual Banach spaces. We always equip D(G,K) with the corresponding
projective limit topology. (Using [GKPS] 3.1.7(vii) and the open mapping
theorem one can show that this topology in fact coincides with the strong dual
topology.) In particular, D(G,K) is a commutative K-Fréchet algebra. The
dual of the map (∗) is a continuous homomorphism of Fréchet algebras

(∗)′ D(G0,K) −→→ D(G,K) .

It is surjective since Can(G0,K) as a compact inductive limit is of countable
type ([GKPS] 3.1.7(viii)) and hence satisfies the Hahn-Banach theorem ([Sh]
4.2 and 4.4). By the open mapping theorem (∗)′ then is a quotient map.
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The action of g on Can(G0,K) induces an action of g onD(G0,K) by (xλ)(f) :=
λ(−xf). This action is related to the algebra structure through the L0-linear
inclusion

ι : g −→ D(G0,K)
x 7−→ [f 7→ (−x(f))(1)]

which satisfies

ι(x) ∗ λ = xλ for x ∈ g and λ ∈ D(G0,K)

(see the end of section 2 in [ST]). Followed by (∗)′ this inclusion becomes L-
linear.

Let Ĝ0(K) ⊆ Can(G0,K) denote the subset of all K-valued locally analytic

characters on G0. Any χ ∈ Ĝ0(K) induces the L0-linear map

dχ : g −→ K

x 7−→ d
dtχ(exp(tx))|t=0 .

Lemma 1.3: Ĝ(K) = {χ ∈ Ĝ0(K) : dχ is L-linear}.
Proof: Because of

(−xχ)(g) = χ(g) · dχ(x)

this is a consequence of Lemma 1.1.

The lemma says that the diagram

Ĝ(K)

d
��

⊆
�� Ĝ0(K)

d
��

HomL(g,K)
⊆

�� HomL0
(g,K)

is cartesian.

We suppose from now on that K is a subfield of Cp (= the completion of an
algebraic closure of Qp). There is the natural strict inclusion

D(G0,K) = lim←−
n

Homcont
K (Fn(G0,K),K)

y

D(G0,Cp) = lim←−
n

Homcont
Cp (Fn(G0,Cp),Cp) .

The Fourier transform Fλ of a λ ∈ D(G0,K), by definition, is the function

Fλ : Ĝ0(Cp) −→ Cp
χ 7−→ λ(χ) .
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Proposition 1.4: i. For any λ ∈ D(G0,K) we have λ = 0 if and only if
Fλ = 0;

ii. Fµ∗λ = FµFλ for any two µ, λ ∈ D(G0,K).

Proof: [Fe1] Thm. 5.4.8 (recall that G is assumed to be compact). For the
convenience of the reader we sketch the proof of the first assertion in the case
of the additive group G0 = G = oL. (This is the only case in which we actually
will use this result in the next section. Moreover, the general proof is just an
elaboration of this special case.) Let b ⊆ oL be an arbitrary nonzero ideal
viewed as an additive subgroup. We use the convention to denote by f |a + b,
for any function f on oL and any coset a+ b ⊆ oL, the function on oL which is
equal to f on the coset a+ b and which vanishes elsewhere. Suppose now that
Fλ = 0, i.e., that λ(χ) = 0 for any χ ∈ Ĝ(Cp). Using the character theory of
finite abelian groups one easily concludes that

λ(χ|a+ b) = 0 for any χ ∈ Ĝ(Cp) and any coset a+ b ⊆ oL .

We apply this to the character χy(x) := exp(yx) where y ∈ oCp is small enough
and obtain by continuity that

0 = λ(χy|a+ b) =
∑

n≥0

yn

n!
λ(xn|a+ b) .

Viewing the right hand side as a power series in y in a small neighbourhood of
zero it follows that

λ(xn|a+ b) = 0 for any n ≥ 0 and any coset a+ b ⊆ oL .

Again from continuity we see that λ = 0.

Corollary 1.5: i. Ĝ(Cp) = {χ ∈ Ĝ0(Cp) : Fι(tx)−tι(x)(χ) = 0 for any x ∈
g and t ∈ L};
ii. the kernel of (∗)′ is the ideal I(G) := {λ ∈ D(G0,K) : Fλ|Ĝ(Cp) = 0}.
Proof: The assertion i. is a consequence of Lemma 1.3 and the identity

Fι(tx)−tι(x)(χ) = ((−tx)χ)(1)− t(−xχ)(1) = dχ(tx)− t · dχ(x) .

The assertion ii. follows from Prop. 1.4.i (applied to G).

2. The Fourier transform for G = oL

Let Qp ⊆ L ⊆ K ⊆ Cp again be a chain of complete fields and let o := oL
denote the ring of integers in L. The aim of this section is to determine the
image of the Fourier transform for the compact additive group G := o. The
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restriction of scalars G0 will always be understood with respect to the extension
L/Qp.

First we have to discuss briefly a certain way to write rigid analytic polydisks in
a coordinate free manner. Let B1 denote the rigid L-analytic open disk of radius
one around the point 1 ∈ L; its K-points are B1(K) = {z ∈ K : |z − 1| < 1}.
We note that the group Zp acts on B1 via the rigid analytic automorphisms

Zp × B1 −→ B1

(a, z) 7−→ za :=
∑
n≥0

(
a
n

)
(z − 1)n

(compare [Sch] §§32 and 47). Hence, given any free Zp-module M of finite
rank r, we can in an obvious sense form the rigid L-analytic variety B1⊗Zp M
whose K-points are B1(K)⊗Zp M . Any choice of an Zp-basis of M defines an
isomorphism between B1 ⊗Zp M and an r-dimensional open polydisk over L.
In particular, the family of all affinoid subdomains in B1 ⊗Zp M has a count-
able cofinal subfamily. Writing the ring O(B1 ⊗Zp M) of global holomorphic
functions on B1 ⊗Zp M as the projective limit of the corresponding affinoid
algebras we see that O(B1 ⊗Zp M) in a natural way is an L-Fréchet algebra.

After this preliminary discussion we recall that the maps

Ẑp(K) ←→ B1(K)

χ 7−→ χ(1)
χz(a) := za ←− z

are bijections inverse to each other (compare [Am2] 1.1 and [B-GAL] III.8.1).
They straightforwardly generalize to the bijection

B1(K)⊗Zp HomZp(o,Zp)
∼−→ Ĝ0(K)

z ⊗ β 7−→ χz⊗β(g) := zβ(g) .

By transport of structure the right hand side therefore can and will be con-
sidered as the K-points of a rigid analytic group variety Ĝ0 over L (which is
non-canonically isomorphic to an open polydisk of dimension [L : Qp]). By

construction the Lie algebra of Ĝ0 is equal to HomQp(g, L). One easily checks
that

dχz⊗β = log(z) · β .

If we combine this identity with the commutative diagram after Lemma 1.3 we
arrive at the following fact which is recorded here for use in the next section.

Documenta Mathematica 6 (2001) 447–481



p-Adic Fourier Theory 455

Lemma 2.1: The diagram

Ĝ(K)
⊆

��

d
��

B1(K)⊗HomZp(o,Zp)

log⊗id
��

HomL(g,K)
⊆

�� HomQp(g,K) = K ⊗HomZp(o,Zp)

is cartesian.

We denote by O(Ĝ0/K) the K-Fréchet algebra of global holomorphic functions

on the base extension of the variety Ĝ0 to K. The main result of Fourier
analysis over the field Qp is the following.

Theorem 2.2 (Amice): The Fourier transform is an isomorphism of K-
Fréchet algebras

F : D(G0,K)
∼=−→ O(Ĝ0/K)

λ 7−→ Fλ .

Proof: This is a several variable version of [Am2] 1.3 (compare also [Sc]) based
on [Am1].

Next we want to compute the ideal J(o) := F(I(o)) in O(Ĝ0/K). Let x1 :=

1 ∈ g = L and Ft := Fι(tx1)−tι(x1) ∈ O(Ĝ0/K) for t ∈ L. A straightforward
computation shows that

Ft(χz⊗β) = (β(t)− t · β(1)) · log(z) .

By Cor. 1.5 we have the following facts:

1) Ĝ(Cp) is the analytic subset of the variety Ĝ0/K defined by Ft = 0 for t ∈ L.

2) J(o) is the ideal of all global holomorphic functions which vanish on Ĝ(Cp).

In 1) one can replace the family of all Ft by finitely many Ft1 , . . . , Fte if t1, . . . , te
runs through a Qp-basis of L.

According to [BGR] 9.5.2 Cor.6 the sheaf of ideals J in the structure sheaf O
Ĝ0

of the variety Ĝ0 consisting of all germs of functions vanishing on the analytic
subset Ĝ(Cp) is coherent. Moreover, [BGR] 9.5.3 Prop.4 says that the analytic

subset Ĝ(Cp) carries the structure of a reduced closed L-analytic subvariety

Ĝ ⊆ Ĝ0 such that for the structure sheaves we have O
Ĝ

= O
Ĝ0
/J . Since Ĝ0 is

a Stein space the global section functor is exact on coherent sheaves. All this
remains true of course after base extension to K. Hence, if O(Ĝ/K) denotes

the ring of global holomorphic functions on the base extension of the variety Ĝ
to K then, by 2), we have

(+) O(Ĝ/K) = O(Ĝ0/K)/J(o) .
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The ideal J(o) being closed O(Ĝ/K) in particular is in a natural way a K-
Fréchet algebra as well. It is clear from the open mapping theorem that this
quotient topology on O(Ĝ/K) coincides with the topology as a projective limit
of affinoid algebras.

Theorem 2.3: The Fourier transform is an isomorphism of K-Fréchet alge-
bras

F : D(G,K)
∼=−→ O(Ĝ/K)

λ 7−→ Fλ .

Proof: This follows from Thm. 2.2, (+), and the surjection (∗)′ in section 1.

We remark that by construction we (noncanonically) have a cartesian diagram
of rigid L-analytic varieties of the form

Ĝ ��

d
��

(B1)d

log
��

A1 �� Ad

with Am denoting affine m-space where the horizontal arrows are closed im-
mersions and the vertical arrows are etale. Hence the variety Ĝ is smooth and
quasi-Stein (in the sense of [Kie]).

Lemma 2.4: Ĝ is a smooth rigid analytic group variety over L.

Proof: We have constructed Ĝ as a reduced closed subvariety of the rigid
analytic group variety Ĝ0 over L. With Ĝ also Ĝ× Ĝ is smooth. In particular,
Ĝ× Ĝ is a reduced closed subvariety of Ĝ0 × Ĝ0. Since the multiplication and
the inverse on Ĝ0 preserve Ĝ(Cp) they restrict to morphisms between these
reduced subvarieties.

3. Lubin-Tate formal groups and twisted unit disks

Keeping the notations of the previous section we will give in this section a
different description of the rigid variety Ĝ. We will show that the character
variety Ĝ becomes isomorphic to the open unit disk after base change to Cp.
As a corollary, the ring of functions O(Ĝ/Cp) is the same for any group G = o.

This result originates in the observation that the character group Ĝ(Cp) can
be parametrized with the help of Lubin-Tate theory.

Fix a prime element π of o and let G = Gπ denote the corresponding Lubin-
Tate formal group over o. It is commutative and has dimension one and height
[L : Qp]. Most importantly, G is a formal o-module which means that the ring
o acts on G in such a way that the induced action of o on the tangent space
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tG is the one coming from the natural o-module structure on the latter ([LT]).
We always identify G with the rigid L-analytic open unit disk B around zero in
L. In this way B becomes an o-module object, and we will denote the action
o×B −→ B by (g, z) 7−→ [g](z). This identification, of course, also trivializes
the tangent space tG .

Let G′ denote the p-divisible group dual to G and let T ′ = T (G′) be the Tate
module of G′. Lubin-Tate theory tells us that T ′ is a free o-module of rank
one and that the Galois action on T ′ is given by a continuous character τ :
Gal(Cp/L) −→ o×. From [Tat] p.177 we know that, by Cartier duality, T ′ is
naturally identified with the group of homomorphisms of formal groups over
oCp between G and the formal multiplicative group. This gives rise to natural
Galois equivariant and o-invariant pairings

< , > : T ′ ⊗
o

B(Cp) −→ B1(Cp)

and on tangent spaces

( , ) : T ′ ⊗
o
Cp −→ Cp .

To describe them explicitly we will denote by Ft′(Z) = Ωt′Z + . . . ∈ ZoCp [[Z]],
for any t′ ∈ T ′, the power series giving the corresponding homomorphism of
formal groups. Then

< t′, z > = 1 + Ft′(z) and (t′, x) = Ωt′x .

Proposition 3.1: The map

(¦)
B(Cp)⊗o T ′ −→ Ĝ(Cp)

z ⊗ t′ 7−→ κz⊗t′(g) :=< t′, [g](z) >

is a well defined isomorphism of groups.

Proof: We will study the following diagram:

B(Cp)⊗o T ′
logG ⊗id

��

�
� �

�
�

�
�

�

α

��

tG(Cp)⊗o T ′

�
� �

�
�

�
�

�

dα

��

Ĝ(Cp)
d

��

⊆

��

HomL(g,Cp)

⊆

��

HomZp(o,B1(Cp))

�
� �

�
�

�
�

�

Hom(.,log)
�� HomZp(o,Cp)

�
� �

�
�

�
�

�

Ĝ0(Cp)
d

�� HomQp(g,Cp)
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Here:

a. The rear face of the cube in this diagram is the tensorization by T ′ of a
portion of the map of exact sequences labelled (∗) in [Tat] §4. We use for
this the identification

HomZp(T ′, .)⊗o T ′ = HomZp(o, .) .

By logG we denote the logarithm map of the formal group G. The map α,
resp. dα, associates to an element z⊗t′, resp. x⊗t′, the map g 7→< gt′, z >,
resp. g 7→ (gt′, x), for g ∈ o.

b. The front face of the cube is the diagram after Lemma 1.3.

c. The dashed arrows on the bottom face of the cube come from the discussion
before Lemma 2.1.

d. The dashed arrow in the upper left of the diagram is the one we want to
establish.

e. The formal o-module property of G says that the induced o-action on
tG(Cp) is the same as the action by linearity and the inclusion o ⊆ Cp. It
means that we have (gt′, x) = (t′, gx) = g · (t′, x) for g ∈ o and hence that
any map in the image of dα is o-linear. This defines the dashed arrow in
the upper right of the diagram.

The back face of the cube is commutative by [Tat] §4. The front and bottom
faces are commutative by Lemma 1.3 and Lemma 2.1. Furthermore, the dashed
arrows on the bottom of the diagram are isomorphisms, the left one by the
discussion before Lemma 2.1 and the right one for trivial reasons.

Consider now the right side of the cube. It is commutative by construction.
Since, by [Tat] Prop. 11, dα is injective and since the lower dashed arrow is
bijective the upper dashed arrow must at least be injective. But by a compar-
ison of dimensions we see that the dashed arrow in the upper right of the cube
is an isomorphism as well.

In this situation we now may use the fact that, by Lemma 1.3, the front of
the cube is cartesian to obtain that the upper left dashed arrow is well defined
(making the whole cube commutative) and is given by (¦). But according to
[Tat] Prop. 11 the back of the cube also is cartesian. Therefore the map (¦) in
fact is an isomorphism.

Fixing a generator t′o of the o-module T ′ the isomorphism (¦) becomes

(¦¦) B(Cp)
∼=−→ Ĝ(Cp)

z 7−→ κz := κz⊗t′o .

The main purpose of this section is to see that this latter isomorphism derives

from an isomorphism B/Cp
∼=−→ Ĝ/Cp between rigid Cp-analytic varieties. In
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fact, we will exhibit compatible admissible coverings by affinoid open subsets
on both sides.

Let us begin with the left hand side. For any r ∈ pQ we have the affinoid disk

B(r) := {z : |z| ≤ r}

over L. Clearly the disks B(r) for r < 1 form an admissible covering of B. It
actually will be convenient to normalize the absolute value | | and we do this by
the requirement that |p| = p−1. The numerical invariants of the finite extension
L/Qp which will play a role are the ramification index e and the cardinality q
of the residue class field of L. Recall that o acts on B since we identify B with
the formal group Gπ. We need some information how this covering behaves
with respect to the action of π.

Lemma 3.2: For any r ∈ pQ such that p−q/e(q−1) ≤ r < 1 we have

[π]−1(B(r)) = B(r1/q) and [p]−1(B(r)) = B(r1/qe) ;

further, in this situation the map [πn] : B(r1/qn) → B(r), for any n ∈ N, is a
finite etale affinoid map.

Proof: The second identity is a consequence of the first since πe and p differ
by a unit in o, and for any unit g ∈ o× one has |[g](z)| = |z|. Moreover, up to
isomorphism, we may assume ([Lan] §8.1) that the action of the prime element
π on B is given by

[π](z) = πz + zq .

In this case the first identity follows by a straightforward calculation of absolute
values. The finiteness and etaleness of the map [πn] also follows from this
explicit formula together with the fact that a composition of finite etale affinoid
maps is finite etale.

Now we consider the right side of (¦¦). The disk B1 has the admissible covering
by the L-affinoid disks B1(r) := {z : |z − 1| ≤ r} for r ∈ pQ such that r < 1.
They are Zp-submodules so that the L-affinoids B1(r)⊗Zp HomZp(o,Zp) form

an admissible covering of B1⊗ZpHomZp(o,Zp) ∼= Ĝ0. We therefore have the ad-

missible covering of Ĝ by the L-affinoids Ĝ(r) := Ĝ∩(B1(r)⊗ZpHomZp(o,Zp)).
We emphasize that on both sides the covering is defined over L.

Lemma 3.3: For any r ∈ pQ such that p−p/(p−1) ≤ r < 1 we have

{χ ∈ Ĝ : χp ∈ Ĝ(r)} = Ĝ(r1/p) ;

further, in this situation the map [pn] : Ĝ(r1/pn) → Ĝ(r), for any n ∈ N, is a
finite etale affinoid map.
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Proof: This follows from a corresponding identity between the affinoids B1(r).
It is, in fact, a special case of the previous lemma.

In order to see in which way the isomorphism (¦¦) respects these coverings, we
need more detailed information on the power series Ft′ representing t′ ∈ T ′.
We summarize the facts that we require in the following lemma.

Lemma 3.4: Suppose t′ ∈ T ′ is non-zero; the power series Ft′(Z) = Ωt′Z+. . . ∈
oCp [[Z]] has the following properties:

a. Ωgt′ = Ωt′g for g ∈ o;

b. if t′ generates T ′ as an o-module, then

|Ωt′ | = p−s with s =
1

p− 1
− 1

e(q − 1)
;

c. for any r < p−1/e(q−1), the power series Ft′(Z) gives an analytic isomor-
phism between B(r) and B(r|Ωt′ |).

Proof: Part (a) is a restatement of the o-linearity of the pairing ( , ) introduced
at the start of this section. Part (b) follows from work of Fontaine ([Fon]) on
p-adic Hodge theory. We give a proof in the appendix. For part (c), recall that
Ft′(Z) is a formal group homomorphism. Therefore if Ft′(z) = 0, Ft′ vanishes
on the entire subgroup of B(Cp) generated by z. The point z belongs to some
B(r)(Cp), and therefore so does the entire subgroup generated by z. If this
subgroup were infinite, Ft′ would have infinitely many zeroes in the affinoid
B(r)(Cp) and would therefore be zero. Consequently z must be a torsion point
of the group G. But other than zero, there are no torsion points inside the disk
B(r)(Cp) if r < p−1/e(q−1) ([Lan] §8.6 Lemma 4 and 5). It follows that the
power series Ft′(Z)/Ωt′Z = 1+ c1Z+ c2Z

2 + . . . has no zeroes inside B(r)(Cp).
Suppose that some coefficient cn in this expansion satisfies |cn| > pn/e(q−1).
Then by considering the Newton polygon of the power series Ft′(Z)/Ωt′Z one
sees that the power series in question must have a zero of absolute value less
than p−1/e(q−1), which we have seen is impossible. Therefore |cn| ≤ pn/e(q−1),
from which part (c) follows immediately.

To simplify the notation, we write Ω = Ωt′o for the “period” of the Lubin-Tate
group associated to our fixed generator of T ′.

By trivializing the tangent space as well as identifying HomL(g,Cp) with Cp
by evaluation at 1 we may simplify the upper face of the cubical diagram in
the proof of Prop. 3.1 to the following:

(∗) B(Cp)
logG

��

z 7→κz
��

Cp

x7→Ωx
��

Ĝ(Cp) κz 7→log κz(1)
�� Cp
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Let us examine the map κ(z) := κz in coordinates. Choose for the moment a
Zp-basis e1, . . . , ed for o and let e∗1, . . . , e

∗
d be the dual basis. In coordinates,

the map κ : B→ Ĝ0 is given by

(∗∗) κz =

d∑

i=1

(1 + Feit′o(z))⊗ e∗i .

Note first that this map is explicitly rigid Cp-analytic and we know by Prop.

3.1 that this map factorizes through the subvariety Ĝ/Cp ⊂ Ĝ0/Cp. We now
also see that, if r = p−q/e(q−1) < p−1/e(q−1), the three parts of Lemma 3.4
together imply that this map carries B(r)/Cp into Ĝ(r|Ω|)/Cp.

Lemma 3.5: Let r = p−q/e(q−1); the map

B(r)/Cp
∼=−→ Ĝ(r|Ω|)/Cp

z 7−→ κz

is a rigid isomorphism.

Proof: In the discussion preceeding the statement of the lemma we saw that
this is a well-defined rigid map. Consider now the other maps in the diagram
(∗).
– For r = p−q/e(q−1) < p−1/e(q−1), the logarithm logG of the formal group G
restricts to a rigid isomorphism

logG : B(r)
∼=−→ B(r) .

([Lan] §8.6 Lemma 4).

– Because |Ω|r = p−1/(p−1)−1/e < p−1/(p−1), the usual logarithm restricts to a
rigid isomorphism

log : B1(r|Ω|) ∼=−→ B(r|Ω|) .
All of this information, together with the diagram (∗), tells us that the following
diagram of rigid morphisms commutes:

B(r)/Cp
∼=

��

z 7→κz
��

B(r)/Cp

∼=
��

Ĝ(r|Ω|)/Cp κz 7→log κz(1)
�� B(r|Ω|)/Cp

We claim that the lower arrow in this diagram is injective on Cp-points. Assume
that log κz(1) = 0; we then have κz(1) = 1 which, by the local L-analyticity
of κz, means that κz is locally constant and hence of finite order. But for our
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value of r we know that B1(r)(Cp) is torsionfree so it follows that κz must be
the trivial character.

Because the upper horizontal and the right vertical map are rigid isomorphisms
and the other two maps at least are injective on Cp-points, all the maps in this

diagram must be isomorphisms on Cp-points. Because Ĝ is reduced, it follows
that the other arrows are rigid isomorphisms as well.

This lemma provides a starting point for the proof of the main theorem of this
section.

Theorem 3.6: The map

κ : B/Cp
∼=−→ Ĝ/Cp

is an isomorphism of rigid varieties over Cp; more precisely, if r = p−q/e(q−1)

and n ∈ N0, then κ is a rigid isomorphism between the affinoids

κ : B(r1/qen)/Cp
∼=−→ Ĝ((r|Ω|)1/pn)/Cp .

Proof: We remark first that the second statement is in fact stronger than the
first, because as n runs through N0 the given affinoids form admissible coverings
of B/Cp and Ĝ/Cp respectively.

Lemma 3.5 is the case n = 0. To obtain the result for all n, fix n > 0 and
consider the diagram:

B(r1/qen)/Cp
z 7→κz

��

[pn]
��

Ĝ((r|Ω|)1/pn)/Cp

χ7→χpn
��

B(r)/Cp
z 7→κz

�� Ĝ(r|Ω|)/Cp

By Lemma 3.2, the left-hand vertical arrow is a well-defined finite etale affinoid
map of degree qne = pnd. By Lemma 3.4, part (b), 1 > r|Ω| = p−1/(p−1)−1/e ≥
p−p/(p−1) so that Lemma 3.3 applies to the right-hand vertical arrow and it
enjoys the same properties. Lemma 3.5 shows that the lower arrow is a rigid
analytic isomorphism. The upper horizontal arrow then is a well-defined bijec-
tive map on points because of Proposition 3.1 and the first assertions in Lemma
3.2 and Lemma 3.3. It is a rigid morphism because it is given in coordinates
by the same formula as in the n = 0 case (see (∗∗)).
To complete the argument, let A and B be the affinoid algebras of B(r1/qen)/Cp
and Ĝ((r|Ω|)1/pn)/Cp respectively. LetD be the affinoid algebra of Ĝ(r|Ω|)/Cp.
The rings A and B are finite etale D-algebras of the same rank. The map
f : B → A induced by the upper arrow in the diagram is a map of D-algebras.
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Because f is bijective on maximal ideals and B is reduced (because Ĝ is re-
duced), this map is injective. To see that f also is surjective it suffices, by
[B-CA] II §3.3 Prop. 11, to check that the induced map B/mB −→ A/mA is
surjective for any maximal ideal m ⊆ D. But the latter is a map of finite etale
algebras over D/m = Cp of the same dimension which is bijective on points.
Hence it clearly must be bijective.

Corollary 3.7: The ring of functions O(Ĝ/Cp) is isomorphic to the ring
O(B/Cp) of Cp-analytic functions on the open unit disk in Cp; in particular,
the distribution algebra D(G,K) is an integral domain.

Let us remark that a careful examination of the proofs shows that these results
in fact hold true over any complete intermediate field between L and Cp which
contains the period Ω.

The ring O(B/Cp) is the ring of power series F (z) =
∑
n≥0 anz

n over Cp which

converge on {z : |z| < 1}. Let GL := Gal(L/L) be the absolute Galois group
of the field L and let GL act on O(B/Cp) by

F σ(z) :=
∑

n≥0

σ(an)zn for σ ∈ GL .

By Tate’s theorem ([Tat]) we have

CGLp = L .

Hence the ring O(B) coincides with the ring of Galois fixed elements

O(B) = O(B/Cp)GL

with respect to this action. This principle which here can be seen directly on
power series in fact holds true for any quasi-separated rigid L-analytic variety
X ; i.e., one has

O(X ) = O(X/Cp)GL .
By the way the base extension X/Cp is constructed by pasting the base exten-
sion of affinoids ([BGR] 9.3.6) this identity immediately is reduced to the case
of an affinoid variety. But for any L-affinoid algebra A we may consider an
orthonormal base of A and apply Tate’s theorem to the coefficients to obtain
that

A = (A ⊗̂L Cp)GL .

Since, according to our above theorem, B/Cp also is the base extension of Ĝ

the ring O(Ĝ) must be isomorphic to the subring of Galois fixed elements in
the power series ring O(B/Cp) with respect to a certain twisted Galois action.

To work this out we first note that the natural Galois action on Ĝ(Cp) is given
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by composition κ 7→ σ ◦ κ for σ ∈ GL and κ ∈ Ĝ(Cp) viewed as a character
κ : G −→ C×p . Suppose that κ = κz is the image of z ∈ B(Cp) under the map
(¦¦). The twisted Galois action z 7→ σ ∗ z on B(Cp) which we want to consider
then is defined by

κσ∗z = σ ◦ κz
and we have

O(Ĝ) ∼= {F ∈ O(B/Cp) : F = F σ(σ(σ−1 ∗ z)) for any σ ∈ GL} .

Recalling that τ : GL −→ o× denotes the character which describes the Galois
action on T ′ we compute

σ−1 ◦ κz(g) = < σ−1(t′o), σ−1([g](z)) > = < τ(σ−1) · t′o, [g](σ−1(z)) >

= < t′o, [g]([τ(σ−1)](σ−1(z))) > = κ[τ(σ−1)](σ−1(z))(g)

for any g ∈ G = o. Hence

σ−1 ∗ z = [τ(σ−1)](σ−1(z)) and σ(σ−1 ∗ z) = [τ(σ−1)](z) .

Corollary 3.8: O(Ĝ) ∼= {F ∈ O(B/Cp) : F = F σ ◦ [τ(σ−1)] for any σ ∈
GL} .

The following two negative facts show that our above results cannot be im-
proved much.

Lemma 3.9: Suppose that K is discretely valued; If L 6= Qp then Ĝ/K and
B/K are not isomorphic as rigid K-analytic varieties.

Proof: We consider the difference δ1 − δ0 ∈ D(G,K) of the Dirac distributions
in the elements 1 and 0 in G = o, respectively. Since the image of any character
in Ĝ(Cp) lies in the 1-units of oCp we see that the Fourier transform of δ1 − δ0
as a function on Ĝ(Cp) is bounded. On the other hand every torsion point

in Ĝ(Cp) corresponding to a locally constant character on the quotient o/Zp
is a zero of this function. Since o 6= Zp we therefore have a nonzero function

in O(Ĝ/K) which is bounded and has infinitely many zeroes. If Ĝ/K and
B/K were isomorphic this would imply the existence of a nonzero power series
in O(B/K) which as a function on the open unit disk in Cp is bounded and
has infinitely many zeroes. By the maximum principle the former means that
the coefficients of this power series are bounded in K. But according to the
Weierstrass preparation theorem ([B-CA] VII§3.8 Prop. 6) a nonzero bounded
power series over a discretely valued field can have at most finitely many zeroes.
So we have arrived at a contradiction.

Documenta Mathematica 6 (2001) 447–481



p-Adic Fourier Theory 465

According to Lazard ([Laz]) the ring O(B/K), for K spherically complete, is
a so called Bezout domain which is the non-noetherian version of a principal
ideal domain and which by definition means that any finitely generated ideal
is principal. We show that this also fails in our setting as soon as L 6= Qp.

Lemma 3.10: Suppose that K is discretely valued; if L 6= Qp then the ideal of

functions in O(Ĝ/K) vanishing in the trivial character κ0 ∈ Ĝ(L) is finitely
generated but not principal.

Proof: The ideal in question is a quotient of the corresponding ideal for the
polydisk Ĝ0/K which visibly is finitely generated. Reasoning by contradiction
let f be a generator of the ideal in the assertion. As a consequence of Theorems
A and B ([Kie] Satz 2.4) for the quasi-Stein variety Ĝ/K we then have the exact
sequence of sheaves

0 −→ O
Ĝ/K

f ·−→O
Ĝ/K

−→ K −→ 0

on Ĝ/K where the third term is a skyscraper sheaf in the point κ0. The
corresponding sequence of sections in any affinoid subdomain is split-exact and
hence remains exact after base extension to Cp. It follows that we have a
corresponding exact sequence of sheaves

0 −→ O
Ĝ/Cp

f ·−→O
Ĝ/Cp −→ Cp −→ 0

on Ĝ/Cp. Using Theorem B we deduce from it that f also generates the

ideal of functions vanishing in κ0 in O(Ĝ/Cp). Consider f now as a rigid

map f : Ĝ/K −→ A1/K into the affine line. The composite f ◦ κ : B/Cp −→
Ĝ/Cp −→ A1/Cp then is given by a power series F ∈ O(B/Cp) which generates
the maximal ideal of functions vanishing in the point 0. Hence F is of the form

F (z) = az(1 + b1z + b2z
2 + . . .) with a ∈ Cp and bi ∈ oCp

and gives an isomorphism

B/Cp
'−→B−(|a|)/Cp

between the open unit disk and the open disk B−(|a|) of radius |a| over Cp.
We see that f in fact is a rigid map

Ĝ/K −→ B−(|a|)/K

which becomes an isomorphism after base extension to Cp. It follows from the
general descent principle we have noted earlier that f induces an isomorphism
of rings

O(B−(|a|)/K)
∼=−→O(Ĝ/K)
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which obviously respects bounded functions. This leads to a contradiction by
repeating the argument in the proof of the previous lemma. By a more refined
descent argument one can in fact show that f already is an isomorphism of
rigid K-analytic varieties which is in direct contradiction to Lemma 3.9.

We close this section by remarking that, because Ĝ/K is a smooth 1-
dimensional quasi-Stein rigid variety, one has, for any K, the following positive
results about the integral domain O(Ĝ/K):

1. For ideals I of O(Ĝ/K), the three properties “I is closed”, “I is finitely
generated”, and “I is invertible” are equivalent.

2. The closed ideals in O(Ĝ/K) are in bijection with the divisors of Ĝ/K. (A
divisor is an infinite sum of closed points, having only finite support in any
affinoid subdomain). In addition a Baire category theory argument shows that

given a divisor D there is a function F ∈ O(Ĝ/K) whose divisor is of the form
D +D′ where D and D′ have disjoint support.

3. Any finitely generated submodule in a finitely generated free O(Ĝ/K)-
module is closed.

In particular, O(Ĝ/K) is a Prüfer domain and consequently a coherent ring.
We omit the proofs which consist of rather standard applications of Theorems
A and B ([Kie]).

4. Generalized Mahler expansions

In this section we apply the Fourier theory to obtain a generalization of the
Mahler expansion ([Am1] Cor. 10.2) for locally L-analytic functions. Crucial
to our computations is the observation that the power series Ft′o(Z) introduced
before Prop. 3.1, which gives the formal group homomorphism G → Gm asso-
ciated to t′o, is given as a formal power series by the formula

Ft′o(Z) = exp(Ω logG(Z))− 1.

Throughout the following, we let ∂ denote the invariant differential on the
formal group G.

Definition 4.1: For m ∈ N0, let Pm(Y ) ∈ L[Y ] be the polynomial defined by
the formal power series expansion

∞∑

m=0

Pm(Y )Zm = exp(Y logG(Z)) .

Observe that in the case G = Gm, we have

exp(Y log(1 + Z)) =

∞∑

m=0

(
Y

m

)
Zm
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so in that case Pm(Y ) =
(
Y
m

)
.

Lemma 4.2: The polynomials Pm(Y ) satisfy the following properties:

1. P0(Y ) = 1 and P1(Y ) = Y ;

2. Pm(0) = 0 for all m ≥ 1;

3. the degree of Pm is exactly m, and the leading coefficient of Pm is 1/m! ;

4. Pm(Y + Y ′) =
∑
i+j=m Pi(Y )Pj(Y

′);

5. Pm(aΩ) ∈ oCp for all a ∈ oL;

6. for f(x) ∈ Cp[[x]], we have the identity

(Pm(∂)f(x))|x=0 =
1

m!

dmf

dxm
|x=0 .

Proof: The first four properties are clear from the definition. The fifth property
follows from the fact that, for a ∈ oL, the power series

Fat′o(Z) = Ft′o([a](Z)) = exp(aΩ logG(Z)) =

∞∑

m=0

Pm(aΩ)Zm

has coefficients in oCp . For the last property, let δ = d
dx be the invariant

differential on the additive formal group. Then Taylor’s formula says that

exp(δb)h(a) =
∑

m

(
δm

m!
h(a))bm = h(a+ b) .

Using the fact that logG and expG are inverse isomorphisms between G and the
additive group over L, Taylor’s formula for G can be obtained by making the
substitutions

a = logG(x)
b = logG(y)
h = f ◦ expG .

It follows easily that δh(a) = ∂f(x), and Taylor’s formula becomes

exp(∂ logG(y))f(x) = f(x+G y) .

Comparing coefficients after expanding both sides in y and setting x = 0 gives
the result.

Remark: The identity (6) is part of the theory of Cartier duality, as sketched
for example in Section 1 of [Kat]. Corollary 1.8 of [Kat] shows that Pm(∂) is
the invariant differential operator called there D(m). Comparing this fact with

Documenta Mathematica 6 (2001) 447–481



468 P. Schneider, J. Teitelbaum

Formula 1.1 of [Kat] yields the claim in part (6) for the functions f(x) = xn,
and the general fact then follows by linearity.

Our goal now is to study the functions Pm(Y Ω) as elements of the locally
convex vector space Can(G,Cp), where as always G = oL as a locally L-analytic
group. The Banach space Fa+πnoL(K), for any complete intermediate field
L ⊆ K ⊆ Cp and any coset a+ πnoL in oL, is equipped with the norm

‖
∞∑

i=0

ci(x− a)i‖a,n := max
i
{|ciπni|} .

This Banach space is the same as the Tate algebra of K-valued rigid analytic
functions on the disk a+πnoCp , and the norm, by the maximum principle, has
the alternative definition

‖f‖a,n = max
x∈a+πnoCp

|f(x)|

which is sometimes more convenient for computation. We recall that

Fn(oL,K) =
∏

a mod πnoL

Fa+πnoL(K) and Can(G,K) = lim−→
n

Fn(oL,K) .

Lemma 4.3: For all a ∈ oL and all m ≥ 0, we have

‖Pm(Y Ω)‖a,n ≤ max
0≤i≤m

‖Pi(Y Ω)‖0,n .

Proof: By Property (4) of Lemma 4.2, we have

Pm((a+ πnx)Ω) =
∑

i+j=m

Pi(aΩ)Pj(π
nΩx) .

Therefore, using Property (5) of Lemma 4.2, we have

‖Pm(Y Ω)‖a,n = maxz∈a+πnoCp |Pm(zΩ)|
≤ max0≤i≤m maxx∈oCp |Pi(πnΩx)|
= max0≤i≤m ‖Pi(Y Ω)‖0,n .

Lemma 4.4: The following estimate holds for Pm(Y Ω) and m ≥ 1:

||Pm(Y Ω)||0,n < p−1/(p−1)p
m

eqn−1(q−1) .
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Proof: Let r = p−q/e(q−1). As shown in [Lan] §8.6 Lemma 4, and as we have
used earlier, the functions logG and expG are inverse isomorphisms from B(r)
to itself, and logG is rigid analytic on all of B. Furthermore by Lemma 3.2,

[πn]−1B(r) = B(r1/qn) for any n ∈ N. It follows that

‖ logG(x)‖B(r1/qn ) = rpn/e

where ‖f‖X denotes the spectral semi-norm on an affinoid X . The function
H(x, y) = yΩ logG(x) is a rigid function of two variables on the affinoid domain

B(r1/qn)×B(p−n/e) satisfying

‖H(x, y)‖B(r1/qn )×B(p−n/e) ≤ p−n/ep−1/(p−1)+1/e(q−1)rpn/e

= p−1/(p−1)−1/e < p−1/(p−1) .

We conclude from this that exp(H(x, y)) is rigid analytic on B(r1/qn) ×
B(p−n/e) and that

‖ exp(H(x, y))− 1‖B(r1/qn )×B(p−n/e) < p−1/(p−1).

The power series expansion of exp(H(x, y)) is

exp(H(x, y)) =
∞∑

m=0

Pm(yΩ)xm,

and so we conclude that, for all m ≥ 1 and for all y ∈ B(p−n/e), we have

|Pm(yΩ)|rm/qn < p−1/(p−1).

Therefore we obtain

‖Pm(Y Ω)‖0,n < p−1/(p−1)p
m

eqn−1(q−1)

as desired.

From these lemmas we may deduce the following proposition.

Proposition 4.5: Given a sequence {cm}m≥0 of elements of Cp, the series

∞∑

m=0

cmPm(yΩ)

converges to an element of Fn(oL,Cp) provided that |cm|pm/eq
n−1(q−1) → 0 as

m → ∞. More generally, this series converges to an element of Can(G,Cp)
provided that there exists a real number r, with r > 1, such that |cm|rm → 0 as
m→∞.
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Theorems 2.3 and 3.6 together imply the existence of a pairing

{ , } : O(B/Cp)× Can(G,Cp)→ Cp

that identifies O(B/Cp) and the continuous dual of Can(G,Cp), both equipped
with their projective limit topologies. The following lemma gives some basic
computational formulae for this pairing; we will use some of these in the proof
of our main theorem in this section.

Lemma 4.6: The following formulae hold for the pairing { , }, given F ∈
O(B/Cp) and f ∈ Can(G,Cp):

1. {1, f} = f(0);

2. {Fat′o , f} = f(a)− f(0) for a ∈ oL;

3. {F, κz} = F (z) for z ∈ B;

4. {Fat′oF, f} = {F, f(a+ .)− f} for a ∈ oL;

5. {F, κzf} = {F (z +G .), f} for z ∈ B;

6. {F, f(a.)} = {F ◦ [a], f} for a ∈ oL;

7. {F, f ′} = {Ω logG ·F, f};
8. {F, xf(x)} = {Ω−1∂F, f};
9. {F, Pm(.Ω)} = (1/m!) d

mF
dZm (0).

