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114 Victor Reiner

(a) (b)

Figure 1. The 3-dimensional associahedron, containing the
2-dimensional cyclohedron as a planar slice.

1. Introduction

Much of this paper is motivated by a new relationship between two families
of convex polytopes which have appeared in diverse places within topology,
geometry, and combinatorics [4, 10, 12, 13, 16]: the associahedra (or Stasheff
polytopes), and the cyclohedra (or type B associahedra).
There is already a well-known relation between these two families: any face in
a cyclohedron is combinatorially isomorphic to a Cartesian product of a lower-
dimensional cyclohedron along with a collection of lower-dimensional associa-
hedra [16, §3.3], [6, Proposition 3.2.1]. Our point of departure is a different
relationship, illustrated in Figure 1. The 3-dimensional associahedron is de-
picted in Figure 1(a), with its vertices indexed by triangulations of a (centrally
symmetric) hexagon. Figure 1(b) shows inside it a hexagonal slice representing
the 2-dimensional cyclohedron, with vertices indexed by the subset of triangu-
lations possessing central symmetry – this slice is the invariant subpolytope for
a reflection symmetry acting on the associahedron, which swaps two vertices if
they correspond to triangulations that differ by 180◦ rotation.
Our main result (Theorem 2.10) asserts a similar relationship generally when
one considers subdivisions of a polytope which are invariant under some finite
group of symmetries. The theory of fiber polytopes introduced by Billera and
Sturmfels [1] shows that whenever one has a linear surjection of convex poly-

topes P
π→ Q, there is an associated convex polytope Σ(P

π→ Q), called the
fiber polytope. This fiber polytope has dimension dim P − dim Q, and its faces
correspond (roughly) to the subdivisions of Q by cells which are projections

of families of faces of P . Our result says that when the projection P
π→ Q

is G-equivariant for some finite group G acting as symmetries on both P and

Q, then G acts as a group of symmetries on Σ(P
π→ Q), and the G-invariant
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Equivariant Fiber Polytopes 115

subpolytope ΣG(P
π→ Q) (the equivariant fiber polytope) is a polytope of di-

mension dim PG−dim QG whose faces correspond to those subdivisions which
are G-invariant.
The paper is structured as follows. Section 2 proves the main results, with
Subsection 2.1 containing the technical details needed to generalize fiber poly-
topes to the equivariant setting. Theorem 2.10 on the existence and dimension
of the equivariant fiber polytope is deduced in Subsection 2.2. The special case
of equivariant secondary polytopes is discussed in Subsection 2.3.
Section 3 contains some low-dimensional examples that are easily visualized,
while Section 4 gives some general examples as applications. In particular,
Example 4.1 explains the above relation between associahedra and cyclohedra,
and Example 4.2 explains how the type B permutohedron (that is, the zono-
tope generated by the root system of type B) occurs as an equivariant fiber
polytope. In Section 4.3 we answer a question of R. Simion, by exhibiting a
family of natural maps between the face lattices of the Bn-permutohedron and
n-dimensional cyclohedron.
Section 5 lists some remarks and open questions.

2. Equivariant polytope bundles

2.1. Group actions on polytope bundles. For convenience, we work with
the same notation as in [1, §1] in working out the equivariant versions of the
same results.
Let B → Q be a polytope bundle, that is, Q is a convex polytope in Rd, and
for each x in Q, the set Bx is a convex polytope in Rn, such that the graph⋃{Bx×x : x ∈ Q} is a bounded Borel subset of Rn+d. We further assume that
we have a finite group G acting linearly on both Rd and Rn.

Definition 2.1. Say that B → Q is a G-equivariant polytope bundle if

• G acts as symmetries of Q, i.e. g(Q) = Q for all g in G. In particular,
without loss of generality, the centroid of Q is the origin 0.

• for every x in Q and g in G one has Bg(x) = g(Bx).

Alternatively, equivariance of a polytope bundle is equivalent to G-invariance of
Q, along with G-invariance of B with respect to a natural G-action on polytope
bundles: given B → Q and g in G, let g(B → Q) be the polytope bundle defined
by g(B → Q)x := g(Bg−1x).
The linear action of G on Rn induces a contragredient action on the dual space
(Rn)∗ of functionals: g(ψ)(x) := ψ(g−1(x)) for g ∈ G, y ∈ Rn, ψ ∈ (Rn)∗.
A section γ of B → Q is a choice of γ(x) ∈ Bx for each x. If B → Q is
equivariant, there is a G-action on sections defined by g(γ)(x) := gγ(g−1x).
For any of these G-actions, define the averaging (or Reynolds) operator

πG =
1

|G|
∑

g∈G
g

which is an idempotent projector onto the subset (or subspace) of G-invariants,
e.g. π maps Rn → (Rn)G and maps (Rn)∗ → ((Rn)∗)G.

