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Abstract. Let G denote the p-adic group GL(n), let Π(G) denote
the smooth dual of G, let Π(Ω) denote a Bernstein component of
Π(G) and let H(Ω) denote a Bernstein ideal in the Hecke algebra
H(G). With the aid of Langlands parameters, we equip Π(Ω) with
the structure of complex algebraic variety, and prove that the periodic
cyclic homology of H(Ω) is isomorphic to the de Rham cohomology
of Π(Ω). We show how the structure of the variety Π(Ω) is related to
Xi’s affirmation of a conjecture of Lusztig for GL(n,C). The smooth
dual Π(G) admits a deformation retraction onto the tempered dual
Πt(G).
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Introduction

The use of unramified quasicharacters to create a complex structure is well
established in number theory. The group of unramified quasicharacters of the
idele class group of a global field admits a complex structure: this complex
structure provides the background for the functional equation of the zeta inte-
gral Z(ω,Φ), see [39, Theorem 2, p. 121].
Let now G be a reductive p-adic group and let M be a Levi subgroup of G.
Let Πsc(M) denote the set of equivalence classes of irreducible supercuspidal
representations of M . Harish-Chandra creates a complex structure on the
set Πsc(M) by using unramified quasicharacters of M [16, p.84]. This complex
structure provides the background for the Harish-Chandra functional equations
[16, p. 91].
Bernstein considered the set Ω(G) of all conjugacy classes of pairs (M,σ) where
M is a Levi subgroup of G and σ is an irreducible supercuspidal representation
of M . Making use of unramified quasicharacters of M , Bernstein gave the set
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Ω(G) the structure of a complex algebraic variety. Each irreducible component
Ω of Ω(G) has the structure of a complex affine algebraic variety [5].
Let Π(G) denote the set of equivalence classes of irreducible smooth represen-
tations of G. We will call Π(G) the smooth dual of G. Bernstein defines the
infinitesimal character from Π(G) to Ω(G):

inf.ch. : Π(G)→ Ω(G).

The infinitesimal character is a finite-to-one map from the set Π(G) to the
variety Ω(G).
Let F be a nonarchimedean local field and from now on let G = GL(n) =
GL(n, F ). Let now WF be the Weil group of the local field F , then WF admits
unramified quasicharacters, namely those which are trivial on the inertia sub-
group IF . Making use of the unramified quasicharacters of WF , we introduced
in [8] a complex structure on the set of Langlands parameters for GL(n). In
view of the local Langlands correspondence for GL(n) this creates, by transport
of structure, a complex structure on the smooth dual of GL(n).
In Section 1 of this article, we describe in detail the complex structure on the
set of L-parameters for GL(n). We prove that the smooth dual Π(GL(n)) has
the structure of complex manifold. The local L-factors L(s, π) then appear as
complex valued functions of several complex variables. We illustrate this with
the local L-factors attached to the unramified principal series of GL(n).
The complex structure on Π(GL(n)) is well adapted to the periodic cyclic
homology of the Hecke algebra H(GL(n)). The identical structure arises in
the work of Xi on Lusztig’s conjecture [40]. Let W be the extended affine
Weyl group associated to GL(n,C), and let J be the associated based ring
(asymptotic algebra) [27, 40]. Xi confirms Lusztig’s conjecture and proves that
J ⊗Z C is Morita equivalent to the coordinate ring of the complex algebraic

variety (̃C×)n/Sn, the extended quotient by the symmetric group Sn of the
complex n-dimensional torus (C×)n. In Section 2 we describe the theorem of
Xi on the structure of the based ring J .
So the structure of extended quotient, which runs through our work, occurs in
the work of Xi at the level of algebras. The link with our work is now provided
by the theorem of Baum and Nistor [3, 4]

HP∗(H(n, q)) ' HP∗(J)

where H(n, q) is the associated extended affine Hecke algebra.
Let Ω be a component in the Bernstein variety Ω(GL(n)), and let H(G) =⊕

H(Ω) be the Bernstein decomposition of the Hecke algebra.
Let

Π(Ω) = (inf.ch.)−1Ω.

Then Π(Ω) is a smooth complex algebraic variety with finitely many irreducible
components. We have the following Bernstein decomposition of Π(G):

Π(G) =
⊔

Π(Ω).
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Let M be a compact C∞ manifold. Then C∞(M) is a Fréchet algebra, and we
have Connes’ fundamental theorem [14, Theorem 2, p. 208]:

HP∗(C
∞(M)) ∼= H∗(M ;C).

Now the ideal H(Ω) is a purely algebraic object, and, in computing its periodic
cyclic homology, we would hope to find an algebraic variety to play the role of
the manifold M . This algebraic variety is Π(Ω).

Theorem 0.1. Let Ω be a component in the Bernstein variety Ω(G). Then
the periodic cyclic homology of H(Ω) is isomorphic to the periodised de Rham
cohomology of Π(Ω):

HP∗(H(Ω)) ∼= H∗(Π(Ω);C).

This theorem constitutes the main result of Section 3, which is then used to
show that the periodic cyclic homology of the Hecke algebra of GL(n) is isomor-
phic to the periodic cyclic homology of the Schwartz algebra of GL(n). We also
provide an explicit numerical formula for the dimension of the periodic cyclic
homology of H(Ω) in terms of certain natural number invariants attached to
Ω.
The smooth dual Π(GL(n)) has a natural stratification-by-dimension.
We compare this stratification with the Schneider-Zink stratification [34].
Stratification-by-dimension is finer than the Schneider-Zink stratification, see
Section 3.
A scheme X is a topological space, called the support of X and denoted |X|,
together with a sheaf OX of rings on X, such that the pair (|X|,OX) is locally
affine, see [15, p. 21]. The smooth dual Π(G) determines a reduced scheme, see
[18, Prop. 2.6]. If S is the reduced scheme determined by the Bernstein variety
Ω(G), then Π(G) is a scheme over S, i.e. a scheme together with a morphism
Π(G)→ S. This morphism is the q-projection introduced in [8]:

πq : Π(G)→ S.