Proof: These properties follow from the definition of the Fourier transform and
from the density of the subspace generated by the characters in Can(G,Cp).
For example to see property (5): if λ′(f) := λ(κzf), then

Fλ′(z
′) = λ(κzκz′) = λ(κz+Gz′) = Fλ(z +G z

′) .

For property (7), using (4) we have

{F, f ′} = lim
ε→0

ε−1{F, f(.+ ε)− f}

= lim
ε→0

ε−1{Fεt′oF, f}

= {Ω logG ·F, f}

using continuity and the fact that Fεt′o = exp(εΩ logG) − 1 for small ε. An
analogous computation based on (5) gives (8). The last property (9) follows
from Lemma 4.2.6 and (8).

We may now prove the main result of this section.
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Theorem 4.7: Any function f ∈ Can(G,Cp) has a unique representation in
the form

f =

∞∑

m=0

cmPm(.Ω)

as in Prop. 4.5; in this representation, cm = {Zm, f}.
Proof: Part (9) of Lemma 4.6, along with continuity, shows that if f has
a representation in the given form then cm = {Zm, f}. The functions Zm

generate a dense subspace in O(Ĝ/Cp), and so a function f with all cm = 0
must be zero (for example all Dirac distributions pair to zero against f). This
implies that this type of representation, if it exists, is unique. Suppose we show
that, for any f ∈ Can(G,Cp), there exists an r > 1 such that |{Zm, f}| rm → 0
as m→∞. Then by Prop. 4.5, the series

f(x) :=

∞∑

m=0

{Zm, f}Pm(xΩ)

converges to a locally analytic function and by Lemma 4.6, Part 9, we have
{Zm, f} = {Zm, f} for all m. Therefore f = f .

Thus we have reduced our main theorem to the claim that |{Zm, f}| rm → 0 as
m→∞ for some r > 1. The function f being locally analytic it belongs to one
of the Banach spaces Fn(oL,Cp). Using the topological isomorphism between
the Fréchet spaces O(B/Cp) and D(G,Cp) = Can(G,Cp)′, there is a rational
number s > 0 such that the map O(B/Cp)→ Fn(oL,Cp)′ factors through the
Tate algebra O(B(p−s)/Cp). If we choose another rational number s′ so that
0 < s′ < s, then in the Tate algebra O(B(p−s)/Cp), the set of rigid functions

{(Z/p−s′)m}m≥0 goes to zero and therefore so does |{Zm, f}| ps′m. This proves
the existence of the desired expansion.

Remark: In [Kat], Katz discusses what he calls “Gal-continuous” functions.
These are continuous functions on G that satisfy (in our notation) σ(f(x)) =
f(τ(σ)x) for all σ ∈ GL. If {cm} is a sequence of elements of L such that
|cm| → 0, then f(x) :=

∑∞
m=0 cmPm(xΩ) is continuous by Part (5) of Lemma

4.2, and by the Galois properties of Ω it is even Gal-continuous.

5. p-adic L-functions

In this section we will illustrate how the integration theory developed in this
paper applies to yield p-adic L-functions for CM elliptic curves E at super-
singular primes. In fact, our method allows us to apply the Coleman power
series approach described in [dS] directly in the supersingular case. We will
content ourselves with proving a supersingular analogue of a weak version of
Theorem II.4.11 of [dS]; this should demonstrate sufficiently the nature of our
construction, without requiring too much of a diversion into global arithmetic.
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We should emphasize that the L-functions we will construct in the supersingular
case come from locally analytic distributions on Galois groups, not measures.
A character on the Galois group is integrable provided that its restriction to a
small open subgroup is a power of ϕ, where ϕ gives the representation on the
dual Tate module of E. We therefore cannot make any immediate connection to
Iwasawa module structure of, for example, elliptic units. This is an interesting
problem for the future.

Our results are closely related to those of Boxall ([Box]). See the Remark after
Prop. 5.2 for more discussion of the relationship.

Before discussing p-adic L-functions we will develop Fourier theory for the
multiplicative group; this will be useful because the p-adic L-functions we con-
struct arise as locally analytic distributions on Galois groups that are naturally
isomorphic to multiplicative, rather than additive groups. Let H be o×L as L-
analytic group and let H1 be the subgroup 1 + πoL. Using the Teichmüller
character ω, we have

H = H1 × k×

where k is the residue field of oL. For x ∈ H, let < x > be the projection of x
to H1.

As always, G is the additive group oL. Let us assume that the absolute ram-
ification index e of the field L satisfies e < p − 1. We define ` := π−1 · log so

that ` : H1

∼=−→G is an L-analytic isomorphism.

This map induces an isomorphism between the distribution algebras D(H1,K)

and D(G,K). The group Ĥ(Cp) of locally L-analytic, Cp-valued characters of
H is isomorphic to a product of q − 1 copies of the open unit disk B using
the results of section 3, indexed by the (finite) character group of k×. For z ∈
B(Cp), let ψz be the corresponding character of H1. Then for any distribution
λ ∈ D(H,K), and any character ωiψz with z ∈ B(Cp), and 0 ≤ i ≤ q − 1, we
have the “Mellin transform”

Mλ(z, ωi) = λ(ωiψz) .

For each fixed value of the second variable, Mλ is a rigid function in O(B/Cp).

Now let us compare the Fourier transforms for G and H in a different way. The
group o×L , as an L-analytic manifold, is an open submanifold of oL. If we have
a distribution λ in D(G,K) that vanishes on functions with support in πoL,
then λ gives a distribution on H = o×L ⊂ oL. It follows easily from Lemma
4.6.5 that λ is supported on H precisely when its Fourier transform Fλ satisfies

∑

[π](z)=0

Fλ(.+G z) = 0 .

We have the following result comparing the Fourier and Mellin transforms.
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Proposition 5.1: Let λ be a distribution in D(G,Cp) supported on H, let
Fλ be its Fourier transform, and let Mλ be its Mellin transform; suppose that
n ∈ N satisfies n ≡ i (mod q − 1); then

Mλ(expG(nπ/Ω), ωi) =

∫

o×
L

xndλ(x) = Ω−n(∂nFλ(z)|z=0) .

Note that the hypothesis e < p − 1 guarantees that Mλ(expG(xπ/Ω), ωi) is
a (globally) analytic function of x ∈ oL. Thus the left hand side of these
equations gives a (globally) L-analytic interpolation of the values on the right
side.

Proof: Let z(n) = expG(nπ/Ω). By definition,

Mλ(z(n), ωi) = λ(ωiψz(n)) .

Now
ψz(n)(< x >) = κz(n)(`(< x >))

= t′o([`(< x >)](z(n)))
= exp(Ω`(< x >) logG(z(n)))

because |[`(< x >)](z(n))| < p−1/e(q−1) (by Lemma 3.4.b and the hypothesis
e < p− 1). But

exp(Ω`(< x >) logG(z(n))) = exp(n log(< x >)) =< x >n

so (ωiψz(n))(x) = xn. But

λ(x 7→ xn) = Ω−n(∂nFλ(z)|z=0)

by Lemma 4.6.8/9.

Now we will embark on a digression into the theory of CM elliptic curves,
following the notation and the logic of Chap. II in [dS]. Let K be an imaginary
quadratic field, and let f be an integral ideal of K such that the roots of unity
in K are distinct mod f. Let p be a rational prime that is relatively prime to
6f and inert in K. Let F be the ray class field K(f) and let Fn := K(pnf)
and F∞ :=

⋃
n∈N Fn. Assume for technical reasons that will become clear in a

moment that p as a prime of K splits completely in F. Let ℘ be a prime above
p in F. The prime ℘ ramifies totally in F∞; let F∞ be the completion of F∞
at the unique prime above ℘. Let o be the ring of integers in the local field Kp.

Fix an elliptic curve E over F with CM by the ring of integers in K and with
associated Hecke character of the form ψE/F = ϕ ◦NF/K, where ϕ is a Hecke
character of K of type (1, 0) and conductor dividing f; we moreover assume
that there is a complex period Ω∞ so that the period lattice L of E is Ω∞f.
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We view ϕ also as a character of ΓK := Gal(F∞/K); it is K×p -valued on the
subgroup ΓF = Gal(F∞/F). If a is an integral ideal of K such that the Artin
symbol σa belongs to ΓF, then σa acts on the p-adic Tate module of E through
multiplication by ϕ(a). We let ϕ be the Hecke character giving the action of
ΓF on the dual Tate module of E. The character ϕ gives us an isomorphism

ϕ : ΓF → o×.

We use this isomorphism to equip ΓF with an o-analytic structure. We let N
denote the absolute norm.

Our assumption that p splits completely in F means that that the formal group
Ê℘ of E at ℘ is a Lubin-Tate group over o of height two. (To handle general p,
deShalit works with what he calls “relative” Lubin-Tate groups. Presumably
one can generalize our results to this situation as well.) Furthermore, the field
F∞ contains all of the p-power torsion points of this formal group, as well as
(by the Weil pairing) all of the p-power roots of unity. Thus our uniformization
result holds over this field. Choose an o-generator t′o of the (global) dual Tate
module Hom(Tp(E), Tp(Gm)) defined over F∞. Then the pairing { , } from
section 4 looks like:

O(Ê℘/F∞)× Can(o, F∞)→ F∞ .

Now we introduce the machinery of Coleman power series and elliptic units.
Let a be an integral ideal relatively prime to pf and let Θ(y;L, a) be the elliptic
function from [dS] II.2.3 (10). Let P (z) be the Taylor expansion of Θ(Ω∞ −
z;L, a) and let Qa(Z) := P (log

Ê℘
(Z)). This power series belongs to o[[Z]], as

shown in [dS] Prop. II.4.9; note that this proposition is true for inert primes
as well as split ones, as is clear from its proof. The power series Qa(Z) is
the Coleman power series associated to a norm-compatible sequence of elliptic
units, as deShalit explains.

Define

ga(Z) = logQa(Z)− 1

p2

∑

z∈Ê℘
[p](z)=0

logQa(Z +
Ê℘

z) .

Proposition 5.2: The power series ga(Z) ∈ O(Ê℘/F∞) is the Fourier trans-
form of an F∞-valued, locally analytic distribution on o supported on o×. By
means of the isomorphism ϕ from ΓF to o×, it defines a locally analytic distri-
bution on ΓF with the interpolation property

Ωm{ga(Z), ϕm}

= −12(1− ϕ(p)mp−2)Ω−m∞ (m− 1)!(N(a)Lf(ϕ
m,m, 1)− ϕ(a)mLf(ϕ

m,m, a))
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for any m ∈ N. Here Lf(ϕ, s, c) denotes the “partial” Hecke L-function of
conductor f, equal to

∑
b ϕ(b)N(b)−s over ideals b prime to f and such that

(b,F/K) = (c,F/K).

Proof: The first assertion follows easily from the formulae in Lemma 4.6. The
interpolation property comes from the formula (Lemma 4.6 again):

{ga(Z), ϕm} = Ω−m∂mga(Z)|Z=0 .

The rest of the computation is just a version of [dS] II.4.10. The invariant
differential ∂ pulls back to d/dy on the complex uniformization of E, so

Ωm{ga(Z), ϕm} =

(
d

dy

)m
(log Θ(Ω∞−y;L, a)−p−2 log Θ(Ω∞−y; p−1L, a))|y=0

and the claimed formula then follows from the equivalent in our situation of
[dS] II.4.7 (17), along with II.3.1 (7) and Prop. II.3.5.

Remark: From Prop. 5.1, we see that the Mellin transform Ma of the distri-
bution {ga(Z), ·} is an o-analytic function on o interpolating the special values
Ω−m∂mga(Z)|Z=0. This function (on Zp) was constructed by Boxall ([Box]).
Other than the fact that our construction is arguably more natural, the prin-
cipal new results here are that our function is Kp-analytic on o rather than
Qp-analytic on Zp. The existence of such an analytic interpolating function
implies congruences among the special values.

We may give the slightly larger Galois group ΓK a locally analytic structure
by transporting that of ΓF to its finitely many cosets in ΓK. To extend the
integration pairing to ΓK, recall that, along with E we have finitely many other
elliptic curves Eσ as σ runs through Gal(F/K). We also have, for each σ ∈ ΓK,
an isogeny ι(σ) : E → Eσ as in [dS] Prop. II.1.5. If a is an ideal prime to
p, then the associated isogeny ι(σa) has degree N(a), which is prime to p and

therefore induces an isomorphism between the formal groups Ê℘ and Êσa℘ .

A typical locally analytic function f on ΓK may be written

f(σ) = fi(ϕ(σ−1
i σ)) when σ ∈ σiΓF

where ci is a collection of integral ideals of K so that the Artin symbols σi = σci

form the set Gal(F/K), and fi ∈ Can(o, F∞), supported on o×.

Let O(Ê℘/F∞)0 denote the subspace of functions F ∈ O(Ê℘/F∞) satisfying∑
[p](z)=0 F (. +

Ê℘
z) = 0. These are the distributions supported on o×. We

define an extended integration pairing

{ , } : ⊕
σa∈Gal(F/K)

O(Êσa℘/F∞)0 × Can(ΓK, F∞) −→ F∞

by setting

{h, f} :=
∑

i

{hi ◦ ι(σi), fi} .
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Lemma 5.3: This pairing is well-defined (i.e., it is independent of the choice
of coset representatives), and identifies the left hand space with the continuous
dual of the right hand space.

Proof: The duality is clear; the key point is that the pairing is well defined.
Suppose we replace σi with σiτb, where τb ∈ ΓF. Then hi ◦ ι(σiτb) = hi ◦ ι(σi)◦
[ϕ(τb)] (see [dS] II.4.5). The decomposition of f also changes, with fi replaced
by f ′i = fi(ϕ(τb)−1.). Then, using Lemma 4.6 as usual, the pairing satisfies

{hi ◦ ι(σi) ◦ [ϕ(τb)], fi(ϕ(τb)−1.)} = {hi ◦ ι(σi), fi} .

Theorem 5.4: (Compare [dS] Thm. II.4.11) Let h = {hi} where hi := σi(ga)
with ga the (formal) elliptic function over F used for the construction of the
partial L-function in Prop. 5.2. Let ε be any locally analytic character on
ΓK, whose restriction to ΓF is ϕm for some m ∈ N. Then the locally analytic
distribution h on ΓK has the interpolation property

Ωm{h, ε} = 12(m− 1)! Ω−m∞ (1− ε(p)p−2)(ε(a)−N(a))Lf(ε
−1, 0) .

Proof: The proof is a long computation very much in the spirit of [dS] Thm.
II.4.11 (though we have cheated in the statement of the Theorem and avoided
the case where p divides the conductor). Choose coset representatives σi = σci .
The point of the computation is that ([dS] II.2.4 (ii) and II.4.5 (iv))

σi(ga) ◦ ι(σi) = gaci −N(a)gci

and
fi(a) = ε(σi)a

m .

Then the partial terms in the pairing are

ε(σi)Ω
−m(∂mgaci −N(a)∂mgci) .

These terms may then be evaluated using Prop. 5.2, and when the results are
combined one obtains the statement of the theorem.

Remark: One can compute an interpolation result for more general locally
analytic characters ε – explicitly, characters which restrict to ϕm on an open
subgroup of ΓF – by following the same line of argument as in [dS] II.4.11.

Appendix. p-adic periods of Lubin-Tate groups

In the analysis in section 3 of the behavior of the isomorphism (¦¦) relative

to the affinoid coverings on Ĝ and on B we needed rather exact information
about the “period” Ω of the Lubin-Tate group G. In this appendix, we apply
results of Fontaine [Fon] to obtain this information.
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All of the significant ideas in this section come from the article [Fon], and we
follow the notation of that article with the following exceptions. We will use
the letter X for the module of differentials ΩoL(oL) (called Ω by Fontaine). We
also do not distinguish between G as a formal group or p-divisible group thanks
to [Tat] Prop. 1.

As before, we let G be the Lubin-Tate group over o associated to the uniformizer
π and let G′ be the dual p-divisible group. We denote by q and e respectively the
number of elements in o/πo and the ramification index of L/Qp. Furthermore,
T and T ′ are the Tate modules of G and G ′ respectively, and Ft′(Z) ∈ ZoCp [[Z]]
is the power series corresponding to t′ ∈ T ′ as in section 3. We let ω be the
invariant differential on G such that ω = (1 + . . .)dZ. We define Ωt′ so that
Ft′(Z) = Ωt′Z + · · · .
We write Gn and G′n for the group schemes of pn torsion points on G and G ′
respectively. Let Ln be the finite extension field of L generated by the L-points
of G′n.

The various maps that are denoted by decorated forms of the letter φ are those
defined in [Fon].

We remark that, in the case that e ≤ p−1, the result of part (c) of the following
Theorem was obtained by Boxall ([Box]) by power series computations.

Theorem: a. For t′ ∈ T ′, we have

φ0
G′(t
′) =

dFt′

1 + Ft′
= Ωt′ω ;

b. there is a sequence of elements Ωt′(n) ∈ oLn for integers n ≥ 1 such that
Ωt′(n+ 1) ≡ Ωt′(n) (mod pnoLn+1

) and such that the sequence of Ωt′(n) con-
verges in Cp to Ωt′ ;

c. let t′o be any generator of the o module T ′ ; then the fundamental period
Ω = Ωt′o satisfies

|Ω| = p−s

where

s =
1

p− 1
− 1

e(q − 1)
.

Proof: We begin with parts (a) and (b). First of all, Ft′(Z) being a formal
group homomorphism from G to Gm, the pullback of the invariant differential
dZ/(1 + Z) on Gm must be a multiple of ω. Comparing leading coefficients
shows that dFt′(Z)/(1 + Ft′(Z)) = Ωt′ω. Fontaine’s map

φ0
G′ : oCp ⊗Zp T ′ → t∗G(oCp)

as defined on p. 406 of [Fon], is the limit of maps

φ0
G′n : oL ⊗ G′n(oL)→ t∗Gn(oL)
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defined on p. 396. To compute these maps, recall that the affine algebra of Gn
is Rn = oL[[Z]]/Jn where Jn is the ideal generated by [pn](Z). The element t′

is represented explicitly as (t′(n))n where the t′(n) are a compatible sequence
of homomorphisms Gn → µpn over oCp . Further, the element t′(n) is given
explicitly by the class 1 + Ft′(Z) + Jn in oCp ⊗ Rn. But each homomorphism
Gn → µpn is defined over oLn . Therefore 1 + Ft′(Z) ≡ gn(Z) (mod Jn) for
some gn ∈ oLn ⊗ Rn. Now on the one hand Fontaine’s map is given by the
formula

φ0
G′n(t′(n)) =

dgn
gn
∈ t∗Gn(oLn) .

By Prop. 10 of [Fon] we know that

t∗Gn(oLn) = t∗G(oLn)/pnt∗G(oLn) .

Therefore we may choose Ωt′(n) ∈ oLn so that

dgn/gn ≡ Ωt′(n)ω (mod pnt∗G(oLn)) .

But both gn and 1 +Ft′ represent the same map over oCp from Gn to µpn , and
therefore we must have

Ωt′(n) ≡ Ωt′ (mod pnt∗G(oCp)) .

By definition φ0
G′(t
′) is the limit of the Ωt′(n)ω, which we have just shown is

Ωt′ω .

Now consider the following commutative diagram, obtained from Prop. 8 of
[Fon] by applying section 5.9 to pass to the inverse limit over multiplication
by p :

oCp ⊗Zp T × oCp ⊗Zp T ′
φ

��

θ
��

t∗G′(oCp)⊕ tG(Tp(X)) × t∗G(oCp)⊕ tG′(Tp(X))

ν
��

oCp ⊗ Tp(Gm)
ξ

�� Tp(X)

Here the map φ is
φ = φG,oCp × φG′,oCp

as defined in Prop. 11 of [Fon], where it is shown to be injective, and to induce
an isomorphism upon tensoring with Cp. The vertical arrows are the natural
pairings, and the lower horizontal arrow is induced by the map ξ of Thm. 1’
of [Fon].

Each of the spaces Cp ⊗Zp T and Cp ⊗Zp T ′ decompose into a direct sum of
one-dimensional eigenspaces corresponding to distinct embeddings of L↪→Cp.
The map φ is o-linear and therefore must respect this decomposition. On the
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upper right, the o-actions on the spaces t∗G(oCp) and tG(Tp(X)) are given by
the given embedding o ⊆ oCp (while the o-actions on the corresponding spaces
for G′ are given by the other [L : Qp] − 1 embeddings of o in oCp). Therefore
the above diagram can be “reduced” to the following:

(oCp ⊗o T )×Homo(T, oCp(1))
φ

��

θ
��

tG(Tp(X))× t∗G(oCp)

ν
��

oCp ⊗ Tp(Gm)
ξ

�� Tp(X)

We choose a generator u of T , a generator ε of Tp(Gm), and we let f ∈
Homo(T, oCp(1)) be the unique o-linear map such that f(u) = ε. Trace the
pairing (u, f) both ways through the square, using the explicit formulae for the
maps involved from [Fon], and accounting for the fact that Fontaine writes Gm
multiplicatively. If we write φ0

G′(f) = Ωfω, then

νφ(u, f) = Ωfu
∗ω

while
ξθ(u, f) = f(u)∗dZ/(1 + Z) .

Comparing these formulae with the explicit isomorphisms ξL,G and ξL defined
in section 1 of [Fon], we see that the commutativity of the square means that

ΩfξL,G(u⊗ ω) = ξL(f(u)⊗ dZ/(1 + Z)) .

This fact, when combined with Thm. 1 and Cor. 1 of [Fon], tells us that

ΩfaL = aL,G .

We conclude that

|Ωf | = p−r with r =
1

p− 1
− 1

e(q − 1)
+ ordp(DL/Qp)

where DL/Qp is the different of the extension L/Qp .

To complete the calculation let t′0 be our chosen generator for the o-module
T ′. Some elementary linear algebra using properties of the different shows that
there is a generator x of DL/Qp such that we have

xt′0 = f + f ′ in oCp ⊗Zp T ′

with f ′ vanishing on the eigenspace in Cp ⊗o T corresponding to the given
embedding L ⊆ Cp. This means that φ0

G′(f
′) = 0 so that

xΩt′0 = Ωf .

In other words, the valuation of Ω = Ωt′0
is ordp(Ωf )− ordp(x) as claimed.
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Abstract. Let M be a non–compact, connected manifold of dimen-
sion ≥ 1. Let D(sheaves/M) be the unbounded derived category of
chain complexes of sheaves of abelian groups on M . We prove that
D(sheaves/M) is not a compactly generated triangulated category,
but is well generated.
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0. Introduction

We remind the reader. Let T be a triangulated category in which arbitrary co-
products exist. For example, we may take T = D(sheaves/M), the unbounded
derived category of chain complexes of sheaves of abelian groups on a topo-
logical space M . An object c ∈ T is called compact if, for every collection
{tλ |λ ∈ Λ} of objects in T,

T

(
c,
∐

λ∈Λ

tλ

)
=
⊕

λ∈Λ

T(c, tλ).

A triangulated category T is called compactly generated if arbitrary coproducts
exist in T, and there are plenty of compact objects. [The precise definition is
that every non–zero object in T admits a non–zero map from a compact object,
and there is a set of isomorphism classes of compact objects.] In this article,
we will see the following

Theorem 0.1. Let M be a non–compact, connected manifold of dimension ≥
1. Let D(sheaves/M) be the unbounded derived category of chain complexes of
sheaves of abelian groups on M . Then the only compact object in D(sheaves/M)
is the zero object.

In a recent book [6], the author defined a generalisation of compactly generated
categories, the well generated triangulated categories. We will not repeat the
definition here. Assuming the reader is familiar with the definitions, we state
our next result.
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Theorem 0.2. Let M and D(sheaves/M) be as in Thoerem 0.1. Then the
category D(sheaves/M) is well generated. More generally, for any Grothendieck
abelian category A, the derived category D(A) is well generated.

The two theorems above should perhaps explain the point of the book [6].
Surely the category D(sheaves/M) is natural enough, we want to prove some-
thing about it. The fact that it is not compactly generated says that the old
theorems of the subject cannot be applied. Well generated triangulated cate-
gories is an attempt to pick out a class of triangulated categories which includes
D(sheaves/M), but is restrictive enough so that we can prove good theorems,
for example Brown representability. For much more information about well
generated triangulated categories the reader is referred both to the book [6],
as well as several beautiful insights in Krause’s paper [4].
In Section 1 we give a fairly detailed and self contained account of the proof of
Theorem 0.1. Compactly generated triangulated categories have been around
for many years. The people who have worked with them might understandably
want a good account of why D(sheaves/M) is not compactly generated. It
seems only right to make the presentation easily accessible. In Section 2 we
give a very terse proof of Theorem 0.2. The argument makes no attempt to be
self-contained. The proof relies heavily on results from Alonso, Jeremı́as and
Souto’s [1], and from [6].
I would like to thank Marco Schlichting, who asked me to provide proofs for
the two theorems above. In the case of Theorem 0.2 I know several proofs, and
the one presented here was chosen mostly because it is only a paragraph long.
In the case of Theorem 0.1, until Schlichting prompted me I had carelessly
assumed it was a true fact, without ever checking the details.

1. The proof of Theorem 0.1

In this section we give a fairly detailed and complete proof of Theorem 0.1.
The proof attempts to be reasonably self-contained. We will, however, assume
that the reader is familiar with the six gluing functors. Let M be a topological
space. Suppose M = U ∪ Z is the disjoint union of an open set U and its
complement Z. Let i : Z −→ M , j : U −→ M be the inclusions. Then there
are six functors on chain complexes of sheaves of abelian groups, denoted j!,
j∗, j∗, i

∗, i∗ and i!, which allow us to glue complexes of sheaves on U and Z
to form complexes of sheaves on M . There are many excellent accounts of this
in the literature, for example in Beilinson, Bernstein and Deligne’s [2].
Before plunging into the proof, we remind the reader of a key property of
compact objects.

Reminder 1.1. Let A be a Grothendieck abelian category, T = D(A) its de-
rived category. Suppose c is compact in D(A), and suppose we are given a
sequence of chain complexes

X0 −→ X1 −→ X2 −→ · · ·
with colim−→ Xi = X. Then T(c,X) = colim−→ T(c,Xi).
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Proof. The proof may be found in Lemma 2.8 of [5] combined with Remark 2.2
of [3].

Lemma 1.2. Suppose M is a manifold, and that c ∈ D(sheaves/M) is a com-
pact object. Then there is a compact set K ⊂ M , so that c is acyclic outside
K.

Proof. Choose an increasing sequence of open subsets U` ⊂M , ` ∈ N so that

(i) M = ∪U` is the union of the U`.
(ii) The closure U ` of U` is compact, and U ` ⊂ U`+1.

Let j` : U` −→ M be the inclusion. Because the U` are increasing, we have a
sequence of chain complexes of sheaves

{j1}!j∗1c −−−−→ {j2}!j∗2c −−−−→ {j3}!j∗3c −−−−→ · · ·
with direct limit c. The identity map c −→ c is a map from a compact object
c to a direct limit. By Remark 1.1, it must factor through {j`}!j∗` c for some `.

And the complex {j`}!j∗` c is acyclic outside the compact set U `.

Definition 1.3. The support of a chain complex c of sheaves on M is the set
of all points p ∈M so that the stalk at p of c is not acyclic.

Lemma 1.4. Suppose M is a manifold, and that c ∈ D(sheaves/M) is a com-
pact object. Then the support of c is compact.

Proof. Let p be point outside the support of c; that is, the stalk of c at p is
acyclic. Let U = M − {p} be the complement of p. Let j : U −→ M be
the inclusion of the open set, i : {p} −→ M the inclusion of its complement.
Consider now the triangle

j!j
∗c −−−−→ c −−−−→ i∗i

∗c −−−−→ Σj!j
∗c.

Since the stalk of c at p vanishes, we know that i∗c = 0. Thus c is quasi-
isomorphic to j!j

∗c. In particular j!j
∗c is compact. We assert that j∗c must

also be compact. This is because

Hom

(
j∗c ,

∐
λ∈Λ

tλ

)

= Hom

(
j∗c , j∗j!

∐
λ∈Λ

tλ

)
since j∗j! = 1

= Hom

(
j!j
∗c , j!

∐
λ∈Λ

tλ

)
by adjunction

= Hom

(
j!j
∗c ,

∐
λ∈Λ

j!tλ

)
as j! respects coproducts

=
⊕
λ∈Λ

T(j!j
∗c , j!tλ) since c = j!j

∗c is compact

=
⊕
λ∈Λ

T(j∗c , j∗j!tλ) by adjunction

=
⊕
λ∈Λ

T(j∗c , tλ) since j∗j! = 1.
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Lemma 1.2, applied to the complex j∗c on M − {p}, now tells us that the
support of j∗c is contained in a compact subset of M − {p}. Hence so is the
support of c ∼= j!j

∗c. What this proves is that any point p not in the support
of c is in the interior of the complement of the support. The support is closed.
By Lemma 1.2, the support is contained in a compact subset of M . Being a
closed subset of a compact subset, the support of c must be compact.

Notation 1.5. From now on, let c be a compact object in D(sheaves/M),
with M a non-compact, connected manifold. Let K be the support of c. By
Lemma 1.4 we know that K is compact. To prove Theorem 0.1 we must show
that K is empty. In the rest of this section we assume K 6= ∅, and deduce a
contradiction.

Lemma 1.6. Let the notation be as in Notation 1.5. There is a compact set
L ⊂M so that

(i) The support of c is contained in L; that is, K ⊂ L.
(ii) L is a deformation retract of a neighbourhood.

(iii) The boundary of L contains a point in K.

Proof. Choose a Morse function on the manifold M ; that is, a proper function
ϕ : M −→ [0,∞) with only non-degenerate critical points. Now ϕ(K) is a
compact subset of R. Let k ∈ R be the maximum of ϕ(K). By jiggling ϕ a
little, we may assume that k is a regular value of ϕ. Now let L = ϕ−1[0, k].
Because ϕ is proper, L must be compact. Because k is the maximum of ϕ on
K ⊂ M , there must be a point x ∈ K with ϕ(x) = k. Since ϕ is regular at x,
x must be a boundary point of L. Now, for any Riemannian metric on M , the
gradient flow along ϕ deformation retracts ϕ−1[0, k + ε] to L = ϕ−1[0, k].

Theorem 1.7. With the notation as above, the object c vanishes.

Proof. With the notation as in the proof of Lemma 1.6, let L = ϕ−1[0, k], and

let L̂ = ϕ−1[0, k + ε]. Denote by i : L −→ M and ı̂ : L̂ −→ M the inclusions.

Let p : L̂ −→ L be the retraction, and j : U = {M − L} −→ M the open
inclusion.
We wish to consider the complex b = ı̂∗p

∗c on M . The fact that M = L∪U is
a disjoint union of an open set and its complement gives a triangle

j!j
∗b −−−−→ b −−−−→ i∗i

∗b −−−−→ Σj!j
∗b.

Now

i∗i
∗b = i∗i

∗ ı̂∗p
∗c by definition of b

= i∗i
∗c since p and ı̂ are the identity on L

= c since c is supported on K ⊂ L.

It follows that the map

i∗i
∗b −−−−→ Σj!j

∗b
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is a map from a compact object c = i∗i
∗b. Now write U = M − L as an

increasing union of U` ⊂ U , with U ` compact and U ` ⊂ U`+1. As in the proof
of Lemma 1.2, we write

j!j
∗b = colim−→ {j`}!j

∗
` b

with j` : U` −→ U the inclusion. The compactness of i∗i
∗b guarantees that the

map

i∗i
∗b −−−−→ Σj!j

∗b

must factor as

i∗i
∗b −−−−→ Σ{j`}!j∗` b −−−−→ Σj!j

∗b.

But now i∗i
∗b is supported on L, while {j`}!j∗` b is supported on the compact

set U ` ⊂M − L. The map between them must vanish. In the triangle

j!j
∗b −−−−→ b −−−−→ i∗i

∗b
β−−−−→ Σj!j

∗b.

we have shown that the map β vanishes. We conclude that there is an isomor-
phism in the derived category

b ∼= i∗i
∗b⊕ j!j∗b.

Now let x be a point in K on the boundary of L; in the notation of the proof
of Lemma 1.6 this means that ϕ(x) = k. Then p−1(x) is the interval [k, k+ ε].
If we pull back the isomorphism b ∼= i∗i

∗b ⊕ j!j∗b to p−1(x) = [k, k + ε], we
have that b is the complex of constant sheaves on the interval [k, k + ε], whose
value is the stalk of c at x, which by hypothesis is not acyclic. This complex is
quasi-isomorphic to a direct sum b ∼= i∗i

∗b ⊕ j!j∗b, where i is the inclusion of
the endpoint k and j the inclusion of the complement. But this is absurd; it is
easy to see that any map b −→ j!j

∗b must vanish.

2. The proof of Theorem 0.2

We need to prove that, for any Grothendieck abelian category A, the derived
category is well generated. By Proposition 5.1 in Alonso, Jeremı́as and Souto’s
paper [1], we know that there exists a ring R and a set of objects L ⊂ D(R)
for which the following is true.

Proposition 2.1. (=Proposition 5.1 in [1]) Let LA be the smallest local-
ising subcategory of D(R) containing L. Then the derived category D(A) of A

is equivalent to the quotient D(A) ∼= D(R)/LA.

The category D(R) is compactly generated, hence well generated. By Propo-
sition 8.4.2 of [6] (more precisely by part (8.4.2.3) of the Proposition),

D(R) =
⋃

α

{D(R)}α.

Since L is a set of objects, the coproduct of all the objects in L is an object
of D(R), and therefore must lie in {D(R)}α for some regular cardinal α. Now

apply Theorem 4.4.9 of [6]. We have that, for any regular cardinal β ≥ α, L
β
A is
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just 〈L〉β , the smallest β-localising subcategory containing L, while {D(R)}β =

〈R〉β is the smallest β-localising subcategory containing R. And if β > ℵ0, then

{D(A)}β = {D(R)}β/LβA. The categories L
β
A, {D(R)}β and {D(A)}β are all

essentially small, and generate LA, D(R) and D(A) respectively. It follows
that D(A) is well generated.
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Abstract.

Let F be a field of characteristic different from 2 and assume that F
satisfies the strong approximation theorem on orderings (F is a SAP
field) and that I3(F ) is torsion-free. We prove that the 2-primary
component of the torsion subgroup of the Brauer group of F is a
divisible group and we prove a structure theorem on the 2-primary
component of the Brauer group of F . This result generalizes well-
known results for algebraic number fields. We apply these results to
characterize the trace form of a central simple algebra over such a
field in terms of its determinant and signatures.
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1 Introduction and Preliminaries

Let A be a central simple algebra over a field F of characteristic different from
2. The quadratic form q : A→ F given by x 7→ TrdA(x2) ∈ F is called the trace
form of A, and is denoted by TA. This trace form has been studied by many
authors (cf.[Le], [LM], [Ti] and [Se], Annexe §5 for example). In particular, its
classical invariants are well-known (loc.cit.).
In this article, we prove some divisibility results for the Brauer group of fields
F under the assumption that F satisfies the strong approximation theorem on
orderings (F is a SAP field) and I3(F ) is torsion-free. Then we apply these
results to characterize the trace form of a central simple algebra over such a
field in terms of its determinant and signatures.
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490 Grégory Berhuy, David B. Leep

First we review the necessary background for this article. For a field F , Br(F )
denotes the Brauer group of F . If p is a prime number, p Br(F ) denotes the
p-primary component of Br(F ). If n ≥ 1, Brn(F ) denotes the kernel of multi-
plication by n in the Brauer group. If A is a central simple algebra over F , the
exponent of A, denoted by expA, is the order of [A] in Br(F ) and the index of
A, denoted by indA, is the degree of the division algebra which corresponds to
A. We know that expA divides indA. If a, b ∈ F×, we denote by (a, b)F the
corresponding quaternion algebra, or simply (a, b) if no confusion is possible.
We also use the same symbol to denote its class in the Brauer group.
We refer to [D], [J], or [Sc] for more information on central simple algebras over
general fields.
In the following, all quadratic forms are nonsingular. If q is a quadratic form
over F , dim q is the dimension of q and det q ∈ F×/F×2 is the determinant of
q. We denote by H the hyperbolic plane.
If q ' 〈a1, · · · , an〉, the Hasse-Witt invariant of q is given by w2(q) =∑
i<j

(ai, aj) ∈ Br2(F ).

If a1, · · · , an ∈ F×, the quadratic form 〈〈a1, · · · , an〉〉 := 〈1,−a1〉⊗· · ·⊗〈1,−an〉
is called an n-fold Pfister form.
If F is a formally real field, the space of orderings of F is denoted by ΩF .
We let signv(q) ∈ Z denote the signature of q relative to an ordering v ∈ ΩF .
Thus signv(q) is the difference between the number of positive elements and
the number of negative elements in any diagonalization of q.
If n ≥ 1, In(F ) is the nth power of the fundamental ideal of the Witt ring W (F )
of F . We denote by In(F )t the kernel of the map In(F ) → ∏

v∈ΩF

In(Fv). We

will say that In(F ) is torsion-free if In(F )t = 0. A field F satisfies property
An if every torsion n-fold Pfister form defined over F is hyperbolic over F .
See [EL2], section 4, for more details on property An. The absolute stability
index of F , denoted sta(F ) is the smallest nonnegative integer n such that
In+1(F ) = 2In(F ) (or ∞, if no such integer exists). See [EP], p. 1248 for
more details. The reduced stability index of F , denoted str(F ) is the smallest
nonnegative integer n such that In+1(F ) ≡ 2In(F ) mod W (F )t. See [La2],
Chapter 13, for more details.
A field F satisfies the strong approximation property (SAP ) if for every clopen
set X of ΩF there exists a ∈ F× such that a >v 0 if v ∈ X and a <v 0
otherwise. See [La2] for various equivalent definitions and basic properties of
SAP fields. If q is a quadratic form defined over F , then q̂ ∈ C(ΩF ,Z) is the
continuous function q̂ : ΩF −→ Z defined by q̂(v) = signv(q) for every v ∈ ΩF .
If M is a discrete torsion Galois-module of exponent m, prime to the charac-
teristic of F , Hn(F,M) denotes the n-th cohomology group
Hn(Gal(F sep/F ),M). The group Hn(F,M)t denotes the kernel of the map
Hn(F,M) → ∏

v∈ΩF

Hn(Fv,M). If L/F is any field extension, ResL/F denotes

the restriction map. We then have ResL/F (w2(q)) = w2(qL) for any quadratic
form q over F . If L/F is a finite Galois extension, CorL/F denotes the core-
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striction map.
In this paper, we deal only with the case when n is even, because we know that

TA ' n < 1 >⊥ n(n− 1)

2
H when n is odd (cf.[Se], Annexe §5 for example).

An abelian group G is divisible if for all n ≥ 1, we have G = nG. If J is any
set, G(J) is the group of families of elements of G indexed by J , with finite
supports.
In the following, F always denotes a field of characteristic different from 2, and
K = F (

√
−1).

We now recall some results about the classical invariants of trace forms of
central simple algebras:

Theorem 1.1. Let A be a central simple algebra over F of degree n. Then we
have:

1. dim TA = n2

2. det TA = (−1)
n(n−1)

2

3. We have signv TA = ±n for each v ∈ ΩF , and signv TA = n if and only if
ResFv/F ([A]) = 0, where Fv is the real closure of (F, v).

4. If n = 2m ≥ 2, then w2(TA) =
m(m− 1)

2
(−1,−1) +m[A]

The three first statements can be found in [Le], and the last one is proved in
[LM] or [Ti] for example.

2 Divisibility results in the Brauer group

Proposition 2.1. Let θ : I3(F ) −→ ∏
v∈ΩF

I3(Fv)/I
4(Fv). If str(F ) ≤ 4, then

ker(θ) = I3(F )t + I4(F ).

Proof. It is clear that ker(θ) ⊇ I3(F )t + I4(F ). Now let q ∈ I3(F ) and
assume q ∈ ker(θ). Then qv ∈ I4(Fv) and this implies 16|signv(q) for each
v ∈ ΩF . Thus q̂ ∈ C(ΩF , 16Z). Since str(F ) ≤ 4, Theorem 13.1 of [La2]
applied to the preorder T =

∑
F 2 implies there exists q0 ∈ I4(F ) such that

q̂ = q̂0. Then q− q0 ∈ I3(F )∩W (F )t = I3(F )t and hence q ∈ I3(F )t + I4(F ).
2

Corollary 2.2. Let θ̄ : I3(F )/I4(F ) −→ ∏
v∈ΩF

I3(Fv)/I
4(Fv). If I3(F )t = 0

and str(F ) ≤ 4, then θ̄ is injective and H3(F, µ2)t = 0.