Documenta Mathematica 7 (2002) 113–132



116 Victor Reiner

It turns out that much of the reason that fiber polytopes interact well with
finite group actions boils down to πG being a linear operator which is a convex
combination of the group operations g in G.

Recall that for a polytope bundle B → Q, the Minkowski integral
∫
Q
B is the

subset of Rn consisting of all integrals
∫
Q
γ of measurable sections γ, and that

this is a non-empty compact, convex subset of Rn.

Proposition 2.2. Integration commutes with the G-action on sections of a
G-equivariant polytope bundle B → Q:

∫

Q

gγ = g

(∫

Q

γ

)

for all g in G.

Proof. ∫

Q

gγ =

∫

Q

g(γ(g−1x))dx

= g

(∫

Q

γ(g−1x)dx

)

= g

(∫

Q

γ(u)du

)

Here the second equality uses linearity of g and linearity of integration. The
third equality comes from the change of variable x = g(u), using the fact that
the Jacobian determinant for this change of variable is det(g), which must be
±1, since g is an element of finite order in GL(Rn). ¤

Corollary 2.3. For any G-equvariant polytope bundle B → Q, the group G
acts on the convex set

∫
Q
B.

Furthermore, one has

(2.1)

(∫

Q

B
)G

:=

(∫

Q

B
)
∩ (Rn)G

= πG

(∫

Q

B
)

=

{∫

Q

γ : G-equivariant, measurable sections γ

}
,

Proof. Proposition 2.2 implies the first assertion.
For the second equality in (2.1), we claim more generally that

C ∩ (Rn)G = πG(C)

for any convex G-invariant subset C ⊂ Rn. To see this, note that the left-hand
side is contained in the right because of idempotence of πG. The right-hand
side is obviously contained in (Rn)G. It also lies in C since for any x in C, the
convex combination πG(x) = 1

|G|
∑
g∈G g(x) will also lie in C.
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Equivariant Fiber Polytopes 117

For the third equality in (2.1), note that the right-hand side is contained in the
left since the integral

∫
Q
γ of any G-equivariant section will be a G-invariant

point of Rn by Proposition 2.2. Conversely, a typical point on the left-hand
side is

∫
Q
γ where γ is a section such that g(

∫
Q
γ) =

∫
Q
γ for all g ∈ G, and

one can check using Proposition 2.2 that the G-equivariant section πGγ has the
same integral: ∫

Q

πGγ =
1

|G|
∑

g∈G

∫

Q

gγ

=
1

|G|
∑

g∈G
g

(∫

Q

γ

)

=

∫

Q

γ

¤

We wish to interpret faces of
(∫

Q
B
)G

in terms of face bundles. Recall that a

face bundle F → Q of B → Q is a polytope bundle in which Fx is a face of Bx
for every x in Q. A coherent face bundle of B → Q is one of the form Bψ → Q
having Bψx := (Bx)ψ, where ψ ∈ (Rn)∗ is any linear functional and Pψ denotes
the face of P on which the functional ψ is maximized.
When B → Q is G-equivariant, the G-action on bundles restricts to a G-action
on face bundles, and as before, a face bundle is G-equivariant if and only if it is
invariant under theG-action. The next proposition points out the compatibility
between the G-action on face bundles and the G-action on functionals.

Proposition 2.4. For any G-equivariant polytope bundle B → Q and any
functional g in (Rn)∗, the face bundle Bgψ → Q coincides with the bundle
g(Bψ → Q).
Consequently, Bψ is a G-equivariant (coherent) face bundle if and only if Bψ =
BπGψ.

Proof. For the first assertion, we compute

g(Bψ → Q)x := g(Bψg−1x)

= g({y ∈ Bg−1x : ψ(y) is maximized})
= {y′ ∈ gBg−1x : ψ(g−1y′) is maximized})
= {y′ ∈ Bx : g(ψ)(y′) is maximized})
= Bgψx .

For the second, note that

Bψ is G-equivariant⇔ g(Bψ) = Bψ ∀g ∈ G
⇔ Bgψx = Bψx ∀g ∈ G, x ∈ Q
⇔ BπGψx = Bψx ∀x ∈ Q
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118 Victor Reiner

where the last equality uses the fact that if for every g in G the functional gψ
maximizes on the same face of the polytope Bx, then the convex combination
πGψ will also maximize on this face. ¤

We recall also these key results from [1].

Proposition 2.5. [1, Prop. 1.2]. The Minkowski integral commutes with
taking faces (face bundles) in the following sense

(∫

Q

B
)ψ

=

∫

Q

Bψ ∀ψ ∈ (Rn)∗. ¤

Theorem 2.6. [1, Thm. 1.3, Cor. 1.4] If B → Q is piecewise-linear, then∫
Q
B is a convex polytope. Furthermore, the map Bψ 7→

∫
Q
Bψ induces an

isomorphism from its face lattice to the poset of coherent face bundles of B → Q
ordered by inclusion. ¤

Here is the equivariant generalization.