In Section 4 we give a detailed description of the q-projection and prove that
the q-projection is a finite morphism.
From the point of view of noncommutative geometry it is natural to seek the
spaces which underlie the noncommutative algebras H(G) and S(G). The space
which underlies the Hecke algebra H(G) is the complex manifold Π(G). The
space which underlies the Schwartz algebra is the Harish-Chandra parameter
space, which is a disjoint union of compact orbifolds. In Section 5 we construct
a deformation retraction of the smooth dual onto the tempered dual. We view
this deformation retraction as a geometric counterpart of the Baum-Connes
assembly map for GL(n).
In Section 6 we track the fate of supercuspidal representations of G through the
diagram which appears in Section 5. In particular, the index map µ manifests
itself as an example of Ahn reciprocity.
We would like to thank Paul Baum, Alain Connes, Jean-Francois Dat and Nigel
Higson for many valuable conversations. Jacek Brodzki was supported in part

Documenta Mathematica 7 (2002) 91–112



94 J. Brodzki, R. Plymen

by a Leverhulme Trust Fellowship. This article was completed while Roger
Plymen was at IHES, France.

1. The complex structure on the smooth dual of GL(n)

The field F is a nonarchimedean local field, so that F is a finite extension of
Qp, for some prime p or F is a finite extension of the function field Fp((x)).
The residue field kF of F is the quotient oF /mF of the ring of integers oF by
its unique maximal ideal mF . Let q be the cardinality of kF .
The essence of local class field theory, see [29, p.300], is a pair of maps

(d : G −→ Ẑ, v : F× −→ Z)

where G is a profinite group, Ẑ is the profinite completion of Z, and v is the
valuation.
Let F be a separable algebraic closure of F . Then the absolute Galois group
G(F |F ) is the projective limit of the finite Galois groups G(E|F ) taken over

the finite extensions E of F in F . Let F̃ be the maximal unramified extension
of F . The map d is in this case the projection map

d : G(F |F ) −→ G(F̃ |F ) ∼= Ẑ

The group G(F̃ |F ) is procyclic. It has a single topological generator: the

Frobenius automorphism φF of F̃ |F . The Weil group WF is by definition the
pre-image of < φF > in G(F | F ). We thus have the surjective map

d : WF −→ Z
The pre-image of 0 is the inertia group IF . In other words we have the following
short exact sequence

1→ IF →WF → Z→ 0

The group IF is given the profinite topology induced by G(F |F ). The topology
on the Weil group WF is dictated by the above short exact sequence. The Weil
group WF is a locally compact group with maximal compact subgroup IF . The
map

WF −→ G(F̃ |F )

is a continuous homomorphism with dense image.
A detailed account of the Weil group for local fields may be found in [37]. For
a topological group G we denote by Gab the quotient Gab = G/Gc of G by the
closure Gc of the commutator subgroup of G. Thus Gab is the maximal abelian
Hausdorff quotient of G. The local reciprocity laws [29, p.320]

rE|F : G(E|F )ab ∼= F×/NE|FE
×

now create an isomorphism [30, p.69]:

rF : W ab
F
∼= F×

We have WF = tΦnIF , n ∈ Z. The Weil group is a locally compact, totally
disconnected group, whose maximal compact subgroup is IF . This subgroup
is also open. There are three models for the Weil-Deligne group.
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One model is the crossed product WF nC, where the Weil group acts on C by
w · x = ‖w‖x, for all w ∈WF and x ∈ C.
The action of WF on C extends to an action of WF on SL(2,C). The semidirect
product WFnSL(2,C) is then isomorphic to the direct product WF×SL(2,C),
see [22, p.278]. Then a complex representation of WF ×SL(2,C) is determined
by its restriction to WF × SU(2), where SU(2) is the standard compact Lie
group.
From now on, we shall use this model for the Weil-Deligne group:

LF = WF × SU(2).

Definition 1.1. An L-parameter is a continuous homomorphism

φ : LF → GL(n,C)

such that φ(w) is semisimple for all w ∈WF . Two L-parameters are equivalent
if they are conjugate under GL(n,C). The set of equivalence classes of L-
parameters is denoted Φ(G).

Definition 1.2. A representation of G on a complex vector space V is smooth
if the stabilizer of each vector in V is an open subgroup of G. The set of
equivalence classes of irreducible smooth representations of G is the smooth
dual Π(G) of G.

Theorem 1.3. Local Langlands Correspondence for GL(n). There is a natural
bijection between Φ(GL(n)) and Π(GL(n)).

The naturality of the bijection involves compatibility of the L-factors and ε-
factors attached to the two types of objects.
The local Langlands conjecture for GL(n) was proved by Laumon, Rapoport
and Stuhler [25] when F has positive characteristic and by Harris-Taylor [17]
and Henniart [19] when F has characteristic zero.
We recall that a matrix coefficient of a representation ρ of a group G on a
vector space V is a function on G of the form f(g) = 〈ρ(g)v, w〉, where v ∈ V ,
w ∈ V ∗, and V ∗ denotes the dual space of V . The inner product is given by
the duality between V and V ∗. A representation ρ of G is called supercuspidal
if and only if the support of every matrix coefficient is compact modulo the
centre of G.
Let τj = spin(j) denote the (2j+ 1)-dimensional complex irreducible represen-
tation of the compact Lie group SU(2), j = 0, 1/2, 1, 3/2, 2, . . ..
For GL(n) the local Langlands correspondence works in the following way.

• Let ρ be an irreducible representation of the Weil group WF . Then
πF (ρ⊗ 1) is an irreducible supercuspidal representation of GL(n), and
every irreducible supercuspidal representation of GL(n) arises in this
way. If det(ρ) is a unitary character, then πF (ρ⊗1) has unitary central
character, and so is pre-unitary.

• We have πF (ρ⊗spin(j)) = Q(∆), the Langlands quotient associated to
the segment {| |−(j−1)/2πF (ρ), . . . , | |(j−1)/2πF (ρ)}. If det(ρ) is unitary,
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then Q(∆) is in the discrete series. In particular, if ρ = 1 then πF (1⊗
spin(j)) is the Steinberg representation St(2j + 1) of GL(2j + 1).

• If φ is an L-parameter for GL(n) then φ = φ1 ⊕ . . . ⊕ φm where φj =
ρj ⊗ spin(j). Then πF (ρ) is the Langlands quotient Q(∆1, . . . ,∆m).
If det(ρj) is a unitary character for each j, then πF (φ) is a tempered
representation of GL(n).

This correspondence creates, as in [23, p. 381], a natural bijection

πF : Φ(GL(n))→ Π(GL(n)).