Proof. The hypothesis and Proposition 2.1 imply ker(θ) = I4(F ). There-
fore ker(θ̄) = (0) and θ̄ is injective. Since I3(F )/I4(F ) ' H3(F, µ2), and
I3(Fv)/I

4(Fv) ' H3(Fv, µ2) by [MS1] and [MS2], it follows H3(F, µ2)t = 0. 2
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Proposition 2.3. Assume that I3(F )t = 0 and str(F ) ≤ 4. Let α ∈
H2(F, µ2r )t (r ≥ 1). Then there exists β ∈ H2(F, µ2r+1) such that α = 2β.

Proof. The exact sequence

1→ µ2 → µ2r+1 → µ2r → 1

(where the last map is squaring) induces the following commutative diagram
with exact rows

H2(F, µ2r+1) −−−−→ H2(F, µ2r ) −−−−→ H3(F, µ2)
y

y
y

∏
v∈ΩF

H2(Fv, µ2r+1) −−−−→ ∏
v∈ΩF

H2(Fv, µ2r ) −−−−→
∏

v∈ΩF

H3(Fv, µ2).

Since the third vertical map is injective by Corollary 2.2, a diagram chase gives
the conclusion. 2

In Theorem 2.7 below, we need a hypothesis that is slightly stronger than the
one occurring in Proposition 2.3. The following result gives a characterization
of this hypothesis.

Proposition 2.4. Let K = F (
√
−1). The following statements are equivalent.

1. F satisfies property A3 and sta(F ) ≤ 2.

2. I3(F )t = 0 and str(F ) ≤ 2.

3. sta(K) ≤ 2.

4. I3(K) = 0.

5. H3(K,µ2) = 0.

Proof. (4) ⇐⇒ (5): I3(K) = 0 if and only if I3(K)/I4(K) = 0 by the
Arason-Pfister Hauptsatz, and I3(K)/I4(K) ' H3(K,µ2) by [MS1] and [MS2].
(3) ⇐⇒ (4): sta(K) ≤ 2 means I3(K) = 2I2(K) and this holds if and only if
I3(K) = 0, since 〈1, 1〉 = 0 implies 2I2(K) = 0.
(1) ⇐⇒ (3): This is [EP], Theorem 3.3.
(1) =⇒ (2): Property A3 implies I3(F )t = 0, by [EL1], Theorem 3 and Corol-
lary 3. It is clear that sta(F ) ≤ 2 implies str(F ) ≤ 2, by [La2], Theorem
13.1(3).
(2) =⇒ (1): Clearly I3(F )t = 0 implies F satisfies property A3. Let q be a
3-fold Pfister form defined over F . Then there exists q′ ∈ I2(F ) such that
q − 2q′ ∈ I3(F )t = 0. Thus q = 2q′ with q′ ∈ I2(F ) and it follows I3(F ) =
2I2(F ). 2

Proposition 2.5. If str(F ) ≤ 2, then for every β ∈ H2(F, µ2r+1), there exists
β′ ∈ H2(F, µ2r+1)t such that 2β′ = 2β.
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Proof. Since the characteristic of F is not 2, we have H2(F, µ2r+1) '
Br2r+1(F ). Let A be a central simple algebra over F such that β = [A],
and set X = {v ∈ ΩF , signv TA = n}, where n = degA. Then Xc = {v ∈
ΩF , signv TA = −n} by Theorem 1.1. Since the total signature map is continu-
ous with respect to the topology on ΩF , the set X is clopen. Since str(F ) ≤ 2

and X is clopen, there exists q ∈ I2(F ) such that signv(q) =

{
4, if v /∈ X
0, if v ∈ X.

In

the Witt ring WF we have q =
∑n
i=1〈〈ai, bi〉〉, with ai, bi ∈ F×. Let B be a cen-

tral simple algebra over F such that [B] =
∑n
i=1(ai, bi)F . Let γ ∈ H2(F, µ2r+1)

be such that γ = [B] under the isomorphism H2(F, µ2r+1) ' Br2r+1(F ).
Now set β′ = β + γ. We clearly have 2β′ = 2β. Moreover, if v ∈ X, then
ResFv/F (β) = 0 by Theorem 1.1 and ResFv/F (γ) = 0 by the choice of B.
Similar arguments show that ResFv/F (β′) = 0 for all v /∈ X. It follows that
β′ ∈ H2(F, µ2r+1)t. 2

Remark 2.6. In Proposition 2.5, a stronger conclusion is possible if we also
assume that F is a SAP field. This is equivalent to assuming str(F ) ≤ 1. (See
[La2].) In this case there exists an element a ∈ F× such that a >v 0 if v ∈ X
and a <v 0 if v /∈ X. Let γ ∈ H2(F, µ2r+1) be such that γ = (−1, a)F under
the isomorphism H2(F, µ2r+1) ' Br2r+1(F ). Now set β′ = β + γ. We clearly
have 2β′ = 2β. We finish as before. This observation will be used in the proof
of Theorem 2.8.

Theorem 2.7. Assume I3(F )t = 0 and str(F ) ≤ 2. Then 2 Br(F )t is a divis-
ible group.

Proof. It suffices to check that for all [B] ∈ 2 Br(F )t and all primes p,
there exists [A] ∈ 2 Br(F )t such that p[A] = [B]. Let [B] ∈ 2 Br(F )t. Then,
there exists r ≥ 1 such that 2r[B] = 0. Assume first that p is odd. Then
gcd(p, 2r) = 1, so there exist n,m ∈ Z such that np + m2r = 1. Then [B] =
(np+m2r)[B] = p(n[B]). If p = 2, apply Proposition 2.3 and Proposition 2.5.
2

We now give a structure theorem on the 2-primary component of the Brauer
group. We denote by

∑
F 2 the multiplicative subgroup of F× of nonzero sums

of squares. We use the notation of [K].

Theorem 2.8. Assume that I3(F )t = 0 and F is SAP. Let T (resp. Λ) be an
index set of a Z/2Z-basis of Br2(F )t (resp. of F×/

∑
F×2). Then we have the

following group isomorphism

2 Br(F ) ' Z(2∞)(T ) × (Z/2Z)(Λ).

Proof. Theorem 2.7 implies that 2 Br(F )t is a divisible group. Since every
element of 2 Br(F )t has 2-power order, the structure theorems on divisible
groups (see [K] for example) imply that this group is isomorphic to Z(2∞)(T ),
where T is an index set of a basis of the 2-torsion part of 2 Br(F )t, namely
Br2(F )t.
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Let [A] ∈ 2 Br(F ). Remark 2.6 shows that there exists a ∈ F× such that
[A′] := [A] + (−1, a) is a torsion element. Choose elements aλ ∈ F× such that
(aλ

∑
F×2)λ∈Λ is a Z/2Z-basis of F×/

∑
F×2. Then a = b

∏
λ∈Λ

arλλ , where b ∈
∑
F 2 and rλ = 0 or 1. Since b is a sum of squares, (−1, b) is a torsion element,

so we have a decomposition [A] = [B] +
∑
rλ(−1, aλ), where [B] = [A′] +

(−1, b) is a torsion element. Now we show that [B] and the rλ’s are uniquely
determined. Assume that [B] +

∑
rλ(−1, aλ) = 0. Then (−1,

∏
arλλ ) = −[B]

is a torsion element. This implies that
∏
arλλ is positive at all orderings of F ,

so
∏
arλλ is a sum of squares. By choice of the aλ’s, this implies that rλ = 0

for all λ ∈ Λ and hence that [B] = 0. 2

3 Trace forms of central simple algebras

In this section, we give realization theorems for trace forms of central simple
algebras.

Theorem 3.1. Let n = 2m ≥ 2 be an even integer. Assume that F is SAP and
I2(F ) is torsion-free. Then a quadratic form q is isomorphic to the trace form
of a central simple algebra of degree n if and only if the following conditions
are satisfied :

1. dim q = n2

2. det q = (−1)
n(n−1)

2

3. signv q = ±n, for all v ∈ ΩF .

Proof. The necessity follows from Theorem 1.1. Conversely, let q be a
quadratic form satisfying the conditions above. Since I2(F ) is torsion-free, it
is well-known that quadratic forms are classified by dimension, determinant
and signatures (see [EL1]). Let X = {v ∈ ΩF , signv q = n}. This is a clopen
set, so the SAP property of F implies there exists a ∈ F× such that a >v 0 if
v ∈ X and a <v 0 otherwise. Set A = Mm((−1, a)). Then ResFv/F ([A]) = 0 if
and only if signv q = n, so TA and q have the same signatures. Since they also
have equal dimension and determinant, they are isomorphic. 2

The following proposition gives a characterization of fields that satisfy the
hypotheses of Theorem 3.1. Note the similarity to Proposition 2.4.

Proposition 3.2. Let K = F (
√
−1). The following statements are equivalent.

1. F satisfies property A2 and F is a SAP field (sta(F ) ≤ 1).

2. I2(F )t = 0 and F is a SAP field (str(F ) ≤ 1).

3. sta(K) ≤ 1.

4. I2(K) = 0.
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5. u(K) ≤ 2.

6. ũ(F ) ≤ 2.

7. I2(F )t = 0 and F is linked.

Proof. The proof of the equivalence of (1)-(4) is very similar to the proof
of the equivalence of the corresponding statements in Proposition 2.4. The
equivalence of (4) and (5) is well-known. The equivalence of (6) and (7) appears
in [E]. The equivalence of (2) and (6) appears in [ELP]. 2

We now give a characterization of fields F such that I2(F ) is torsion-free in
terms of Brauer groups.

Proposition 3.3. I2(F ) is torsion-free if and only if Br(F ) has no element
of order 4.

Proof. Assume that [A] ∈ Br(F ) has order 4, so [A] ∈ H2(F, µ4). Then
2[A] ∈ H2(F, µ2) has order 2. Moreover, it is well-known that the image of
[A] ∈ H2(F, µ4) 7→ 2[A] ∈ H2(F, µ2) is the kernel of
[B] ∈ H2(F, µ2) 7→ (−1)∪ [B] ∈ H3(F, µ2) (see for example [LLT], Proposition
A2 and Remark A3). So (−1) ∪ 2[A] = 0, that is 2[A] = CorK/F ([B]) for
some [B] ∈ H2(K,µ2). Since H2(K,µ2) is generated by elements of the form
(a, b), a ∈ F×, b ∈ K×, the transfer formula shows that 2[A] =

∑
(ai,NK/F (bi))

for some ai ∈ F× and bi ∈ K×. Since 2[A] has order 2, it is not split, so there
exists i such that (ai,NK/F (bi)) is not split. Then the norm form of this
quaternion algebra is not hyperbolic, and it is a torsion 2-fold Pfister form,
since NK/F (bi) is the sum of 2 squares.
Conversely, assume that I2(F ) is not torsion-free. Then property A2 fails (see
[EL2], section 4). Theorem 4.3(3) in [EL2] (with x = 1) implies that there
exists a binary form 〈1,−a〉 and an element b = u2 + v2, with u, v ∈ F , such
that 〈1,−a〉 does not represent b. This means 〈〈a, b〉〉 is an anisotropic 2-fold

Pfister form and b is not a square. Let L := F (
√
b+ v

√
b). Then L/F is a cyclic

quartic extension which contains F (
√
b). Denote by σ a generator of Gal(L/F )

and let A be the cyclic algebra (a, L/F, σ) (see [Sc] for the definition and basic
properties of cyclic algebras). It is not difficult to show that 2[A] = (a, b) (for
example use [J], Corollary 2.13.20). By construction, the norm form of this
quaternion algebra is not hyperbolic, so 2[A] is not split, and [A] has order 4.
2

We now apply the results of section 2 to prove the following theorem:

Theorem 3.4. Let n = 2m ≥ 2 be an even integer.
Write n = 2r+1s, r ≥ 0, s ≥ 1 odd. Assume that F satisfies the following
conditions:

(a) I3(F ) is torsion-free

(b) For every [A] ∈ Br(F ) such that 2r+1[A] = 0, there exists A′, degA′ =
2r+1 such that [A′] = [A]
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(c) If r ≥ 1, assume str(F ) ≤ 2.

Then a quadratic form q is isomorphic to the trace form of a central simple
algebra of degree n if and only if the following conditions are satisfied :

1. dim q = n2

2. det q = (−1)
n(n−1)

2

3. signv q = ±n, for all v ∈ ΩF .

Before we begin the proof of this theorem, we need the following calculation.

Lemma 3.5. Let n = 2m, m ≥ 1, and assume F is a real closed field.

Let q+ = n〈1〉 ⊥ n(n− 1)

2
H and let q− = n〈−1〉 ⊥ n(n− 1)

2
H. Then

w2(q+) =
m(m− 1)

2
(−1,−1)F and w2(q−) =

(
m(m− 1)

2
+m

)
(−1,−1)F .

In particular, if m is odd, then w2(q+) 6= w2(q−).

Proof. Let A = Mn(F ) and let B = Mm((−1,−1)). Then degA = degB =
n and hence Theorem 1.1 implies sign(TA) = n and sign(TB) = −n. This
implies TA ' q+ and TB ' q−. In addition, Theorem 1.1 implies

w2(q+) = w2(TA) =
m(m− 1)

2
(−1,−1) +m[A] =

m(m− 1)

2
(−1,−1)

and

w2(q−) = w2(TB) =
m(m− 1)

2
(−1,−1) +m(−1,−1)

=

(
m(m− 1)

2
+m

)
(−1,−1).

The last statement of this Lemma is clear since (−1,−1)F 6= 0 if F is real
closed. 2

Proof of Theorem 3.4 Notice that property (a) implies that quadratic forms
are classified by dimension, determinant, Hasse-Witt invariant and signatures
(see [EL1]).
The necessity follows from Theorem 1.1. Now suppose q satisfies (1)-(3). As-
sume first that r = 0, so m is odd. By hypothesis, there exists a quaternion

algebra Q such that [Q] = w2(q) +
m(m− 1)

2
(−1,−1)F . Let A = Mm(Q).

Then

w2(TA) =
m(m− 1)

2
(−1,−1)F +m[Q] =

m(m− 1)

2
(−1,−1)F + [Q] = w2(q).

We have signv(TA) = n if and only if ResFv/F ([Q]) = 0, by Theorem 1.1, which

is equivalent to w2(qFv ) =
m(m− 1)

2
(−1,−1)Fv . This occurs if and only if
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qFv ' q+, by Lemma 3.5, since m is odd and signv(q) = ±n. Thus q and
TA have the same signatures. Since q and TA also have the same dimension,
determinant and Hasse-Witt invariant, it follows that they are isomorphic.
Assume now that r ≥ 1. Let B be a central simple algebra over F such that

[B] = w2(q) +
m(m− 1)

2
(−1,−1)F . Since m is even and signv(q) = ±n, it

follows from Lemma 3.5 that

ResFv/F ([B]) = ResFv/F (w2(q) +
m(m− 1)

2
(−1,−1)Fv ) = 0

for all v ∈ ΩF . By Theorem 2.7, there exists [A1] ∈ 2 Br(F )t such that 2r[A1] =
[B]. Let X = {v ∈ ΩF , signv q = n}. Since X is clopen and str(F ) ≤ 2,
we can use the ideas in the proof of Proposition 2.5 to find a central simple
algebra D over F such that 2[D] = 0 and such that [A2] = [A1] + [D] satisfies
ResFv/F [A2] = 0 if and only if signv(q) = n. Then 2r[A2] = [B] since r ≥ 1.
Since 2[B] = 0, we have 2r+1[A2] = 0, and so by assumption there exists a
central simple algebra A3, degA3 = 2r+1, such that [A3] = [A2]. Now set
A = Ms(A3), and note that A has degree n. Since A and A2 are Brauer
equivalent, q and TA have equal signatures by construction of A2. Since

m[A] = 2rs[A2] = s[B] = [B] =
m(m− 1)

2
(−1,−1)F + w2(q),

it follows that w2(TA) =
m(m− 1)

2
(−1,−1)F +m[A] = w2(q). Thus q and TA

are isomorphic, since they have the same dimension, determinant, Hasse-Witt
invariant, and signature. 2

Corollary 3.6. Assume F satisfies the following conditions.

(a) I3(F ) is torsion-free

(b′) For every r ≥ 0 and for every [A] ∈ Br(F ) such that 2r+1[A] = 0, there
exists A′, degA′ = 2r+1 such that [A′] = [A].

Then a quadratic form q is isomorphic to the trace form of a central simple
algebra of degree n if and only if the following conditions are satisfied :

1. dim q = n2

2. det q = (−1)
n(n−1)

2

3. signv q = ±n, for all v ∈ ΩF .

Proof. This follows immediately from the Theorem 3.4 and the following
observation. Condition (b′) with r = 0 implies that F is a linked field. That is,
a sum of quaternion algebras defined over F is similar to another quaternion
algebra defined over F . A theorem of Elman ([E]) states that a field F is linked
and has I3(F )t = 0 if and only if ũ(F ) ≤ 4. It is known that if ũ(F ) < ∞,
then F is a SAP field (see [ELP]). Thus condition (c) in Theorem 3.4 holds
automatically in the situation of Corollary 3.6. 2
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Remark 3.7. Condition (b) is realized for example when expA = indA for ev-
ery central simple algebra. In particular, it is the case when every central simple
algebra is cyclic. For example, condition (b) holds for local fields, global fields
or quotient fields of excellent two-dimensional local domains with algebraically
closed residue fields of characteristic zero, e.g. finite extensions of C((X,Y ))
(see [CTOP], Theorem 2.1 for the last example and [CF] for the others). Such
fields also satisfy condition (a). This is well-known for local fields and global
fields (see [CF]). If F is a field of the last type, then I3(F ) = 0 (see [CTOP],
Corollary 3.3).

We finish this paper giving a local-global principle for trace forms over global
fields.

Corollary 3.8. Let F be a global field of characteristic different from 2, and
let n = 2m ≥ 2 be an even integer. Then a quadratic form q over F is
isomorphic to the trace form of a central simple algebra of degree n defined
over F if and only if q is isomorphic to the trace form of a central simple
algebra of degree n defined over all completions of F .

Proof. Assume that q is a trace form over all completions of F . Then dim q =

n2. By assumption, (−1)
n(n−1)

2 det q is a nonzero square over all completions

of F , so it is a nonzero square in F , and hence det q = (−1)
n(n−1)

2 ∈ F×/F×2.
Since q is a trace form over all real completions of F , we have signv q = ±n for
all real places v of F , according to whether qFv is isomorphic to the trace form
of the split algebra or that of Mm((−1,−1)Fv ). Now apply Theorem 3.4. The
other implication is clear, since (TA)L ' TA⊗L for every central simple algebra
over F , and every field extension L/F . 2

The fact that qFp
' TAp

for all places p implies that q ' TA does not mean
that A⊗ Fp ' Ap for all places. We sketch below the construction of a coun-
terexample.

Example 3.9. We refer to [CF] for the definition of invp and the theorems con-
cerning central simple algebras over global fields.
Assume n ≡ 0 [8]. Let p1, p2 be two places of F . For i = 1, 2, let Ai be a

central simple of degree n over Fpi such that invpi [Ai] =
1

n
, and let Ap be

Mn(Fp) for the other places over F . Now let qp be the trace form of Ap. We

have w2(qp) 6= 0 if and only if p = p1, p2. Moreover det qp = (−1)
n(n−1)

2 for all
p, so by [Sc], 6.6.10, there exists a quadratic form q over F such that qFp

' qp.
So q is locally a trace form, then q is the trace form of some central simple
algebra A over F , but we can never have A⊗Fp ' Ap for all p. Otherwise, we
will have

∑
invp([A]) = 0 ∈ Q/Z, which is not the case by choice of the Ap’s.
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Abstract. Let M be a motive which is defined over a number field
and admits an action of a finite dimensional semisimple Q-algebra A.
We formulate and study a conjecture for the leading coefficient of the
Taylor expansion at 0 of the A-equivariant L-function of M . This con-
jecture simultaneously generalizes and refines the Tamagawa number
conjecture of Bloch, Kato, Fontaine, Perrin-Riou et al. and also the
central conjectures of classical Galois module theory as developed by
Fröhlich, Chinburg, M. Taylor et al. The precise formulation of our
conjecture depends upon the choice of an order A in A for which there
exists a ‘projective A-structure’ on M . The existence of such a struc-
ture is guaranteed if A is a maximal order, and also occurs in many
natural examples where A is non-maximal. In each such case the
conjecture with respect to a non-maximal order refines the conjecture
with respect to a maximal order. We develop a theory of determinant
functors for all orders in A by making use of the category of virtual
objects introduced by Deligne.

2000 Mathematics Subject Classification: Primary 11G40; Secondary
11R65 19A31 19B28

1. Introduction

The study of values of L-functions attached to varieties over number fields oc-
cupies a prominent place in number theory and has led to some remarkably
general conjectures. A seminal step was made by Bloch and Kato who con-
jecturally described up to sign the leading coefficient at zero of L-functions
attached to motives of negative weight [4]. A little later, Fontaine and Perrin-
Riou and (independently) Kato used the determinant functor to extend this
conjecture to motives of any weight and with commutative coefficients, thereby
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taking into account the action of endomorphisms of the variety under consid-
eration (cf. [19, 20, 27, 28]). In this article we shall formulate and study a
yet more general conjecture which deals with motives with coefficients which
need not be commutative and which in the commutative case recovers all of the
above conjectures. We remark that the motivation for such a general conjecture
is that in many natural cases, ranging from the central conjectures of classical
Galois module theory to the recent attempts to develop an Iwasawa theory for
elliptic curves which do not possess complex multiplication, it is necessary to
consider motives with respect to coefficients which are not commutative.
We now fix a motive M which is defined over a number field K and carries an
action of a finite dimensional semisimple Q-algebra A. The precise formulation
of our conjecture depends upon the choice of an order A in A for which there
exists a ‘projective A-structure’ on M (as defined in §3.3). We observe that
if A is any maximal order in A (as in the case considered by Fontaine and
Perrin-Riou in [19]), then there always exists a projective A-structure on M ,
and in addition that if M arises by base change of a motive through a finite
Galois extension L/K and A := Q[G] with G := Gal(L/K) (as in the case
considered by Kato in [27]), then there exists a projective Z[G]-structure on
M . In general, we find that if there exists a projective A-structure on M , then
there also exists a projective A′-structure on M for any order A ⊂ A′ ⊂ A
but that the conjecture which we formulate for the pair (M,A′) is (in general
strictly) weaker than that for the pair (M,A). This observation is important
since we shall show that there are several natural examples (such as the case
A = Z[G] described above) in which projective structures exist with respect to
orders which are not maximal.
The key difficulty encountered when attempting to formulate Tamagawa num-
ber conjectures with respect to non-commutative coefficients is the fact that
there is no determinant functor over non-commutative rings. In this article we
circumvent this difficulty by making systematic use of the notion of ‘categories
of virtual objects’ as described by Deligne in [17]. In our approach Tamagawa
numbers are then elements of a relative algebraic K-group K0(A,R) and the
Tamagawa number conjecture is an identity in this group. The group K0(A,R)
is the relative K0 which arises from the inclusion of rings A → AR := A⊗Q R
and hence lies in a natural long exact sequence

K1(A)→ K1(AR)→ K0(A,R)→ K0(A)→ K0(AR).

We remark that in the non-equivariant setting originally considered by Bloch
and Kato [4] one has A = Z, A = Q and K0(A,R) ∼= R×/Z×. This latter
quotient identifies with the group of positive real numbers, and hence in this
case Tamagawa numbers can be interpreted as volumes. For motives with non-
commutative coefficients however, the only way we have at present been able
to formulate a conjecture is by use of the group K0(A,R).
The basic content of this article is as follows. Various algebraic preliminar-
ies relating to determinant functors, categories of virtual objects and relative
algebraic K-theory, which may themselves be of some independent interest,
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are given in §2. In §3 we recall preliminaries on motives, define the notion
of a ‘projective A-structure’ on M and give several natural examples of this
notion. We henceforth assume that A is an order in A for which there exists
a projective A-structure on M . In the remainder of §3 we combine the results
of §2 with certain standard assumptions on motives to define a canonical el-
ement RΩ(M,A) of K0(A,R). In §4 we review the A-equivariant L-function
L(AM, s) of M . This is a meromorphic function of the complex variable s
which takes values in the center ζ(AC) of AC := A⊗QC, and the leading coeffi-
cient L∗(AM, 0) in its Taylor expansion at s = 0 belongs to the group of units
ζ(AR)× of ζ(AR). We also define a canonical ‘extended boundary homomor-

phism’ δ̂1
A,R : ζ(AR)× → K0(A,R) which has the property that the composite

of δ̂1
A,R with the reduced norm map K1(AR)→ ζ(AR)× is equal to the bound-

ary homomorphism K1(AR)→ K0(A,R) which occurs in the above long exact
sequence. We then formulate the central conjecture of this article (Conjecture
4) which states that

δ̂1
A,R(L∗(AM, 0)) = −RΩ(M,A) in K0(A,R).

We remark that our use of the map δ̂1
A,R in this context is motivated by the

central conjectures of classical Galois module theory. In the remainder of §4 we
review some of the current evidence for our conjecture, establish its standard
functorial properties and also derive several interesting consequences of these
functorial properties. Finally, in §5 we use the Artin-Verdier Duality Theorem
to investigate the compatibility of our conjecture with the functional equation
of L(AM, s).
In a sequel to this article [11] we shall give further evidence for our general
conjectures by relating them to classical Galois module theory (in particular,
to certain much studied conjectures of Chinburg [13, 14]) and by proving them
in several nontrivial cases. In particular, we prove the validity of our central
conjecture for pairs (M,A) = (h0(Spec(L)),Z[Gal(L/K)]) where K = Q and
L/Q belongs to an infinite family of Galois extensions for which Gal(L/Q) is
isomorphic to the Quaternion group of order 8.
This article together with its sequel [11] subsumes the contents of an earlier
preprint of the same title, and also of the preprint [10]. In the preprint [5]
the first named author described an earlier approach to formulating Tamagawa
number conjectures with respect to non-commutative coefficients, by using the
notions of ‘trivialized perfect complex’ and ‘refined Euler characteristic’ (cf.
Remark 4 in §2.8 in this regard). However, by making systematic use of vir-
tual objects the approach adopted here seems to be both more flexible and
transparent, and in particular allows us to prove the basic properties of our
construction in a very natural manner.

We would like to thank P. Deligne for a number of very valuable comments.

2. Determinant functors for orders in semisimple algebras
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2.1. Picard categories. This section introduces the natural target cate-
gories for our generalized determinant functors. Recall that a groupoid is a
nonempty category in which all morphisms are isomorphisms. A Picard cat-
egory P is a groupoid equipped with a bifunctor (L,M) → L £M with an
associativity constraint [32] and so that all the functors − £M , M £ − for
a fixed object M are autoequivalences of P. In a Picard category there ex-
ists a unit object 1P , unique up to unique isomorphism, and for each object
M an inverse M−1, unique up to unique isomorphism, with an isomorphism
M £ M−1 ∼−→ 1P . For a Picard category P define π0(P) to be the group
of isomorphism classes of objects of P (with product induced by £), and set
π1(P) := AutP(1P). We shall only have occasion to consider commutative Pi-
card categories in which £ also satisfies a commutativity constraint [32] and
for which π0(P) is therefore abelian. The group π1(P) is always abelian. A
monoidal functor F : P1 → P2 between Picard categories induces homomor-
phisms πi(F ) : πi(P1) → πi(P2) for i ∈ {0, 1}, and F is an equivalence of
categories if and only if πi(F ) is an isomorphism for both i ∈ {0, 1} (by a
monoidal functor we mean a strong monoidal functor as defined in [31][Ch.
XI.2]).

2.2. The fibre product of categories. Let Fi : Pi → P3, i ∈ {1, 2}
be functors between categories and consider the fibre product category P4 :=
P1 ×P3

P2 [2, Ch. VII, §3]

P4
G2−−−−→ P2yG1

yF2

P1
F1−−−−→ P3.

(1)

Explicitly, P4 is the category with objects (L1, L2, λ) with Li ∈ Ob(Pi) for i ∈
{1, 2} and λ : F1(L1)

∼−→ F2(L2) an isomorphism in P3, and where morphisms
α : (L1, L2, λ) → (L′1, L

′
2, λ
′) are pairs α = (α1, α2) with αi ∈ HomPi(Li, L

′
i)

so that the diagram

F1(L1)
F1(α1)−−−−→ F1(L′1)

yλ
yλ′

F2(L2)
F2(α2)−−−−→ F2(L′2)

in P3 commutes. If P5 is a category, Hi : P5 → Pi for i ∈ {1, 2} functors and
β : F1 ◦H1

∼= F2 ◦H2 a natural isomorphism, then there exists a unique functor
H : P5 → P4 with Hi = Gi ◦ H for i ∈ {1, 2} and such that β is induced by
the natural isomorphism F1 ◦ G1

∼= F2 ◦ G2. If Pi for i ∈ {1, 2, 3} are Picard
categories and F1 and F2 are monoidal functors, then the fibre product category
P4 is a Picard category with product (L1, L2, λ)£ (L′1, L

′
2, λ
′) = (L1£L′1, L2£

L′2, λ£ λ′) and the functors Gi : P4 → Pi for i ∈ {1, 2} are both monoidal.
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Lemma 1. (Mayer-Vietoris sequence) For a fibre product diagram (1) of Picard
categories one has an exact sequence

0→ π1(P4)
(π1(G1),π1(G2))−−−−−−−−−−→ π1(P1)⊕ π1(P2)

π1(F1)−π1(F2)−−−−−−−−−→ π1(P3)
δ−→

→ π0(P4)
(π0(G1),π0(G2))−−−−−−−−−−→ π0(P1)⊕ π0(P2)

π0(F1)−π0(F2)−−−−−−−−−→ π0(P3).

Proof. The map δ is defined by δ(β) = (1P1
,1P2

, β). Given the explicit de-
scription of π0(−) and π1(−) it is an elementary computation to establish the
exactness of this sequence. A general Mayer-Vietoris sequence for categories
with product can be found in [2, Ch. VII, Th. (4.3)]. For Picard categories
this sequence specialises to our Lemma (except for the injectivity of the first
map). ¤

2.3. Determinant functors and virtual objects. Let E be an exact
category [38, p. 91] and (E , is) the subcategory of all isomorphisms in E . The
main example we have in mind is the category PMod(R) of finitely generated
projective modules over a (not necessarily commutative) ring R. By a deter-
minant functor we mean a Picard category P together with the following data.

a) A functor [ ] : (E , is)→ P.
b) For each short exact sequence

Σ : 0→ E′ → E → E′′ → 0

a morphism [Σ] : [E]
∼−→ [E′]£ [E′′] in P, functorial for isomorphisms of

short exact sequences.
c) For each zero object 0 in E an isomorphism

ζ(0) : [0]
∼−→ 1P .

This data is subject to the following axioms.

d) For an isomorphism φ : E → E′ and Σ the exact sequence 0 → E → E ′

(resp. E → E′ → 0) [φ] (resp. [φ−1]) is the composite map

[E]
[Σ]−−→ [0]£ [E′]

ζ(0)£id−−−−−→ [E′]

(resp.

[E′]
[Σ]−−→ [E]£ [0]

ζ(0)£id−−−−−→ [E]).

e) For admissible subobjects 0 ⊆ E ′′ ⊆ E′ ⊆ E of an object E of E the
diagram

[E] −−−−→ [E′′]£ [E/E′′]
y

y

[E′]£ [E/E′] −−−−→ [E′′]£ [E′/E′′]£ [E/E′]

in P commutes.
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The terminology here is borrowed from the key example in which E is the
category of vector bundles on a scheme, P is the category of line bundles and
the functor is taking the highest exterior power (see §2.5 below). However, as
was shown by Deligne in [17, §4], there exists a universal determinant functor
for any given exact category E . More precisely, there exists a Picard category
V (E), called the ‘category of virtual objects’ of E , together with data a)-c)
which in addition to d) and e) also satisfies the following universal property.

f) For any Picard category P the category of monoidal functors

Hom£(V (E),P) is naturally equivalent to the category of determinant
functors (E , is)→ P.

Although comparatively inexplicit it is this construction which works best for
the purposes of this paper.
We recall that the category V (E) has a commutativity constraint defined as
follows. Let

τE′,E′′ : [E′]£ [E′′]
[Σ1]←−−− [E′ ⊕E′′] [Σ2]−−→ [E′′]£ [E′]

be the isomorphism induced by the short exact sequences

Σ1 : 0→ E′ → E′ ⊕ E′′ → E′′ → 0

Σ2 : 0→ E′′ → E′ ⊕ E′′ → E′ → 0.

Replacing [Σ] by τE′,E′′ ◦ [Σ] yields a datum a), b), c) with values in V (E)£−op,
the Picard category with product (L,M) 7→ M £ L, and satisfying d),e). By
the universal property f) of V (E), this corresponds to a monoidal functor F :
V (E)→ V (E)£−op. Since we have only changed the value of [ ] on short exact
sequences, F is the identity on objects and morphisms and so the monoidality
of F gives a commutativity constraint on V (E).
The proof of the existence of V (E) in [17, §4.2-5] also gives a topological model
of V (E) which in turn implies that there are isomorphisms

Ki(E)
∼−→ πi(V (E))(2)

with the algebraic K-groups of the exact category E (see [38]) for i ∈ {0, 1}. An
exact functor F : E → E ′ induces a datum a),b),c) on E with values in V (E ′)
and hence by f) a monoidal functor V (F ) : V (E) → V (E ′). The isomorphism
(2) then commutes with the maps induced by F on Ki(E) and by V (F ) on
πi(V (E)) for i ∈ {0, 1}. Moreover, for i = 0 the isomorphism (2) is the map
induced by the functor [ ], and for i = 1 the element in K1(E) represented by

φ ∈ AutE(P ) is sent to [φ]£ id([P ]
−1

) under (2).

2.4. Projective modules and extension to the derived category.
For a ring R denote by PMod(R) the exact category of finitely generated
projective left-R-modules and put V (R) := V (PMod(R)). For a ring homo-
morphism R → R′ we denote by R′ ⊗R − both the scalar extension functor
PMod(R) → PMod(R′) and also the induced functor V (R) → V (R′). It is
known that the Whitehead group K1(R) := K1(PMod(R)) of R is generated
by automorphisms of objects of PMod(R).
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We write D(R) for the derived category of the homotopy category of complexes
of R-modules, and Dp(R) for the full triangulated subcategory of D(R) which
consists of perfect complexes. We say that an R-module X is perfect if the
associated complex X[0] belongs to Dp(R), and we write Dp,p(R) for the full
subcategory of Dp(R) consisting of those objects for which the cohomology
modules are perfect in all degrees. The association X 7→ X[0] gives a full
embedding of PMod(R) into Dp(R).
In what follows we use the term ‘true triangle’ as synonymous for ‘short ex-
act sequence of complexes’. By a ‘true nine term diagram’ we shall mean a
commutative diagram of complexes of the form

X
u−→ Y

v−→ Z

f

y g

y h

y

X ′
u′−→ Y ′

v′−→ Z ′

f ′
y g′

y h′
y

X ′′
u′′−→ Y ′′

v′′−→ Z ′′

(3)

in which all of the rows and columns are true triangles.

Proposition 2.1. The functor [ ] : (PMod(R), is)→ V (R) extends to a functor
[ ] : (Dp(R), is)→ V (R). Moreover, for each true triangle

E = E(u, v) : X
u−→ Y

v−→ Z

in which X,Y, Z are objects of Dp(R) there exists an isomorphism [E] : [Y ]
∼−→

[X]£ [Z] in V (R) which satisfies all of the following conditions:

a) If

X
u−−−−→ Y

v−−−−→ Z

f

y g

y h

y

X ′
u′−−−−→ Y ′

v′−−−−→ Z ′

is a commutative diagram of true triangles and f, g, h are all quasi-
isomorphisms, then [f ]£ [h] ◦ [E(u, v)] ◦ [g]

−1
= [E(u′, v′)].

b) If u (resp. v) is a quasi-isomorphism, then [E] = [u]
−1

(resp. [E] = [v]).
c) [ ] commutes with the functors induced by any ring extension R→ R′ and

for any true triangle E we have R′ ⊗R [E] = [R′ ⊗R E].
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d) For any true nine term diagram (3) in which all terms are objects of
Dp(R), the diagram

[Y ′]
[E(u′,v′)]−−−−−−→ [X ′]£ [Z ′]

y[E(g,g′)]

y[E(f,f ′)]£[E(h,h′)]

[Y ]£ [Y ′′]
[E(u,v)]£[E(u′′,v′′)]−−−−−−−−−−−−−→ [X]£ [Z]£ [X ′′]£ [Z ′′]

in V (R) commutes. (Note that we have suppressed any explicit reference
to commutativity constraints in the above diagram).

e) For any object X of Dp,p(R) there exists a canonical isomorphism

[X]
∼−→ £

i∈Z
[Hi(X)]

(−1)i
(4)

which is functorial with respect to quasi-isomorphisms.

Proof. This follows directly from [30, Prop. 4, Th. 2] where the same statement
is proved for the determinant functor over a commutative ring R (see §2.5
below). Indeed, since the only properties of the determinant functor used in
that proof are those listed in [loc. cit., Prop. 1] and all of these properties are
satisfied by the functor [ ] (see [17, Lem. 4.8] for nine term diagrams) these
arguments apply to give the desired extension of [ ] to Dp(R) with properties
a)-d). For e) see [30, Rem. b) after Th. 2]. ¤

Remark 1. As pointed out in [30, Rem. before Prop. 6], it is not possible
to construct isomorphisms [E] for all exact triangles E in Dp(R) in such a
way that the obvious generalisations of properties a)-d) hold. On the subcat-
egory Dp,p(R), however, one can at least construct isomorphisms so that a)-c)
hold and so that d) holds under further assumptions (for example, that one of
Y,X ′, Z ′ or Y ′′ is acyclic, or that X ′′ acyclic and HomDp(R)(X,w) = 0 where

w is such that Z[−1]
w−→ X

u−→ Y
v−→ Z is an exact triangle).

2.5. Commutative rings. If R is a commutative ring, then one can consider
the Picard category P(R) of graded line bundles on Spec(R) [30]. Recall that a
graded line bundle is a pair (L,α) consisting of an invertible (that is, projective
rank one) R-module L and a locally constant function α : Spec(R) → Z. A
homomorphism h : (L,α) → (M,β) is a module homomorphism h : L →
M such that α(p) 6= β(p) implies hp = 0 for all p ∈ Spec(R), and P(R) is
the category of graded line bundles and isomorphisms of such. The category
P(R) is a symmetric monoidal category with tensor product (L,α)⊗ (M,β) :=
(L ⊗R M,α + β), the usual associativity constraint, unit object (R, 0), and
commutativity constraint

ψ(l ⊗m) := ψ(L,α),(M,β)(l ⊗m) = (−1)α(p)β(p)m⊗ l(5)
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for local sections l ∈ Lp and m ∈ Mp. For a finitely generated projective
R-module P one defines

DetR(P ) := (
∧rankR(P )

R
P, rankR(P )) ∈ Ob(P(R)).

The functor DetR : (PMod(R), is) → P(R) is equipped with the data b) and
c) of §2.3 and satisfies d) and e). Hence by f) there exists a unique monoidal
functor

VDetR : V (R)→ P(R),

which is also compatible with the commutativity constraints (this is the reason
for the choice of signs in (5)). The functor VDetR is an equivalence of categories
if and only if the natural maps

K0(R)→ Pic(R)×H0(Spec(R),Z)(6)

K1(R)→ R×

are both bijective. For any commutative ring R, these maps are split surjections
by [24, Exp. I, 6.11-6.14; Exp. X, Th. 5.3.2], [43, (1.8)]. They are known to
be bijective if, for example, R is either a local ring, a semisimple ring or the
ring of integers in a number field.

2.6. Semisimple rings. We recall here some facts about K0(R) and K1(R)
for semisimple rings R. For the moment we let F be any field and assume that
R is a central simple algebra over F . We fix a finite extension F ′/F so that
R′ := R⊗F F ′ ∼= Mn(F ′) and an indecomposable idempotent e of R′.
The map V 7→ dimF ′ e(V ⊗F F ′) is additive in V ∈ Ob(PMod(R)) and therefore
induces a homomorphism

rrR : K0(R)→ Z.