Theorem 2.7. Let B → Q be any G-equivariant piecewise-linear polytope bun-

dle. Then
(∫

Q
B
)G

is a convex polytope whose face lattice is isomorphic to the

poset of G-equivariant coherent face bundles of B → Q ordered by inclusion.

Proof. We use the following well-known fact about face lattices of affine images
of polytopes:

Lemma 2.8. [1, Lemma 2.2] For any affine surjection of polytopes P̂
f→ P , the

map sending a face F of P to the face f−1(F ) of P̂ embeds the face lattice of

P as the subposet of faces of P̂ of the form Pψ◦f for some ψ in (Rn)∗. ¤

Applying this lemma to the surjection
∫
Q
B πg→ (

∫
Q
B)G, we conclude that

(
∫
Q
B)G has face poset isomorphic to the subposet of faces of

∫
Q
B consisting

of all faces of the form
(∫

Q

B
)ψ◦πG

for ψ ∈ (Rn)∗

=

(∫

Q

B
)πGψ

for ψ ∈ (Rn)∗

=

∫

Q

BπGψ for ψ ∈ (Rn)∗

where the last equality uses Proposition 2.5. By Proposition 2.4, the set of
faces

∫
Q
BπGψ of

∫
Q
B for ψ ∈ (Rn)∗ is exactly the same as the subset of faces∫

Q
Bψ for ψ ∈ (Rn)∗ with Bψ → Q being G-equivariant. By Theorem 2.6, the

inclusion order on these faces is the same as the inclusion order on the set of
G-equivariant coherent face bundles of B → Q. ¤
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Equivariant Fiber Polytopes 119

2.2. Equivariant fiber polytopes. We apply Theorem 2.7 to the situation
of a G-equivariant projection of polytopes.

Let P
π→ Q be a linear surjection of convex polytopes, with

P ⊂ Rn, dim (P ) = n

Q ⊂ Rd, dim (Q) = n

Recall from [1] that this gives rise to a polytope bundle B → Q via x 7→ Bx :=
π−1(x), and in this setting, the fiber polytope defined by

Σ(P
π→ Q) :=

∫

Q

B.

is a full (n−d)-dimensional polytope living in the fiber kerπ of the map π over
the centroid of Q.
For the equivariant set-up, we further assume that G is a finite group with
linear G-actions on Rn and Rd which have G acting as symmetries of P,Q, and
also that π is G-equivariant: g(π(y)) = π(g(y)) for all y ∈ Rn. In particular,
this implies that P,Q both have centroids at the origin. It is then easy to check
that B → Q defined as above is G-equivariant.

Definition 2.9. Define the equivariant fiber polytope by

ΣG(P
π→ Q) :=

1

vol(Q)

(∫

Q

B
)G

= πGΣ(P
π→ Q).

Theorem 2.10. The equivariant fiber polytope ΣG(P
π→ Q) is a full-

dimensional polytope inside dim ker(π) ∩ (Rn)G, and therefore has the same
dimension as this space, namely

dim (Rn)G − dim (Rd)G

(=dim PG − dim QG).

Its face lattice is isomorphic to the poset of all G-equivariant π-coherent sub-
divisions of Q ordered by refinement.

Proof. If R is any full-dimensional polytope in Rr containing the origin in its
interior, then its intersection R ∩ V with any linear subspace V has dim (R ∩
V ) = dim V . Since ΣG(P

π→ Q) = Σ(P
π→ Q) ∩ (Rn)G, this proves the first

assertion.
To see that dim ker(π) ∩ (Rn)G = dim (Rn)G − dim (Rd)G, note that

(Rn)G/(ker(π) ∩ (Rn)G) ∼= (Rd)G

since G-equivariance of π implies that the surjection Rn π→ Rd restricts to a

surjection (Rn)G
π→ (Rd)G.

The last assertion comes from the interpretation of coherent face bundles of
B → Q as π-coherent subdivisions, just as in [1, Thm 1.3]. ¤
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120 Victor Reiner

Recall that the fiber polytope Σ(P
π→ Q) has an expression [1, Thm 1.5] as a

finite Minkowski sum

Σ(P
π→ Q) =

∑

i

vol(σi)

vol(Q)
π−1(xi).

where the xi are the centroids of the chambers (maximal cells) σi in the cell
decomposition of Q induced by the projection of faces of P . From this one

immediately deduces a similar expression for ΣG(P
π→ Q) by applying the

averaging operator πG:

ΣG(P
π→ Q) =

∑

i

vol(σi)

vol(Q)
πG(π−1(xi))

Similarly, one can obtain a (redundant) set of vertex coordinates for ΣG(P
π→

Q) by applying πG to the vertex coordinates for Σ(P
π→ Q) given in [1, Cor 2.6].