A quasi-character ψ : WF → C× is unramified if ψ is trivial on the inertia
group IF . Recall the short exact sequence

0→ IF →WF
d→ Z→ 0

Then ψ(w) = zd(w) for some z ∈ C×. Note that ψ is not a Galois representation
unless z has finite order in the complex torus C×, see [37]. Let Ψ(WF ) denote
the group of all unramified quasi-characters of WF . Then

Ψ(WF ) ' C×
ψ 7→ z

Each L-parameter φ : LF → GL(n,C) is of the form φ1 ⊕ · · · ⊕ φm with each
φj irreducible. Each irreducible L-parameter is of the form ρ⊗ spin(j) with ρ
an irreducible representation of the Weil group WF .

Definition 1.4. The orbit O(φ) ⊂ ΦF (G) is defined as follows

O(φ) = {
m⊕

r=1

ψrφr | ψr ∈ Ψ(WF ), 1 ≤ r ≤ m}

where each ψr is an unramified quasi-character of WF .

Definition 1.5. Let detφr be a unitary character, 1 ≤ r ≤ m and let φ =
φ1 ⊕ . . .⊕ φm. The compact orbit Ot(φ) ⊂ Φt(G) is defined as follows:

Ot(φ) = {
m⊕

r=1

ψrφr | ψr ∈ Ψt(WF ), 1 ≤ r ≤ m}

where each ψr is an unramified unitary character of WF .

We note that IF ×SU(2) ⊂WF ×SU(2) and in fact IF ×SU(2) is the maximal
compact subgroup of LF . Now let φ be an L-parameter. Moving (if necessary)
to another point in the orbit O(φ) we can write φ in the canonical form

φ = φ1 ⊕ . . .⊕ φ1 ⊕ . . .⊕ φk ⊕ . . .⊕ φk
where φ1 is repeated l1 times, . . ., φk is repeated lk times, and the representa-
tions

φj |IF×SU(2)

are irreducible and pairwise inequivalent, 1 ≤ j ≤ k. We will now write
k = k(φ). This natural number is an invariant of the orbit O(φ). We have

O(φ) = Syml1C× × . . .× SymlkC×
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the product of symmetric products of C×.

Theorem 1.6. The set Φ(GL(n)) has the structure of complex algebraic vari-
ety. Each irreducible component O(φ) is isomorphic to the product of a complex
affine space and a complex torus

O(φ) = Al × (C×)k

where k = k(φ).

Proof. Let Y = V(x1y1 − 1, . . . , xnyn − 1) ⊂ C2n. Then Y is a Zariski-closed
set in C2n, and so is an affine complex algebraic variety. Let X = (C×)n. Set
α : Y → X,α(x1, y1, . . . , xn, yn) = (x1, . . . , xn) and β : X → Y, β(x1, . . . , xn) =
(x1, x

−1
1 , . . . , xn, x

−1
n ). So X can be embedded in affine space C2n as a Zariski-

closed subset. Therefore X is an affine algebraic variety, as in [36, p.50].
Let A = C[X] be the coordinate ring of X. This is the restriction to X of
polynomials on C2n, and so A = C[X] = C[x1, x

−1
1 , . . . , xn, x

−1
n ], the ring of

Laurent polynomials in n variables x1, . . . , xn. Let Sn be the symmetric group,
and let Z denote the quotient variety X/Sn. The variety Z is an affine complex
algebraic variety.
The coordinate ring of Z is

C[Z] ' C[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Sn .

Let σi, i = 1, . . . , n be the elementary symmetric polynomials in n variables.
Then from the last isomorphism we have

C[Z] ' C[x1, . . . , xn]Sn ⊗ C[σ−1
n ]

' C[σ1, . . . , σn]⊗ C[σ−1
n ]

' C[σ1, . . . , σn−1]⊗ C[σn, σ
−1
n ]

' C[An−1]⊗ C[A− {0}]
' C[An−1 × (A− {0})]

where An denotes complex affine n-space. The coordinate ring of the quotient
variety C×n/Sn is isomorphic to the coordinate ring of An−1× (A−{0}). Now
the categories of affine algebraic varieties and of finitely generated reduced
C-algebras are equivalent, see [36, p.26]. Therefore the variety C×n/Sn is
isomorphic to the variety An−1 × (A− {0}).
Consider A − {0} = V(f) where f(x) = x1x2 − 1. Then ∂f/∂x1 = x2 6= 0
and ∂f/∂x2 = x1 6= 0 on the variety V(f). So A − {0} is smooth. Then
An−1 × (A − {0}) is smooth. Therefore the quotient variety C×n/Sn is a
smooth complex affine algebraic variety of dimension n. Now each orbit O(φ)
is a product of symmetric products of C×. Therefore each orbit O(φ) is a
smooth complex affine algebraic variety. We have

O(φ) = Syml1C× × . . .× SymlkC× = Al × (C×)k

where l = l1 + . . .+ lk − k and k = k(φ). ¤
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We now transport the complex structure from Φ(GL(n)) to Π(GL(n)) via the
local Langlands correspondence. This leads to the next result.

Theorem 1.7. The smooth dual Π(GL(n)) has a natural complex structure.
Each irreducible component is a smooth complex affine algebraic variety.

The smooth dual Π(GL(n)) has countably many irreducible components of each
dimension d with 1 ≤ d ≤ n. The irreducible supercuspidal representations of
GL(n) arrange themselves into the 1-dimensional tori.
It follows from Theorems 1.6 and 1.7 that the smooth dual Π(GL(n)) is a
complex manifold. Then C × Π(GL(n)) is a complex manifold. So the local
L-factor L(s, πv) and the local ε-factor ε(s, πv) are functions of several complex
variables:

L : C×Π(GL(n)) −→ C

ε : C×Π(GL(n)) −→ C.

Example 1.8. Unramified representations. Let ψ1, . . . , ψn be unramified qua-
sicharacters of the Weil group WF . Then we have

ψj(w) = z
d(w)
j

with zj ∈ C× for all 1 ≤ j ≤ n. Let φ be the L-parameter given by ψ1⊕. . .⊕ψn.
Then the image πF (φ) of φ under the local Langlands correspondence πF is an
unramified principal series representation.
For the local L-factors L(s, π) see [23, p. 377]. The local L-factor attached to
such an unramified representation of GL(n) is given by

L(s, πF (φ)) =
n∏

j=1

(1− zjq−s)−1.