This ‘reduced rank’ homomorphism is injective and has image [EndR(S) : F ]
1
2Z

where here S is the unique simple R-module. Similarly, if φ ∈ EndR(V ), then
we set detred(φ) := detF ′(φ⊗ 1|e(V ⊗F F ′)). This is an element of F which is
independent of the choices of both F ′ and e. Recalling that K1(R) is generated
by pairs (V, φ) with φ ∈ AutR(V ) it is not hard to show that detred induces a
homomorphism

nrR : K1(R)→ F×

(cf. [15, §45A]). This ‘reduced norm’ homomorphism is in general neither
injective nor surjective.

Proposition 2.2. If F is either a local or a global field, then nrR is injec-
tive. If F is a local field different from R, then nrR is bijective. If F = R,
then im(nrR) = (R×)2 if R is a matrix algebra over the division ring of real
quaternions, and im(nrR) = R× otherwise. Finally, if F is a number field, then

im(nrR) = {f ∈ F× : fv > 0 for all v ∈ SA(F )}(7)
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where SA(F ) denotes the set of places v of F such that Fv = R and A⊗F,v R
is a matrix algebra over the division ring of real quaternions.

Proof. See [15, (45.3)] ¤

If now R is a general semisimple ring, then the above considerations apply to
each of the Wedderburn factors of R. The center ζ(R) of R is a product of
fields and we obtain maps

rrR : K0(R)→ H0(Spec (ζ(R)),Z), nrR : K1(R)→ ζ(R)×.

If R is finite dimensional over either a local or a global field, then both of these
maps are injective.

Lemma 2. If R is any semisimple ring, then the maps rrR and nrR are both
induced by a determinant functor (PMod(R), is)→ P(ζ(R)).

Proof. We first observe that the target group of rrR (resp. nrR) does indeed
coincide with π0(P(ζ(R))) (resp. π1(P(ζ(R)))).
To construct a determinant functor it is clearly sufficient to restrict attention to
each Wedderburn factor of R. Such a factor is isomorphic to Mn(D), say, where
D is a division ring with center F . By fixing an exact (Morita) equivalence
PMod(Mn(D)) → PMod(D), it therefore suffices to construct a determinant
functor for D. To this end we suppose that F ′/F is a field extension such that
D⊗F F ′ ∼= Md(F

′), that e is an indecomposable idempotent of Md(F
′) and that

e1, .., ed is an ordered F ′-basis of eMd(F
′). Any finitely generated projective

D-module V is free, and for any D-basis v1, .., vr of V the wedge product b :=∧
eivj (with the ei in the fixed ordering) is an F ′-basis of DetF ′(e(V ⊗F F ′)).

Since any change of basis vi multiplies b by an element of im(nrD) ⊆ F×, the
F -space spanned by b yields a well defined graded F -line bundle. ¤

This result shows that if the maps rrR and nrR are both injective, then one
can dispense with virtual objects and instead use an explicit functor to graded
line bundles over ζ(R). However, this approach no longer seems to be possible
when one considers orders in non-commutative semisimple algebras, and it is
in this setting that the existence of virtual objects will be most useful for us.

2.7. Orders in finite-dimensional Q-algebras. Let A be a finite-
dimensional Q-algebra (associative and unital but not necessarily commuta-
tive) and put AF := A⊗Q F for any field F of characteristic zero. For brevity
we write Ap for AQp . Let R be a finitely generated subring of Q. We call
an R-subalgebra A of A an R-order if A is a finitely generated R-module and
A ⊗Z Q = A. We shall refer to a Z-order more simply as an order. For any
order A we set Ap := A ⊗Z Zp, Â := A ⊗Z Ẑ ∼=

∏
p Ap and Â := A ⊗Z Ẑ. The
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diagram of exact categories and exact (scalar extension) functors

PMod(A) −−−−→ PMod(A)
y

y

PMod(Â) −−−−→ PMod(Â)

induces a corresponding diagram of Picard categories and monoidal functors.
These diagrams commute up to a natural equivalence of functors. By the
universal property of the fibre product category we therefore obtain a monoidal
functor

V (A)→ V (Â)×V (Â) V (A) =: V(A).(8)

We use the notation V(A) in an attempt to stress the adelic nature of V(−).

Proposition 2.3. The functor (8) induces an isomorphism on π0 and a sur-
jection on π1.

Proof. There is a map of long exact Mayer-Vietoris sequences

−→ K1(A) −→ K1(Â)⊕K1(A) −→ K1(Â) −→ ...
y

y
y

0 −→ π1(V(A)) −→ π1(V (Â))⊕ π1(V (A)) −→ π1(V (Â)) −→ ...

... −→ K0(A) −→ K0(Â)⊕K0(A) −→ K0(Â)
y

y
y

... −→ π0(V(A)) −→ π0(V (Â))⊕ π0(V (A)) −→ π0(V (Â))

where the top sequence can be found in [15, (42.19)], the bottom sequence
arises from Lemma 1 and the vertical maps are the isomorphisms (2) or, in
the case of Ki(A), the isomorphisms (2) composed with the map induced by
(8). The commutativity of the diagram follows from the naturality of (2) and,
in the case of the boundary map, from an elementary computation using the
explicit description of K1(−) (cf. [15, (38.28), (40.6)]). The statement of the
proposition is then an easy consequence of the Five Lemma. ¤

Remark 2. The functor (8) may fail to be an equivalence of categories even
if A is commutative. Indeed, the map K1(A) → π1(V(A)) is an isomorphism

if and only if the map K1(A) → K1(Â) ⊕K1(A) is injective. This injectivity
condition fails for A = Z[G] where G is any finite abelian group for which
SK1(Z[G]) is nontrivial (see [15, Rem. after (48.8)] for examples of such groups
G) because Zp[G] is then a product of local rings and therefore SK1(Zp[G]) = 0.
However, if A is semisimple and A is a maximal order, then the functor (8) is
an equivalence of Picard categories. Indeed, under these hypotheses one can
use the Wedderburn decompositions of A and A and the Morita invariance of
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each functor Ki(−) in order to reduce to the case in which A is a division ring.

In this case the injectivity of K1(A)→ K1(Â)⊕K1(A) is a consequence of [15,
(45.15)].

Proposition 2.3 is crucial in what follows because it allows us to work in a
Picard category V(A) which has the ‘correct’ π0 and in which objects localize
in a similar manner to graded line bundles. Indeed, as the following result
shows, it is quite reasonable to regard V(A) as a generalisation of the category
P(A) to orders which need not be commutative.

Proposition 2.4. If A is a finite flat commutative Z-algebra, then there is a
natural equivalence of Picard categories P(A)

∼−→ V(A).

Proof. We shall show that the natural monoidal functors in the diagram

V(A) = V (Â)×V (Â) V (A)
yD̂:=VDetÂ×VDetA

P(A) −−−−→ P(Â)×P(Â) P(A)

(9)

are equivalences of Picard categories.
We recall that a ring R is said to be local (resp. semilocal) if R/J(R) is a
division ring (resp. is semisimple) where J(R) denotes the Jacobson radical of
R.

Lemma 3. a) Suppose R =
∏
Rι is a (possibly infinite) product of semilocal

rings Rι. Then the natural map Ki(R) → ∏
Ki(Rι) is injective for i = 0 and

bijective for i = 1.
b) If R =

∏
Rι with each Rι local and commutative, then the functor VDetR

is an equivalence.

Proof. For a semilocal ring Rι finitely generated projective modules Pι and P ′ι
are isomorphic if and only if their classes in K0(Rι) agree (see the discussion
after [15, (40.35)]). In addition, for any finitely generated projective R-module
P the natural map P → ∏

ι P ⊗R Rι is an isomorphism since both sides are
additive and the map is an isomorphism for P = R. Hence the isomorphism
class of P can be recovered from its image in

∏
K0(Rι), and this implies a) for

i = 0.
For any ring R we have K1(R) = lim−→ nGLn(R)/En(R) where En(R) is the

subgroup generated by elementary matrices [15, (40.26)]. If R is semilocal,
then the map GLn(R)/En(R) → K1(R) is an isomorphism for n ≥ 2 [15,
(40.31), (40.44)]. In addition, the minimal number of generators needed to
express a matrix in En(Rι) as a product of elementary matrices is bounded,
depending on n but not on Rι [15, (40.31)]. Hence En(

∏
Rι) =

∏
En(Rι) and
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this implies that

K1(R) = K1(
∏

Rι) ∼= lim−→ n

∏
GLn(Rι)/En(Rι)

∼= lim−→ n

∏
K1(Rι) ∼=

∏
K1(Rι),

i.e. statement a) for i = 1.
We remark now that b) follows from a) by using the decompositionR× =

∏
R×ι ,

the fact that the functors VDetRι are equivalences, and the fact that the image
of the map

K0(R)→
∏

K0(Rι) =
∏

H0(Spec(Rι),Z)

lies in (and is therefore isomorphic to) the subgroup H0(Spec(R),Z). ¤

The functor VDetÂ in (9) is an equivalence by Lemma 3b) since Â is a fi-

nite continuous commutative Ẑ-algebra and hence a product of local rings.
Similarly, VDetA is an equivalence since A is Artinian and commutative and
hence a product of local rings. The ring Â is a filtered direct limit of rings
AS :=

∏
p∈S Ap ×

∏
p/∈S Ap for finite sets of primes S. As the ring AS is like-

wise a product of local rings the functor VDetAS is also an equivalence. It
follows that in the commutative diagram

lim−→ S πi(V (AS)) −−−−→ πi(V (Â))
y πi(VDetÂ)

y

lim−→ S πi(P(AS)) −−−−→ πi(P(Â))

the left hand vertical map is an isomorphism. Furthermore, the upper hori-
zontal map is an isomorphism by (2) and [43, Lem. 5.9], and the lower hori-

zontal map is an isomorphism for i = 0 (resp. i = 1) since H0(Spec(Â),Z) =
lim−→ S H

0(Spec(AS),Z) by [23, 8.2.11] and the fact that an affine scheme is

quasi-compact (resp. since Â× = lim−→ S A×S ).

We deduce that VDetÂ, and as a consequence also D̂, is an equivalence of
Picard categories. It is known that the map (6) is an isomorphism for R = A
because A is Noetherian of dimension 1 [24, Exp. VI 6.9]. Using Proposition
2.3 we find an isomorphism

π0(P(A)) = Pic(A)×H0(Spec(A),Z)
∼←− K0(A)

∼−→ π0(V(A))
π0(D̂)−−−−→ π0(P(Â)×P(Â) P(A)).

This isomorphism coincides with π0 of the lower horizontal functor in (9).

Moreover, from the Mayer-Vietoris sequence for the fibre product P(Â)×P(Â)

P(A) one easily deduces that

π1(P(A)) = A× ∼= π1(P(Â)×P(Â) P(A)).
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Hence the lower horizontal functor in (9) is an equivalence, and this finishes
the proof of Proposition 2.4. ¤

This proposition makes it reasonable to think of objects of V(A) as generalized
graded line bundles. We invite the reader to do so when following the rest of
this paper.

Lemma 4. Assume that A is semisimple. Then the natural functor

V(A) = V (Â)×V (Â) V (A)→
∏

p

V (Ap)×∏
p V (Ap) V (A)

induces an injection on π0 and an isomorphism on π1.

Proof. By using Mayer-Vietoris sequences and the Five Lemma it suffices to
show that the maps K1(Â)→ ∏

pK1(Ap) and K0(Â)→ ∏
pK0(Ap) are injec-

tive, and that the map K1(Â) → ∏
pK1(Ap) is bijective. For the latter two

maps this is immediate from Lemma 3a). Since

K1(Â) = lim−→ SK1(
∏

p∈S
Ap ×

∏

p/∈S
Ap) ∼=

∏

p∈S
K1(Ap)×

∏

p/∈S
K1(Ap)

is a limit over finite sets S it therefore suffices to show that the map K1(Ap)→
K1(Ap) is injective for any sufficiently large p. To prove this we may assume
that Ap is a product of matrix algebras over finite field extensions F of Qp and
that Ap is the corresponding product of matrix algebras over integer rings OF .
By Morita equivalence the required result thus follows from the injectivity of
the natural map K1(OF ) = O×F → K1(F×) = F×. ¤

Remark 3. We believe that the assertion of Lemma 4 may well continue to hold
without the assumption that A is semisimple, but we have no need for such
additional generality in what follows.

2.8. The relative K0. Let P0 be the Picard category with unique object 1P0

and AutP0
(1P0

) = 0. For A and A as in §2.7 and an extension field F of Q we
define V(A, F ) to be the fibre product category in the diagram

V(A, F ) := V(A)×V (AF ) P0 −−−−→ P0y
yF2

V(A)
F1−−−−→ V (AF )

where here F2 is the unique monoidal functor and F1((L,M, λ)) = M ⊗A
AF for each object (L,M, λ) of V(A). We define the category V (Ap,Qp) :=
V (Ap)×V (Ap) P0 in a similar manner.
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Proposition 2.5. For any field extension F of Q one has an isomorphism

π0V(A, F )
∼−→ K0(A, F ),

and for any prime p an isomorphism

π0V (Ap,Qp)
∼−→ K0(Ap,Qp),

where the respective right hand sides are the relative algebraic K-groups as
defined in [44, p. 215].

Proof. We recall that K0(A, F ) is an abelian group with generators (X, g, Y ),
where X and Y are finitely generated projective A-modules and g : X ⊗Z F →
Y ⊗Z F is an isomorphism of AF -modules. For the defining relations we refer
to [44, p.215]. By using these relations one checks that the map

(X, g, Y ) 7→ ([X]£ [Y ]
−1
, [g]£ id([Y ⊗Z F ]

−1
) ∈ π0V(A, F )

induces a homomorphism c : K0(A, F )→ π0V(A, F ). This homomorphism fits
into a natural map of the relative K-theory exact sequence [44, Th. 15.5] to
the Mayer-Vietoris sequence of the fibre product defining V(A, F )

K1(A) −→ K1(AF )
δ1

A,F−−−→ K0(A, F )
δ0

A,F−−−→ K0(A) −→ K0(AF )
y

y c

y
y

y

π1V(A) −→ π1V (AF ) −→ π0V(A, F ) −→ π0V(A) −→ π0V (AF ).

The commutativity of this diagram is easy to check, given the explicit nature
of all of the maps involved. For example, δ0

A,F ((X, g, Y )) = [X] − [Y ], δ1
A,F

sends the element in K1(AF ) represented by an n× n-matrix g to (An, g,An)
and the vertical maps are as described above. Given the commutativity of
this diagram, the isomorphisms (2) combine with Proposition 2.3 and the Five
Lemma to imply that c is bijective. The proof for V (Ap,Qp) is entirely similar
using the long exact relative K-theory sequence

K1(Ap)→ K1(Ap)
δ1

Ap,Qp−−−−→ K0(Ap,Qp)
δ0

Ap,Qp−−−−→ K0(Ap)→ K0(Ap).(10)

¤

Remark 4. For any isomorphism λ : X → Y of AF -modules we write λTriv for
the isomorphism [λ] £ id([Y ]

−1
) : [X] £ [Y ]−1 ∼−→ 1V (AF ). For any Z-graded

module or morphism X• we write X+, resp. X−, for the direct sum of X i over
all even, resp. odd, indices i.
If P • is an object of the category PMod(A)• of bounded complexes of ob-
jects of PMod(R) and ψ an AF -equivariant isomorphism from H+(P •)⊗ F to
H−(P •)⊗ F , then we set

〈P •, ψ〉 :=([P+]£ [P−]−1, [H+(P •)⊗ F ]£ [H−(P •)⊗ F ]−1, h;ψTriv)

∈V(A, F ),
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where here h denotes the composite of the canonical isomorphism

[P+ ⊗ F ]£ [P− ⊗ F ]−1 ∼−→ [P • ⊗ F ],

the isomorphism (4) for X = P • ⊗ F and the canonical isomorphism

£i∈Z[Hi(P •)⊗ F ](−1)i ∼−→ [H+(P •)⊗ F ]£ [H−(P •)⊗ F ]−1.

If now Y is any object of Dp(A) and ψ is an AF -equivariant isomorphism from
H+(Y ) ⊗ F to H−(Y ) ⊗ F , then the pair (Y, ψ−1) constitutes, in the termi-
nology of [5, §1.2], a ‘trivialized perfect complex (of A-modules)’. Choose an
A-equivariant quasi-isomorphism ξ : P • → Y with P • an object of PMod(A)•,
and write ψξ for the composite isomorphism H−(ξ ⊗ F )−1 ◦ ψ ◦H+(ξ ⊗ F ) :

H+(P •) ⊗ F ∼−→ H−(P •) ⊗ F . Then under the isomorphism π0V(A, F )
∼−→

K0(A, F ) of Proposition 2.5, the image of the class of 〈P •, ψξ〉 in π0(V(A, F ))
is equal to the inverse of the ‘refined Euler characteristic’ class χA(Y, ψ−1)
which is defined in [loc. cit., Th. 1.2.1].

In the remainder of this section we recall some useful facts concerning the
groups K0(A, F ).
If F is a field of characteristic 0, then one has a commutative diagram of long
exact relative K-theory sequences (cf. [44, Th. 15.5])

K1(A) −→ K1(AF ) −→ K0(A, F ) −→ K0(A) −→ K0(AF )

‖
xβ

x ‖
x

K1(A) −→ K1(A) −→ K0(A,Q) −→ K0(A) −→ K0(A).

(11)

The scalar extension morphism β is injective and so, as a consequence of the
Five Lemma, this diagram induces an inclusion

K0(A,Q) ⊆ K0(A, F ).(12)

Furthermore, the map

(X, g, Y ) 7→
∏

p

(Xp, gp, Yp),

where Xp := X ⊗Z Zp, Yp := Y ⊗Z Zp and gp := g ⊗Q Qp for each prime p,
induces an isomorphism

K0(A,Q)
∼−→
⊕

p

K0(Ap,Qp)(13)

where the sum is taken over all primes p (see the discussion following [15,
(49.12)]).
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2.9. The locally free class group. For any field F of characteristic 0 we
define

Cl(A, F ) := ker
(
K0(A, F )→ K0(A)→

∏

p

K0(Ap)
)

and

Cl(A) := ker
(
K0(A)→

∏

p

K0(Ap)
)
.

The motivic invariants that we construct will belong to groups of the form
Cl(A,R). The group Cl(A) is the ‘locally free class group’ of A, as discussed in
[15, §49].
We observe that the diagram (11) restricts to give a commutative diagram with
exact rows

K1(AF )
δ1

A,F−−−−→ Cl(A, F )
δ0

A,F−−−−→ Cl(A) −−−−→ 0
xβ

x ‖

K1(A)
δ1

A,Q−−−−→ Cl(A,Q)
δ0

A,Q−−−−→ Cl(A) −−−−→ 0,

(14)

and hence that (12) restricts to give an inclusion Cl(A,Q) ⊆ Cl(A, F ). In
addition, the restriction of the isomorphism (13) to Cl(A,Q) combines with
the exact sequence (10) to induce an isomorphism

Cl(A,Q)
∼−→
⊕

p

K1(Ap)/im(K1(Ap)).(15)

In many cases of interest the maps

K1(Ap)/im(K1(Ap))→ K0(Ap,Qp)
are bijective for all p, and hence one has

Cl(A, F ) = K0(A, F ).

For example, this is the case if A is commutative, if A = Z[G] where G is any
finite group [15, Rem. (49.11)(iv)] or if A is a maximal order in A [loc. cit.,
Th. 49.32].

3. Motives

3.1. Motivic structures. We fix a number field K and denote by S∞ the
set of archimedean places of K. For each σ ∈ Hom(K,C) we write v(σ) for the
corresponding element of S∞. We also fix an algebraic closure K̄ of K and let
GK denote the Galois group Gal(K̄/K).
The category of (pure Chow) motives over K is a Q-linear category with a
functor to the category of realisations [26] and on which motivic cohomology
functors are well defined. As is common in the literature on L-functions we
shall treat motives in a formal sense: they are to be regarded as given by their
realisations, motivic cohomology and the usual maps between these groups
(that is, by a motivic structure in the sense of [20]). For example, if X is a
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smooth, projective variety over K, n a non-negative integer and r any integer,
then M := hn(X)(r) is not in general known to exist as a Chow motive.
However, the realisations of M are

HdR(M) := Hn
dR(X/K) ,

a filtered K-space, with its natural decreasing filtration
{
F iHn

dR(X/K)
}
i∈Z

shifted by r;

Hl(M) := Hn
et(X ×K K,Ql(r)) ,

a compatible system of l-adic representations of GK ;

Hσ(M) := Hn(σX(C), (2πi)rQ) ,

for each σ ∈ Hom(K,C) a Q-Hodge structure over R or C according to whether
v(σ) is real or complex. If c denotes complex conjugation, then there is an

obvious isomorphism of manifolds σX(C)
∼−→ (c ◦ σ)X(C) which we use to

identify Hσ(M) with Hc◦σ(M) if v = v(σ) is complex. We then denote either
of the two Hodge structures by Hv(M), and we shall subsequently only make
constructions which are independent of this choice.
One possible definition of the motivic cohomology of M = hn(X)(r) is

H0(K,M) :=

{
(CHr(X)/CHr(X)hom∼0)⊗Z Q, if n = 2r

0, if n 6= 2r

and

H1(K,M) :=

{
(K2r−n−1(X)⊗Z Q)(r), if 2r − n− 1 6= 0

CHr(X)hom∼0 ⊗Z Q, if 2r − n− 1 = 0.

Here (K2r−n−1(X)⊗ZQ)(r) is the eigenspace for the k-th Adams operator with
eigenvalue kr. One also defines a subspace

H1
f (K,M) ⊆ H1(K,M)

consisting of classes which are called ‘finite’ (or ‘integral’) at all non-
archimedean places of K and puts H0

f (K,M) := H0(K,M). In the

K-theoretical version H1
f (K,M) is defined just as H1(K,M) but with

(K2r−n−1(X)⊗Z Q)(r) replaced by

im((K2r−n−1(X )⊗Z Q)(r) → (K2r−n−1(X)⊗Z Q)(r))

where X is a regular proper model of X over Spec (OK) (see [41] for the defi-
nition if such a model does not exist). The spaces H i

f (K,M) are expected to
be finite dimensional, but this is not yet known to be true in general.
Let A be a finite dimensional semisimple Q-algebra. From now on we shall be
interested in motives with coefficients in A, i.e. in pairs (M,φ) where φ : A→
End(M) is a ring homomorphism. It suffices here to understand End(M) as
endomorphisms of motivic structures. However, in all of the explicit examples
considered in [11] A is in fact an algebra of correspondences, i.e. consists of
endomorphisms in the category of Chow motives. If M has coefficients in A,
then the dual motive M∗ has coefficients in Aop.
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3.2. Basic exact sequences. In this section we recall relevant material from
[4] and [20].
We write Kv for the completion of K at a place v, and we fix an algebraic
closure K̄v of Kv and an embedding of K̄ into K̄v. We denote by Gv ⊆ GK the
corresponding decomposition group and, if v is non-archimedean, by Iv ⊂ Gv
and fv ∈ Gv/Iv the inertia subgroup and Frobenius automorphism respectively.
For v ∈ S∞ and an R-Hodge structure H over Kv (what we call) the Deligne
cohomology of H is by definition the cohomology of the complex

RΓD(Kv, H) :=
(
HGv αv−→ (H ⊗R K̄v)

Gv/F 0
)
,

where here Gv acts diagonally on H⊗R K̄v, and αv is induced from the obvious
inclusion H ↪→ H ⊗R K̄v. Now if H = Hv(M)⊗Q R, then there is a canonical
comparison isomorphism

H ⊗R K̄v
∼= HdR(M)⊗K,v K̄v

which is Gv-equivariant (the right hand side having the obvious Gv action). It
follows that the complex

RΓD(K,M) :=
⊕

v∈S∞
RΓD(Kv, Hv(M)⊗Q R)

can also be written as

(16)
⊕

v∈S∞
(Hv(M)⊗Q R)

Gv αM−→
(⊕

v∈S∞
HdR(M)⊗K Kv/F

0

)

=
(
HdR(M)/F 0

)
⊗Q R.

For an R-vector space W we write W ∗ for the linear dual HomR(W,R). If W
is an A-module, then we always regard W ∗ as an Aop-module in the natural
way.

Conjecture 1. (cf. [20][Prop. III.3.2.5]): There exists a long exact sequence
of finite-dimensional AR-spaces

(17) 0 −→ H0(K,M)⊗Q R ε−→ ker(αM )
r∗B−→

(
H1
f (K,M∗(1))⊗Q R

)∗

δ−→ H1
f (K,M)⊗Q R rB−→ coker(αM )

ε∗−→
(
H0(K,M∗(1))⊗Q R

)∗ −→ 0

where here ε is the cycle class map into singular cohomology; rB is the Beilinson
regulator map; and (if both H1

f (K,M) and H1
f (K,M∗(1)) are non-zero so that

M has weight −1, then) δ is a height pairing. Moreover, the R-dual of (17)
identifies with the corresponding sequence for M ∗(1) where the isomorphisms

ker(αM )∗ ∼= coker(αM∗(1)), coker(αM )∗ ∼= ker(αM∗(1))

are constructed in Lemma 18 below.
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For each prime number p we set Vp := Hp(M). Following [8, (1.8)] we shall
now construct for each place v a true triangle in Dp(Ap)

0→ RΓf (Kv, Vp)→ RΓ(Kv, Vp)→ RΓ/f (Kv, Vp)→ 0(18)

in which all of the terms will be defined as specific complexes, rather than
only to within unique isomorphism in Dp(Ap) as the notation would perhaps
suggest (we have however chosen to keep the traditional notation for mnemonic
purposes.)
For a profinite group Π and a continuous Π-module N we denote by C•(Π, N)
the standard complex of continuous cochains.
If v ∈ S∞, then we set

RΓf (Kv, Vp) := RΓ(Kv, Vp) := C•(Gv, Vp).

We also define RΓ/f (Kv, Vp) := 0 and we take (18) to be the obvious true
triangle (with second arrow equal to the identity map).
If v /∈ S∞ and v - p, then we set

RΓ(Kv, Vp) := C•(Gv, Vp),

RΓf (Kv, Vp) := C•(Gv/Iv, V
Iv
p ) ⊆ C•(Gv, Vp).

We define RΓ/f (Kv, Vp) to be the complex which in each degree i is equal to

the quotient of Ci(Gv, Vp) by Ci(Gv/Iv, V
Iv
p ) (with the induced differential),

and we take (18) to be the tautological true triangle. We observe that there is
a canonical quasi-isomorphism

RΓf (Kv, Vp)
π−→
(
V Ivp

1−f−1
v−−−−→ V Ivp

)
(19)

=:
(
Vp,v

φv−→ Vp,v
)

where in the latter two complexes the spaces are placed in degrees 0 and 1,
and π is equal to the identity map in degree 0 and is induced by evaluating a
1-cocycle at f−1

v in degree 1.
If now v | p, then by [4, Prop. 1.17] one has an exact sequence of continuous
Gv-modules

0→ Qp → B0 β1−β2−−−−→ B1 → 0(20)

where here B0 := Bcris × B+
dR and B1 := Bcris × BdR are certain canonical

algebras and β1(x, y) = (x, x) and β2(x, y) = (φ(x), y) are algebra homomor-

phisms. We write B• for the complex B0 β1−β2−−−−→ B1 where the modules are
placed in degrees 0 and 1, and we set

RΓ(Kv, Vp) := TotC•(Gv, B
• ⊗Qp Vp),

RΓf (Kv, Vp) := H0(Kv, B
• ⊗Qp Vp).

We observe that, since Vp → B• ⊗Qp Vp is a resolution of Vp, the natural map

C•(Gv, Vp)→ RΓ(Kv, Vp)(21)
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is a quasi-isomorphism. Also, since RΓf (Kv, Vp) is a subcomplex of RΓ(Kv, Vp)
we can define RΓ/f (Kv, Vp) to be the complex which in each degree i is equal
to the quotient of the i-th term of RΓ(Kv, Vp) by the i-th term of RΓf (Kv, Vp)
(with the induced differential). With these definitions we take (18) to be the
tautological true triangle. Further, using the notation

Dcris(Vp) := H0(Kv, Bcris ⊗Qp Vp),
DdR(Vp) := H0(Kv, BdR ⊗Qp Vp),

F 0DdR(Vp) := H0(Kv, B
+
dR ⊗Qp Vp),

tv(Vp) := DdR(Vp)/F
0DdR(Vp)

there is a commutative diagram of complexes

0 −−−−→ tv(Vp)x
x

F 0DdR(Vp)
⊆−−−−→ DdR(Vp)

(0,− id)

y
y(0,id)

Dcris(Vp)⊕ F 0DdR(Vp)
d−−−−→ Dcris(Vp)⊕DdR(Vp)

where d is induced by (β1 − β2) ⊗ idVp so that the lower row is RΓf (Kv, Vp),
and the vertical maps are both quasi-isomorphisms. With t•v(Vp) denoting the
central complex in the above diagram we obtain a canonical quasi-isomorphism

t•v(Vp)
∼−→ tv(Vp)[−1]

and a canonical true triangle

t•v(Vp)→ RΓf (Kv, Vp)→
(
Vp,v

φv−→ Vp,v
)

(22)

where here
(
Vp,v

φv−→ Vp,v
)

:=
(
Dcris(Vp)

1−ϕv−−−→ Dcris(Vp)
)

and the spaces
are placed in degrees 0 and 1. In addition, from Faltings’ fundamental com-
parison theorem between Vp and HdR(M) over Kv there exists a canonical
Ap-equivariant isomorphism

(HdR(M)/F 0)⊗Q Qp ∼=
⊕

v|p
tv(Vp).(23)

Let now V be any finitely generated (projective) Ap-module. If φ ∈ EndAp(V )

and C denotes the (perfect) complex V
φ−→ V (with the modules placed in

degrees 0 and 1), then there is an isomorphism in V (Ap)

[C] = [V ]£ [V ]
−1 ∼= 1V (Ap)(24)

which corresponds to the canonical isomorphism X £X−1 ∼= 1 for any object
X in a Picard category. Note however that if φ is an automorphism and C
is therefore acyclic, then the isomorphism (24) differs from the isomorphism
[C] ∼= 1V (Ap) induced by the quasi-isomorphism C → 0 (cf. also [8, Rem.
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after (1.16)] in this regard). In the notation which was introduced in Remark
4 after Proposition 2.5 this latter isomorphism is denoted by φTriv whereas the
isomorphism (24) is denoted by idV,Triv.

We now fix a finite set S of places of K containing S∞ and the places where
M has bad reduction. We denote by Sp the union of S and the set of places
of K above p, and we set Sp,f := Sp \ S∞. We denote by OK,Sp the ring of
Sp-integers in K and by GSp its étale fundamental group with respect to the

previously chosen base point K̄. For any continuous GSp -module N we set

RΓ(OK,Sp , N) := C•(GSp , N),

RΓc(OK,Sp , N) := Cone


RΓ(OK,Sp , N)→

⊕

v∈Sp
C•(Gv, N)


 [−1]

where the morphism here is induced by the natural maps Gv ⊆ GK → GSp .
For N = Vp we set

1RΓc(OK,Sp , Vp) := Cone


RΓ(OK,Sp , Vp)→

⊕

v∈Sp
RΓ(Kv, Vp)


 [−1],

RΓf (K,Vp) := Cone


RΓ(OK,Sp , Vp)→

⊕

v∈Sp
RΓ/f (Kv, Vp)


 [−1]

where in both cases we have used the morphism (21) for each place v | p. Then
there is a natural quasi-isomorphism

RΓc(OK,Sp , Vp)
∼−→ 1RΓc(OK,Sp , Vp)

and the maps

RΓ(OK,Sp , Vp)→
⊕

v∈Sp
RΓ(Kv, Vp)¾

⊕

v∈Sp
RΓf (Kv, Vp)(25)

induce a true nine term diagram

⊕
v∈Sp

RΓf (Kv, Vp)[−1]
⊕
v∈Sp

RΓf (Kv, Vp)[−1]

y
y

⊕
v∈Sp

RΓ(Kv, Vp)[−1] −−−−→ 1RΓc(OK,Sp , Vp) −−−−→ RΓ(OK,Sp , Vp)
y

y ‖
⊕
v∈Sp

RΓ/f (Kv, Vp)[−1] −−−−→ RΓf (K,Vp) −−−−→ RΓ(OK,Sp , Vp).

(26)
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Note that in what follows we will systematically use the lower left numbering
to distinguish between different but naturally quasi-isomorphic versions of a
complex. When there is no danger of confusion we shall simply drop this
numbering and leave implicit the resulting identifications.
The complex RΓf (K,Vp) is acyclic outside degrees 0, 1, 2 and 3 and in Lemma
19 below we will define a natural isomorphism in Dp(Ap)

AVf : RΓf (K,Vp) ∼= RΓf (K,V ∗p (1))∗[−3].

Conjecturally therefore, the cohomology of RΓf (K,Vp) is completely described
by applying the following to both M and M ∗(1).

Conjecture 2. For both i ∈ {0, 1} there exists a canonical Ap-equivariant
isomorphism

cip(M) : Hi
f (K,M)⊗Q Qp ∼−→ HiRΓf (K,Vp).(27)

In addition, we recall that for each v ∈ S∞ the comparison isomorphism be-
tween Hv(M) and Vp induces an isomorphism in Dp(Ap)

RΓf (Kv, Vp) = RΓ(Kv, Vp) ∼= V Gvp [0] ∼= (Hv(M)Gv ⊗Q Qp)[0].(28)

3.3. Projective A-structures. Let M be a motive which is defined over
K and admits an action of the finite dimensional semisimple Q-algebra A. If
A is an R-order in A (cf. §2.7) and V is an A-module, then an A-submodule T
of V will be said to be an ‘A-lattice (in V )’ if it is both finitely generated and
full (i.e., satisfies V = A⊗A T ).

Definition 1. Let A be an R-order in A. An A-structure T on M is a set
{Tv : v ∈ S∞} where, for each v ∈ S∞, Tv is an A-lattice in Hv(M) and
for each prime l ∈ Spec(R) the image Tl of Tv ⊗Z Zl under the comparison
isomorphism Hv(M)⊗Q Ql ∼= Hl(M) is both independent of v and GK-stable.
An A-structure T on M is projective, resp. free, if each Tv is a projective,
resp. free, A-module.

If M is a motive with A-action, then there always exist A-structures on M . For
example, if M = hn(X) for a smooth projective variety X defined over K, then
there is an A-structure hn(X,A) on M such that, for each v ∈ S∞, hn(X,A)v
is the A-lattice in Hv(M) which is generated by the image of Hn(σX(C),Z)
for an embedding σ : K → C which corresponds to v. However, there need not
exist projective A-structures on M . Indeed, even if there are full projective A-
modules Tv in each space Hv(M), it can occur that none of the corresponding
modules Tl is GK -stable (this is the case if, for example, M = h1(E) for an el-
liptic curve E defined over an imaginary quadratic field A for which EndA(E) is
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the maximal order in A and A is any proper suborder of EndA(E)). Neverthe-
less, the following examples show that a projective A-structure on M naturally
exists in a variety of interesting cases.

Examples.

a) If A is an hereditary R-order, and hence a fortiori if it is a maximal R-
order, then there always exists a projective A-structure on M (cf. [15,
Th. (26.12)]).

b) (‘The Galois case’) Let L/K be a finite Galois extension, and set G :=
Gal(L/K). If MK is any motive which is defined over K, then the motive
M := h0(Spec(L))⊗MK has a natural action of the semisimple algebra
Q[G] via the first factor. Furthermore, if TK is any Z-structure on MK ,
then H0(Spec(L⊗K,σ C),Z)⊗Z TK is a free Z[G]-structure on M . Recall
here that for any embedding σ : K → C the scheme Spec(L ⊗K,σ C)
naturally identifies with the G-set Σ := {τ ∈ Hom(L,C) : τ |K = σ} and
hence that H0(Spec(L ⊗K,σ C),Z) = Maps(Σ,Z) is a free Z[G]-module
of rank one.

c) (Cf. [42, §4, Rem. following Cor. 2]). If X is a simple abelian variety
defined over K which admits complex multiplication over K by a CM -
field A, then the motive h1(X) has a natural A-action. In addition,
if the order A = EndK(X) ⊆ A, consisting of those elements which
preserve each lattice H1(σX(C),Z), is Gorenstein then each h1(X,A)v is
a projective A-lattice by [15, (37.13)] and hence there exists a projective
A-structure on M . We note in particular that if X is an elliptic curve,
then A is automatically Gorenstein as a consequence of [1, 6.3].

d) Continuing the previous example, we assume now that X is an elliptic
curve defined over K and so that A := EndK(X) is an order in an imag-
inary quadratic field A. Then A is contained in K and one can consider
the [K : A]-dimensional abelian variety Y over A which is defined as
the Weil restriction of X from K to A. If moreover K/A is an abelian
Galois extension and X is isogenous to all of its Galois conjugates over
A then T := EndA(Y ) ⊗ Q is an algebra of dimension [K : A] over A
and T := EndA(Y ) is an order in T , nonmaximal at primes dividing
[K : A][OA : A]. This is shown in [21][15.1.6] for maximal A but the
arguments there extend to general A. The description of EndA(Y ) in
[21][15.1.5] also shows that H1(Y (C),Z) is a projective T-module, and
hence that the motive M = h1(Y ) over the base field A admits a projec-
tive T-structure.

e) Let N be a prime number and consider the modular curve X = X0(N)
defined over K = Q. The Hecke algebra A is a finite dimensional com-
mutative semisimple Q-algebra consisting of correspondences which act
on X, and H1(X(C),Q) is known to be a free rank two A-space. If A
denotes the integral Hecke algebra (i.e., the subring of A which is gener-
ated by the Hecke correspondences over Z), then A is an order in A and
Mazur shows in [34, II, (14.2), (16.3), (15.1)] that H1(X(C),Z)m is a free
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module over Am for all maximal ideals m of A which do not contain 2.
This implies that H1(X(C),Z[ 1

2 ]) is a projective module over A[ 1
2 ], and

hence that there exists a projective A[ 1
2 ]-structure on M .

We shall henceforth assume that A is an order (leaving to the reader the obvious
modifications which are necessary for R-orders as discussed above) and that
we are given a projective A-structure T on M . We assume that p is a prime
number which satisfies neither of the following conditions:

(P1) The motive ResKQM has bad reduction at p.

(P2) p − 2 < min{i ≥ 0|F i+1HdR(M) = 0} − max{i ≤ 0|F iHdR(M) =
HdR(M)}.

Then, as explained in [8, 1.5.1], one can use the theory of Fontaine-Laffaille
to define complexes RΓf (Kv, Tp) for each place v in exactly the same way as
for Vp. The same arguments which lead to diagram (26) can then be used to
derive an analogous diagram in D(Ap) in which Vp is replaced by Tp, and which
naturally identifies with (26) after tensoring with Qp.
For any finite set of primes S we write AS for the localisation of A at the
multiplicative set generated by the primes in S. For i ∈ {2, 3} we set
Hi
f (K,M) := H3−i

f (K,M∗(1))∗ and cip(M) := Hi(AVf )−1 ◦ (c3−ip (M∗(1))∗)−1.

We now introduce an additional hypothesis on the pair (M,A).

Coherence hypothesis: For each i ∈ {0, 1, 2, 3} there exists a finitely gen-
erated A-module H i

f (K,M ;T ) and an A-equivariant map τ i : Hi
f (K,M ;T )→

Hi
f (K,M) such that τ i ⊗Z Q is an isomorphism. In addition, there exists a

finite set S of primes containing all primes satisfying either (P1) or (P2) and
such that for each p /∈ S and i ∈ {0, 1, 2, 3} there is a commutative diagram of
Ap-modules

Hi
f (K,M ;T )⊗Z Zp

τ i⊗ZQp−−−−−→ H i
f (K,M)⊗Q Qp

cip(T )

y
ycip(M)

HiRΓf (K,Tp)
⊗ZpQp−−−−→ HiRΓf (K,Vp)

in which cip(T ) is an isomorphism.