On the other hand, identifying an irredundant subset of these vertices is not

so simple. One might expect that vertices of ΣG(P
π→ Q) correspond to tight

G-invariant π-coherent subdivisions (see [1, §2] for the definition of tightness).
However, Example 3.1 below shows that this is not the case. Rather, vertices

of ΣG(P
π→ Q) correspond to G-invariant π-coherent subdivisions satisfying

the weaker condition that they cannot be further refined while retaining both
G-invariance and π-coherence.

2.3. Equivariant secondary polytopes. We specialize Theorem 2.10 to
the situation where P is an (n− 1)-dimensional simplex.
Let A := {a1, . . . , an} be the images of the vertices of P under the map π, so
that Q = π(P ) is the convex hull of the point set A, a d-dimensional polytope
in Rd. Note that not every point in A need be a vertex of Q, but we assume
that the group G of symmetries acting linearly on Rd not only preserves Q,
but also the set A, i.e. gA = A for all g ∈ G. There is a well-defined notion
of a polytopal subdivision of A, and when such subdivisions are coherent (or
regular); see [1, §1], [8, Chap. 7]. Say that such a subdivision is G-invariant if
G permutes the polytopal cells occurring in the subdivision, taking into account
the labelling of cells by elements of A.
We may assume without loss of generality (e.g. by choosing P to be a regular
(n − 1)-simplex, that there is a linear G-action on Rn−1 which permutes the
vertices of P in the same way that G permutes A. In this setting, define the
equivariant secondary polytope

ΣG(A) := ΣG(P
π→ Q).

Let A/G denote the set of G-orbits of points in A.

Corollary 2.11. ΣG(A) is an (|A/G|−dim (Rd)G−1)-dimensional polytope,
whose face lattice is isomorphic to the poset of all G-invariant coherent polytopal
subdivisions of Q ordered by refinement.
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Equivariant Fiber Polytopes 121

(c) (d)

(a) (b)

Figure 2. Equivariant secondary polytopes for subgroups G
of the dihedral group D6 acting on the point configuration A
shown in (a).
(b) G = 1. (c) G = C2. (d) G = C3 or D6.

Proof. Immediate from Theorem 2.10, once one notes that

dim (Rn−1)G = |A/G| − 1

and that G-invariance and coherence of a polytopal subdivision correspond to

G-equivariance and π-coherence with respect to the map P
π→ Q. ¤

3. Small, visualizable examples

3.1. The standard example. There is a classic example of a configuration A
of 6 points in the plane R2, depicted at the top of Figure 2(a), which has up to
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122 Victor Reiner

two incoherent triangulations (shown below it), depending on the exact coordi-
nates of its 6 points. If we choose coordinates so that A has the dihedral group
D6 as symmetries, then both of the triangulations shown in Figure 2(a) are
incoherent, and hence do not correspond to vertices of the secondary polytope
Σ(A) := Σ1(A) depicted in (b) of the same figure1 The only non-trivial proper
subgroups of D6 up to conjugacy are C2 generated by a reflection symmetry,
and C3 generated by a three-fold rotation. Figures 2(c), (d) respectively depict
as slices of Σ(A) the equivariant secondary polytopes ΣC2(A) (a pentagon) and
ΣC3(A)(= ΣD6(A) (a line segment) respectively. In both cases, the G-invariant
coherent triangulations labelling their vertices are shown.
If instead we slightly perturb the coordinates of the three interior points of A,
so that the D6-symmetry is destroyed, but still maintaining the C3-symmetry,
then something interesting happens in both Σ(A) and ΣC3(A). One of the
two incoherent triangulations depicted in Figure 2(a) becomes coherent, and
corresponds to a vertex which subdivides the “front” hexagon of Σ(A) in (b)
into 3 quadrangles. This new vertex also lies on the 1-dimensional slice ΣC3(A),
replacing one of its old endpoints.
Note that in Figure 2, some of the subdivisions labelling the vertices of ΣG(A)
are not triangulations, that is, they are not tight π-coherent subdivisions of Q.

3.2. Triangulations of a regular hexagon. Consider the vertex set A
of a regular hexagon. Its symmetry group is the dihedral group

D12 = 〈s, r : s2 = r3 = 1, srs = r−1〉
where s is any reflection symmetry, and r is a rotation through π

3 . In what
follows, we will assume for the sake of definiteness that s is chosen in the
conjugacy class of reflections whose reflection line passes through two vertices
of the hexagon.
A list of representatives of the subgroups G of D12 up to conjugacy is given in
the table below, along with the calculation of the dimension of the equivariant
secondary polytope ΣG(A) in each case.