This exhibits the local L-factor as a function on the complex manifold C ×
SymnC×.

2. The structure of the based ring J

Let W be the extended affine Weyl group associated to GL(n,C). For each
two-sided cell c of W we have a corresponding partition λ of n. Let µ be the
dual partition of λ. Let u be a unipotent element in GL(n,C) whose Jordan
blocks are determined by the partition µ. Let the distinct parts of the dual
partition µ be µ1, . . . , µp with µr repeated nr times, 1 ≤ r ≤ p.
Let CG(u) be the centralizer of u inG = GL(n,C). Then the maximal reductive
subgroup Fc of CG(u) is isomorphic to GL(n1,C)×GL(n2,C)×· · ·×GL(np,C).
Following Lusztig [27] and Xi [40, 1.5] let J be the free Z-module with basis
{tw | w ∈W}. The multiplication twtu =

∑
v∈W γw,u,vtv defines an associative

ring structure on J . The ring J is the based ring of W . For each two-sided
cell c of W the Z-submodule Jc of J , spanned by all tw, w ∈ c, is a two-sided
ideal of J . The ring Jc is the based ring of the two-sided cell c. Let |Y | be the
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number of left cells contained in c. The Lusztig conjecture says that there is a
ring isomorphism

Jc 'M|Y |(RFc), tw 7→ π(w)

where RFc is the rational representation ring of Fc. This conjecture for
GL(n,C) has been proved by Xi [40, 1.5, 4.1, 8.2].
Since Fc is isomorphic to a direct product of the general linear groups GL(ni,C)
(1 ≤ i ≤ p) we see that RFc is isomorphic to the tensor product over Z of the
representation rings RGL(ni,C), 1 ≤ i ≤ p. For the ring RGL(n,C) we have

RGL(n,C) ' Z[X1, X2, . . . , Xn][X−1
n ]

where the elements X1, X2, . . . , Xn, X
−1
n are described in [40, 4.2][6, IX.125].

Then

RGL(n,C) ' Z[σ1, . . . , σn, σ
−1
n ]

' Z[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Sn

We have

RGL(n,C) ⊗Z C ' C[SymnC×]

and

RFc ⊗Z C ' C[Symn1C× × · · · × SymnpC×]

We recall the extended quotient. Let the finite group Γ act on the space X. Let

X̃ = {(x, γ) : γx = x}, let Γ act on X̂ by γ1(x, γ) = (γ1x, γ1γγ
−1
1 ). Then X̃/Γ

is the extended quotient of X by Γ, and we have

X̃/Γ =
⊔
Xγ/Z(γ)

where one γ is chosen in each Γ-conjugacy class.

There is a canonical projection X̃/Γ→ X/Γ.
Let γ ∈ Sn have cycle type µ, let X = (C×)n. Then

Xγ ' (C×)n1 × · · · × (C×)np

Z(γ) ' (Z/µ1Z) o Sn1
× · · · × (Z/µpZ) o Snp

Xγ/Z(γ) ' Symn1C× × · · · × SymnpC×

and so

RFc ⊗Z C ' C[Xγ/Z(γ)]

Then

J ⊗Z C = ⊕c(Jc ⊗Z C) ∼ ⊕c(RFc ⊗Z C) ' C[X̃/Sn]

The algebra J ⊗Z C is Morita equivalent to a reduced, finitely generated, com-
mutative unital C-algebra, namely the coordinate ring of the extended quotient

X̃/Sn.
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3. Periodic cyclic homology of the Hecke algebra

The Bernstein variety Ω(G) of G is the set of G-conjugacy classes of pairs
(M,σ), where M is a Levi (i.e. block-diagonal) subgroup of G, and σ is an
irreducible supercuspidal representation of M . Each irreducible smooth rep-
resentation of G is a subquotient of an induced representation iGMσ. The
pair (M,σ) is unique up to conjugacy. This creates a finite-to-one map, the
infinitesimal character, from Π(G) onto Ω(G).
Let Ω(G) be the Bernstein variety of G. Each point in Ω(G) is a conjugacy
class of cuspidal pairs (M,σ). A quasicharacter ψ : M −→ C× is unramified if
ψ is trivial on M◦. The group of unramified quasicharacters of M is denoted
Ψ(M). We have Ψ(M) ∼= (C×)` where ` is the parabolic rank of M . The group
Ψ(M) now creates orbits: the orbit of (M,σ) is {(M,ψ ⊗ σ) : ψ ∈ Ψ(M)}.
Denote this orbit by D, and set Ω = D/W (M,D), where W (M) is the Weyl
group of M and W (M,D) is the subgroup of W (M) which leaves D globally
invariant. The orbit D has the structure of a complex torus, and so Ω is a
complex algebraic variety. We view Ω as a component in the algebraic variety
Ω(G).
The Bernstein variety Ω(G) is the disjoint union of ordinary quotients. We now
replace the ordinary quotient by the extended quotient to create a new variety
Ω+(G). So we have

Ω(G) =
⊔
D/W (M,D) and Ω+(G) =

⊔
D̃/W (M,D)

Let Ω be a component in the Bernstein variety Ω(GL(n)), and let H(G) =⊕
H(Ω) be the Bernstein decomposition of the Hecke algebra.

Let

Π(Ω) = (inf.ch.)−1Ω.

Then Π(Ω) is a smooth complex algebraic variety with finitely many irreducible
components. We have the following Bernstein decomposition of Π(G):

Π(G) =
⊔

Π(Ω).

Let M be a compact C∞ manifold. Then C∞(M) is a Fréchet algebra, and we
have Connes’ fundamental theorem [14, Theorem 2, p. 208]:

HP∗(C
∞(M)) ∼= H∗(M ;C).

Now the ideal H(Ω) is a purely algebraic object, and, in computing its periodic
cyclic homology, we would hope to find an algebraic variety to play the role of
the manifold M . This algebraic variety is Π(Ω).

Theorem 3.1. Let Ω be a component in the Bernstein variety Ω(G). Then
the periodic cyclic homology of H(Ω) is isomorphic to the periodised de Rham
cohomology of Π(Ω):

HP∗(H(Ω)) ∼= H∗(Π(Ω);C).