Remark 5. This hypothesis is identical to an assumption on integral structures
in motivic cohomology which is made in [8, §1.5], and is independent of the
choices of both A and T . As we shall see below, the hypothesis is not ac-
tually required in order to formulate conjectures on special values of motivic
L-functions and is correspondingly not made in either of [4] or [20]. However,
under the Coherence hypothesis one can define an invariant in Cl(A) without
reference to the L-function of M , and this ties in well with the approach of
classical Galois module theory. Indeed, in concrete cases, the A-module struc-
ture of the groups H i

f (K,M ;T ) can be of considerable interest (see for example
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[8, §1.6]), and this structure can be studied via the conjectures formulated in
§4 below.

3.4. Virtual objects attached to motives. Let M be a motive which
is defined over K and admits an action of a finite dimensional semisimple Q-
algebra A. In this section we fix an order A in A and a projective A-structure
T on M (always assuming that such a structure exists).
We shall henceforth use the following notational convention. When referring to
the individual triangles in a true nine term diagram with equation number (n)
we denote by (n)? with ? equal to ‘top’, ‘bot’, ‘left’, ‘rght’, ‘hor’ or ‘vert’ the top,
bottom, left, right, central horizontal and central vertical triangle respectively.
We define an object Ξ(M) of V (A) by setting

Ξ(M) :=[H0
f (K,M)]£ [H1

f (K,M)]
−1 £ [H1

f (K,M∗(1))∗](29)

£[H0
f (K,M∗(1))∗]−1 ££v∈S∞ [Hv(M)Gv ]

−1 £ [HdR(M)/F 0].

Note that this is the inverse of the space Ξ used in both [8] and [27] (because our
choice of normalisation for the virtual object associated to a perfect complex
is the inverse of that of [8, (0.2)]).
Applying the functor [ ] to the isomorphisms (27), (28), (23), the isomorphisms
(24), (19) or the triangle (22) for all v ∈ Sp,f and finally to the triangle (26)vert,
we obtain for each prime p an isomorphism in V (Ap)

ϑp(M,S) : Ap ⊗A Ξ(M)
∼−→ [RΓc(OK,Sp , Vp)] ∼= Ap ⊗Ap [RΓc(OK,Sp , Tp)]

which we shall also abbreviate as ϑp(M) or even ϑp if there is no danger of con-
fusion. We note here that RΓc(OK,Sp , Tp) is a perfect complex of Ap-modules
by [18, Th. 5.1], and hence we obtain an object

Ξ(M,Tp, S) := ([RΓc(OK,Sp , Tp)],Ξ(M), ϑp)

of V (Ap)×V (Ap) V (A).

Lemma 5. For another choice T ′ of projective A-structure on M and another
choice of the finite set of places S ′ the objects Ξ(M,Tp, S) and Ξ(M,T ′p, S

′) are
isomorphic in V (Ap)×V (Ap) V (A).

Proof. By embedding S and S′ into the union S ∪ S′ we can assume that
S ⊆ S′, and by induction we can then reduce to the case that S ′ = S ∪ {w}
and w - p. For any continuous GSp -module N one has a commutative diagram
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of complexes

C•(GSp , N) −−−−→ ⊕
v∈Sp

C•(Gv, N)

y
y

C•(GS′p , N)
r−−−−→ C•(Gw, N)/C•(Gw/Iw, N)⊕ ⊕

v∈Sp
C•(Gv, N)

‖
x

C•(GS′p , N) −−−−→ ⊕
v∈S′p

C•(Gv, N)

which induces a quasi-isomorphism RΓc(OK,Sp , N)
∼−→ Cone(r)[−1] and a true

triangle

RΓf (Kw, N)[−1]→ RΓc(OK,S′p , N)→ Cone(r)[−1](30)

where RΓf (Kw, N) = C•(Gw/Iw, N) is naturally quasi-isomorphic to

N
1−f−1

v−−−−→ N(31)

(compare [36, Chap. II, Prop. 2.3d]). For N = Tp the true triangle (30) lies in
D(Ap). In conjunction with isomorphisms of the form (24), it therefore induces

an isomorphism ι : [RΓc(OK,Sp , Tp)]
∼−→ [RΓc(OK,S′p , Tp)] in V (Ap).

We have a natural map from diagram (25) to the diagram

RΓ(OK,S′p , Vp)→
⊕

v∈Sp
RΓ(Kv, Vp)⊕RΓ/f (Kw, Vp)←

⊕

v∈Sp
RΓf (Kv, Vp).

(32)

We now denote by T9(S), resp. T9, the diagram (26), resp. the true nine term
diagram which is induced by (32). Then we obtain a map φ : T9(S) → T9
which restricts to give quasi-isomorphisms on all terms in the central column.
In a similar way, there is a map ψ : T9(S ′)→ T9 which is moreover a termwise
surjection. The kernel of ψ is naturally quasi-isomorphic to a sum of complexes
(31) and hence naturally trivialized by isomorphisms of the form (24). Since
the same trivializations are used in the construction of ϑp(M,S′), we have
(Ap⊗Ap ι)◦ϑp(M,S) = ϑp(M,S′). Hence the pair (ι, id) defines an isomorphism

(ι, id) : ([RΓc(OK,Sp , Tp)],Ξ(M), ϑp)
∼−→ ([RΓc(OK,S′p , Tp)],Ξ(M), ϑ′p)

in the category V (Ap)×V (Ap) V (A).

Replacing Tp by pnTp ⊆ Tp ∩ T ′p we can assume that Tp ⊆ T ′p. Then there is a
true triangle of perfect complexes of Ap-modules

RΓc(OK,Sp , Tp)→ RΓc(OK,Sp , T ′p)→ RΓc(OK,Sp , T ′p/Tp).(33)

Since T ′p/Tp is finite RΓc(OK,Sp , T ′p/Tp) ⊗Zp Qp is acyclic and hence there
is a canonical isomorphism τQ : [RΓc(OK,Sp , T ′p/Tp) ⊗Zp Qp] ∼= 1V (Ap). By
[18, Th. 5.1] the class of (RΓc(OK,Sp , T ′p/Tp),1V (Ap), τQ) in π0(V (Ap,Qp)) ∼=
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K0(Ap,Qp) is 0. Upon unraveling the definition of V (Ap,Qp) this means that
τQ is induced by an isomorphism τ : [RΓc(OK,Sp , T ′p/Tp)] ∼= 1V (Ap). Hence the
isomorphism induced by the triangle (33)

ι : [RΓc(OK,Sp , T ′p)] ∼=[RΓc(OK,Sp , Tp)]£ [RΓc(OK,Sp , T ′p/Tp)]
id£τ−−−→[RΓc(OK,Sp , Tp)]

is part of an isomorphism

(ι, id) : ([RΓc(OK,Sp , T ′p)],Ξ(M), ϑp)
∼−→ ([RΓc(OK,Sp , Tp)],Ξ(M), ϑp)

in the category V (Ap)×V (Ap) V (A). ¤

By taking the product over all primes p we now obtain an object

Ξ(M,T, S)Z := (
∏

p

[RΓc(OK,Sp , Tp)],Ξ(M),
∏

p

ϑp)

of the fibre product category
∏
p V (Ap)×∏

p V (Ap) V (A).

Lemma 6. If the Coherence hypothesis is satisfied, then Ξ(M,T, S)Z is isomor-
phic to the image of an object of V(A) under the functor of Lemma 4.

Proof. Assume that S is a finite set of primes as in the Coherence hypothesis
and also containing all primes p at which Ap is not a maximal Zp-order in Ap.
Then AS is a (left) regular ring [15, Th. (26.12)], and so any finitely generated
AS -module is of finite projective dimension. As in [8, (1.24)] there exists a
full AS -sublattice DdR of HdR(M) so that for p /∈ S the isomorphism (23) is
induced by an isomorphism

(DdR/F
0)⊗Z Zp ∼=

⊕

v|p
Dcr,v(Tp)/F

0(34)

where here Dcr,v(−) is an integral version of the functor Dcris(−) for Kv [8, p.
82]. We define an object ΞS of V (AS) by setting

ΞS := ΞS(M,T, S) :=[H0
f (K,M ;T )S ]£ [H1

f (K,M ;T )S ]
−1 £ [H2

f (K,M ;T )S ]

£[H3
f (K,M ;T )S ]

−1 ££v∈S∞ [(Tv)
Gv
S ]
−1 £ [DdR/F

0].

We set Â′ :=
∏
p/∈S Ap. Then the finite product decomposition Â ∼=

∏
p∈S Ap×

Â′ induces a decomposition V (Â) ∼=
∏
p∈S V (Ap) × V (Â′), and via this we

define an object

Ξ′ := ((
∏

p∈S
[RΓc(OK,Sp , Tp)], Â′ ⊗AS ΞS), A⊗AS ΞS ,

∏

p∈S
ϑp × idΞS )

of V(A). Under the Coherence hypothesis, there exists a natural isomorphism

A ⊗AS ΞS(M,T, S)
∼−→ Ξ(M). The image of Ξ′ under the functor of Lemma

4 is isomorphic to Ξ(M,T, S)Z because for each p /∈ S the isomorphism ϑp is
induced by an isomorphism

ϑTp : Ap ⊗AS ΞS(M,T, S)
∼−→ [RΓc(OK,Sp , Tp)]
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in V (Ap) (see [8] for more details). This finishes the proof of Lemma 6. ¤

Lemma 6, Lemma 5 and Lemma 4 now combine to imply that

Ξ(M)Z := Ξ(M,T, S)Z

is an object of V(A) which is independent to within isomorphism in V(A) of
the choices of both S and T . The conjectural exact sequence (17) combines
with (16) to induce an isomorphism in V (AR)

ϑ∞ : AR ⊗A Ξ(M) ∼= 1V (AR).

Under the Coherence hypothesis, we therefore obtain an object

(Ξ(M)Z, ϑ∞) := (
∏

p

[RΓc(OK,Sp , Tp)],Ξ(M),
∏

p

ϑp;ϑ∞)

of V(A,R). We let RΩ(M,A) denote the class of this element in π0(V(A,R)) ∼=
K0(A,R).

Lemma 7. RΩ(M,A) ∈ Cl(A,R).

Proof. We need to show that the class of RΓc(OK,Sp , Tp) in K0(Ap) vanishes,
and this follows as an easy consequence of results in [18]. More precisely, if Γ
denotes the image of GS in Aut(Tp) and Zp[[Γ]] the profinite group algebra of Γ,
then [18, Prop. 5.1] shows that there exists a bounded complex P• of finitely
generated projective Zp[[Γ]]-modules and an isomorphism RΓc(OK,Sp , N) ∼=
HomZp[[Γ]](P•, N) in D(Ap) for any continuous, profinite or discrete, Ap[Γ]-
module N . If Σ is a set of representatives for the isomorphism classes of simple
Zp[[Γ]]-modules and PI → I a projective hull for each I ∈ Σ, then we have
isomorphisms of Zp[[Γ]]-modules Pi ∼=

∏
I∈Σ P

nI,i
I for some integers nI,i (note

that Σ is finite since Γ contains a pro-p group of finite index). The Ap-module
NI := HomZp[[Γ]](PI , N) is a direct summand of N , and hence is projective if
N is projective.
We write clAp(X), resp. clZp(Y ), for the class in K0(Ap) of any perfect complex
of Ap-modules, resp. for the class in the Grothendieck group K0(Zp,Qp) ∼= Z of
the category of finite Zp-modules of any bounded complex of finite Zp-modules
Y . Then if either Λ = Ap, or if Λ = Zp and N is finite, there is an identity

clΛ(RΓc(OK,Sp , N)) =
∑

I∈Σ

(∑

i∈Z
(−1)inI,i

)
clΛ(NI).(35)

Assume now that N ∈ Σ. Then NI = 0 for each I ∈ Σ with I 6= N , and hence
(35) with Λ = Zp implies that

∑

i∈Z
(−1)inN,i · clZp(N) = clZp(RΓc(OK,Sp , N))

=
∑

i∈Z
(−1)i clZp(Hi

c(OK,Sp , N)) = 0,
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where the last equality follows from Tate’s formula for the Euler characteristic
of a finite GS-module. Since clZp(N) 6= 0, it follows that

∑
i∈Z(−1)inI,i = 0

for all I ∈ Σ.
From (35) with Λ = Ap and N = Tp we now deduce that
clAp(RΓc(OK,Sp , Tp)) = 0, as required. ¤

3.5. Functorialities. Let ρ : A→ B be a homomorphism between orders A
and B in finite-dimensional, semisimple Q-algebras A and B respectively. We
denote by ρQ : A → B the induced homomorphism of algebras. For any field
F of characteristic 0, the scalar extension functor B ⊗A − induces a natural
homomorphism

ρ∗ : K0(A, F )→ K0(B, F )

which sends the class of (X, g, Y ) to that of (B ⊗A X, 1 ⊗ g,B ⊗A Y ). If B
is a projective A-module via ρ, then there also exists a homomorphism in the
reverse direction

ρ∗ : K0(B, F )→ K0(A, F )

which is simply induced by restriction of scalars. If A is commutative and
B = Mn(A) is a matrix algebra over A, then we set

e :=




1 0 . . . 0
0 0 . . . 0
. . . . . . . . . .
0 . . . . . 0


 ∈ B.(36)

In this case the exact functor V 7→ Im(e) ⊂ V induces an equivalence of exact
categories µ : PMod(B)→ PMod(A) and hence also an isomorphism

µ∗ : K0(B, F )
∼−→ K0(A, F ).(37)

If M is a motive over K with A-action, then we define B⊗AM to be the motive
over K with B-action which occurs as the largest direct factor of B⊗QM upon
which the left action of A on M and the right action of A on B coincide. Here
B ⊗Q M is the direct sum of [B : Q] copies of M (see [16, 2.1]). With this
definition one has

H(B ⊗AM) ∼= B ⊗A H(M)(38)

for H(−) equal to any of the functors Hv(−),Hv(−)Gv , HdR(−), FnHdR(−),
Hl(−), Hl(−)Iv , H0

f (K,−) or H1
f (K,−). If now T is a projective A-structure

in M (as defined in §3.3), then each B ⊗A Tv is a projective B-module and
hence a lattice in B ⊗A Hv(M) ∼= Hv(B ⊗AM). It follows that if M admits a
projective A-structure, then B ⊗AM admits a projective B-structure.
If M is a motive over K with B-action, then it can be regarded as a motive
with A-action via ρQ. Assuming that B is a projective A-module via ρ, any
projective B-lattice Tv in Hv(M) is also a projective A-lattice (via ρ). Hence, if
in this case M admits a projective B-structure, then it also admits a projective
A-structure.
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Suppose now that A is commutative, that B = Mn(A) for a natural number n
and that M is a motive over K with B-action. Since the category of motives
is pseudo-abelian (i.e., contains images of idempotents) eM is a motive with
A-action. Also, if Tv is a projective Mn(A)-lattice in Hv(M), then eTv is a
projective A-lattice in eHv(M) = Hv(eM). Hence, if M admits a projective
Mn(A)-structure, then eM admits a projective A-structure.

Theorem 3.1. a) If M admits a projective A-structure, then B ⊗AM admits
a projective B-structure and

ρ∗(RΩ(M,A)) = RΩ(B ⊗AM,B).

b) If M admits a projective B-structure and B is a projective A-module via ρ,
then M admits a projective A-structure (via ρQ) and

ρ∗(RΩ(M,B)) = RΩ(M,A).

c) If A is commutative and M admits a projective Mn(A)-structure, then eM
admits a projective A-structure and

µ∗(RΩ(M,Mn(A))) = RΩ(eM,A).

Proof. In case a) the exact functor B ⊗A − : PMod(A) → PMod(B) induces
a monoidal functor B ⊗A − : V (A)→ V (B) and hence a natural isomorphism
[B⊗A−] ∼= B⊗A [− ]. Together with (38) this yields an isomorphism of virtual
B-modules

B ⊗A Ξ(M) ∼= Ξ(B ⊗AM).(39)

The map ϑp is induced by the A-equivariant isomorphisms and exact sequences
(28), (27), (19), (22), (23), (24) for all v ∈ Sp,f and (26)vert, all of which
transform into the corresponding isomorphisms and exact sequences for B⊗AM
when tensored over A with B: this follows from the canonical isomorphisms
(38) together with ‘projection formula’ isomorphisms of the type

Bp ⊗Ap RΓ?(X,Hp(M)) ∼= RΓ?(X,Bp ⊗Ap Hp(M))(40)

for (?, X) equal to any of the pairs (c,OK,Sp), (f,K) or (ét,Kv). Hence, if

ϑB⊗AMp denotes the isomorphism ϑp for the B-equivariant motive B ⊗A M ,
then one has a commutative diagram

B ⊗A Ξ(M)
1⊗ϑp−−−−→ Bp ⊗Ap RΓc(OK,Sp , Hp(M))

(39)

y (40)

y

Ξ(B ⊗AM)
ϑ
B⊗AM
p−−−−−→ RΓc(OK,Sp , Bp ⊗Ap Hp(M)).

Moreover, the isomorphism (40) for the pair (?, X) = (c,OK,Sp) is induced by
an isomorphism

Bp ⊗Ap RΓc(OK,Sp , Tp) ∼= RΓc(OK,Sp ,Bp ⊗Ap Tp)
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where Tp is a projective Ap-lattice in Hp(M) [18, Prop. 4.2]. We deduce that
there exists an isomorphism in V(B)

Ξ(B ⊗AM)Z ∼= B⊗A Ξ(M)Z.

The map ϑ∞ is induced by the A-equivariant exact sequence (17) which, as a
consequence of (38), is transformed into the corresponding B-equivariant exact
sequence for B ⊗AM when one applies B ⊗A −. So the map ϑ∞ for B ⊗AM ,
which we denote by ϑB⊗AM∞ , is equal to the composite

Ξ(B ⊗AM)⊗Q R ∼= BR ⊗AR (Ξ(M)⊗Q R)
1⊗ϑ∞−−−−→ BR ⊗AR 1V (AR)

∼= 1V (BR).

Hence one has

ρ∗(RΩ(M,A)) = ρ∗((Ξ(M)Z, ϑ∞)) = (B⊗A Ξ(M)Z, 1⊗ ϑ∞)

= (Ξ(B ⊗AM)Z, ϑ
B⊗AM
∞ ) = RΩ(B ⊗AM,B).

This proves a).
We now simply observe that the proofs of b) and c) follow along exactly the
same lines with the role of the functor B ⊗A − being played by the exact
functor ResBA : PMod(B) → PMod(A) which is restriction of scalars in b)
and restriction of scalars and passage to the direct summand cut out by the
idempotent e in c). The analogues of the isomorphisms (38) and (40) for the

functor ResBA are in both of these cases obvious. ¤

4. L-functions

4.1. Equivariant L-factors and ε-factors. Let A be a finite-dimensional
semisimple Q-algebra and W a pseudo-abelian, C-linear category. We define
WA to be the category of A-modules in W . Thus the objects of WA are pairs
(V,A → EndW (V )), and morphisms in WA are morphisms in W which com-
mute with the A-actions.
We fix a maximal set i(A) of non-conjugate indecomposable idempotents in
AC. More concretely, if

AC ∼=
r∏

i=1

Mni(C),

then we can take i(A) = {e1, · · · , er} where ei is the matrix (36) of size ni in
the i-th factor, and 0 in all others factors. The functors V 7→ (im(ei))1≤i≤r and
(Vi)1≤i≤r 7→

∏r
i=1 Vi⊗CCni set up an equivalence of pseudo-abelian categories

WA
∼=

r∏

i=1

W.(41)

If C is a set and ε : Ob(W )→ C is any map which is constant on isomorphism
classes, then we get a well defined induced map

ε : Ob(WA)→ Ci(A) V 7→ ε(im(ei))(42)
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which does not depend on the choice of i(A) and is constant on isomorphism
classes.
We now suppose given a motive M over K with an action of A. For any non-
archimedean, resp. archimedean, place v of K we let Wv be the category of
complex representations of the Weil-Deligne group, resp. of the Weil group,
of Kv [45]. In order to apply the preceding considerations to Wv we need the
following

Conjecture 3. (Compatibility) For any finite place v of K, any rational
prime l - v and any embedding τ : Ql → C consider the object Hl(M) ⊗Ql,τ C
of Wv,A. Then the isomorphism class of the Frobenius semisimplification [45,
(4.1.3)] of Hl(M)⊗Ql,τ C in Wv,A is independent of the choices of l and τ .

Remark 6. If A is a number field, then this reduces to the compatibility con-
jecture formulated in [45, (4.2.4)].

Let K(C) be the multiplicative group of meromorphic functions on C. As in
[45] one attaches to any V ∈ Ob(Wv) an L-factor Lv(V, s) ∈ K(C) and an ε-
factor εv(V, s, ψv, dxv) ∈ K(C) (also depending upon a choice of Haar measure
dxv on Kv and of an additive character ψv : Kv → C×). Assuming Conjecture
3 we use (42) to associate to the pair (M,A) equivariant L-factors Lv(AM, s)
and equivariant ε-factors εv(AM, s, ψv, dxv) in K(C)i(A), and we view these as
meromorphic functions with values in

Ci(A) ∼= ζ(AC) ∼= ζ(A)⊗Q C ∼=
∏

σ∈Hom(ζ(A),C)

C.(43)

We then define

ε(AM, s) :=
∏

v

εv(AM, s, ψv, dxv)

Λ(AM, s) :=
∏

v

Lv(AM, s)

where the products are taken over all places v of K and ψv, dxv are chosen as
in [45, (3.5)]. We also set

L∞(AM, s) :=
∏

v∈S∞
Lv(AM, s)

and for any finite set S of places of K

LS(AM, s) :=
∏

v/∈S
Lv(AM, s).

We usually abbreviate LS∞(AM, s) to L(AM, s). We observe that the product
for L(AM, s) converges in a half plane Re(s) >> 0 and that in the product
for ε(AM, s) almost all of the terms are equal to 1. If there is no danger of
confusion we shall often suppress the dependence on A and so write L(M, s)
etc.
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Remark 7. Following [16, Rem. 2.12] one can define the L-factors Lv(AM, s)
in a more direct way than the above, and this allows one to assume a slightly
weaker compatibility than that of Conjecture 3. To be more precise, for each
finite place v of K of residue characteristic p and any prime l 6= p, one con-
siders the Al-module Vl := Hl(M)Iv together with its action of the Frobenius
automorphism fv ∈ EndAl(Vl). Under the assumption that

Pv(Hl(AM), X) := detredAl
(
1− f−1

v ·X|Vl
)
∈ ζ(Al)[X].

belongs to ζ(A)[X] and is independent of the choice of l, one can define
Lv(AM, s) to be equal to Pv(Hl(AM),N v−s) ∈ ζ(AC) for each s ∈ C. We
observe that the above assumption on Pv(Hl(AM), X) is a consequence of Con-
jecture 3, and conversely that it implies Conjecture 3 if Hl(M) is unramified
at v.

Lemma 8. If s is real, then Lv(AM, s), ε(AM, s) and LS(AM, s) all belong to
ζ(A)⊗Q R ∼= ζ(AR).

Proof. For any α ∈ ζ(AC) we denote by ασ its σ-component under the iso-
morphism (43). If c denotes complex conjugation the isomorphism (43) iden-
tifies ζ(A) ⊗Q R = ζ(AR) ⊂ ζ(AC) with the set {(ασ)|αc◦σ = c(ασ)}. If
v is non-archimedean and s is real, then Lv(AM, s) belongs to this set be-
cause Pv(Hl(AM), X) has coefficients in ζ(A). Since the action of c is con-
tinuous, the same is therefore true for LS(AM, s). If v is archimedean and
s is real, then Lv(AM, s)σ ∈ R since the Γ-function is real valued for real
arguments. On the other hand, if V ∈ Ob(Wv) arises from a R-Hodge struc-
ture then there is an isomorphism V c ∼= V in Wv given by complex conjuga-
tion of the coefficients. Finally for any v, V ∈ Ob(Wv) and s ∈ R one has
ε(V c, s, ψcv, dxv) = ε(V, s, ψv, dxv)

c by [45, 3.6]. If V = Vσ arises from M and
σ ∈ Hom(ζ(A),C) we have V cσ = Vc◦σ and

ε(AM, s)cσ :=
∏

v

ε(Vσ, s, ψv, dxv)
c =

∏

v

ε(V cσ , s, ψ
c
v, dxv) = ε(AM, s)c◦σ

where this last equality follows because ψcv and dxv also satisfy the conditions
of [45, (3.5)]. ¤

4.2. The extended boundary homomorphism. Recall that the reduced
norm homomorphism nrAR : K1(AR) → ζ(AR)× is injective but not in gen-
eral surjective (cf. Proposition 2.2). In this section we define a canonical
homomorphism ζ(AR)× → Cl(A,R) which upon restriction to im(nrAR) is
equal to the composite δ1

A,R ◦ nr−1
AR , where here δ1

A,R is the homomorphism

K1(AR) → Cl(A,R) which occurs in diagram (14). This construction plays a
key role in the formulation of conjectures in the next section.

Lemma 9. There exists a canonical homomorphism

δ̂1
A,R : ζ(AR)× → Cl(A,R)
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which satisfies δ̂1
A,R(nrAR(x)) = δ1

A,R(x) for each x ∈ K1(AR).

Proof. In conjunction with the equality (7), the Weak Approximation Theorem
guarantees that for each y ∈ ζ(AR)× there exists an element λ of ζ(A)× such
that λy ∈ im(nrAR). For each prime p we also view λ as an element of ζ(Ap)

× =
im(nrAp), and we then set

δ̂1
A,R(y) := δ1

A,R(nr−1
AR(λy))−

∑

p

δ1
Ap,Qp(nr−1

Ap
(λ)) ∈ Cl(A,R).(44)

Here we view K1(Ap)/ im(K1(Ap)) as a subgroup of Cl(A,R) via the isomor-
phism (15) and the inclusion (12). The sum is taken over all primes p but
is finite since for almost all p both λ ∈ ζ(Ap)

× and nr−1
Ap

(ζ(Ap)
×) is con-

tained in the image of K1(Ap). If λ′ is any other element of ζ(A)× such that

λ′y ∈ im(nrAR), then (7) implies that λ/λ′ ∈ im(nrA). Hence, if δ̂1
A,R(y)′ is the

element (44) formed with respect to λ′ rather than λ, then

δ̂1
A,R(y)− δ̂1

A,R(y)′ = δ1
A,R(nr−1

AR(λ/λ
′))−

∑

p

δ1
Ap,Qp(nr−1

Ap
(λ/λ′))

and this difference is zero since both terms on the right hand side are equal
to δ1

A,Q(nr−1
A (λ/λ′)). It now only remains to check that the assignment y 7→

δ̂1
A,R(y) is a homomorphism, and this is easy to verify directly. ¤

4.3. The main conjectures. We can now formulate the central conjecture of
this paper. This conjecture is a generalisation to non-commutative coefficients
of [8, Conj. 4] (which in turn generalized the central conjectures of [4, 20, 27]).

Conjecture 4. Let M be a motive which carries an action of the finite-
dimensional semisimple Q-algebra A, and let A be any order in A for which M
admits a projective A-structure. Assume that (M,A) satisfies the Coherence
hypothesis.

(i) L(AM, s) can be analytically continued to s = 0.
(ii) Regarding ords=0L(AM, s) as a locally constant function on Spec(ζ(AC))

one has

ords=0L(AM, s) = rrA(H1
f (K,M∗(1))∗)− rrA(H0

f (K,M∗(1))∗)

where the map rrA is as defined in §2.6.
(iii) (Rationality) Set

L∗(AM, 0) := lim
s→0

s−ords=0L(AM,s)L(AM, s) ∈ ζ(AR)×,

L(M,A) :=δ̂1
A,R(L∗(AM, 0)) ∈ Cl(A,R)

and

TΩ(M,A) := L(M,A) +RΩ(M,A) ∈ Cl(A,R).

Then TΩ(M,A) ∈ Cl(A,Q).
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(iv) (Integrality) TΩ(M,A) = 0.

Remark 8. It is possible to formulate an equivalent conjecture without assum-
ing the Coherence hypothesis (which was required to define RΩ(M,A)). To
do this, we note that the pair (Ξ(M), ϑ∞) represents an object of V (A,R) :=
V (A) ×V (AR) P0, and we consider the Mayer-Vietoris sequence for this fibre
product

· · · → K1(AR)
δ−→ π0(V (A,R))→ K0(A)→ K0(AR)→ · · ·

Just as in the proof of Lemma 9, we let λ ∈ ζ(A)× be any element such that
λL∗(AM, 0) belongs to im(nrAR). Then Conjecture 4(iii) is equivalent to

Conjecture 5. In π0(V (A,R)) one has [Ξ(M), ϑ∞]+δ(nr−1
AR(λL

∗(AM, 0))) =
0.

It is clear that this conjecture does not involve Ξ(M)Z. Further, as a conse-
quence of the definition of δ and the definition of isomorphism in the category
V (A,R), Conjecture 5 implies the existence of an isomorphism in V (A)

ϑ(λ) : Ξ(M) ∼= 1V (A)

which maps to −nr−1
AR(λL

∗(AM, 0)) ◦ ϑ∞ in V (AR). Since the map K1(A) ∼=
π1(V (A))→ π1(V (AR)) ∼= K1(AR) is injective, the isomorphism ϑ(λ) is unique.
One can therefore define an object

ξ(M,Ap, λ) := ([RΓc(OK,Sp , Tp)], (ϑ(λ) ⊗Qp) ◦ ϑ−1
p )

of V (Ap,Qp) and formulate the following

Conjecture 6. Assuming Conjecture 5, the class

TΩ(M,Ap) := [ξ(M,Ap, λ)]− δ1
Ap,Qp(nr−1

Ap
(λ))

vanishes in π0(V (Ap,Qp)) ∼= K0(Ap,Qp).

Under the Coherence hypothesis (and Conjecture 5) one can show that
TΩ(M,Ap) is equal to the p-component of the element TΩ(M,A) of K0(A,Q)
under the decomposition (13). This implies that, under the Coherence hy-
pothesis, Conjecture 6 is valid for all but finitely many primes p, and that its
validity for all p is equivalent to the validity of Conjecture 4(iv).

Remark 9. In this remark we assume that A is commutative. Then Proposition
2.4 implies that the Picard category V(A) is equivalent to the category P(A) of
graded invertible A-modules. Hence one can work with the graded determinant
functor and the category P(A) to formulate conjectures which are equivalent
to those of Conjecture 4. This is the approach taken in [8], and also in [20]
and [28], except that in each of these references ordinary rather than graded
determinants are used.
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We recall that, for any commutative ring R, an isomorphism in P(R) of the
form

DetR(
⊕

i∈I
Pi) ∼=

⊗

i∈I
DetR(Pi)(45)

is well defined because one can define an isomorphism for any given ordering of I
and the isomorphisms so obtained are compatible with reordering I in the same
way on both sides. (This is a consequence of standard coherence theorems for
symmetric monoidal categories [32]). However, if one ignores rank data, then
(45) depends upon an ordering of I. As a consequence, for example, unless
an ordering of the set Sp is specified the definition of the isomorphism ϑp in
[8, §1.4] is ambiguous to within multiplication by an element η of A×p which
corresponds to a locally constant map Spec(Ap)→ {±1} (see also the remarks
in [20, 0.4] or [28, Rem. 3.2.3(3) and 3.2.6] to this effect). It is clear that
such ambiguity cannot be permitted in the formulation of Conjecture 4(iv)
because in general η /∈ A×p . By working in P(A) the definition of ϑp in [8]
becomes unambiguous and the same is true for all of the other determinant
computations in loc. cit. All computations involving the determinant functor
in both loc. cit. and [9], and also in the work [20, 28] of other authors, should
therefore be understood to take place in categories of the form P(R).

Remark 10. We quickly review some of the current evidence for Conjecture 4.
At the outset, we remark that any proven case of the central conjectures of
[4, 20] provides evidence for Conjecture 4 for pairs of the form (M,Z) (in this
regard see also Remark 11 in §4.5). Moreover, in [11] it is shown that Conjecture
4 implies the central conjecture of Kato’s paper [27] (in all cases to which the
latter applies), and that in the context of Tate motives Conjecture 4(iv) refines a
number of previously formulated (and much studied) conjectures. For example,
if L/K is a finite Galois extension of number fields, then it is shown in [11] that
Conjecture 4(iv) for M = h0(Spec(L)) and with A equal to Z[Gal(L/K)], resp.
equal to any maximal order in Q[Gal(L/K)] which contains Z[Gal(L/K)], is
a refinement of the main conjecture formulated by Chinburg in [13], resp. is
equivalent to the so called ‘Strong Stark Conjecture’ (that is, [loc. cit., Conj.
2.2]). In this direction, the reader can also consult [6].
We now fix a Galois extension L of Q and set G := Gal(L/Q). The
main result of [25] is equivalent to the validity of Conjecture 4(iv) for pairs
(h0(Spec (L))(r),M(2)) where here G is abelian, M(2) denotes the maximal

Z[ 1
2 ]-order in Q[G] and r is any integer. In addition, the main result of [12]

implies that Conjecture 4(iv) is valid for all pairs (h0(Spec (L))(r),Z[ 1
2 ][G])

with G abelian and r any integer less than 1 (in this regard see also Remark
19 in §5.3). Relaxing the condition that G is abelian, it is also known that
Conjecture 4(iv) is valid for the pairs (h0(Spec (L)),Z[G]) where L ranges over
a natural (infinite) family of fields for which G is isomorphic to the quaternion
group of order 8 [11].
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The above examples can all be regarded as providing evidence for Conjecture
4 in the setting of Example b) in §3.3 (‘The Galois case’). The equivariant
Birch-Swinnerton Dyer conjecture for elliptic curves with CM by the maximal
order O of the CM-field, as formulated by Gross in [22], is perhaps the earliest
integral equivariant special value conjecture in a setting other than the Galois
case. Moreover, the relative algebraic K-group K0(O,R) is introduced in [22]
in an ad-hoc manner in order to formulate the conjecture (which can indeed
be shown to be equivalent to Conjecture 4(iv) in all relevant cases). Some
instances of Gross’ conjecture have been proved by Rubin [40]. However, at
present we are unaware of any examples in which Conjecture 4(iv) has been
verified in a non-Galois case and with A non-maximal.

4.4. Functorialities. In this section we shall discuss the behaviour of the
element L(M,A), and hence (given Theorem 3.1) also of TΩ(M,A), under the
functorialities discussed in §3.5.
We let ρ : A → B be as in §3.5, and we use the notation ρ∗ for any of the
maps induced by the exact functor B ⊗A − : PMod(A) → PMod(B) or its
scalar extensions on algebraic K-groups. These maps ρ∗ combine to give a
map of the localization sequence (11) into the corresponding sequence with A
replaced by B. The same holds for the maps ρ∗ (resp. µ∗) induced by the
functor resB

A : PMod(B) → PMod(A) if B is a projective A-module (resp. by
the functor µ : PMod(Mn(A))→ PMod(A) if A is commutative).
Our first result describes the functorial properties of the extended boundary
homomorphism.

Lemma 10. There exists a homomorphism ρ∗ : ζ(AR)× → ζ(BR)× which fits
into a commutative diagram

K1(AR)
nrAR−−−−→ ζ(AR)×

δ̂1
A,R−−−−→ Cl(A,R)

ρ∗

y ρ∗

y ρ∗

y

K1(BR)
nrBR−−−−→ ζ(BR)×

δ̂1
B,R−−−−→ Cl(B,R).

(46)

The analogous statements also hold for both ρ∗ and µ∗.

Proof. For any field F of characteristic 0 the ring homomorphism ρF : AF →
BF induces an exact functor BF ⊗AF − : PMod(AF )→ PMod(BF ) and hence
also a group homomorphism ρF,∗ : K1(AF )→ K1(BF ). Although the reduced
norm map nrAF is not in general bijective it identifies ζ(AF )× with the sheafi-
fication of the presheaf F 7→ K1(AF ) for the étale topology on Spec(F ). If F̄
is an algebraic closure of F and Γ = Gal(F̄ /F ), then we have

H0(Γ,K1(AF̄ )) ∼= H0(Γ, ζ(AF̄ )×) ∼= H0(Γ, (ζ(AF )⊗F F̄ )×) ∼= ζ(AF )×,

and the map ρF,∗ can be defined on ζ(AF )× via this formula. By construction
then, the left hand square in (46) commutes (even with R replaced by any field
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of characteristic 0) and we also have a commutative diagram

ζ(AF )×
ρF,∗−−−−→ ζ(BF )×

⊆
y

y⊆

ζ(AE)×
ρE,∗−−−−→ ζ(BE)×

(47)

for any fields E ⊇ F ⊇ Q. The localisation sequences (11) for A and B form
a commutative diagram with the maps induced by ρ. With notation as in the
proof of Lemma 9, the commutativity of the left hand square in (46) therefore
implies that

ρ∗(δ̂
1
A,R(y)) = ρ∗(δ

1
A,R(nr−1

AR(λy)))−
∑

p

ρ∗(δ
1
Ap,Qp(nr−1

Ap
(λ)))

= δ1
B,R(nr−1

BR(ρR,∗(λy)))−
∑

p

δ1
Bp,Qp(nr−1

Bp
(ρQp,∗(λ))).

From the commutativity of (47) with E/F = Qp/Q and E/F = R/Q it is clear

that one can use the element ρQ,∗(λ) of ζ(B)× to compute δ̂1
B,R(ρR,∗(y)). It

follows that the above displayed formula is equal to δ̂1
B,R(ρR,∗(y)), and hence

that the right hand square in (46) commutes.
The arguments for ρ∗ and µ∗ are entirely similar. ¤

Theorem 4.1. All assertions of Theorem 3.1 remain valid with RΩ(−,−) re-
placed by either L(−,−) or TΩ(−,−).

Proof. We have a commutative diagram of exact functors

PMod(AC)
κA−−−−→ ∏

i(A) PMod(C)

B⊗A−
y η

y

PMod(BC)
κB−−−−→ ∏

i(B) PMod(C)

(48)

where κA and κB are given by (41), and η := κB ◦ (B⊗A−)◦κ−1
A is essentially

given by an |i(A)|×|i(B)|−matrix N = (ni,j) with non-negative integer entries.
Indeed, one checks easily that η sends (Vi)i∈i(A) ∈ Ob(

∏
i(A) PMod(C)) to

(⊕iV ni,ji )j∈i(B). There exists a similar diagram involving the same matrix N
for any pseudo-abelian C-linear category W in place of PMod(C). For an
abelian group C and any map ε defined as in (42) which is additive for direct
sums in W , we therefore obtain a commutative diagram

Ob(WA)
ε−−−−→ Ci(A)

B⊗A−
y N

y

Ob(WB)
ε−−−−→ Ci(B).

This observation applies to Lv(M, s) and so by taking into account (38)
it follows that N(Lv(AM, s)) = Lv(B(B ⊗A M), s) ∈ Ci(B). Now since
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Ci(A) N−→ Ci(B) is an analytic map it commutes with the Euler product and
hence N(L(AM, s)) = L(B(B ⊗A M), s) ∈ Ci(B). By analytic continuation it
follows that N(L∗(AM, 0)) = L∗(B(B ⊗A M), 0) ∈ ζ(BR)×. We now recall
that the map ρ∗ defined on ζ(AC)× ∼= (C×)i(A) in Lemma 10 is compatible
with the induced map on K1(AC). The diagram of exact categories (48) then
shows that ρ∗ is given by the matrix N after making the canonical identifica-
tion K1(C) ∼= C×. Lemma 10 then implies that ρ∗(L(M,A)) = L(B⊗AM,B),
i.e. the precise analogue of Theorem 3.1a).
The analogues of b) and c) in Theorem 3.1 follow by exactly the same argument
using the maps ρ∗ and µ∗. ¤

4.5. Consequences of functoriality. In terms of the notation of Theorem
3.1, Theorem 4.1 implies that if Conjecture 4(iv) is valid for the pair (M,A),
then it is also valid for the pair (B ⊗A M,B). In addition, if ρ∗ is injective,
then the converse is also true. Analogous statements also hold for ρ∗. It is
therefore of some interest to know when the maps ρ∗ and ρ∗ are injective. The
next result investigates ker(ρ∗) in the case that ρ is injective.