G dim (Rn)G dim (Rd)G dim ΣG(A)
(= |A/G| − 1) (= dim (Rn)G − dim (Rd)G)

1 5 2 3
〈s〉 3 1 2
〈r3〉 2 0 2
〈sr〉 2 1 1
〈r2〉 1 0 1
〈r〉 0 0 0
〈s, r3〉 1 1 0

〈s, r〉(= D12) 0 0 0

1For an on-line manipulable version of this secondary polytope, see Electronic Geometry
Model No. 2000.09.033 at http://www.eg-models.de.
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Equivariant Fiber Polytopes 123

(a) (b)

(c)
Figure 3. Equivariant secondary polytopes ΣG(A) for sub-
groups G of the dihedral group D12 acting on the set A of
vertices of a regular hexagon.
(a) G = 〈s〉. (b) G = 〈sr〉. (c) G = 〈r2〉.
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Depictions of these ΣG(A) as a slice of the 3-dimensional associahedron, in all
the non-trivial cases where it has dimension at least 1, appear in Figures 1 and
3.

4. Application examples.

4.1. Cyclohedra and associahedra. The case G = 〈r3〉 in the previous
example was discussed in the Introduction, and is a special case of a new
construction for the cyclohedron.
The cyclohedron was introduced by Bott and Taubes [4], rediscovered inde-
pendently and called the type B associahedron by Simion [16], and has been
studied by several other authors [6, 7, 13]. The n-dimensonal cyclohedron can
be thought of as the unique regular cell complex whose faces are indexed by
centrally symmetric subdivisions of a centrally symmetric 2n-gon. A proof that
this cell complex is realized by a convex polytope appears in [13] and in [16, §2],
and proceeds by a sequence of shavings (or blow-ups) of faces of an n-simplex,
similar to the construction of the associahedron in [12].
Simion provided one of the original motivations for our work by asking whether
a polytopal realization could be given along the lines of the fiber polytope
construction. An answer is that it can be achieved as the equivariant secondary
polytope ΣC2(A), whereA is the set of vertices of a centrally-symmetric 2n-gon,
on which C2 acts antipodally. In other words, one has the following proposition.

Proposition 4.1. The (n − 1)-dimensional cyclohedron embeds naturally in
the (2n− 3)-dimensional associahedron, namely as the inclusion

ΣC2(A) ↪→ Σ(A)

where A is the set of vertices of a centrally symmetric 2n-gon. ¤
It turns out that all equivariant secondary polytopes for a regular polygon are
either associahedra or cyclohedra.

Proposition 4.2. Let A be the vertex set of a regular n-gon, and G a non-
trivial subgroup of its dihedral symmetry group D2n.
Then the combinatorial type of the equivariant secondary polytope ΣG(A) is
either that of an associahedron or cyclohedron, depending upon whether G con-
tains reflections or not (that is, whether G is dihedral or cyclic).

Proof. Assume G contains some reflections, so G ∼= D2m for some m dividing
n. Choose a fundamental domain for the action of G on the regular n-gon Qn
consisting of a sector between two adjacent reflection lines. Label the vertices
in A which lie in this (closed) sector consecutively as v1, . . . , vr (here r is
approximately n

2m , but its exact value depends upon which conjugacy classes
of reflections in D2m are represented among the reflections in G).
The assertion then follows from the claim that there is an isomorphism be-
tween the poset of G-invariant polygonal subdivisions of Qn and the poset
of all polygonal subdivisions of an (r + 1)-gon Qr+1 labelled with vertices
w1, w2, w3, . . . , wr, w: the isomorphism sends a G-invariant subdivision σ of
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Qn to the unique subdivision τ of Qr+1 having an edge connecting wi, wj if
and only if vi, vj are connected by an edge in in σ, and with an edge between
wi, w if and only if σ has vi connected by an edge to some vertex of A outside
the fundamental sector. The fact that this map is a bijection requires some
straightforward geometric argumentation, which we omit. However, once one
knows that it is a bijection, it is easy to see that both it and its inverse are
order-preserving, since the refinement partial order on subdivisions of a polygon
can be defined by the inclusion ordering of their edge sets.
Now assume G contains only rotations, so G ∼= Cm for some m dividing n, and
let k = n

m . Label the vertices of Qn consecutively in m groups of size k by

11, 21, . . . , k1, 12, 22, . . . , k2, . . . 1m, 2m, . . . , km.

Note that any Cm-invariant subdivision of Qn is completely determined
by the set of interior edges connecting vertices in the first two groups
11, 21, . . . , k1, 12, 22, . . . , k2. This leads to an isomorphism between the poset of
G-invariant polygonal subdivisions of Qn and the poset of centrally symmetric
polygonal subdivisions of a centrally symmetric 2k-gon Q2k: label the vertices
of Q2k using the same scheme, and send a G-invariant subdivision σ of Qn to
the unique subdivision τ of Q2k whose interior diagonals have exactly the same
endpoint labels as the interior diagonals of σ involving vertices in the first two
groups in Q2n. Again we omit the straightforward geometric details involved
in checking that this is a bijection. ¤