Proof. We can think of Ω as a vector (τ1, . . . , τr) of irreducible supercuspidal
representations of smaller general linear groups, the entries of this vector being
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only determined up to tensoring with unramified quasicharacters and permuta-
tion. If the vector is equivalent to (σ1, . . . , σ1, . . . , σr, . . . , σr) with σj repeated
ej times, 1 ≤ j ≤ r, and σ1, . . . , σr are pairwise distinct, then we say that Ω
has exponents e1, . . . , er.
Then there is a Morita equivalence

H(Ω) ∼ H(e1, q1)⊗ . . .⊗H(er, qr)

where q1, . . . , qr are natural number invariants attached to Ω.
This result is due to Bushnell-Kutzko [11, 12, 13]. We describe the steps in
the proof. Let (ρ,W ) be an irreducible smooth representation of the compact
open subgroup K of G. As in [12, 4.2], the pair (K, ρ) is an Ω-type in G if and
only if, for (π, V ) ∈ Π(G), we have inf.ch.(π) ∈ Ω if and only if π contains ρ.
The existence of an Ω-type in GL(n), for each component Ω in Ω(GL(n)), is
established in [13, 1.1]. So let (K, ρ) be an Ω-type in GL(n). As in [12, 2.9],
let

eρ(x) = (volK)−1(dim ρ) TraceW (ρ(x−1))

for x ∈ K and 0 otherwise.
Then eρ is an idempotent in the Hecke algebra H(G). Then we have

H(Ω) ∼= H(G) ∗ eρ ∗H(G)

as in [12, 4.3] and the two-sided ideal H(G) ∗ eρ ∗H(G) is Morita equivalent to
eρ ∗H(G) ∗ eρ. Now let H(K, ρ) be the endomorphism-valued Hecke algebra
attached to the semisimple type (K, ρ). By [12, 2.12] we have a canonical
isomorphism of unital C-algebras :

H(G, ρ)⊗C EndCW ∼= eρ ∗H(G) ∗ eρ
so that eρ ∗H(G) ∗ eρ is Morita equivalent to H(G, ρ). Now we quote the main
theorem for semisimple types in GL(n) [13, 1.5]: there is an isomorphism of
unital C-algebras

H(G, ρ) ∼= H(G1, ρ1)⊗ . . .⊗H(Gr, ρr)

The factors H(Gi, ρi) are (extended) affine Hecke algebras whose structure is
given explicitly in [11, 5.6.6]. This structure is in terms of generators and
relations [11, 5.4.6]. So let H(e, q) denote the affine Hecke algebra associated
to the affine Weyl group Ze o Se. Putting all this together we obtain a Morita
equivalence

H(Ω) ∼ H(e1, q1)⊗ . . .⊗H(er, qr)

The natural numbers q1, . . . , qr are specified in [11, 5.6.6]. They are the cardi-
nalities of the residue fields of certain extension fields E1/F, . . . , Er/F .
Using the Künneth formula the calculation of HP∗(H(Ω)) is reduced to that
of the affine Hecke algebra H(e, q). Baum and Nistor demonstrate the spectral
invariance of periodic cyclic homology in the class of finite type algebras [3, 4].
Now H(e, q) is the Iwahori-Hecke algebra associated to the extended affine
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Weyl group Ze o Se, and let J be the asymptotic Hecke algebra (based ring)
associated to ZeoSe. According to [3, 4], Lusztig’s morphisms φq : H(e, q)→ J
induce isomorphisms

(φq)∗ : HP∗(H(e, q))→ HP∗(J)

for all q ∈ C× that are not proper roots of unity. At this point we can back
track and deduce that

HP∗(H(e, q)) ' HP∗(J) ' HP∗(H1)

and use the fact that H(e, 1) ' C[Ze o Se]. It is much more illuminating to
quote Xi’s proof of the Lusztig conjecture for the based ring J , see Section 2.
Then we have

HP∗(H(e, q)) ' HP∗(J) ' HP∗(C[(̃C×)e/Se]) ' H∗((̃C×)e/Se;C).

If Ω has exponents e1, . . . , er then e1 + . . . + er = d(Ω) = dimC Ω, and W (Ω)
is a product of symmetric groups:

W (Ω) = Se1 × . . .× Ser
We have

HP∗(H(Ω)) ' HP∗(H(e1, q1)⊗ · · · ⊗H(er, qr))
' HP∗(H(e1, q1))⊗ · · · ⊗HP∗(H(er, qr))

' H∗( ˜(C×)e1/Se1 ;C)⊗ · · · ⊗H∗( ˜(C×)er/Ser ;C)

Now the extended quotient is multiplicative, i.e.

˜(C×)d(Ω)/W (Ω) = ˜(C×)e1/Se1 × · · · × ˜(C×)er/Ser

which implies that

HP∗(H(Ω)) = H∗( ˜(C×)d(Ω)/W (Ω);C)

Recall that
Ω = (C×)d(Ω)/W (Ω)

Ω+ = ˜(C×)d(Ω)/W (Ω)

and by [8, p. 217] we have Π(Ω) ' Ω+. It now follows that

HP∗(H(Ω)) ' H∗(Π(Ω);C)

¤

Lemma 3.2. Let Ω be a component in the variety Ω(G) and let Ω have exponents
{e1, . . . , er}. Then for j = 0, 1 we have

dimCHPj H(Ω) = 2r−1β(e1) · · · β(er)

where

β(e) =
∑

|λ|=e
2α(λ)−1

and where α(λ) is the number of unequal parts of λ. Here |λ| is the weight of
λ, i.e. the sum of the parts of λ so that λ is a partition of e.
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Proof. Suppose first that Ω has the single exponent e. By Theorem 3.1 the
periodic cyclic homology of H(Ω) is isomorphic to the periodised de Rham
cohomology of the extended quotient of (C×)e by the symmetric group Se. The
components in this extended quotient correspond to the partitions of e. In fact,
if α(λ) is the number of unequal parts in the partition λ then the corresponding
component is homotopy equivalent to the compact torus of dimension α(λ).
We now proceed by induction, using the fact that the extended quotient is
multiplicative and the Künneth formula. ¤

Theorem 3.1, combined with the calculation in [7], now leads to the next result.

Theorem 3.3. The inclusion H(G) −→ S(G) induces an isomorphism at the
level of periodic cyclic homology:

HP∗(H(G)) ' HP∗(S(G)).