Lemma 11. Let ι : A → B denote the inclusion map between orders in finite
dimensional semisimple Q-algebras A ⊆ B. Assume that ζ(B) ∩A = ζ(A).

a) The natural map ι∗ : Cl(A,R) → Cl(B,R) has finite kernel contained in
Cl(A,Q). Moreover, ι−1

∗ (Cl(B,Q)) = Cl(A,Q).
b) If either A is a maximal order, or B is commutative and B∩A = A, then

ι∗ is injective.
c) The group Cl(A,Q) is torsion-free if and only if for each prime p the

image of the natural map K1(Ap) → K1(Ap) ∼= ζ(Ap)
× is equal to the

group of units of the maximal Zp-order in ζ(Ap). This condition holds if
A is a maximal order in A.

d) If B is a maximal order, then ker(ι∗) is the torsion subgroup of Cl(A,Q).

Proof. For any finite dimensional semisimple Q-algebra C and field F of char-
acteristic 0 we set ζ(CF )×+ := im(nrCF ) ⊂ ζ(CF )×. The map nrCF induces
an isomorphism K1(CF ) ∼= ζ(CF )×+, and in what follows we regard this as
an identification. We will often use the fact that since ζ(B) ∩ A = ζ(A) the
natural map K1(AF ) → K1(BF ) corresponds under the above identifications
to the inclusion ζ(AF )×+ ⊆ ζ(BF )×+ [15, (45.3)]. We also use the fact that
Proposition 2.2 implies an explicit description of ζ(CF )×+ in terms of positivity
conditions at each quaternion component of C.
We first prove that ι−1

∗ (Cl(B,Q)) = Cl(A,Q). We thus suppose that x is any
element of Cl(A,R) for which ι∗(x) ∈ Cl(B,Q). The fact that diagram (14)
is exact implies that, after possibly adding to x an element of Cl(A,Q), we
can assume that there exists an element x̃ of K1(AR) = ζ(AR)×+ such that
x = δ1

A,R(x̃). Since the image of x̃ in K0(B,R) lies in K0(B,Q) diagram (11)

(with A replaced by B) implies that x̃ ∈ ζ(B)×+. Now B ∩ AR = A and so
ζ(B)×+ ∩ ζ(AR)×+ = ζ(A)×+ (as a consequence of Proposition 2.2). Hence
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x ∈ Cl(A,Q) ⊂ Cl(A,R), as required. We note in particular that this implies
that ker(ι∗) ⊆ Cl(A,Q).
We write

ι∗,p : ζ(Ap)
×/ im(K1(Ap))→ ζ(Bp)

×/ im(K1(Bp))(49)

for the natural map which is induced by the inclusion ζ(Ap) ⊆ ζ(Bp). We
observe that the decomposition (15) induces a corresponding decomposition
ι∗ =

⊕
p ι∗,p, and hence that ι∗ is injective if and only if each map ι∗,p is

injective.
We now consider b). If firstly B and hence A are commutative, then the im-
age of K1(Ap) in K1(Ap) = A×p is isomorphic to A×p [15, (45.12)] and sim-
ilarly for Bp. Hence if Bp ∩ Ap = Ap, then the map ι∗,p is injective, as
required. We assume now that Ap is a maximal Zp-order in Ap. In this
case ζ(Ap) is the (unique) maximal Zp-order in ζ(Ap) and the map nrAp
induces an identification im(K1(Ap)) = ζ(Ap)

× ⊂ ζ(Ap)
× by [15, (45.8)].

To prove injectivity of ι∗,p we embed Bp in a maximal Zp-order Mp of Bp.
Then im(K1(Bp)) ⊆ im(K1(Mp)) = ζ(Mp)

×. In addition, the intersection
Cp := ζ(Mp) ∩ ζ(Ap) is a Zp-order in ζ(Ap) and is therefore contained in
ζ(Ap). Hence one has

im(K1(Bp)) ∩ ζ(Ap)
× ⊆ C×p ⊆ ζ(Ap)

× = im(K1(Ap))

and so ι∗,p is indeed injective. This finishes the proof of b).
We next prove c) and also the first (and only remaining) assertion of a). We
observe that

ker(ι∗,p) = (im(K1(Bp)) ∩ ζ(Ap)
×)/ im(K1(Ap)),

and that this quotient is finite since its numerator and denominator are both of
finite index in the unit group of the maximal Zp-order in ζ(Ap) (cf. [15, Exer.
(45.4)]). In addition if Ap is maximal, then ζ(Ap) is a product of local fields and
ζ(Ap) is the corresponding product of valuation rings, and hence K0(Ap,Qp) ∼=
ζ(Ap)

×/ζ(Ap)
× is torsion free (in fact free abelian of finite rank). Hence in

this case ker(ι∗,p) is trivial. This implies that ker(ι∗) is finite (as claimed in a))
since Ap is a maximal Zp-order for almost all p. This argument also implies
that the torsion subgroup of ζ(Ap)

×/ im(K1(Ap)) is equal to M×p / im(K1(Ap))
where Mp is the maximal Zp-order in ζ(Ap). It follows that Cl(A,Q) is indeed
torsion free if and only if the condition in c) is satisfied. We remark that if
A is a maximal order, then this condition is satisfied as a consequence of [15,
(45.8)].
We observe finally that d) follows immediately upon combining a) and c). ¤

Remark 11. The original conjecture of Bloch and Kato (as formulated in [4]
and reworked in [20]) is equivalent to Conjecture 4(iv) for the pair (M,Z). Now
for any order A the unique homomorphism Z → A is flat. Hence, if A is any
order in A for which M admits a projective A-structure, then Conjecture 4(iv)
for the pair (M,A) implies the conjecture of Bloch and Kato.

Documenta Mathematica 6 (2001) 501–570



542 D. Burns and M. Flach

Remark 12. From Lemma 11a), it follows that Conjecture 4(iii) for any given
pair (M,A) is equivalent to Conjecture 4(iii) for any pair (B ⊗AM,B) where
A ⊆ B. As a consequence, it suffices to verify Conjecture 4(iii) after an arbi-
trary extension A ⊆ B of the operating algebra and for any choice of order in
B.

Remark 13. In the Galois case (cf. Example b) in §3.3) there is a natural
interplay between a change of coefficients and a change of field extension. This
situation is described precisely by the following result.

Proposition 4.1. Let MK be a motive over K and L/K a Galois extension
with group G so that Q[G] acts on M := ML = h0(Spec(L)) ⊗MK . Let H be
a subgroup of G.

a) Let K ′ = LH denote the fixed field of H and TΩ(M ′,Z[H]) the element
constructed from the base change M ′K′ of MK to K ′ and the extension L/K ′

with group H. Then

ρG,∗H (TΩ(M,Z[G])) = TΩ(M,Z[H]) = TΩ(M ′,Z[H])(50)

where ρGH : Z[H]→ Z[G] is the natural inclusion morphism (which is flat).

b) Set Q := G/H, L′ := LH and ML′ := h0(Spec(L′))⊗MK . Then

qGQ,∗(TΩ(M,Z[G])) = TΩ(Q[Q]⊗Q[G] M,Z[Q]) = TΩ(ML′ ,Z[Q])(51)

where qGQ : Z[G]→ Z[Q] is the natural projection.

Proof. After taking into account Theorem 4.1, we need only prove the second
equalities of (50) and (51).
We observe first that the second equality of (51) is an immediate consequence
of the isomorphism Q[Q]⊗Q[G] h

0(Spec(L)) ∼= h0(Spec(L′)) of motives over K
with Q[Q]-action.
On the other hand, the second equality of (50) is best understood by thinking
of MK as arising from a variety X → Spec(K). Then both M and M ′ will
arise from the same variety X ′ = Spec(L)×Spec(K)X, respectively viewed over
K and K ′ (and with H-action in both cases). It is well known that the L-
functions taken over either K or K ′ are the same [16, Rem 2.9]. In addition,
the groups H i

f (−,−) and HdR(−,−) are the same from both points of view

since they only depend on the underlying scheme X ′. Since also Hv(M) =⊕
v′|vHv′(M

′) for each v ∈ S∞ it follows that Ξ(M) = Ξ(M ′). The exact

sequence (17) is the same for M and M ′. Further, if π : Spec(OK′,Sp) →
Spec(OK,Sp) denotes the natural finite morphism, then π∗(Hp(M

′)) = Hp(M)
and so RΓc(OK′,Sp , Hp(M

′)) ∼= RΓc(OK,Sp , Hp(M)). The map ϑp is therefore
the same for both M and M ′ and hence Ξ(M)Z = Ξ(M ′)Z. This in turn implies
that TΩ(M,Z[H]) = TΩ(M ′,Z[H]), as required. ¤
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4.6. Reduction to the commutative case. In this section we use Theo-
rem 4.1 to prove that Conjecture 4(iii), and also Conjecture 4(iv) for all pairs
(M,A) with A a maximal order, can be verified by restricting to motives with
commutative coefficients.

Proposition 4.2. a) Conjecture 4(iii) holds for all pairs (M,A) if it holds for
all such pairs with A commutative and maximal.
b) Conjecture 4(iv) holds for all pairs (M,A) where A is a maximal order, if it
holds for all such pairs with A commutative and maximal.

Proof. By remark 12 after Lemma 11 we may assume throughout that A is
maximal. Consider the Wedderburn decomposition A ∼=

∏r
i=1Mmi(Di) of A

and put Fi := ζ(Di). Pick a splitting field Ei for each i so that Mmi(Di) ⊗Fi
Ei ∼= Mni(Ei) with ni = mi

√
[Di : Fi]. Then B =

∏r
i=1Mni(Ei) contains A

and we have ζ(B)∩A = ζ(A). The image of A can be embedded into a maximal
order B in B, and we write ι : A → B for the corresponding morphism. One
has ι∗(TΩ(M,A)) = TΩ(B⊗AM,B) by Theorem 4.1, and so Lemma 11 implies
that Conjecture 4(iii), resp. (iv), is valid for (M,A) if and only if it is valid for
(B ⊗AM,B).
Now [15, Th. (26.25)] implies that, perhaps after enlarging each field Ei, we
can assume that B = b ·B′ · b−1 with B′ =

∏r
i=1Mni(OEi) and b ∈ B×. In

this case multiplication by b gives an isomorphism of pairs (B ⊗A M,B) ∼=
(B ⊗AM, b ·B · b−1) which in turn induces an equality

TΩ(B ⊗AM,B) = TΩ(B ⊗AM,B′)

=
r∏

i=1

TΩ(εi(B ⊗AM),Mni(OEi))

∈
r⊕

i=1

K0(Mni(OEi),R) ∼= K0(B′,R)

where εi are the central idempotents of B. From Theorem 4.1 one has

µi,∗(TΩ(εi(B ⊗AM),Mni(OEi))) = TΩ(eiεi(B ⊗AM),OEi)
where here ei is the matrix (36) of size ni, and µi,∗ : K0(Mni(OEi),R)

∼−→
K0(OEi ,R) is the associated isomorphism (37). Since also K0(Mni(OEi),Q) =
µ−1
i,∗ (K0(OEi ,Q)), it is clear that Conjecture 4(iii), resp. (iv), is true for (B⊗A
M,B) if and only if it is true for each pair (eiεi(B ⊗AM),OEi). This finishes
the proof of the proposition. ¤

Remark 14. Let A be a central simple algebra over a number field F with
ring of integers O. If A is any maximal order in A, then the reduction to
commutative coefficients effected by Proposition 4.2b) implies that Conjecture
4(iv) for the pair (M,A) can only determine L∗(AM, 0) to within multiplication
by all elements of O× (inside (F ⊗Q R)× = ζ(AR)×). This reflects the general
fact that if A is any maximal order in a finite dimensional semisimple Q-algebra
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A, then δ̂1
A,R vanishes on all of ζ(A)× rather than only on ζ(A)× ∩ im(nrAR).

(The latter fact follows as an easy consequence of [15, (45.7), (45.8)]).

Remark 15. Non-maximal non-commutative orders A arise as natural operat-
ing rings in many interesting examples. In general, when attempting to verify
Conjecture 4(iv) for any such pair (M,A) no reduction to commutative coeffi-
cients is possible. In [11] we give a detailed discussion of Conjecture 4(iv) for
a number of such examples.

5. Kummer duality

We recall that if M is any motive with an action of a semisimple Q-algebra A,
then the dual motive M∗ is naturally endowed with an action of the opposite
algebra Aop. After fixing an isomorphism A∗ ∼= Aop of Aop-modules [15, (9.8)],
we then have a functorial isomorphism of Aop-modules

W ∗ = HomQ(W,Q) ∼= HomQ(A⊗AW,Q)(52)

∼= HomA(W,HomQ(Aop,Q)) ∼= HomA(W,A)

for any A-module W . It follows that if M has a projective A-structure {Tv : v ∈
S∞}, then M∗(1) has a projective Aop-structure {HomA(Tv,A)(1) : v ∈ S∞}.
In this section we shall compare the elements TΩ(M,A) and TΩ(M ∗(1),Aop).
This comparison is naturally motivated by the problem of deciding whether
Conjecture 4(iv) is compatible with the functional equation of L(AM, s). The
comparison result we prove in this section is most conveniently formulated in
terms of an element TΩloc(M,A) of Cl(A,R) the theory of which is strikingly
parallel to that of TΩ(M,A) but involves no assumptions on the motivic coho-
mology of M . Indeed, TΩloc(M,A) takes the form Lloc(M,A) + RΩloc(M,A)
where the first term is defined in terms of the equivariant archimedean Euler
factors and epsilon factors which are attached to M and M ∗(1) and the second
term is of an algebraic nature, involving the realisations of M .

5.1. Definition of RΩloc(M,A). We first define a virtual A-module

Ξloc(M) := [HdR(M)]£ [HB(M)]
−1

where

HB(M) :=
⊕

σ∈Hom(K,C)

Hσ(M).

Recall that for each σ ∈ Hom(K,C) we write v(σ) for the corresponding element
of S∞. The action of Gal(C/Kv(σ)) on each space Hσ(M) induces upon HB(M)
an action of Gal(C/R). In addition, by taking the direct sum over the A ×
Gal(C/Kv(σ))-equivariant period isomorphisms

Hσ(M)⊗Q C ∼= HdR(M)⊗K,σ C
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one obtains an A×Gal(C/R)-equivariant isomorphism

HB(M)⊗Q C ∼=
⊕

σ∈Hom(K,C)

HdR(M)⊗K,σ C = HdR(M)⊗Q C(53)

and after taking Gal(C/R)-invariants this in turn induces an AR-equivariant
isomorphism

(HB(M)⊗Q C)+ ∼= HdR(M)⊗Q R.(54)

Here and in what follows, for any commutative ring R and R[Gal(C/R)]-module
X we write X+ and X− for the R-submodules of X upon which complex
conjugation acts as multiplication by 1 and −1 respectively. There is also an
A-equivariant direct sum decomposition

(HB(M)⊗Q C)+ = (HB(M)+ ⊗Q R)⊕ (HB(M)− ⊗Q R(2πi)−1)(55)

and an isomorphism

HB(M)− ⊗Q R(2πi)−1 ∼= HB(M)− ⊗Q R(56)

which is induced by identifying R(2πi)−1 with R by sending (2πi)−1 to 1. Let
εB (resp. εdR) be the automorphism [ − 1] in π1V (AR) ∼= K1(AR) which is
induced by multiplication by -1 on HB(M)+ ⊗Q R (resp. F 0HdR(M) ⊗Q R).
We write

ϑloc∞ : Ξloc(M)⊗Q R ∼= 1V (AR)(57)

for the isomorphism of virtual AR-modules which is obtained by applying the
functor [ ] to (54), (55) and (56) and then multiplying by εBεdR. The reason
for the introduction of εBεdR will become clear in the proof of Theorem 5.3
below.
As in previous sections, we now fix a finite set S of places of K which contains
S∞ and all places at which M has bad reduction, and for each rational prime p
we set V := Vp := Hp(M). For a finite group Π and a Π-module N we denote
by C•Tate(Π, N) the standard complex computing Tate cohomology. By a slight
abuse of notation we also set C•Tate(Π, N) := C•(Π, N) for any infinite profinite
group Π.
For any continuous GSp -module N we set

R̃Γc(OK,Sp , N) := Cone


C•(GSp , N)→

⊕

v∈Sp
C•Tate(Gv, N)


 [−1]

and if N = Vp is a Qp-vector space we define

1R̃Γc(OK,Sp , Vp) := Cone


C•(GSp , N)→

⊕

v∈Sp,f
RΓ(Kv, Vp)


 [−1]

so that there is a natural quasi-isomorphism

R̃Γc(OK,Sp , Vp)→ 1R̃Γc(OK,Sp , Vp).(58)
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We fix once and for all an injective resolution Ap → I• of Ap-Ap-bimodules, and
for any complex N of Ap-modules (which is cohomologically bounded above)
we define a complex of Aopp -modules by N∗ := HomAp(N, I•). Note here that,
since the natural map Ap → Ap ⊗Zp Aopp is flat, each In is an injective Ap-
module and hence that N∗ = RHomAp(N,Ap) in D(Aopp ). We shall moreover

assume that I0 = Ap and that each In is torsion if n ≥ 1. There is then an
isomorphism of complexes of Ap-Ap-bimodules

I•Qp := Qp ⊗Zp I• ∼= Ap[0].(59)

If N = T = Tp ⊂ Vp is a projective Ap-lattice, and in that case only, we put
T ∗ = HomAp(T,Ap). The isomorphism (52) then induces an identification

Qp ⊗Zp T ∗(1) ∼= HomAp(V,Ap(1)) ∼= HomQp(V,Qp(1)) = V ∗(1)(60)

of T ∗(1) with an Aopp -lattice in V ∗(1).

Lemma 12. a) There is a commutative diagram of maps of complexes

RΓ(OK,Sp , V ) −→ ⊕
v∈Sp,f

RΓ(Kv, V ) −→ ⊕
v∈Sp,f

RΓ/f (Kv, V )

1 AV

y ⊕
AVv

y ⊕
AVf,v

y

1R̃Γc(OK,Sp , V ∗(1))∗[−3] −→ ⊕
v∈Sp,f

RΓ(Kv, V
∗(1))∗[−2] −→ ⊕

v∈Sp,f
RΓf (Kv, V

∗(1))∗[−2]

in which all of the vertical maps are quasi-isomorphisms. Moreover [1 AV ],
[ AVv ] and [ AVf,v ] are independent of any choices made in the construction
of this diagram.
b) There is a natural quasi-isomorphism

RΓ(OK,Sp , T )
AV−−→ R̃Γc(OK,Sp , T ∗(1))∗[−3](61)

so that Qp ⊗Zp AV = ν[−3] ◦ 1 AV where ν is the composite isomorphism

1R̃Γc(OK,Sp , V ∗(1))∗ = HomQp(1R̃Γc(OK,Sp , V ∗(1)),Qp)
(52)−−→HomAp(1R̃Γc(OK,Sp , V ∗(1)), Ap)

(59)−−→HomAp(1R̃Γc(OK,Sp , V ∗(1)), I•Qp)

(58)−−→HomAp(R̃Γc(OK,Sp , V ∗(1)), I•Qp)

(60)−−→HomAp(R̃Γc(OK,Sp , T ∗(1)), I•)⊗Zp Qp.

Proof. We first define local pairings for places v | p. To do this we continue to
use the notation introduced in §3.2.
Recall that Bi is an algebra for i = 0, 1 and that the differential of B• is a
difference of two algebra homomorphisms β1 and β2 (cf. (20)). There therefore
exists a natural morphism of complexes µ : B• ⊗Qp B• → B• for which µ0 :

B0⊗Qp B0 → B0 is given by multiplication, µ1 : (B0⊗Qp B1)⊕ (B1⊗Qp B0)→
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B1 is defined by µ1(x⊗y, y′⊗x′) = β2(x)y+β1(x′)y′, and µ2 : B1⊗Qp B1 → 0
is the zero map. This morphism induces a commutative diagram of pairings

V ⊗Qp V ∗(1) −−−−→ Qp(1)
y

y

(B• ⊗Qp V )⊗Qp (B• ⊗Qp V ∗(1)) −−−−→ B• ⊗Qp Qp(1)

and also a commutative diagram of cup product pairings

C•(Gv, V )× C•(Gv, V ∗(1))
∪−−−−−→ C•(Gv,Qp(1))

y
y

TotC•(Gv, B
• ⊗Qp V )× TotC•(Gv, (B

• ⊗Qp V ∗(1))) −−−−−→ TotC•(Gv, B
• ⊗Qp Qp(1)).

We thereby obtain a commutative diagram of local and global cup product
pairings

C•(GSp , V )× C•(GSp , V ∗(1))
∪−−−−→ C•(GSp ,Qp(1))

resV

y× resV ∗(1)

yresQp(1)

⊕
v∈Sp,f

RΓ(Kv, V )× ⊕
v∈Sp,f

RΓ(Kv, V
∗(1))

∪−−−−→ ⊕
v∈Sp,f

RΓ(Kv,Qp(1))

(62)

and hence an induced pairing on the mapping cone

C•(GSp , V )× 1R̃Γc(OK,Sp , V ∗(1))
∪−→ 1R̃Γc(OK,Sp ,Qp(1))

T̃r−→ Qp[−3](63)

so that

resadQp(1)

(
resV (x) ∪ y

)
= x ∪ resadV ∗(1)(y)(64)

where here

resadV :
⊕

v∈Sp,f
RΓ(Kv, V )→ 1R̃Γc(OK,Sp , V )[1]

is the natural map. The morphism T̃r in (63) is chosen to be a lift of the map

1R̃Γc(OK,Sp ,Qp(1)) ⊇ τ≤3
1R̃Γc(OK,Sp ,Qp(1))

→ H3
c (OK,Sp ,Qp(1))[−3]

Tr−→ Qp[−3]

(such a lift exists because Qp is an injective Qp-module).
In the diagram of claim a) the map 1 AV is induced by (63) and the maps AVv

by the local cup product pairing composed with T̃r ◦ resadQp(1). These maps are

quasi-isomorphisms by local and global duality and the compatibility of local
and global trace maps [36, Chap. II, §3]. In addition, the commutativity of
the left hand square of the diagram in a) is a consequence of (64).
The right hand square of the diagram in a) arises as a direct sum of commutative
squares over the places in Sp,f , and for each such place v the existence of
the appropriate square will follow directly if we can show that the complexes
RΓf (Kv, V ) and RΓf (Kv, V

∗(1)) (and not only their cohomology) annihilate
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each other under the pairing T̃r ◦ resadQp(1) ◦∪ constructed above. To prove the

required annihilation property, we consider separately the cases v - p and v | p.
If firstly v - p, then RΓf (Kv, V ) coincides with the subcomplex C•(Gv/Iv, V Iv )
of C•(Gv, V ). In addition, since H2(Gv/Iv,Qp(1)) = 0, we can certainly choose

the lifting T̃r in such a way that it vanishes on the subcomplex

resadQp(1)


 ⊕

v∈Sp,f
C•(Gv/Iv,Qp(1))


 ⊆ 1R̃Γc(OK,Sp ,Qp(1))[1].

If now v | p, then the subcomplex RΓf (Kv, V ) = H0(Gv, B
• ⊗Qp V ) is concen-

trated in degrees 0 and 1 and the cup product of x ∈ H0(Gv, B
1 ⊗Qp V ) and

x′ ∈ H0(Gv, B
1⊗Qp V ∗(1)) is given by µ2(x⊗ x′) = 0. Hence RΓf (Kv, V ) and

RΓf (Kv, V
∗(1)) do indeed annihilate each other.

We observe that, for each v ∈ Sp,f , the resulting morphism AVf,v :
RΓf (Kv, V )→ RΓf (Kv, V

∗(1))∗[−2] is a quasi-isomorphism as a consequence
of [4, Prop. 3.8].
Also, since all of the maps which are induced on cohomology by 1 AV, AVv and
AVf,v are independent of the choice of the lift T̃r, and their sources and targets
all belong to Dp,p(Ap) = Dp(Ap), Proposition 2.1e) implies the final assertion
of claim a).
To prove claim b), we argue in a similar way starting with the diagram

C•(GSp , T )× C•(GSp , T ∗(1))
∪−−−−→ C•(GSp ,Ap(1))

resT

y× resT∗(1)

yresAp(1)

⊕
v∈Sp

C•Tate(Gv, T )× ⊕
v∈Sp

C•Tate(Gv, T
∗(1))

∪−−−−→ ⊕
v∈Sp

C•Tate(Gv,Ap(1))

(65)

and using a lift T̃rA of the map

R̃Γc(OK,Sp ,Ap(1)) ⊇ τ≤3R̃Γc(OK,Sp ,Ap(1))

→ H3
c (OK,Sp ,Ap(1))[−3]

TrA−−→ Ap[−3]→ I•[−3].

The resulting map AV (as in (61)) is a quasi-isomorphism by [9, Lem. 16]. In
addition, there is a natural map from diagram (65) to diagram (62), inducing
a commutative diagram

C•(GSp , T )× R̃Γc(OK,Sp , T ∗(1)) −→ R̃Γc(OK,Sp ,Ap(1)))
T̃rA−−→ I•[−3]

y
y

y

C•(GSp , V )× 1R̃Γc(OK,Sp , V ∗(1)) −→ 1R̃Γc(OK,Sp ,Qp(1)))
T̃r−→ Qp[−3]
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where the left vertical arrow involves (60) and the middle and right vertical
arrows involve the map A → Q which is the image of 1 ∈ Aop under the iso-
morphism Aop ∼= A∗ = HomQ(A,Q) chosen before (52). The second statement
in b) then follows easily from this last commutative diagram. ¤

We now define a virtual Ap-module Λp(S, Vp) by setting

Λp(S, Vp) := £
v∈Sp,f

[RΓ(Kv, Vp)]
−1 £ [ IndQK Vp]

−1
.(66)

We also define

θp : Ap ⊗A Ξloc(M) ∼= Λp(S, Vp)(67)

to be the isomorphism in V (Ap) which results from composing the isomor-
phisms obtained by applying [ ] to the canonical A × Gal(C/R)-equivariant
comparison isomorphism

HB(M)⊗Q Qp ∼= IndQK Vp,(68)

to the A-equivariant (Poincaré duality) exact sequence

0→ (HdR(M∗(1))/F 0)∗ → HdR(M)→ HdR(M)/F 0 → 0,(69)

to (23) for both M and M∗(1), to (18) and the maps AVf,v for each v ∈ Sp,f ,
to (19) for each v ∈ S with v - p and (22) for each v | p, and by then using the
isomorphisms (24) for V = Vp,v and V = V ∗p (1)v and each v ∈ Sp,f .

Given a projective A-structure T on M we define C(K,Tp) to be the mapping
cone of the composite map

RΓc(OK,Sp , Tp)[−1] −→ RΓ(OK,Sp , Tp)[−1]

AV

y

R̃Γc(OK,Sp , T ∗p (1))∗[−4] −→ RΓc(OK,Sp , T ∗p (1))∗[−4]

(70)

and we set

Λp(S, Tp) := [C(K,Tp)].(71)

We next define a canonical isomorphism in V (Ap)

θ′p : Λp(S, Vp)
∼−→ Ap ⊗Ap Λp(S, Tp).

To do this we first define 1C(K,Vp) just as C(K,Tp) but using diagram
Ap ⊗Ap (70) with RΓc(OK,Sp , Vp) replaced by 1RΓc(OK,Sp , Vp), and we de-

fine 2C(K,Vp) by also replacing R̃Γc(OK,Sp , V ∗p (1)), RΓc(OK,Sp , V ∗p (1)) and
AV by their respective versions indexed by 1. Then there are natural quasi-
isomorphisms

Ap ⊗Ap C(K,Tp)
∼−→ 1C(K,Vp)

∼←− 2C(K,Vp)(72)
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where we have used the last assertion in Lemma 12b) for the second quasi-
isomorphism. Setting

2L(Sp, Vp) :=

Cone
(

1RΓc(OK,Sp , Vp)→ RΓ(OK,Sp , Vp) 1 AV−−−→ 1R̃Γc(OK,Sp , V ∗p (1))∗[−3]
)

we obtain a true nine term diagram
⊕

v∈S∞
RΓ(Kv, V

∗
p (1))∗[−4]

⊕
v∈S∞

RΓ(Kv, V
∗
p (1))∗[−4]

y
y

1R̃Γc(OK,Sp , V ∗p (1))∗[−4] −→ 2L(Sp, Vp)[−1] −→ 1RΓc(OK,Sp , Vp)

y
y ‖

1RΓc(OK,Sp , V ∗p (1))∗[−4] −→ 2C(K,Vp) −→ 1RΓc(OK,Sp , Vp).

(73)

There is also a commutative diagram of true triangles

RΓ(OK,Sp , Vp)[−1] −→ 1L(Sp, Vp)[−1] −→ 1RΓc(OK,Sp , Vp)

1 AV

y λ

y ‖

1R̃Γc(OK,Sp , V ∗p (1))∗[−4] −→ 2L(Sp, Vp)[−1] −→ 1RΓc(OK,Sp , Vp)
(74)

where the bottom row coincides with the central row in (73) and

1L(Sp, Vp) := Cone
(

1RΓc(OK,Sp , Vp)→ RΓ(OK,Sp , Vp)
)
.

Lemma 13. Let

E : 0 −−−−→ A
ι−−−−→ B

π−−−−→ C −−−−→ 0

be any true triangle, and let E ′ denote the associated canonical true triangle

0 −−−−→ C −−−−→ Cone(π) −−−−→ B[1] −−−−→ 0.

Then there is a natural quasi-isomorphism A[1]
q−→ Cone(π) for which the fol-

lowing diagram commutes

[A[1]] −−−−→ [A[1]]£ [C]£ [C]
−1

[q]

y [E]

y

[ Cone(π)]
[E′]−−−−→ [C]£ [B[1]].

Documenta Mathematica 6 (2001) 501–570



Tamagawa Numbers for Motives with Coefficients 551

Proof. This is an immediate consequence of the true nine term diagram

0 −−−−→ A[1] A[1]
y q

y
y

C −−−−→ Cone(π) −−−−→ B[1]

‖
y

y

C −−−−→ Z −−−−→ C[1],

where here q(x) = (0, ι(x)) ∈ C ⊕B[1] = Cone(π) and Z is acyclic. ¤

By applying Lemma 13 to the short exact sequence given by the central row in
(26) we obtain a canonical quasi-isomorphism

L(Sp, Vp) :=
⊕

v∈Sp
RΓ(Kv, Vp)

q−→ 1L(Sp, Vp).(75)

Upon composing the isomorphisms in V (Ap) which are induced by (72), the
central column in (73) and the isomorphisms λ−1 from (74), q−1 from (75),

⊕

v∈S∞
RΓ(Kv, V

∗
p (1))∗ ∼= IndQK V

∗
p (1)∗+[0],

(IndQK V
∗
p (1))∗+ ∼= (IndQK Vp(−1))+ ∼= (IndQK Vp)

−(76)

and

IndQK Vp
∼= (IndQK Vp)

+ ⊕ (IndQK Vp)
−,(77)

we obtain the desired isomorphism

θ′p : Λp(S, Vp) = [L(Sp,f , Vp)]
−1 £ [ IndQK Vp]

−1 ∼= Ap ⊗Ap Λp(S, Tp).(78)

Lemma 14. If p is odd, then the isomorphism θ′p is induced by an isomorphism

£
v∈Sp,f

[RΓ(Kv, Tp)]
−1 £ [ IndQK Tp]

−1 ∼= Λp(S, Tp).(79)

Proof. For each v ∈ S∞ and continuous GSp -module N we define RΓ∆(Kv, N)
by the short exact sequence

0→ C•(Gv, N)→ C•Tate(Gv, N)→ RΓ∆(Kv, N)[1]→ 0

Documenta Mathematica 6 (2001) 501–570



552 D. Burns and M. Flach

where the second map is the natural inclusion. We then have a true nine term
diagram

⊕
v∈Sp

C•(Gv, N)[−1] −→ RΓc(OK,Sp , N) −→ RΓ(OK,Sp , N)

y
y ‖

⊕
v∈Sp

C•Tate(Gv, N)[−1] −→ R̃Γc(OK,Sp , N) −→ RΓ(OK,Sp , N)

y
y

⊕
v∈S∞

RΓ∆(Kv, N)
⊕

v∈S∞
RΓ∆(Kv, N).

(80)

Upon defining

3L(Sp, Tp) :=

Cone
(
RΓc(OK,Sp , Tp)→ RΓ(OK,Sp , Tp)

AV−−→ R̃Γc(OK,Sp , T ∗p (1))∗[−3]
)

there is in addition a true nine term diagram
⊕

v∈S∞
RΓ∆(Kv, T

∗
p (1))∗[−4]

⊕
v∈S∞

RΓ∆(Kv, T
∗
p (1))∗[−4]

y
y

R̃Γc(OK,Sp , T∗p (1))∗[−4] −→ 3L(Sp, Tp)[−1] −→ RΓc(OK,Sp , Tp)

y
y ‖

RΓc(OK,Sp , T∗p (1))∗[−4] −→ C(K,Tp) −→ RΓc(OK,Sp , Tp)

(81)

in which the left hand column is the dual of the central column in (80) with
N = T ∗p (1). If p is odd, then all terms in the central column of (81) belong to
Dp(Ap), and RΓ∆(Kv, T

∗
p (1)) is naturally quasi-isomorphic to RΓ(Kv, T

∗
p (1)).

In addition, setting

4L(Sp, Tp) := Cone
(
RΓc(OK,Sp , Tp)→ RΓ(OK,Sp , Tp)

)

there exists a commutative diagram of true triangles similar to (74) and quasi-
isomorphisms

⊕

v∈Sp
RΓ(Kv, Tp)

q−→ 4L(Sp, Tp)← 3L(Sp, Tp)

which together give (79). ¤

Remark 16. If p is odd, then the isomorphism (79) allows a more direct def-
inition of Λp(S, Tp) than that given by (71). However, we do not expect the
statement of Lemma 14 to hold for p = 2. More concretely, if for example
A = Z, p = 2 and we interpret virtual objects as graded determinants, then
the Z2-lattices in the Q2-line Λp(S, Vp) given respectively by Λp(S, Tp) and

£v∈Sp,f [RΓ(Kv, Tp)]
−1 £ [ IndQK Tp]

−1
may well differ.
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We now define

ϑlocp := ε(S, p) ◦ θ′p ◦ θp : Ap ⊗A Ξloc(M) ∼= Ap ⊗Ap Λp(S, Tp)(82)

where θp was defined in (67), θ′p in (78) and where ε(S, p) ∈ π1(V (Ap))
is the automorphism [ − 1] which is induced by multiplication by −1 on⊕

v∈Sp,f RΓ/f (Kv, Vp) (again, the reason for the introduction of ε(S, p) will

become clear in the proof of Theorem 5.3 below). We then define an object of
the category V (Ap)×V (Ap) V (A) by setting

Ξloc(M,Tp, S) := (Λp(S, Tp),Ξ
loc(M), ϑlocp ).

The following result is a natural analogue of Lemmas 5 and 6 for Ξloc(M,Tp, S).

Lemma 15. a) For a different choice of projective A-structure T ′ on M and
a different set of places S′ the objects Ξloc(M,Tp, S) and Ξloc(M,T ′p, S

′) are
isomorphic in V (Ap)×V (Ap) V (A).
b) Let M be a direct factor of hn(X)(r) for a smooth projective variety X over
K. If (M,A) satisfies Conjecture 3, then the object

Ξloc(M)Z := (
∏

p

Λp(S, Tp),Ξ
loc(M),

∏

p

ϑlocp )

of the category
∏
p V (Ap) ×∏

p V (Ap) V (A) is isomorphic to the image of an

object of V(A) under the functor of Lemma 4.

Proof. Under further assumptions on M both of these claims follow from the
proof of Theorem 5.3 given below. For brevity, we shall therefore just sketch a
proof here.
For a second lattice T ′ ⊆ T one has a commutative diagram

RΓc(OK,Sp , T ′p)[−1] −−−−→ RΓc(OK,Sp , Tp)[−1]

AV

y AV

y

RΓc(OK,Sp , (T ′p)∗(1))∗[−4] −−−−→ RΓc(OK,Sp , T ∗p (1))∗[−4].

One can then argue just as in the proof of Lemma 5 using [18, Th. 5.1] for
both of the modules F := Tp/T

′
p and HomZp(F ,Qp/Zp(1)) ∼= Ext1

Ap
(F ,Ap(1)).

For the independence of S it is enough for us to consider the case S ′ = S∪{w}
with w /∈ Sp. In this case, the true triangle (18) is induced from a triangle in
Dp(Ap)

(
Tp

1−f−1
w−−−−→ Tp

)
→ RΓ(Kw, Tp)→

(
T ∗p (1)

1−f−1
w−−−−→ T ∗p (1)

)∗
[−2](83)

and the isomorphism (24) is induced by an isomorphism [Tp
1−f−1

w−−−−→ Tp] ∼=
1V (Ap), and similarly for T ∗p (1). Moreover, ε(S′, p)ε(S, p)−1 coincides with the

automorphism which is induced by multiplication by −1 on [T ∗p (1)
1−f−1

w−−−−→
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T ∗p (1)]∗[−2] and hence lies in the image of π1(V (Ap)). This suffices to construct

an isomorphism between Ξloc(M,Tp, S) and Ξloc(M,Tp, S
′).

Claim b) is proved by choosing a smooth proper model of X over Spec(OK,S)
and then arguing just as in [8, pp. 81-83]. ¤

Following the last result, we define RΩloc(M,A) to be the class of
(Ξloc(M)Z, ϑloc∞ ) in π0(V(A,R)) ∼= K0(A,R).
We observe that, as a consequence of (71), one has

RΩloc(M,A) ∈ Cl(A,R).

5.2. Definition of Lloc(M,A). Recall that L∞(AM, s) =
∏
v∈S∞ Lv(AM, s)

and Λ(AM, s) = L∞(AM, s)L(AM, s). The following conjecture is standard.

Conjecture 7. There is an identity of meromorphic ζ(AC)-valued functions
of the complex variable s

Λ(AM, s) = ε(AM, s)Λ(AopM
∗(1),−s).

Letting ρ ∈ Zπ0(Spec(ζ(AR))) denote the algebraic order at s = 0 of the mero-
morphic function Λ(AopM

∗(1), s), we set

E(AM) := (−1)ρε(AM, 0)
L∗∞(AopM

∗(1), 0)

L∗∞(AM, 0)
∈ ζ(AR)×

and

Lloc(M,A) := δ̂1
A,R(E(AM)) ∈ Cl(A,R).

We then set

TΩloc(M,A) := Lloc(M,A) +RΩloc(M,A) ∈ Cl(A,R).

The following result can be proved by mimicking the proofs of Theorems 3.1
and 4.1.

Theorem 5.1. All assertions of Theorem 3.1 remain valid with RΩ(−,−) re-
placed by either RΩloc(−,−), Lloc(−,−) or TΩloc(−,−). ¤

We now describe conditions under which TΩloc(M,A) can be shown to belong
to Cl(A,Q).
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Theorem 5.2. If Deligne’s conjecture [16, Conj. 6.6] on the nature of rank
one motives over Q is valid, then TΩloc(M,A) ∈ Cl(A,Q). More precisely,
if (in the notation of the proof of Proposition 4.2b) in §4.6) for each index
i ∈ {1, . . . , r} there exists an integer pi, an Ei-valued Dirichlet character χi
and an isomorphism of motives over Q with coefficients in Ei

∧max

Ei
eiεi(ResKQ (B ⊗AM)) ∼= Ei(pi)(χi),(84)

then TΩloc(M,A) ∈ Cl(A,Q).

Proof. Upon combining the functorial behaviour of TΩloc(−,−) which is de-
scribed in Theorem 5.1 together with the arguments used to prove Proposition
4.2 one finds that the containment TΩloc(M,A) ∈ Cl(A,Q) can be decided
by considering the motives which occur on the left hand side of (84). Indeed,

it follows that TΩloc(M,A) ∈ Cl(A,Q) if and only if TΩloc(eiεi(ResKQ (B ⊗A
M)),OEi) ∈ K0(OEi ,Q) for each index i ∈ {1, . . . , r}.
We now fix such an index i and set N := eiεi(ResKQ (B ⊗A M)) and E := Ei.