4.2. The type B permutohedron. Given any finite reflection group W ,
form the zonotope which is the Minkowski sum of any collection of line segments
which contains exactly one line segment perpendicular to each of the reflecting
hyperplanes for a reflection in W . Call this zonotope the W -permutohedron.
It is known that the vertices of this zonotope are indexed by the elements of
W , and its 1-skeleton is isomorphic to the (undirected) Cayley graph for W
with respect to a natural set of Coxeter generators. Explicit descriptions of the
facial structure of W -permutohedra when W is one of the classical reflection
groups of type A,B(= C), or D may be found in [14].
In the case where W = An−1 is the symmetric group on n letters, the An−1-
permutohedron is usually known simply as the permutohedron. It can be con-

structed [1, Example 5.4] as the equivariant fiber polytope Σ(P
π→ Q) where

P = [0, 1]n is the unit n-cube, π : Rn → R1 is the linear map sending ei 7→ 1 for
each standard basis vector ei, and Q is the line segment [0, n] = π(P ). This is a
special case of a monotone path polytope [1, §5]: the vertices correspond to edge
paths in the n-cube P which are monotone with respect to the functional π. In
this case there is an obvious bijection between such paths and permutations of
{1, 2 . . . , n}; one simply reads off the parallelism class of the edges in the edge
paths.
In the case where W = Bn, something similar works using the equivariant
fiber polytope construction. Let P be the unit 2n-cube in R2n with standard
basis vectors labelled {e+i, e−i : i = 1, 2 . . . , n}. Consider the linear map
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π : R2n → R1 sending e±i 7→ ±1, and let Q = π(P ) = [−n, n]. Let the
generator of the group C2 of order 2 act on R2n by swapping e+i, e−i, and let
it act on R1 by −1. Then C2 acts as symmetries of both P,Q, and the map π
is C2-equivariant. It is then straightforward to check that the equivariant fiber

polytope ΣC2(P
π→ Q) is combinatorially isomorphic to the Bn-permutohedron.

Its vertices correspond to the C2-invariant monotone edge paths in the 2n-cube
P , which biject with signed permutations again by reading off the parallelism
class of the edges in the edge path.

4.3. Maps from the type B permutohedron to the cyclohedron.
There is a well-known set-map from the symmetric group Sn+1 to triangula-
tions of a convex (n + 2)-gon, or to equivalent objects such as binary trees -
see [18], [3, §9], [17, §1.3]. This map has several pleasant properties, includ-
ing the fact that it extends to a map from faces of the An-permutohedron
to faces of the n-dimensional associahedron. Simion [16, §4.2] asked whether
there is an analogous map between the Bn-permutohedron and n-dimensional
cyclohedron.
In fact, there is a whole family of such maps. To explain this, we first further
explicate [3, Remark 9.14] on how to view the map in type A as a consequence
of some theory of iterated fiber polytopes [2].

Given any tower P
π→ Q

ρ→ R of linear surjections of polytopes, it turns out

that π restricts to a surjection Σ(P
ρ◦π→ R)

π→ Σ(Q
ρ→ R) and so one can form

the iterated fiber polytope

Σ(P
π→ Q

ρ→ R) := Σ
(

Σ(P
ρ◦π→ R)

π→ Σ(Q
ρ→ R)

)
.

Both Σ(P
π→ Q

ρ→ R) and Σ(P
π→ Q) live in the vector space ker(π), and

[2, Theorem 2.1] says that the normal fan of Σ(P
π→ Q

ρ→ R) refines that

of Σ(P
π→ Q) (or equivalently, the latter is a Minkowski summand of the

former). This implies the existence of an order-preserving map from faces of

Σ(P
π→ Q

ρ→ R) to faces of Σ(P
π→ Q), corresponding to the map on their

normal cones which sends a cone in the finer fan to the unique cone containing
it in the coarser fan.
We apply this to the tower of projections

∆n+1 π→ Qn+2
ρ→ I

in which ∆n+1 is an (n+1)-dimensional simplex whose vertices map canonically
to the vertices of a convex (n + 2)-gon Qn+2, which then projects onto a 1-

dimensional interval I. In [2, §4] it is shown that Σ(∆n+1 ρ◦π→ I) and Σ(∆n+1 π→
Qn+2

ρ→ I), are combinatorially isomorphic (but not affinely equivalent) to

the n-cube and to the An−1-permutohedron, respectively. Since Σ(∆n+1 π→
Qn+2) is the (n− 1)-dimensional associahedron, in this case the above general
theory gives a map from the faces of the permutohedron to the faces of the
associahedron, which can be checked to coincide with the usual one.
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π

ρ
I

5

Q
6 −3

+1 +2

+3

−1
−2

(a) (b)

+1 +2 −2 −1

+1−2+2−1

−2+1−1+2

−1−2+2+1

−1−2+2+1

+2−1+1−2

+2+1−1−2

−2−1+1+2

Figure 4. (a) The tower of projections (4.1) for n = 2
(the 5-simplex ∆5 is shown only in a 2-dimensional projec-
tion). (b) One of the 4(= 22) maps from vertices of the B2-
permutohedron to vertices of the 2-dimensional cyclohedron.
The B2-permutohedron is shown with vertices labelled both by
a signed permutation and by the centrally-symmetric hexagon
triangulation which is their image under the map.