Remark 3.4. We now consider further the disjoint union

Φ(Ω) = O(φ1) t · · · t O(φr) ' Ω+

If we apply the local Langlands correspondence πF then we obtain

Π(Ω) = πF (O(φ1)) t · · · t πF (O(φr)) ' Ω+

This partition of Π(Ω) is identical to that in Schneider-Zink [34, p. 198], modulo
notational differences. In their notation, for each P ∈ B there is a natural map

QP : Xnr(NP)→ Irr(Ω)

such that

Irr(Ω) =
⊔

P∈B

im(QP).

In fact this is a special stratification of Irr(Ω) in the precise sense of their article
[34, p.198].
Let

ZP =
⋃

P′≤P

im(QP)

Then ZP is a Jacobson closed set, in fact ZP = V (JP), where JP is a certain
2-sided ideal [34, p.198]. We note that the set ZP is also closed in the topology
of the present article: each component in Ω+ is equipped with the classical
(analytic) topology.
Issues of stratification play a dominant role in [34]. The stratification of the
tempered dual Πt(GL(n)) arises from their construction of tempered K-types,
see [34, p. 162, p. 189]. In the context of the present article, there is a natural
stratification-by-dimension as follows. Let 1 ≤ k ≤ n and define

k-stratum = {O(φ) | dimC O(φ) ≤ k}
If πF (O(φ)) is the complexification of the component Θ ⊂ Πt(G) then we have

dimRΘ = dimC O(φ).
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The partial order in [34] on the components Θ transfers to a partial order on
complex orbits O(φ). This partial order originates in the opposite of the natural
partial order on partitions, and the partitions manifest themselves in terms of
Langlands parameters. For example, let

φ = ρ⊗ spin(j1)⊕ · · · ⊕ ρ⊗ spin(jr)
φ′ = ρ⊗ spin(j′1)⊕ · · · ⊕ ρ⊗ spin(j′r)

Let λ1 = 2j1 + 1, . . . , λr = 2jr + 1, µ1 = 2j′1 + 1, . . . , µr = 2j′r + 1 and define
partitions as follows

λ = (λ1, . . . , λr), λ1 ≥ λ2 ≥ . . .
µ = (µ1, . . . , µr), µ1 ≥ µ2 ≥ . . .

The natural partial order on partitions is: λ ≤ µ if and only if

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi

for all i ≥ 1, see [28, p.6]. Let l(λ) be the length of λ, that is the number of
parts in λ. Then dimC O(φ) = l(λ). Let λ′, µ′ be the dual partitions as in [28].
Then we have [28, 1.11] λ ≥ µ if and only if µ′ ≥ λ′. Note that l(λ) = λ′1,
l(µ) = µ′1. Then

Θλ ≤ Θµ ⇔ λ ≥ µ⇔ µ′ ≥ λ′ ⇒ λ′1 ≤ µ′1
So if Θλ ≤ Θµ then dimRΘλ ≤ dimRΘµ, similarly O(φ) ≤ O(φ′) im-
plies dimC O(φ) ≤ dimC O(φ′). Stratification-by-dimension is finer than the
Schneider-Zink stratification [34].

Let now R denote the ring of all regular functions on Π(G). The ring R is a
commutative, reduced, unital ring over C which is not finitely generated. We
will call R the extended centre of G. It is natural to believe that the extended
centre R of G is the centre of an ‘extended category’ made from smooth G-
modules. The work of Schneider-Zink [34, p. 201] contains various results in
this direction.

4. The q-projection

Let Ω be a component in the Bernstein variety. This component is an ordinary

quotient D/Γ. We now consider the extended quotient D̃/Γ =
⊔
Dγ/Zγ , where

D is the complex torus C×m. Let γ be a permutation of n letters with cycle
type

γ = (1 . . . α1) · · · (1 . . . αr)
where α1 + · · ·+αr = m. On the fixed set Dγ the map πq, by definition, sends
the element (z1, . . . , z1, . . . , zr, . . . , zr) where zj is repeated αj times, 1 ≤ j ≤ r,
to the element

(q(α1−1)/2z1, . . . , q
(1−α1)/2z1, . . . , q

(αr−1)/2zr, . . . , q
(1−αr)/2zr)

The map πq induces a map from Dγ/Zγ to D/Γ, and so a map, still denoted πq,

from the extended quotient D̃/Γ to the ordinary quotient D/Γ. This creates a
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map πq from the extended Bernstein variety to the Bernstein variety:

πq : Ω+(G) −→ Ω(G).

Definition 4.1. The map πq is called the q-projection.

The q-projection πq occurs in the following commutative diagram [8]:

Φ(G) −−−−→ Π(G)

α

y
yinf. ch.

Ω+(G)
πq−−−−→ Ω(G)

Let A,B be commutative rings with A ⊂ B, 1 ∈ A. Then the element x ∈ B is
integral over A if there exist a1, . . . , an ∈ A such that

xn + a1x
n−1 + . . .+ an = 0.

Then B is integral over A if each x ∈ B is integral over A. Let X,Y be affine
varieties, f : X −→ Y a regular map such that f(X) is dense in Y . Then
the pull-back f# defines an isomorphic inclusion C[Y ] −→ C[X]. We view
C[Y ] as a subring of C[X] by means of f#. Then f is a finite map if C[X] is
integral over C[Y ], see [35]. This implies that the pre-image F−1(y) of each
point y ∈ Y is a finite set, and that, as y moves in Y , the points in F−1(y)
may merge together but not disappear. The map A1−{0} −→ A1 is the classic
example of a map which is not finite.

Lemma 4.2. Let X be a component in the extended variety Ω+(G). Then the
q-projection πq is a finite map from X onto its image πq(X).