Following [11, Lemma 1a)], one has TΩloc(N,OE) ∈ K0(OE ,Q) if and only if

E(EN)−1ϑloc∞ (Ξloc(N)) ⊆ E,

where here ϑloc∞ is the isomorphism (57) for the pair (N,E). It therefore suffices
to prove the displayed inclusion and to do this we adapt the proof of [16, Th.
5.6].
After fixing E-bases of HB(N) and HdR(N) we let δ(N) ∈ EC denote the
corresponding determinant of the isomorphism (53) (with M = N and K =
Q). We set d± := rankE(HB(N)±). After adjoining E-bases of HB(N)+ and
HB(N)− the isomorphism (56) (with M = N) implies that ϑloc∞ (Ξloc(N)) is the

E-subspace of ER which is generated by the element (2πi)−d
−
δ(N), and so we

need to prove that

E(EN)−1(2πi)−d
−
δ(N) ∈ E.(85)

Now from [37, Lem. C.3.7] one has

L∗∞(EN
∗(1), 0)

L∗∞(EN, 0)
.(2π)d

−+t ∈ E

where here t := 1
2w(d+ + d−) ∈ Z with w equal to the weight of N . On the

other hand, by assuming that there is an isomorphism of the form (84) Deligne
has proved that

ε(EN, 0)id
−

(2π)−tδ(N)−1 ∈ E

([16, second formula on p. 331]). Upon combining the last two displayed
containments we obtain (85). ¤
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5.3. The comparison of TΩ(M,A) and TΩ(M ∗(1),Aop). The exact func-
tor P 7→ P ∗ := HomAop(P,Aop) induces an equivalence of exact categories
PMod(Aop) → PMod(A)op. We obtain induced equivalences PMod(Aop) →
PMod(A)op under scalar extension and also induced equivalences of Picard
categories

V(Aop)
∗−→ V(A)op

ι−→ V(A), V(Aop,R)
∗−→ V(A,R)op

ι−→ V(A,R)

where the functor ι sends each morphism to its inverse. We denote each of
these composite functors by X 7→ X∗ and we use ψ∗ to denote the induced
isomorphisms on algebraic K-groups.
If F is any field of characteristic 0, then the maps ψ∗ combine to give an
isomorphism of localisation sequences

· · · −−−−→ K1(AopF )
δ1

Aop,F−−−−→ Cl(Aop, F )
δ0

Aop,F−−−−→ Cl(Aop) −−−−→ 0

ψ∗
y ψ∗

y ψ∗
y

· · · −−−−→ K1(AF )
δ1

A,F−−−−→ Cl(A, F )
δ0

A,F−−−−→ Cl(A) −−−−→ 0.

(86)

Lemma 16. One has

ψ∗ ◦ δ̂1
Aop,R = −δ̂1

A,R

on ζ(AopR )× = ζ(AR)×.

Proof. For any field F of characteristic 0 there is a commutative diagram

K1(AopF )
ψ∗−−−−→ K1(AF )

nrAop
F

y nrAF

y

ζ(AF )×
−1−−−−→ ζ(AF )×.

(87)

This is a consequence of the fact that if V ∈ Ob(PMod(AopF )) and φ ∈
AutAopF (V ), then ψ∗(φ) = HomF (φ, F )−1.

The claimed equality thus follows from the definition of δ̂1
A,R in terms of δ1

A,R
and δ1

Ap,Qp by using the commutativity of (86) and (87) (cf. the proof of Lemma

10). ¤

Theorem 5.3. Assume that Conjectures 1 and 2 and the Coherence hypothesis
are valid for both (M,A) and (M∗(1), Aop), and also that Conjecture 7 is valid
for (M,A). Let A be an order in A for which M has a projective A-structure.
Then M∗(1) has a projective Aop-structure and there is an equality

TΩ(M,A) + ψ∗(TΩ(M∗(1),Aop)) = TΩloc(M,A)(88)

in K0(A,R).
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Corollary 1. Assume that Conjecture 4 is valid for the pair (M,A). Then
Conjecture 4(iii), resp. 4(iv), is valid for the pair (M ∗(1),Aop) if and only if
TΩloc(M,A) ∈ Cl(A,Q), resp. TΩloc(M,A) = 0.

Proof. This follows as an immediate consequence of Theorem 5.3 and the fact
that ψ∗ restricts to give an isomorphism Cl(Aop,Q) ∼= Cl(A,Q). ¤

Remark 17. If A is commutative, then A = Aop and ψ∗ coincides with multi-
plication by −1 on K0(A,R) and so (88) simplifies to give an equality

TΩ(M,A)− TΩ(M∗(1),A) = TΩloc(M,A).

To justify the claim that ψ∗ = −1 whenever A is commutative we first recall
that, as a consequence of Propositions 2.5 and 2.4, all elements in K0(A,R)
can be represented by pairs ((L,α), g) where (L,α) is a graded invertible A-
module and g : AR ⊗A (L,α) ∼= 1AR = (AR, 0) is an isomorphism in P(AR).
Since the image of Spec(AR) is dense in Spec(A), this implies that α = 0 and

also that g : L⊗Z R ∼−→ AR is an isomorphism of ordinary line bundles. Then
ψ∗(L, 0) = (L∗, 0) and

ψ∗((L, 0)R
g−→ (AR, 0)) = ((L∗, 0)R

(g∗)−1

−−−−→ (A∗R, 0) ∼= (AR, 0))

where this last isomorphism sends the identity map in A∗ = HomA(A,A) to

the identity element of A. Now since (L ⊗A L∗)R
g⊗(g∗)−1

−−−−−−→ AR ⊗ AR = AR is

isomorphic to AR
id−→ AR via the evaluation map L⊗A L

∗ → A, it follows that
ψ∗((L, 0), g) does indeed represent the inverse of ((L, 0), g) in K0(A,R).

Proof of Theorem 5.3. By applying the (monoidal) functor (−)∗ to the object
Ξ(M∗(1)) of V (Aop) (as defined in (29)) one finds that there is an isomorphism
in V (A)

Ξ(M∗(1))∗ ∼= [H0
f (K,M∗(1))∗]£ [H1

f (K,M∗(1))∗]−1

£ [H1
f (K,M)]£ [H0

f (K,M)]
−1

£
(
£

v∈S∞
[Hv(M

∗(1))Gv,∗]−1

)
£ [(HdR(M∗(1))/F 0)∗]

and hence also an isomorphism

(89) Ξ(M)£ Ξ(M∗(1))∗ ∼= [
⊕

v∈S∞
Hv(M)Gv ]

−1 £ [(HdR(M)/F 0)]

£ [
⊕

v∈S∞
Hv(M

∗(1))Gv,∗]−1 £ [(HdR(M∗(1))/F 0)∗].

We now observe that ⊕

v∈S∞
Hv(M)Gv = HB(M)+(90)
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and that there are natural A-equivariant isomorphisms

HB(M∗(1))+∗ ∼= HB(M∗(1))∗+ ∼= HB(M)−(−1) ∼= HB(M)−(91)

where the last map is induced by sending each element y⊗ (2πi)−1 to y. After
applying [ ] to (90), to the linear dual of (90) for M ∗(1), to (91), to the natural
isomorphism

HB(M) ∼= HB(M)+ ⊕HB(M)−(92)

and to the Poincaré duality sequence (69), the right hand side of (89) identifies
with Ξloc(M), and hence one obtains an isomorphism of virtual A-modules

ϑPD : Ξ(M)£ Ξ(M∗(1))∗ ∼= Ξloc(M).

Lemma 17. a) ϑloc∞ ◦ (AR ⊗A ϑPD) = ϑ∞(M)£ ϑ∞(M∗(1))∗.
b) For each projective A-structure T on M and each prime p there is a com-
mutative diagram in V (Ap)

Ap ⊗
A

(Ξ(M)£ Ξ(M∗(1))∗)
Ap⊗

A
ϑPD

−−−−−−→ Ap ⊗
A

Ξloc(M)

ϑp(M)£ϑp(M∗(1))∗
y ϑlocp

y

Ap ⊗
Ap

[RΓc(OK,Sp , Tp)]£ [RΓc(OK,Sp , T ∗p (1))∗]
Ap ⊗

Ap

ϑAVp

−−−−−−→ Ap ⊗
Ap

Λp(S, Tp)

where

ϑAVp : [RΓc(OK,Sp , Tp)]£ [RΓc(OK,Sp , T ∗p (1))∗]
∼−→ Λp(S, Tp)

is the isomorphism in V (Ap) which is induced by the definition (71) of
Λp(S, Tp).

We assume for the moment that this lemma is true. Then from claim b) we
deduce that there is an isomorphism in V(A)

ϑPDZ : Ξ(M)Z £ Ξ(M∗(1))∗Z ∼= Ξloc(M)Z.

Taken in conjunction with the equality of claim a), this isomorphism in turn
implies that there is an equality

RΩ(M,A) + ψ∗(RΩ(M∗(1),Aop)) = RΩloc(M,A)(93)

in K0(A,R).
On the other hand, by taking leading coefficients at s = 0 in Conjecture 7 we
find that

L∗(AM, 0) = E(AM)L∗(AopM
∗(1), 0)
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in ζ(AR)×. By applying δ̂1
A,R to this equality and then using Lemma 16 we

obtain an equality

L(M,A) =Lloc(M,A) + δ̂1
A,R(L∗(M∗(1), 0))

=Lloc(M,A)− ψ∗(L(M∗(1),Aop))

in K0(A,R). Upon comparing this equality to (93) we finally obtain the formula
of Theorem 5.3.

It therefore only remains to prove Lemma 17, and our proof of this result
will occupy the rest of this section. Before starting the proof however we
introduce another useful convention. For any integer n the symbol (n)∗ refers
to the equality, isomorphism or exact triangle which is obtained by applying the
functor ∗ to the displayed formula (n) with M ∗(1) in place of M and V ∗p (1) in

place of Vp; (n)+ refers to the equality, isomorphism or exact triangle obtained
by taking Gal(C/R)-invariants of (n); (n)v indicates that the formula (n) is to
be used for all places v in Sp,f to which it applies.

Proof of Lemma 17. We begin with the proof of part a).

Lemma 18. (cf. [20][Prop. III.1.1.6 iii)]) With notation as in section 3.2 there
are natural isomorphisms of AR-modules

ker(αM ) ∼= coker(αM∗(1))
∗, coker(αM ) ∼= ker(αM∗(1))

∗.

Proof. For any Q-space W and field of characteristic zero F we set WF :=
W ⊗F Q. There is a commutative diagram of AR ×Gal(C/R)-modules

HB(M)R
αM,C−−−−→ HdR(M)C/F 0

x
x

F 0HdR(M)C ⊕HB(M)R −−−−→ HdR(M)C

‖
y(53)

F 0HdR(M)C ⊕HB(M)R −−−−→ HB(M)Cy
y

F 0HdR(M)C −−−−→ HB(M)C/HB(M)R

β1

y β2

y

(HdR(M∗(1))C/F 0)∗
α∗M∗(1),C−−−−−→ HB(M∗(1))∗R

(94)

where all arrows other than β1, β2 are natural projections, inclusions or sum
maps, possibly combined with the comparison isomorphism (53). The maps β1
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and β2 arise as follows. There is a perfect duality of R-vector spaces

HB(M)C ×HB(M∗(1))C −−−−→ HB(Q(1))Cy∼=
y∼=

HdR(M)C ×HdR(M∗(1))C −−−−→ HdR(Q(1))C
τ−−−−→ R

where the vertical isomorphisms are given by (53) for M ,M ∗(1) and Q(1), and
τ is the R-linear splitting of the inclusion

R = HdR(Q(1))R ⊂ HdR(Q(1))C = C

with kernel HB(Q(1))R = 2πi ·R. One verifies that HB(M)R is the orthogonal
complement of HB(M∗(1))R under this pairing, and it is also well known that
F 0HdR(M) is the orthogonal complement of F 0HdR(M∗(1)). Hence we obtain
the isomorphisms βi. Viewing the rows of (94) as complexes concentrated
in degrees zero and one, an easy inspection shows that all rows are quasi-
isomorphic. The same is then true for the diagram (94)+ whose top (resp.
bottom) row coincides with RΓD(K,M) (resp. RΓD(K,M∗(1))∗[−1]). This
proves the Lemma. ¤

We shall next establish existence of the following commutative diagram in
V (AR)

AR ⊗A
(
Ξ(M)£ Ξ(M∗(1))∗

) AR⊗AϑPD−−−−−−−−→ AR ⊗A Ξloc(M)

AR⊗A(89)

yAR⊗A(90) ‖

[HB(M)
+
R ]
−1 £ [(HdR(M)/F

0
)R]£

[HB(M
∗
(1))
∗,+
R ]

−1 £ [(HdR(M
∗
(1))/F

0
)
∗
R]

γ1−−→ [HB(M)R]−1 £ [HdR(M)R]

y [β1],[β2] (55)

y(56)

[HB(M)
+
R ]
−1 £ [(HdR(M)/F

0
)R]£

[(HB(M)C)
+
/HB(M)

+
R ]
−1 £ [F

0
HdR(M)R]

−→ [(HB(M)C)+]−1 £ [HdR(M)R]

β3

y εB

yεdR

[F
0
HdR(M)R]

−1 £ [HB(M)
+
R ]
−1 £ [HdR(M)R]

£ [F
0
HdR(M)R]£ [HB(M)

+
R ]£ [(HB(M)C)

+
]
−1

γ2−−→ [(HB(M)C)+]−1 £ [HdR(M)R]

β4

y (54)

y

1V (AR) 1V (AR).

(95)

The first square in (95) is commutative by the definition of ϑPD if we define
γ1 to be induced by equations AR ⊗A (91), AR ⊗A (92) and AR ⊗A (69). The
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second square in (95) is the £-product of the two commutative squares

[HB(M)+
R ]
−1 £

[HB(M∗(1))∗,+R ]
−1

AR⊗{(91),(92)}−−−−−−−−−−→ [HB(M)R]
−1

y[β2] (55)

y(56)

[HB(M)+
R ]
−1 £

[(HB(M)C)+/HB(M)+
R ]
−1

−−−−→ [(HB(M)C)+]
−1

(96)

and

[(HdR(M)/F 0)R]£

[(HdR(M∗(1))/F 0)∗R]

AR⊗A(69)−−−−−−→ [HdR(M)R]

y[β1] ‖
[(HdR(M)/F 0)R]£

[F 0HdR(M)R]
−−−−→ [HdR(M)R].

In both of those squares the bottom horizontal maps are induced by the obvi-
ous short exact sequences. The square (96) commutes since the identification
HB(M)−R

∼= HB(M)− ⊗ (2πi)−1R used in AR⊗A(91) is inverse to that used in
(56).
Concerning the third square in (95), the map β3 is the £-product of the iso-
morphism

[RΓD(K,M)]
−1

= [HB(M)+
R ]
−1 £ [(HdR(M)/F 0)R]

∼−→
[F 0HdR(M)R]

−1 £ [HB(M)+
R ]
−1 £ [HdR(M)R]

induced by the quasi-isomorphism between the first and second row in (94)+

and a similar isomorphism induced by the quasi-isomorphism between the
fourth and third row in (94)+. The map γ2 is induced by canceling mutu-
ally inverse terms in the first and second row of its source term. Effectively
then, the third square in (95) is the £-product of the squares

1V (AR) £

[F 0HdR(M)R]
−−−−→ [F 0HdR(M)R]

y εdR

y
[F 0HdR(M)R]

−1 £ [F 0HdR(M)R]

[F 0HdR(M)R]
−−−−→ 1V (AR) £ [F 0HdR(M)R]

(97)
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and

[HB(M)+
R ]
−1

£ 1V (AR)

−−−−→ [(HB(M)+
R ]
−1

y εB

y
[HB(M)+

R ]
−1

£ [HB(M)+
R ]£ [HB(M)+

R ]
−1
−−−−→ 1V (AR) £ [(HB(M)+

R ]
−1

(98)

with (the identity maps on) [(HdR(M)/F 0)R] and [(HB(M)C)+/HB(M)+
R ]
−1

.
In both diagrams (97) and (98) the left and bottom arrows are respectively
induced by the two different ways to parenthesize the lower left term, and we
have written this term so that the positions of its factors roughly match with
their position in (95). We refer to [17][(4.1.1)] for the commutativity of (97)
and (98), with the particular correcting factors εdR and εB given in [17][(4.9)].
Finally, the map β4 in (95) is induced by the quasi-isomorphism between the
second and third row in (94)+, and the commutativity of the bottom square in
(95) simply follows from the identity (53)+ = (54).
We now observe that the right hand vertical map in (95) coincides with ϑloc∞
by definition, and that the left hand vertical map

AR ⊗A
(
Ξ(M)£ Ξ(M∗(1))∗

)

∼−→ [RΓD(K,M)]
−1 £ [RΓD(K,M∗(1))∗[−1]]

(94)+

−−−→ 1V (AR)

does indeed coincide with ϑ∞(M) £ ϑ∞(M∗(1))∗ (using the second condition
in Conjecture 1). Lemma 17a) then follows from the commutativity of diagram
(95).

We now consider claim b) of Lemma 17. To further shorten notation we

henceforth write RΓ? for RΓ?(OK,Sp , Vp), RΓf for RΓf (K,Vp), R̃Γc for

R̃Γc(OK,Sp , Vp) and L?(S) for
⊕

v∈S RΓ?(Kv, Vp). In addition we use RΓ∗?
as an abbreviation for RΓ?(OK,Sp , V ∗p (1))∗, and also introduce similar abbre-

viations RΓ∗f , R̃Γ∗c and L?(S)∗.

Documenta Mathematica 6 (2001) 501–570



Tamagawa Numbers for Motives with Coefficients 563

We shall first establish the existence of the following commutative diagram in
V (Ap)

Ap ⊗A (Ξ(M)£ Ξ(M∗(1))∗)
Ap⊗AϑPD−−−−−−−−→ Ap ⊗A Ξloc(M)

α1

y θp

y

[RΓf ]£ [Lf (Sp,f )]
−1 £ [L(S∞)]

−1

£[RΓ
∗
f ]£ [Lf (Sp,f )

∗
]
−1 £ [L(S∞)

∗
]
−1

β1−−→ [L(Sp,f )]
−1 £ [ IndVp]

−1

=: Λ(S, Vp)

(26)bot£
y(100)bot◦[α2] ‖

[L/f (Sp,f )]
−1 £ [RΓ]£ [Lf (Sp,f )]

−1 £ [L(S∞)]
−1

£[Lf (Sp,f )
∗
]£ [1R̃Γ

∗
c ]£ [Lf (Sp,f )

∗
]
−1 £ [L(S∞)

∗
]
−1

β2−−→ [L(Sp,f )]
−1 £ [ IndVp]

−1

(18)v∈Sp
y (76) (77)

yε(S,p)

[L(Sp)]
−1 £ [RΓ]£[1R̃Γ

∗
c [−4]]£ [L(S∞)

∗
]
−1 1 AVTriv−−−−−−→ [L(Sp)]−1 £ [L(S∞)∗]−1

(26)hor£
y(73)left (73)vert

y◦[λ]◦[q]

[1RΓc]£ [1RΓ∗c [−4]]
(73)bot−−−−−→ [2C(K,Vp)]

α3

y (72)

y

[RΓc]£ [RΓ∗c [−4]]
ϑAV
p−−−→ Ap ⊗Ap Λp(S, Tp).

(99)

The maps α1, α2, α3, β1, β2 which occur in this diagram will all be defined in
the course of our proof that the diagram is commutative.
Concerning the first square, we recall that the construction of ϑPD involves the
set of equations

ϑPD: (29) (29)∗ AVmot (69) (91) (92)

where here we denote by AVmot the collection of four isomorphisms

[Hi
f (K,M)]

−1 £ [Hi
f (K,M)] ∼= 1, [Hi

f (K,M∗(1))∗]−1 £ [Hi
f (K,M∗(1))∗] ∼= 1

with i ∈ {0, 1}. The construction of θp involves the following equations (with
v running through the set Sp,f ):

θp : (68) (69) (18)v AVf,v (19)v-p (22)v|p (23) (24)v
(19)∗v-p (22)∗v|p (23)∗ (24)∗v

Note now that when listing all of the equations that are involved in the com-
position κ := θp ◦ (Ap ⊗A ϑPD), the equations (91) and (92) are transformed
into (76) and (77) respectively as they are ‘conjugated’ by (68), and that (68)
is in turn equivalent to a combination of (28)+ and (28)∗,+ for v ∈ S∞. The
isomorphism AVmot is a combination of AVf , (27) and (27)∗. Finally note that
the isomorphism induced by (69) is used in ϑPD whilst its inverse is used in

Documenta Mathematica 6 (2001) 501–570



564 D. Burns and M. Flach

θp, so that (69) does not in fact occur in the composition κ. In summary, we
find that the isomorphism κ involves the sets of equations

α1 : (27) (28)v|∞ (29) (19)v-p (22)v|p (23) (24)v
(27)∗ (28)∗v|∞ (29)∗ (19)∗v-p (22)∗v|p (23)∗ (24)∗v

and

β1 : (18)v AVf AVf,v (76) (77).

If we then define α1 (resp. β1) as the isomorphism induced by the set of equa-
tions carrying the label α1 (resp. β1) we have κ = β1 ◦ α1, i.e. commutativity
of the first square in (99).
In order to consider the second square in (99) we first define the map AVf .

Lemma 19. There exists a commutative diagram of true triangles

⊕
v∈Sp,f

RΓ/f (Kv, Vp)[−1] −→ RΓf (K,Vp) −→ RΓ(OK,Sp , Vp)

⊕AVf,v [−1]

y AVf

y 1 AV

y

⊕
v∈Sp,f

RΓf (Kv, V
∗
p (1))∗[−3] −→ 1RΓf (K,V ∗p (1))∗[−3] −→ 1R̃Γc(OK,Sp , V ∗p (1))∗[−3],

(100)

in which the upper row coincides with (26)bot, all of the vertical maps are
quasi-isomorphisms, and there exists a natural quasi-isomorphism

RΓf (K,V ∗p (1))∗[−3]
α2−→ 1RΓf (K,V ∗p (1))∗[−3].

Proof. In view of Lemma 12a) it suffices to show that the mapping cone
of the lower composite map in Lemma 12a) is naturally quasi-isomorphic to
RΓf (K,V ∗p (1))∗[−2]. Indeed, if this is true, then (100) is simply induced by
taking the mapping cones of the composite horizontal maps in the diagram of
Lemma 12a).
We observe that there is a map from diagram (25) into the diagram

RΓ(OK,Sp , Vp)→
⊕

v∈Sp,f
RΓ(Kv, Vp)¾

⊕

v∈Sp,f
RΓf (Kv, Vp)(101)

and hence an induced map of the true nine term diagram (26) into the true nine
term diagram that is induced by (101). In particular on the central columns
we obtain a map which coincides with the map between the second and third
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column in the following true nine term diagram

⊕
v∈S∞

RΓ(Kv, Vp)[−1] −→ ⊕
v∈Sp

RΓf (Kv, Vp)[−1] −→ ⊕
v∈Sp,f

RΓf (Kv, Vp)[−1]

‖
y

y
⊕

v∈S∞
RΓ(Kv, Vp)[−1] −→ 1RΓc(OK,Sp , Vp) −→ 1R̃Γc(OK,Sp , Vp)

y
y

RΓf (K,Vp) RΓf (K,Vp).

(102)

Upon replacing Vp by V ∗p (1), dualizing the third column of this diagram and
shifting by [-4] we obtain a true triangle

RΓ∗f [−4]→ 1R̃Γ
∗
c [−4]→ Lf (Sp,f )∗[−3].(103)

The map α2 then arises as the map q of Lemma 13 when the latter is applied
to the triangle (103). ¤

The diagram (100) induces a commutative diagram

[RΓf ]£ [1RΓ∗f ]
[ AVf ]Triv−−−−−−→ 1V (Ap)

(26)bot£
y(100)bot ‖

[L/f (Sp,f )]
−1 £ [RΓ]

£[Lf (Sp,f )∗]£ [1R̃Γ
∗
c ]

[⊕AVf,v ]Triv£[1 AV ]Triv−−−−−−−−−−−−−−−−→ 1V (Ap).

(104)

The second square in (99) is obtained by taking the £-product of the rows in
(104) with the isomorphism

[Lf (Sp,f )]
−1 £ [L(S∞)]

−1

£[Lf (Sp,f )∗]−1 £ [L(S∞)∗]−1

β′2−→ [L(Sp,f )]
−1 £ [ IndVp]

−1
,

where here β′2 involves the equations

β′2 : (18)v AVf,v (76) (77).

In order to establish the third square in (99) we begin with the commutative
diagram

[L(S∞)]
−1 £ [L(S∞)∗]−1 (76) (77)−−−−−→ [ IndVp]y (76) (77)

y

[L(S∞)]
−1 £ [L(S∞)∗]−1

[L(S∞)]
−1 £ [L(S∞)∗]−1

.

(105)
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Next we consider the diagram

[L/f (Sp,f )]
−1 £ [Lf (Sp,f )]

−1

£[Lf (Sp,f )∗]£ [Lf (Sp,f )∗]−1

β′′2−−−−→ [L(Sp,f )]
−1

[α2]

y
yε(S,p)

[L(Sp,f )]
−1

[L(Sp,f )]
−1
.

(106)

Here β′′2 is induced by applying AVf,v, (18)v to the two right hand terms in the
top left item and by trivializing the two left hand terms via another application
of AVf,v. For the map α2 on the other hand one applies (18)v to the upper
two terms and trivializes the lower two terms. The commutativity of (106)
then follows from [17, (4.1.1)] where the particular correcting factor ε(S, p) is
as computed in [loc. cit., 4.9]. Indeed, upon writing diagram [loc. cit., (4.1.1)]

with X = [L/f (Sp,f )], taking £-product with [Lf (Sp,f )]
−1

and using AVf,v

twice we obtain (106). The third square in (99) is obtained by taking the
£-product of the diagrams (105) and (106) and then taking the £-product of
both rows of the resulting diagram with the isomorphism

[RΓ]£ [1R̃Γ∗c ]
1 AVTriv−−−−−→ 1V (Ap).

We now consider the fourth square in (99). We observe first that there is a
commutative diagram in V (Ap)

[L(Sp)]
−1 £ [RΓ]£ [RΓ]

−1 £ [L(S∞)∗]−1 τ−−−−→ [L(Sp)]
−1 £ [L(S∞)∗]−1

(26)hor

y [q]

y

[1RΓc]£ [RΓ]
−1 £ [L(S∞)∗]−1 (74)top−−−−→ [1L(Sp)]

−1 £ [L(S∞)∗]−1

[1 AV ]

y [λ]

y

[1RΓc]£ [ ˜
1RΓ

∗
c [−4]]£ [L(S∞)∗]−1 (73)hor−−−−→ [2L(Sp)]

−1 £ [L(S∞)∗]−1

y(73)left (73)vert

y

[1RΓc]£ [1RΓ∗c [−4]]
(73)bot−−−−→ [2C(K,Vp)]

in which the lower square is induced by the true nine term diagram (73), the
central square by (74) and the upper square by Lemma 13. The map τ is

the canonical isomorphism [RΓ] £ [RΓ]
−1 ∼= 1V (Ap). Upon replacing both

occurrences of [RΓ]
−1

in this diagram by [1R̃Γ
∗
c [−4]] and τ by 1 AVTriv, the

upper square is still commutative and the resulting total square gives the fourth
square in (99).
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Finally, in the bottom square in (99) the map α3 is defined by replacing com-
plexes by their versions indexed by 1 in exactly the same order as in (72). The
commutativity of this square is then clear.

It is clear that the right vertical map of (99) is equal to ϑlocp . Hence, having
now established the commutativity of (99), we shall prove Lemma 17b) if we
can show that the left vertical map in (99) is equal to ϑp(M)£ϑp(M∗(1))∗. In
view of the definition of α1 it therefore suffices for us to show that

(26)vert = (26)bot ◦ (18)v∈Sp ◦ (26)hor(107)

and also

(26)∗vert = [α2] ◦ (100)bot ◦ (73)left.(108)

The identity (107) coincides with the identity in V (Ap) induced by the true nine
term diagram (26) since (26)left coincides with the sum of (18) over v ∈ Sp. On
the other hand, the identity (108) is a consequence of the following commutative
diagram

[1RΓ∗c ]
(26)∗vert−−−−−→ [RΓ∗f ]£ [Lf (Sp)∗]−1

(73)left

y ‖

[1R̃Γ
∗
c ]£ [L(S∞)∗]−1 (103)−−−→ [RΓ∗f ]£ [Lf (Sp,f )∗]−1 £ [L(S∞)∗]−1

(100)bot

y ‖

[1RΓ∗f ]£ [Lf (Sp,f )∗]−1 £ [L(S∞)∗]−1 [α2]−−−→ [RΓ∗f ]£ [Lf (Sp,f )∗]−1 £ [L(S∞)∗]−1

where here the first square is induced by the dual of diagram (102) with Vp
replaced by V ∗p (1) and the second square results from applying Lemma 13 to
(103) and then taking the £-product of each vertex of the resulting square with

[Lf (Sp,f )∗]−1
. ¤

In view of Corollary 1 we are naturally led to make the following

Conjecture 8. TΩloc(M,A) = 0.

This conjecture is itself of some independent interest, and will be considered
in greater detail elsewhere. We therefore restrict ourselves here to a few brief
remarks concerning the Galois case. We fix a finite Galois extension of number
fields L/K and set G := Gal(L/K).

Remark 18. In this remark we assume that G is abelian. If M is any motive
which is defined over K, then Conjecture 8 for the pair (h0(Spec (L))⊗M,Z[G])
can be interpreted in terms of the ‘local epsilon conjecture’ formulated by Kato
in [29]. In particular, [loc. cit., Th. 4.1] can be used to verify (at least modulo
the ‘sign ambiguities’ discussed in Remark 9 of §4.3) that if K = Q, then for all
integers r Conjecture 8 is valid for the pair (h0(Spec (L))(r),Z[ 1

2 ][G]). (Details
of this deduction will be given elsewhere.) When combined with Corollary 1
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and the main result of [12] (cf. Remark 10 in §4.3) this implies (again modulo
the same sign ambiguities as above) that TΩ(h0(Spec (L))(r),Z[ 1

2 ][G]) = 0 for
all integers r.

Remark 19. In [7] it is shown that (for any G)

δ0
Z[G],R(TΩloc(h0(Spec(L))(1),Z[G])) = Ω(L/K, 2)− w(L/K)

where here Ω(L/K, 2) and w(L/K) are respectively equal to the ‘second Chin-
burg invariant’ and the ‘Cassou-Noguès-Fröhlich root number class’ as defined
in [14]. This implies that Conjecture 8 is compatible with the conjectures
formulated by Chinburg in loc. cit. For a further discussion of connections be-
tween Theorem 5.3 and the extensive existing theory concerning the conjectures
of Chinburg, the reader can consult [11].
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Introduction

Let the reductive group G act regularly on a variety X. In [19], Mumford asso-
ciates to every G-linearized invertible sheaf L on X a set Xss(L) of semistable
points. He proves that there is a good quotient p : Xss(L) → Xss(L)//G, that
means p is a G-invariant affine regular map and the structure sheaf of the
quotient space is the sheaf of invariants.

Mumford’s theory is designed for the quasiprojective category: His quotient
spaces are always quasiprojective. Conversely, for connected G and smooth
X, if a G-invariant open set U ⊂ X has a good quotient U → U//G with
U//G quasiprojective, then U is a saturated subset of a set Xss(L) for some
G-linearized invertible sheaf L on X.

However, there frequently occur good quotients with a non quasiprojective
quotient space; even if X is quasiaffine and G is a one dimensional torus, see
e.g. [2]. For X = Pn or X a vector space with linear G-action, the situation is
reasonably well understood, see [8] and [9]. But for general X, the picture is
still far from being complete.

The purpose of this article is to present a general theory for good quotients
with so called divisorial quotient spaces. Recall from [12] that an irreducible
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572 J. Hausen

variety Y is divisorial if every y ∈ Y admits an affine neighbourhood of the
form Y \Supp(D) with an effective Cartier divisor D on Y . This is a consider-
able generalization of quasiprojectivity. For example, all smooth varieties are
divisorial.

Our approach to divisorial good quotient spaces is to replace Mumford’s single
invertible sheaf L with a free finitely generated group Λ of Cartier divisors on
X. Then a G-linearization of such a group Λ is a certain G-sheaf structure
on the graded OX -algebra A associated to Λ; for the precise definitions see
Section 1.

In Section 2, we associate to every G-linearized group Λ ⊂ CDiv(X) a set
Xss(Λ) ⊂ X of semistable points and a set Xs(Λ) ⊂ Xss(Λ) of stable points.
Theorem 3.1 generalizes Mumford’s result on existence of good quotients:

Theorem 1. For any G-linearized group Λ of Cartier divisors, there is a good
quotient Xss(Λ)→ Xss(Λ)//G with a divisorial quotient space Xss(Λ)//G.

We note here that our quotient spaces are allowed to be non separated; see also
the brief discussion at the end of Section 3. As in the classical situation, the
restriction of the above quotient map to the set of stable points separates the
orbits. In Theorem 4.1, we give a converse of the above result:

Theorem 2. For Q-factorial, e.g. smooth, X every G-invariant open subset
U ⊂ X with a good quotient such that U//G is divisorial occurs as a saturated
subset of a set of semistable points Xss(Λ).

As an application, we discuss actions of connected reductive groups G on
normal complex varieties X. The starting point is the reduction theorem of
A. BiaÃlynicki-Birula and J. Świȩcicka [6, Theorem 5.1]: If some maximal torus
T ⊂ G admits a good quotient X → X//T , then there is a “good quotient” for
the action of G on X in the category of algebraic spaces.

Examples show that in general, the quotient space really drops out of the
category of algebraic varieties, see [7, page 15]. So, there arises a natural
question: When there is a good quotient X → X//G in the category of algebraic
varieties?

Our answers to this question are formulated in terms of the normalizer N(T )
of a maximal torus T ⊂ G. Recall that the connected component of the unit
element of N(T ) is just T ; in other words N(T )/T is finite. The first result is
the following, see Theorem 5.1:

Theorem 3. Let G be a connected reductive group, and let X be a normal
complex G-variety. Then the following statements are equivalent:

i) There is a good quotient X → X//G with a divisorial prevariety X//G.
ii) There is a good quotient X → X//N(T ) with a divisorial prevariety

X//N(T ).

Moreover, if one of these statements holds with a separated quotient space then
so does the other.
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We specialize to proper G-actions. It is an easy consequence of the reduction
theorem [6, Theorem 5.1] that such an action always admits a “geometric quo-
tient” in the category of algebraic spaces. Fundamental results of Kollár [18],
Keel and Mori [15] extend this fact to a more general framework.

In our second result, Theorem 5.2, the words geometric quotient refer to a good
quotient (in the category of algebraic varieties) that separates orbits:

Theorem 4. Suppose that a connected reductive group G acts properly on a
Q-factorial complex variety X. Then the following statements are equivalent:

i) There exists a geometric quotient X → X/G.
ii) There exists a geometric quotient X → X/N(T ).

Moreover, if one of these statements holds, then the quotient spaces X/G and
X/N(T ) are separated and Q-factorial.

So, for proper G-actions on Q-factorial varieties, the answer to the above ques-
tion is encoded in an action of the Weyl group W := N(T )/T : A geometric
quotient X → X/G exists in the category of algebraic varieties if and only if
the induced action of W on X/T admits an algebraic variety as orbit space.

1. G-linearization and ample groups

Throughout the whole article, we work in the category of algebraic prevarieties
over an algebraically closed field K. In particular, the word point refers to a
closed point. First we fix the notions concerning group actions and quotients.

In this section, G denotes a linear algebraic group, and X is an irreducible G-
prevariety, that means X is an irreducible (possibly non separated) prevariety
(over K) together with a regular group action σ : G×X → X.

For reductive G, a good quotient of the G-prevariety X is a G-invariant affine
regular map p : X → X//G of prevarieties such that p∗ : OX//G → p∗(OX)G

is an isomorphism. By a geometric quotient we mean a good quotient that
separates orbits. Geometric quotient spaces are denoted by X/G.

Remark 1.1. [22, Theorem 1.1]. Let p : X → X//G be a good quotient for an
action of a reductive group G. Then we have:

i) For every G-invariant closed set A ⊂ X the image p(A) ⊂ X//G is closed.
ii) If A,B ⊂ X are closed G-invariant subsets, then p(A ∩B) equals p(A) ∩

p(B).
iii) Each fibre p−1(y) contains exactly one closed G-orbit.
iv) Every G-invariant regular map X → X ′ factors uniquely through p.

Now we introduce the basic concepts used in this article, compare also [13] and
[14]. When we speak of a subgroup of the group CDiv(X) of Cartier divisors
of X, we always mean a finitely generated free subgroup.
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Let Λ ⊂ CDiv(X) be such a subgroup. Denoting by AD := OX(D) the sheaf
of sections of D ∈ Λ, we obtain a Λ-graded OX -algebra:

A :=
⊕

D∈Λ

AD.

The following notion extends Mumford’s concept of a G-linearized invertible
sheaf to groups of divisors:

Definition 1.2. Fix the canonical G-sheaf structure (g ·f)(x) := f(g−1 ·x) on
the structure sheaf OX .

i) A G-linearization of the group Λ is a graded G-sheaf structure on the
Λ-graded OX -algebra A such that the representation of G on A(U) is
rational for every G-invariant open subset U ⊂ X.

ii) A strong G-linearization of the group Λ is a G-linearization of Λ such
that on each homogeneous component AD, D ∈ Λ, the G-sheaf structure
arises from a G-linearization σ∗(AD) ∼= pr∗X(AD) in the sense of [19,
Definition 1.6].

The reason to introduce besides the straightforward generalization 1.2 ii) also
the weaker notion 1.2 i), is that in practice the latter is often much easier to
handle. However, in many important cases both notions coincide, for example
if the component G0 of the unit element is a torus:

Proposition 1.3. If X is covered by G0-invariant affine open subsets, then
every G-linearization of Λ is in fact a strong G-linearization of Λ.

Proof. Assume that Λ ⊂ CDiv(X) is G-linearized, and let AD be a homoge-
neous component of the associated graded OX -algebra. Consider a geometric
line bundle p : L → X having AD as its sheaf of sections. Then the G-sheaf
structure of AD gives rise to a set theoretical action, namely

G× L→ L, (g, z) 7→ g ·z := (g ·f)(g ·p(z)),

where for given z ∈ L we choose any local section f of AD satisfying f(p(z)) =
z. Note that this well defined. In view of [16, Lemma 2.3], we only have to
show that this action is regular. Since for fixed g ∈ G the map z 7→ g ·z is
obviously regular, it suffices to show that G0 × L→ L is regular.

According to our assumption on X, it suffices to treat the case that X is affine.
But then the rational representation of G0 on the O(X)-algebra

A :=
⊕

n∈N
AnD(X)

defines a regular G0-action on the dual bundle L′ := Spec(A) such that L′ → X
becomes equivariant and G0 acts linearly on the fibres. It is straightforward to
check that this G0-action on L′ is dual to the G0-action on L. Hence also the
latter action is regular.
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Concerning existence of linearizations, we have the following generalization of
[19, Corollary 1.6], compare [14, Proposition 3.6]:

Proposition 1.4. Suppose that G is connected and that X is a normal sepa-
rated variety. Then every group Λ ⊂ CDiv(X) admits a strongly G-linearized
subgroup Λ′ ⊂ Λ of finite index.

Proof. Choose a basis D1, . . . , Dr of Λ. According to [16, Proposition 2.4],
there is a positive integer n such that each sheaf AnDi admits a G-linearization
in Mumford’s sense. Tensoring these linearizations gives the desired strong
linearization of the subgroup Λ′ ⊂ Λ generated by nD1, . . . , nDr.

A more special existence statement for non connected G will be given in 4.2.
There is also a uniqueness statement like [19, Proposition 1.4]. Note that in
our version, we do not assume G to be connected:

Proposition 1.5. Suppose that Λ ⊂ CDiv(X) admits two strong G-lineariza-
tions. If O∗(X) = K∗ holds and G has only finitely many characters, then the
two G-linearizations coincide on a subgroup Λ′ ⊂ Λ of finite index.

Proof. To distinguish the two G-sheaf structures on the graded OX -algebra
associated to Λ, we denote them by (g, f) 7→ g ·f and (g, f) 7→ g∗f . Consider
a homogeneous component AD, and the tensor product

AD ⊗OX A−D, g • (f ⊗ h) := g ·f ⊗ g∗h.