Now suppose we instead apply this theory to the following tower of C2-
equivariant projections

(4.1) ∆2n+1 π→ Q2n+2
ρ→ I

in which Q2n+2 is a centrally-symmetric (2n + 2)-gon, ∆2n+1 is a (2n + 1)-
dimensional (regular) simplex, and I is an interval. We assume that the vertices
of Q2n+2 are labelled in cyclic order as

+1,+2, . . . ,+(n+ 1),−1,−2, . . . ,−(n+ 1)

and that the C2-actions on ∆2n+1, Q2n+2, I are chosen so that the projections
are equivariant, i.e. C2 swaps the two vertices of I, and exchanges the pairs
of vertices of ∆2n+1 which map to the vertices labelled +i,−i of Q2n+2. We
further assume that the map ρ is generic in the sense that it takes on distinct
values on the different vertices of Q2n+2, and hence gives a linear ordering of
these vertices, which we will assume orders the vertices labelled −(n+1),+(n+
1) first and last, respectively. The map we eventually define will depend on
this ordering.
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Note that Σ(∆2n+1 ρ◦π→ I) will still be a combinatorial 2n-cube, and by Corol-
lary 2.3, it will carry a C2-action that makes the map π onto the interval

Σ(Q2n+2 ρ→ I) equivariant. We still have from [2, §4], that the iterated fiber

polytope Σ(∆2n+1 π→ Q2n+2
ρ→ I) is combinatorially an A2n−1-permutohedron,

and by Corollary 2.3 will carry a C2-action. With some work, for which we
omit the details, one can check that the C2-action on faces corresponds to the
same C2-action as in Example 4.2. Hence C2-invariant faces under this action
are identified with the faces of the Bn-permutohedron, so that the C2-invariant

subpolytope ΣC2(∆2n+1 π→ Q2n+2
ρ→ I) is combinatorially isomorphic to the

Bn-permutohedron.

On the other hand, ΣC2(∆2n+1 π→ Q2n+2) is the n-dimensional cyclohedron,

by Example 4.1. Since the normal fan of ΣG(P
π→ Q

ρ→ R) refines that of

ΣG(P
π→ Q) (by restricting this refinement of fans from the non-equivariant

setting to the invariant subspace (Rn)G), we obtain the existence of an order-
preserving map between their face lattices as desired.
To be explicit about this map and its dependence on the ordering of the ver-
tices of Q2n+2 by ρ, it suffices to describe its effect on vertices. A vertex of the
n-dimensional permutohedron is indexed by a signed permutation, that is a se-
quence w = w1w2 . . . wn where wi ∈ {±1, . . . ,±n} containing exactly one value
from each pair ±i. To obtain a centrally-symmetric triangulation of Q2n+2 from
w, we associate to w a sequence of 2n + 1 polygonal paths γ0, γ1, . . . , γ2n vis-
iting only vertices of Q2n+2, and let the triangulation be the one whose edges

are the union of these paths. Each γi is a section of the map Q2n+2
ρ→ I, and

hence completely specified by the set of vertices of Q2n+2 it visits (although
this implicitly requires knowledge of the fixed ordering of vertices of Q2n+2 by
ρ). Set γ0 to be the path visiting vertices −(n+1),+1,+2, . . . ,+(n+1), that is,
γ0 is half of the boundary of the polygon Q2n+2. Then inductively define γi to
be the unique path obtained from γi−1 by reading the ith value in the sequence
ŵ := w1w2 . . . wn − wn . . . − w2 − w1 and either removing this value from the
list of visited vertices when it is positive, or adding it when it is negative. Note
that the palindromic nature of ŵ insures that the associated triangulation is
centrally symmetric. Some examples of the map are shown in Figure 4.
How many maps have we defined in this way? The map depends only the
ordering of the vertices of Q2n+2 by ρ. Any such ordering starts and ends with
−(n + 1),+(n + 1), and in between is a shuffle of the usual integer order on
the positive vertices +1, . . . ,+n with the usual order on the negative vertices.
Since Q2n+2 is centrally-symmetric and ρ is linear, the order is determined by
knowing its first half. Hence it can be parametrized by the set S ⊂ {1, 2, . . . , n}
giving the positions in the first half of the order where the negative vertices
occur. This means there are 2n such maps.
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5. Remarks/Questions

Remark 5.1. One might expect a relation between

Σ(PG
π→ QG)

ΣG(P
π→ Q)

since both are full-dimensional polytopes embedded in the subspace (Rn)G ∩
kerπ. The case G = C2 in Example 3.1 already shows that they are not

isomorphic: here Σ(PG
π→ QG) = PG is a triangle, while ΣG(P

π→ Q) is a
pentagon.
Neither is there an inclusion in either direction, as illustrated by the following

example. Let P
π→ Q be the canonical projection of a regular 3-simplex onto

a square Q, with an equivariant C2-action that reflects the square across one
of its diagonals. Label the vertices of P by v1, v2, v3, v4 in such a way that the
C2-action swaps π(v1), π(v2) and fixes π(v3), π(v4). Then both polytopes in
question are 1-dimensional intervals, and one can calculate directly that

Σ(PG
π→ QG) =

[
1

3
x+

2

3
y,

2

3
x+

1

3
y

]

ΣG(P
π→ Q) =

[
0 · x+ 1 · y, 1

2
x+

1

2
y

](
= Σ(P

π→ Q)
)

where x = v1+v2

2 , y = v3+v4

2 .