Proof. Note that the fixed-point set Dγ is a complex torus of dimension r, that
πq(D

γ) is a torus of dimension r and that we have an isomorphism of affine
varieties Dγ ∼= πq(D

γ). Let X = Dγ/Zγ , Y = πq(D
γ)/Γ where Zγ is the Γ-

centralizer of γ. Now each of X and Y is a quotient of the variety Dγ by a finite
group, hence X,Y are affine varieties [35, p.31]. We have Dγ −→ X −→ Y
and C[Y ] −→ C[X] −→ C[Dγ ]. According to [35, p.61], C[Dγ ] is integral over
C[Y ] since Y = Dγ/Γ. Therefore the subring C[X] is integral over C[Y ]. So
the map πq : X −→ Y is finite. ¤

Example 4.3. GL(2). Let T be the diagonal subgroup of G = GL(2) and
let Ω be the component in Ω(G) containing the cuspidal pair (T, 1). Then
σ ∈ Π(GL(2)) is arithmetically unramified if inf.ch.σ ∈ Ω. If πF (φ) = σ then
φ is a 2-dimensional representation of LF and there are two possibilities:
φ is reducible, φ = ψ1 ⊕ ψ2 with ψ1, ψ2 unramified quasicharacters of WF . So

ψj(w) = z
d(w)
j , zj ∈ C×, j = 1, 2. We have πF (φ) = Q(ψ1, ψ2) where ψ1 does

not precede ψ2. In particular we obtain the 1-dimensional representations of
G as follows:

πF (| |1/2ψ ⊕ | |−1/2ψ) = Q(| |1/2ψ, | |−1/2ψ) = ψ ◦ det.
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φ is irreducible, φ = ψ ⊗ spin(1/2). Then πF (φ) = Q(∆) with ∆ =
{| |−1/2ψ, | |1/2ψ} so πF (φ) = ψ ⊗ St(2) where St(2) is the Steinberg rep-
resentation of GL(2).
The orbit of (T, 1) is D = (C×)2, and W (T,D) = Z/2Z. Then Ω ∼=
(C×)2/Z/2Z ∼= Sym2 C×. The extended quotient is Ω+ = Sym2 C× t C×.
The q−projection works as follows:

πq : {z1, z2} 7→ {z1, z2}

πq : z 7→ {q1/2z, q−1/2z}
where q is the cardinality of the residue field of F .

Let A = H(GL(2)//I) be the Iwahori-Hecke algebra of GL(2). This is a finite
type algebra. Following [21, p. 327], denote by Primn(A) ⊂ Prim(A) the set
of primitive ideals B ⊂ A which are kernels of irreducible representations of A
of dimension n. Set X1 = Prim1(A), X2 = Prim1(A) t Prim2(A) = Prim(A).
Then X1 and X2 are closed sets in Prim(A) defining an increasing filtration
of Prim(A). Now A is Morita equivalent to the Bernstein ideal H(Ω), and
Π(Ω) ' Prim(A).
Let φ1 = 1 ⊗ spin(1/2), φ2 = 1 ⊗ 1 ⊕ 1 ⊗ 1. The 1-dimensional represen-
tations of GL(2) determine 1-dimensional representations of H(G//I) and so
lie in X1. The L-parameters of the 1-dimensional representations of GL(2)
do not lie in the 1-dimensional orbit O(φ1): they lie in the 2-dimensional orbit
O(φ2). The Kazhdan-Nistor-Schneider stratification [21] does not coincide with
stratification-by-dimension.

Example 4.4. GL(3). In the above example, the q-projection is stratified-
injective, i.e. injective on each orbit type. This is not so in general, as shown
by the next example. Let T be the diagonal subgroup of GL(3) and let Ω be
the component containing the cuspidal pair (T, 1). Then Ω = Sym3 C× and

Ω+ = Sym3 C× t (C×)2 t C×

.
The map πq works as follows:

{z1, z2, z3} 7→ {z1, z2, z3}
(z, w,w) 7→ {z, q1/2w, q−1/2w}

(z, z, z) 7→ {qz, z, q−1z}.
Consider the L-parameter

φ = ψ1 ⊗ 1⊕ ψ2 ⊗ spin(1/2) ∈ Φ(GL(3)).

If ψ(w) = zd(w) then we will write ψ = z. With this understood, let

φ1 = q ⊗ 1⊕ q−1/2 ⊗ spin(1/2)

φ2 = q−1 ⊗ 1⊕ q1/2 ⊗ spin(1/2).
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Then α(φ1), α(φ2) are distinct points in the same stratum of the extended quo-
tient, but their image under the q-projection πq is the single point {q−1, 1, q} ∈
Sym3 C×.
Let

φ3 = 1⊗ spin(3/2)

φ4 = q−1 ⊗ 1⊕ 1⊗ 1⊕ q ⊗ 1.

Then the distinct L-parameters φ1, φ2, φ3, φ4 all have the same image under
the q-projection πq.

5. The diagram

In this section we create a diagram which incorporates several major results.
The following diagram serves as a framework for the whole article:

Ktop
∗ (G) K∗(C

∗
r (G))

H∗(G;βG) HP∗(H(G)) HP∗(S(G))

H∗c(Φ(G);C) H∗c(Π(G);C) H∗c(Π
t(G);C)

?
ch

-µ

?
ch

-ppppppp?
-ı∗

? ?
- -

The Baum-Connes assembly map µ is an isomorphism [1, 24]. The map

H∗(G;βG)→ HP∗(H(G))

is an isomorphism [20, 33]. The map ı∗ is an isomorphism by Theorem 3.3. The
right hand Chern character is constructed in [9] and is an isomorphism after
tensoring over Z with C [9, Theorem 3]. The Chern character on the left hand
side of the diagram is the unique map for which the top half of the diagram is
commutative.
In the diagram, H∗c(Π

t(G);C) denotes the (periodised) compactly supported de
Rham cohomology of the tempered dual Πt(G), and H∗c(Π(G);C) denotes the
(periodised) de Rham cohomology supported on finitely many components of
the smooth dual Π(G). The map

HP∗(S(G))→ H∗c(Π
t(G);C)

is constructed in [7] and is an isomorphism [7, Theorem 7].
The map

H∗c(Π(G);C)→ H∗c(Π
t(G);C)

is constructed in the following way. Given an L-parameter φ : LF → GL(n,C)
we have

φ = φ1 ⊕ . . .⊕ φm
with each φj an irreducible representation. We have φj = ρj ⊗ spin(j) where
each ρj is an irreducible representation of the Weil group WF . We shall assume
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that det ρj is a unitary character. Let O(φ) be the orbit of φ as in Definition
1.4. The map O(φ)→ Ot(φ) is now defined as follows

ψ1φ1 ⊕ . . .⊕ ψmφm 7→ |ψ1|−1 · ψ1φ1 ⊕ . . .⊕ |ψm|−1 · ψmφm.
This map is a deformation retraction of the complex orbit O(φ) onto the com-
pact orbit Ot(φ). Since Φ(G) is a disjoint union of such complex orbits this
formula determines, via the local Langlands correspondence for GL(n), a de-
formation retraction of Π(G) onto the tempered dual Πt(GL(n)), which implies
that the induced map on cohomology is an isomorphism.
The map

H∗c(Φ(G);C)→ H∗c(Π(G);C)

is an isomorphism, induced by the local Langlands correspondence πF .
The map

HP∗(H(G))→ H∗c(Π(G);C)

is an isomorphism by Theorem 3.1.
There is at present no direct definition of the map

H∗(G;βG)→ H∗c(Φ(G);C).