Since as an OX -module, AD ⊗OX A−D is isomorphic to the structure sheaf
itself, we obtain a G-sheaf structure on OX , also denoted by (g, f) 7→ g • f . As
it arises from a G-linearization in the sense of [19, Definition 1.6], this G-sheaf
structure is of the form

(g • f)(x) = χ(g, x)f(g−1 ·x)

with a function χ ∈ O∗(G×X). Since we assumed O∗(X) ∼= K∗, the function
χ does not depend on the second variable. In fact, χ even turns out to be a
character on G.

Now, replacing in this setting D with a multiple nD amounts to replacing χ
with χn. Thus, taking n to be the order of the character group of G, we see
that for any D ∈ Λ, the two G-sheaf structures on AnD coincide. The assertion
follows.

We look a bit closer to the OX -algebra A associated to a group Λ ⊂ CDiv(X).

This algebra gives rise to a prevariety X̂ := Spec(A) and a canonical map

q : X̂ → X. We list some basic features of this construction:

Remark 1.6. Let X̂ := Spec(A) and q : X̂ → X be as above. For an open

subset U ⊂ X, set Û := q−1(U).
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i) For a section f ∈ AD(U), let Z(f) := Supp(D|U + div(f)) denote the set
of its zeroes. Then we have

Ûf := {x ∈ Û ; f(x) 6= 0} = q−1(U \ Z(f)).

ii) The algebraic torus H := Spec(K[Λ]) acts regularly on X̂ such that every
f ∈ AD(U) is homogeneous with respect to the character χD, i.e., we
have

f(t·x) = χD(t)·f(x).

iii) The action of H on X̂ is free and the map q : X̂ → X is a geometric
quotient for this action.

For the subsequent constructions, it is important to figure out those groups Λ ⊂
CDiv(X) for which the associated prevariety X̂ over X is in fact a quasiaffine
variety. This leads to the following notion:

Definition 1.7. We call the group Λ ⊂ CDiv(X) ample on an open subset
U ⊂ X, if there are homogeneous sections f1, . . . , fr ∈ A(U) such that the sets
U \ Z(fi) are affine and cover U .

If Λ ⊂ CDiv(X) is ample on X, then we say for short that Λ is ample. So, the
prevariety X admits an ample group Λ ⊂ CDiv(X) if and only if it is divisorial
in the sense of Borelli [12], i.e., every x ∈ X has an affine neighbourhood
X \ Supp(D) with some effective D ∈ CDiv(X).

Remark 1.8. If X is a divisorial prevariety, then the intersection U ∩ U ′ of
any two affine open subsets U,U ′ ⊂ X is again affine.

In the following statement, we subsume the consequences of the existence of
a G-linearized ample group, compare [13, Section 2]. By an affine closure of
a quasiaffine variety Y we mean an affine variety Y containing Y as an open
dense subvariety.

Proposition 1.9. Let G be a linear algebraic group and let X be a G-
prevariety. Suppose that Λ ⊂ CDiv(X) is G-linearized and ample on some

G-invariant open U ⊂ X. Let Û := q−1(U) ⊂ X̂, where q : X̂ → X is as above.

i) Û is quasiaffine and the representation of G on O(Û) induces a regular

G-action on Û such that the actions of G and H := Spec(K[Λ]) commute

and the canonical map q : Û → X becomes G-equivariant.
ii) For any collection f1, . . . , fr ∈ A(U) satisfying the ampleness condition,

there exists a (G×H)-equivariant affine closure U of Û such that the fi
extend to regular functions on U and q−1(Ufi) = Ufi holds.

Proof. Use [13, Lemmas 2.4 and 2.5].

Documenta Mathematica 6 (2001) 571–592



A Generalization of Mumford’s GIT 577

2. Stability notions

Generalizing [19, Definitions 1.7 and 1.8] we shall associate to a linearized group
of divisors sets of semistable, stable and properly stable points. Moreover, for
ample linearized groups, we give a geometric interpretation of semistability in
terms of a generalized nullcone.

Let G be a reductive algebraic group, and let X be an irreducible G-prevariety.
Suppose that Λ ⊂ CDiv(X) is a G-linearized (finitely generated free) subgroup.
Denote the associated Λ-graded OX -algebra by

A =
⊕

D∈Λ

AD.

Definition 2.1. Let G, X, Λ and A be as above. We say that a point x ∈ X
is

i) semistable, if x has an affine neighbourhood U = X \ Z(f) with some
G-invariant f ∈ AD(X) such that the D′ ∈ Λ admitting a G-invariant
fD′ ∈ AD′(U) which is invertible in A(U) form a subgroup of finite index
in Λ,

ii) stable, if x is semistable, its orbit G·x is of maximal dimension and G·x
is closed in the set of semistable points of X,

iii) properly stable, if x is semistable, its isotropy group Gx is finite and G·x
is closed in the set of semistable points of X.

Following Mumford’s notation, we denote the G-invariant open sets correspond-
ing to the semistable, stable and properly stable points by Xss(Λ), Xs(Λ) and
Xs

0(Λ) respectively. If we want to specify the acting group G, we also write
Xss(Λ, G) etc..

Remark 2.2. Let X be complete, let D ∈ CDiv(X) be an effective Cartier
divisor and suppose that the invertible sheaf L := AD on X is G-linearized
in the sense of [19, Definition 1.6]. Then the induced G-sheaf structure of AD
extends to a G-linearization of Λ := ZD. Moreover,

i) Xss(Λ) contains precisely the points of X which are semistable in the
sense of [19, Definition 1.7 i)],

ii) Xs(Λ) contains precisely the points of X which are stable in the sense
of [19, Definition 1.7 ii)],

iii) Xs
0(Λ) contains precisely the points of X which are properly stable in the

sense of [19, Definition 1.8].

The remainder of this section is devoted to giving a geometric interpretation
of semistability. For this, let U ⊂ X denote any G-invariant open subset such
that Λ is ample on U and Xss(Λ) is contained in U , for example U = Xss(Λ).
As usual, let

X̂ := Spec(A), q : X̂ → X, Û := q−1(U).
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Recall from Section 1 that the map q : X̂ → X is a geometric quotient for the

action of H := Spec(K[Λ]) on X̂ induced by the Λ-grading of A. Moreover,

Û is a quasiaffine variety and carries a regular G-action making q : Û → X
equivariant.

Our description involves two choices. First let f1, . . . , fr ∈ A(X) be homoge-
neous G-invariant sections such that the sets X\Z(fi) are as in Definition 2.1 i)
and cover Xss(Λ).

Next choose a (G×H)-equivariant affine closure U of Û such that the functions

fi ∈ O(Û) extend regularly to U and U fi = Ûfi holds for each i = 1, . . . , r.
Consider the good quotient

p : U → U//G := Spec(O(U))G.

Then the quotient variety U//G inherits a regular action of H such that the map
p : U → U//G becomes H-equivariant. In this setting, the set U \ q−1(Xss(Λ))
takes over the role of the classical nullcone:

Proposition 2.3. Let V0 := U//G \ p(U \ Û), and let V1 ⊂ U//G be the union
of all H-orbits with finite isotropy.

i) One always has q−1(Xss(Λ)) ⊂ p−1(V0 ∩ V1).
ii) If U = X, then q−1(Xss(Λ)) = p−1(V0 ∩ V1).

The main point in the proof is to express Condition 2.1 i) in terms of the action
of the torus H on the affine variety U//G. Consider more generally an arbitrary
algebraic torus T and a quasiaffine T -variety Y .

Lemma 2.4. The isotropy group Ty of a point y ∈ Y is finite if and only if there
is a homogeneous function h ∈ O(Y ) such that Yh is an affine neighbourhood
of y and the characters χ′ ∈ Char(T ) admitting an invertible χ′-homogeneous
h′ ∈ O(Yh) form a sublattice of finite index in Char(T ).

Proof. First suppose that Ty is finite. Consider the orbit B := T ·y. This is
a locally closed affine subvariety of Y . The set M consisting of all characters
χ′ ∈ Char(T ) admitting a χ′-homogeneous h′ ∈ O(B) with h′(y) = 1 is a
sublattice of Char(T ). We show that M is of full rank:

Otherwise there is a non trivial one parameter subgroup λ : K∗ → T such that
χ◦λ = 1 holds for every χ ∈M . Thus, by the definition of M , all homogeneous
functions of O(B) are constant along λ(K∗)·y. As these functions separate the
points of B, we conclude λ(K∗) ⊂ Ty. A contradiction.

Now, choose any T -homogeneous function h ∈ O(Y ) such that Yh is affine,
contains B as a closed subset, and for some base χ′1, . . . , χ

′
d of M the associated

functions h′i ∈ O(B) extend to invertible regular homogeneous functions on Yh.
Then this h ∈ O(Y ) is as desired. The “if” part of the assertion is settled by
similar arguments.
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Proof of Proposition 2.3. Let W := Xss(Λ) and Ŵ := q−1(W ). We begin with

the inclusion “⊂” of assertions i) and ii). First note that Ŵ is p-saturated,

because this holds for each U fi and, according to Remark 1.6 i), Ŵ is covered

by these subsets. In particular, it follows p(Ŵ ) ⊂ V0.

To verify p(Ŵ ) ⊂ V1, let z ∈ Ŵ . Take one of the fi with z ∈ Ufi . As it is

G-invariant, fi descends to an H-homogeneous function h ∈ O(U//G). By the
properties of fi, the function h satisfies the condition of Lemma 2.4 for the
point p(z). Hence Hp(z) is finite, which means p(z) ∈ V1.

We come to the inclusion “⊃” of assertion ii). Let y ∈ V0 ∩ V1. Lemma 2.4
provides an h ∈ O(X//G), homogeneous with respect to some χD ∈ Char(H),
such that y ∈ V := (X//G)h holds and the D′ ∈ Λ admitting an invertible

χD
′
-homogeneous function on V form a subgroup of finite index in Λ. Suitably

modifying h, we achieve additionally V ⊂ V0 ∩ V1.

Now, consider a point z ∈ p−1(y). Since y ∈ V0, we have z ∈ X̂. We have to
show that q(z) is semistable. For this, consider the G-invariant homogeneous
section f := p∗(h)|X̂ of AD(X). By the choice of h, this f fulfills the conditions
of Definition 2.1 i) and thus the point q(z) is in fact semistable.

Corollary 2.5. Let Λ ⊂ CDiv(X) be an ample G-linearized group.

i) A point x ∈ Xss(Λ) with an orbit G·x of maximal dimension is stable if

and only if for any z ∈ q−1(x) the orbit G·z is closed in X̂.
ii) A point x ∈ Xss(Λ) with finite isotropy group Gx is properly stable if and

only if for any z ∈ q−1(x) the orbit G·z is closed in X̂.

3. The quotient of the set of semistable points

Let G be a reductive algebraic group, and let X be a G-prevariety. In this
section we show that any set of semistable points admits a good quotient. The
result generalizes [19, Theorem 1.10].

Theorem 3.1. Let Λ ⊂ CDiv(X) be a G-linearized subgroup. Then there exists
a good quotient p : Xss(Λ) → Xss(Λ)//G and the quotient space Xss(Λ)//G is
a divisorial prevariety.

An immediate consequence of this result is that the set of stable points admits
a geometric quotient. More precisely, by the properties of good quotients we
have:

Remark 3.2. In the notation of 3.1, the set Xs(Λ) is p-saturated and the
restriction p : Xs(Λ)→ p(Xs(Λ)) is a geometric quotient.

In the proof of Theorem 3.1, we make use of the following observation on
geometric quotients for torus actions, compare [1, Proposition 1.5]:

Documenta Mathematica 6 (2001) 571–592



580 J. Hausen

Lemma 3.3. Let T be an algebraic torus and suppose that Y is an irreducible
quasiaffine T -variety with geometric quotient p : Y → Y/T . Then Y/T is a
divisorial prevariety.

Proof. We may assume that T acts effectively. Set for short Z := Y/T . Given
a point z ∈ Z, choose a T -homogeneous f ∈ O(Y ) such that U := Yf is an
affine neighbourhood of p−1(z). Consider the affine neighbourhood V := p(U)
of z. We show that B := Z \V is the support of an effective Cartier divisor on
Y .

Let χ ∈ Char(T ) be the weight of the above f ∈ O(Y ). Since T acts effec-
tively with geometric quotient, all isotropy groups Ty are finite. So we can
use Lemma 2.4 to cover Y by T -invariant affine open sets Ui admitting invert-
ible functions gi ∈ O(Ui) that are homogeneous with respect to some common
multiple mχ.

Each hi := fm/gi ∈ O(Ui) is T -invariant and hence we have hi = p∗(h′i) with
a regular function h′i defined on Vi := p(Ui). By construction, the zero set of
h′i is just B ∩ Vi. Since every h′i/h

′
j is regular and invertible on Vi ∩ Vj , the

functions h′i yield local equations for an effective Cartier divisor E on Z having
support B.

Proof of Theorem 3.1. As usual, let A be the graded OX -algebra associated

to Λ. We consider the corresponding prevariety X̂ := Spec(A) and the map

q : X̂ → X. Recall that the latter is a geometric quotient for the action of

H := Spec(K[Λ]) on X̂. Set for short W := Xss(Λ). Surely, Λ is ample on W .

Proposition 1.9 yields that Ŵ := q−1(W ) is a quasiaffine variety. Moreover, Ŵ

carries a G-action that commutes with the action of H and makes q : Ŵ →W
equivariant. Choose f1, . . . , fr ∈ A(X) satisfying the conditions of Defini-
tion 2.1 such that W is covered by the affine sets X \Z(fi), and set hi := fi|W .

Choose a (G × H)-equivariant affine closure W of Ŵ such that the above

hi ∈ O(Ŵ ) extend regularly to W and satisfy W hi = Ŵhi . The set Ŵ is
saturated with respect to the good quotient p : W →W//G because this holds

for the sets W hi . Consequently, restricting p to Ŵ yields a good quotient

p̂ : Ŵ → Ŵ//G.

Moreover, Proposition 2.3 i) tells us that H acts with at most finite isotropy

groups on Ŵ//G. Thus, there is a geometric quotient Ŵ//G→ (Ŵ//G)/H. By
Lemma 3.3, the quotient space is a divisorial prevariety. Since good quotients
are categorical, we obtain a commutative diagram

Ŵ
p̂

��

/H
��

Ŵ//G

/H
��

W �� (Ŵ//G)/H
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Now it is straightforward to check that the induced map W → (Ŵ//G)/H is
the desired good quotient for the action of G on W .

We conclude this section with a short discussion of the question, when the
quotient space Xss(Λ)//G is separated. Translating the usual criterion for
separateness in terms on functions on the quotient space to the setting of
invariant sections of the OX -algebra A of a G-linearized group Λ, we obtain:

Remark 3.4. Let Λ ⊂ CDiv(X) be a G-linearized group on a G-variety X, and
let Xss(Λ) be covered by X\Z(fi) with G-invariant sections f1, . . . , fr ∈ A(X)
as in 2.1 i). The quotient space Xss//G is separated if and only if for any two
indices i, j the multiplication map defines a surjection in degree zero:

A(X)G(fi) ⊗A(X)G(fj) → A(X)G(fifj).

In the classical setting [19, Definition 1.7], the group Λ is of rank one, and
the above sections fi are of positive degree. In particular, for suitable positive
powers ni, all sections fnii are of the same degree, and Remark 3.4 implies that
the resulting quotient space is always separated.

As soon as we leave the classical setting, the above reasoning may fail, and we
can obtain nonseparated quotient spaces, as the following two simple examples
show. Both examples arise from the hyperbolic K∗-action on the affine plane.
In the first one we present a group Λ of rank one defining a nonseparated
quotient space:

Example 3.5. Let the onedimensional torus T := K∗ act diagonally on the
punctured affine plane X := K2 \ {(0, 0)} via

t·(z1, z2) := (tz1, t
−1z2).

Consider the group Λ ⊂ CDiv(X) generated by the principal divisor D :=
div(z1). Since D is T -invariant, the group Λ is canonically T -linearized. We
claim that the corresponding set of semistable points is

Xss(Λ) = X.

To verify this claim, let A denote the graded OX -algebra associated to Λ, and
consider the T -invariant sections

f1 := 1 ∈ AD(X), f2 := z1z2 ∈ A−D(X).

Then the sets X \ Z(f1) and X \ Z(f2) form an affine cover of X. Moreover,
we have T -invariant invertible sections:

1 ∈ AD(X \ Z(f1)),
1

z1z2
∈ AD(X \ Z(f2)).

So, f1, f2 ∈ A(X) satisfy the conditions of Definition 2.1 i), and the claim is
verified. The quotient space Y := Xss(Λ)//T is the affine line with doubled
zero. In particular, Y is a nonseparated prevariety.
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In view of Remark 3.4, we obtain always separated quotient spaces when start-
ing with a group Λ = ZD, where D is a divisor on a complete G-variety X.
In this setting, the lack of enough invariant sections of degree zero on the sets
X \ Z(fi) occurs for groups Λ of higher rank:

Example 3.6. Let the onedimensional torus T := K∗ act diagonally on the
projective plane X := P2 via

t·[z0, z1, z2] := [z0, tz1, t
−1z2].

Consider the group Λ ⊂ CDiv(X) generated by the divisors D1 := E0 + E1

and D2 := E0 + E2, where Ei denotes the prime divisor V (X; zi). Since the
divisors Di are T -invariant, the group Λ is canonically T -linearized. We claim
that the corresponding set of semistable points is

Xss(Λ) = X \ {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.

To check this claim, denote the right hand side by U . Let A again denote the
graded OX -algebra associated to Λ, and consider the T -invariant sections

f1 := 1 ∈ AD1
(X), f2 := 1 ∈ AD2

(X), f3 :=
z1z2

z2
0

∈ AD1+D2
(X).

For the respective zero sets of these sections we have

Z(f1) = V (X; z0z1), Z(f2) = V (X; z0z2), Z(f3) = V (X; z1z2).

So, the set U is indeed the union of the affine sets X \ Z(fi). Moreover, we
have invertible sections

1 ∈ AD1
(X \ Z(f1)),

z2
0

z1z2
∈ AD2

(X \ Z(f1)),

1 ∈ AD2
(X \ Z(f2)),

z2
0

z1z2
∈ AD1

(X \ Z(f2)),

z1z2

z2
0

∈ A2D1
(X \ Z(f3)),

z1z2

z2
0

∈ A2D2
(X \ Z(f3)).

Thus f1, f2, f3 ∈ A(X) satisfy the conditions of Definition 2.1 i). Since the
fixed points [1, 0, 0], [0, 1, 0] and [0, 0, 1] occur as limit points of suitable T -
orbits through U , they cannot be semistable. The claim is verified.

Note thatXss(Λ) equals in fact the set of (properly) stable points. The quotient
space Y := Xss(Λ)//T is a projective line with doubled zero. In particular, Y
is a nonseparated prevariety.

4. Good quotients for Q-factorial G-varieties

Let G be a not necessarily connected reductive group, and let X be an irre-
ducible G-prevariety. In [19, Converse 1.13], Mumford shows that, provided X
is a smooth variety and G is connected, every open subset U with a geometric
quotient U → U/G such that U/G is quasiprojective arises in fact from a set
of stable points.
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Here we generalize this statement to non connected G and open subsets with a
divisorial good quotient space. Assume that X is Q-factorial, i.e., X is normal
and for each Weil divisor D on X, some multiple of D is Cartier. Moreover,
suppose that X is of affine intersection, i.e., for any two open affine subsets of
X their intersection is again affine.

To formulate our result, let U ⊂ X be an open G-invariant set of the G-
prevariety X such that there exists a good quotient U → U//G. Then we
have:

Theorem 4.1. If U//G is divisorial, then there exists a G-linearized group Λ ⊂
CDiv(X) such that U is contained in Xss(Λ) and is saturated with respect to
the quotient map Xss(Λ)→ Xss(Λ)//G.

For the proof of this statement, we need two lemmas. The first one is an
existence statement on canonical linearizations :

Let H be any linear algebraic group. We say that a Weil divisor E on a normal
H-prevariety Y is H-tame, if Supp(E) is H-invariant and for any two prime
cycles E1, E2 of E with E2 = h ·E1 for some h ∈ H their multiplicities in E
coincide.

Lemma 4.2. Let Λ ⊂ CDiv(Y ) be a group consisting of H-tame divisors. Then
Λ admits a canonical H-linearization, namely

AE(U)→ AE(h·U), (h·f)(x) := f(h−1 · x).

Proof. First we note that the canonical action of H on K(Y ) induces indeed a
H-sheaf structure on the sheaf AE of an H-tame Cartier divisor E on Y . This
follows from the fact that for f ∈ K(Y ), the order of a translate h·f along a
prime divisor E0 of E is given by

ordE0
(h·f) = ordh−1·E0

(f).

We still have to show that for every H-invariant open set V ⊂ Y , the rep-
resentation of H on AE(V ) is regular. Consider the maximal separated sub-
sets V1, . . . , Vr of V \ Supp(E), see [3, Theorem I]. Their intersection V ′ is
H-invariant, and AE(V ) injects H-equivariantly into O(V ′). Hence [16, Sec-
tion 2.5] gives the claim.

Now, consider a normal prevariety Y with effective E1, . . . , Er ∈ CDiv(Y ) such
that the sets Vi := Y \ Supp(Ei) are affine and cover Y . Let Γ ⊂ CDiv(Y )
be the subgroup generated by E1, . . . , Er. Denote the associated Γ-graded
OY -algebra by

B :=
⊕

E∈Γ

BE :=
⊕

E∈Γ

OY (E).

Lemma 4.3. In the above setting, every open set Vi = Y \ Supp(Ei) is covered
by finitely many open affine subsets Vij ⊂ Vi with the following properties:

i) Vij = Y \ Z(hij) with some hij ∈ BniEi(Y ), where ni ∈ N,
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ii) for each k = 1, . . . , r there exists an hijk ∈ BEk(Vij) without zeroes in
Vij.

Proof. Let y ∈ Vi and consider an affine open neighbourhood V ⊂ Vi of y such
that on V we have Ek = div(h′k) with some h′k ∈ O(V ) for all k. Then each
hk := 1/h′k is a section of BEk(V ) without zeroes in V . By suitably shrinking
V , we achieve V = X \ Z(h) with some h ∈ BniEi(X) and some ni ∈ N. Since
finitely many of such V cover Vi, the assertion follows.

Proof of Theorem 4.1. Since the quotient space Y := U//G is divisorial, we find
effective E1, . . . , Er ∈ CDiv(Y ) such that the sets Vi := Y \Supp(Ei) are affine
and cover Y . Let Vij , hij and hijk as in Lemma 4.3. Consider the quotient
map p : U → Y and the pullback divisors

D′i := p∗(Ei) ∈ CDiv(U).

Then every Ui := p−1(Vi) is affine and equals U \ Supp(D′i). Moreover, since
they are locally defined by invariant functions, we see that the divisors D′i are
G-tame. Since X is Q-factorial and of affine intersection, we can construct
G-tame effective divisors Di ∈ CDiv(X) with the following properties:

i) Di|U = miD
′
i holds with some mi ∈ N and we have X \ Supp(Di) = Ui,

ii) for some li ∈ N, every fij := p∗(hliij) extends to a global section of OX(Di)

and satisfies X \ Z(fij) = p−1(Vij).

Let Λ ⊂ CDiv(X) denote the group generated by the divisors D1, . . . , Dr, and
let A be the associated graded OX -algebra. Lemma 4.2 tells us that the group
Λ is canonically G-linearized by setting g·f(x) := f(g−1·x) on the homogeneous
components of A.

Note that the set U ⊂ X is covered by the affine open subsets Uij := p−1(Vij).
Thus, using the pullback data fij and

fijk := p∗(hmiijk) ∈ ADi(Uij),
it is straightforward to check U ⊂ Xss(Λ). Moreover, since the Uij are defined
by the G-invariant sections fij , we see that they are saturated with respect
to the quotient map p′ : Xss(Λ) → Xss(Λ)//G. Hence U is p′-saturated in
Xss(Λ).

Corollary 4.4. Let the algebraic torus T act effectively and regularly on a
Q-factorial variety X, and let U ⊂ X be the union of all T -orbits with finite
isotropy group. If dim(X \U) < dim(T ), then U is the set of semistable points
of a T -linearized group Λ ⊂ CDiv(X) .

Proof. By [23, Corollary 3], there is a geometric quotient U → U/T . Using
Proposition 1.9 and Lemma 3.3, we see that U/T is a divisorial prevariety.
Theorem 4.1 provides a T -linearized group Λ ⊂ CDiv(X) such that Xss(Λ)
contains U as a saturated subset with respect to p : Xss(Λ) → Xss(Λ)/T .
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Semicontinuity of the fibre dimension of p and dim(X \ U) < dim(T ) imply
U = Xss(Λ).

The classical example of a generic C∗-action on the Grassmannian of two di-
mensional planes in C4, compare also [5] and [25], fits into the setting of the
above observation:

Example 4.5. Realize the complex Grassmannian X := G(2; 4) via Plücker
relations as a quadric hypersurface in the complex projective space P5:

X = V (P5; z0z5 − z1z4 + z2z3).

This allows us to define a regular action of the one dimensional torus T = C∗
on X in terms of coordinates:

t·[z0, z1, z2, z3, z4, z5] := [tz0, t
2z1, t

3z2, t
3z3, t

4z4, t
5z5].

This T -action has six fixed points. Let U ⊂ X be the complement of the fixed
point set. It is well known that the quotient space Y := U/T is a nonseparated
prevariety which is covered by four projective open subsets. Moreover, Y con-
tains two nonprojective complete open subsets, see [5, Remark 1.6] and [25,
Example 6.4].

According to Corollary 4.4, the set U can be realized as the set of semistable
points of a T -linearized group of divisors. Let us do this explicitly. Consider
for example the prime divisors D1 := V (X; z1) and D2 := V (X; z4) and the
group

Λ := ZD1 ⊕ ZD2 ⊂ CDiv(X).

Then the group Λ is canonically T -linearized. We show that Xss(Λ) = U
holds. Let A denote the graded OX -algebra associated to Λ, and consider the
following T -invariant sections fij ∈ A(X):

f01 :=
z2

0z4

z3
1

∈ A4D1−D2
(X), h01 := 1 ∈ AD1

(X \ Z(f01)),

f02 :=
z0z2

z2
1

∈ A2D1
(X), h02 :=

z3
2

z0z2
4

∈ A2D2
(X \ Z(f02)),

f03 :=
z0z3

z2
1

∈ A2D1
(X), h03 :=

z3
3

z0z2
4

∈ A2D2
(X \ Z(f03)),

f04 :=
z2

0z4

z3
1

∈ A3D1
(X), h04 := 1 ∈ AD2

(X \ Z(f04)),

f05 :=
z3

0z5

z4
1

∈ A4D1
(X), h05 :=

z0z
3
5

z4
4

∈ A4D2
(X \ Z(f05)),

f12 :=
z2

2

z1z4
∈ A2D1+D2

(X), h12 := 1 ∈ AD1
(X \ Z(f12)),

f13 :=
z2

3

z1z4
∈ A2D1+D2

(X), h13 := 1 ∈ AD1
(X \ Z(f13)),

f14 := 1 ∈ AD1+D2
(X), h14 := 1 ∈ AD1

(X \ Z(f14)),
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f15 :=
z1z

2
5

z3
4

∈ A3D2
(X), h15 := 1 ∈ AD1

(X \ Z(f15)),

f24 :=
z2

2

z1z4
∈ AD1+2D2

(X), h24 := 1 ∈ AD2
(X \ Z(f24)),

f25 :=
z2z5

z2
4

∈ A2D2
(X), h25 :=

z3
2

z2
1z5
∈ A2D1

(X \ Z(f25)),

f34 :=
z2

3

z1z4
∈ AD1+2D2

(X), h34 := 1 ∈ AD2
(X \ Z(f34)),

f35 :=
z3z5

z2
4

∈ A2D2
(X), h35 :=

z3
3

z2
1z5
∈ A2D1

(X \ Z(f35)),

f45 :=
z1z

2
5

z3
4

∈ A4D2−D1
(X), h45 := 1 ∈ AD2

(X \ Z(f45)).

By definition, we have Z(fij) = V (X; zizj) for the set of zeroes of fij . Conse-
quently, U is the union of the affine open subsets Xij := X \Z(fij). Moreover,
every hij is invertible over Xij , and the claim follows.

In fact, using PicT (X) ∼= Z2, it is not hard to show that besides the T -invariant
open subsets W ⊂ X admitting a projective quotient variety W//T , the subset
U is the only open subset of the form Xss(Λ) with a T -linearized group Λ ⊂
CDiv(X).

5. Reduction theorems for good quotients

In this section, G is a connected reductive group and the field K is of charac-
teristic zero. Fix a maximal torus T ⊂ G and denote by N(T ) its normalizer
in G. The first result of this section relates existence of a good quotient by G
to existence of a good quotient by N(T ):

Theorem 5.1. For a normal G-prevariety X, the following statements are
equivalent:

i) There is a good quotient X → X//G with a divisorial prevariety X//G.
ii) There is a good quotient X → X//N(T ) with a divisorial prevariety

X//N(T ).

Moreover, if one of these statements holds with a separated quotient space, then
so does the other.

Note that if X admits a divisorial good quotient space, then X itself is divi-
sorial. In the second result, we specialize to geometric quotients. Recall that
an action of G on X is said to be proper, if the map G×X → X ×X sending
(g, x) to (g ·x, x) is proper.

Theorem 5.2. Suppose that G acts properly on a Q-factorial variety X. Then
the following statements are equivalent:

i) There exists a geometric quotient X → X/G.
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ii) There exists a geometric quotient X → X/N(T ).

Moreover, if one of these statements holds, then the quotient spaces X/G and
X/N(T ) are separated Q-factorial varieties.

As an immediate consequence, we obtain the following statement on orbit
spaces by the special linear group SL2(K), which applies for example to the
problem of moduli for n ordered points on the projective line, compare [20]
and [4, Section 5]:

Corollary 5.3. Let SL2(K) act properly on an open subset U ⊂ X of a Q-
factorial toric variety X such that some maximal torus T ⊂ SL2(K) acts by
means of a homomorphism T → TX to the big torus TX ⊂ X. Then there is a
geometric quotient U → U/SL2(K).

Proof. Since SL2(K) acts properly, there is a geometric quotient U → U/T . Let
U ′ ⊂ X be a maximal open subset such that U ⊂ U ′ and there is a geometric
quotient U ′ → U ′/T . Then the set U ′ is invariant under the big torus TX , see
e.g. [24, Corollary 2.4]. Thus the geometric quotient space Y ′ := U ′/T is again
a toric variety.

In particular, any two points y, y′ ∈ Y ′ admit a common affine neighbourhood
in Y ′. But this property is inherited by Y := U/T . Thus, since W := N(T )/T
is of order two, we obtain a geometric quotient Y → Y/W . The composition
of U → Y and Y → Y/W is a geometric quotient for the action of N(T ) on U .
So Theorem 5.2 gives the claim.

We come to the proof of Theorems 5.1 and 5.2. We make use of the following
well known fact on semisimple groups:

Lemma 5.4. If G is semisimple then the character group of N(T ) is finite.

Proof. It suffices to show that for each χ̃ ∈ Char(N(T )), the restriction χ :=
χ̃|T is trivial. Clearly χ is fixed under the action of the Weyl group W =
N(T )/T on R⊗Z Char(T ) induced by the N(T )-action

(n·α)(t) := α(n−1tn)

on Char(T ). On the other hand, W acts transitively on the set of Weyl cham-
bers associated to the root system determined by T ⊂ G. Consequently, χ lies
in the closure of every Weyl chamber and hence is trivial.

Proof of Theorem 5.1. The implication “i)⇒ii)” is easy, use [21, Lemma 4.1].
To prove the converse, we first reduce to the case that G is semisimple: Let
R ⊂ G be the radical of G. Then R is a torus, and we have R ⊂ T . In
particular, there is a good quotient X → X ′ for the action of R on X. Thus
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we obtain a commutative diagram

X
//N(T )

��

//R �� �
�

�
�

�
�

�
�

X//N(T )

X ′

� ��
�

�
�

�
�

�
�

�

Consider the induced action of the connected semisimple group G′ := G/R on
X ′. The image T ′ of T under the projection G → G′ is a maximal torus of
G′. Moreover, N(T ′) is the image of N(T ) under G→ G′. Thus, the upwards
arrow of the above diagram is a good quotient for the action of N(T ′) on X ′.

To proceed, we only have to derive from the existence of a good quotient
X ′ → X ′//N(T ′) that there is a good quotient X ′ → X ′//G′ with a divisorial
prevariety X ′//G′. In other words, we may assume from the beginning that the
group G is semisimple.

Let p : X → X//N(T ) denote the good quotient. Using Lemmas 4.2 and 4.3 we
can construct a canonically N(T )-linearized ample group Λ ⊂ X consisting of
N(T )-tame divisors such that we have

Xss(Λ, N(T )) = X.

Note that this equality also holds for any subgroup Λ′ ⊂ Λ of finite index
in Λ. We construct now such a subgroup Λ′ ⊂ Λ for which the canonical
N(T )-linearization of Λ′ extends to a strong G-linearization. The first step is
to realize X as an open G-invariant subset of a certain G-prevariety Y with
O(Y ) = K.

Consider the maximal separated open subsets X1, . . . , Xm ⊂ X, see [3, The-
orem I]. Since G is connected, it leaves these sets invariant. By Sumihiro’s
Equivariant Completion Theorem [23, Theorem 3], we find G-equivariant open
embeddings Xi → Zi into complete G-varieties Zi. Applying equivariant nor-
malization, we achieve that each Zi is normal.

Let Yi denote the union of Xi with the set of regular points of Zi. Note that
O(Yi) = K. Define Y to be the G-equivariant gluing of the varieties Yi along
the invariant open subsets Xi ⊂ Yi. Then we have O(Y ) = K. Moreover, all
points of Y \X are regular points of Y .

By closing components, every Cartier divisor D ∈ Λ extends to a Cartier divisor
on Y . Let Γ ⊂ CDiv(Y ) denote the (free) group of Cartier divisors generated by
these extensions. Lemma 4.2 ensures that the canonical N(T )-linearization of
Λ extends to a canonical N(T )-linearization of the group Γ. By [23, Corollary 2]
and Proposition 1.3, this linearization is even a strong one.

We claim that some subgroup Γ′ ⊂ Γ of finite index admits a strong G-lineariza-
tion. Let B be the graded OY -algebra associated to Γ. For each homogeneous
component BE,i := BE |Yi , some power BnE,i admits a G-linearization as in [16,
Proposition 2.4]. Since G is semisimple, these linearizations are unique, see [19,
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Proposition 1.4]. Thus they define G-sheaf structures on the OYi -algebras

Bi :=
⊕

E∈Γi

BE,i,

for suitable subgroups Γi ⊂ Γ of finite index. Again by uniqueness of strong
G-linearizations, we can patch the above G-sheaf structures together to the
desired strong G-linearization on the intersection Γ′ ⊂ Γ of the subgroups
Γi ⊂ Γ, and our claim is proved.

Now, since the character group of N(T ) is finite, Proposition 1.5 tells us that
on some subgroup Γ′′ ⊂ Γ′ of finite index, the canonical N(T )-linearization
and the one induced by the G-linearization coincide. Thus restricting Γ′′ to X
provides the desired subgroup Λ′ ⊂ Λ of finite index. We replace Λ with Λ′.

In order to obtain a quotient of X by G, we want to apply Theorem 3.1. So
we have to show that Xss(Λ, G) equals X. For this, let A be the graded OX -

algebra associated to Λ, and set X̂ := Spec(A). Moreover, let q : X̂ → X be

the canonical map and H := Spec(K[Λ]) the torus acting on X̂. Note that

Xss(Λ, T ) = Xss(Λ, N(T )) = X.

Choose G-invariant homogeneous f1, . . . , fr ∈ A(X) and T -invariant homoge-
neous h1, . . . , hs ∈ A(X) such that the complements X \ Z(fi) and X \ Z(hi)
satisfy the condition of Definition 2.1 i) and

Xss(Λ, G) = (X \ Z(f1)) ∪ . . . ∪ (X \ Z(fr)),

Xss(Λ, T ) = (X \ Z(h1)) ∪ . . . ∪ (X \ Z(hr)).

Since Λ is ample, Proposition 1.9 yields a (G×H)-equivariant affine closure X

of X̂ such that the fi and the hj extend to regular functions on X satisfying

Xfi = X̂fi and Xhj = X̂hj . Moreover, we obtain a commutative diagram of
H-equivariant maps:

X
pG

//G
��

pT

//T

�� �
�

�
�

�
�

�
�

X//G

X//T

� ��
�

�
�

�
�

�
�

Now, let x ∈ X, and assume that x is not semistable with respect to G.
Choose z ∈ q−1(x), and let y := pG(z). By Proposition 2.3 ii), the assumption

x 6∈ Xss(Λ, G) amounts to y ∈ pG(X \X̂) or to an isotropy group Hy of positive
dimension.

First suppose that we have y ∈ pG(X \ X̂). Let G ·z′ be the closed orbit in

p−1
G (y). Then G ·z′ is contained in X \ X̂. Moreover, the Hilbert-Mumford-

Birkes Lemma [10], provides a maximal torus T ′ ⊂ G such that the closure of
T ′ ·z intersects G·z′.
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Let g ∈ G with gT ′g−1 = T . Then the closure of T·g·z contains a point z′′ ∈ G·z′.
Surely, pT (g·z) equals pT (z′′). Thus, since z′′ ∈ X \ X̂, Proposition 2.3 ii) tells
us that g ·x = q(g ·z) is not semistable with respect to T . A contradiction.

As the situation y ∈ pG(X \X̂) is excluded, the isotropy group Hy is of positive

dimension, and the whole fibre p−1
G (y) is contained in X̂. Let H0 ⊂ Hy be the

connected component of the neutral element. Then H0 acts freely on the fibre
p−1
G (y), and the closed orbit G·z′ ⊂ p−1

G (y) is invariant by H0.

Let µ : g 7→ g·z′ denote the orbit map. Since the actions of G and H0 commute,
G′ := µ−1(H0·z′) is a subgroup of G. Since H0·z′ ∼= H0, there is a torus S′ ⊂ G′
with µ(S′) = H0 ·z′, use for example [11, Proposition IV.11.20].

Let T ′ ⊂ G be a maximal torus with S ′ ⊂ T ′ and choose g ∈ G with T =
gT ′g−1. Then H0 ·g ·z′ equals (gS′g−1)·g ·z′. According to Proposition 2.3 ii),
the point q(g·z′) is not semistable with respect to T . A contradiction. So, every
x ∈ X is semistable with respect to G, and the implication “ii)⇒i)” is proved.

We come to the supplement concerning separateness. Clearly, existence of a
good quotient X → X//G with X//G separated implies that also the quotient
space X//N(T ) is separated.

For the converse, suppose that X → X//N(T ) exists with a separated divisorial
X//N(T ). Then there is a good quotient X → X//T with a separated quotient
space X//T , and [6, Theorem 5.4] implies that also the quotient space X//G is
separated.

In the proof of Theorem 5.2, we shall use that geometric quotient spaces of
proper actions inherit Q-factoriality. By the lack of a reference for this pre-
sumably well-known fact, we give here a proof:

Lemma 5.5. Suppose that a reductive group H acts regularly with finite isotropy
groups on a variety Y and that there is a geometric quotient p : Y → Y/H. If
Y is Q-factorial, then so is Y/H.

Proof. Assume that Y is Q-factorial, and let E ⊂ Y/H be a prime divisor.
Then p−1(E) is a union of prime divisors D1, . . . , Dr. Some multiple mD of the
divisor D := D1+. . .+Dr is Cartier. Using Lemma 4.2 and Proposition 1.3, we
see that the group of Cartier divisors generated by mD is canonically strongly
H-linearized.

Enlarging m, we achieve that the sheaf AmD is equivariantly isomorphic to the
pullback p∗(L) of some invertible sheaf L on Y/H, use e.g. [17, Proposition 4.2].
The canonical section 1 ∈ AmD(Y ) is H-invariant and hence induces a section
f ∈ L(Y/H) having precisely E as its set of zeroes.

Proof of Theorem 5.2. If one of the quotients exists, then by [19, Section 0.4]
and Lemma 5.5, the quotient space is separated and Q-factorial. Now, existence
of a geometric quotient X → X/G surely implies existence of a geometric
quotient X/N(T ). Conversely, if X/N(T ) exists, then it is Q-factorial. Hence
Theorem 5.1 yields a geometric quotient X → X/G.
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