The distinction between the two relates to weighted averages2 We know from

Corollary 2.3 that ΣG(P
π→ Q) is the set of all average values of G-equivariant

sections γ of P
π→ Q, while Σ(PG

π→ QG) consists of average values of sections

γ̄ of PG
π→ QG. Using Fubini’s Theorem, one can show that the average value

over Q of a G-equivariant section γ is the same as the weighted average value of

an appropriately defined section γ̄ of PG
π→ QG, obtained by integrating γ over

fibers π−1
G (x), in which the weight at a point x in QG is equal to the volume of

the fiber π−1
G (x). If these fiber volumes are not constant, the weighted average

and the average need not coincide.
One might still ask whether there is a relation between their associated normal
fans living in ker(π)∗G, e.g. one refining the other so that the one polytope is
a Minkowski summand of the other. But as far as we know there is no a priori
reason for such a relation. Using the notation of [2], one has that

NΣG(P
π→ Q) := NπGΣ(P

π→ Q)

= NΣ(P
π→ Q) ∩ im(π∗G)

= (projker(π)∗NP ) ∩ ker(π)∗G

2Thanks to John Baxter for an enlightening conversation in this regard.

Documenta Mathematica 7 (2002) 113–132



130 Victor Reiner

whereas

NΣ(PG
π→ QG) := projker(π)∗NPG

= projker(π)∗NπGP
= projker(π)∗(NP ∩ Rn∗G).

Remark 5.2. The fiber polytope Σ(P
π→ Q) has a toric interpretation given

by Kapranov, Sturmfels and Zelevinsky [11]. The associated toric variety
X

Σ(P
π→Q)

is the Chow quotient XP /T of the toric variety XP by the subtorus

T defined by the kernel of π.
One might then expect in the G-equivariant setting that there is a more general
interpretation for X

ΣG(P
π→Q)

, perhaps relating it to the G-invariant subvariety

(XP /T )G for an induced G-action on XP /T . However, even in the very special
case where Q = {0}, so that

Σ(P
π→ Q) = P

ΣG(P
π→ Q) = PG

XP /T = XP

the general relation between the G-invariant subvariety XG
P and the toric va-

riety XPG seems not to be trivial- see [9, Theorem 2] for a special case. We

leave the problem of interpreting ΣG(P
π→ Q) torically to the real experts.

Remark 5.3. Fomin and Zelevinsky [7] recently introduced a family of simplicial
spheres associated to each finite (crystallographic) root system, whose facial
structure coincides with the associahedron in type A and with the cyclohedron
in type B. They and Chapoton subsequently proved [5] that these spheres can
be realized as the boundaries of simplicial convex polytopes.
One might wonder whether they could be realized as the boundaries of equi-
variant fiber polytopes, as is true in the case of types A and B. However we do
not see how to do this for their spheres in the case of type D, whose 1-skeleton
is described in [7, Prop. 3.16].

Remark 5.4. In type A, the 1-skeleton of the permutohedron and associahe-
dron each have an acyclic orientation making them the Hasse diagrams for the
weak Bruhat order on Sn and the Tamari lattice, respectively. Both of these
partial orders are self-dual lattices, and the map between them mentioned in
Section 4.3 enjoys some very pleasant properties [3, §9].
There is a similar acyclic orientation for the 1-skeleton of the typeB permutohe-
dron, and Simion [16, §4.1] asked whether there are corresponding well-behaved
acyclic orientations and partial orders for the 1-skeleton of the cyclohedron. She
proposed two such orders, one of which is self-dual and has some nice properties
explored in [15], but neither of which is a lattice.
Because the maps introduced in Section 4.3 are surjective, they can be used to
transfer the acyclic orientation from the 1-skeleton of the type B permutohe-
dron to an orientation of the 1-skeleton of the cyclohedron, which may or may
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not be acyclic. Do any of these induced orientations end up being acyclic, and
are their partial orders well-behaved in any sense?

Remark 5.5. It was pointed out in the proof of Proposition 2.3 that whenever
a finite group G acts linearly on a convex polytope P , there is induced a linear

surjection P
πG→ PG. Does the “coinvariant polytope” Σ(P

πG→ PG) enjoy any
nice properties or interpretations?
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