Suppose for the moment that F has characteristic 0 and has residue field of
characteristic p. An irreducible representation ρ of the Weil group WF is called
wildly ramified if dim ρ is a power of p and ρ 6' ρ ⊗ ψ for any unramified
quasicharacter ψ 6= 1 of WF . We write Φwrm (F ) for the set of equivalence
classes of such representations of dimension pm. An irreducible supercuspidal
representation π of GL(n) is wildly ramified if n is a power of p and π 6'
π⊗ (ψ ◦det) for any unramified quasicharacter ψ 6= 1 of F×. We write Πwr

m (F )
for the set of equivalence classes of such representations of GL(pm, F ). In this
case Bushnell-Henniart [10] construct, for each m, a canonical bijection

πF,m : Φwrm (F )→ Πwr
m (F ).

Now the maximal simple type (J, λ) of an irreducible supercuspidal representa-
tion determines an element in the chamber homology of the affine building [2,
6.7]. The construction of Bushnell-Henniart therefore determines a map from
a subspace of Heven

c (Φ(G);C) to a subspace of H0(G;βG).
In the context of the above diagram the Baum-Connes map has a geometric
counterpart: it is induced by the deformation retraction of Π(GL(n)) onto the
tempered dual Πt(GL(n)).

6. Supercuspidal representations of GL(n)

In this section we track the fate of supercuspidal representations of GL(n)
through the diagram constructed in the previous Section. Let ρ be an irre-
ducible n-dimensional complex representation of the Weil group WF such that
det ρ is a unitary character and let φ = ρ ⊗ 1. Then φ is the L-parameter for
a pre-unitary supercuspidal representation ω of GL(n). Let O(φ) be the orbit
of φ and Ot(φ) be the compact orbit of φ. Then O(φ) is a component in the

Documenta Mathematica 7 (2002) 91–112



Complex Structure 109

Bernstein variety isomorphic to C× and Ot(φ) is a component in the tempered
dual, isomorphic to T. The L-parameter φ now determines the following data.

6.1. Let (J, λ) be a maximal simple type for ω in the sense of Bushnell and
Kutzko [11, chapter 6]. Then J is a compact open subgroup of G and λ is a
smooth irreducible complex representation of J .
We will write

T = {ψ ⊗ ω : ψ ∈ Ψt(G)}
where Ψt(G) denotes the group of unramified unitary characters of G.

Theorem 6.1. Let K be a maximal compact subgroup of G containing J and
form the induced representation W = IndKJ (λ). We then have

`2(G×K W ) ' IndGK(W ) ' IndGJ (λ) '
∫

T
πdπ.

Proof. The supercuspidal representation ω contains λ and, modulo unramified
unitary twist, is the only irreducible unitary representation with this property
[11, 6.2.3]. Now the Ahn reciprocity theorem expresses IndGJ as a direct integral
[26, p.58]:

IndGJ (λ) =

∫
n(π, λ)πdπ

where dπ is Plancherel measure and n(π, λ) is the multiplicity of λ in π|J .
But the Hecke algebra of a maximal simple type is commutative (a Laurent
polynomial ring). Therefore ω|J contains λ with multiplicity 1 (thanks to C.
Bushnell for this remark). We then have n(ψ ⊗ ω, λ) = 1 for all ψ ∈ Ψt(G).
We note that Plancherel measure induces Haar measure on T, see [31].
The affine building of G is defined as follows [38, p. 49]:

βG = R× βSL(n)

where g ∈ G acts on the affine line R via t 7→ t + val(det(g)). Let G◦ =
{g ∈ G : val(det(g)) = 0}. We use the standard model for βSL(n) in terms of
equivalence classes of oF - lattices in the n-dimensional F -vector space V . Then
the vertices of βSL(n) are in bijection with the maximal compact subgroups
of G◦, see [32, 9.3]. Let P ∈ βG be the vertex for which the isotropy subgroup
is K = GL(n,oF ). Then the G-orbit of P is the set of all vertices in βG
and the discrete space G/K can be identified with the set of vertices in the
affine building βG. Now the base space of the associated vector bundle G×K
W is the discrete coset space G/K, and the Hilbert space of `2-sections of
this homogeneous vector bundle is a realization of the induced representation
IndGK(W ). ¤
The C0(βG)-module structure is defined as follows. Let f ∈ C0(βG), s ∈
`2(G×K W ) and define

(fs)(v) = f(v)s(v)

for each vertex v ∈ βG. We proceed to construct a K-cycle in degree 0. This
K-cycle is

(C0(βG), `2(G×K W )⊕ 0, 0)
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interpreted as a Z/2Z-graded module. This triple satisfies the properties of a

(pre)-Fredholm module [14, IV] and so creates an element in K top
0 (G). By The-

orem 5.1 this generator creates a free C(T)-module of rank 1, and so provides
a generator in K0(C∗r (G)).

6.2. The Hecke algebra of the maximal simple type (J, λ) is commutative (the
Laurent polynomials in one complex variable). The periodic cyclic homology
of this algebra is generated by 1 in degree zero and dz/z in degree 1.
The corresponding summand of the Schwartz algebra S(G) is Morita equiva-
lent to the Fréchet algebra C∞(T). By an elementary application of Connes’
theorem [14, Theorem 2, p. 208], the periodic cyclic homology of this Fréchet
algebra is generated by 1 in degree 0 and dθ in degree 1.

6.3. The corresponding component in the Bernstein variety is a copy of C×.
The cohomology of C× is generated by 1 in degree 0 and dθ in degree 1.
The corresponding component in the tempered dual is the circle T. The coho-
mology of T is generated by 1 in degree 0 and dθ in degree 1.
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